Aggregation Trade Offs in Family Based Recommendations
NASA Astrophysics Data System (ADS)
Berkovsky, Shlomo; Freyne, Jill; Coombe, Mac
Personalized information access tools are frequently based on collaborative filtering recommendation algorithms. Collaborative filtering recommender systems typically suffer from a data sparsity problem, where systems do not have sufficient user data to generate accurate and reliable predictions. Prior research suggested using group-based user data in the collaborative filtering recommendation process to generate group-based predictions and partially resolve the sparsity problem. Although group recommendations are less accurate than personalized recommendations, they are more accurate than general non-personalized recommendations, which are the natural fall back when personalized recommendations cannot be generated. In this work we present initial results of a study that exploits the browsing logs of real families of users gathered in an eHealth portal. The browsing logs allowed us to experimentally compare the accuracy of two group-based recommendation strategies: aggregated group models and aggregated predictions. Our results showed that aggregating individual models into group models resulted in more accurate predictions than aggregating individual predictions into group predictions.
Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs
2017-01-01
Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package. PMID:29107980
NASA Astrophysics Data System (ADS)
Dickey, Dwayne J.; Moore, Ronald B.; Tulip, John
2001-01-01
For photodynamic therapy of solid tumors, such as prostatic carcinoma, to be achieved, an accurate model to predict tissue parameters and light dose must be found. Presently, most analytical light dosimetry models are fluence based and are not clinically viable for tissue characterization. Other methods of predicting optical properties, such as Monet Carlo, are accurate but far too time consuming for clinical application. However, radiance predicted by the P3-Approximation, an anaylitical solution to the transport equation, may be a viable and accurate alternative. The P3-Approximation accurately predicts optical parameters in intralipid/methylene blue based phantoms in a spherical geometry. The optical parameters furnished by the radiance, when introduced into fluence predicted by both P3- Approximation and Grosjean Theory, correlate well with experimental data. The P3-Approximation also predicts the optical properties of prostate tissue, agreeing with documented optical parameters. The P3-Approximation could be the clinical tool necessary to facilitate PDT of solid tumors because of the limited number of invasive measurements required and the speed in which accurate calculations can be performed.
Remaining dischargeable time prediction for lithium-ion batteries using unscented Kalman filter
NASA Astrophysics Data System (ADS)
Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai; Sun, Han; Yu, Xiaowei
2017-10-01
To overcome the range anxiety, one of the important strategies is to accurately predict the range or dischargeable time of the battery system. To accurately predict the remaining dischargeable time (RDT) of a battery, a RDT prediction framework based on accurate battery modeling and state estimation is presented in this paper. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery. Then, an online recursive least-square-algorithm method and unscented-Kalman-filter are employed to estimate the system matrices and SOC at every prediction point. Besides, a discrete wavelet transform technique is employed to capture the statistical information of past dynamics of input currents, which are utilized to predict the future battery currents. Finally, the RDT can be predicted based on the battery model, SOC estimation results and predicted future battery currents. The performance of the proposed methodology has been verified by a lithium-ion battery cell. Experimental results indicate that the proposed method can provide an accurate SOC and parameter estimation and the predicted RDT can solve the range anxiety issues.
De Buck, Stefan S; Sinha, Vikash K; Fenu, Luca A; Gilissen, Ron A; Mackie, Claire E; Nijsen, Marjoleen J
2007-04-01
The aim of this study was to assess a physiologically based modeling approach for predicting drug metabolism, tissue distribution, and bioavailability in rat for a structurally diverse set of neutral and moderate-to-strong basic compounds (n = 50). Hepatic blood clearance (CL(h)) was projected using microsomal data and shown to be well predicted, irrespective of the type of hepatic extraction model (80% within 2-fold). Best predictions of CL(h) were obtained disregarding both plasma and microsomal protein binding, whereas strong bias was seen using either blood binding only or both plasma and microsomal protein binding. Two mechanistic tissue composition-based equations were evaluated for predicting volume of distribution (V(dss)) and tissue-to-plasma partitioning (P(tp)). A first approach, which accounted for ionic interactions with acidic phospholipids, resulted in accurate predictions of V(dss) (80% within 2-fold). In contrast, a second approach, which disregarded ionic interactions, was a poor predictor of V(dss) (60% within 2-fold). The first approach also yielded accurate predictions of P(tp) in muscle, heart, and kidney (80% within 3-fold), whereas in lung, liver, and brain, predictions ranged from 47% to 62% within 3-fold. Using the second approach, P(tp) prediction accuracy in muscle, heart, and kidney was on average 70% within 3-fold, and ranged from 24% to 54% in all other tissues. Combining all methods for predicting V(dss) and CL(h) resulted in accurate predictions of the in vivo half-life (70% within 2-fold). Oral bioavailability was well predicted using CL(h) data and Gastroplus Software (80% within 2-fold). These results illustrate that physiologically based prediction tools can provide accurate predictions of rat pharmacokinetics.
The surprising power of neighborly advice.
Gilbert, Daniel T; Killingsworth, Matthew A; Eyre, Rebecca N; Wilson, Timothy D
2009-03-20
Two experiments revealed that (i) people can more accurately predict their affective reactions to a future event when they know how a neighbor in their social network reacted to the event than when they know about the event itself and (ii) people do not believe this. Undergraduates made more accurate predictions about their affective reactions to a 5-minute speed date (n = 25) and to a peer evaluation (n = 88) when they knew only how another undergraduate had reacted to these events than when they had information about the events themselves. Both participants and independent judges mistakenly believed that predictions based on information about the event would be more accurate than predictions based on information about how another person had reacted to it.
A dual-process account of auditory change detection.
McAnally, Ken I; Martin, Russell L; Eramudugolla, Ranmalee; Stuart, Geoffrey W; Irvine, Dexter R F; Mattingley, Jason B
2010-08-01
Listeners can be "deaf" to a substantial change in a scene comprising multiple auditory objects unless their attention has been directed to the changed object. It is unclear whether auditory change detection relies on identification of the objects in pre- and post-change scenes. We compared the rates at which listeners correctly identify changed objects with those predicted by change-detection models based on signal detection theory (SDT) and high-threshold theory (HTT). Detected changes were not identified as accurately as predicted by models based on either theory, suggesting that some changes are detected by a process that does not support change identification. Undetected changes were identified as accurately as predicted by the HTT model but much less accurately than predicted by the SDT models. The process underlying change detection was investigated further by determining receiver-operating characteristics (ROCs). ROCs did not conform to those predicted by either a SDT or a HTT model but were well modeled by a dual-process that incorporated HTT and SDT components. The dual-process model also accurately predicted the rates at which detected and undetected changes were correctly identified.
Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill
2017-01-01
Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875
A methodology for reduced order modeling and calibration of the upper atmosphere
NASA Astrophysics Data System (ADS)
Mehta, Piyush M.; Linares, Richard
2017-10-01
Atmospheric drag is the largest source of uncertainty in accurately predicting the orbit of satellites in low Earth orbit (LEO). Accurately predicting drag for objects that traverse LEO is critical to space situational awareness. Atmospheric models used for orbital drag calculations can be characterized either as empirical or physics-based (first principles based). Empirical models are fast to evaluate but offer limited real-time predictive/forecasting ability, while physics based models offer greater predictive/forecasting ability but require dedicated parallel computational resources. Also, calibration with accurate data is required for either type of models. This paper presents a new methodology based on proper orthogonal decomposition toward development of a quasi-physical, predictive, reduced order model that combines the speed of empirical and the predictive/forecasting capabilities of physics-based models. The methodology is developed to reduce the high dimensionality of physics-based models while maintaining its capabilities. We develop the methodology using the Naval Research Lab's Mass Spectrometer Incoherent Scatter model and show that the diurnal and seasonal variations can be captured using a small number of modes and parameters. We also present calibration of the reduced order model using the CHAMP and GRACE accelerometer-derived densities. Results show that the method performs well for modeling and calibration of the upper atmosphere.
Pacheco, D; Patton, R A; Parys, C; Lapierre, H
2012-02-01
The objective of this analysis was to compare the rumen submodel predictions of 4 commonly used dairy ration programs to observed values of duodenal flows of crude protein (CP), protein fractions, and essential AA (EAA). The literature was searched and 40 studies, including 154 diets, were used to compare observed values with those predicted by AminoCow (AC), Agricultural Modeling and Training Systems (AMTS), Cornell-Penn-Miner (CPM), and National Research Council 2001 (NRC) models. The models were evaluated based on their ability to predict the mean, their root mean square prediction error (RMSPE), error bias, and adequacy of regression equations for each protein fraction. The models predicted the mean duodenal CP flow within 5%, with more than 90% of the variation due to random disturbance. The models also predicted within 5% the mean microbial CP flow except CPM, which overestimated it by 27%. Only NRC, however, predicted mean rumen-undegraded protein (RUP) flows within 5%, whereas AC and AMTS underpredicted it by 8 to 9% and CPM by 24%. Regarding duodenal flows of individual AA, across all diets, CPM predicted substantially greater (>10%) mean flows of Arg, His, Ile, Met, and Lys; AMTS predicted greater flow for Arg and Met, whereas AC and NRC estimations were, on average, within 10% of observed values. Overpredictions by the CPM model were mainly related to mean bias, whereas the NRC model had the highest proportion of bias in random disturbance for flows of EAA. Models tended to predict mean flows of EAA more accurately on corn silage and alfalfa diets than on grass-based diets, more accurately on corn grain-based diets than on non-corn-based diets, and finally more accurately in the mid range of diet types. The 4 models were accurate at predicting mean dry matter intake. The AC, AMTS, and NRC models were all sufficiently accurate to be used for balancing EAA in dairy rations under field conditions. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
ten Haaf, Twan; Weijs, Peter J. M.
2014-01-01
Introduction Resting energy expenditure (REE) is expected to be higher in athletes because of their relatively high fat free mass (FFM). Therefore, REE predictive equation for recreational athletes may be required. The aim of this study was to validate existing REE predictive equations and to develop a new recreational athlete specific equation. Methods 90 (53M, 37F) adult athletes, exercising on average 9.1±5.0 hours a week and 5.0±1.8 times a week, were included. REE was measured using indirect calorimetry (Vmax Encore n29), FFM and FM were measured using air displacement plethysmography. Multiple linear regression analysis was used to develop a new FFM-based and weight-based REE predictive equation. The percentage accurate predictions (within 10% of measured REE), percentage bias, root mean square error and limits of agreement were calculated. Results The Cunningham equation and the new weight-based equation and the new FFM-based equation performed equally well. De Lorenzo's equation predicted REE less accurate, but better than the other generally used REE predictive equations. Harris-Benedict, WHO, Schofield, Mifflin and Owen all showed less than 50% accuracy. Conclusion For a population of (Dutch) recreational athletes, the REE can accurately be predicted with the existing Cunningham equation. Since body composition measurement is not always possible, and other generally used equations fail, the new weight-based equation is advised for use in sports nutrition. PMID:25275434
Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir
2014-01-01
Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.
Base Rates, Contingencies, and Prediction Behavior
ERIC Educational Resources Information Center
Kareev, Yaakov; Fiedler, Klaus; Avrahami, Judith
2009-01-01
A skew in the base rate of upcoming events can often provide a better cue for accurate predictions than a contingency between signals and events. The authors study prediction behavior and test people's sensitivity to both base rate and contingency; they also examine people's ability to compare the benefits of both for prediction. They formalize…
Control surface hinge moment prediction using computational fluid dynamics
NASA Astrophysics Data System (ADS)
Simpson, Christopher David
The following research determines the feasibility of predicting control surface hinge moments using various computational methods. A detailed analysis is conducted using a 2D GA(W)-1 airfoil with a 20% plain flap. Simple hinge moment prediction methods are tested, including empirical Datcom relations and XFOIL. Steady-state and time-accurate turbulent, viscous, Navier-Stokes solutions are computed using Fun3D. Hinge moment coefficients are computed. Mesh construction techniques are discussed. An adjoint-based mesh adaptation case is also evaluated. An NACA 0012 45-degree swept horizontal stabilizer with a 25% elevator is also evaluated using Fun3D. Results are compared with experimental wind-tunnel data obtained from references. Finally, the costs of various solution methods are estimated. Results indicate that while a steady-state Navier-Stokes solution can accurately predict control surface hinge moments for small angles of attack and deflection angles, a time-accurate solution is necessary to accurately predict hinge moments in the presence of flow separation. The ability to capture the unsteady vortex shedding behavior present in moderate to large control surface deflections is found to be critical to hinge moment prediction accuracy. Adjoint-based mesh adaptation is shown to give hinge moment predictions similar to a globally-refined mesh for a steady-state 2D simulation.
NASA Astrophysics Data System (ADS)
Takagawa, T.
2017-12-01
A rapid and precise tsunami forecast based on offshore monitoring is getting attention to reduce human losses due to devastating tsunami inundation. We developed a forecast method based on the combination of hierarchical Bayesian inversion with pre-computed database and rapid post-computing of tsunami inundation. The method was applied to Tokyo bay to evaluate the efficiency of observation arrays against three tsunamigenic earthquakes. One is a scenario earthquake at Nankai trough and the other two are historic ones of Genroku in 1703 and Enpo in 1677. In general, rich observation array near the tsunami source has an advantage in both accuracy and rapidness of tsunami forecast. To examine the effect of observation time length we used four types of data with the lengths of 5, 10, 20 and 45 minutes after the earthquake occurrences. Prediction accuracy of tsunami inundation was evaluated by the simulated tsunami inundation areas around Tokyo bay due to target earthquakes. The shortest time length of accurate prediction varied with target earthquakes. Here, accurate prediction means the simulated values fall within the 95% credible intervals of prediction. In Enpo earthquake case, 5-minutes observation is enough for accurate prediction for Tokyo bay, but 10-minutes and 45-minutes are needed in the case of Nankai trough and Genroku, respectively. The difference of the shortest time length for accurate prediction shows the strong relationship with the relative distance from the tsunami source and observation arrays. In the Enpo case, offshore tsunami observation points are densely distributed even in the source region. So, accurate prediction can be rapidly achieved within 5 minutes. This precise prediction is useful for early warnings. Even in the worst case of Genroku, where less observation points are available near the source, accurate prediction can be obtained within 45 minutes. This information can be useful to figure out the outline of the hazard in an early stage of reaction.
NASA Technical Reports Server (NTRS)
Daigle, Matthew John; Goebel, Kai Frank
2010-01-01
Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.
Alanazi, Hamdan O; Abdullah, Abdul Hanan; Qureshi, Kashif Naseer
2017-04-01
Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.
Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary
2013-01-16
Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time.
Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary
2013-01-01
Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time. PMID:23325347
Predicting DNA hybridization kinetics from sequence
NASA Astrophysics Data System (ADS)
Zhang, Jinny X.; Fang, John Z.; Duan, Wei; Wu, Lucia R.; Zhang, Angela W.; Dalchau, Neil; Yordanov, Boyan; Petersen, Rasmus; Phillips, Andrew; Zhang, David Yu
2018-01-01
Hybridization is a key molecular process in biology and biotechnology, but so far there is no predictive model for accurately determining hybridization rate constants based on sequence information. Here, we report a weighted neighbour voting (WNV) prediction algorithm, in which the hybridization rate constant of an unknown sequence is predicted based on similarity reactions with known rate constants. To construct this algorithm we first performed 210 fluorescence kinetics experiments to observe the hybridization kinetics of 100 different DNA target and probe pairs (36 nt sub-sequences of the CYCS and VEGF genes) at temperatures ranging from 28 to 55 °C. Automated feature selection and weighting optimization resulted in a final six-feature WNV model, which can predict hybridization rate constants of new sequences to within a factor of 3 with ∼91% accuracy, based on leave-one-out cross-validation. Accurate prediction of hybridization kinetics allows the design of efficient probe sequences for genomics research.
Clark, Samuel A; Hickey, John M; Daetwyler, Hans D; van der Werf, Julius H J
2012-02-09
The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values. Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated. The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy. An animal's relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.
ten Haaf, Twan; Weijs, Peter J M
2014-01-01
Resting energy expenditure (REE) is expected to be higher in athletes because of their relatively high fat free mass (FFM). Therefore, REE predictive equation for recreational athletes may be required. The aim of this study was to validate existing REE predictive equations and to develop a new recreational athlete specific equation. 90 (53 M, 37 F) adult athletes, exercising on average 9.1 ± 5.0 hours a week and 5.0 ± 1.8 times a week, were included. REE was measured using indirect calorimetry (Vmax Encore n29), FFM and FM were measured using air displacement plethysmography. Multiple linear regression analysis was used to develop a new FFM-based and weight-based REE predictive equation. The percentage accurate predictions (within 10% of measured REE), percentage bias, root mean square error and limits of agreement were calculated. Results: The Cunningham equation and the new weight-based equation REE(kJ / d) = 49.940* weight(kg) + 2459.053* height(m) - 34.014* age(y) + 799.257* sex(M = 1,F = 0) + 122.502 and the new FFM-based equation REE(kJ / d) = 95.272*FFM(kg) + 2026.161 performed equally well. De Lorenzo's equation predicted REE less accurate, but better than the other generally used REE predictive equations. Harris-Benedict, WHO, Schofield, Mifflin and Owen all showed less than 50% accuracy. For a population of (Dutch) recreational athletes, the REE can accurately be predicted with the existing Cunningham equation. Since body composition measurement is not always possible, and other generally used equations fail, the new weight-based equation is advised for use in sports nutrition.
BEST: Improved Prediction of B-Cell Epitopes from Antigen Sequences
Gao, Jianzhao; Faraggi, Eshel; Zhou, Yaoqi; Ruan, Jishou; Kurgan, Lukasz
2012-01-01
Accurate identification of immunogenic regions in a given antigen chain is a difficult and actively pursued problem. Although accurate predictors for T-cell epitopes are already in place, the prediction of the B-cell epitopes requires further research. We overview the available approaches for the prediction of B-cell epitopes and propose a novel and accurate sequence-based solution. Our BEST (B-cell Epitope prediction using Support vector machine Tool) method predicts epitopes from antigen sequences, in contrast to some method that predict only from short sequence fragments, using a new architecture based on averaging selected scores generated from sliding 20-mers by a Support Vector Machine (SVM). The SVM predictor utilizes a comprehensive and custom designed set of inputs generated by combining information derived from the chain, sequence conservation, similarity to known (training) epitopes, and predicted secondary structure and relative solvent accessibility. Empirical evaluation on benchmark datasets demonstrates that BEST outperforms several modern sequence-based B-cell epitope predictors including ABCPred, method by Chen et al. (2007), BCPred, COBEpro, BayesB, and CBTOPE, when considering the predictions from antigen chains and from the chain fragments. Our method obtains a cross-validated area under the receiver operating characteristic curve (AUC) for the fragment-based prediction at 0.81 and 0.85, depending on the dataset. The AUCs of BEST on the benchmark sets of full antigen chains equal 0.57 and 0.6, which is significantly and slightly better than the next best method we tested. We also present case studies to contrast the propensity profiles generated by BEST and several other methods. PMID:22761950
Accurate Binding Free Energy Predictions in Fragment Optimization.
Steinbrecher, Thomas B; Dahlgren, Markus; Cappel, Daniel; Lin, Teng; Wang, Lingle; Krilov, Goran; Abel, Robert; Friesner, Richard; Sherman, Woody
2015-11-23
Predicting protein-ligand binding free energies is a central aim of computational structure-based drug design (SBDD)--improved accuracy in binding free energy predictions could significantly reduce costs and accelerate project timelines in lead discovery and optimization. The recent development and validation of advanced free energy calculation methods represents a major step toward this goal. Accurately predicting the relative binding free energy changes of modifications to ligands is especially valuable in the field of fragment-based drug design, since fragment screens tend to deliver initial hits of low binding affinity that require multiple rounds of synthesis to gain the requisite potency for a project. In this study, we show that a free energy perturbation protocol, FEP+, which was previously validated on drug-like lead compounds, is suitable for the calculation of relative binding strengths of fragment-sized compounds as well. We study several pharmaceutically relevant targets with a total of more than 90 fragments and find that the FEP+ methodology, which uses explicit solvent molecular dynamics and physics-based scoring with no parameters adjusted, can accurately predict relative fragment binding affinities. The calculations afford R(2)-values on average greater than 0.5 compared to experimental data and RMS errors of ca. 1.1 kcal/mol overall, demonstrating significant improvements over the docking and MM-GBSA methods tested in this work and indicating that FEP+ has the requisite predictive power to impact fragment-based affinity optimization projects.
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Kulkarni, Chetan S.
2016-01-01
As batteries become increasingly prevalent in complex systems such as aircraft and electric cars, monitoring and predicting battery state of charge and state of health becomes critical. In order to accurately predict the remaining battery power to support system operations for informed operational decision-making, age-dependent changes in dynamics must be accounted for. Using an electrochemistry-based model, we investigate how key parameters of the battery change as aging occurs, and develop models to describe aging through these key parameters. Using these models, we demonstrate how we can (i) accurately predict end-of-discharge for aged batteries, and (ii) predict the end-of-life of a battery as a function of anticipated usage. The approach is validated through an experimental set of randomized discharge profiles.
Microarray-based cancer prediction using soft computing approach.
Wang, Xiaosheng; Gotoh, Osamu
2009-05-26
One of the difficulties in using gene expression profiles to predict cancer is how to effectively select a few informative genes to construct accurate prediction models from thousands or ten thousands of genes. We screen highly discriminative genes and gene pairs to create simple prediction models involved in single genes or gene pairs on the basis of soft computing approach and rough set theory. Accurate cancerous prediction is obtained when we apply the simple prediction models for four cancerous gene expression datasets: CNS tumor, colon tumor, lung cancer and DLBCL. Some genes closely correlated with the pathogenesis of specific or general cancers are identified. In contrast with other models, our models are simple, effective and robust. Meanwhile, our models are interpretable for they are based on decision rules. Our results demonstrate that very simple models may perform well on cancerous molecular prediction and important gene markers of cancer can be detected if the gene selection approach is chosen reasonably.
A link prediction approach to cancer drug sensitivity prediction.
Turki, Turki; Wei, Zhi
2017-10-03
Predicting the response to a drug for cancer disease patients based on genomic information is an important problem in modern clinical oncology. This problem occurs in part because many available drug sensitivity prediction algorithms do not consider better quality cancer cell lines and the adoption of new feature representations; both lead to the accurate prediction of drug responses. By predicting accurate drug responses to cancer, oncologists gain a more complete understanding of the effective treatments for each patient, which is a core goal in precision medicine. In this paper, we model cancer drug sensitivity as a link prediction, which is shown to be an effective technique. We evaluate our proposed link prediction algorithms and compare them with an existing drug sensitivity prediction approach based on clinical trial data. The experimental results based on the clinical trial data show the stability of our link prediction algorithms, which yield the highest area under the ROC curve (AUC) and are statistically significant. We propose a link prediction approach to obtain new feature representation. Compared with an existing approach, the results show that incorporating the new feature representation to the link prediction algorithms has significantly improved the performance.
Song, Jingwei; He, Jiaying; Zhu, Menghua; Tan, Debao; Zhang, Yu; Ye, Song; Shen, Dingtao; Zou, Pengfei
2014-01-01
A simulated annealing (SA) based variable weighted forecast model is proposed to combine and weigh local chaotic model, artificial neural network (ANN), and partial least square support vector machine (PLS-SVM) to build a more accurate forecast model. The hybrid model was built and multistep ahead prediction ability was tested based on daily MSW generation data from Seattle, Washington, the United States. The hybrid forecast model was proved to produce more accurate and reliable results and to degrade less in longer predictions than three individual models. The average one-week step ahead prediction has been raised from 11.21% (chaotic model), 12.93% (ANN), and 12.94% (PLS-SVM) to 9.38%. Five-week average has been raised from 13.02% (chaotic model), 15.69% (ANN), and 15.92% (PLS-SVM) to 11.27%. PMID:25301508
Stability of rigid rotors supported by air foil bearings: Comparison of two fundamental approaches
NASA Astrophysics Data System (ADS)
Larsen, Jon S.; Santos, Ilmar F.; von Osmanski, Sebastian
2016-10-01
High speed direct drive motors enable the use of Air Foil Bearings (AFB) in a wide range of applications due to the elimination of gear forces. Unfortunately, AFB supported rotors are lightly damped, and an accurate prediction of their Onset Speed of Instability (OSI) is therefore important. This paper compares two fundamental methods for predicting the OSI. One is based on a nonlinear time domain simulation and another is based on a linearised frequency domain method and a perturbation of the Reynolds equation. Both methods are based on equivalent models and should predict similar results. Significant discrepancies are observed leading to the question, is the classical frequency domain method sufficiently accurate? The discrepancies and possible explanations are discussed in detail.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
Neural network based short-term load forecasting using weather compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, T.W.S.; Leung, C.T.
This paper presents a novel technique for electric load forecasting based on neural weather compensation. The proposed method is a nonlinear generalization of Box and Jenkins approach for nonstationary time-series prediction. A weather compensation neural network is implemented for one-day ahead electric load forecasting. The weather compensation neural network can accurately predict the change of actual electric load consumption from the previous day. The results, based on Hong Kong Island historical load demand, indicate that this methodology is capable of providing a more accurate load forecast with a 0.9% reduction in forecast error.
Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke
2008-05-01
Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods.
Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke
2008-01-01
Background Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. Results SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. Conclusion The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods. PMID:18452616
Accurate prediction of energy expenditure using a shoe-based activity monitor.
Sazonova, Nadezhda; Browning, Raymond C; Sazonov, Edward
2011-07-01
The aim of this study was to develop and validate a method for predicting energy expenditure (EE) using a footwear-based system with integrated accelerometer and pressure sensors. We developed a footwear-based device with an embedded accelerometer and insole pressure sensors for the prediction of EE. The data from the device can be used to perform accurate recognition of major postures and activities and to estimate EE using the acceleration, pressure, and posture/activity classification information in a branched algorithm without the need for individual calibration. We measured EE via indirect calorimetry as 16 adults (body mass index=19-39 kg·m) performed various low- to moderate-intensity activities and compared measured versus predicted EE using several models based on the acceleration and pressure signals. Inclusion of pressure data resulted in better accuracy of EE prediction during static postures such as sitting and standing. The activity-based branched model that included predictors from accelerometer and pressure sensors (BACC-PS) achieved the lowest error (e.g., root mean squared error (RMSE)=0.69 METs) compared with the accelerometer-only-based branched model BACC (RMSE=0.77 METs) and nonbranched model (RMSE=0.94-0.99 METs). Comparison of EE prediction models using data from both legs versus models using data from a single leg indicates that only one shoe needs to be equipped with sensors. These results suggest that foot acceleration combined with insole pressure measurement, when used in an activity-specific branched model, can accurately estimate the EE associated with common daily postures and activities. The accuracy and unobtrusiveness of a footwear-based device may make it an effective physical activity monitoring tool.
Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials
NASA Astrophysics Data System (ADS)
Vlasiuk, Maryna; Sadus, Richard J.
2017-06-01
The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.
Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.
Vlasiuk, Maryna; Sadus, Richard J
2017-06-28
The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.
When high working memory capacity is and is not beneficial for predicting nonlinear processes.
Fischer, Helen; Holt, Daniel V
2017-04-01
Predicting the development of dynamic processes is vital in many areas of life. Previous findings are inconclusive as to whether higher working memory capacity (WMC) is always associated with using more accurate prediction strategies, or whether higher WMC can also be associated with using overly complex strategies that do not improve accuracy. In this study, participants predicted a range of systematically varied nonlinear processes based on exponential functions where prediction accuracy could or could not be enhanced using well-calibrated rules. Results indicate that higher WMC participants seem to rely more on well-calibrated strategies, leading to more accurate predictions for processes with highly nonlinear trajectories in the prediction region. Predictions of lower WMC participants, in contrast, point toward an increased use of simple exemplar-based prediction strategies, which perform just as well as more complex strategies when the prediction region is approximately linear. These results imply that with respect to predicting dynamic processes, working memory capacity limits are not generally a strength or a weakness, but that this depends on the process to be predicted.
Carvalho, Carlos; Gomes, Danielo G.; Agoulmine, Nazim; de Souza, José Neuman
2011-01-01
This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction. PMID:22346626
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture
Li, Lingling; Wang, Pengchong; Chao, Kuei-Hsiang; Zhou, Yatong; Xie, Yang
2016-01-01
The remaining useful life (RUL) prediction of Lithium-ion batteries is closely related to the capacity degeneration trajectories. Due to the self-charging and the capacity regeneration, the trajectories have the property of multimodality. Traditional prediction models such as the support vector machines (SVM) or the Gaussian Process regression (GPR) cannot accurately characterize this multimodality. This paper proposes a novel RUL prediction method based on the Gaussian Process Mixture (GPM). It can process multimodality by fitting different segments of trajectories with different GPR models separately, such that the tiny differences among these segments can be revealed. The method is demonstrated to be effective for prediction by the excellent predictive result of the experiments on the two commercial and chargeable Type 1850 Lithium-ion batteries, provided by NASA. The performance comparison among the models illustrates that the GPM is more accurate than the SVM and the GPR. In addition, GPM can yield the predictive confidence interval, which makes the prediction more reliable than that of traditional models. PMID:27632176
Radiomics biomarkers for accurate tumor progression prediction of oropharyngeal cancer
NASA Astrophysics Data System (ADS)
Hadjiiski, Lubomir; Chan, Heang-Ping; Cha, Kenny H.; Srinivasan, Ashok; Wei, Jun; Zhou, Chuan; Prince, Mark; Papagerakis, Silvana
2017-03-01
Accurate tumor progression prediction for oropharyngeal cancers is crucial for identifying patients who would best be treated with optimized treatment and therefore minimize the risk of under- or over-treatment. An objective decision support system that can merge the available radiomics, histopathologic and molecular biomarkers in a predictive model based on statistical outcomes of previous cases and machine learning may assist clinicians in making more accurate assessment of oropharyngeal tumor progression. In this study, we evaluated the feasibility of developing individual and combined predictive models based on quantitative image analysis from radiomics, histopathology and molecular biomarkers for oropharyngeal tumor progression prediction. With IRB approval, 31, 84, and 127 patients with head and neck CT (CT-HN), tumor tissue microarrays (TMAs) and molecular biomarker expressions, respectively, were collected. For 8 of the patients all 3 types of biomarkers were available and they were sequestered in a test set. The CT-HN lesions were automatically segmented using our level sets based method. Morphological, texture and molecular based features were extracted from CT-HN and TMA images, and selected features were merged by a neural network. The classification accuracy was quantified using the area under the ROC curve (AUC). Test AUCs of 0.87, 0.74, and 0.71 were obtained with the individual predictive models based on radiomics, histopathologic, and molecular features, respectively. Combining the radiomics and molecular models increased the test AUC to 0.90. Combining all 3 models increased the test AUC further to 0.94. This preliminary study demonstrates that the individual domains of biomarkers are useful and the integrated multi-domain approach is most promising for tumor progression prediction.
Prediction of Spacecraft Vibration using Acceleration and Force Envelopes
NASA Technical Reports Server (NTRS)
Gordon, Scott; Kaufman, Daniel; Kern, Dennis; Scharton, Terry
2009-01-01
The base forces in the GLAST X- and Z-axis sine vibration tests were similar to those derived using generic inputs (from users guide and handbook), but the base forces in the sine test were generally greater than the flight data. Basedrive analyses using envelopes of flight acceleration data provided more accurate predictions of the base force than generic inputs, and as expected, using envelopes of both the flight acceleration and force provided even more accurate predictions The GLAST spacecraft interface accelerations and forces measured during the MECO transient were relatively low in the 60 to 150 Hz regime. One may expect the flight forces measured at the base of various spacecraft to be more dependent on the mass, frequencies, etc. of the spacecraft than are the corresponding interface acceleration data, which may depend more on the launch vehicle configuration.
Fundamental Algorithms of the Goddard Battery Model
NASA Technical Reports Server (NTRS)
Jagielski, J. M.
1985-01-01
The Goddard Space Flight Center (GSFC) is currently producing a computer model to predict Nickel Cadmium (NiCd) performance in a Low Earth Orbit (LEO) cycling regime. The model proper is currently still in development, but the inherent, fundamental algorithms (or methodologies) of the model are defined. At present, the model is closely dependent on empirical data and the data base currently used is of questionable accuracy. Even so, very good correlations have been determined between model predictions and actual cycling data. A more accurate and encompassing data base has been generated to serve dual functions: show the limitations of the current data base, and be inbred in the model properly for more accurate predictions. The fundamental algorithms of the model, and the present data base and its limitations, are described and a brief preliminary analysis of the new data base and its verification of the model's methodology are presented.
Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong
2015-01-01
In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896
Puleo, J.A.; Mouraenko, O.; Hanes, D.M.
2004-01-01
Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.
Scribbans, T D; Berg, K; Narazaki, K; Janssen, I; Gurd, B J
2015-09-01
There is currently little information regarding the ability of metabolic prediction equations to accurately predict oxygen uptake and exercise intensity from heart rate (HR) during intermittent sport. The purpose of the present study was to develop and, cross-validate equations appropriate for accurately predicting oxygen cost (VO2) and energy expenditure from HR during intermittent sport participation. Eleven healthy adult males (19.9±1.1yrs) were recruited to establish the relationship between %VO2peak and %HRmax during low-intensity steady state endurance (END), moderate-intensity interval (MOD) and high intensity-interval exercise (HI), as performed on a cycle ergometer. Three equations (END, MOD, and HI) for predicting %VO2peak based on %HRmax were developed. HR and VO2 were directly measured during basketball games (6 male, 20.8±1.0 yrs; 6 female, 20.0±1.3yrs) and volleyball drills (12 female; 20.8±1.0yrs). Comparisons were made between measured and predicted VO2 and energy expenditure using the 3 equations developed and 2 previously published equations. The END and MOD equations accurately predicted VO2 and energy expenditure, while the HI equation underestimated, and the previously published equations systematically overestimated VO2 and energy expenditure. Intermittent sport VO2 and energy expenditure can be accurately predicted from heart rate data using either the END (%VO2peak=%HRmax x 1.008-17.17) or MOD (%VO2peak=%HRmax x 1.2-32) equations. These 2 simple equations provide an accessible and cost-effective method for accurate estimation of exercise intensity and energy expenditure during intermittent sport.
Lee, Seung-Jae; Serre, Marc L; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Jerrett, Michael
2012-12-01
A better understanding of the adverse health effects of chronic exposure to fine particulate matter (PM2.5) requires accurate estimates of PM2.5 variation at fine spatial scales. Remote sensing has emerged as an important means of estimating PM2.5 exposures, but relatively few studies have compared remote-sensing estimates to those derived from monitor-based data. We evaluated and compared the predictive capabilities of remote sensing and geostatistical interpolation. We developed a space-time geostatistical kriging model to predict PM2.5 over the continental United States and compared resulting predictions to estimates derived from satellite retrievals. The kriging estimate was more accurate for locations that were about 100 km from a monitoring station, whereas the remote sensing estimate was more accurate for locations that were > 100 km from a monitoring station. Based on this finding, we developed a hybrid map that combines the kriging and satellite-based PM2.5 estimates. We found that for most of the populated areas of the continental United States, geostatistical interpolation produced more accurate estimates than remote sensing. The differences between the estimates resulting from the two methods, however, were relatively small. In areas with extensive monitoring networks, the interpolation may provide more accurate estimates, but in the many areas of the world without such monitoring, remote sensing can provide useful exposure estimates that perform nearly as well.
Ligand Binding Site Detection by Local Structure Alignment and Its Performance Complementarity
Lee, Hui Sun; Im, Wonpil
2013-01-01
Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is a room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool. A large benchmark set validation shows that G-LoSA predicts drug-like ligands’ positions in single-chain protein targets more precisely than TM-align, a GSA-based method, while the overall success rate of TM-align is better. G-LoSA is particularly efficient for accurate detection of local structures conserved across proteins with diverse global topologies. Recognizing the performance complementarity of G-LoSA to TM-align and a non-template geometry-based method, fpocket, a robust consensus scoring method, CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site Prediction), is developed and shows improvement on prediction accuracy. The G-LoSA source code is freely available at http://im.bioinformatics.ku.edu/GLoSA. PMID:23957286
SIFTER search: a web server for accurate phylogeny-based protein function prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less
SIFTER search: a web server for accurate phylogeny-based protein function prediction
Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.
2015-05-15
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less
Wallace, Jason A; Wang, Yuhang; Shi, Chuanyin; Pastoor, Kevin J; Nguyen, Bao-Linh; Xia, Kai; Shen, Jana K
2011-12-01
Proton uptake or release controls many important biological processes, such as energy transduction, virus replication, and catalysis. Accurate pK(a) prediction informs about proton pathways, thereby revealing detailed acid-base mechanisms. Physics-based methods in the framework of molecular dynamics simulations not only offer pK(a) predictions but also inform about the physical origins of pK(a) shifts and provide details of ionization-induced conformational relaxation and large-scale transitions. One such method is the recently developed continuous constant pH molecular dynamics (CPHMD) method, which has been shown to be an accurate and robust pK(a) prediction tool for naturally occurring titratable residues. To further examine the accuracy and limitations of CPHMD, we blindly predicted the pK(a) values for 87 titratable residues introduced in various hydrophobic regions of staphylococcal nuclease and variants. The predictions gave a root-mean-square deviation of 1.69 pK units from experiment, and there were only two pK(a)'s with errors greater than 3.5 pK units. Analysis of the conformational fluctuation of titrating side-chains in the context of the errors of calculated pK(a) values indicate that explicit treatment of conformational flexibility and the associated dielectric relaxation gives CPHMD a distinct advantage. Analysis of the sources of errors suggests that more accurate pK(a) predictions can be obtained for the most deeply buried residues by improving the accuracy in calculating desolvation energies. Furthermore, it is found that the generalized Born implicit-solvent model underlying the current CPHMD implementation slightly distorts the local conformational environment such that the inclusion of an explicit-solvent representation may offer improvement of accuracy. Copyright © 2011 Wiley-Liss, Inc.
Lee, Sunghoon Ivan; Mortazavi, Bobak; Hoffman, Haydn A; Lu, Derek S; Li, Charles; Paak, Brian H; Garst, Jordan H; Razaghy, Mehrdad; Espinal, Marie; Park, Eunjeong; Lu, Daniel C; Sarrafzadeh, Majid
2016-01-01
Predicting the functional outcomes of spinal cord disorder patients after medical treatments, such as a surgical operation, has always been of great interest. Accurate posttreatment prediction is especially beneficial for clinicians, patients, care givers, and therapists. This paper introduces a prediction method for postoperative functional outcomes by a novel use of Gaussian process regression. The proposed method specifically considers the restricted value range of the target variables by modeling the Gaussian process based on a truncated Normal distribution, which significantly improves the prediction results. The prediction has been made in assistance with target tracking examinations using a highly portable and inexpensive handgrip device, which greatly contributes to the prediction performance. The proposed method has been validated through a dataset collected from a clinical cohort pilot involving 15 patients with cervical spinal cord disorder. The results show that the proposed method can accurately predict postoperative functional outcomes, Oswestry disability index and target tracking scores, based on the patient's preoperative information with a mean absolute error of 0.079 and 0.014 (out of 1.0), respectively.
Minimum number of measurements for evaluating soursop (Annona muricata L.) yield.
Sánchez, C F B; Teodoro, P E; Londoño, S; Silva, L A; Peixoto, L A; Bhering, L L
2017-05-31
Repeatability studies on fruit species are of great importance to identify the minimum number of measurements necessary to accurately select superior genotypes. This study aimed to identify the most efficient method to estimate the repeatability coefficient (r) and predict the minimum number of measurements needed for a more accurate evaluation of soursop (Annona muricata L.) genotypes based on fruit yield. Sixteen measurements of fruit yield from 71 soursop genotypes were carried out between 2000 and 2016. In order to estimate r with the best accuracy, four procedures were used: analysis of variance, principal component analysis based on the correlation matrix, principal component analysis based on the phenotypic variance and covariance matrix, and structural analysis based on the correlation matrix. The minimum number of measurements needed to predict the actual value of individuals was estimated. Principal component analysis using the phenotypic variance and covariance matrix provided the most accurate estimates of both r and the number of measurements required for accurate evaluation of fruit yield in soursop. Our results indicate that selection of soursop genotypes with high fruit yield can be performed based on the third and fourth measurements in the early years and/or based on the eighth and ninth measurements at more advanced stages.
A physical-based gas-surface interaction model for rarefied gas flow simulation
NASA Astrophysics Data System (ADS)
Liang, Tengfei; Li, Qi; Ye, Wenjing
2018-01-01
Empirical gas-surface interaction models, such as the Maxwell model and the Cercignani-Lampis model, are widely used as the boundary condition in rarefied gas flow simulations. The accuracy of these models in the prediction of macroscopic behavior of rarefied gas flows is less satisfactory in some cases especially the highly non-equilibrium ones. Molecular dynamics simulation can accurately resolve the gas-surface interaction process at atomic scale, and hence can predict accurate macroscopic behavior. They are however too computationally expensive to be applied in real problems. In this work, a statistical physical-based gas-surface interaction model, which complies with the basic relations of boundary condition, is developed based on the framework of the washboard model. In virtue of its physical basis, this new model is capable of capturing some important relations/trends for which the classic empirical models fail to model correctly. As such, the new model is much more accurate than the classic models, and in the meantime is more efficient than MD simulations. Therefore, it can serve as a more accurate and efficient boundary condition for rarefied gas flow simulations.
A Battery Health Monitoring Framework for Planetary Rovers
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Kulkarni, Chetan Shrikant
2014-01-01
Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.
Pai, Priyadarshini P; Mondal, Sukanta
2016-10-01
Proteins interact with carbohydrates to perform various cellular interactions. Of the many carbohydrate ligands that proteins bind with, mannose constitute an important class, playing important roles in host defense mechanisms. Accurate identification of mannose-interacting residues (MIR) may provide important clues to decipher the underlying mechanisms of protein-mannose interactions during infections. This study proposes an approach using an ensemble of base classifiers for prediction of MIR using their evolutionary information in the form of position-specific scoring matrix. The base classifiers are random forests trained by different subsets of training data set Dset128 using 10-fold cross-validation. The optimized ensemble of base classifiers, MOWGLI, is then used to predict MIR on protein chains of the test data set Dtestset29 which showed a promising performance with 92.0% accurate prediction. An overall improvement of 26.6% in precision was observed upon comparison with the state-of-art. It is hoped that this approach, yielding enhanced predictions, could be eventually used for applications in drug design and vaccine development.
Predicting intensity ranks of peptide fragment ions.
Frank, Ari M
2009-05-01
Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm into models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal multiple reaction monitoring (MRM) transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html.
Predicting Intensity Ranks of Peptide Fragment Ions
Frank, Ari M.
2009-01-01
Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm in to models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal MRM transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html. PMID:19256476
Just-in-Time Correntropy Soft Sensor with Noisy Data for Industrial Silicon Content Prediction.
Chen, Kun; Liang, Yu; Gao, Zengliang; Liu, Yi
2017-08-08
Development of accurate data-driven quality prediction models for industrial blast furnaces encounters several challenges mainly because the collected data are nonlinear, non-Gaussian, and uneven distributed. A just-in-time correntropy-based local soft sensing approach is presented to predict the silicon content in this work. Without cumbersome efforts for outlier detection, a correntropy support vector regression (CSVR) modeling framework is proposed to deal with the soft sensor development and outlier detection simultaneously. Moreover, with a continuous updating database and a clustering strategy, a just-in-time CSVR (JCSVR) method is developed. Consequently, more accurate prediction and efficient implementations of JCSVR can be achieved. Better prediction performance of JCSVR is validated on the online silicon content prediction, compared with traditional soft sensors.
Just-in-Time Correntropy Soft Sensor with Noisy Data for Industrial Silicon Content Prediction
Chen, Kun; Liang, Yu; Gao, Zengliang; Liu, Yi
2017-01-01
Development of accurate data-driven quality prediction models for industrial blast furnaces encounters several challenges mainly because the collected data are nonlinear, non-Gaussian, and uneven distributed. A just-in-time correntropy-based local soft sensing approach is presented to predict the silicon content in this work. Without cumbersome efforts for outlier detection, a correntropy support vector regression (CSVR) modeling framework is proposed to deal with the soft sensor development and outlier detection simultaneously. Moreover, with a continuous updating database and a clustering strategy, a just-in-time CSVR (JCSVR) method is developed. Consequently, more accurate prediction and efficient implementations of JCSVR can be achieved. Better prediction performance of JCSVR is validated on the online silicon content prediction, compared with traditional soft sensors. PMID:28786957
NASA Astrophysics Data System (ADS)
Mu, G. Y.; Mi, X. Z.; Wang, F.
2018-01-01
The high temperature low cycle fatigue tests of TC4 titanium alloy and TC11 titanium alloy are carried out under strain controlled. The relationships between cyclic stress-life and strain-life are analyzed. The high temperature low cycle fatigue life prediction model of two kinds of titanium alloys is established by using Manson-Coffin method. The relationship between failure inverse number and plastic strain range presents nonlinear in the double logarithmic coordinates. Manson-Coffin method assumes that they have linear relation. Therefore, there is bound to be a certain prediction error by using the Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. The results show that the fatigue life of the two kinds of titanium alloys can be predicted accurately and effectively by using these two methods. Prediction accuracy is within ±1.83 times scatter zone. The life prediction capability of new methods based on exponential function proves more effective and accurate than Manson-Coffin method for two kinds of titanium alloys. The new method based on exponential function can give better fatigue life prediction results with the smaller standard deviation and scatter zone than Manson-Coffin method. The life prediction results of two methods for TC4 titanium alloy prove better than TC11 titanium alloy.
Risk and the physics of clinical prediction.
McEvoy, John W; Diamond, George A; Detrano, Robert C; Kaul, Sanjay; Blaha, Michael J; Blumenthal, Roger S; Jones, Steven R
2014-04-15
The current paradigm of primary prevention in cardiology uses traditional risk factors to estimate future cardiovascular risk. These risk estimates are based on prediction models derived from prospective cohort studies and are incorporated into guideline-based initiation algorithms for commonly used preventive pharmacologic treatments, such as aspirin and statins. However, risk estimates are more accurate for populations of similar patients than they are for any individual patient. It may be hazardous to presume that the point estimate of risk derived from a population model represents the most accurate estimate for a given patient. In this review, we exploit principles derived from physics as a metaphor for the distinction between predictions regarding populations versus patients. We identify the following: (1) predictions of risk are accurate at the level of populations but do not translate directly to patients, (2) perfect accuracy of individual risk estimation is unobtainable even with the addition of multiple novel risk factors, and (3) direct measurement of subclinical disease (screening) affords far greater certainty regarding the personalized treatment of patients, whereas risk estimates often remain uncertain for patients. In conclusion, shifting our focus from prediction of events to detection of disease could improve personalized decision-making and outcomes. We also discuss innovative future strategies for risk estimation and treatment allocation in preventive cardiology. Copyright © 2014 Elsevier Inc. All rights reserved.
Towards Assessing the Human Trajectory Planning Horizon
Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk
2016-01-01
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models. PMID:27936015
Towards Assessing the Human Trajectory Planning Horizon.
Carton, Daniel; Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk
2016-01-01
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models.
A Systematic Approach to Predicting Spring Force for Sagittal Craniosynostosis Surgery.
Zhang, Guangming; Tan, Hua; Qian, Xiaohua; Zhang, Jian; Li, King; David, Lisa R; Zhou, Xiaobo
2016-05-01
Spring-assisted surgery (SAS) can effectively treat scaphocephaly by reshaping crania with the appropriate spring force. However, it is difficult to accurately estimate spring force without considering biomechanical properties of tissues. This study presents and validates a reliable system to accurately predict the spring force for sagittal craniosynostosis surgery. The authors randomly chose 23 patients who underwent SAS and had been followed for at least 2 years. An elastic model was designed to characterize the biomechanical behavior of calvarial bone tissue for each individual. After simulating the contact force on accurate position of the skull strip with the springs, the finite element method was applied to calculating the stress of each tissue node based on the elastic model. A support vector regression approach was then used to model the relationships between biomechanical properties generated from spring force, bone thickness, and the change of cephalic index after surgery. Therefore, for a new patient, the optimal spring force can be predicted based on the learned model with virtual spring simulation and dynamic programming approach prior to SAS. Leave-one-out cross-validation was implemented to assess the accuracy of our prediction. As a result, the mean prediction accuracy of this model was 93.35%, demonstrating the great potential of this model as a useful adjunct for preoperative planning tool.
Experimental evaluation of a recursive model identification technique for type 1 diabetes.
Finan, Daniel A; Doyle, Francis J; Palerm, Cesar C; Bevier, Wendy C; Zisser, Howard C; Jovanovic, Lois; Seborg, Dale E
2009-09-01
A model-based controller for an artificial beta cell requires an accurate model of the glucose-insulin dynamics in type 1 diabetes subjects. To ensure the robustness of the controller for changing conditions (e.g., changes in insulin sensitivity due to illnesses, changes in exercise habits, or changes in stress levels), the model should be able to adapt to the new conditions by means of a recursive parameter estimation technique. Such an adaptive strategy will ensure that the most accurate model is used for the current conditions, and thus the most accurate model predictions are used in model-based control calculations. In a retrospective analysis, empirical dynamic autoregressive exogenous input (ARX) models were identified from glucose-insulin data for nine type 1 diabetes subjects in ambulatory conditions. Data sets consisted of continuous (5-minute) glucose concentration measurements obtained from a continuous glucose monitor, basal insulin infusion rates and times and amounts of insulin boluses obtained from the subjects' insulin pumps, and subject-reported estimates of the times and carbohydrate content of meals. Two identification techniques were investigated: nonrecursive, or batch methods, and recursive methods. Batch models were identified from a set of training data, whereas recursively identified models were updated at each sampling instant. Both types of models were used to make predictions of new test data. For the purpose of comparison, model predictions were compared to zero-order hold (ZOH) predictions, which were made by simply holding the current glucose value constant for p steps into the future, where p is the prediction horizon. Thus, the ZOH predictions are model free and provide a base case for the prediction metrics used to quantify the accuracy of the model predictions. In theory, recursive identification techniques are needed only when there are changing conditions in the subject that require model adaptation. Thus, the identification and validation techniques were performed with both "normal" data and data collected during conditions of reduced insulin sensitivity. The latter were achieved by having the subjects self-administer a medication, prednisone, for 3 consecutive days. The recursive models were allowed to adapt to this condition of reduced insulin sensitivity, while the batch models were only identified from normal data. Data from nine type 1 diabetes subjects in ambulatory conditions were analyzed; six of these subjects also participated in the prednisone portion of the study. For normal test data, the batch ARX models produced 30-, 45-, and 60-minute-ahead predictions that had average root mean square error (RMSE) values of 26, 34, and 40 mg/dl, respectively. For test data characterized by reduced insulin sensitivity, the batch ARX models produced 30-, 60-, and 90-minute-ahead predictions with average RMSE values of 27, 46, and 59 mg/dl, respectively; the recursive ARX models demonstrated similar performance with corresponding values of 27, 45, and 61 mg/dl, respectively. The identified ARX models (batch and recursive) produced more accurate predictions than the model-free ZOH predictions, but only marginally. For test data characterized by reduced insulin sensitivity, RMSE values for the predictions of the batch ARX models were 9, 5, and 5% more accurate than the ZOH predictions for prediction horizons of 30, 60, and 90 minutes, respectively. In terms of RMSE values, the 30-, 60-, and 90-minute predictions of the recursive models were more accurate than the ZOH predictions, by 10, 5, and 2%, respectively. In this experimental study, the recursively identified ARX models resulted in predictions of test data that were similar, but not superior, to the batch models. Even for the test data characteristic of reduced insulin sensitivity, the batch and recursive models demonstrated similar prediction accuracy. The predictions of the identified ARX models were only marginally more accurate than the model-free ZOH predictions. Given the simplicity of the ARX models and the computational ease with which they are identified, however, even modest improvements may justify the use of these models in a model-based controller for an artificial beta cell. 2009 Diabetes Technology Society.
Interpretable Decision Sets: A Joint Framework for Description and Prediction
Lakkaraju, Himabindu; Bach, Stephen H.; Jure, Leskovec
2016-01-01
One of the most important obstacles to deploying predictive models is the fact that humans do not understand and trust them. Knowing which variables are important in a model’s prediction and how they are combined can be very powerful in helping people understand and trust automatic decision making systems. Here we propose interpretable decision sets, a framework for building predictive models that are highly accurate, yet also highly interpretable. Decision sets are sets of independent if-then rules. Because each rule can be applied independently, decision sets are simple, concise, and easily interpretable. We formalize decision set learning through an objective function that simultaneously optimizes accuracy and interpretability of the rules. In particular, our approach learns short, accurate, and non-overlapping rules that cover the whole feature space and pay attention to small but important classes. Moreover, we prove that our objective is a non-monotone submodular function, which we efficiently optimize to find a near-optimal set of rules. Experiments show that interpretable decision sets are as accurate at classification as state-of-the-art machine learning techniques. They are also three times smaller on average than rule-based models learned by other methods. Finally, results of a user study show that people are able to answer multiple-choice questions about the decision boundaries of interpretable decision sets and write descriptions of classes based on them faster and more accurately than with other rule-based models that were designed for interpretability. Overall, our framework provides a new approach to interpretable machine learning that balances accuracy, interpretability, and computational efficiency. PMID:27853627
Analysis of Material Sample Heated by Impinging Hot Hydrogen Jet in a Non-Nuclear Tester
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Foote, John; Litchford, Ron
2006-01-01
A computational conjugate heat transfer methodology was developed and anchored with data obtained from a hot-hydrogen jet heated, non-nuclear materials tester, as a first step towards developing an efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective and thermal radiative, and conjugate heat transfers. Predicted hot hydrogen jet and material surface temperatures were compared with those of measurement. Predicted solid temperatures were compared with those obtained with a standard heat transfer code. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.
A Micromechanics-Based Method for Multiscale Fatigue Prediction
NASA Astrophysics Data System (ADS)
Moore, John Allan
An estimated 80% of all structural failures are due to mechanical fatigue, often resulting in catastrophic, dangerous and costly failure events. However, an accurate model to predict fatigue remains an elusive goal. One of the major challenges is that fatigue is intrinsically a multiscale process, which is dependent on a structure's geometric design as well as its material's microscale morphology. The following work begins with a microscale study of fatigue nucleation around non- metallic inclusions. Based on this analysis, a novel multiscale method for fatigue predictions is developed. This method simulates macroscale geometries explicitly while concurrently calculating the simplified response of microscale inclusions. Thus, providing adequate detail on multiple scales for accurate fatigue life predictions. The methods herein provide insight into the multiscale nature of fatigue, while also developing a tool to aid in geometric design and material optimization for fatigue critical devices such as biomedical stents and artificial heart valves.
Bayesian averaging over Decision Tree models for trauma severity scoring.
Schetinin, V; Jakaite, L; Krzanowski, W
2018-01-01
Health care practitioners analyse possible risks of misleading decisions and need to estimate and quantify uncertainty in predictions. We have examined the "gold" standard of screening a patient's conditions for predicting survival probability, based on logistic regression modelling, which is used in trauma care for clinical purposes and quality audit. This methodology is based on theoretical assumptions about data and uncertainties. Models induced within such an approach have exposed a number of problems, providing unexplained fluctuation of predicted survival and low accuracy of estimating uncertainty intervals within which predictions are made. Bayesian method, which in theory is capable of providing accurate predictions and uncertainty estimates, has been adopted in our study using Decision Tree models. Our approach has been tested on a large set of patients registered in the US National Trauma Data Bank and has outperformed the standard method in terms of prediction accuracy, thereby providing practitioners with accurate estimates of the predictive posterior densities of interest that are required for making risk-aware decisions. Copyright © 2017 Elsevier B.V. All rights reserved.
Prediction of Recidivism in Juvenile Offenders Based on Discriminant Analysis.
ERIC Educational Resources Information Center
Proefrock, David W.
The recent development of strong statistical techniques has made accurate predictions of recidivism possible. To investigate the utility of discriminant analysis methodology in making predictions of recidivism in juvenile offenders, the court records of 271 male and female juvenile offenders, aged 12-16, were reviewed. A cross validation group…
Shear wave velocities of unconsolidated shallow sediments in the Gulf of Mexico
Lee, Myung W.
2013-01-01
Accurate shear-wave velocities for shallow sediments are important for a variety of seismic applications such as inver-sion and amplitude versus offset analysis. During the U.S. Department of Energy-sponsored Gas Hydrate Joint Industry Project Leg II, shear-wave velocities were measured at six wells in the Gulf of Mexico using the logging-while-drilling SonicScope acoustic tool. Because the tool measurement point was only 35 feet from the drill bit, the adverse effect of the borehole condition, which is severe for the shallow unconsolidated sediments in the Gulf of Mexico, was mini-mized and accurate shear-wave velocities of unconsolidated sediments were measured. Measured shear-wave velocities were compared with the shear-wave velocities predicted from the compressional-wave velocities using empirical formulas and the rock physics models based on the Biot-Gassmann theory, and the effectiveness of the two prediction methods was evaluated. Although the empirical equation derived from measured shear-wave data is accurate for predicting shear-wave velocities for depths greater than 500 feet in these wells, the three-phase Biot-Gassmann-theory -based theory appears to be optimum for predicting shear-wave velocities for shallow unconsolidated sediments in the Gulf of Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Christian Birk; Robinson, Matt; Yasaei, Yasser
Optimal integration of thermal energy storage within commercial building applications requires accurate load predictions. Several methods exist that provide an estimate of a buildings future needs. Methods include component-based models and data-driven algorithms. This work implemented a previously untested algorithm for this application that is called a Laterally Primed Adaptive Resonance Theory (LAPART) artificial neural network (ANN). The LAPART algorithm provided accurate results over a two month period where minimal historical data and a small amount of input types were available. These results are significant, because common practice has often overlooked the implementation of an ANN. ANN have often beenmore » perceived to be too complex and require large amounts of data to provide accurate results. The LAPART neural network was implemented in an on-line learning manner. On-line learning refers to the continuous updating of training data as time occurs. For this experiment, training began with a singe day and grew to two months of data. This approach provides a platform for immediate implementation that requires minimal time and effort. The results from the LAPART algorithm were compared with statistical regression and a component-based model. The comparison was based on the predictions linear relationship with the measured data, mean squared error, mean bias error, and cost savings achieved by the respective prediction techniques. The results show that the LAPART algorithm provided a reliable and cost effective means to predict the building load for the next day.« less
Brylinski, Michal; Skolnick, Jeffrey
2010-01-01
The rapid accumulation of gene sequences, many of which are hypothetical proteins with unknown function, has stimulated the development of accurate computational tools for protein function prediction with evolution/structure-based approaches showing considerable promise. In this paper, we present FINDSITE-metal, a new threading-based method designed specifically to detect metal binding sites in modeled protein structures. Comprehensive benchmarks using different quality protein structures show that weakly homologous protein models provide sufficient structural information for quite accurate annotation by FINDSITE-metal. Combining structure/evolutionary information with machine learning results in highly accurate metal binding annotations; for protein models constructed by TASSER, whose average Cα RMSD from the native structure is 8.9 Å, 59.5% (71.9%) of the best of top five predicted metal locations are within 4 Å (8 Å) from a bound metal in the crystal structure. For most of the targets, multiple metal binding sites are detected with the best predicted binding site at rank 1 and within the top 2 ranks in 65.6% and 83.1% of the cases, respectively. Furthermore, for iron, copper, zinc, calcium and magnesium ions, the binding metal can be predicted with high, typically 70-90%, accuracy. FINDSITE-metal also provides a set of confidence indexes that help assess the reliability of predictions. Finally, we describe the proteome-wide application of FINDSITE-metal that quantifies the metal binding complement of the human proteome. FINDSITE-metal is freely available to the academic community at http://cssb.biology.gatech.edu/findsite-metal/. PMID:21287609
Prediction using patient comparison vs. modeling: a case study for mortality prediction.
Hoogendoorn, Mark; El Hassouni, Ali; Mok, Kwongyen; Ghassemi, Marzyeh; Szolovits, Peter
2016-08-01
Information in Electronic Medical Records (EMRs) can be used to generate accurate predictions for the occurrence of a variety of health states, which can contribute to more pro-active interventions. The very nature of EMRs does make the application of off-the-shelf machine learning techniques difficult. In this paper, we study two approaches to making predictions that have hardly been compared in the past: (1) extracting high-level (temporal) features from EMRs and building a predictive model, and (2) defining a patient similarity metric and predicting based on the outcome observed for similar patients. We analyze and compare both approaches on the MIMIC-II ICU dataset to predict patient mortality and find that the patient similarity approach does not scale well and results in a less accurate model (AUC of 0.68) compared to the modeling approach (0.84). We also show that mortality can be predicted within a median of 72 hours.
Probability-based collaborative filtering model for predicting gene-disease associations.
Zeng, Xiangxiang; Ding, Ningxiang; Rodríguez-Patón, Alfonso; Zou, Quan
2017-12-28
Accurately predicting pathogenic human genes has been challenging in recent research. Considering extensive gene-disease data verified by biological experiments, we can apply computational methods to perform accurate predictions with reduced time and expenses. We propose a probability-based collaborative filtering model (PCFM) to predict pathogenic human genes. Several kinds of data sets, containing data of humans and data of other nonhuman species, are integrated in our model. Firstly, on the basis of a typical latent factorization model, we propose model I with an average heterogeneous regularization. Secondly, we develop modified model II with personal heterogeneous regularization to enhance the accuracy of aforementioned models. In this model, vector space similarity or Pearson correlation coefficient metrics and data on related species are also used. We compared the results of PCFM with the results of four state-of-arts approaches. The results show that PCFM performs better than other advanced approaches. PCFM model can be leveraged for predictions of disease genes, especially for new human genes or diseases with no known relationships.
In situ Observations of Heliospheric Current Sheets Evolution
NASA Astrophysics Data System (ADS)
Liu, Yong; Peng, Jun; Huang, Jia; Klecker, Berndt
2017-04-01
We investigate the Heliospheric current sheet observation time difference of the spacecraft using the STEREO, ACE and WIND data. The observations are first compared to a simple theory in which the time difference is only determined by the radial and longitudinal separation between the spacecraft. The predictions fit well with the observations except for a few events. Then the time delay caused by the latitudinal separation is taken in consideration. The latitude of each spacecraft is calculated based on the PFSS model assuming that heliospheric current sheets propagate at the solar wind speed without changing their shapes from the origin to spacecraft near 1AU. However, including the latitudinal effects does not improve the prediction, possibly because that the PFSS model may not locate the current sheets accurately enough. A new latitudinal delay is predicted based on the time delay using the observations on ACE data. The new method improved the prediction on the time lag between spacecraft; however, further study is needed to predict the location of the heliospheric current sheet more accurately.
Patel, Meenal J; Andreescu, Carmen; Price, Julie C; Edelman, Kathryn L; Reynolds, Charles F; Aizenstein, Howard J
2015-10-01
Currently, depression diagnosis relies primarily on behavioral symptoms and signs, and treatment is guided by trial and error instead of evaluating associated underlying brain characteristics. Unlike past studies, we attempted to estimate accurate prediction models for late-life depression diagnosis and treatment response using multiple machine learning methods with inputs of multi-modal imaging and non-imaging whole brain and network-based features. Late-life depression patients (medicated post-recruitment) (n = 33) and older non-depressed individuals (n = 35) were recruited. Their demographics and cognitive ability scores were recorded, and brain characteristics were acquired using multi-modal magnetic resonance imaging pretreatment. Linear and nonlinear learning methods were tested for estimating accurate prediction models. A learning method called alternating decision trees estimated the most accurate prediction models for late-life depression diagnosis (87.27% accuracy) and treatment response (89.47% accuracy). The diagnosis model included measures of age, Mini-mental state examination score, and structural imaging (e.g. whole brain atrophy and global white mater hyperintensity burden). The treatment response model included measures of structural and functional connectivity. Combinations of multi-modal imaging and/or non-imaging measures may help better predict late-life depression diagnosis and treatment response. As a preliminary observation, we speculate that the results may also suggest that different underlying brain characteristics defined by multi-modal imaging measures-rather than region-based differences-are associated with depression versus depression recovery because to our knowledge this is the first depression study to accurately predict both using the same approach. These findings may help better understand late-life depression and identify preliminary steps toward personalized late-life depression treatment. Copyright © 2015 John Wiley & Sons, Ltd.
Han, Dianwei; Zhang, Jun; Tang, Guiliang
2012-01-01
An accurate prediction of the pre-microRNA secondary structure is important in miRNA informatics. Based on a recently proposed model, nucleotide cyclic motifs (NCM), to predict RNA secondary structure, we propose and implement a Modified NCM (MNCM) model with a physics-based scoring strategy to tackle the problem of pre-microRNA folding. Our microRNAfold is implemented using a global optimal algorithm based on the bottom-up local optimal solutions. Our experimental results show that microRNAfold outperforms the current leading prediction tools in terms of True Negative rate, False Negative rate, Specificity, and Matthews coefficient ratio.
Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi
2014-01-01
Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.
Hofsteenge, Geesje H; Chinapaw, Mai J M; Weijs, Peter J M
2015-10-15
In clinical practice, patient friendly methods to assess body composition in obese adolescents are needed. Therefore, the bioelectrical impedance analysis (BIA) related fat-free mass (FFM) prediction equations (FFM-BIA) were evaluated in obese adolescents (age 11-18 years) compared to FFM measured by dual-energy x-ray absorptiometry (FFM-DXA) and a new population specific FFM-BIA equation is developed. After an overnight fast, the subjects attended the outpatient clinic. After measuring height and weight, a full body scan by dual-energy x-ray absorptiometry (DXA) and a BIA measurement was performed. Thirteen predictive FFM-BIA equations based on weight, height, age, resistance, reactance and/or impedance were systematically selected and compared to FFM-DXA. Accuracy of FFM-BIA equations was evaluated by the percentage adolescents predicted within 5% of FFM-DXA measured, the mean percentage difference between predicted and measured values (bias) and the Root Mean Squared prediction Error (RMSE). Multiple linear regression was conducted to develop a new BIA equation. Validation was based on 103 adolescents (60% girls), age 14.5 (sd1.7) years, weight 94.1 (sd15.6) kg and FFM-DXA of 56.1 (sd9.8) kg. The percentage accurate estimations varied between equations from 0 to 68%; bias ranged from -29.3 to +36.3% and RMSE ranged from 2.8 to 12.4 kg. An alternative prediction equation was developed: FFM = 0.527 * H(cm)(2)/Imp + 0.306 * weight - 1.862 (R(2) = 0.92, SEE = 2.85 kg). Percentage accurate prediction was 76%. Compared to DXA, the Gray equation underestimated the FFM with 0.4 kg (55.7 ± 8.3), had an RMSE of 3.2 kg, 63% accurate prediction and the smallest bias of (-0.1%). When split by sex, the Gray equation had the narrowest range in accurate predictions, bias, and RMSE. For the assessment of FFM with BIA, the Gray-FFM equation appears to be the most accurate, but 63% is still not at an acceptable accuracy level for obese adolescents. The new equation appears to be appropriate but await further validation. DXA measurement remains the method of choice for FFM in obese adolescents. Netherlands Trial Register ( ISRCTN27626398).
Kawabe, Takefumi; Tomitsuka, Toshiaki; Kajiro, Toshi; Kishi, Naoyuki; Toyo'oka, Toshimasa
2013-01-18
An optimization procedure of ternary isocratic mobile phase composition in the HPLC method using a statistical prediction model and visualization technique is described. In this report, two prediction models were first evaluated to obtain reliable prediction results. The retention time prediction model was constructed by modification from past respectable knowledge of retention modeling against ternary solvent strength changes. An excellent correlation between observed and predicted retention time was given in various kinds of pharmaceutical compounds by the multiple regression modeling of solvent strength parameters. The peak width of half height prediction model employed polynomial fitting of the retention time, because a linear relationship between the peak width of half height and the retention time was not obtained even after taking into account the contribution of the extra-column effect based on a moment method. Accurate prediction results were able to be obtained by such model, showing mostly over 0.99 value of correlation coefficient between observed and predicted peak width of half height. Then, a procedure to visualize a resolution Design Space was tried as the secondary challenge. An artificial neural network method was performed to link directly between ternary solvent strength parameters and predicted resolution, which were determined by accurate prediction results of retention time and a peak width of half height, and to visualize appropriate ternary mobile phase compositions as a range of resolution over 1.5 on the contour profile. By using mixtures of similar pharmaceutical compounds in case studies, we verified a possibility of prediction to find the optimal range of condition. Observed chromatographic results on the optimal condition mostly matched with the prediction and the average of difference between observed and predicted resolution were approximately 0.3. This means that enough accuracy for prediction could be achieved by the proposed procedure. Consequently, the procedure to search the optimal range of ternary solvent strength achieving an appropriate separation is provided by using the resolution Design Space based on accurate prediction. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, H.-J.; Huang, F.
2011-09-01
A wave-function-based intermolecular potential of the β phase 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) molecule has been constructed from first principles using the Williams-Stone-Misquitta method and the symmetry-adapted perturbation theory. Using the potential and its derivatives, we have accurately predicted not only the structure and lattice energy of the crystalline β-HMX at 0 K, but also its densities at temperatures of 0-403 K within an accuracy of 1% of density. The calculated densities at pressures within 0-6 GPa excellently agree with the results from the experiments on hydrostatic compression.
Vfold: a web server for RNA structure and folding thermodynamics prediction.
Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie
2014-01-01
The ever increasing discovery of non-coding RNAs leads to unprecedented demand for the accurate modeling of RNA folding, including the predictions of two-dimensional (base pair) and three-dimensional all-atom structures and folding stabilities. Accurate modeling of RNA structure and stability has far-reaching impact on our understanding of RNA functions in human health and our ability to design RNA-based therapeutic strategies. The Vfold server offers a web interface to predict (a) RNA two-dimensional structure from the nucleotide sequence, (b) three-dimensional structure from the two-dimensional structure and the sequence, and (c) folding thermodynamics (heat capacity melting curve) from the sequence. To predict the two-dimensional structure (base pairs), the server generates an ensemble of structures, including loop structures with the different intra-loop mismatches, and evaluates the free energies using the experimental parameters for the base stacks and the loop entropy parameters given by a coarse-grained RNA folding model (the Vfold model) for the loops. To predict the three-dimensional structure, the server assembles the motif scaffolds using structure templates extracted from the known PDB structures and refines the structure using all-atom energy minimization. The Vfold-based web server provides a user friendly tool for the prediction of RNA structure and stability. The web server and the source codes are freely accessible for public use at "http://rna.physics.missouri.edu".
Predicting plant biomass accumulation from image-derived parameters
Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian
2018-01-01
Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559
Computer-based personality judgments are more accurate than those made by humans
Youyou, Wu; Kosinski, Michal; Stillwell, David
2015-01-01
Judging others’ personalities is an essential skill in successful social living, as personality is a key driver behind people’s interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants’ Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy. PMID:25583507
Computer-based personality judgments are more accurate than those made by humans.
Youyou, Wu; Kosinski, Michal; Stillwell, David
2015-01-27
Judging others' personalities is an essential skill in successful social living, as personality is a key driver behind people's interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants' Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy.
NASA Technical Reports Server (NTRS)
Lopes, Leonard; Redonnet, Stephane; Imamura, Taro; Ikeda, Tomoaki; Zawodny, Nikolas; Cunha, Guilherme
2015-01-01
The usage of Computational Fluid Dynamics (CFD) in noise prediction typically has been a two part process: accurately predicting the flow conditions in the near-field and then propagating the noise from the near-field to the observer. Due to the increase in computing power and the cost benefit when weighed against wind tunnel testing, the usage of CFD to estimate the local flow field of complex geometrical structures has become more routine. Recently, the Benchmark problems in Airframe Noise Computation (BANC) workshops have provided a community focus on accurately simulating the local flow field near the body with various CFD approaches. However, to date, little effort has been given into assessing the impact of the propagation phase of noise prediction. This paper includes results from the BANC-III workshop which explores variability in the propagation phase of CFD-based noise prediction. This includes two test cases: an analytical solution of a quadrupole source near a sphere and a computational solution around a nose landing gear. Agreement between three codes was very good for the analytic test case, but CFD-based noise predictions indicate that the propagation phase can introduce 3dB or more of variability in noise predictions.
Predicting moisture content: fuel moisture indicator sticks in the Pacific Northwest.
Owen P. Cramer
1961-01-01
Successful day-to-day planning of presuppression activities requires accurate prediction of burning index. In the Pacific Northwest, forecasts of burning index are prepared by the fire-control man and are based on predictions of windspeed and fuel moisture. Although fuel moisture is affected by a number of weather elements and is consequently difficult to predict, the...
Prediction of Combustion Gas Deposit Compositions
NASA Technical Reports Server (NTRS)
Kohl, F. J.; Mcbride, B. J.; Zeleznik, F. J.; Gordon, S.
1985-01-01
Demonstrated procedure used to predict accurately chemical compositions of complicated deposit mixtures. NASA Lewis Research Center's Computer Program for Calculation of Complex Chemical Equilibrium Compositions (CEC) used in conjunction with Computer Program for Calculation of Ideal Gas Thermodynamic Data (PAC) and resulting Thermodynamic Data Base (THDATA) to predict deposit compositions from metal or mineral-seeded combustion processes.
Monitoring Marine Weather Systems Using Quikscat and TRMM Data
NASA Technical Reports Server (NTRS)
Liu, W.; Tang, W.; Datta, A.; Hsu, C.
1999-01-01
We do not understand nor are able to predict marine storms, particularly tropical cyclones, sufficiently well because ground-based measurements are sparse and operational numerical weather prediction models do not have sufficient spatial resolution nor accurate parameterization of the physics.
Ford, Jennifer Lynn; Green, Joanne Balmer; Lietz, Georg; Oxley, Anthony; Green, Michael H
2017-09-01
Background: Provitamin A carotenoids are an important source of dietary vitamin A for many populations. Thus, accurate and simple methods for estimating carotenoid bioefficacy are needed to evaluate the vitamin A value of test solutions and plant sources. β-Carotene bioefficacy is often estimated from the ratio of the areas under plasma isotope response curves after subjects ingest labeled β-carotene and a labeled retinyl acetate reference dose [isotope reference method (IRM)], but to our knowledge, the method has not yet been evaluated for accuracy. Objectives: Our objectives were to develop and test a physiologically based compartmental model that includes both absorptive and postabsorptive β-carotene bioconversion and to use the model to evaluate the accuracy of the IRM and a simple plasma retinol isotope ratio [(RIR), labeled β-carotene-derived retinol/labeled reference-dose-derived retinol in one plasma sample] for estimating relative bioefficacy. Methods: We used model-based compartmental analysis (Simulation, Analysis and Modeling software) to develop and apply a model that provided known values for β-carotene bioefficacy. Theoretical data for 10 subjects were generated by the model and used to determine bioefficacy by RIR and IRM; predictions were compared with known values. We also applied RIR and IRM to previously published data. Results: Plasma RIR accurately predicted β-carotene relative bioefficacy at 14 d or later. IRM also accurately predicted bioefficacy by 14 d, except that, when there was substantial postabsorptive bioconversion, IRM underestimated bioefficacy. Based on our model, 1-d predictions of relative bioefficacy include absorptive plus a portion of early postabsorptive conversion. Conclusion: The plasma RIR is a simple tracer method that accurately predicts β-carotene relative bioefficacy based on analysis of one blood sample obtained at ≥14 d after co-ingestion of labeled β-carotene and retinyl acetate. The method also provides information about the contributions of absorptive and postabsorptive conversion to total bioefficacy if an additional sample is taken at 1 d. © 2017 American Society for Nutrition.
Joly, Charles-Alexandre; Péan, Vincent; Hermann, Ruben; Seldran, Fabien; Thai-Van, Hung; Truy, Eric
2017-10-01
The cochlear implant (CI) fitting level prediction accuracy of electrically-evoked compound action potential (ECAP) should be enhanced by the addition of demographic data in models. No accurate automated fitting of CI based on ECAP has yet been proposed. We recorded ECAP in 45 adults who had been using MED-EL CIs for more than 11 months and collected the most comfortable loudness level (MCL) used for CI fitting (prog-MCL), perception thresholds (meas-THR), and MCL (meas-MCL) measured with the stimulation used for ECAP recording. Linear mixed models taking into account cochlear site factors were computed to explain prog-MCL, meas-MCL, and meas-THR. Cochlear region and ECAP threshold were predictors of the three levels. In addition, significant predictors were the ECAP amplitude for the prog-MCL and the duration of deafness for the prog-MCL and the meas-THR. Estimations were more accurate for the meas-THR, then the meas-MCL, and finally the prog-MCL. These results show that 1) ECAP thresholds are more closely related to perception threshold than to comfort level, 2) predictions are more accurate when the inter-subject and cochlear regions variations are considered, and 3) differences between the stimulations used for ECAP recording and for CI fitting make it difficult to accurately predict the prog-MCL from the ECAP recording. Predicted prog-MCL could be used as bases for fitting but should be used with care to avoid any uncomfortable or painful stimulation.
Enhancing Elementary Pre-service Teachers' Plant Processes Conceptions
NASA Astrophysics Data System (ADS)
Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie
2016-06-01
Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to predict the fate of a healthy plant in a sealed terrarium (Plant-in-a-Jar), justify their predictions, observe the plant over a 5-week period, and complete guided inquiry activities centered on one of the targeted plant processes each week. Data sources included PTs' pre- and post-predictions with accompanying justifications, course artifacts such as weekly terrarium observations and science journal entries, and group models of the interrelated plant processes occurring within the sealed terraria. A subset of 33 volunteer PTs also completed interviews the week the Plant-in-a-Jar scenario was introduced and approximately 4 months after the instructional intervention ended. Pre- and post-predictions from all PTs as well as interview responses from the subgroup of PTs, were coded into categories based on key plant processes emphasized in the Next Generation Science Standards. Study findings revealed that PTs developed more accurate conceptions of plant processes and their interrelated nature as a result of the instructional intervention. Primary patterns of change in PTs' plant process conceptions included development of more accurate conceptions of how water is used by plants, more accurate conceptions of photosynthesis features, and more accurate conceptions of photosynthesis and cellular respiration as transformative processes.
NASA Astrophysics Data System (ADS)
Albatayneh, Aiman; Alterman, Dariusz; Page, Adrian; Moghtaderi, Behdad
2017-05-01
The design of low energy buildings requires accurate thermal simulation software to assess the heating and cooling loads. Such designs should sustain thermal comfort for occupants and promote less energy usage over the life time of any building. One of the house energy rating used in Australia is AccuRate, star rating tool to assess and compare the thermal performance of various buildings where the heating and cooling loads are calculated based on fixed operational temperatures between 20 °C to 25 °C to sustain thermal comfort for the occupants. However, these fixed settings for the time and temperatures considerably increase the heating and cooling loads. On the other hand the adaptive thermal model applies a broader range of weather conditions, interacts with the occupants and promotes low energy solutions to maintain thermal comfort. This can be achieved by natural ventilation (opening window/doors), suitable clothes, shading and low energy heating/cooling solutions for the occupied spaces (rooms). These activities will save significant amount of operating energy what can to be taken into account to predict energy consumption for a building. Most of the buildings thermal assessment tools depend on energy-based approaches to predict the thermal performance of any building e.g. AccuRate in Australia. This approach encourages the use of energy to maintain thermal comfort. This paper describes the advantages of a temperature-based approach to assess the building's thermal performance (using an adaptive thermal comfort model) over energy based approach (AccuRate Software used in Australia). The temperature-based approach was validated and compared with the energy-based approach using four full scale housing test modules located in Newcastle, Australia (Cavity Brick (CB), Insulated Cavity Brick (InsCB), Insulated Brick Veneer (InsBV) and Insulated Reverse Brick Veneer (InsRBV)) subjected to a range of seasonal conditions in a moderate climate. The time required for heating and/or cooling using the adaptive thermal comfort approach and AccuRate predictions were estimated. Significant savings (of about 50 %) in energy consumption in minimising the time required for heating and cooling were achieved by using the adaptive thermal comfort model.
Research on the Wire Network Signal Prediction Based on the Improved NNARX Model
NASA Astrophysics Data System (ADS)
Zhang, Zipeng; Fan, Tao; Wang, Shuqing
It is difficult to obtain accurately the wire net signal of power system's high voltage power transmission lines in the process of monitoring and repairing. In order to solve this problem, the signal measured in remote substation or laboratory is employed to make multipoint prediction to gain the needed data. But, the obtained power grid frequency signal is delay. In order to solve the problem, an improved NNARX network which can predict frequency signal based on multi-point data collected by remote substation PMU is describes in this paper. As the error curved surface of the NNARX network is more complicated, this paper uses L-M algorithm to train the network. The result of the simulation shows that the NNARX network has preferable predication performance which provides accurate real time data for field testing and maintenance.
Protein asparagine deamidation prediction based on structures with machine learning methods.
Jia, Lei; Sun, Yaxiong
2017-01-01
Chemical stability is a major concern in the development of protein therapeutics due to its impact on both efficacy and safety. Protein "hotspots" are amino acid residues that are subject to various chemical modifications, including deamidation, isomerization, glycosylation, oxidation etc. A more accurate prediction method for potential hotspot residues would allow their elimination or reduction as early as possible in the drug discovery process. In this work, we focus on prediction models for asparagine (Asn) deamidation. Sequence-based prediction method simply identifies the NG motif (amino acid asparagine followed by a glycine) to be liable to deamidation. It still dominates deamidation evaluation process in most pharmaceutical setup due to its convenience. However, the simple sequence-based method is less accurate and often causes over-engineering a protein. We introduce structure-based prediction models by mining available experimental and structural data of deamidated proteins. Our training set contains 194 Asn residues from 25 proteins that all have available high-resolution crystal structures. Experimentally measured deamidation half-life of Asn in penta-peptides as well as 3D structure-based properties, such as solvent exposure, crystallographic B-factors, local secondary structure and dihedral angles etc., were used to train prediction models with several machine learning algorithms. The prediction tools were cross-validated as well as tested with an external test data set. The random forest model had high enrichment in ranking deamidated residues higher than non-deamidated residues while effectively eliminated false positive predictions. It is possible that such quantitative protein structure-function relationship tools can also be applied to other protein hotspot predictions. In addition, we extensively discussed metrics being used to evaluate the performance of predicting unbalanced data sets such as the deamidation case.
Can phenological models predict tree phenology accurately under climate change conditions?
NASA Astrophysics Data System (ADS)
Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry
2014-05-01
The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay or compromise dormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budburst dates only, with no information on the dormancy break date because this information is very scarce. We evaluated the efficiency of a set of process-based phenological models to accurately predict the dormancy break dates of four fruit trees. Our results show that models calibrated solely with flowering or budburst dates do not accurately predict the dormancy break date. Providing dormancy break date for the model parameterization results in much more accurate simulation of this latter, with however a higher error than that on flowering or bud break dates. But most importantly, we show also that models not calibrated with dormancy break dates can generate significant differences in forecasted flowering or bud break dates when using climate scenarios. Our results claim for the urgent need of massive measurements of dormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future.
NASA Astrophysics Data System (ADS)
Prasetiyowati, S. S.; Sibaroni, Y.
2018-03-01
Dengue hemorrhagic disease, is a disease caused by the Dengue virus of the Flavivirus genus Flaviviridae family. Indonesia is the country with the highest case of dengue in Southeast Asia. In addition to mosquitoes as vectors and humans as hosts, other environmental and social factors are also the cause of widespread dengue fever. To prevent the occurrence of the epidemic of the disease, fast and accurate action is required. Rapid and accurate action can be taken, if there is appropriate information support on the occurrence of the epidemic. Therefore, a complete and accurate information on the spread pattern of endemic areas is necessary, so that precautions can be done as early as possible. The information on dispersal patterns can be obtained by various methods, which are based on empirical and theoretical considerations. One of the methods used is based on the estimated number of infected patients in a region based on spatial and time. The first step of this research is conducted by predicting the number of DHF patients in 2016 until 2018 based on 2010 to 2015 data using GSTAR (1, 1). In the second phase, the distribution pattern prediction of dengue disease area is conducted. Furthermore, based on the characteristics of DHF epidemic trends, i.e. down, stable or rising, the analysis of distribution patterns of dengue fever distribution areas with IDW and Kriging (ordinary and universal Kriging) were conducted in this study. The difference between IDW and Kriging, is the initial process that underlies the prediction process. Based on the experimental results, it is known that the dispersion pattern of epidemic areas of dengue disease with IDW and Ordinary Kriging is similar in the period of time.
Soli, Sigfrid D; Amano-Kusumoto, Akiko; Clavier, Odile; Wilbur, Jed; Casto, Kristen; Freed, Daniel; Laroche, Chantal; Vaillancourt, Véronique; Giguère, Christian; Dreschler, Wouter A; Rhebergen, Koenraad S
2018-05-01
Validate use of the Extended Speech Intelligibility Index (ESII) for prediction of speech intelligibility in non-stationary real-world noise environments. Define a means of using these predictions for objective occupational hearing screening for hearing-critical public safety and law enforcement jobs. Analyses of predicted and measured speech intelligibility in recordings of real-world noise environments were performed in two studies using speech recognition thresholds (SRTs) and intelligibility measures. ESII analyses of the recordings were used to predict intelligibility. Noise recordings were made in prison environments and at US Army facilities for training ground and airborne forces. Speech materials included full bandwidth sentences and bandpass filtered sentences that simulated radio transmissions. A total of 22 adults with normal hearing (NH) and 15 with mild-moderate hearing impairment (HI) participated in the two studies. Average intelligibility predictions for individual NH and HI subjects were accurate in both studies (r 2 ≥ 0.94). Pooled predictions were slightly less accurate (0.78 ≤ r 2 ≤ 0.92). An individual's SRT and audiogram can accurately predict the likelihood of effective speech communication in noise environments with known ESII characteristics, where essential hearing-critical tasks are performed. These predictions provide an objective means of occupational hearing screening.
Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinowski, Kathleen T.; Fischell Department of Bioengineering, University of Maryland, College Park, MD; McAvoy, Thomas J.
2012-04-01
Purpose: To investigate the effect of tumor site, measurement precision, tumor-surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor-surrogate correlation and the precisionmore » in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor-surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3-3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.« less
EOID Model Validation and Performance Prediction
2002-09-30
Our long-term goal is to accurately predict the capability of the current generation of laser-based underwater imaging sensors to perform Electro ... Optic Identification (EOID) against relevant targets in a variety of realistic environmental conditions. The two most prominent technologies in this area
Prediction of energy expenditure and physical activity in preschoolers
USDA-ARS?s Scientific Manuscript database
Accurate, nonintrusive, and feasible methods are needed to predict energy expenditure (EE) and physical activity (PA) levels in preschoolers. Herein, we validated cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on accelerometry and heart rate (HR) ...
Prediction of morbidity and mortality in patients with type 2 diabetes.
Wells, Brian J; Roth, Rachel; Nowacki, Amy S; Arrigain, Susana; Yu, Changhong; Rosenkrans, Wayne A; Kattan, Michael W
2013-01-01
Introduction. The objective of this study was to create a tool that accurately predicts the risk of morbidity and mortality in patients with type 2 diabetes according to an oral hypoglycemic agent. Materials and Methods. The model was based on a cohort of 33,067 patients with type 2 diabetes who were prescribed a single oral hypoglycemic agent at the Cleveland Clinic between 1998 and 2006. Competing risk regression models were created for coronary heart disease (CHD), heart failure, and stroke, while a Cox regression model was created for mortality. Propensity scores were used to account for possible treatment bias. A prediction tool was created and internally validated using tenfold cross-validation. The results were compared to a Framingham model and a model based on the United Kingdom Prospective Diabetes Study (UKPDS) for CHD and stroke, respectively. Results and Discussion. Median follow-up for the mortality outcome was 769 days. The numbers of patients experiencing events were as follows: CHD (3062), heart failure (1408), stroke (1451), and mortality (3661). The prediction tools demonstrated the following concordance indices (c-statistics) for the specific outcomes: CHD (0.730), heart failure (0.753), stroke (0.688), and mortality (0.719). The prediction tool was superior to the Framingham model at predicting CHD and was at least as accurate as the UKPDS model at predicting stroke. Conclusions. We created an accurate tool for predicting the risk of stroke, coronary heart disease, heart failure, and death in patients with type 2 diabetes. The calculator is available online at http://rcalc.ccf.org under the heading "Type 2 Diabetes" and entitled, "Predicting 5-Year Morbidity and Mortality." This may be a valuable tool to aid the clinician's choice of an oral hypoglycemic, to better inform patients, and to motivate dialogue between physician and patient.
NASA Technical Reports Server (NTRS)
Mcgrath, W. R.; Richards, P. L.; Face, D. W.; Prober, D. E.; Lloyd, F. L.
1988-01-01
A systematic study of the gain and noise in superconductor-insulator-superconductor mixers employing Ta based, Nb based, and Pb-alloy based tunnel junctions was made. These junctions displayed both weak and strong quantum effects at a signal frequency of 33 GHz. The effects of energy gap sharpness and subgap current were investigated and are quantitatively related to mixer performance. Detailed comparisons are made of the mixing results with the predictions of a three-port model approximation to the Tucker theory. Mixer performance was measured with a novel test apparatus which is accurate enough to allow for the first quantitative tests of theoretical noise predictions. It is found that the three-port model of the Tucker theory underestimates the mixer noise temperature by a factor of about 2 for all of the mixers. In addition, predicted values of available mixer gain are in reasonable agreement with experiment when quantum effects are weak. However, as quantum effects become strong, the predicted available gain diverges to infinity, which is in sharp contrast to the experimental results. Predictions of coupled gain do not always show such divergences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juxiu Tong; Bill X. Hu; Hai Huang
2014-03-01
With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations,more » we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.« less
NASA Astrophysics Data System (ADS)
Lingren, Joe; Vanstone, Leon; Hashemi, Kelley; Gogineni, Sivaram; Donbar, Jeffrey; Akella, Maruthi; Clemens, Noel
2016-11-01
This study develops an analytical model for predicting the leading shock of a shock-train in the constant area isolator section in a Mach 2.2 direct-connect scramjet simulation tunnel. The effective geometry of the isolator is assumed to be a weakly converging duct owing to boundary-layer growth. For some given pressure rise across the isolator, quasi-1D equations relating to isentropic or normal shock flows can be used to predict the normal shock location in the isolator. The surface pressure distribution through the isolator was measured during experiments and both the actual and predicted locations can be calculated. Three methods of finding the shock-train location are examined, one based on the measured pressure rise, one using a non-physics-based control model, and one using the physics-based analytical model. It is shown that the analytical model performs better than the non-physics-based model in all cases. The analytic model is less accurate than the pressure threshold method but requires significantly less information to compute. In contrast to other methods for predicting shock-train location, this method is relatively accurate and requires as little as a single pressure measurement. This makes this method potentially useful for unstart control applications.
NASA Astrophysics Data System (ADS)
Afan, Haitham Abdulmohsin; El-shafie, Ahmed; Mohtar, Wan Hanna Melini Wan; Yaseen, Zaher Mundher
2016-10-01
An accurate model for sediment prediction is a priority for all hydrological researchers. Many conventional methods have shown an inability to achieve an accurate prediction of suspended sediment. These methods are unable to understand the behaviour of sediment transport in rivers due to the complexity, noise, non-stationarity, and dynamism of the sediment pattern. In the past two decades, Artificial Intelligence (AI) and computational approaches have become a remarkable tool for developing an accurate model. These approaches are considered a powerful tool for solving any non-linear model, as they can deal easily with a large number of data and sophisticated models. This paper is a review of all AI approaches that have been applied in sediment modelling. The current research focuses on the development of AI application in sediment transport. In addition, the review identifies major challenges and opportunities for prospective research. Throughout the literature, complementary models superior to classical modelling.
Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong
2018-01-01
Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control. PMID:29461469
Zhang, Sen; Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong
2018-02-20
Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control.
Estimating wildfire risk on a Mojave Desert landscape using remote sensing and field sampling
Van Linn, Peter F.; Nussear, Kenneth E.; Esque, Todd C.; DeFalco, Lesley A.; Inman, Richard D.; Abella, Scott R.
2013-01-01
Predicting wildfires that affect broad landscapes is important for allocating suppression resources and guiding land management. Wildfire prediction in the south-western United States is of specific concern because of the increasing prevalence and severe effects of fire on desert shrublands and the current lack of accurate fire prediction tools. We developed a fire risk model to predict fire occurrence in a north-eastern Mojave Desert landscape. First we developed a spatial model using remote sensing data to predict fuel loads based on field estimates of fuels. We then modelled fire risk (interactions of fuel characteristics and environmental conditions conducive to wildfire) using satellite imagery, our model of fuel loads, and spatial data on ignition potential (lightning strikes and distance to roads), topography (elevation and aspect) and climate (maximum and minimum temperatures). The risk model was developed during a fire year at our study landscape and validated at a nearby landscape; model performance was accurate and similar at both sites. This study demonstrates that remote sensing techniques used in combination with field surveys can accurately predict wildfire risk in the Mojave Desert and may be applicable to other arid and semiarid lands where wildfires are prevalent.
Xu, Xiaogang; Wang, Songling; Liu, Jinlian; Liu, Xinyu
2014-01-01
Blower and exhaust fans consume over 30% of electricity in a thermal power plant, and faults of these fans due to rotation stalls are one of the most frequent reasons for power plant outage failures. To accurately predict the occurrence of fan rotation stalls, we propose a support vector regression machine (SVRM) model that predicts the fan internal pressures during operation, leaving ample time for rotation stall detection. We train the SVRM model using experimental data samples, and perform pressure data prediction using the trained SVRM model. To prove the feasibility of using the SVRM model for rotation stall prediction, we further process the predicted pressure data via wavelet-transform-based stall detection. By comparison of the detection results from the predicted and measured pressure data, we demonstrate that the SVRM model can accurately predict the fan pressure and guarantee reliable stall detection with a time advance of up to 0.0625 s. This superior pressure data prediction capability leaves significant time for effective control and prevention of fan rotation stall faults. This model has great potential for use in intelligent fan systems with stall prevention capability, which will ensure safe operation and improve the energy efficiency of power plants. PMID:24854057
Ziaei, Vafa; Bredow, Thomas
2018-05-31
An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe-Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.
NASA Astrophysics Data System (ADS)
Ziaei, Vafa; Bredow, Thomas
2018-05-01
An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe–Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.
Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu
2015-09-01
Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smith, B; Hassen, A; Hinds, M; Rice, D; Jones, D; Sauber, T; Iiams, C; Sevenich, D; Allen, R; Owens, F; McNaughton, J; Parsons, C
2015-03-01
The DE values of corn grain for pigs will differ among corn sources. More accurate prediction of DE may improve diet formulation and reduce diet cost. Corn grain sources ( = 83) were assayed with growing swine (20 kg) in DE experiments with total collection of feces, with 3-wk-old broiler chick in nitrogen-corrected apparent ME (AME) trials and with cecectomized adult roosters in nitrogen-corrected true ME (TME) studies. Additional AME data for the corn grain source set was generated based on an existing near-infrared transmittance prediction model (near-infrared transmittance-predicted AME [NIT-AME]). Corn source nutrient composition was determined by wet chemistry methods. These data were then used to 1) test the accuracy of predicting swine DE of individual corn sources based on available literature equations and nutrient composition and 2) develop models for predicting DE of sources from nutrient composition and the cross-species information gathered above (AME, NIT-AME, and TME). The overall measured DE, AME, NIT-AME, and TME values were 4,105 ± 11, 4,006 ± 10, 4,004 ± 10, and 4,086 ± 12 kcal/kg DM, respectively. Prediction models were developed using 80% of the corn grain sources; the remaining 20% was reserved for validation of the developed prediction equation. Literature equations based on nutrient composition proved imprecise for predicting corn DE; the root mean square error of prediction ranged from 105 to 331 kcal/kg, an equivalent of 2.6 to 8.8% error. Yet among the corn composition traits, 4-variable models developed in the current study provided adequate prediction of DE (model ranging from 0.76 to 0.79 and root mean square error [RMSE] of 50 kcal/kg). When prediction equations were tested using the validation set, these models had a 1 to 1.2% error of prediction. Simple linear equations from AME, NIT-AME, or TME provided an accurate prediction of DE for individual sources ( ranged from 0.65 to 0.73 and RMSE ranged from 50 to 61 kcal/kg). Percentage error of prediction based on the validation data set was greater (1.4%) for the TME model than for the NIT-AME or AME models (1 and 1.2%, respectively), indicating that swine DE values could be accurately predicted by using AME or NIT-AME. In conclusion, regression equations developed from broiler measurements or from analyzed nutrient composition proved adequate to reliably predict the DE of commercially available corn hybrids for growing pigs.
EOID System Model Validation, Metrics, and Synthetic Clutter Generation
2003-09-30
Our long-term goal is to accurately predict the capability of the current generation of laser-based underwater imaging sensors to perform Electro ... Optic Identification (EOID) against relevant targets in a variety of realistic environmental conditions. The models will predict the impact of
Measuring the value of accurate link prediction for network seeding.
Wei, Yijin; Spencer, Gwen
2017-01-01
The influence-maximization literature seeks small sets of individuals whose structural placement in the social network can drive large cascades of behavior. Optimization efforts to find the best seed set often assume perfect knowledge of the network topology. Unfortunately, social network links are rarely known in an exact way. When do seeding strategies based on less-than-accurate link prediction provide valuable insight? We introduce optimized-against-a-sample ([Formula: see text]) performance to measure the value of optimizing seeding based on a noisy observation of a network. Our computational study investigates [Formula: see text] under several threshold-spread models in synthetic and real-world networks. Our focus is on measuring the value of imprecise link information. The level of investment in link prediction that is strategic appears to depend closely on spread model: in some parameter ranges investments in improving link prediction can pay substantial premiums in cascade size. For other ranges, such investments would be wasted. Several trends were remarkably consistent across topologies.
NASA Astrophysics Data System (ADS)
Costanzi, Stefano; Tikhonova, Irina G.; Harden, T. Kendall; Jacobson, Kenneth A.
2009-11-01
Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.
De Buck, Stefan S; Sinha, Vikash K; Fenu, Luca A; Nijsen, Marjoleen J; Mackie, Claire E; Gilissen, Ron A H J
2007-10-01
The aim of this study was to evaluate different physiologically based modeling strategies for the prediction of human pharmacokinetics. Plasma profiles after intravenous and oral dosing were simulated for 26 clinically tested drugs. Two mechanism-based predictions of human tissue-to-plasma partitioning (P(tp)) from physicochemical input (method Vd1) were evaluated for their ability to describe human volume of distribution at steady state (V(ss)). This method was compared with a strategy that combined predicted and experimentally determined in vivo rat P(tp) data (method Vd2). Best V(ss) predictions were obtained using method Vd2, providing that rat P(tp) input was corrected for interspecies differences in plasma protein binding (84% within 2-fold). V(ss) predictions from physicochemical input alone were poor (32% within 2-fold). Total body clearance (CL) was predicted as the sum of scaled rat renal clearance and hepatic clearance projected from in vitro metabolism data. Best CL predictions were obtained by disregarding both blood and microsomal or hepatocyte binding (method CL2, 74% within 2-fold), whereas strong bias was seen using both blood and microsomal or hepatocyte binding (method CL1, 53% within 2-fold). The physiologically based pharmacokinetics (PBPK) model, which combined methods Vd2 and CL2 yielded the most accurate predictions of in vivo terminal half-life (69% within 2-fold). The Gastroplus advanced compartmental absorption and transit model was used to construct an absorption-disposition model and provided accurate predictions of area under the plasma concentration-time profile, oral apparent volume of distribution, and maximum plasma concentration after oral dosing, with 74%, 70%, and 65% within 2-fold, respectively. This evaluation demonstrates that PBPK models can lead to reasonable predictions of human pharmacokinetics.
Automated combinatorial method for fast and robust prediction of lattice thermal conductivity
NASA Astrophysics Data System (ADS)
Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Toher, Cormac; Fornari, Marco; Buongiorno Nardelli, Marco; Curtarolo, Stefano
The lack of computationally inexpensive and accurate ab-initio based methodologies to predict lattice thermal conductivity, κl, without computing the anharmonic force constants or performing time-consuming ab-initio molecular dynamics, is one of the obstacles preventing the accelerated discovery of new high or low thermal conductivity materials. The Slack equation is the best alternative to other more expensive methodologies but is highly dependent on two variables: the acoustic Debye temperature, θa, and the Grüneisen parameter, γ. Furthermore, different definitions can be used for these two quantities depending on the model or approximation. Here, we present a combinatorial approach based on the quasi-harmonic approximation to elucidate which definitions of both variables produce the best predictions of κl. A set of 42 compounds was used to test accuracy and robustness of all possible combinations. This approach is ideal for obtaining more accurate values than fast screening models based on the Debye model, while being significantly less expensive than methodologies that solve the Boltzmann transport equation.
NASA Astrophysics Data System (ADS)
Xia, Z. M.; Wang, C. G.; Tan, H. F.
2018-04-01
A pseudo-beam model with modified internal bending moment is presented to predict elastic properties of graphene, including the Young's modulus and Poisson's ratio. In order to overcome a drawback in existing molecular structural mechanics models, which only account for pure bending (constant bending moment), the presented model accounts for linear bending moments deduced from the balance equations. Based on this pseudo-beam model, an analytical prediction is accomplished to predict the Young's modulus and Poisson's ratio of graphene based on the equation of the strain energies by using Castigliano second theorem. Then, the elastic properties of graphene are calculated compared with results available in literature, which verifies the feasibility of the pseudo-beam model. Finally, the pseudo-beam model is utilized to study the twisting wrinkling characteristics of annular graphene. Due to modifications of the internal bending moment, the wrinkling behaviors of graphene sheet are predicted accurately. The obtained results show that the pseudo-beam model has a good ability to predict the elastic properties of graphene accurately, especially the out-of-plane deformation behavior.
Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates
Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; ...
2013-03-07
In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less
Evaluation of acidity estimation methods for mine drainage, Pennsylvania, USA.
Park, Daeryong; Park, Byungtae; Mendinsky, Justin J; Paksuchon, Benjaphon; Suhataikul, Ratda; Dempsey, Brian A; Cho, Yunchul
2015-01-01
Eighteen sites impacted by abandoned mine drainage (AMD) in Pennsylvania were sampled and measured for pH, acidity, alkalinity, metal ions, and sulfate. This study compared the accuracy of four acidity calculation methods with measured hot peroxide acidity and identified the most accurate calculation method for each site as a function of pH and sulfate concentration. Method E1 was the sum of proton and acidity based on total metal concentrations; method E2 added alkalinity; method E3 also accounted for aluminum speciation and temperature effects; and method E4 accounted for sulfate speciation. To evaluate errors between measured and predicted acidity, the Nash-Sutcliffe efficiency (NSE), the coefficient of determination (R (2)), and the root mean square error to standard deviation ratio (RSR) methods were applied. The error evaluation results show that E1, E2, E3, and E4 sites were most accurate at 0, 9, 4, and 5 of the sites, respectively. Sites where E2 was most accurate had pH greater than 4.0 and less than 400 mg/L of sulfate. Sites where E3 was most accurate had pH greater than 4.0 and sulfate greater than 400 mg/L with two exceptions. Sites where E4 was most accurate had pH less than 4.0 and more than 400 mg/L sulfate with one exception. The results indicate that acidity in AMD-affected streams can be accurately predicted by using pH, alkalinity, sulfate, Fe(II), Mn(II), and Al(III) concentrations in one or more of the identified equations, and that the appropriate equation for prediction can be selected based on pH and sulfate concentration.
Prediction of Industrial Electric Energy Consumption in Anhui Province Based on GA-BP Neural Network
NASA Astrophysics Data System (ADS)
Zhang, Jiajing; Yin, Guodong; Ni, Youcong; Chen, Jinlan
2018-01-01
In order to improve the prediction accuracy of industrial electrical energy consumption, a prediction model of industrial electrical energy consumption was proposed based on genetic algorithm and neural network. The model use genetic algorithm to optimize the weights and thresholds of BP neural network, and the model is used to predict the energy consumption of industrial power in Anhui Province, to improve the prediction accuracy of industrial electric energy consumption in Anhui province. By comparing experiment of GA-BP prediction model and BP neural network model, the GA-BP model is more accurate with smaller number of neurons in the hidden layer.
Norouzi, Jamshid; Yadollahpour, Ali; Mirbagheri, Seyed Ahmad; Mazdeh, Mitra Mahdavi; Hosseini, Seyed Ahmad
2016-01-01
Chronic kidney disease (CKD) is a covert disease. Accurate prediction of CKD progression over time is necessary for reducing its costs and mortality rates. The present study proposes an adaptive neurofuzzy inference system (ANFIS) for predicting the renal failure timeframe of CKD based on real clinical data. This study used 10-year clinical records of newly diagnosed CKD patients. The threshold value of 15 cc/kg/min/1.73 m(2) of glomerular filtration rate (GFR) was used as the marker of renal failure. A Takagi-Sugeno type ANFIS model was used to predict GFR values. Variables of age, sex, weight, underlying diseases, diastolic blood pressure, creatinine, calcium, phosphorus, uric acid, and GFR were initially selected for the predicting model. Weight, diastolic blood pressure, diabetes mellitus as underlying disease, and current GFR(t) showed significant correlation with GFRs and were selected as the inputs of model. The comparisons of the predicted values with the real data showed that the ANFIS model could accurately estimate GFR variations in all sequential periods (Normalized Mean Absolute Error lower than 5%). Despite the high uncertainties of human body and dynamic nature of CKD progression, our model can accurately predict the GFR variations at long future periods.
NASA Astrophysics Data System (ADS)
Liang, Zhongmin; Li, Yujie; Hu, Yiming; Li, Binquan; Wang, Jun
2017-06-01
Accurate and reliable long-term forecasting plays an important role in water resources management and utilization. In this paper, a hybrid model called SVR-HUP is presented to predict long-term runoff and quantify the prediction uncertainty. The model is created based on three steps. First, appropriate predictors are selected according to the correlations between meteorological factors and runoff. Second, a support vector regression (SVR) model is structured and optimized based on the LibSVM toolbox and a genetic algorithm. Finally, using forecasted and observed runoff, a hydrologic uncertainty processor (HUP) based on a Bayesian framework is used to estimate the posterior probability distribution of the simulated values, and the associated uncertainty of prediction was quantitatively analyzed. Six precision evaluation indexes, including the correlation coefficient (CC), relative root mean square error (RRMSE), relative error (RE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE), and qualification rate (QR), are used to measure the prediction accuracy. As a case study, the proposed approach is applied in the Han River basin, South Central China. Three types of SVR models are established to forecast the monthly, flood season and annual runoff volumes. The results indicate that SVR yields satisfactory accuracy and reliability at all three scales. In addition, the results suggest that the HUP cannot only quantify the uncertainty of prediction based on a confidence interval but also provide a more accurate single value prediction than the initial SVR forecasting result. Thus, the SVR-HUP model provides an alternative method for long-term runoff forecasting.
Forecasting Construction Cost Index based on visibility graph: A network approach
NASA Astrophysics Data System (ADS)
Zhang, Rong; Ashuri, Baabak; Shyr, Yu; Deng, Yong
2018-03-01
Engineering News-Record (ENR), a professional magazine in the field of global construction engineering, publishes Construction Cost Index (CCI) every month. Cost estimators and contractors assess projects, arrange budgets and prepare bids by forecasting CCI. However, fluctuations and uncertainties of CCI cause irrational estimations now and then. This paper aims at achieving more accurate predictions of CCI based on a network approach in which time series is firstly converted into a visibility graph and future values are forecasted relied on link prediction. According to the experimental results, the proposed method shows satisfactory performance since the error measures are acceptable. Compared with other methods, the proposed method is easier to implement and is able to forecast CCI with less errors. It is convinced that the proposed method is efficient to provide considerably accurate CCI predictions, which will make contributions to the construction engineering by assisting individuals and organizations in reducing costs and making project schedules.
Bastani, Meysam; Vos, Larissa; Asgarian, Nasimeh; Deschenes, Jean; Graham, Kathryn; Mackey, John; Greiner, Russell
2013-01-01
Background Selecting the appropriate treatment for breast cancer requires accurately determining the estrogen receptor (ER) status of the tumor. However, the standard for determining this status, immunohistochemical analysis of formalin-fixed paraffin embedded samples, suffers from numerous technical and reproducibility issues. Assessment of ER-status based on RNA expression can provide more objective, quantitative and reproducible test results. Methods To learn a parsimonious RNA-based classifier of hormone receptor status, we applied a machine learning tool to a training dataset of gene expression microarray data obtained from 176 frozen breast tumors, whose ER-status was determined by applying ASCO-CAP guidelines to standardized immunohistochemical testing of formalin fixed tumor. Results This produced a three-gene classifier that can predict the ER-status of a novel tumor, with a cross-validation accuracy of 93.17±2.44%. When applied to an independent validation set and to four other public databases, some on different platforms, this classifier obtained over 90% accuracy in each. In addition, we found that this prediction rule separated the patients' recurrence-free survival curves with a hazard ratio lower than the one based on the IHC analysis of ER-status. Conclusions Our efficient and parsimonious classifier lends itself to high throughput, highly accurate and low-cost RNA-based assessments of ER-status, suitable for routine high-throughput clinical use. This analytic method provides a proof-of-principle that may be applicable to developing effective RNA-based tests for other biomarkers and conditions. PMID:24312637
Calibration and prediction of removal function in magnetorheological finishing.
Dai, Yifan; Song, Ci; Peng, Xiaoqiang; Shi, Feng
2010-01-20
A calibrated and predictive model of the removal function has been established based on the analysis of a magnetorheological finishing (MRF) process. By introducing an efficiency coefficient of the removal function, the model can be used to calibrate the removal function in a MRF figuring process and to accurately predict the removal function of a workpiece to be polished whose material is different from the spot part. Its correctness and feasibility have been validated by simulations. Furthermore, applying this model to the MRF figuring experiments, the efficiency coefficient of the removal function can be identified accurately to make the MRF figuring process deterministic and controllable. Therefore, all the results indicate that the calibrated and predictive model of the removal function can improve the finishing determinacy and increase the model applicability in a MRF process.
Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.
Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-01-02
Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.
Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation
Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-01-01
ABSTRACT Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model. PMID:27690290
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
Developing a case-mix model for PPS.
Goldberg, H B; Delargy, D
2000-01-01
Agencies are pinning hopes for success under PPS on an accurate case-mix adjustor. The Health Care Financing Administration (HCFA) tasked Abt Associates Inc. to develop a system to accurately predict the volume and type of home health services each patient requires, based on his or her characteristics (not the service actually received). HCFA wanted this system to be feasible, clinically logical, and valid and accurate. Authors Goldberg and Delargy explain how Abt approached this daunting task.
Self-consistent core-pedestal transport simulations with neural network accelerated models
Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.; ...
2017-07-12
Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less
Self-consistent core-pedestal transport simulations with neural network accelerated models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.
Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less
Self-consistent core-pedestal transport simulations with neural network accelerated models
NASA Astrophysics Data System (ADS)
Meneghini, O.; Smith, S. P.; Snyder, P. B.; Staebler, G. M.; Candy, J.; Belli, E.; Lao, L.; Kostuk, M.; Luce, T.; Luda, T.; Park, J. M.; Poli, F.
2017-08-01
Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflow that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. The NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.
Nicholas A. Povak; Paul F. Hessburg; Todd C. McDonnell; Keith M. Reynolds; Timothy J. Sullivan; R. Brion Salter; Bernard J. Crosby
2014-01-01
Accurate estimates of soil mineral weathering are required for regional critical load (CL) modeling to identify ecosystems at risk of the deleterious effects from acidification. Within a correlative modeling framework, we used modeled catchment-level base cation weathering (BCw) as the response variable to identify key environmental correlates and predict a continuous...
Normal Modes Expose Active Sites in Enzymes.
Glantz-Gashai, Yitav; Meirson, Tomer; Samson, Abraham O
2016-12-01
Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes.
Normal Modes Expose Active Sites in Enzymes
Glantz-Gashai, Yitav; Samson, Abraham O.
2016-01-01
Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427
Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo
2017-01-01
Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. PMID:28213527
Dhar, Purbarun; Paul, Anup; Narasimhan, Arunn; Das, Sarit K
2016-12-01
Knowledge of thermal history and/or distribution in biological tissues during laser based hyperthermia is essential to achieve necrosis of tumour/carcinoma cells. A semi-analytical model to predict sub-surface thermal distribution in translucent, soft, tissue mimics has been proposed. The model can accurately predict the spatio-temporal temperature variations along depth and the anomalous thermal behaviour in such media, viz. occurrence of sub-surface temperature peaks. Based on optical and thermal properties, the augmented temperature and shift of the peak positions in case of gold nanostructure mediated tissue phantom hyperthermia can be predicted. Employing inverse approach, the absorption coefficient of nano-graphene infused tissue mimics is determined from the peak temperature and found to provide appreciably accurate predictions along depth. Furthermore, a simplistic, dimensionally consistent correlation to theoretically determine the position of the peak in such media is proposed and found to be consistent with experiments and computations. The model shows promise in predicting thermal distribution induced by lasers in tissues and deduction of therapeutic hyperthermia parameters, thereby assisting clinical procedures by providing a priori estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat
2015-01-01
Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.
Effective prediction of biodiversity in tidal flat habitats using an artificial neural network.
Yoo, Jae-Won; Lee, Yong-Woo; Lee, Chang-Gun; Kim, Chang-Soo
2013-02-01
Accurate predictions of benthic macrofaunal biodiversity greatly benefit the efficient planning and management of habitat restoration efforts in tidal flat habitats. Artificial neural network (ANN) prediction models for such biodiversity were developed and tested based on 13 biophysical variables, collected from 50 sites of tidal flats along the coast of Korea during 1991-2006. The developed model showed high predictions during training, cross-validation and testing. Besides the training and testing procedures, an independent dataset from a different time period (2007-2010) was used to test the robustness and practical usage of the model. High prediction on the independent dataset (r = 0.84) validated the networks proper learning of predictive relationship and its generality. Key influential variables identified by follow-up sensitivity analyses were related with topographic dimension, environmental heterogeneity, and water column properties. Study demonstrates the successful application of ANN for the accurate prediction of benthic macrofaunal biodiversity and understanding of dynamics of candidate variables. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shah, Jai L.; Tandon, Neeraj; Keshavan, Matcheri S.
2016-01-01
Aim Accurate prediction of which individuals will go on to develop psychosis would assist early intervention and prevention paradigms. We sought to review investigations of prospective psychosis prediction based on markers and variables examined in longitudinal familial high-risk (FHR) studies. Methods We performed literature searches in MedLine, PubMed and PsycINFO for articles assessing performance characteristics of predictive clinical tests in FHR studies of psychosis. Studies were included if they reported one or more predictive variables in subjects at FHR for psychosis. We complemented this search strategy with references drawn from articles, reviews, book chapters and monographs. Results Across generations of familial high-risk projects, predictive studies have investigated behavioral, cognitive, psychometric, clinical, neuroimaging, and other markers. Recent analyses have incorporated multivariate and multi-domain approaches to risk ascertainment, although with still generally modest results. Conclusions While a broad range of risk factors has been identified, no individual marker or combination of markers can at this time enable accurate prospective prediction of emerging psychosis for individuals at FHR. We outline the complex and multi-level nature of psychotic illness, the myriad of factors influencing its development, and methodological hurdles to accurate and reliable prediction. Prospects and challenges for future generations of FHR studies are discussed in the context of early detection and intervention strategies. PMID:23693118
The PREM score: a graphical tool for predicting survival in very preterm births.
Cole, T J; Hey, E; Richmond, S
2010-01-01
To develop a tool for predicting survival to term in babies born more than 8 weeks early using only information available at or before birth. 1456 non-malformed very preterm babies of 22-31 weeks' gestation born in 2000-3 in the north of England and 3382 births of 23-31 weeks born in 2000-4 in Trent. Survival to term, predicted from information available at birth, and at the onset of labour or delivery. Development of a logistic regression model (the prematurity risk evaluation measure or PREM score) based on gestation, birth weight for gestation and base deficit from umbilical cord blood. Gestation was by far the most powerful predictor of survival to term, and as few as 5 extra days can double the chance of survival. Weight for gestation also had a powerful but non-linear effect on survival, with weight between the median and 85th centile predicting the highest survival. Using this information survival can be predicted almost as accurately before birth as after, although base deficit further improves the prediction. A simple graph is described that shows how the two main variables gestation and weight for gestation interact to predict the chance of survival. The PREM score can be used to predict the chance of survival at or before birth almost as accurately as existing measures influenced by post-delivery condition, to balance risk at entry into a controlled trial and to adjust for differences in "case mix" when assessing the quality of perinatal care.
Bridging the gap between computation and clinical biology: validation of cable theory in humans
Finlay, Malcolm C.; Xu, Lei; Taggart, Peter; Hanson, Ben; Lambiase, Pier D.
2013-01-01
Introduction: Computerized simulations of cardiac activity have significantly contributed to our understanding of cardiac electrophysiology, but techniques of simulations based on patient-acquired data remain in their infancy. We sought to integrate data acquired from human electrophysiological studies into patient-specific models, and validated this approach by testing whether electrophysiological responses to sequential premature stimuli could be predicted in a quantitatively accurate manner. Methods: Eleven patients with structurally normal hearts underwent electrophysiological studies. Semi-automated analysis was used to reconstruct activation and repolarization dynamics for each electrode. This S2 extrastimuli data was used to inform individualized models of cardiac conduction, including a novel derivation of conduction velocity restitution. Activation dynamics of multiple premature extrastimuli were then predicted from this model and compared against measured patient data as well as data derived from the ten-Tusscher cell-ionic model. Results: Activation dynamics following a premature S3 were significantly different from those after an S2. Patient specific models demonstrated accurate prediction of the S3 activation wave, (Pearson's R2 = 0.90, median error 4%). Examination of the modeled conduction dynamics allowed inferences into the spatial dispersion of activation delay. Further validation was performed against data from the ten-Tusscher cell-ionic model, with our model accurately recapitulating predictions of repolarization times (R2 = 0.99). Conclusions: Simulations based on clinically acquired data can be used to successfully predict complex activation patterns following sequential extrastimuli. Such modeling techniques may be useful as a method of incorporation of clinical data into predictive models. PMID:24027527
Evidence for an Explanation Advantage in Naïve Biological Reasoning
Legare, Cristine H.; Wellman, Henry M.; Gelman, Susan A.
2013-01-01
The present studies compare young children's explanations and predictions for the biological phenomenon of contamination. In Study 1, 36 preschoolers and 24 adults heard vignettes concerning contamination, and were asked either to make a prediction or to provide an explanation. Even 3-year-olds readily supplied contamination-based explanations, and most children mentioned an unseen mechanism (germs, contact through bodily fluids). Moreover, unlike adults who performed at ceiling across both explanation and prediction tasks, children were significantly more accurate with their explanations than their predictions. In Study 2, we varied the strength of cues regarding the desirability of the contaminated substance (N = 24 preschoolers). Although desirability affected responses, for both levels of desirability participants were significantly more accurate on explanation than prediction questions. Altogether, these studies demonstrate a significant “explanation advantage” for children's reasoning in the domain of everyday biology. PMID:18710700
pKa prediction of monoprotic small molecules the SMARTS way.
Lee, Adam C; Yu, Jing-Yu; Crippen, Gordon M
2008-10-01
Realizing favorable absorption, distribution, metabolism, elimination, and toxicity profiles is a necessity due to the high attrition rate of lead compounds in drug development today. The ability to accurately predict bioavailability can help save time and money during the screening and optimization processes. As several robust programs already exist for predicting logP, we have turned our attention to the fast and robust prediction of pK(a) for small molecules. Using curated data from the Beilstein Database and Lange's Handbook of Chemistry, we have created a decision tree based on a novel set of SMARTS strings that can accurately predict the pK(a) for monoprotic compounds with R(2) of 0.94 and root mean squared error of 0.68. Leave-some-out (10%) cross-validation achieved Q(2) of 0.91 and root mean squared error of 0.80.
Nakamura, Toru; Yamaji, Takayuki; Takayama, Kozo
2013-01-01
To accurately predict the stability of thiamine nitrate as a model drug in pharmaceutical products under uncontrolled temperature conditions, the average reaction rate constant was determined, taking into account the heat transfer from the atmosphere to the product. The stability tests of thiamine nitrate in the three packages with different heat transfers were performed under non-isothermal conditions. The stability data observed were compared with the predictions based on a newly developed method, showing that the stability was well predicted by the method involving the heat transfer. By contrast, there were some deviations observed from the predicted data, without considering heat transfer in the packages with low heat transfer. The above-mentioned result clearly shows that heat transfer should be considered to ensure accurate prediction of the stability of commercial pharmaceutical products under non-isothermal atmospheres.
From Pressure to Path: Barometer-based Vehicle Tracking
Ho, Bo-Jhang; Martin, Paul; Swaminathan, Prashanth; Srivastava, Mani
2017-01-01
Pervasive mobile devices have enabled countless context-and location-based applications that facilitate navigation, life-logging, and more. As we build the next generation of smart cities, it is important to leverage the rich sensing modalities that these numerous devices have to offer. This work demonstrates how mobile devices can be used to accurately track driving patterns based solely on pressure data collected from the device’s barometer. Specifically, by correlating pressure time-series data against topographic elevation data and road maps for a given region, a centralized computer can estimate the likely paths through which individual users have driven, providing an exceptionally low-power method for measuring driving patterns of a given individual or for analyzing group behavior across multiple users. This work also brings to bear a more nefarious side effect of pressure-based path estimation: a mobile application can, without consent and without notifying the user, use pressure data to accurately detect an individual’s driving behavior, compromising both user privacy and security. We further analyze the ability to predict driving trajectories in terms of the variance in barometer pressure and geographical elevation, demonstrating cases in which more than 80% of paths can be accurately predicted. PMID:29503981
From Pressure to Path: Barometer-based Vehicle Tracking.
Ho, Bo-Jhang; Martin, Paul; Swaminathan, Prashanth; Srivastava, Mani
2015-11-01
Pervasive mobile devices have enabled countless context-and location-based applications that facilitate navigation, life-logging, and more. As we build the next generation of smart cities, it is important to leverage the rich sensing modalities that these numerous devices have to offer. This work demonstrates how mobile devices can be used to accurately track driving patterns based solely on pressure data collected from the device's barometer. Specifically, by correlating pressure time-series data against topographic elevation data and road maps for a given region, a centralized computer can estimate the likely paths through which individual users have driven, providing an exceptionally low-power method for measuring driving patterns of a given individual or for analyzing group behavior across multiple users. This work also brings to bear a more nefarious side effect of pressure-based path estimation: a mobile application can, without consent and without notifying the user, use pressure data to accurately detect an individual's driving behavior, compromising both user privacy and security. We further analyze the ability to predict driving trajectories in terms of the variance in barometer pressure and geographical elevation, demonstrating cases in which more than 80% of paths can be accurately predicted.
Murrell, Ebony G.; Juliano, Steven A.
2012-01-01
Resource competition theory predicts that R*, the equilibrium resource amount yielding zero growth of a consumer population, should predict species' competitive abilities for that resource. This concept has been supported for unicellular organisms, but has not been well-tested for metazoans, probably due to the difficulty of raising experimental populations to equilibrium and measuring population growth rates for species with long or complex life cycles. We developed an index (Rindex) of R* based on demography of one insect cohort, growing from egg to adult in a non-equilibrium setting, and tested whether Rindex yielded accurate predictions of competitive abilities using mosquitoes as a model system. We estimated finite rate of increase (λ′) from demographic data for cohorts of three mosquito species raised with different detritus amounts, and estimated each species' Rindex using nonlinear regressions of λ′ vs. initial detritus amount. All three species' Rindex differed significantly, and accurately predicted competitive hierarchy of the species determined in simultaneous pairwise competition experiments. Our Rindex could provide estimates and rigorous statistical comparisons of competitive ability for organisms for which typical chemostat methods and equilibrium population conditions are impractical. PMID:22970128
Yu, Nancy Y; Wagner, James R; Laird, Matthew R; Melli, Gabor; Rey, Sébastien; Lo, Raymond; Dao, Phuong; Sahinalp, S Cenk; Ester, Martin; Foster, Leonard J; Brinkman, Fiona S L
2010-07-01
PSORTb has remained the most precise bacterial protein subcellular localization (SCL) predictor since it was first made available in 2003. However, the recall needs to be improved and no accurate SCL predictors yet make predictions for archaea, nor differentiate important localization subcategories, such as proteins targeted to a host cell or bacterial hyperstructures/organelles. Such improvements should preferably be encompassed in a freely available web-based predictor that can also be used as a standalone program. We developed PSORTb version 3.0 with improved recall, higher proteome-scale prediction coverage, and new refined localization subcategories. It is the first SCL predictor specifically geared for all prokaryotes, including archaea and bacteria with atypical membrane/cell wall topologies. It features an improved standalone program, with a new batch results delivery system complementing its web interface. We evaluated the most accurate SCL predictors using 5-fold cross validation plus we performed an independent proteomics analysis, showing that PSORTb 3.0 is the most accurate but can benefit from being complemented by Proteome Analyst predictions. http://www.psort.org/psortb (download open source software or use the web interface). psort-mail@sfu.ca Supplementary data are available at Bioinformatics online.
Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; ...
2015-04-23
Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the resultsmore » of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.« less
Garcia Lopez, Sebastian; Kim, Philip M.
2014-01-01
Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases. PMID:25243403
Madhavan, Dinesh B; Baldock, Jeff A; Read, Zoe J; Murphy, Simon C; Cunningham, Shaun C; Perring, Michael P; Herrmann, Tim; Lewis, Tom; Cavagnaro, Timothy R; England, Jacqueline R; Paul, Keryn I; Weston, Christopher J; Baker, Thomas G
2017-05-15
Reforestation of agricultural lands with mixed-species environmental plantings can effectively sequester C. While accurate and efficient methods for predicting soil organic C content and composition have recently been developed for soils under agricultural land uses, such methods under forested land uses are currently lacking. This study aimed to develop a method using infrared spectroscopy for accurately predicting total organic C (TOC) and its fractions (particulate, POC; humus, HOC; and resistant, ROC organic C) in soils under environmental plantings. Soils were collected from 117 paired agricultural-reforestation sites across Australia. TOC fractions were determined in a subset of 38 reforested soils using physical fractionation by automated wet-sieving and 13 C nuclear magnetic resonance (NMR) spectroscopy. Mid- and near-infrared spectra (MNIRS, 6000-450 cm -1 ) were acquired from finely-ground soils from environmental plantings and agricultural land. Satisfactory prediction models based on MNIRS and partial least squares regression (PLSR) were developed for TOC and its fractions. Leave-one-out cross-validations of MNIRS-PLSR models indicated accurate predictions (R 2 > 0.90, negligible bias, ratio of performance to deviation > 3) and fraction-specific functional group contributions to beta coefficients in the models. TOC and its fractions were predicted using the cross-validated models and soil spectra for 3109 reforested and agricultural soils. The reliability of predictions determined using k-nearest neighbour score distance indicated that >80% of predictions were within the satisfactory inlier limit. The study demonstrated the utility of infrared spectroscopy (MNIRS-PLSR) to rapidly and economically determine TOC and its fractions and thereby accurately describe the effects of land use change such as reforestation on agricultural soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fulkerson, David E.
2010-02-01
This paper describes a new methodology for characterizing the electrical behavior and soft error rate (SER) of CMOS and SiGe HBT integrated circuits that are struck by ions. A typical engineering design problem is to calculate the SER of a critical path that commonly includes several circuits such as an input buffer, several logic gates, logic storage, clock tree circuitry, and an output buffer. Using multiple 3D TCAD simulations to solve this problem is too costly and time-consuming for general engineering use. The new and simple methodology handles the problem with ease by simple SPICE simulations. The methodology accurately predicts the measured threshold linear energy transfer (LET) of a bulk CMOS SRAM. It solves for circuit currents and voltage spikes that are close to those predicted by expensive 3D TCAD simulations. It accurately predicts the measured event cross-section vs. LET curve of an experimental SiGe HBT flip-flop. The experimental cross section vs. frequency behavior and other subtle effects are also accurately predicted.
Predicting Deforestation Patterns in Loreto, Peru from 2000-2010 Using a Nested GLM Approach
NASA Astrophysics Data System (ADS)
Vijay, V.; Jenkins, C.; Finer, M.; Pimm, S.
2013-12-01
Loreto is the largest province in Peru, covering about 370,000 km2. Because of its remote location in the Amazonian rainforest, it is also one of the most sparsely populated. Though a majority of the region remains covered by forest, deforestation is being driven by human encroachment through industrial activities and the spread of colonization and agriculture. The importance of accurate predictive modeling of deforestation has spawned an extensive body of literature on the topic. We present a nested GLM approach based on predictions of deforestation from 2000-2010 and using variables representing the expected drivers of deforestation. Models were constructed using 2000 to 2005 changes and tested against data for 2005 to 2010. The most complex model, which included transportation variables (roads and navigable rivers), spatial contagion processes, population centers and industrial activities, performed better in predicting the 2005 to 2010 changes (75.8% accurate) than did a simpler model using only transportation variables (69.2% accurate). Finally we contrast the GLM approach with a more complex spatially articulated model.
Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei
2018-03-15
Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system's lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system's ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection.
Matsuzaki, Ryosuke; Tachikawa, Takeshi; Ishizuka, Junya
2018-03-01
Accurate simulations of carbon fiber-reinforced plastic (CFRP) molding are vital for the development of high-quality products. However, such simulations are challenging and previous attempts to improve the accuracy of simulations by incorporating the data acquired from mold monitoring have not been completely successful. Therefore, in the present study, we developed a method to accurately predict various CFRP thermoset molding characteristics based on data assimilation, a process that combines theoretical and experimental values. The degree of cure as well as temperature and thermal conductivity distributions during the molding process were estimated using both temperature data and numerical simulations. An initial numerical experiment demonstrated that the internal mold state could be determined solely from the surface temperature values. A subsequent numerical experiment to validate this method showed that estimations based on surface temperatures were highly accurate in the case of degree of cure and internal temperature, although predictions of thermal conductivity were more difficult.
Thirunathan, Praveena; Arnz, Patrik; Husny, Joeska; Gianfrancesco, Alessandro; Perdana, Jimmy
2018-03-01
Accurate description of moisture diffusivity is key to precisely understand and predict moisture transfer behaviour in a matrix. Unfortunately, measuring moisture diffusivity is not trivial, especially at low moisture values and/or elevated temperatures. This paper presents a novel experimental procedure to accurately measure moisture diffusivity based on thermogravimetric approach. The procedure is capable to measure diffusivity even at elevated temperatures (>70°C) and low moisture values (>1%). Diffusivity was extracted from experimental data based on "regular regime approach". The approach was tailored to determine diffusivity from thin film and from poly-dispersed powdered samples. Subsequently, measured diffusivity was validated by comparing to available literature data, showing good agreement. Ability of this approach to accurately measure diffusivity at a wider range of temperatures provides better insight on temperature dependency of diffusivity. Thus, this approach can be crucial to ensure good accuracy of moisture transfer description/prediction especially when involving elevated temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Helicopter noise prediction - The current status and future direction
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Farassat, F.
1992-01-01
The paper takes stock of the progress, assesses the current prediction capabilities, and forecasts the direction of future helicopter noise prediction research. The acoustic analogy approach, specifically, theories based on the Ffowcs Williams-Hawkings equations, are the most widely used for deterministic noise sources. Thickness and loading noise can be routinely predicted given good plane motion and blade loading inputs. Blade-vortex interaction noise can also be predicted well with measured input data, but prediction of airloads with the high spatial and temporal resolution required for BVI is still difficult. Current semiempirical broadband noise predictions are useful and reasonably accurate. New prediction methods based on a Kirchhoff formula and direct computation appear to be very promising, but are currently very demanding computationally.
NASA Astrophysics Data System (ADS)
Nourani, Vahid; Andalib, Gholamreza; Dąbrowska, Dominika
2017-05-01
Accurate nitrate load predictions can elevate decision management of water quality of watersheds which affects to environment and drinking water. In this paper, two scenarios were considered for Multi-Station (MS) nitrate load modeling of the Little River watershed. In the first scenario, Markovian characteristics of streamflow-nitrate time series were proposed for the MS modeling. For this purpose, feature extraction criterion of Mutual Information (MI) was employed for input selection of artificial intelligence models (Feed Forward Neural Network, FFNN and least square support vector machine). In the second scenario for considering seasonality-based characteristics of the time series, wavelet transform was used to extract multi-scale features of streamflow-nitrate time series of the watershed's sub-basins to model MS nitrate loads. Self-Organizing Map (SOM) clustering technique which finds homogeneous sub-series clusters was also linked to MI for proper cluster agent choice to be imposed into the models for predicting the nitrate loads of the watershed's sub-basins. The proposed MS method not only considers the prediction of the outlet nitrate but also covers predictions of interior sub-basins nitrate load values. The results indicated that the proposed FFNN model coupled with the SOM-MI improved the performance of MS nitrate predictions compared to the Markovian-based models up to 39%. Overall, accurate selection of dominant inputs which consider seasonality-based characteristics of streamflow-nitrate process could enhance the efficiency of nitrate load predictions.
NASA Technical Reports Server (NTRS)
Saltsman, J. F.; Halford, G. R.
1979-01-01
The method of strainrange partitioning is used to predict the cyclic lives of the Metal Properties Council's long time creep-fatigue interspersion tests of several steel alloys. Comparisons are made with predictions based upon the time- and cycle-fraction approach. The method of strainrange partitioning is shown to give consistently more accurate predictions of cyclic life than is given by the time- and cycle-fraction approach.
Stochastic Earthquake Rupture Modeling Using Nonparametric Co-Regionalization
NASA Astrophysics Data System (ADS)
Lee, Kyungbook; Song, Seok Goo
2017-09-01
Accurate predictions of the intensity and variability of ground motions are essential in simulation-based seismic hazard assessment. Advanced simulation-based ground motion prediction methods have been proposed to complement the empirical approach, which suffers from the lack of observed ground motion data, especially in the near-source region for large events. It is important to quantify the variability of the earthquake rupture process for future events and to produce a number of rupture scenario models to capture the variability in simulation-based ground motion predictions. In this study, we improved the previously developed stochastic earthquake rupture modeling method by applying the nonparametric co-regionalization, which was proposed in geostatistics, to the correlation models estimated from dynamically derived earthquake rupture models. The nonparametric approach adopted in this study is computationally efficient and, therefore, enables us to simulate numerous rupture scenarios, including large events ( M > 7.0). It also gives us an opportunity to check the shape of true input correlation models in stochastic modeling after being deformed for permissibility. We expect that this type of modeling will improve our ability to simulate a wide range of rupture scenario models and thereby predict ground motions and perform seismic hazard assessment more accurately.
NASA Astrophysics Data System (ADS)
Wills, John M.; Mattsson, Ann E.
2012-02-01
Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Gao, Shanwu; Tibiche, Chabane; Zou, Jinfeng; Zaman, Naif; Trifiro, Mark; O'Connor-McCourt, Maureen; Wang, Edwin
2016-01-01
Decisions regarding adjuvant therapy in patients with stage II colorectal cancer (CRC) have been among the most challenging and controversial in oncology over the past 20 years. To develop robust combinatory cancer hallmark-based gene signature sets (CSS sets) that more accurately predict prognosis and identify a subset of patients with stage II CRC who could gain survival benefits from adjuvant chemotherapy. Thirteen retrospective studies of patients with stage II CRC who had clinical follow-up and adjuvant chemotherapy were analyzed. Respective totals of 162 and 843 patients from 2 and 11 independent cohorts were used as the discovery and validation cohorts, respectively. A total of 1005 patients with stage II CRC were included in the 13 cohorts. Among them, 84 of 416 patients in 3 independent cohorts received fluorouracil-based adjuvant chemotherapy. Identification of CSS sets to predict relapse-free survival and identify a subset of patients with stage II CRC who could gain substantial survival benefits from fluorouracil-based adjuvant chemotherapy. Eight cancer hallmark-based gene signatures (30 genes each) were identified and used to construct CSS sets for determining prognosis. The CSS sets were validated in 11 independent cohorts of 767 patients with stage II CRC who did not receive adjuvant chemotherapy. The CSS sets accurately stratified patients into low-, intermediate-, and high-risk groups. Five-year relapse-free survival rates were 94%, 78%, and 45%, respectively, representing 60%, 28%, and 12% of patients with stage II disease. The 416 patients with CSS set-defined high-risk stage II CRC who received fluorouracil-based adjuvant chemotherapy showed a substantial gain in survival benefits from the treatment (ie, recurrence reduced by 30%-40% in 5 years). The CSS sets substantially outperformed other prognostic predictors of stage 2 CRC. They are more accurate and robust for prognostic predictions and facilitate the identification of patients with stage II disease who could gain survival benefit from fluorouracil-based adjuvant chemotherapy.
NASA Astrophysics Data System (ADS)
Maizir, H.; Suryanita, R.
2018-01-01
A few decades, many methods have been developed to predict and evaluate the bearing capacity of driven piles. The problem of the predicting and assessing the bearing capacity of the pile is very complicated and not yet established, different soil testing and evaluation produce a widely different solution. However, the most important thing is to determine methods used to predict and evaluate the bearing capacity of the pile to the required degree of accuracy and consistency value. Accurate prediction and evaluation of axial bearing capacity depend on some variables, such as the type of soil, diameter, and length of pile, etc. The aims of the study of Artificial Neural Networks (ANNs) are utilized to obtain more accurate and consistent axial bearing capacity of a driven pile. ANNs can be described as mapping an input to the target output data. The method using the ANN model developed to predict and evaluate the axial bearing capacity of the pile based on the pile driving analyzer (PDA) test data for more than 200 selected data. The results of the predictions obtained by the ANN model and the PDA test were then compared. This research as the neural network models give a right prediction and evaluation of the axial bearing capacity of piles using neural networks.
CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data
O'Connor, Timothy; Bodén, Mikael
2017-01-01
Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599
Liu, Zitao; Hauskrecht, Milos
2017-11-01
Building of an accurate predictive model of clinical time series for a patient is critical for understanding of the patient condition, its dynamics, and optimal patient management. Unfortunately, this process is not straightforward. First, patient-specific variations are typically large and population-based models derived or learned from many different patients are often unable to support accurate predictions for each individual patient. Moreover, time series observed for one patient at any point in time may be too short and insufficient to learn a high-quality patient-specific model just from the patient's own data. To address these problems we propose, develop and experiment with a new adaptive forecasting framework for building multivariate clinical time series models for a patient and for supporting patient-specific predictions. The framework relies on the adaptive model switching approach that at any point in time selects the most promising time series model out of the pool of many possible models, and consequently, combines advantages of the population, patient-specific and short-term individualized predictive models. We demonstrate that the adaptive model switching framework is very promising approach to support personalized time series prediction, and that it is able to outperform predictions based on pure population and patient-specific models, as well as, other patient-specific model adaptation strategies.
Tatinati, Sivanagaraja; Nazarpour, Kianoush; Tech Ang, Wei; Veluvolu, Kalyana C
2016-08-01
Successful treatment of tumors with motion-adaptive radiotherapy requires accurate prediction of respiratory motion, ideally with a prediction horizon larger than the latency in radiotherapy system. Accurate prediction of respiratory motion is however a non-trivial task due to the presence of irregularities and intra-trace variabilities, such as baseline drift and temporal changes in fundamental frequency pattern. In this paper, to enhance the accuracy of the respiratory motion prediction, we propose a stacked regression ensemble framework that integrates heterogeneous respiratory motion prediction algorithms. We further address two crucial issues for developing a successful ensemble framework: (1) selection of appropriate prediction methods to ensemble (level-0 methods) among the best existing prediction methods; and (2) finding a suitable generalization approach that can successfully exploit the relative advantages of the chosen level-0 methods. The efficacy of the developed ensemble framework is assessed with real respiratory motion traces acquired from 31 patients undergoing treatment. Results show that the developed ensemble framework improves the prediction performance significantly compared to the best existing methods. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Risk prediction model: Statistical and artificial neural network approach
NASA Astrophysics Data System (ADS)
Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim
2017-04-01
Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.
A novel knowledge-based potential for RNA 3D structure evaluation
NASA Astrophysics Data System (ADS)
Yang, Yi; Gu, Qi; Zhang, Ben-Gong; Shi, Ya-Zhou; Shao, Zhi-Gang
2018-03-01
Ribonucleic acids (RNAs) play a vital role in biology, and knowledge of their three-dimensional (3D) structure is required to understand their biological functions. Recently structural prediction methods have been developed to address this issue, but a series of RNA 3D structures are generally predicted by most existing methods. Therefore, the evaluation of the predicted structures is generally indispensable. Although several methods have been proposed to assess RNA 3D structures, the existing methods are not precise enough. In this work, a new all-atom knowledge-based potential is developed for more accurately evaluating RNA 3D structures. The potential not only includes local and nonlocal interactions but also fully considers the specificity of each RNA by introducing a retraining mechanism. Based on extensive test sets generated from independent methods, the proposed potential correctly distinguished the native state and ranked near-native conformations to effectively select the best. Furthermore, the proposed potential precisely captured RNA structural features such as base-stacking and base-pairing. Comparisons with existing potential methods show that the proposed potential is very reliable and accurate in RNA 3D structure evaluation. Project supported by the National Science Foundation of China (Grants Nos. 11605125, 11105054, 11274124, and 11401448).
Nanavati, Tania; Seemaladinne, Nirupama; Regier, Michael; Yossuck, Panitan; Pergami, Paola
2015-01-01
Background Neonatal hypoxic ischemic encephalopathy (HIE) is a major cause of mortality, morbidity, and long-term neurological deficits. Despite the availability of neuroimaging and neurophysiological testing, tools for accurate early diagnosis and prediction of developmental outcome are still lacking. The goal of this study was to determine if combined use of magnetic resonance imaging (MRI) and electroencephalography (EEG) findings could support outcome prediction. Methods We retrospectively reviewed records of 17 HIE neonates, classified brain MRI and EEG findings based on severity, and assessed clinical outcome up to 48 months. We determined the relation between MRI/EEG findings and clinical outcome. Results We demonstrated a significant relationship between MRI findings and clinical outcome (Fisher’s exact test, p = 0.017). EEG provided no additional information about the outcome beyond that contained in the MRI score. The statistical model for outcome prediction based on random forests suggested that EEG readings at 24 hours and 72 hours could be important variables for outcome prediction, but this needs to be investigated further. Conclusion Caution should be used when discussing prognosis for neonates with mild-to-moderate HIE based on early MR imaging and EEG findings. A robust, quantitative marker of HIE severity that allows for accurate prediction of long-term outcome, particularly for mild-to-moderate cases, is still needed. PMID:25862075
Practical theories for service life prediction of critical aerospace structural components
NASA Technical Reports Server (NTRS)
Ko, William L.; Monaghan, Richard C.; Jackson, Raymond H.
1992-01-01
A new second-order theory was developed for predicting the service lives of aerospace structural components. The predictions based on this new theory were compared with those based on the Ko first-order theory and the classical theory of service life predictions. The new theory gives very accurate service life predictions. An equivalent constant-amplitude stress cycle method was proposed for representing the random load spectrum for crack growth calculations. This method predicts the most conservative service life. The proposed use of minimum detectable crack size, instead of proof load established crack size as an initial crack size for crack growth calculations, could give a more realistic service life.
Tang, Yat T; Marshall, Garland R
2011-02-28
Binding affinity prediction is one of the most critical components to computer-aided structure-based drug design. Despite advances in first-principle methods for predicting binding affinity, empirical scoring functions that are fast and only relatively accurate are still widely used in structure-based drug design. With the increasing availability of X-ray crystallographic structures in the Protein Data Bank and continuing application of biophysical methods such as isothermal titration calorimetry to measure thermodynamic parameters contributing to binding free energy, sufficient experimental data exists that scoring functions can now be derived by separating enthalpic (ΔH) and entropic (TΔS) contributions to binding free energy (ΔG). PHOENIX, a scoring function to predict binding affinities of protein-ligand complexes, utilizes the increasing availability of experimental data to improve binding affinity predictions by the following: model training and testing using high-resolution crystallographic data to minimize structural noise, independent models of enthalpic and entropic contributions fitted to thermodynamic parameters assumed to be thermodynamically biased to calculate binding free energy, use of shape and volume descriptors to better capture entropic contributions. A set of 42 descriptors and 112 protein-ligand complexes were used to derive functions using partial least-squares for change of enthalpy (ΔH) and change of entropy (TΔS) to calculate change of binding free energy (ΔG), resulting in a predictive r2 (r(pred)2) of 0.55 and a standard error (SE) of 1.34 kcal/mol. External validation using the 2009 version of the PDBbind "refined set" (n = 1612) resulted in a Pearson correlation coefficient (R(p)) of 0.575 and a mean error (ME) of 1.41 pK(d). Enthalpy and entropy predictions were of limited accuracy individually. However, their difference resulted in a relatively accurate binding free energy. While the development of an accurate and applicable scoring function was an objective of this study, the main focus was evaluation of the use of high-resolution X-ray crystal structures with high-quality thermodynamic parameters from isothermal titration calorimetry for scoring function development. With the increasing application of structure-based methods in molecular design, this study suggests that using high-resolution crystal structures, separating enthalpy and entropy contributions to binding free energy, and including descriptors to better capture entropic contributions may prove to be effective strategies toward rapid and accurate calculation of binding affinity.
Köster, Andreas; Spura, Thomas; Rutkai, Gábor; Kessler, Jan; Wiebeler, Hendrik; Vrabec, Jadran; Kühne, Thomas D
2016-07-15
The accuracy of water models derived from ab initio molecular dynamics simulations by means on an improved force-matching scheme is assessed for various thermodynamic, transport, and structural properties. It is found that although the resulting force-matched water models are typically less accurate than fully empirical force fields in predicting thermodynamic properties, they are nevertheless much more accurate than generally appreciated in reproducing the structure of liquid water and in fact superseding most of the commonly used empirical water models. This development demonstrates the feasibility to routinely parametrize computationally efficient yet predictive potential energy functions based on accurate ab initio molecular dynamics simulations for a large variety of different systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Adde, Lars; Helbostad, Jorunn; Jensenius, Alexander R; Langaas, Mette; Støen, Ragnhild
2013-08-01
This study evaluates the role of postterm age at assessment and the use of one or two video recordings for the detection of fidgety movements (FMs) and prediction of cerebral palsy (CP) using computer vision software. Recordings between 9 and 17 weeks postterm age from 52 preterm and term infants (24 boys, 28 girls; 26 born preterm) were used. Recordings were analyzed using computer vision software. Movement variables, derived from differences between subsequent video frames, were used for quantitative analysis. Sensitivities, specificities, and area under curve were estimated for the first and second recording, or a mean of both. FMs were classified based on the Prechtl approach of general movement assessment. CP status was reported at 2 years. Nine children developed CP of whom all recordings had absent FMs. The mean variability of the centroid of motion (CSD) from two recordings was more accurate than using only one recording, and identified all children who were diagnosed with CP at 2 years. Age at assessment did not influence the detection of FMs or prediction of CP. The accuracy of computer vision techniques in identifying FMs and predicting CP based on two recordings should be confirmed in future studies.
Prediction of clinical behaviour and treatment for cancers.
Futschik, Matthias E; Sullivan, Mike; Reeve, Anthony; Kasabov, Nikola
2003-01-01
Prediction of clinical behaviour and treatment for cancers is based on the integration of clinical and pathological parameters. Recent reports have demonstrated that gene expression profiling provides a powerful new approach for determining disease outcome. If clinical and microarray data each contain independent information then it should be possible to combine these datasets to gain more accurate prognostic information. Here, we have used existing clinical information and microarray data to generate a combined prognostic model for outcome prediction for diffuse large B-cell lymphoma (DLBCL). A prediction accuracy of 87.5% was achieved. This constitutes a significant improvement compared to the previously most accurate prognostic model with an accuracy of 77.6%. The model introduced here may be generally applicable to the combination of various types of molecular and clinical data for improving medical decision support systems and individualising patient care.
On Burst Detection and Prediction in Retweeting Sequence
2015-05-22
We conduct a comprehensive empirical analysis of a large microblogging dataset collected from the Sina Weibo and report our observations of burst...whether and how accurate we can predict bursts using classifiers based on the extracted features. Our empirical study of the Sina Weibo data shows the...feasibility of burst prediction using appropriately extracted features and classic classifiers. 1 Introduction Microblogging, such as Twitter and Sina
The feasibility of an efficient drug design method with high-performance computers.
Yamashita, Takefumi; Ueda, Akihiko; Mitsui, Takashi; Tomonaga, Atsushi; Matsumoto, Shunji; Kodama, Tatsuhiko; Fujitani, Hideaki
2015-01-01
In this study, we propose a supercomputer-assisted drug design approach involving all-atom molecular dynamics (MD)-based binding free energy prediction after the traditional design/selection step. Because this prediction is more accurate than the empirical binding affinity scoring of the traditional approach, the compounds selected by the MD-based prediction should be better drug candidates. In this study, we discuss the applicability of the new approach using two examples. Although the MD-based binding free energy prediction has a huge computational cost, it is feasible with the latest 10 petaflop-scale computer. The supercomputer-assisted drug design approach also involves two important feedback procedures: The first feedback is generated from the MD-based binding free energy prediction step to the drug design step. While the experimental feedback usually provides binding affinities of tens of compounds at one time, the supercomputer allows us to simultaneously obtain the binding free energies of hundreds of compounds. Because the number of calculated binding free energies is sufficiently large, the compounds can be classified into different categories whose properties will aid in the design of the next generation of drug candidates. The second feedback, which occurs from the experiments to the MD simulations, is important to validate the simulation parameters. To demonstrate this, we compare the binding free energies calculated with various force fields to the experimental ones. The results indicate that the prediction will not be very successful, if we use an inaccurate force field. By improving/validating such simulation parameters, the next prediction can be made more accurate.
Predicting Individual Fuel Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhenhong; Greene, David L
2011-01-01
To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using amore » large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.« less
Prediction of near-term breast cancer risk using a Bayesian belief network
NASA Astrophysics Data System (ADS)
Zheng, Bin; Ramalingam, Pandiyarajan; Hariharan, Harishwaran; Leader, Joseph K.; Gur, David
2013-03-01
Accurately predicting near-term breast cancer risk is an important prerequisite for establishing an optimal personalized breast cancer screening paradigm. In previous studies, we investigated and tested the feasibility of developing a unique near-term breast cancer risk prediction model based on a new risk factor associated with bilateral mammographic density asymmetry between the left and right breasts of a woman using a single feature. In this study we developed a multi-feature based Bayesian belief network (BBN) that combines bilateral mammographic density asymmetry with three other popular risk factors, namely (1) age, (2) family history, and (3) average breast density, to further increase the discriminatory power of our cancer risk model. A dataset involving "prior" negative mammography examinations of 348 women was used in the study. Among these women, 174 had breast cancer detected and verified in the next sequential screening examinations, and 174 remained negative (cancer-free). A BBN was applied to predict the risk of each woman having cancer detected six to 18 months later following the negative screening mammography. The prediction results were compared with those using single features. The prediction accuracy was significantly increased when using the BBN. The area under the ROC curve increased from an AUC=0.70 to 0.84 (p<0.01), while the positive predictive value (PPV) and negative predictive value (NPV) also increased from a PPV=0.61 to 0.78 and an NPV=0.65 to 0.75, respectively. This study demonstrates that a multi-feature based BBN can more accurately predict the near-term breast cancer risk than with a single feature.
Estimating Glenoid Width for Instability-Related Bone Loss: A CT Evaluation of an MRI Formula.
Giles, Joshua W; Owens, Brett D; Athwal, George S
2015-07-01
Determining the magnitude of glenoid bone loss in cases of shoulder instability is an important step in selecting the optimal reconstructive procedure. Recently, a formula has been proposed that estimates native glenoid width based on magnetic resonance imaging (MRI) measurements of height (1/3 × glenoid height + 15 mm). This technique, however, has not been validated for use with computed tomography (CT), which is often the preferred imaging modality to assess bone deficiencies. The purpose of this project was 2-fold: (1) to determine if the MRI-based formula that predicts glenoid width from height is valid with CT and (2) to determine if a more accurate regression can be resolved for use specifically with CT data. Descriptive laboratory study. Ninety normal shoulder CT scans with preserved osseous anatomy were drawn from an existing database and analyzed. Measurements of glenoid height and width were performed by 2 observers on reconstructed 3-dimensional models. After assessment of reliability, the data were correlated, and regression models were created for male and female shoulders. The accuracy of the MRI-based model's predictions was then compared with that of the CT-based models. Intra- and interrater reliabilities were good to excellent for height and width, with intraclass correlation coefficients of 0.765 to 0.992. The height and width values had a strong correlation of 0.900 (P < .001). Regression analyses for male and female shoulders produced CT-specific formulas: for men, glenoid width = 2/3 × glenoid height + 5 mm; for women, glenoid width = 2/3 × glenoid height + 3 mm. Comparison of predictions from the MRI- and CT-specific formulas demonstrated good agreement (intraclass correlation coefficient = 0.818). The CT-specific formulas produced a root mean squared error of 1.2 mm, whereas application of the MRI-specific formula to CT images resulted in a root mean squared error of 1.5 mm. Use of the MRI-based formula on CT scans to predict glenoid width produced estimates that were nearly as accurate as the CT-specific formulas. The CT-specific formulas, however, are more accurate at predicting native glenoid width when applied to CT data. Imaging-specific (CT and MRI) formulas have been developed to estimate glenoid bone loss in patients with instability. The CT-specific formula can accurately predict native glenoid width, having an error of only 2.2% of average glenoid width. © 2015 The Author(s).
Predicting missing links in complex networks based on common neighbors and distance
Yang, Jinxuan; Zhang, Xiao-Dong
2016-01-01
The algorithms based on common neighbors metric to predict missing links in complex networks are very popular, but most of these algorithms do not account for missing links between nodes with no common neighbors. It is not accurate enough to reconstruct networks by using these methods in some cases especially when between nodes have less common neighbors. We proposed in this paper a new algorithm based on common neighbors and distance to improve accuracy of link prediction. Our proposed algorithm makes remarkable effect in predicting the missing links between nodes with no common neighbors and performs better than most existing currently used methods for a variety of real-world networks without increasing complexity. PMID:27905526
Accurate interatomic force fields via machine learning with covariant kernels
NASA Astrophysics Data System (ADS)
Glielmo, Aldo; Sollich, Peter; De Vita, Alessandro
2017-06-01
We present a novel scheme to accurately predict atomic forces as vector quantities, rather than sets of scalar components, by Gaussian process (GP) regression. This is based on matrix-valued kernel functions, on which we impose the requirements that the predicted force rotates with the target configuration and is independent of any rotations applied to the configuration database entries. We show that such covariant GP kernels can be obtained by integration over the elements of the rotation group SO (d ) for the relevant dimensionality d . Remarkably, in specific cases the integration can be carried out analytically and yields a conservative force field that can be recast into a pair interaction form. Finally, we show that restricting the integration to a summation over the elements of a finite point group relevant to the target system is sufficient to recover an accurate GP. The accuracy of our kernels in predicting quantum-mechanical forces in real materials is investigated by tests on pure and defective Ni, Fe, and Si crystalline systems.
External validation of a simple clinical tool used to predict falls in people with Parkinson disease
Duncan, Ryan P.; Cavanaugh, James T.; Earhart, Gammon M.; Ellis, Terry D.; Ford, Matthew P.; Foreman, K. Bo; Leddy, Abigail L.; Paul, Serene S.; Canning, Colleen G.; Thackeray, Anne; Dibble, Leland E.
2015-01-01
Background Assessment of fall risk in an individual with Parkinson disease (PD) is a critical yet often time consuming component of patient care. Recently a simple clinical prediction tool based only on fall history in the previous year, freezing of gait in the past month, and gait velocity <1.1 m/s was developed and accurately predicted future falls in a sample of individuals with PD. METHODS We sought to externally validate the utility of the tool by administering it to a different cohort of 171 individuals with PD. Falls were monitored prospectively for 6 months following predictor assessment. RESULTS The tool accurately discriminated future fallers from non-fallers (area under the curve [AUC] = 0.83; 95% CI 0.76 –0.89), comparable to the developmental study. CONCLUSION The results validated the utility of the tool for allowing clinicians to quickly and accurately identify an individual’s risk of an impending fall. PMID:26003412
Duncan, Ryan P; Cavanaugh, James T; Earhart, Gammon M; Ellis, Terry D; Ford, Matthew P; Foreman, K Bo; Leddy, Abigail L; Paul, Serene S; Canning, Colleen G; Thackeray, Anne; Dibble, Leland E
2015-08-01
Assessment of fall risk in an individual with Parkinson disease (PD) is a critical yet often time consuming component of patient care. Recently a simple clinical prediction tool based only on fall history in the previous year, freezing of gait in the past month, and gait velocity <1.1 m/s was developed and accurately predicted future falls in a sample of individuals with PD. We sought to externally validate the utility of the tool by administering it to a different cohort of 171 individuals with PD. Falls were monitored prospectively for 6 months following predictor assessment. The tool accurately discriminated future fallers from non-fallers (area under the curve [AUC] = 0.83; 95% CI 0.76-0.89), comparable to the developmental study. The results validated the utility of the tool for allowing clinicians to quickly and accurately identify an individual's risk of an impending fall. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qiu, Sihang; Chen, Bin; Wang, Rongxiao; Zhu, Zhengqiu; Wang, Yuan; Qiu, Xiaogang
2018-04-01
Hazardous gas leak accident has posed a potential threat to human beings. Predicting atmospheric dispersion and estimating its source become increasingly important in emergency management. Current dispersion prediction and source estimation models cannot satisfy the requirement of emergency management because they are not equipped with high efficiency and accuracy at the same time. In this paper, we develop a fast and accurate dispersion prediction and source estimation method based on artificial neural network (ANN), particle swarm optimization (PSO) and expectation maximization (EM). The novel method uses a large amount of pre-determined scenarios to train the ANN for dispersion prediction, so that the ANN can predict concentration distribution accurately and efficiently. PSO and EM are applied for estimating the source parameters, which can effectively accelerate the process of convergence. The method is verified by the Indianapolis field study with a SF6 release source. The results demonstrate the effectiveness of the method.
Chen, Yingyi; Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang
2018-01-01
A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies.
XenoSite: accurately predicting CYP-mediated sites of metabolism with neural networks.
Zaretzki, Jed; Matlock, Matthew; Swamidass, S Joshua
2013-12-23
Understanding how xenobiotic molecules are metabolized is important because it influences the safety, efficacy, and dose of medicines and how they can be modified to improve these properties. The cytochrome P450s (CYPs) are proteins responsible for metabolizing 90% of drugs on the market, and many computational methods can predict which atomic sites of a molecule--sites of metabolism (SOMs)--are modified during CYP-mediated metabolism. This study improves on prior methods of predicting CYP-mediated SOMs by using new descriptors and machine learning based on neural networks. The new method, XenoSite, is faster to train and more accurate by as much as 4% or 5% for some isozymes. Furthermore, some "incorrect" predictions made by XenoSite were subsequently validated as correct predictions by revaluation of the source literature. Moreover, XenoSite output is interpretable as a probability, which reflects both the confidence of the model that a particular atom is metabolized and the statistical likelihood that its prediction for that atom is correct.
Gowda, Dhananjaya; Airaksinen, Manu; Alku, Paavo
2017-09-01
Recently, a quasi-closed phase (QCP) analysis of speech signals for accurate glottal inverse filtering was proposed. However, the QCP analysis which belongs to the family of temporally weighted linear prediction (WLP) methods uses the conventional forward type of sample prediction. This may not be the best choice especially in computing WLP models with a hard-limiting weighting function. A sample selective minimization of the prediction error in WLP reduces the effective number of samples available within a given window frame. To counter this problem, a modified quasi-closed phase forward-backward (QCP-FB) analysis is proposed, wherein each sample is predicted based on its past as well as future samples thereby utilizing the available number of samples more effectively. Formant detection and estimation experiments on synthetic vowels generated using a physical modeling approach as well as natural speech utterances show that the proposed QCP-FB method yields statistically significant improvements over the conventional linear prediction and QCP methods.
Physiologically Based Pharmacokinetic Model for Long-Circulating Inorganic Nanoparticles.
Liang, Xiaowen; Wang, Haolu; Grice, Jeffrey E; Li, Li; Liu, Xin; Xu, Zhi Ping; Roberts, Michael S
2016-02-10
A physiologically based pharmacokinetic model was developed for accurately characterizing and predicting the in vivo fate of long-circulating inorganic nanoparticles (NPs). This model is built based on direct visualization of NP disposition details at the organ and cellular level. It was validated with multiple data sets, indicating robust inter-route and interspecies predictive capability. We suggest that the biodistribution of long-circulating inorganic NPs is determined by the uptake and release of NPs by phagocytic cells in target organs.
Despite a lengthy history of research on cyanobacteria, many important questions about this diverse group of aquatic, photosynthetic “blue-green algae” remain unanswered. For example, how can we more accurately predict cyanobacteria blooms in freshwater systems? Whi...
R.D. Ottmar; M.F. Burns; J.N. Hall; A.D. Hanson
1993-01-01
CONSUME is a user-friendly computer program designed for resource managers with some working knowledge of IBM-PC applications. The software predicts the amount of fuel consumption on logged units based on weather data, the amount and fuel moisture of fuels, and a number of other factors. Using these predictions, the resource manager can accurately determine when and...
The main objectives of this study were to: (1) determine whether dissimilar antiandrogenic compounds display additive effects when present in combination and (2) to assess the ability of modelling approaches to accurately predict these mixture effects based on data from single ch...
USDA-ARS?s Scientific Manuscript database
The promise of genomic selection is that genetic potential can be accurately predicted from genotypes. Simple deoxyribonucleic acid (DNA) tests might replace low accuracy predictions based on performance and pedigree for expensive or lowly heritable measures of puberty and fertility. The promise i...
USDA-ARS?s Scientific Manuscript database
The promise of genomic selection is accurate prediction of animals' genetic potential from their genotypes. Simple DNA tests might replace low accuracy predictions for expensive or lowly heritable measures of puberty and fertility based on performance and pedigree. Knowing which DNA variants affec...
Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Park, Michael A.; Darmofal, David L.
2008-01-01
A cut-cell approach to Computational Fluid Dynamics (CFD) that utilizes the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated, which permits adaptation based on improving the calculation of a specified output (off-body pressure signature) in supersonic inviscid flow. These predicted signatures are compared to wind tunnel measurements on and off the configuration centerline 10 body lengths below the model to validate the method for sonic boom prediction. Accurate mid-field sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly-refined, shock-aligned anisotropic grids were produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provided stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut-cells with an output-based adaptive scheme completely automated this accurate prediction capability after a triangular mesh is generated for the cut surface. This automation drastically reduces the manual intervention required by existing methods.
A data mining based approach to predict spatiotemporal changes in satellite images
NASA Astrophysics Data System (ADS)
Boulila, W.; Farah, I. R.; Ettabaa, K. Saheb; Solaiman, B.; Ghézala, H. Ben
2011-06-01
The interpretation of remotely sensed images in a spatiotemporal context is becoming a valuable research topic. However, the constant growth of data volume in remote sensing imaging makes reaching conclusions based on collected data a challenging task. Recently, data mining appears to be a promising research field leading to several interesting discoveries in various areas such as marketing, surveillance, fraud detection and scientific discovery. By integrating data mining and image interpretation techniques, accurate and relevant information (i.e. functional relation between observed parcels and a set of informational contents) can be automatically elicited. This study presents a new approach to predict spatiotemporal changes in satellite image databases. The proposed method exploits fuzzy sets and data mining concepts to build predictions and decisions for several remote sensing fields. It takes into account imperfections related to the spatiotemporal mining process in order to provide more accurate and reliable information about land cover changes in satellite images. The proposed approach is validated using SPOT images representing the Saint-Denis region, capital of Reunion Island. Results show good performances of the proposed framework in predicting change for the urban zone.
NASA Astrophysics Data System (ADS)
Gaci, Said; Hachay, Olga; Zaourar, Naima
2017-04-01
One of the key elements in hydrocarbon reservoirs characterization is the S-wave velocity (Vs). Since the traditional estimating methods often fail to accurately predict this physical parameter, a new approach that takes into account its non-stationary and non-linear properties is needed. In this view, a prediction model based on complete ensemble empirical mode decomposition (CEEMD) and a multiple layer perceptron artificial neural network (MLP ANN) is suggested to compute Vs from P-wave velocity (Vp). Using a fine-to-coarse reconstruction algorithm based on CEEMD, the Vp log data is decomposed into a high frequency (HF) component, a low frequency (LF) component and a trend component. Then, different combinations of these components are used as inputs of the MLP ANN algorithm for estimating Vs log. Applications on well logs taken from different geological settings illustrate that the predicted Vs values using MLP ANN with the combinations of HF, LF and trend in inputs are more accurate than those obtained with the traditional estimating methods. Keywords: S-wave velocity, CEEMD, multilayer perceptron neural networks.
Evaluating a slope-stability model for shallow rain-induced landslides using gage and satellite data
Yatheendradas, S.; Kirschbaum, D.; Baum, Rex L.; Godt, Jonathan W.
2014-01-01
Improving prediction of landslide early warning systems requires accurate estimation of the conditions that trigger slope failures. This study tested a slope-stability model for shallow rainfall-induced landslides by utilizing rainfall information from gauge and satellite records. We used the TRIGRS model (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis) for simulating the evolution of the factor of safety due to rainfall infiltration. Using a spatial subset of a well-characterized digital landscape from an earlier study, we considered shallow failure on a slope adjoining an urban transportation roadway near the Seattle area in Washington, USA.We ran the TRIGRS model using high-quality rain gage and satellite-based rainfall data from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results with parameterized soil depth values suggest that the steeper slope values in this spatial domain have factor of safety values that are extremely close to the failure limit within an extremely narrow range of values, providing multiple false alarms. When the soil depths were constrained using a back analysis procedure to ensure that slopes were stable under initial condtions, the model accurately predicted the timing and location of the landslide observation without false alarms over time for gage rain data. The TRMM satellite rainfall data did not show adequately retreived rainfall peak magnitudes and accumulation over the study period, and as a result failed to predict the landslide event. These preliminary results indicate that more accurate and higher-resolution rain data (e.g., the upcoming Global Precipitation Measurement (GPM) mission) are required to provide accurate and reliable landslide predictions in ungaged basins.
On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.
Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo
2005-04-07
One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.
A narrow-band k-distribution model with single mixture gas assumption for radiative flows
NASA Astrophysics Data System (ADS)
Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon
2018-06-01
In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.
QSAR Classification Model for Antibacterial Compounds and Its Use in Virtual Screening
2012-09-26
test set molecules that were not used to train the models . This allowed us to more accurately estimate the prediction power of the models . As...pathogens and deposited in PubChem Bioassays. Ultimately, the main purpose of this model is to make predictions , based on known antibacterial and non...the model built form the remaining compounds is used to predict the left out compound. Once all the compounds pass through this cycle of prediction , a
PrePhyloPro: phylogenetic profile-based prediction of whole proteome linkages
Niu, Yulong; Liu, Chengcheng; Moghimyfiroozabad, Shayan; Yang, Yi
2017-01-01
Direct and indirect functional links between proteins as well as their interactions as part of larger protein complexes or common signaling pathways may be predicted by analyzing the correlation of their evolutionary patterns. Based on phylogenetic profiling, here we present a highly scalable and time-efficient computational framework for predicting linkages within the whole human proteome. We have validated this method through analysis of 3,697 human pathways and molecular complexes and a comparison of our results with the prediction outcomes of previously published co-occurrency model-based and normalization methods. Here we also introduce PrePhyloPro, a web-based software that uses our method for accurately predicting proteome-wide linkages. We present data on interactions of human mitochondrial proteins, verifying the performance of this software. PrePhyloPro is freely available at http://prephylopro.org/phyloprofile/. PMID:28875072
Improving real-time efficiency of case-based reasoning for medical diagnosis.
Park, Yoon-Joo
2014-01-01
Conventional case-based reasoning (CBR) does not perform efficiently for high volume dataset because of case-retrieval time. Some previous researches overcome this problem by clustering a case-base into several small groups, and retrieve neighbors within a corresponding group to a target case. However, this approach generally produces less accurate predictive performances than the conventional CBR. This paper suggests a new case-based reasoning method called the Clustering-Merging CBR (CM-CBR) which produces similar level of predictive performances than the conventional CBR with spending significantly less computational cost.
Liang, Yong; Chai, Hua; Liu, Xiao-Ying; Xu, Zong-Ben; Zhang, Hai; Leung, Kwong-Sak
2016-03-01
One of the most important objectives of the clinical cancer research is to diagnose cancer more accurately based on the patients' gene expression profiles. Both Cox proportional hazards model (Cox) and accelerated failure time model (AFT) have been widely adopted to the high risk and low risk classification or survival time prediction for the patients' clinical treatment. Nevertheless, two main dilemmas limit the accuracy of these prediction methods. One is that the small sample size and censored data remain a bottleneck for training robust and accurate Cox classification model. In addition to that, similar phenotype tumours and prognoses are actually completely different diseases at the genotype and molecular level. Thus, the utility of the AFT model for the survival time prediction is limited when such biological differences of the diseases have not been previously identified. To try to overcome these two main dilemmas, we proposed a novel semi-supervised learning method based on the Cox and AFT models to accurately predict the treatment risk and the survival time of the patients. Moreover, we adopted the efficient L1/2 regularization approach in the semi-supervised learning method to select the relevant genes, which are significantly associated with the disease. The results of the simulation experiments show that the semi-supervised learning model can significant improve the predictive performance of Cox and AFT models in survival analysis. The proposed procedures have been successfully applied to four real microarray gene expression and artificial evaluation datasets. The advantages of our proposed semi-supervised learning method include: 1) significantly increase the available training samples from censored data; 2) high capability for identifying the survival risk classes of patient in Cox model; 3) high predictive accuracy for patients' survival time in AFT model; 4) strong capability of the relevant biomarker selection. Consequently, our proposed semi-supervised learning model is one more appropriate tool for survival analysis in clinical cancer research.
NASA Astrophysics Data System (ADS)
Boudala, Faisal; Wu, Di; Gultepe, Ismail; Anderson, Martha; turcotte, marie-france
2017-04-01
In-flight aircraft icing is one of the major weather hazards to aviation . It occurs when an aircraft passes through a cloud layer containing supercooled drops (SD). The SD in contact with the airframe freezes on the surface which degrades the performance of the aircraft.. Prediction of in-flight icing requires accurate prediction of SD sizes, liquid water content (LWC), and temperature. The current numerical weather predicting (NWP) models are not capable of making accurate prediction of SD sizes and associated LWC. Aircraft icing environment is normally studied by flying research aircraft, which is quite expensive. Thus, developing a ground based remote sensing system for detection of supercooled liquid clouds and characterization of their impact on severity of aircraft icing one of the important tasks for improving the NWPs based predictions and validations. In this respect, Environment and Climate Change Canada (ECCC) in cooperation with the Department of National Defense (DND) installed a number of specialized ground based remote sensing platforms and present weather sensors at Cold Lake, Alberta that includes a multi-channel microwave radiometer (MWR), K-band Micro Rain radar (MRR), Ceilometer, Parsivel distrometer and Vaisala PWD22 present weather sensor. In this study, a number of pilot reports confirming icing events and freezing precipitation that occurred at Cold Lake during the 2014-2016 winter periods and associated observation data for the same period are examined. The icing events are also examined using aircraft icing intensity estimated using ice accumulation model which is based on a cylindrical shape approximation of airfoil and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model predicted LWC, median volume diameter and temperature. The results related to vertical atmospheric profiling conditions, surface observations, and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model predictions are given. Preliminary results suggest that remote sensing and present weather sensors based observations of cloud SD regions can be used to describe micro and macro physical characteristics of the icing conditions. The model based icing intensity prediction reasonably agreed with the PIREPs and MWR observations.
Quinney, Sara K; Zhang, Xin; Lucksiri, Aroonrut; Gorski, J Christopher; Li, Lang; Hall, Stephen D
2010-02-01
The prediction of clinical drug-drug interactions (DDIs) due to mechanism-based inhibitors of CYP3A is complicated when the inhibitor itself is metabolized by CYP3Aas in the case of clarithromycin. Previous attempts to predict the effects of clarithromycin on CYP3A substrates, e.g., midazolam, failed to account for nonlinear metabolism of clarithromycin. A semiphysiologically based pharmacokinetic model was developed for clarithromycin and midazolam metabolism, incorporating hepatic and intestinal metabolism by CYP3A and non-CYP3A mechanisms. CYP3A inactivation by clarithromycin occurred at both sites. K(I) and k(inact) values for clarithromycin obtained from in vitro sources were unable to accurately predict the clinical effect of clarithromycin on CYP3A activity. An iterative approach determined the optimum values to predict in vivo effects of clarithromycin on midazolam to be 5.3 microM for K(i) and 0.4 and 4 h(-1) for k(inact) in the liver and intestines, respectively. The incorporation of CYP3A-dependent metabolism of clarithromycin enabled prediction of its nonlinear pharmacokinetics. The predicted 2.6-fold change in intravenous midazolam area under the plasma concentration-time curve (AUC) after 500 mg of clarithromycin orally twice daily was consistent with clinical observations. Although the mean predicted 5.3-fold change in the AUC of oral midazolam was lower than mean observed values, it was within the range of observations. Intestinal CYP3A activity was less sensitive to changes in K(I), k(inact), and CYP3A half-life than hepatic CYP3A. This semiphysiologically based pharmacokinetic model incorporating CYP3A inactivation in the intestine and liver accurately predicts the nonlinear pharmacokinetics of clarithromycin and the DDI observed between clarithromycin and midazolam. Furthermore, this model framework can be applied to other mechanism-based inhibitors.
GASP: Gapped Ancestral Sequence Prediction for proteins
Edwards, Richard J; Shields, Denis C
2004-01-01
Background The prediction of ancestral protein sequences from multiple sequence alignments is useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum Parsimony or Maximum Likelihood methods but many current implementations are unable to process residues with gaps, which may represent insertion/deletion (indel) events or sequence fragments. Results Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps in the phylogeny before using a likelihood-based approach centred on amino acid substitution matrices to assign ancestral amino acids. Important outgroup information is used by first working down from the tips of the tree to the root, using descendant data only to assign probabilities, and then working back up from the root to the tips using descendant and outgroup data to make predictions. GASP was tested on a number of simulated datasets based on real phylogenies. Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with GASP performing better in some cases and worse in others. Adding simple insertions and deletions to the simulated data did not have a detrimental effect on GASP accuracy. Conclusions GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences from multiple protein alignments of any size. Although not as accurate in all cases as some of the more sophisticated maximum likelihood approaches, it can process a wide range of input phylogenies and will predict ancestral sequences for gapped and ungapped residues alike. PMID:15350199
Austin, Peter C; Walraven, Carl van
2011-10-01
Logistic regression models that incorporated age, sex, and indicator variables for the Johns Hopkins' Aggregated Diagnosis Groups (ADGs) categories have been shown to accurately predict all-cause mortality in adults. To develop 2 different point-scoring systems using the ADGs. The Mortality Risk Score (MRS) collapses age, sex, and the ADGs to a single summary score that predicts the annual risk of all-cause death in adults. The ADG Score derives weights for the individual ADG diagnosis groups. : Retrospective cohort constructed using population-based administrative data. All 10,498,413 residents of Ontario, Canada, between the age of 20 and 100 years who were alive on their birthday in 2007, participated in this study. Participants were randomly divided into derivation and validation samples. : Death within 1 year. In the derivation cohort, the MRS ranged from -21 to 139 (median value 29, IQR 17 to 44). In the validation group, a logistic regression model with the MRS as the sole predictor significantly predicted the risk of 1-year mortality with a c-statistic of 0.917. A regression model with age, sex, and the ADG Score has similar performance. Both methods accurately predicted the risk of 1-year mortality across the 20 vigintiles of risk. The MRS combined values for a person's age, sex, and the John Hopkins ADGs to accurately predict 1-year mortality in adults. The ADG Score is a weighted score representing the presence or absence of the 32 ADG diagnosis groups. These scores will facilitate health services researchers conducting risk adjustment using administrative health care databases.
Modeling moisture content of fine dead wildland fuels: Input to the BEHAVE fire prediction system
Richard C. Rothermel; Ralph A. Wilson; Glen A. Morris; Stephen S. Sackett
1986-01-01
Describes a model for predicting moisture content of fine fuels for use with the BEHAVE fire behavior and fuel modeling system. The model is intended to meet the need for more accurate predictions of fine fuel moisture, particularly in northern conifer stands and on days following rain. The model is based on the Canadian Fine Fuel Moisture Code (FFMC), modified to...
Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo; Schroeder, Susan J
2017-05-01
Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. © 2017 Phan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Mahmood, Khalid; Jung, Chol-Hee; Philip, Gayle; Georgeson, Peter; Chung, Jessica; Pope, Bernard J; Park, Daniel J
2017-05-16
Genetic variant effect prediction algorithms are used extensively in clinical genomics and research to determine the likely consequences of amino acid substitutions on protein function. It is vital that we better understand their accuracies and limitations because published performance metrics are confounded by serious problems of circularity and error propagation. Here, we derive three independent, functionally determined human mutation datasets, UniFun, BRCA1-DMS and TP53-TA, and employ them, alongside previously described datasets, to assess the pre-eminent variant effect prediction tools. Apparent accuracies of variant effect prediction tools were influenced significantly by the benchmarking dataset. Benchmarking with the assay-determined datasets UniFun and BRCA1-DMS yielded areas under the receiver operating characteristic curves in the modest ranges of 0.52 to 0.63 and 0.54 to 0.75, respectively, considerably lower than observed for other, potentially more conflicted datasets. These results raise concerns about how such algorithms should be employed, particularly in a clinical setting. Contemporary variant effect prediction tools are unlikely to be as accurate at the general prediction of functional impacts on proteins as reported prior. Use of functional assay-based datasets that avoid prior dependencies promises to be valuable for the ongoing development and accurate benchmarking of such tools.
Association Rule-based Predictive Model for Machine Failure in Industrial Internet of Things
NASA Astrophysics Data System (ADS)
Kwon, Jung-Hyok; Lee, Sol-Bee; Park, Jaehoon; Kim, Eui-Jik
2017-09-01
This paper proposes an association rule-based predictive model for machine failure in industrial Internet of things (IIoT), which can accurately predict the machine failure in real manufacturing environment by investigating the relationship between the cause and type of machine failure. To develop the predictive model, we consider three major steps: 1) binarization, 2) rule creation, 3) visualization. The binarization step translates item values in a dataset into one or zero, then the rule creation step creates association rules as IF-THEN structures using the Lattice model and Apriori algorithm. Finally, the created rules are visualized in various ways for users’ understanding. An experimental implementation was conducted using R Studio version 3.3.2. The results show that the proposed predictive model realistically predicts machine failure based on association rules.
A human judgment approach to epidemiological forecasting
Farrow, David C.; Brooks, Logan C.; Rosenfeld, Roni
2017-01-01
Infectious diseases impose considerable burden on society, despite significant advances in technology and medicine over the past century. Advanced warning can be helpful in mitigating and preparing for an impending or ongoing epidemic. Historically, such a capability has lagged for many reasons, including in particular the uncertainty in the current state of the system and in the understanding of the processes that drive epidemic trajectories. Presently we have access to data, models, and computational resources that enable the development of epidemiological forecasting systems. Indeed, several recent challenges hosted by the U.S. government have fostered an open and collaborative environment for the development of these technologies. The primary focus of these challenges has been to develop statistical and computational methods for epidemiological forecasting, but here we consider a serious alternative based on collective human judgment. We created the web-based “Epicast” forecasting system which collects and aggregates epidemic predictions made in real-time by human participants, and with these forecasts we ask two questions: how accurate is human judgment, and how do these forecasts compare to their more computational, data-driven alternatives? To address the former, we assess by a variety of metrics how accurately humans are able to predict influenza and chikungunya trajectories. As for the latter, we show that real-time, combined human predictions of the 2014–2015 and 2015–2016 U.S. flu seasons are often more accurate than the same predictions made by several statistical systems, especially for short-term targets. We conclude that there is valuable predictive power in collective human judgment, and we discuss the benefits and drawbacks of this approach. PMID:28282375
A human judgment approach to epidemiological forecasting.
Farrow, David C; Brooks, Logan C; Hyun, Sangwon; Tibshirani, Ryan J; Burke, Donald S; Rosenfeld, Roni
2017-03-01
Infectious diseases impose considerable burden on society, despite significant advances in technology and medicine over the past century. Advanced warning can be helpful in mitigating and preparing for an impending or ongoing epidemic. Historically, such a capability has lagged for many reasons, including in particular the uncertainty in the current state of the system and in the understanding of the processes that drive epidemic trajectories. Presently we have access to data, models, and computational resources that enable the development of epidemiological forecasting systems. Indeed, several recent challenges hosted by the U.S. government have fostered an open and collaborative environment for the development of these technologies. The primary focus of these challenges has been to develop statistical and computational methods for epidemiological forecasting, but here we consider a serious alternative based on collective human judgment. We created the web-based "Epicast" forecasting system which collects and aggregates epidemic predictions made in real-time by human participants, and with these forecasts we ask two questions: how accurate is human judgment, and how do these forecasts compare to their more computational, data-driven alternatives? To address the former, we assess by a variety of metrics how accurately humans are able to predict influenza and chikungunya trajectories. As for the latter, we show that real-time, combined human predictions of the 2014-2015 and 2015-2016 U.S. flu seasons are often more accurate than the same predictions made by several statistical systems, especially for short-term targets. We conclude that there is valuable predictive power in collective human judgment, and we discuss the benefits and drawbacks of this approach.
Predicting falls in older adults using the four square step test.
Cleary, Kimberly; Skornyakov, Elena
2017-10-01
The Four Square Step Test (FSST) is a performance-based balance tool involving stepping over four single-point canes placed on the floor in a cross configuration. The purpose of this study was to evaluate properties of the FSST in older adults who lived independently. Forty-five community dwelling older adults provided fall history and completed the FSST, Berg Balance Scale (BBS), Timed Up and Go (TUG), and Tinetti in random order. Future falls were recorded for 12 months following testing. The FSST accurately distinguished between non-fallers and multiple fallers, and the 15-second threshold score accurately distinguished multiple fallers from non-multiple fallers based on fall history. The FSST predicted future falls, and performance on the FSST was significantly correlated with performance on the BBS, TUG, and Tinetti. However, the test is not appropriate for older adults who use walkers. Overall, the FSST is a valid yet underutilized measure of balance performance and fall prediction tool that physical therapists should consider using in ambulatory community dwelling older adults.
Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David
2016-12-12
For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High Order Schemes in Bats-R-US for Faster and More Accurate Predictions
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Gombosi, T. I.
2014-12-01
BATS-R-US is a widely used global magnetohydrodynamics model that originally employed second order accurate TVD schemes combined with block based Adaptive Mesh Refinement (AMR) to achieve high resolution in the regions of interest. In the last years we have implemented fifth order accurate finite difference schemes CWENO5 and MP5 for uniform Cartesian grids. Now the high order schemes have been extended to generalized coordinates, including spherical grids and also to the non-uniform AMR grids including dynamic regridding. We present numerical tests that verify the preservation of free-stream solution and high-order accuracy as well as robust oscillation-free behavior near discontinuities. We apply the new high order accurate schemes to both heliospheric and magnetospheric simulations and show that it is robust and can achieve the same accuracy as the second order scheme with much less computational resources. This is especially important for space weather prediction that requires faster than real time code execution.
Biomarker Surrogates Do Not Accurately Predict Sputum Eosinophils and Neutrophils in Asthma
Hastie, Annette T.; Moore, Wendy C.; Li, Huashi; Rector, Brian M.; Ortega, Victor E.; Pascual, Rodolfo M.; Peters, Stephen P.; Meyers, Deborah A.; Bleecker, Eugene R.
2013-01-01
Background Sputum eosinophils (Eos) are a strong predictor of airway inflammation, exacerbations, and aid asthma management, whereas sputum neutrophils (Neu) indicate a different severe asthma phenotype, potentially less responsive to TH2-targeted therapy. Variables such as blood Eos, total IgE, fractional exhaled nitric oxide (FeNO) or FEV1% predicted, may predict airway Eos, while age, FEV1%predicted, or blood Neu may predict sputum Neu. Availability and ease of measurement are useful characteristics, but accuracy in predicting airway Eos and Neu, individually or combined, is not established. Objectives To determine whether blood Eos, FeNO, and IgE accurately predict sputum eosinophils, and age, FEV1% predicted, and blood Neu accurately predict sputum neutrophils (Neu). Methods Subjects in the Wake Forest Severe Asthma Research Program (N=328) were characterized by blood and sputum cells, healthcare utilization, lung function, FeNO, and IgE. Multiple analytical techniques were utilized. Results Despite significant association with sputum Eos, blood Eos, FeNO and total IgE did not accurately predict sputum Eos, and combinations of these variables failed to improve prediction. Age, FEV1%predicted and blood Neu were similarly unsatisfactory for prediction of sputum Neu. Factor analysis and stepwise selection found FeNO, IgE and FEV1% predicted, but not blood Eos, correctly predicted 69% of sputum Eos
Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction
Li, Zhencai; Wang, Yang; Liu, Zhen
2016-01-01
The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state–space NN, and the unscented Kalman filter is used to train NN’s weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model. PMID:27467703
Predicting the stability of nanodevices
NASA Astrophysics Data System (ADS)
Lin, Z. Z.; Yu, W. F.; Wang, Y.; Ning, X. J.
2011-05-01
A simple model based on the statistics of single atoms is developed to predict the stability or lifetime of nanodevices without empirical parameters. Under certain conditions, the model produces the Arrhenius law and the Meyer-Neldel compensation rule. Compared with the classical molecular-dynamics simulations for predicting the stability of monatomic carbon chain at high temperature, the model is proved to be much more accurate than the transition state theory. Based on the ab initio calculation of the static potential, the model can give out a corrected lifetime of monatomic carbon and gold chains at higher temperature, and predict that the monatomic chains are very stable at room temperature.
NASA Technical Reports Server (NTRS)
Keyhani, Majid
1989-01-01
The heat transfer module of FANTASTIC Code (FAHT) is studied and evaluated to the extend possible during the ten weeks duration of this project. A brief background of the previous studies is given and the governing equations as modeled in FAHT are discussed. FAHT's capabilities and limitations based on these equations and its coding methodology are explained in detail. It is established that with improper choice of element size and time step FAHT's temperature field prediction at some nodes will be below the initial condition. The source of this unrealistic temperature prediction is identified and a procedure is proposed for avoiding this phenomenon. It is further shown that the proposed procedure will converge to an accurate prediction upon mesh refinement. Unfortunately due to lack of time FAHT's ability to accurately account for pyrolysis and surface ablation has not been verified. Therefore, at the present time it can be stated with confidence that FAHT can accurately predict the temperature field for a transient multi-dimensional, orthotropic material with directional dependence, variable property, with nonlinear boundary condition. Such a prediction will provide an upper limit for the temperature field in an ablating decomposing nozzle liner. The pore pressure field, however, will not be known.
Alternative evaluation metrics for risk adjustment methods.
Park, Sungchul; Basu, Anirban
2018-06-01
Risk adjustment is instituted to counter risk selection by accurately equating payments with expected expenditures. Traditional risk-adjustment methods are designed to estimate accurate payments at the group level. However, this generates residual risks at the individual level, especially for high-expenditure individuals, thereby inducing health plans to avoid those with high residual risks. To identify an optimal risk-adjustment method, we perform a comprehensive comparison of prediction accuracies at the group level, at the tail distributions, and at the individual level across 19 estimators: 9 parametric regression, 7 machine learning, and 3 distributional estimators. Using the 2013-2014 MarketScan database, we find that no one estimator performs best in all prediction accuracies. Generally, machine learning and distribution-based estimators achieve higher group-level prediction accuracy than parametric regression estimators. However, parametric regression estimators show higher tail distribution prediction accuracy and individual-level prediction accuracy, especially at the tails of the distribution. This suggests that there is a trade-off in selecting an appropriate risk-adjustment method between estimating accurate payments at the group level and lower residual risks at the individual level. Our results indicate that an optimal method cannot be determined solely on the basis of statistical metrics but rather needs to account for simulating plans' risk selective behaviors. Copyright © 2018 John Wiley & Sons, Ltd.
Combining disparate data sources for improved poverty prediction and mapping.
Pokhriyal, Neeti; Jacques, Damien Christophe
2017-11-14
More than 330 million people are still living in extreme poverty in Africa. Timely, accurate, and spatially fine-grained baseline data are essential to determining policy in favor of reducing poverty. The potential of "Big Data" to estimate socioeconomic factors in Africa has been proven. However, most current studies are limited to using a single data source. We propose a computational framework to accurately predict the Global Multidimensional Poverty Index (MPI) at a finest spatial granularity and coverage of 552 communes in Senegal using environmental data (related to food security, economic activity, and accessibility to facilities) and call data records (capturing individualistic, spatial, and temporal aspects of people). Our framework is based on Gaussian Process regression, a Bayesian learning technique, providing uncertainty associated with predictions. We perform model selection using elastic net regularization to prevent overfitting. Our results empirically prove the superior accuracy when using disparate data (Pearson correlation of 0.91). Our approach is used to accurately predict important dimensions of poverty: health, education, and standard of living (Pearson correlation of 0.84-0.86). All predictions are validated using deprivations calculated from census. Our approach can be used to generate poverty maps frequently, and its diagnostic nature is, likely, to assist policy makers in designing better interventions for poverty eradication. Copyright © 2017 the Author(s). Published by PNAS.
Combining disparate data sources for improved poverty prediction and mapping
2017-01-01
More than 330 million people are still living in extreme poverty in Africa. Timely, accurate, and spatially fine-grained baseline data are essential to determining policy in favor of reducing poverty. The potential of “Big Data” to estimate socioeconomic factors in Africa has been proven. However, most current studies are limited to using a single data source. We propose a computational framework to accurately predict the Global Multidimensional Poverty Index (MPI) at a finest spatial granularity and coverage of 552 communes in Senegal using environmental data (related to food security, economic activity, and accessibility to facilities) and call data records (capturing individualistic, spatial, and temporal aspects of people). Our framework is based on Gaussian Process regression, a Bayesian learning technique, providing uncertainty associated with predictions. We perform model selection using elastic net regularization to prevent overfitting. Our results empirically prove the superior accuracy when using disparate data (Pearson correlation of 0.91). Our approach is used to accurately predict important dimensions of poverty: health, education, and standard of living (Pearson correlation of 0.84–0.86). All predictions are validated using deprivations calculated from census. Our approach can be used to generate poverty maps frequently, and its diagnostic nature is, likely, to assist policy makers in designing better interventions for poverty eradication. PMID:29087949
A deep learning-based multi-model ensemble method for cancer prediction.
Xiao, Yawen; Wu, Jun; Lin, Zongli; Zhao, Xiaodong
2018-01-01
Cancer is a complex worldwide health problem associated with high mortality. With the rapid development of the high-throughput sequencing technology and the application of various machine learning methods that have emerged in recent years, progress in cancer prediction has been increasingly made based on gene expression, providing insight into effective and accurate treatment decision making. Thus, developing machine learning methods, which can successfully distinguish cancer patients from healthy persons, is of great current interest. However, among the classification methods applied to cancer prediction so far, no one method outperforms all the others. In this paper, we demonstrate a new strategy, which applies deep learning to an ensemble approach that incorporates multiple different machine learning models. We supply informative gene data selected by differential gene expression analysis to five different classification models. Then, a deep learning method is employed to ensemble the outputs of the five classifiers. The proposed deep learning-based multi-model ensemble method was tested on three public RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm. By taking full advantage of different classifiers, the proposed deep learning-based multi-model ensemble method is shown to be accurate and effective for cancer prediction. Copyright © 2017 Elsevier B.V. All rights reserved.
Machine learning bandgaps of double perovskites
Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.
2016-01-01
The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance. PMID:26783247
Zhang, Ming; Xu, Yan; Li, Lei; Liu, Zi; Yang, Xibei; Yu, Dong-Jun
2018-06-01
RNA 5-methylcytosine (m 5 C) is an important post-transcriptional modification that plays an indispensable role in biological processes. The accurate identification of m 5 C sites from primary RNA sequences is especially useful for deeply understanding the mechanisms and functions of m 5 C. Due to the difficulty and expensive costs of identifying m 5 C sites with wet-lab techniques, developing fast and accurate machine-learning-based prediction methods is urgently needed. In this study, we proposed a new m 5 C site predictor, called M5C-HPCR, by introducing a novel heuristic nucleotide physicochemical property reduction (HPCR) algorithm and classifier ensemble. HPCR extracts multiple reducts of physical-chemical properties for encoding discriminative features, while the classifier ensemble is applied to integrate multiple base predictors, each of which is trained based on a separate reduct of the physical-chemical properties obtained from HPCR. Rigorous jackknife tests on two benchmark datasets demonstrate that M5C-HPCR outperforms state-of-the-art m 5 C site predictors, with the highest values of MCC (0.859) and AUC (0.962). We also implemented the webserver of M5C-HPCR, which is freely available at http://cslab.just.edu.cn:8080/M5C-HPCR/. Copyright © 2018 Elsevier Inc. All rights reserved.
A new solar power output prediction based on hybrid forecast engine and decomposition model.
Zhang, Weijiang; Dang, Hongshe; Simoes, Rolando
2018-06-12
Regarding to the growing trend of photovoltaic (PV) energy as a clean energy source in electrical networks and its uncertain nature, PV energy prediction has been proposed by researchers in recent decades. This problem is directly effects on operation in power network while, due to high volatility of this signal, an accurate prediction model is demanded. A new prediction model based on Hilbert Huang transform (HHT) and integration of improved empirical mode decomposition (IEMD) with feature selection and forecast engine is presented in this paper. The proposed approach is divided into three main sections. In the first section, the signal is decomposed by the proposed IEMD as an accurate decomposition tool. To increase the accuracy of the proposed method, a new interpolation method has been used instead of cubic spline curve (CSC) fitting in EMD. Then the obtained output is entered into the new feature selection procedure to choose the best candidate inputs. Finally, the signal is predicted by a hybrid forecast engine composed of support vector regression (SVR) based on an intelligent algorithm. The effectiveness of the proposed approach has been verified over a number of real-world engineering test cases in comparison with other well-known models. The obtained results prove the validity of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Predicting Visual Distraction Using Driving Performance Data
Kircher, Katja; Ahlstrom, Christer
2010-01-01
Behavioral variables are often used as performance indicators (PIs) of visual or internal distraction induced by secondary tasks. The objective of this study is to investigate whether visual distraction can be predicted by driving performance PIs in a naturalistic setting. Visual distraction is here defined by a gaze based real-time distraction detection algorithm called AttenD. Seven drivers used an instrumented vehicle for one month each in a small scale field operational test. For each of the visual distraction events detected by AttenD, seven PIs such as steering wheel reversal rate and throttle hold were calculated. Corresponding data were also calculated for time periods during which the drivers were classified as attentive. For each PI, means between distracted and attentive states were calculated using t-tests for different time-window sizes (2 – 40 s), and the window width with the smallest resulting p-value was selected as optimal. Based on the optimized PIs, logistic regression was used to predict whether the drivers were attentive or distracted. The logistic regression resulted in predictions which were 76 % correct (sensitivity = 77 % and specificity = 76 %). The conclusion is that there is a relationship between behavioral variables and visual distraction, but the relationship is not strong enough to accurately predict visual driver distraction. Instead, behavioral PIs are probably best suited as complementary to eye tracking based algorithms in order to make them more accurate and robust. PMID:21050615
Prediction of Scour below Flip Bucket using Soft Computing Techniques
NASA Astrophysics Data System (ADS)
Azamathulla, H. Md.; Ab Ghani, Aminuddin; Azazi Zakaria, Nor
2010-05-01
The accurate prediction of the depth of scour around hydraulic structure (trajectory spillways) has been based on the experimental studies and the equations developed are mainly empirical in nature. This paper evaluates the performance of the soft computing (intelligence) techiques, Adaptive Neuro-Fuzzy System (ANFIS) and Genetic expression Programming (GEP) approach, in prediction of scour below a flip bucket spillway. The results are very promising, which support the use of these intelligent techniques in prediction of highly non-linear scour parameters.
Comparison of forward flight effects theory of A. Michalke and U. Michel with measured data
NASA Technical Reports Server (NTRS)
Rawls, J. W., Jr.
1983-01-01
The scaling laws of a Michalke and Michel predict flyover noise of a single stream shock free circular jet from static data or static predictions. The theory is based on a farfield solution to Lighthill's equation and includes density terms which are important for heated jets. This theory is compared with measured data using two static jet noise prediction methods. The comparisons indicate the theory yields good results when the static noise levels are accurately predicted.
Fourier transform wavefront control with adaptive prediction of the atmosphere.
Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre
2007-09-01
Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.
Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei
2018-01-01
Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system’s lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system’s ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection. PMID:29543733
ERIC Educational Resources Information Center
Parrish, Jared W.; Gessner, Bradford D.
2010-01-01
Objectives: To accurately count the number of infant maltreatment-related fatalities and to use information from the birth certificates to predict infant maltreatment-related deaths. Methods: A population-based retrospective cohort study of infants born in Alaska for the years 1992 through 2005 was conducted. Risk factor variables were ascertained…
Vesicular stomatitis forecasting based on Google Trends
Lu, Yi; Zhou, GuangYa; Chen, Qin
2018-01-01
Background Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. Methods American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. Results For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. Conclusion This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast. PMID:29385198
Very-short-term wind power prediction by a hybrid model with single- and multi-step approaches
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
Very-short-term wind power prediction (VSTWPP) has played an essential role for the operation of electric power systems. This paper aims at improving and applying a hybrid method of VSTWPP based on historical data. The hybrid method is combined by multiple linear regressions and least square (MLR&LS), which is intended for reducing prediction errors. The predicted values are obtained through two sub-processes:1) transform the time-series data of actual wind power into the power ratio, and then predict the power ratio;2) use the predicted power ratio to predict the wind power. Besides, the proposed method can include two prediction approaches: single-step prediction (SSP) and multi-step prediction (MSP). WPP is tested comparatively by auto-regressive moving average (ARMA) model from the predicted values and errors. The validity of the proposed hybrid method is confirmed in terms of error analysis by using probability density function (PDF), mean absolute percent error (MAPE) and means square error (MSE). Meanwhile, comparison of the correlation coefficients between the actual values and the predicted values for different prediction times and window has confirmed that MSP approach by using the hybrid model is the most accurate while comparing to SSP approach and ARMA. The MLR&LS is accurate and promising for solving problems in WPP.
Predicting turns in proteins with a unified model.
Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan
2012-01-01
Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications.
Predicting Turns in Proteins with a Unified Model
Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan
2012-01-01
Motivation Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. Results In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications. PMID:23144872
Predicting survival across chronic interstitial lung disease: the ILD-GAP model.
Ryerson, Christopher J; Vittinghoff, Eric; Ley, Brett; Lee, Joyce S; Mooney, Joshua J; Jones, Kirk D; Elicker, Brett M; Wolters, Paul J; Koth, Laura L; King, Talmadge E; Collard, Harold R
2014-04-01
Risk prediction is challenging in chronic interstitial lung disease (ILD) because of heterogeneity in disease-specific and patient-specific variables. Our objective was to determine whether mortality is accurately predicted in patients with chronic ILD using the GAP model, a clinical prediction model based on sex, age, and lung physiology, that was previously validated in patients with idiopathic pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis (n=307), chronic hypersensitivity pneumonitis (n=206), connective tissue disease-associated ILD (n=281), idiopathic nonspecific interstitial pneumonia (n=45), or unclassifiable ILD (n=173) were selected from an ongoing database (N=1,012). Performance of the previously validated GAP model was compared with novel prediction models in each ILD subtype and the combined cohort. Patients with follow-up pulmonary function data were used for longitudinal model validation. The GAP model had good performance in all ILD subtypes (c-index, 74.6 in the combined cohort), which was maintained at all stages of disease severity and during follow-up evaluation. The GAP model had similar performance compared with alternative prediction models. A modified ILD-GAP Index was developed for application across all ILD subtypes to provide disease-specific survival estimates using a single risk prediction model. This was done by adding a disease subtype variable that accounted for better adjusted survival in connective tissue disease-associated ILD, chronic hypersensitivity pneumonitis, and idiopathic nonspecific interstitial pneumonia. The GAP model accurately predicts risk of death in chronic ILD. The ILD-GAP model accurately predicts mortality in major chronic ILD subtypes and at all stages of disease.
Yilmaz, Banu; Aras, Egemen; Nacar, Sinan; Kankal, Murat
2018-05-23
The functional life of a dam is often determined by the rate of sediment delivery to its reservoir. Therefore, an accurate estimate of the sediment load in rivers with dams is essential for designing and predicting a dam's useful lifespan. The most credible method is direct measurements of sediment input, but this can be very costly and it cannot always be implemented at all gauging stations. In this study, we tested various regression models to estimate suspended sediment load (SSL) at two gauging stations on the Çoruh River in Turkey, including artificial bee colony (ABC), teaching-learning-based optimization algorithm (TLBO), and multivariate adaptive regression splines (MARS). These models were also compared with one another and with classical regression analyses (CRA). Streamflow values and previously collected data of SSL were used as model inputs with predicted SSL data as output. Two different training and testing dataset configurations were used to reinforce the model accuracy. For the MARS method, the root mean square error value was found to range between 35% and 39% for the test two gauging stations, which was lower than errors for other models. Error values were even lower (7% to 15%) using another dataset. Our results indicate that simultaneous measurements of streamflow with SSL provide the most effective parameter for obtaining accurate predictive models and that MARS is the most accurate model for predicting SSL. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models. PMID:26890307
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia's marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to 'small p and large n' problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao
Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less
Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao
2017-10-03
Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less
Shah, Mehul A; Agrawal, Rupesh; Teoh, Ryan; Shah, Shreya M; Patel, Kashyap; Gupta, Satyam; Gosai, Siddharth
2017-05-01
To introduce and validate the pediatric ocular trauma score (POTS) - a mathematical model to predict visual outcome trauma in children with traumatic cataract METHODS: In this retrospective cohort study, medical records of consecutive children with traumatic cataracts aged 18 and below were retrieved and analysed. Data collected included age, gender, visual acuity, anterior segment and posterior segment findings, nature of surgery, treatment for amblyopia, follow-up, and final outcome was recorded on a precoded data information sheet. POTS was derived based on the ocular trauma score (OTS), adjusting for age of patient and location of the injury. Visual outcome was predicted using the OTS and the POTS and using receiver operating characteristic (ROC) curves. POTS predicted outcomes were more accurate compared to that of OTS (p = 0.014). POTS is a more sensitive and specific score with more accurate predicted outcomes compared to OTS, and is a viable tool to predict visual outcomes of pediatric ocular trauma with traumatic cataract.
Kim, Byoungjip; Kang, Seungwoo; Ha, Jin-Young; Song, Junehwa
2015-07-16
In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user's place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense.
NASA Astrophysics Data System (ADS)
Kahrobaee, Saeed; Hejazi, Taha-Hossein
2017-07-01
Austenitizing and tempering temperatures are the effective characteristics in heat treating process of AISI D2 tool steel. Therefore, controlling them enables the heat treatment process to be designed more accurately which results in more balanced mechanical properties. The aim of this work is to develop a multiresponse predictive model that enables finding these characteristics based on nondestructive tests by a set of parameters of the magnetic Barkhausen noise technique and hysteresis loop method. To produce various microstructural changes, identical specimens from the AISI D2 steel sheet were austenitized in the range 1025-1130 °C, for 30 min, oil-quenched and finally tempered at various temperatures between 200 °C and 650 °C. A set of nondestructive data have been gathered based on general factorial design of experiments and used for training and testing the multiple response surface model. Finally, an optimization model has been proposed to achieve minimal error prediction. Results revealed that applying Barkhausen and hysteresis loop methods, simultaneously, coupling to the multiresponse model, has a potential to be used as a reliable and accurate nondestructive tool for predicting austenitizing and tempering temperatures (which, in turn, led to characterizing the microstructural changes) of the parts with unknown heat treating conditions.
Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism
NASA Astrophysics Data System (ADS)
Parish, Eric J.; Duraisamy, Karthik
2017-01-01
This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from nonequilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered, and insight gained from the orthogonal dynamics equation is used as a starting point for model development. A class of subgrid models is considered which represent nonlocal behavior via a finite memory approximation [Stinis, arXiv:1211.4285 (2012)], the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase space is accurately predicted for cases where the coarse graining is moderate. Large eddy simulations (LESs) of homogeneous isotropic turbulence and the Taylor-Green Vortex show that the M-Z-based models are able to provide excellent predictions, accurately capturing the subgrid contribution to energy transfer. Last, LESs of fully developed channel flow demonstrate the applicability of M-Z-based models to nondecaying problems. It is notable that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the coarse graining, highlighting the potential of M-Z-based techniques to define LES closures.
An interpolation method for stream habitat assessments
Sheehan, Kenneth R.; Welsh, Stuart A.
2015-01-01
Interpolation of stream habitat can be very useful for habitat assessment. Using a small number of habitat samples to predict the habitat of larger areas can reduce time and labor costs as long as it provides accurate estimates of habitat. The spatial correlation of stream habitat variables such as substrate and depth improves the accuracy of interpolated data. Several geographical information system interpolation methods (natural neighbor, inverse distance weighted, ordinary kriging, spline, and universal kriging) were used to predict substrate and depth within a 210.7-m2 section of a second-order stream based on 2.5% and 5.0% sampling of the total area. Depth and substrate were recorded for the entire study site and compared with the interpolated values to determine the accuracy of the predictions. In all instances, the 5% interpolations were more accurate for both depth and substrate than the 2.5% interpolations, which achieved accuracies up to 95% and 92%, respectively. Interpolations of depth based on 2.5% sampling attained accuracies of 49–92%, whereas those based on 5% percent sampling attained accuracies of 57–95%. Natural neighbor interpolation was more accurate than that using the inverse distance weighted, ordinary kriging, spline, and universal kriging approaches. Our findings demonstrate the effective use of minimal amounts of small-scale data for the interpolation of habitat over large areas of a stream channel. Use of this method will provide time and cost savings in the assessment of large sections of rivers as well as functional maps to aid the habitat-based management of aquatic species.
Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T
2017-10-01
Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.
NASA Astrophysics Data System (ADS)
Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish
2015-10-01
Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.
Automatic analysis for neuron by confocal laser scanning microscope
NASA Astrophysics Data System (ADS)
Satou, Kouhei; Aoki, Yoshimitsu; Mataga, Nobuko; Hensh, Takao K.; Taki, Katuhiko
2005-12-01
The aim of this study is to develop a system that recognizes both the macro- and microscopic configurations of nerve cells and automatically performs the necessary 3-D measurements and functional classification of spines. The acquisition of 3-D images of cranial nerves has been enabled by the use of a confocal laser scanning microscope, although the highly accurate 3-D measurements of the microscopic structures of cranial nerves and their classification based on their configurations have not yet been accomplished. In this study, in order to obtain highly accurate measurements of the microscopic structures of cranial nerves, existing positions of spines were predicted by the 2-D image processing of tomographic images. Next, based on the positions that were predicted on the 2-D images, the positions and configurations of the spines were determined more accurately by 3-D image processing of the volume data. We report the successful construction of an automatic analysis system that uses a coarse-to-fine technique to analyze the microscopic structures of cranial nerves with high speed and accuracy by combining 2-D and 3-D image analyses.
Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J
2018-04-01
Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.
Predicting human olfactory perception from chemical features of odor molecules.
Keller, Andreas; Gerkin, Richard C; Guan, Yuanfang; Dhurandhar, Amit; Turu, Gabor; Szalai, Bence; Mainland, Joel D; Ihara, Yusuke; Yu, Chung Wen; Wolfinger, Russ; Vens, Celine; Schietgat, Leander; De Grave, Kurt; Norel, Raquel; Stolovitzky, Gustavo; Cecchi, Guillermo A; Vosshall, Leslie B; Meyer, Pablo
2017-02-24
It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features. The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors ("garlic," "fish," "sweet," "fruit," "burnt," "spices," "flower," and "sour"). Regularized linear models performed nearly as well as random forest-based ones, with a predictive accuracy that closely approaches a key theoretical limit. These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule. Copyright © 2017, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Hardinata, Lingga; Warsito, Budi; Suparti
2018-05-01
Complexity of bankruptcy causes the accurate models of bankruptcy prediction difficult to be achieved. Various prediction models have been developed to improve the accuracy of bankruptcy predictions. Machine learning has been widely used to predict because of its adaptive capabilities. Artificial Neural Networks (ANN) is one of machine learning which proved able to complete inference tasks such as prediction and classification especially in data mining. In this paper, we propose the implementation of Jordan Recurrent Neural Networks (JRNN) to classify and predict corporate bankruptcy based on financial ratios. Feedback interconnection in JRNN enable to make the network keep important information well allowing the network to work more effectively. The result analysis showed that JRNN works very well in bankruptcy prediction with average success rate of 81.3785%.
Lung tumor diagnosis and subtype discovery by gene expression profiling.
Wang, Lu-yong; Tu, Zhuowen
2006-01-01
The optimal treatment of patients with complex diseases, such as cancers, depends on the accurate diagnosis by using a combination of clinical and histopathological data. In many scenarios, it becomes tremendously difficult because of the limitations in clinical presentation and histopathology. To accurate diagnose complex diseases, the molecular classification based on gene or protein expression profiles are indispensable for modern medicine. Moreover, many heterogeneous diseases consist of various potential subtypes in molecular basis and differ remarkably in their response to therapies. It is critical to accurate predict subgroup on disease gene expression profiles. More fundamental knowledge of the molecular basis and classification of disease could aid in the prediction of patient outcome, the informed selection of therapies, and identification of novel molecular targets for therapy. In this paper, we propose a new disease diagnostic method, probabilistic boosting tree (PB tree) method, on gene expression profiles of lung tumors. It enables accurate disease classification and subtype discovery in disease. It automatically constructs a tree in which each node combines a number of weak classifiers into a strong classifier. Also, subtype discovery is naturally embedded in the learning process. Our algorithm achieves excellent diagnostic performance, and meanwhile it is capable of detecting the disease subtype based on gene expression profile.
Albrekt, Ann-Sofie; Borrebaeck, Carl A. K.; Lindstedt, Malin
2015-01-01
Background Repeated exposure to certain low molecular weight (LMW) chemical compounds may result in development of allergic reactions in the skin or in the respiratory tract. In most cases, a certain LMW compound selectively sensitize the skin, giving rise to allergic contact dermatitis (ACD), or the respiratory tract, giving rise to occupational asthma (OA). To limit occurrence of allergic diseases, efforts are currently being made to develop predictive assays that accurately identify chemicals capable of inducing such reactions. However, while a few promising methods for prediction of skin sensitization have been described, to date no validated method, in vitro or in vivo, exists that is able to accurately classify chemicals as respiratory sensitizers. Results Recently, we presented the in vitro based Genomic Allergen Rapid Detection (GARD) assay as a novel testing strategy for classification of skin sensitizing chemicals based on measurement of a genomic biomarker signature. We have expanded the applicability domain of the GARD assay to classify also respiratory sensitizers by identifying a separate biomarker signature containing 389 differentially regulated genes for respiratory sensitizers in comparison to non-respiratory sensitizers. By using an independent data set in combination with supervised machine learning, we validated the assay, showing that the identified genomic biomarker is able to accurately classify respiratory sensitizers. Conclusions We have identified a genomic biomarker signature for classification of respiratory sensitizers. Combining this newly identified biomarker signature with our previously identified biomarker signature for classification of skin sensitizers, we have developed a novel in vitro testing strategy with a potent ability to predict both skin and respiratory sensitization in the same sample. PMID:25760038
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Draxl, Caroline; Hopson, Thomas
Numerical weather prediction (NWP) models have been widely used for wind resource assessment. Model runs with higher spatial resolution are generally more accurate, yet extremely computational expensive. An alternative approach is to use data generated by a low resolution NWP model, in conjunction with statistical methods. In order to analyze the accuracy and computational efficiency of different types of NWP-based wind resource assessment methods, this paper performs a comparison of three deterministic and probabilistic NWP-based wind resource assessment methodologies: (i) a coarse resolution (0.5 degrees x 0.67 degrees) global reanalysis data set, the Modern-Era Retrospective Analysis for Research and Applicationsmore » (MERRA); (ii) an analog ensemble methodology based on the MERRA, which provides both deterministic and probabilistic predictions; and (iii) a fine resolution (2-km) NWP data set, the Wind Integration National Dataset (WIND) Toolkit, based on the Weather Research and Forecasting model. Results show that: (i) as expected, the analog ensemble and WIND Toolkit perform significantly better than MERRA confirming their ability to downscale coarse estimates; (ii) the analog ensemble provides the best estimate of the multi-year wind distribution at seven of the nine sites, while the WIND Toolkit is the best at one site; (iii) the WIND Toolkit is more accurate in estimating the distribution of hourly wind speed differences, which characterizes the wind variability, at five of the available sites, with the analog ensemble being best at the remaining four locations; and (iv) the analog ensemble computational cost is negligible, whereas the WIND Toolkit requires large computational resources. Future efforts could focus on the combination of the analog ensemble with intermediate resolution (e.g., 10-15 km) NWP estimates, to considerably reduce the computational burden, while providing accurate deterministic estimates and reliable probabilistic assessments.« less
Health-based risk adjustment: is inpatient and outpatient diagnostic information sufficient?
Lamers, L M
Adequate risk adjustment is critical to the success of market-oriented health care reforms in many countries. Currently used risk adjusters based on demographic and diagnostic cost groups (DCGs) do not reflect expected costs accurately. This study examines the simultaneous predictive accuracy of inpatient and outpatient morbidity measures and prior costs. DCGs, pharmacy cost groups (PCGs), and prior year's costs improve the predictive accuracy of the demographic model substantially. DCGs and PCGs seem complementary in their ability to predict future costs. However, this study shows that the combination of DCGs and PCGs still leaves room for cream skimming.
Two States Mapping Based Time Series Neural Network Model for Compensation Prediction Residual Error
NASA Astrophysics Data System (ADS)
Jung, Insung; Koo, Lockjo; Wang, Gi-Nam
2008-11-01
The objective of this paper was to design a model of human bio signal data prediction system for decreasing of prediction error using two states mapping based time series neural network BP (back-propagation) model. Normally, a lot of the industry has been applied neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has got a residual error between real value and prediction result. Therefore, we designed two states of neural network model for compensation residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We determined that most of the simulation cases were satisfied by the two states mapping based time series prediction model. In particular, small sample size of times series were more accurate than the standard MLP model.
Motor system contribution to action prediction: Temporal accuracy depends on motor experience.
Stapel, Janny C; Hunnius, Sabine; Meyer, Marlene; Bekkering, Harold
2016-03-01
Predicting others' actions is essential for well-coordinated social interactions. In two experiments including an infant population, this study addresses to what extent motor experience of an observer determines prediction accuracy for others' actions. Results show that infants who were proficient crawlers but inexperienced walkers predicted crawling more accurately than walking, whereas age groups mastering both skills (i.e. toddlers and adults) were equally accurate in predicting walking and crawling. Regardless of experience, human movements were predicted more accurately by all age groups than non-human movement control stimuli. This suggests that for predictions to be accurate, the observed act needs to be established in the motor repertoire of the observer. Through the acquisition of new motor skills, we also become better at predicting others' actions. The findings thus stress the relevance of motor experience for social-cognitive development. Copyright © 2015 Elsevier B.V. All rights reserved.
Are EMS call volume predictions based on demand pattern analysis accurate?
Brown, Lawrence H; Lerner, E Brooke; Larmon, Baxter; LeGassick, Todd; Taigman, Michael
2007-01-01
Most EMS systems determine the number of crews they will deploy in their communities and when those crews will be scheduled based on anticipated call volumes. Many systems use historical data to calculate their anticipated call volumes, a method of prediction known as demand pattern analysis. To evaluate the accuracy of call volume predictions calculated using demand pattern analysis. Seven EMS systems provided 73 consecutive weeks of hourly call volume data. The first 20 weeks of data were used to calculate three common demand pattern analysis constructs for call volume prediction: average peak demand (AP), smoothed average peak demand (SAP), and 90th percentile rank (90%R). The 21st week served as a buffer. Actual call volumes in the last 52 weeks were then compared to the predicted call volumes by using descriptive statistics. There were 61,152 hourly observations in the test period. All three constructs accurately predicted peaks and troughs in call volume but not exact call volume. Predictions were accurate (+/-1 call) 13% of the time using AP, 10% using SAP, and 19% using 90%R. Call volumes were overestimated 83% of the time using AP, 86% using SAP, and 74% using 90%R. When call volumes were overestimated, predictions exceeded actual call volume by a median (Interquartile range) of 4 (2-6) calls for AP, 4 (2-6) for SAP, and 3 (2-5) for 90%R. Call volumes were underestimated 4% of time using AP, 4% using SAP, and 7% using 90%R predictions. When call volumes were underestimated, call volumes exceeded predictions by a median (Interquartile range; maximum under estimation) of 1 (1-2; 18) call for AP, 1 (1-2; 18) for SAP, and 2 (1-3; 20) for 90%R. Results did not vary between systems. Generally, demand pattern analysis estimated or overestimated call volume, making it a reasonable predictor for ambulance staffing patterns. However, it did underestimate call volume between 4% and 7% of the time. Communities need to determine if these rates of over-and underestimation are acceptable given their resources and local priorities.
Smits, Niels; van der Ark, L Andries; Conijn, Judith M
2017-11-02
Two important goals when using questionnaires are (a) measurement: the questionnaire is constructed to assign numerical values that accurately represent the test taker's attribute, and (b) prediction: the questionnaire is constructed to give an accurate forecast of an external criterion. Construction methods aimed at measurement prescribe that items should be reliable. In practice, this leads to questionnaires with high inter-item correlations. By contrast, construction methods aimed at prediction typically prescribe that items have a high correlation with the criterion and low inter-item correlations. The latter approach has often been said to produce a paradox concerning the relation between reliability and validity [1-3], because it is often assumed that good measurement is a prerequisite of good prediction. To answer four questions: (1) Why are measurement-based methods suboptimal for questionnaires that are used for prediction? (2) How should one construct a questionnaire that is used for prediction? (3) Do questionnaire-construction methods that optimize measurement and prediction lead to the selection of different items in the questionnaire? (4) Is it possible to construct a questionnaire that can be used for both measurement and prediction? An empirical data set consisting of scores of 242 respondents on questionnaire items measuring mental health is used to select items by means of two methods: a method that optimizes the predictive value of the scale (i.e., forecast a clinical diagnosis), and a method that optimizes the reliability of the scale. We show that for the two scales different sets of items are selected and that a scale constructed to meet the one goal does not show optimal performance with reference to the other goal. The answers are as follows: (1) Because measurement-based methods tend to maximize inter-item correlations by which predictive validity reduces. (2) Through selecting items that correlate highly with the criterion and lowly with the remaining items. (3) Yes, these methods may lead to different item selections. (4) For a single questionnaire: Yes, but it is problematic because reliability cannot be estimated accurately. For a test battery: Yes, but it is very costly. Implications for the construction of patient-reported outcome questionnaires are discussed.
Tung, Chen-yuan; Chou, Tzu-chuan; Lin, Jih-wen
2015-08-11
The Taiwan CDC relied on the historical average number of disease cases or rate (AVG) to depict the trend of epidemic diseases in Taiwan. By comparing the historical average data with prediction markets, we show that the latter have a better prediction capability than the former. Given the volatility of the infectious diseases in Taiwan, historical average is unlikely to be an effective prediction mechanism. We designed and built the Epidemic Prediction Markets (EPM) system based upon the trading mechanism of market scoring rule. By using this system, we aggregated dispersed information from various medical professionals to predict influenza, enterovirus, and dengue fever in Taiwan. EPM was more accurate in 701 out of 1,085 prediction events than the traditional baseline of historical average and the winning ratio of EPM versus AVG was 64.6 % for the target week. For the absolute prediction error of five diseases indicators of three infectious diseases, EPM was more accurate for the target week than AVG except for dengue fever confirmed cases. The winning ratios of EPM versus AVG for the confirmed cases of severe complicated influenza case, the rate of enterovirus infection, and the rate of influenza-like illness in the target week were 69.6 %, 83.9 and 76.0 %, respectively; instead, for the prediction of the confirmed cases of dengue fever and the confirmed cases of severe complicated enterovirus infection, the winning ratios of EPM were all below 50 %. Except confirmed cases of dengue fever, EPM provided accurate, continuous and real-time predictions of four indicators of three infectious diseases for the target week in Taiwan and outperformed the historical average data of infectious diseases.
Accurate Prediction of Contact Numbers for Multi-Spanning Helical Membrane Proteins
Li, Bian; Mendenhall, Jeffrey; Nguyen, Elizabeth Dong; Weiner, Brian E.; Fischer, Axel W.; Meiler, Jens
2017-01-01
Prediction of the three-dimensional (3D) structures of proteins by computational methods is acknowledged as an unsolved problem. Accurate prediction of important structural characteristics such as contact number is expected to accelerate the otherwise slow progress being made in the prediction of 3D structure of proteins. Here, we present a dropout neural network-based method, TMH-Expo, for predicting the contact number of transmembrane helix (TMH) residues from sequence. Neuronal dropout is a strategy where certain neurons of the network are excluded from back-propagation to prevent co-adaptation of hidden-layer neurons. By using neuronal dropout, overfitting was significantly reduced and performance was noticeably improved. For multi-spanning helical membrane proteins, TMH-Expo achieved a remarkable Pearson correlation coefficient of 0.69 between predicted and experimental values and a mean absolute error of only 1.68. In addition, among those membrane protein–membrane protein interface residues, 76.8% were correctly predicted. Mapping of predicted contact numbers onto structures indicates that contact numbers predicted by TMH-Expo reflect the exposure patterns of TMHs and reveal membrane protein–membrane protein interfaces, reinforcing the potential of predicted contact numbers to be used as restraints for 3D structure prediction and protein–protein docking. TMH-Expo can be accessed via a Web server at www.meilerlab.org. PMID:26804342
Predicting hepatitis B monthly incidence rates using weighted Markov chains and time series methods.
Shahdoust, Maryam; Sadeghifar, Majid; Poorolajal, Jalal; Javanrooh, Niloofar; Amini, Payam
2015-01-01
Hepatitis B (HB) is a major global mortality. Accurately predicting the trend of the disease can provide an appropriate view to make health policy disease prevention. This paper aimed to apply three different to predict monthly incidence rates of HB. This historical cohort study was conducted on the HB incidence data of Hamadan Province, the west of Iran, from 2004 to 2012. Weighted Markov Chain (WMC) method based on Markov chain theory and two time series models including Holt Exponential Smoothing (HES) and SARIMA were applied on the data. The results of different applied methods were compared to correct percentages of predicted incidence rates. The monthly incidence rates were clustered into two clusters as state of Markov chain. The correct predicted percentage of the first and second clusters for WMC, HES and SARIMA methods was (100, 0), (84, 67) and (79, 47) respectively. The overall incidence rate of HBV is estimated to decrease over time. The comparison of results of the three models indicated that in respect to existing seasonality trend and non-stationarity, the HES had the most accurate prediction of the incidence rates.
Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang
2018-01-01
A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies. PMID:29466394
Nunes, Matheus Henrique
2016-01-01
Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects. PMID:27187074
Parameterized reduced-order models using hyper-dual numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fike, Jeffrey A.; Brake, Matthew Robert
2013-10-01
The goal of most computational simulations is to accurately predict the behavior of a real, physical system. Accurate predictions often require very computationally expensive analyses and so reduced order models (ROMs) are commonly used. ROMs aim to reduce the computational cost of the simulations while still providing accurate results by including all of the salient physics of the real system in the ROM. However, real, physical systems often deviate from the idealized models used in simulations due to variations in manufacturing or other factors. One approach to this issue is to create a parameterized model in order to characterize themore » effect of perturbations from the nominal model on the behavior of the system. This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to calculate the derivatives necessary for the parameterization.« less
Nunes, Matheus Henrique; Görgens, Eric Bastos
2016-01-01
Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.
Vorobjev, Yury N; Scheraga, Harold A; Vila, Jorge A
2018-02-01
A computational method, to predict the pKa values of the ionizable residues Asp, Glu, His, Tyr, and Lys of proteins, is presented here. Calculation of the electrostatic free-energy of the proteins is based on an efficient version of a continuum dielectric electrostatic model. The conformational flexibility of the protein is taken into account by carrying out molecular dynamics simulations of 10 ns in implicit water. The accuracy of the proposed method of calculation of pKa values is estimated from a test set of experimental pKa data for 297 ionizable residues from 34 proteins. The pKa-prediction test shows that, on average, 57, 86, and 95% of all predictions have an error lower than 0.5, 1.0, and 1.5 pKa units, respectively. This work contributes to our general understanding of the importance of protein flexibility for an accurate computation of pKa, providing critical insight about the significance of the multiple neutral states of acid and histidine residues for pKa-prediction, and may spur significant progress in our effort to develop a fast and accurate electrostatic-based method for pKa-predictions of proteins as a function of pH.
A pilot study of NMR-based sensory prediction of roasted coffee bean extracts.
Wei, Feifei; Furihata, Kazuo; Miyakawa, Takuya; Tanokura, Masaru
2014-01-01
Nuclear magnetic resonance (NMR) spectroscopy can be considered a kind of "magnetic tongue" for the characterisation and prediction of the tastes of foods, since it provides a wealth of information in a nondestructive and nontargeted manner. In the present study, the chemical substances in roasted coffee bean extracts that could distinguish and predict the different sensations of coffee taste were identified by the combination of NMR-based metabolomics and human sensory test and the application of the multivariate projection method of orthogonal projection to latent structures (OPLS). In addition, the tastes of commercial coffee beans were successfully predicted based on their NMR metabolite profiles using our OPLS model, suggesting that NMR-based metabolomics accompanied with multiple statistical models is convenient, fast and accurate for the sensory evaluation of coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.
Benchmarking LSM root-zone soil mositure predictions using satellite-based vegetation indices
USDA-ARS?s Scientific Manuscript database
The application of modern land surface models (LSMs) to agricultural drought monitoring is based on the premise that anomalies in LSM root-zone soil moisture estimates can accurately anticipate the subsequent impact of drought on vegetation productivity and health. In addition, the water and energy ...
ERIC Educational Resources Information Center
Gruenenfelder, Thomas M.; Recchia, Gabriel; Rubin, Tim; Jones, Michael N.
2016-01-01
We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network…
WegoLoc: accurate prediction of protein subcellular localization using weighted Gene Ontology terms.
Chi, Sang-Mun; Nam, Dougu
2012-04-01
We present an accurate and fast web server, WegoLoc for predicting subcellular localization of proteins based on sequence similarity and weighted Gene Ontology (GO) information. A term weighting method in the text categorization process is applied to GO terms for a support vector machine classifier. As a result, WegoLoc surpasses the state-of-the-art methods for previously used test datasets. WegoLoc supports three eukaryotic kingdoms (animals, fungi and plants) and provides human-specific analysis, and covers several sets of cellular locations. In addition, WegoLoc provides (i) multiple possible localizations of input protein(s) as well as their corresponding probability scores, (ii) weights of GO terms representing the contribution of each GO term in the prediction, and (iii) a BLAST E-value for the best hit with GO terms. If the similarity score does not meet a given threshold, an amino acid composition-based prediction is applied as a backup method. WegoLoc and User's guide are freely available at the website http://www.btool.org/WegoLoc smchiks@ks.ac.kr; dougnam@unist.ac.kr Supplementary data is available at http://www.btool.org/WegoLoc.
Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System
Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.
2014-01-01
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103
Lim, Hansaim; Poleksic, Aleksandar; Yao, Yuan; Tong, Hanghang; He, Di; Zhuang, Luke; Meng, Patrick; Xie, Lei
2016-10-01
Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and side effect prediction. The software and benchmark are available at https://github.com/hansaimlim/REMAP.
Poleksic, Aleksandar; Yao, Yuan; Tong, Hanghang; Meng, Patrick; Xie, Lei
2016-01-01
Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and side effect prediction. The software and benchmark are available at https://github.com/hansaimlim/REMAP. PMID:27716836
Machine learning bandgaps of double perovskites
Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; ...
2016-01-19
The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the mostmore » crucial and relevant predictors. As a result, the developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.« less
A review of propeller noise prediction methodology: 1919-1994
NASA Technical Reports Server (NTRS)
Metzger, F. Bruce
1995-01-01
This report summarizes a review of the literature regarding propeller noise prediction methods. The review is divided into six sections: (1) early methods; (2) more recent methods based on earlier theory; (3) more recent methods based on the Acoustic Analogy; (4) more recent methods based on Computational Acoustics; (5) empirical methods; and (6) broadband methods. The report concludes that there are a large number of noise prediction procedures available which vary markedly in complexity. Deficiencies in accuracy of methods in many cases may be related, not to the methods themselves, but the accuracy and detail of the aerodynamic inputs used to calculate noise. The steps recommended in the report to provide accurate and easy to use prediction methods are: (1) identify reliable test data; (2) define and conduct test programs to fill gaps in the existing data base; (3) identify the most promising prediction methods; (4) evaluate promising prediction methods relative to the data base; (5) identify and correct the weaknesses in the prediction methods, including lack of user friendliness, and include features now available only in research codes; (6) confirm the accuracy of improved prediction methods to the data base; and (7) make the methods widely available and provide training in their use.
Ryan, Natalia; Chorley, Brian; Tice, Raymond R.; Judson, Richard; Corton, J. Christopher
2016-01-01
Microarray profiling of chemical-induced effects is being increasingly used in medium- and high-throughput formats. Computational methods are described here to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through chromatin immunoprecipitation coupled with DNA sequencing analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression datasets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including “very weak” agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals, the balanced accuracies were 95% and 98% for activation or suppression, respectively. These results demonstrate that the ERα gene expression biomarker can accurately identify ERα modulators in large collections of microarray data derived from MCF-7 cells. PMID:26865669
ERIC Educational Resources Information Center
Moridis, Christos N.; Economides, Anastasios A.
2009-01-01
Building computerized mechanisms that will accurately, immediately and continually recognize a learner's affective state and activate an appropriate response based on integrated pedagogical models is becoming one of the main aims of artificial intelligence in education. The goal of this paper is to demonstrate how the various kinds of evidence…
Co-Attention Based Neural Network for Source-Dependent Essay Scoring
ERIC Educational Resources Information Center
Zhang, Haoran; Litman, Diane
2018-01-01
This paper presents an investigation of using a co-attention based neural network for source-dependent essay scoring. We use a co-attention mechanism to help the model learn the importance of each part of the essay more accurately. Also, this paper shows that the co-attention based neural network model provides reliable score prediction of…
Notas, George; Bariotakis, Michail; Kalogrias, Vaios; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias
2015-01-01
Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.
Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias
2015-01-01
Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. PMID:25794106
A Modified Isotropic-Kinematic Hardening Model to Predict the Defects in Tube Hydroforming Process
NASA Astrophysics Data System (ADS)
Jin, Kai; Guo, Qun; Tao, Jie; Guo, Xun-zhong
2017-11-01
Numerical simulations of tube hydroforming process of hollow crankshafts were conducted by using finite element analysis method. Moreover, the modified model involving the integration of isotropic-kinematic hardening model with ductile criteria model was used to more accurately optimize the process parameters such as internal pressure, feed distance and friction coefficient. Subsequently, hydroforming experiments were performed based on the simulation results. The comparison between experimental and simulation results indicated that the prediction of tube deformation, crack and wrinkle was quite accurate for the tube hydroforming process. Finally, hollow crankshafts with high thickness uniformity were obtained and the thickness distribution between numerical and experimental results was well consistent.
NASA Technical Reports Server (NTRS)
Mercer, Joey S.; Bienert, Nancy; Gomez, Ashley; Hunt, Sarah; Kraut, Joshua; Martin, Lynne; Morey, Susan; Green, Steven M.; Prevot, Thomas; Wu, Minghong G.
2013-01-01
A Human-In-The-Loop air traffic control simulation investigated the impact of uncertainties in trajectory predictions on NextGen Trajectory-Based Operations concepts, seeking to understand when the automation would become unacceptable to controllers or when performance targets could no longer be met. Retired air traffic controllers staffed two en route transition sectors, delivering arrival traffic to the northwest corner-post of Atlanta approach control under time-based metering operations. Using trajectory-based decision-support tools, the participants worked the traffic under varying levels of wind forecast error and aircraft performance model error, impacting the ground automations ability to make accurate predictions. Results suggest that the controllers were able to maintain high levels of performance, despite even the highest levels of trajectory prediction errors.
The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network
NASA Astrophysics Data System (ADS)
Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.
2017-05-01
The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.
Albitar, Maher; Ma, Wanlong; Lund, Lars; Shahbaba, Babak; Uchio, Edward; Feddersen, Søren; Moylan, Donald; Wojno, Kirk; Shore, Neal
2018-03-01
Distinguishing between low- and high-grade prostate cancers (PCa) is important, but biopsy may underestimate the actual grade of cancer. We have previously shown that urine/plasma-based prostate-specific biomarkers can predict high grade PCa. Our objective was to determine the accuracy of a test using cell-free RNA levels of biomarkers in predicting prostatectomy results. This multicenter community-based prospective study was conducted using urine/blood samples collected from 306 patients. All recruited patients were treatment-naïve, without metastases, and had been biopsied, designated a Gleason Score (GS) based on biopsy, and assigned to prostatectomy prior to participation in the study. The primary outcome measure was the urine/plasma test accuracy in predicting high grade PCa on prostatectomy compared with biopsy findings. Sensitivity and specificity were calculated using standard formulas, while comparisons between groups were performed using the Wilcoxon Rank Sum, Kruskal-Wallis, Chi-Square, and Fisher's exact test. GS as assigned by standard 10-12 core biopsies was 3 + 3 in 90 (29.4%), 3 + 4 in 122 (39.8%), 4 + 3 in 50 (16.3%), and > 4 + 3 in 44 (14.4%) patients. The urine/plasma assay confirmed a previous validation and was highly accurate in predicting the presence of high-grade PCa (Gleason ≥3 + 4) with sensitivity between 88% and 95% as verified by prostatectomy findings. GS was upgraded after prostatectomy in 27% of patients and downgraded in 12% of patients. This plasma/urine biomarker test accurately predicts high grade cancer as determined by prostatectomy with a sensitivity at 92-97%, while the sensitivity of core biopsies was 78%. © 2018 Wiley Periodicals, Inc.
Taxi-Out Time Prediction for Departures at Charlotte Airport Using Machine Learning Techniques
NASA Technical Reports Server (NTRS)
Lee, Hanbong; Malik, Waqar; Jung, Yoon C.
2016-01-01
Predicting the taxi-out times of departures accurately is important for improving airport efficiency and takeoff time predictability. In this paper, we attempt to apply machine learning techniques to actual traffic data at Charlotte Douglas International Airport for taxi-out time prediction. To find the key factors affecting aircraft taxi times, surface surveillance data is first analyzed. From this data analysis, several variables, including terminal concourse, spot, runway, departure fix and weight class, are selected for taxi time prediction. Then, various machine learning methods such as linear regression, support vector machines, k-nearest neighbors, random forest, and neural networks model are applied to actual flight data. Different traffic flow and weather conditions at Charlotte airport are also taken into account for more accurate prediction. The taxi-out time prediction results show that linear regression and random forest techniques can provide the most accurate prediction in terms of root-mean-square errors. We also discuss the operational complexity and uncertainties that make it difficult to predict the taxi times accurately.
2009-01-01
Background Genomic selection (GS) uses molecular breeding values (MBV) derived from dense markers across the entire genome for selection of young animals. The accuracy of MBV prediction is important for a successful application of GS. Recently, several methods have been proposed to estimate MBV. Initial simulation studies have shown that these methods can accurately predict MBV. In this study we compared the accuracies and possible bias of five different regression methods in an empirical application in dairy cattle. Methods Genotypes of 7,372 SNP and highly accurate EBV of 1,945 dairy bulls were used to predict MBV for protein percentage (PPT) and a profit index (Australian Selection Index, ASI). Marker effects were estimated by least squares regression (FR-LS), Bayesian regression (Bayes-R), random regression best linear unbiased prediction (RR-BLUP), partial least squares regression (PLSR) and nonparametric support vector regression (SVR) in a training set of 1,239 bulls. Accuracy and bias of MBV prediction were calculated from cross-validation of the training set and tested against a test team of 706 young bulls. Results For both traits, FR-LS using a subset of SNP was significantly less accurate than all other methods which used all SNP. Accuracies obtained by Bayes-R, RR-BLUP, PLSR and SVR were very similar for ASI (0.39-0.45) and for PPT (0.55-0.61). Overall, SVR gave the highest accuracy. All methods resulted in biased MBV predictions for ASI, for PPT only RR-BLUP and SVR predictions were unbiased. A significant decrease in accuracy of prediction of ASI was seen in young test cohorts of bulls compared to the accuracy derived from cross-validation of the training set. This reduction was not apparent for PPT. Combining MBV predictions with pedigree based predictions gave 1.05 - 1.34 times higher accuracies compared to predictions based on pedigree alone. Some methods have largely different computational requirements, with PLSR and RR-BLUP requiring the least computing time. Conclusions The four methods which use information from all SNP namely RR-BLUP, Bayes-R, PLSR and SVR generate similar accuracies of MBV prediction for genomic selection, and their use in the selection of immediate future generations in dairy cattle will be comparable. The use of FR-LS in genomic selection is not recommended. PMID:20043835
Sexing adult black-legged kittiwakes by DNA, behavior, and morphology
Jodice, P.G.R.; Lanctot, Richard B.; Gill, V.A.; Roby, D.D.; Hatch, Shyla A.
2000-01-01
We sexed adult Black-legged Kittiwakes (Rissa tridactyla) using DNA-based genetic techniques, behavior and morphology and compared results from these techniques. Genetic and morphology data were collected on 605 breeding kittiwakes and sex-specific behaviors were recorded for a sub-sample of 285 of these individuals. We compared sex classification based on both genetic and behavioral techniques for this sub-sample to assess the accuracy of the genetic technique. DNA-based techniques correctly sexed 97.2% and sex-specific behaviors, 96.5% of this sub-sample. We used the corrected genetic classifications from this sub-sample and the genetic classifications for the remaining birds, under the assumption they were correct, to develop predictive morphometric discriminant function models for all 605 birds. These models accurately predicted the sex of 73-96% of individuals examined, depending on the sample of birds used and the characters included. The most accurate single measurement for determining sex was length of head plus bill, which correctly classified 88% of individuals tested. When both members of a pair were measured, classification levels improved and approached the accuracy of both behavioral observations and genetic analyses. Morphometric techniques were only slightly less accurate than genetic techniques but were easier to implement in the field and less costly. Behavioral observations, while highly accurate, required that birds be easily observable during the breeding season and that birds be identifiable. As such, sex-specific behaviors may best be applied as a confirmation of sex for previously marked birds. All three techniques thus have the potential to be highly accurate, and the selection of one or more will depend on the circumstances of any particular field study.
Wang, Shiyao; Deng, Zhidong; Yin, Gang
2016-01-01
A high-performance differential global positioning system (GPS) receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108
Wang, Shiyao; Deng, Zhidong; Yin, Gang
2016-02-24
A high-performance differential global positioning system (GPS) receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.
Exploring the knowledge behind predictions in everyday cognition: an iterated learning study.
Stephens, Rachel G; Dunn, John C; Rao, Li-Lin; Li, Shu
2015-10-01
Making accurate predictions about events is an important but difficult task. Recent work suggests that people are adept at this task, making predictions that reflect surprisingly accurate knowledge of the distributions of real quantities. Across three experiments, we used an iterated learning procedure to explore the basis of this knowledge: to what extent is domain experience critical to accurate predictions and how accurate are people when faced with unfamiliar domains? In Experiment 1, two groups of participants, one resident in Australia, the other in China, predicted the values of quantities familiar to both (movie run-times), unfamiliar to both (the lengths of Pharaoh reigns), and familiar to one but unfamiliar to the other (cake baking durations and the lengths of Beijing bus routes). While predictions from both groups were reasonably accurate overall, predictions were inaccurate in the selectively unfamiliar domains and, surprisingly, predictions by the China-resident group were also inaccurate for a highly familiar domain: local bus route lengths. Focusing on bus routes, two follow-up experiments with Australia-resident groups clarified the knowledge and strategies that people draw upon, plus important determinants of accurate predictions. For unfamiliar domains, people appear to rely on extrapolating from (not simply directly applying) related knowledge. However, we show that people's predictions are subject to two sources of error: in the estimation of quantities in a familiar domain and extension to plausible values in an unfamiliar domain. We propose that the key to successful predictions is not simply domain experience itself, but explicit experience of relevant quantities.
New strategy for protein interactions and application to structure-based drug design
NASA Astrophysics Data System (ADS)
Zou, Xiaoqin
One of the greatest challenges in computational biophysics is to predict interactions between biological molecules, which play critical roles in biological processes and rational design of therapeutic drugs. Biomolecular interactions involve delicate interplay between multiple interactions, including electrostatic interactions, van der Waals interactions, solvent effect, and conformational entropic effect. Accurate determination of these complex and subtle interactions is challenging. Moreover, a biological molecule such as a protein usually consists of thousands of atoms, and thus occupies a huge conformational space. The large degrees of freedom pose further challenges for accurate prediction of biomolecular interactions. Here, I will present our development of physics-based theory and computational modeling on protein interactions with other molecules. The major strategy is to extract microscopic energetics from the information embedded in the experimentally-determined structures of protein complexes. I will also present applications of the methods to structure-based therapeutic design. Supported by NSF CAREER Award DBI-0953839, NIH R01GM109980, and the American Heart Association (Midwest Affiliate) [13GRNT16990076].
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam
2012-01-01
Electrolytic capacitors are used in several applications ranging from power supplies for safety critical avionics equipment to power drivers for electro-mechanical actuator. Past experiences show that capacitors tend to degrade and fail faster when subjected to high electrical or thermal stress conditions during operations. This makes them good candidates for prognostics and health management. Model-based prognostics captures system knowledge in the form of physics-based models of components in order to obtain accurate predictions of end of life based on their current state of heal th and their anticipated future use and operational conditions. The focus of this paper is on deriving first principles degradation models for thermal stress conditions and implementing Bayesian framework for making remaining useful life predictions. Data collected from simultaneous experiments are used to validate the models. Our overall goal is to derive accurate models of capacitor degradation, and use them to remaining useful life in DC-DC converters.
Shuttle orbiter boundary layer transition at flight and wind tunnel conditions
NASA Technical Reports Server (NTRS)
Goodrich, W. D.; Derry, S. M.; Bertin, J. J.
1983-01-01
Hypersonic boundary layer transition data obtained on the windward centerline of the Shuttle orbiter during entry for the first five flights are presented and analyzed. Because the orbiter surface is composed of a large number of thermal protection tiles, the transition data include the effects of distributed roughness arising from tile misalignment and gaps. These data are used as a benchmark for assessing and improving the accuracy of boundary layer transition predictions based on correlations of wind tunnel data taken on both aerodynamically rough and smooth orbiter surfaces. By comparing these two data bases, the relative importance of tunnel free stream noise and surface roughness on orbiter boundary layer transition correlation parameters can be assessed. This assessment indicates that accurate predications of transition times can be made for the orbiter at hypersonic flight conditions by using roughness dominated wind tunnel data. Specifically, times of transition onset and completion is accurately predicted using a correlation based on critical and effective values of a roughness Reynolds number previously derived from wind tunnel data.
Kuroda, Yukihiro; Saito, Madoka
2010-03-01
An in vitro method to predict phospholipidosis-inducing potential of cationic amphiphilic drugs (CADs) was developed using biochemical and physicochemical assays. The following parameters were applied to principal component analysis, as well as physicochemical parameters: pK(a) and clogP; dissociation constant of CADs from phospholipid, inhibition of enzymatic phospholipid degradation, and metabolic stability of CADs. In the score plot, phospholipidosis-inducing drugs (amiodarone, propranolol, imipramine, chloroquine) were plotted locally forming the subspace for positive CADs; while non-inducing drugs (chlorpromazine, chloramphenicol, disopyramide, lidocaine) were placed scattering out of the subspace, allowing a clear discrimination between both classes of CADs. CADs that often produce false results by conventional physicochemical or cell-based assay methods were accurately determined by our method. Basic and lipophilic disopyramide could be accurately predicted as a nonphospholipidogenic drug. Moreover, chlorpromazine, which is often falsely predicted as a phospholipidosis-inducing drug by in vitro methods, could be accurately determined. Because this method uses the pharmacokinetic parameters pK(a), clogP, and metabolic stability, which are usually obtained in the early stages of drug development, the method newly requires only the two parameters, binding to phospholipid, and inhibition of lipid degradation enzyme. Therefore, this method provides a cost-effective approach to predict phospholipidosis-inducing potential of a drug. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Li, Fuyi; Li, Chen; Marquez-Lago, Tatiana T; Leier, André; Akutsu, Tatsuya; Purcell, Anthony W; Smith, A Ian; Lithgow, Trevor; Daly, Roger J; Song, Jiangning; Chou, Kuo-Chen
2018-06-27
Kinase-regulated phosphorylation is a ubiquitous type of post-translational modification (PTM) in both eukaryotic and prokaryotic cells. Phosphorylation plays fundamental roles in many signalling pathways and biological processes, such as protein degradation and protein-protein interactions. Experimental studies have revealed that signalling defects caused by aberrant phosphorylation are highly associated with a variety of human diseases, especially cancers. In light of this, a number of computational methods aiming to accurately predict protein kinase family-specific or kinase-specific phosphorylation sites have been established, thereby facilitating phosphoproteomic data analysis. In this work, we present Quokka, a novel bioinformatics tool that allows users to rapidly and accurately identify human kinase family-regulated phosphorylation sites. Quokka was developed by using a variety of sequence scoring functions combined with an optimized logistic regression algorithm. We evaluated Quokka based on well-prepared up-to-date benchmark and independent test datasets, curated from the Phospho.ELM and UniProt databases, respectively. The independent test demonstrates that Quokka improves the prediction performance compared with state-of-the-art computational tools for phosphorylation prediction. In summary, our tool provides users with high-quality predicted human phosphorylation sites for hypothesis generation and biological validation. The Quokka webserver and datasets are freely available at http://quokka.erc.monash.edu/. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Gao, Zhi-yu; Kang, Yu; Li, Yan-shuai; Meng, Chao; Pan, Tao
2018-04-01
Elevated-temperature flow behavior of a novel Ni-Cr-Mo-B ultra-heavy-plate steel was investigated by conducting hot compressive deformation tests on a Gleeble-3800 thermo-mechanical simulator at a temperature range of 1123 K–1423 K with a strain rate range from 0.01 s‑1 to10 s‑1 and a height reduction of 70%. Based on the experimental results, classic strain-compensated Arrhenius-type, a new revised strain-compensated Arrhenius-type and classic modified Johnson-Cook constitutive models were developed for predicting the high-temperature deformation behavior of the steel. The predictability of these models were comparatively evaluated in terms of statistical parameters including correlation coefficient (R), average absolute relative error (AARE), average root mean square error (RMSE), normalized mean bias error (NMBE) and relative error. The statistical results indicate that the new revised strain-compensated Arrhenius-type model could give prediction of elevated-temperature flow stress for the steel accurately under the entire process conditions. However, the predicted values by the classic modified Johnson-Cook model could not agree well with the experimental values, and the classic strain-compensated Arrhenius-type model could track the deformation behavior more accurately compared with the modified Johnson-Cook model, but less accurately with the new revised strain-compensated Arrhenius-type model. In addition, reasons of differences in predictability of these models were discussed in detail.
Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions
Sükösd, Zsuzsanna; Swenson, M. Shel; Kjems, Jørgen; Heitsch, Christine E.
2013-01-01
Recent advances in RNA structure determination include using data from high-throughput probing experiments to improve thermodynamic prediction accuracy. We evaluate the extent and nature of improvements in data-directed predictions for a diverse set of 16S/18S ribosomal sequences using a stochastic model of experimental SHAPE data. The average accuracy for 1000 data-directed predictions always improves over the original minimum free energy (MFE) structure. However, the amount of improvement varies with the sequence, exhibiting a correlation with MFE accuracy. Further analysis of this correlation shows that accurate MFE base pairs are typically preserved in a data-directed prediction, whereas inaccurate ones are not. Thus, the positive predictive value of common base pairs is consistently higher than the directed prediction accuracy. Finally, we confirm sequence dependencies in the directability of thermodynamic predictions and investigate the potential for greater accuracy improvements in the worst performing test sequence. PMID:23325843
NASA Astrophysics Data System (ADS)
Hess, Phillip
A Coronal Mass Ejection (CME) is an eruption of magnetized plasma from the Coronaof the Sun. Understanding the physical process of CMEs is a fundamental challenge in solarphysics, and is also of increasing importance for our technological society. CMEs are knownthe main driver of space weather that has adverse effects on satellites, power grids, com-munication and navigation systems and astronauts. Understanding and predicting CMEs is still in the early stage of research. In this dissertation, improved observational methods and advanced theoretical analysis are used to study CMEs. Unlike many studies in the past that treat CMEs as a single object, this study divides aCME into two separate components: the ejecta from the corona and the sheath region thatis the ambient plasma compressed by the shock/wave running ahead of the ejecta; bothstructures are geo-effective but evolve differently. Stereoscopic observations from multiplespacecraft, including STEREO and SOHO, are combined to provide a three-dimensionalgeometric reconstruction of the structures studied. True distances and velocities of CMEs are accurately determined, free of projection effects, and with continuous tracking from the low corona to 1 AU.To understand the kinematic evolution of CMEs, an advanced drag-based model (DBM) is proposed, with several improvements to the original DBM model. The new model varies the drag parameter with distance; the variation is constrained by thenecessary conservation of physical parameters. Second, the deviation of CME-nose from the Sun-Earth-line is taken into account. Third, the geometric correction of the shape of the ejecta front is considered, based on the assumption that the true front is a flattened croissant-shaped flux rope front. These improvements of the DBM model provide a framework for using measurement data to make accurate prediction of the arrival times of CME ejecta and sheaths. Using a set of seven events to test the model, it is found that the evolution of the ejecta front can be accurately predicted, with a slightly poorer performance on the sheath front. To improve the sheath prediction, the standoff-distance between the ejecta and the sheath front is used to model the evolution. The predicted arrivals of both the sheath and ejecta fronts at Earth are determined to within an average 3.5 hours and 1.5 hours of observed arrivals,respectively. These prediction errors show a significant improvement over predictions made by other researches. The results of this dissertation study demonstrate that accurate space weather prediction is possible, and also reveals what observations are needed in the future for realistic operational space weather prediction.
Motion prediction of a non-cooperative space target
NASA Astrophysics Data System (ADS)
Zhou, Bang-Zhao; Cai, Guo-Ping; Liu, Yun-Meng; Liu, Pan
2018-01-01
Capturing a non-cooperative space target is a tremendously challenging research topic. Effective acquisition of motion information of the space target is the premise to realize target capture. In this paper, motion prediction of a free-floating non-cooperative target in space is studied and a motion prediction algorithm is proposed. In order to predict the motion of the free-floating non-cooperative target, dynamic parameters of the target must be firstly identified (estimated), such as inertia, angular momentum and kinetic energy and so on; then the predicted motion of the target can be acquired by substituting these identified parameters into the Euler's equations of the target. Accurate prediction needs precise identification. This paper presents an effective method to identify these dynamic parameters of a free-floating non-cooperative target. This method is based on two steps, (1) the rough estimation of the parameters is computed using the motion observation data to the target, and (2) the best estimation of the parameters is found by an optimization method. In the optimization problem, the objective function is based on the difference between the observed and the predicted motion, and the interior-point method (IPM) is chosen as the optimization algorithm, which starts at the rough estimate obtained in the first step and finds a global minimum to the objective function with the guidance of objective function's gradient. So the speed of IPM searching for the global minimum is fast, and an accurate identification can be obtained in time. The numerical results show that the proposed motion prediction algorithm is able to predict the motion of the target.
Fast and Accurate Prediction of Stratified Steel Temperature During Holding Period of Ladle
NASA Astrophysics Data System (ADS)
Deodhar, Anirudh; Singh, Umesh; Shukla, Rishabh; Gautham, B. P.; Singh, Amarendra K.
2017-04-01
Thermal stratification of liquid steel in a ladle during the holding period and the teeming operation has a direct bearing on the superheat available at the caster and hence on the caster set points such as casting speed and cooling rates. The changes in the caster set points are typically carried out based on temperature measurements at the end of tundish outlet. Thermal prediction models provide advance knowledge of the influence of process and design parameters on the steel temperature at various stages. Therefore, they can be used in making accurate decisions about the caster set points in real time. However, this requires both fast and accurate thermal prediction models. In this work, we develop a surrogate model for the prediction of thermal stratification using data extracted from a set of computational fluid dynamics (CFD) simulations, pre-determined using design of experiments technique. Regression method is used for training the predictor. The model predicts the stratified temperature profile instantaneously, for a given set of process parameters such as initial steel temperature, refractory heat content, slag thickness, and holding time. More than 96 pct of the predicted values are within an error range of ±5 K (±5 °C), when compared against corresponding CFD results. Considering its accuracy and computational efficiency, the model can be extended for thermal control of casting operations. This work also sets a benchmark for developing similar thermal models for downstream processes such as tundish and caster.
Photonic crystal based biosensor for the detection of glucose concentration in urine
NASA Astrophysics Data System (ADS)
Robinson, Savarimuthu; Dhanlaksmi, Nagaraj
2017-03-01
Photonic sensing technology is a new and accurate measurement technology for bio-sensing applications. In this paper, a two-dimensional photonic crystal ring resonator based sensor is proposed and designed to detect the glucose concentration in urine over the range of 0 gm/dl-15 gm/dl. The proposed sensor is consisted of two inverted "L" waveguides and a ring resonator. If the glucose concentration in urine is varied, the refractive index of the urine is varied, which in turn the output response of sensor will be varied. By having the aforementioned principle, the glucose concentration in urine, glucose concentration in blood, albumin, urea, and bilirubin concentration in urine are predicted. The size of the proposed sensor is about 11.4 µm×11.4 µm, and the sensor can predict the result very accurately without any delay, hence, this attempt could be implemented for medical applications.
Using convolutional neural networks to explore the microbiome.
Reiman, Derek; Metwally, Ahmed; Yang Dai
2017-07-01
The microbiome has been shown to have an impact on the development of various diseases in the host. Being able to make an accurate prediction of the phenotype of a genomic sample based on its microbial taxonomic abundance profile is an important problem for personalized medicine. In this paper, we examine the potential of using a deep learning framework, a convolutional neural network (CNN), for such a prediction. To facilitate the CNN learning, we explore the structure of abundance profiles by creating the phylogenetic tree and by designing a scheme to embed the tree to a matrix that retains the spatial relationship of nodes in the tree and their quantitative characteristics. The proposed CNN framework is highly accurate, achieving a 99.47% of accuracy based on the evaluation on a dataset 1967 samples of three phenotypes. Our result demonstrated the feasibility and promising aspect of CNN in the classification of sample phenotype.
Development of estrogen receptor beta binding prediction model using large sets of chemicals.
Sakkiah, Sugunadevi; Selvaraj, Chandrabose; Gong, Ping; Zhang, Chaoyang; Tong, Weida; Hong, Huixiao
2017-11-03
We developed an ER β binding prediction model to facilitate identification of chemicals specifically bind ER β or ER α together with our previously developed ER α binding model. Decision Forest was used to train ER β binding prediction model based on a large set of compounds obtained from EADB. Model performance was estimated through 1000 iterations of 5-fold cross validations. Prediction confidence was analyzed using predictions from the cross validations. Informative chemical features for ER β binding were identified through analysis of the frequency data of chemical descriptors used in the models in the 5-fold cross validations. 1000 permutations were conducted to assess the chance correlation. The average accuracy of 5-fold cross validations was 93.14% with a standard deviation of 0.64%. Prediction confidence analysis indicated that the higher the prediction confidence the more accurate the predictions. Permutation testing results revealed that the prediction model is unlikely generated by chance. Eighteen informative descriptors were identified to be important to ER β binding prediction. Application of the prediction model to the data from ToxCast project yielded very high sensitivity of 90-92%. Our results demonstrated ER β binding of chemicals could be accurately predicted using the developed model. Coupling with our previously developed ER α prediction model, this model could be expected to facilitate drug development through identification of chemicals that specifically bind ER β or ER α .
Chan, Wing Cheuk; Papaconstantinou, Dean; Lee, Mildred; Telfer, Kendra; Jo, Emmanuel; Drury, Paul L; Tobias, Martin
2018-05-01
To validate the New Zealand Ministry of Health (MoH) Virtual Diabetes Register (VDR) using longitudinal laboratory results and to develop an improved algorithm for estimating diabetes prevalence at a population level. The assigned diabetes status of individuals based on the 2014 version of the MoH VDR is compared to the diabetes status based on the laboratory results stored in the Auckland regional laboratory result repository (TestSafe) using the New Zealand diabetes diagnostic criteria. The existing VDR algorithm is refined by reviewing the sensitivity and positive predictive value of the each of the VDR algorithm rules individually and as a combination. The diabetes prevalence estimate based on the original 2014 MoH VDR was 17% higher (n = 108,505) than the corresponding TestSafe prevalence estimate (n = 92,707). Compared to the diabetes prevalence based on TestSafe, the original VDR has a sensitivity of 89%, specificity of 96%, positive predictive value of 76% and negative predictive value of 98%. The modified VDR algorithm has improved the positive predictive value by 6.1% and the specificity by 1.4% with modest reductions in sensitivity of 2.2% and negative predictive value of 0.3%. At an aggregated level the overall diabetes prevalence estimated by the modified VDR is 5.7% higher than the corresponding estimate based on TestSafe. The Ministry of Health Virtual Diabetes Register algorithm has been refined to provide a more accurate diabetes prevalence estimate at a population level. The comparison highlights the potential value of a national population long term condition register constructed from both laboratory results and administrative data. Copyright © 2018 Elsevier B.V. All rights reserved.
Boonjing, Veera; Intakosum, Sarun
2016-01-01
This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span. PMID:27974883
Inthachot, Montri; Boonjing, Veera; Intakosum, Sarun
2016-01-01
This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.
NASA Astrophysics Data System (ADS)
Ko, P.; Kurosawa, S.
2014-03-01
The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.
Building a Better Fragment Library for De Novo Protein Structure Prediction
de Oliveira, Saulo H. P.; Shi, Jiye; Deane, Charlotte M.
2015-01-01
Fragment-based approaches are the current standard for de novo protein structure prediction. These approaches rely on accurate and reliable fragment libraries to generate good structural models. In this work, we describe a novel method for structure fragment library generation and its application in fragment-based de novo protein structure prediction. The importance of correct testing procedures in assessing the quality of fragment libraries is demonstrated. In particular, the exclusion of homologs to the target from the libraries to correctly simulate a de novo protein structure prediction scenario, something which surprisingly is not always done. We demonstrate that fragments presenting different predominant predicted secondary structures should be treated differently during the fragment library generation step and that exhaustive and random search strategies should both be used. This information was used to develop a novel method, Flib. On a validation set of 41 structurally diverse proteins, Flib libraries presents both a higher precision and coverage than two of the state-of-the-art methods, NNMake and HHFrag. Flib also achieves better precision and coverage on the set of 275 protein domains used in the two previous experiments of the the Critical Assessment of Structure Prediction (CASP9 and CASP10). We compared Flib libraries against NNMake libraries in a structure prediction context. Of the 13 cases in which a correct answer was generated, Flib models were more accurate than NNMake models for 10. “Flib is available for download at: http://www.stats.ox.ac.uk/research/proteins/resources”. PMID:25901595
Boosting flood warning schemes with fast emulator of detailed hydrodynamic models
NASA Astrophysics Data System (ADS)
Bellos, V.; Carbajal, J. P.; Leitao, J. P.
2017-12-01
Floods are among the most destructive catastrophic events and their frequency has incremented over the last decades. To reduce flood impact and risks, flood warning schemes are installed in flood prone areas. Frequently, these schemes are based on numerical models which quickly provide predictions of water levels and other relevant observables. However, the high complexity of flood wave propagation in the real world and the need of accurate predictions in urban environments or in floodplains hinders the use of detailed simulators. This sets the difficulty, we need fast predictions that meet the accuracy requirements. Most physics based detailed simulators although accurate, will not fulfill the speed demand. Even if High Performance Computing techniques are used (the magnitude of required simulation time is minutes/hours). As a consequence, most flood warning schemes are based in coarse ad-hoc approximations that cannot take advantage a detailed hydrodynamic simulation. In this work, we present a methodology for developing a flood warning scheme using an Gaussian Processes based emulator of a detailed hydrodynamic model. The methodology consists of two main stages: 1) offline stage to build the emulator; 2) online stage using the emulator to predict and generate warnings. The offline stage consists of the following steps: a) definition of the critical sites of the area under study, and the specification of the observables to predict at those sites, e.g. water depth, flow velocity, etc.; b) generation of a detailed simulation dataset to train the emulator; c) calibration of the required parameters (if measurements are available). The online stage is carried on using the emulator to predict the relevant observables quickly, and the detailed simulator is used in parallel to verify key predictions of the emulator. The speed gain given by the emulator allows also to quantify uncertainty in predictions using ensemble methods. The above methodology is applied in real world scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiansyah, Deni
2016-09-15
Purpose: The aim of this study was to investigate the accuracy of PET-based treatment planning for predicting the time-integrated activity coefficients (TIACs). Methods: The parameters of a physiologically based pharmacokinetic (PBPK) model were fitted to the biokinetic data of 15 patients to derive assumed true parameters and were used to construct true mathematical patient phantoms (MPPs). Biokinetics of 150 MBq {sup 68}Ga-DOTATATE-PET was simulated with different noise levels [fractional standard deviation (FSD) 10%, 1%, 0.1%, and 0.01%], and seven combinations of measurements at 30 min, 1 h, and 4 h p.i. PBPK model parameters were fitted to the simulated noisymore » PET data using population-based Bayesian parameters to construct predicted MPPs. Therapy simulations were performed as 30 min infusion of {sup 90}Y-DOTATATE of 3.3 GBq in both true and predicted MPPs. Prediction accuracy was then calculated as relative variability v{sub organ} between TIACs from both MPPs. Results: Large variability values of one time-point protocols [e.g., FSD = 1%, 240 min p.i., v{sub kidneys} = (9 ± 6)%, and v{sub tumor} = (27 ± 26)%] show inaccurate prediction. Accurate TIAC prediction of the kidneys was obtained for the case of two measurements (1 and 4 h p.i.), e.g., FSD = 1%, v{sub kidneys} = (7 ± 3)%, and v{sub tumor} = (22 ± 10)%, or three measurements, e.g., FSD = 1%, v{sub kidneys} = (7 ± 3)%, and v{sub tumor} = (22 ± 9)%. Conclusions: {sup 68}Ga-DOTATATE-PET measurements could possibly be used to predict the TIACs of {sup 90}Y-DOTATATE when using a PBPK model and population-based Bayesian parameters. The two time-point measurement at 1 and 4 h p.i. with a noise up to FSD = 1% allows an accurate prediction of the TIACs in kidneys.« less
Mollica, Luca; Theret, Isabelle; Antoine, Mathias; Perron-Sierra, Françoise; Charton, Yves; Fourquez, Jean-Marie; Wierzbicki, Michel; Boutin, Jean A; Ferry, Gilles; Decherchi, Sergio; Bottegoni, Giovanni; Ducrot, Pierre; Cavalli, Andrea
2016-08-11
Ligand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate. We recently reported a new scaled-MD-based protocol, which showed potential for residence time prediction in drug discovery. Here, we further challenged our procedure's predictive ability by applying our methodology to a series of glucokinase activators that could be useful for treating type 2 diabetes mellitus. We combined scaled MD with experimental kinetics measurements and X-ray crystallography, promptly checking the protocol's reliability by directly comparing computational predictions and experimental measures. The good agreement highlights the potential of our scaled-MD-based approach as an innovative method for computationally estimating and predicting drug residence times.
High fidelity CFD-CSD aeroelastic analysis of slender bladed horizontal-axis wind turbine
NASA Astrophysics Data System (ADS)
Sayed, M.; Lutz, Th.; Krämer, E.; Shayegan, Sh.; Ghantasala, A.; Wüchner, R.; Bletzinger, K.-U.
2016-09-01
The aeroelastic response of large multi-megawatt slender horizontal-axis wind turbine blades is investigated by means of a time-accurate CFD-CSD coupling approach. A loose coupling approach is implemented and used to perform the simulations. The block- structured CFD solver FLOWer is utilized to obtain the aerodynamic blade loads based on the time-accurate solution of the unsteady Reynolds-averaged Navier-Stokes equations. The CSD solver Carat++ is applied to acquire the blade elastic deformations based on non-linear beam elements. In this contribution, the presented coupling approach is utilized to study the aeroelastic response of the generic DTU 10MW wind turbine. Moreover, the effect of the coupled results on the wind turbine performance is discussed. The results are compared to the aeroelastic response predicted by FLOWer coupled to the MBS tool SIMPACK as well as the response predicted by SIMPACK coupled to a Blade Element Momentum code for aerodynamic predictions. A comparative study among the different modelling approaches for this coupled problem is discussed to quantify the coupling effects of the structural models on the aeroelastic response.
Identifying and Tracking Pedestrians Based on Sensor Fusion and Motion Stability Predictions
Musleh, Basam; García, Fernando; Otamendi, Javier; Armingol, José Mª; de la Escalera, Arturo
2010-01-01
The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle. PMID:22163639
NASA Astrophysics Data System (ADS)
Vincent, Timothy J.; Rumpfkeil, Markus P.; Chaudhary, Anil
2018-03-01
The complex, multi-faceted physics of laser-based additive metals processing tends to demand high-fidelity models and costly simulation tools to provide predictions accurate enough to aid in selecting process parameters. Of particular difficulty is the accurate determination of melt pool shape and size, which are useful for predicting lack-of-fusion, as this typically requires an adequate treatment of thermal and fluid flow. In this article we describe a novel numerical simulation tool which aims to achieve a balance between accuracy and cost. This is accomplished by making simplifying assumptions regarding the behavior of the gas-liquid interface for processes with a moderate energy density, such as Laser Engineered Net Shaping (LENS). The details of the implementation, which is based on the solver simpleFoam of the well-known software suite OpenFOAM, are given here and the tool is verified and validated for a LENS process involving Ti-6Al-4V. The results indicate that the new tool predicts width and height of a deposited track to engineering accuracy levels.
Physics-based enzyme design: predicting binding affinity and catalytic activity.
Sirin, Sarah; Pearlman, David A; Sherman, Woody
2014-12-01
Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications. © 2014 Wiley Periodicals, Inc.
Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel
2018-04-05
Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.
NASA Astrophysics Data System (ADS)
Vincent, Timothy J.; Rumpfkeil, Markus P.; Chaudhary, Anil
2018-06-01
The complex, multi-faceted physics of laser-based additive metals processing tends to demand high-fidelity models and costly simulation tools to provide predictions accurate enough to aid in selecting process parameters. Of particular difficulty is the accurate determination of melt pool shape and size, which are useful for predicting lack-of-fusion, as this typically requires an adequate treatment of thermal and fluid flow. In this article we describe a novel numerical simulation tool which aims to achieve a balance between accuracy and cost. This is accomplished by making simplifying assumptions regarding the behavior of the gas-liquid interface for processes with a moderate energy density, such as Laser Engineered Net Shaping (LENS). The details of the implementation, which is based on the solver simpleFoam of the well-known software suite OpenFOAM, are given here and the tool is verified and validated for a LENS process involving Ti-6Al-4V. The results indicate that the new tool predicts width and height of a deposited track to engineering accuracy levels.
Identifying and tracking pedestrians based on sensor fusion and motion stability predictions.
Musleh, Basam; García, Fernando; Otamendi, Javier; Armingol, José Maria; de la Escalera, Arturo
2010-01-01
The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle.
NASA Astrophysics Data System (ADS)
Yao, Yao
2012-05-01
Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern-Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone effect on the ductile rock fracture.
Mathematics as a Conduit for Translational Research in Post-Traumatic Osteoarthritis
Ayati, Bruce P.; Kapitanov, Georgi I.; Coleman, Mitchell C.; Anderson, Donald D.; Martin, James A.
2016-01-01
Biomathematical models offer a powerful method of clarifying complex temporal interactions and the relationships among multiple variables in a system. We present a coupled in silico biomathematical model of articular cartilage degeneration in response to impact and/or aberrant loading such as would be associated with injury to an articular joint. The model incorporates fundamental biological and mechanical information obtained from explant and small animal studies to predict post-traumatic osteoarthritis (PTOA) progression, with an eye toward eventual application in human patients. In this sense, we refer to the mathematics as a “conduit of translation”. The new in silico framework presented in this paper involves a biomathematical model for the cellular and biochemical response to strains computed using finite element analysis. The model predicts qualitative responses presently, utilizing system parameter values largely taken from the literature. To contribute to accurate predictions, models need to be accurately parameterized with values that are based on solid science. We discuss a parameter identification protocol that will enable us to make increasingly accurate predictions of PTOA progression using additional data from smaller scale explant and small animal assays as they become available. By distilling the data from the explant and animal assays into parameters for biomathematical models, mathematics can translate experimental data to clinically relevant knowledge. PMID:27653021
Sun, Lei; Jin, Hong-Yu; Tian, Run-Tao; Wang, Ming-Juan; Liu, Li-Na; Ye, Liu-Ping; Zuo, Tian-Tian; Ma, Shuang-Cheng
2017-01-01
Analysis of related substances in pharmaceutical chemicals and multi-components in traditional Chinese medicines needs bulk of reference substances to identify the chromatographic peaks accurately. But the reference substances are costly. Thus, the relative retention (RR) method has been widely adopted in pharmacopoeias and literatures for characterizing HPLC behaviors of those reference substances unavailable. The problem is it is difficult to reproduce the RR on different columns due to the error between measured retention time (t R ) and predicted t R in some cases. Therefore, it is useful to develop an alternative and simple method for prediction of t R accurately. In the present study, based on the thermodynamic theory of HPLC, a method named linear calibration using two reference substances (LCTRS) was proposed. The method includes three steps, procedure of two points prediction, procedure of validation by multiple points regression and sequential matching. The t R of compounds on a HPLC column can be calculated by standard retention time and linear relationship. The method was validated in two medicines on 30 columns. It was demonstrated that, LCTRS method is simple, but more accurate and more robust on different HPLC columns than RR method. Hence quality standards using LCTRS method are easy to reproduce in different laboratories with lower cost of reference substances.
Hughesman, Curtis; Fakhfakh, Kareem; Bidshahri, Roza; Lund, H Louise; Haynes, Charles
2015-02-17
Advances in real-time polymerase chain reaction (PCR), as well as the emergence of digital PCR (dPCR) and useful modified nucleotide chemistries, including locked nucleic acids (LNAs), have created the potential to improve and expand clinical applications of PCR through their ability to better quantify and differentiate amplification products, but fully realizing this potential will require robust methods for designing dual-labeled hydrolysis probes and predicting their hybridization thermodynamics as a function of their sequence, chemistry, and template complementarity. We present here a nearest-neighbor thermodynamic model that accurately predicts the melting thermodynamics of a short oligonucleotide duplexed either to its perfect complement or to a template containing mismatched base pairs. The model may be applied to pure-DNA duplexes or to duplexes for which one strand contains any number and pattern of LNA substitutions. Perturbations to duplex stability arising from mismatched DNA:DNA or LNA:DNA base pairs are treated at the Gibbs energy level to maintain statistical significance in the regressed model parameters. This approach, when combined with the model's accounting of the temperature dependencies of the melting enthalpy and entropy, permits accurate prediction of T(m) values for pure-DNA homoduplexes or LNA-substituted heteroduplexes containing one or two independent mismatched base pairs. Terms accounting for changes in solution conditions and terminal addition of fluorescent dyes and quenchers are then introduced so that the model may be used to accurately predict and thereby tailor the T(m) of a pure-DNA or LNA-substituted hydrolysis probe when duplexed either to its perfect-match template or to a template harboring a noncomplementary base. The model, which builds on classic nearest-neighbor thermodynamics, should therefore be of use to clinicians and biologists who require probes that distinguish and quantify two closely related alleles in either a quantitative PCR or dPCR assay. This potential is demonstrated by using the model to design allele-specific probes that completely discriminate and quantify clinically relevant mutant alleles (BRAF V600E and KIT D816V) in a dPCR assay.
A probabilistic model to predict clinical phenotypic traits from genome sequencing.
Chen, Yun-Ching; Douville, Christopher; Wang, Cheng; Niknafs, Noushin; Yeo, Grace; Beleva-Guthrie, Violeta; Carter, Hannah; Stenson, Peter D; Cooper, David N; Li, Biao; Mooney, Sean; Karchin, Rachel
2014-09-01
Genetic screening is becoming possible on an unprecedented scale. However, its utility remains controversial. Although most variant genotypes cannot be easily interpreted, many individuals nevertheless attempt to interpret their genetic information. Initiatives such as the Personal Genome Project (PGP) and Illumina's Understand Your Genome are sequencing thousands of adults, collecting phenotypic information and developing computational pipelines to identify the most important variant genotypes harbored by each individual. These pipelines consider database and allele frequency annotations and bioinformatics classifications. We propose that the next step will be to integrate these different sources of information to estimate the probability that a given individual has specific phenotypes of clinical interest. To this end, we have designed a Bayesian probabilistic model to predict the probability of dichotomous phenotypes. When applied to a cohort from PGP, predictions of Gilbert syndrome, Graves' disease, non-Hodgkin lymphoma, and various blood groups were accurate, as individuals manifesting the phenotype in question exhibited the highest, or among the highest, predicted probabilities. Thirty-eight PGP phenotypes (26%) were predicted with area-under-the-ROC curve (AUC)>0.7, and 23 (15.8%) of these were statistically significant, based on permutation tests. Moreover, in a Critical Assessment of Genome Interpretation (CAGI) blinded prediction experiment, the models were used to match 77 PGP genomes to phenotypic profiles, generating the most accurate prediction of 16 submissions, according to an independent assessor. Although the models are currently insufficiently accurate for diagnostic utility, we expect their performance to improve with growth of publicly available genomics data and model refinement by domain experts.
A dynamic multi-scale Markov model based methodology for remaining life prediction
NASA Astrophysics Data System (ADS)
Yan, Jihong; Guo, Chaozhong; Wang, Xing
2011-05-01
The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.
Bringing modeling to the masses: A web based system to predict potential species distributions
Graham, Jim; Newman, Greg; Kumar, Sunil; Jarnevich, Catherine S.; Young, Nick; Crall, Alycia W.; Stohlgren, Thomas J.; Evangelista, Paul
2010-01-01
Predicting current and potential species distributions and abundance is critical for managing invasive species, preserving threatened and endangered species, and conserving native species and habitats. Accurate predictive models are needed at local, regional, and national scales to guide field surveys, improve monitoring, and set priorities for conservation and restoration. Modeling capabilities, however, are often limited by access to software and environmental data required for predictions. To address these needs, we built a comprehensive web-based system that: (1) maintains a large database of field data; (2) provides access to field data and a wealth of environmental data; (3) accesses values in rasters representing environmental characteristics; (4) runs statistical spatial models; and (5) creates maps that predict the potential species distribution. The system is available online at www.niiss.org, and provides web-based tools for stakeholders to create potential species distribution models and maps under current and future climate scenarios.
Understanding reproducibility of human IVF traits to predict next IVF cycle outcome.
Wu, Bin; Shi, Juanzi; Zhao, Wanqiu; Lu, Suzhen; Silva, Marta; Gelety, Timothy J
2014-10-01
Evaluating the failed IVF cycle often provides useful prognostic information. Before undergoing another attempt, patients experiencing an unsuccessful IVF cycle frequently request information about the probability of future success. Here, we introduced the concept of reproducibility and formulae to predict the next IVF cycle outcome. The experimental design was based on the retrospective review of IVF cycle data from 2006 to 2013 in two different IVF centers and statistical analysis. The reproducibility coefficients (r) of IVF traits including number of oocytes retrieved, oocyte maturity, fertilization, embryo quality and pregnancy were estimated using the interclass correlation coefficient between the repeated IVF cycle measurements for the same patient by variance component analysis. The formulae were designed to predict next IVF cycle outcome. The number of oocytes retrieved from patients and their fertilization rate had the highest reproducibility coefficients (r = 0.81 ~ 0.84), which indicated a very close correlation between the first retrieval cycle and subsequent IVF cycles. Oocyte maturity and number of top quality embryos had middle level reproducibility (r = 0.38 ~ 0.76) and pregnancy rate had a relative lower reproducibility (r = 0.23 ~ 0.27). Based on these parameters, the next outcome for these IVF traits might be accurately predicted by the designed formulae. The introduction of the concept of reproducibility to our human IVF program allows us to predict future IVF cycle outcomes. The traits of oocyte numbers retrieved, oocyte maturity, fertilization, and top quality embryos had higher or middle reproducibility, which provides a basis for accurate prediction of future IVF outcomes. Based on this prediction, physicians may counsel their patients or change patient's stimulation plans, and laboratory embryologists may improve their IVF techniques accordingly.
NASA Astrophysics Data System (ADS)
Yeganeh, B.; Motlagh, M. Shafie Pour; Rashidi, Y.; Kamalan, H.
2012-08-01
Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS-SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS-SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65-85% for hybrid PLS-SVM model respectively. Also it was found that the hybrid PLS-SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS-SVM model.
A micromechanics-based strength prediction methodology for notched metal matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1992-01-01
An analytical micromechanics based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and post fatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.
A micromechanics-based strength prediction methodology for notched metal-matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1993-01-01
An analytical micromechanics-based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three-dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and postfatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics-based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.
NASA Astrophysics Data System (ADS)
Oh, S.-T.; Chang, H.-J.; Oh, K. H.; Han, H. N.
2006-04-01
It has been observed that the forming limit curve at fracture (FLCF) of steel sheets, with a relatively higher ductility limit have linear shapes, similar to those of a bulk forming process. In contrast, the FLCF of sheets with a relatively lower ductility limit have rather complex shapes approaching the forming limit curve at neck (FLCN) towards the equi-biaxial strain paths. In this study, the FLCFs of steel sheets were measured and compared with the fracture strains predicted from specific ductile fracture criteria, including a criterion suggested by the authors, which can accurately describe FLCFs with both linear and complex shapes. To predict the forming limit for hydro-mechanical deep drawing of steel sheets, the ductile fracture criteria were integrated into a finite element simulation. The simulation, results based on the criterion suggested by authors accurately predicted the experimetal, fracture limits of steel sheets for the hydro-mechanical deep drawing process.
Experimental and numerical study of physiological responses in hot environments.
Yang, Jie; Weng, Wenguo; Zhang, Baoting
2014-10-01
This paper proposed a multi-node human thermal model to predict human thermal responses in hot environments. The model was extended based on the Tanabe's work by considering the effects of high temperature on heat production, blood flow rate, and heat exchange coefficients. Five healthy men dressed in shorts were exposed in thermal neutral (29 °C) and high temperature (45 °C) environments. The rectal temperatures and skin temperatures of seven human body segments were continuously measured during the experiment. Validation of this model was conducted with experimental data. The results showed that the current model could accurately predict the skin and core temperatures in terms of the tendency and absolute values. In the human body segments expect calf and trunk, the temperature differences between the experimental data and the predicted results in high temperature environment were smaller than those in the thermally neutral environment conditions. The extended model was proved to be capable of predicting accurately human physiological responses in hot environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yue, Zheng-Bo; Zhang, Meng-Lin; Sheng, Guo-Ping; Liu, Rong-Hua; Long, Ying; Xiang, Bing-Ren; Wang, Jin; Yu, Han-Qing
2010-04-01
A near-infrared-reflectance (NIR) spectroscopy-based method is established to determine the main components of aquatic plants as well as their anaerobic rumen biodegradability. The developed method is more rapid and accurate compared to the conventional chemical analysis and biodegradability tests. Moisture, volatile solid, Klason lignin and ash in entire aquatic plants could be accurately predicted using this method with coefficient of determination (r(2)) values of 0.952, 0.916, 0.939 and 0.950, respectively. In addition, the anaerobic rumen biodegradability of aquatic plants, represented as biogas and methane yields, could also be predicted well. The algorithm of continuous wavelet transform for the NIR spectral data pretreatment is able to greatly enhance the robustness and predictive ability of the NIR spectral analysis. These results indicate that NIR spectroscopy could be used to predict the main components of aquatic plants and their anaerobic biodegradability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
The EST Model for Predicting Progressive Damage and Failure of Open Hole Bending Specimens
NASA Technical Reports Server (NTRS)
Joseph, Ashith P. K.; Waas, Anthony M.; Pineda, Evan J.
2016-01-01
Progressive damage and failure in open hole composite laminate coupons subjected to flexural loading is modeled using Enhanced Schapery Theory (EST). Previous studies have demonstrated that EST can accurately predict the strength of open hole coupons under remote tensile and compressive loading states. This homogenized modeling approach uses single composite shell elements to represent the entire laminate in the thickness direction and significantly reduces computational cost. Therefore, when delaminations are not of concern or are active in the post-peak regime, the version of EST presented here is a good engineering tool for predicting deformation response. Standard coupon level tests provides all the input data needed for the model and they are interpreted in conjunction with finite element (FE) based simulations. Open hole bending test results of three different IM7/8552 carbon fiber composite layups agree well with EST predictions. The model is able to accurately capture the curvature change and deformation localization in the specimen at and during the post catastrophic load drop event.
An integrated physiology model to study regional lung damage effects and the physiologic response
2014-01-01
Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032
A Maximal Graded Exercise Test to Accurately Predict VO2max in 18-65-Year-Old Adults
ERIC Educational Resources Information Center
George, James D.; Bradshaw, Danielle I.; Hyde, Annette; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.
2007-01-01
The purpose of this study was to develop an age-generalized regression model to predict maximal oxygen uptake (VO sub 2 max) based on a maximal treadmill graded exercise test (GXT; George, 1996). Participants (N = 100), ages 18-65 years, reached a maximal level of exertion (mean plus or minus standard deviation [SD]; maximal heart rate [HR sub…
On the distance of genetic relationships and the accuracy of genomic prediction in pig breeding.
Meuwissen, Theo H E; Odegard, Jorgen; Andersen-Ranberg, Ina; Grindflek, Eli
2014-08-01
With the advent of genomic selection, alternative relationship matrices are used in animal breeding, which vary in their coverage of distant relationships due to old common ancestors. Relationships based on pedigree (A) and linkage analysis (GLA) cover only recent relationships because of the limited depth of the known pedigree. Relationships based on identity-by-state (G) include relationships up to the age of the SNP (single nucleotide polymorphism) mutations. We hypothesised that the latter relationships were too old, since QTL (quantitative trait locus) mutations for traits under selection were probably more recent than the SNPs on a chip, which are typically selected for high minor allele frequency. In addition, A and GLA relationships are too recent to cover genetic differences accurately. Thus, we devised a relationship matrix that considered intermediate-aged relationships and compared all these relationship matrices for their accuracy of genomic prediction in a pig breeding situation. Haplotypes were constructed and used to build a haplotype-based relationship matrix (GH), which considers more intermediate-aged relationships, since haplotypes recombine more quickly than SNPs mutate. Dense genotypes (38 453 SNPs) on 3250 elite breeding pigs were combined with phenotypes for growth rate (2668 records), lean meat percentage (2618), weight at three weeks of age (7387) and number of teats (5851) to estimate breeding values for all animals in the pedigree (8187 animals) using the aforementioned relationship matrices. Phenotypes on the youngest 424 to 486 animals were masked and predicted in order to assess the accuracy of the alternative genomic predictions. Correlations between the relationships and regressions of older on younger relationships revealed that the age of the relationships increased in the order A, GLA, GH and G. Use of genomic relationship matrices yielded significantly higher prediction accuracies than A. GH and G, differed not significantly, but were significantly more accurate than GLA. Our hypothesis that intermediate-aged relationships yield more accurate genomic predictions than G was confirmed for two of four traits, but these results were not statistically significant. Use of estimated genotype probabilities for ungenotyped animals proved to be an efficient method to include the phenotypes of ungenotyped animals.
Kim, Byoungjip; Kang, Seungwoo; Ha, Jin-Young; Song, Junehwa
2015-01-01
In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user’s place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense. PMID:26193275
Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.
1998-01-01
The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM: AVS) and dry weight-normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.
ERIC Educational Resources Information Center
Kern, Ben D.; Graber, Kim C.; Shen, Sa; Hillman, Charles H.; McLoughlin, Gabriella
2018-01-01
Background: Socioeconomic status (SES) is the most accurate predictor of academic performance in US schools. Third-grade reading is highly predictive of high school graduation. Chronic physical activity (PA) is shown to improve cognition and academic performance. We hypothesized that school-based PA opportunities (recess and physical education)…
Davoren, Mary; Hennessy, Sarah; Conway, Catherine; Marrinan, Seamus; Gill, Pauline; Kennedy, Harry G
2015-03-28
Detention in a secure forensic psychiatric hospital may inhibit engagement and recovery. Having validated the clinician rated DUNDRUM-3 (programme completion) and DUNDRUM-4 (recovery) in a forensic hospital, we set out to draft and validate scales measuring the same programme completion and recovery items that patients could use to self-rate. Based on previous work, we hypothesised that self-rating scores might be predictors of objective progress including conditional discharge. We hypothesised also that the difference between patients' and clinicians' ratings of progress in treatment and other factors relevant to readiness for discharge (concordance) would diminish as patients neared discharge. We hypothesised also that this difference in matched scores would predict objective progress including conditional discharge. In a prospective naturalistic observational cohort study in a forensic hospital, we examined whether scores on the self-rated DUNDRUM-3 programme completion and DUNDRUM-4 recovery scales or differences between clinician and patient ratings on the same scales (concordance) would predict moves between levels of therapeutic security and conditional discharge over the next twelve months. Both scales stratified along the recovery pathway of the hospital, but clinician ratings matched the level of therapeutic security more accurately than self ratings. The clinician rated scales predicted moves to less secure units and to more secure units and predicted conditional discharge but the self-rated scores did not. The difference between clinician and self-rated scores (concordance) predicted positive and negative moves and conditional discharge, but this was not always an independent predictor as shown by regression analysis. In regression analysis the DUNDRUM-3 predicted moves to less secure places though the HCR-20 C & R score dominated the model. Moves back to more secure places were predicted by lack of concordance on the DUNDRUM-4. Conditional discharge was predicted predominantly by the DUNDRUM-3. Patients accurately self-rate relative to other patients however their absolute ratings were consistently lower (better) than clinicians' ratings and were less accurate predictors of outcomes including conditional discharge. Quantifying concordance is a useful part of the recovery process and predicts outcomes but self-ratings are not accurate predictors.
Computational Pollutant Environment Assessment from Propulsion-System Testing
NASA Technical Reports Server (NTRS)
Wang, Ten-See; McConnaughey, Paul; Chen, Yen-Sen; Warsi, Saif
1996-01-01
An asymptotic plume growth method based on a time-accurate three-dimensional computational fluid dynamics formulation has been developed to assess the exhaust-plume pollutant environment from a simulated RD-170 engine hot-fire test on the F1 Test Stand at Marshall Space Flight Center. Researchers have long known that rocket-engine hot firing has the potential for forming thermal nitric oxides, as well as producing carbon monoxide when hydrocarbon fuels are used. Because of the complex physics involved, most attempts to predict the pollutant emissions from ground-based engine testing have used simplified methods, which may grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work has been to develop a computational fluid dynamics-based methodology that replicates the underlying test-stand flow physics to accurately and efficiently assess pollutant emissions from ground-based rocket-engine testing. A nominal RD-170 engine hot-fire test was computed, and pertinent test-stand flow physics was captured. The predicted total emission rates compared reasonably well with those of the existing hydrocarbon engine hot-firing test data.
Beer, Kari A Santoro; Syring, Rebecca S; Drobatz, Kenneth J
2013-01-01
To determine the correlation between plasma lactate concentration and base excess at the time of hospital admission and evaluate each variable as a predictor of gastric necrosis or outcome in dogs with gastric dilatation-volvulus (GDV). Retrospective case series. 78 dogs. For each dog, various data, including plasma lactate concentration and base excess at the time of hospital admission, surgical or necropsy findings, and outcome, were collected from medical records. Gastric necrosis was identified in 12 dogs at the time of surgery and in 4 dogs at necropsy. Sixty-five (83%) dogs survived to hospital discharge, whereas 13 (17%) dogs died or were euthanized. Of the 65 survivors and 8 nonsurvivors that underwent surgery, gastric necrosis was detected in 8 and 4 dogs, respectively. Via receiver operating characteristic curve analysis, an initial plasma lactate concentration cutoff of 7.4 mmol/L was 82% accurate for predicting gastric necrosis (sensitivity, 50%; specificity, 88%) and 88% accurate for predicting outcome (sensitivity, 75%; specificity, 89%). Among all dogs, the correlation between initial plasma lactate concentration and base excess was significant, although base excess was a poor discriminator for predicting gastric necrosis or outcome (area under the receiver operating characteristic curve, 0.571 and 0.565, respectively). In dogs with GDV, plasma lactate concentration at the time of hospital admission was a good predictor of gastric necrosis and outcome. However, despite the correlation between initial base excess and plasma lactate concentration, base excess should not be used for prediction of gastric necrosis or outcome in those patients.
NASA Astrophysics Data System (ADS)
Lian, Junhe; Shen, Fuhui; Liu, Wenqi; Münstermann, Sebastian
2018-05-01
The constitutive model development has been driven to a very accurate and fine-resolution description of the material behaviour responding to various environmental variable changes. The evolving features of the anisotropic behaviour during deformation, therefore, has drawn particular attention due to its possible impacts on the sheet metal forming industry. An evolving non-associated Hill48 (enHill48) model was recently proposed and applied to the forming limit prediction by coupling with the modified maximum force criterion. On the one hand, the study showed the significance to include the anisotropic evolution for accurate forming limit prediction. On the other hand, it also illustrated that the enHill48 model introduced an instability region that suddenly decreases the formability. Therefore, in this study, an alternative model that is based on the associated flow rule and provides similar anisotropic predictive capability is extended to chapter the evolving effects and further applied to the forming limit prediction. The final results are compared with experimental data as well as the results by enHill48 model.
NASA Technical Reports Server (NTRS)
Simon, Frederick F.
1993-01-01
A program sponsored by NASA for the investigation of the heat transfer in the transition region of turbine vanes and blades with the objective of improving the capability for predicting heat transfer is described. The accurate prediction of gas-side heat transfer is important to the determination of turbine longevity, engine performance, and developmental costs. The need for accurate predictions will become greater as the operating temperatures and stage loading levels of advanced turbine engines increase. The present methods for predicting transition shear stress and heat transfer on turbine blades are based on incomplete knowledge and are largely empirical. To meet the objective of the NASA program, a team approach consisting of researchers from government, universities, a research institute, and a small business is presented. The research is divided into the areas of experiments, direct numerical simulations (DNS), and turbulence modeling. A summary of the results to date is given for the above research areas in a high-disturbance environment (bypass transition) with a discussion of the model development necessary for use in numerical codes.
gCUP: rapid GPU-based HIV-1 co-receptor usage prediction for next-generation sequencing.
Olejnik, Michael; Steuwer, Michel; Gorlatch, Sergei; Heider, Dominik
2014-11-15
Next-generation sequencing (NGS) has a large potential in HIV diagnostics, and genotypic prediction models have been developed and successfully tested in the recent years. However, albeit being highly accurate, these computational models lack computational efficiency to reach their full potential. In this study, we demonstrate the use of graphics processing units (GPUs) in combination with a computational prediction model for HIV tropism. Our new model named gCUP, parallelized and optimized for GPU, is highly accurate and can classify >175 000 sequences per second on an NVIDIA GeForce GTX 460. The computational efficiency of our new model is the next step to enable NGS technologies to reach clinical significance in HIV diagnostics. Moreover, our approach is not limited to HIV tropism prediction, but can also be easily adapted to other settings, e.g. drug resistance prediction. The source code can be downloaded at http://www.heiderlab.de d.heider@wz-straubing.de. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Rae, L S; Vankan, D M; Rand, J S; Flickinger, E A; Ward, L C
2016-06-01
Thirty-five healthy, neutered, mixed breed dogs were used to determine the ability of multifrequency bioelectrical impedance analysis (MFBIA) to predict accurately fat-free mass (FFM) in dogs using dual energy X-ray absorptiometry (DXA)-measured FFM as reference. A second aim was to compare MFBIA predictions with morphometric predictions. MFBIA-based predictors provided an accurate measure of FFM, within 1.5% when compared to DXA-derived FFM, in normal weight dogs. FFM estimates were most highly correlated with DXA-measured FFM when the prediction equation included resistance quotient, bodyweight, and body condition score. At the population level, the inclusion of impedance as a predictor variable did not add substantially to the predictive power achieved with morphometric variables alone; in individual dogs, impedance predictors were more valuable than morphometric predictors. These results indicate that, following further validation, MFBIA could provide a useful tool in clinical practice to objectively measure FFM in canine patients and help improve compliance with prevention and treatment programs for obesity in dogs. Copyright © 2016. Published by Elsevier Ltd.
Multi-barge flotilla impact forces on bridges.
DOT National Transportation Integrated Search
2008-06-01
The current AASHTO equations for barge impact loads are based on scale models of barges, and may not accurately predict impact loads on bridge piers. The results of this study produce more realistic flotilla impact design loads, potentially leading t...
A phenology model for Sparganothis fruitworm in Cranberries
USDA-ARS?s Scientific Manuscript database
Larvae of Sparganothis sulfureana Clemens, frequently attack cranberries, often resulting in economic damage to the crop. Because temperature dictates insect growth rate, development can be accurately estimated based on daily temperature measurements. To better predict S. sulfureana development acro...
2014-01-01
Background Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them. Results SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data. Conclusions SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/. PMID:24980894
Correlation of electron and proton irradiation-induced damage in InP solar cells
NASA Technical Reports Server (NTRS)
Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.
1995-01-01
When determining the best solar cell technology for a particular space flight mission, accurate prediction of solar cell performance in a space radiation environment is essential. The current methodology used to make such predictions requires extensive experimental data measured under both electron and proton irradiation. Due to the rising cost of accelerators and irradiation facilities, such extensive data sets are expensive to obtain. Moreover, with the rapid development of novel cell designs, the necessary data are often not available. Therefore, a method for predicting cell degradation based on limited data is needed. Such a method has been developed at the Naval Research Laboratory based on damage correlation using 'displacement damage dose' which is the product of the non-ionizing energy loss (NIEL) and the particle fluence. Displacement damage dose is a direct analog of the ionization dose used to correlate the effects of ionizing radiations. In this method, the performance of a solar cell in a complex radiation environment can be predicted from data on a single proton energy and two electron energies, or one proton energy, one electron energy, and Co(exp 60) gammas. This method has been used to accurately predict the extensive data set measured by Anspaugh on GaAs/Ge solar cells under a wide range of electron and proton energies. In this paper, the method is applied to InP solar cells using data measured under 1 MeV electron and 3 MeV proton irradiations, and the calculations are shown to agree well with the measured data. In addition to providing accurate damage predictions, this method also provides a basis for quantitative comparisons of the performance of different cell technologies. The performance of the present InP cells is compared to that published for GaAs/Ge cells. The results show InP to be inherently more resistant to displacement energy deposition than GaAs/Ge.
High accuracy operon prediction method based on STRING database scores.
Taboada, Blanca; Verde, Cristina; Merino, Enrique
2010-07-01
We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/.
Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method
NASA Astrophysics Data System (ADS)
Shamsoddini, A.; Aboodi, M. R.; Karami, J.
2017-09-01
Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.
Rapid race perception despite individuation and accuracy goals.
Kubota, Jennifer T; Ito, Tiffany
2017-08-01
Perceivers rapidly process social category information and form stereotypic impressions of unfamiliar others. However, a goal to individuate a target or to accurately predict their behavior can result in individuated impressions. It is unknown how the combination of both accuracy and individuation goals affects perceptual category processing. To explore this, participants were given both the goal to individuate targets and accurately predict behavior. We then recorded event-related brain potentials while participants viewed photos of black and white males along with four pieces of individuating information in the form of descriptions of past behavior. Even with explicit individuation and accuracy task goals, participants rapidly differentiated targets by race within 200 ms. Importantly, this rapid categorical processing did not influence behavioral outcomes as participants made individuated predictions. These findings indicate that individuals engage in category processing even when provided with individuation and accuracy goals, but that this processing does not necessarily result in category-based judgments.
Global assessment of predictability of water availability: A bivariate probabilistic Budyko analysis
NASA Astrophysics Data System (ADS)
Wang, Weiguang; Fu, Jianyu
2018-02-01
Estimating continental water availability is of great importance for water resources management, in terms of maintaining ecosystem integrity and sustaining society development. To more accurately quantify the predictability of water availability, on the basis of univariate probabilistic Budyko framework, a bivariate probabilistic Budyko approach was developed using copula-based joint distribution model for considering the dependence between parameter ω of Wang-Tang's equation and the Normalized Difference Vegetation Index (NDVI), and was applied globally. The results indicate the predictive performance in global water availability is conditional on the climatic condition. In comparison with simple univariate distribution, the bivariate one produces the lower interquartile range under the same global dataset, especially in the regions with higher NDVI values, highlighting the importance of developing the joint distribution by taking into account the dependence structure of parameter ω and NDVI, which can provide more accurate probabilistic evaluation of water availability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, R.D.; Srinivasan, A.
1996-10-01
The machine learning program Progol was applied to the problem of forming the structure-activity relationship (SAR) for a set of compounds tested for carcinogenicity in rodent bioassays by the U.S. National Toxicology Program (NTP). Progol is the first inductive logic programming (ILP) algorithm to use a fully relational method for describing chemical structure in SARs, based on using atoms and their bond connectivities. Progol is well suited to forming SARs for carcinogenicity as it is designed to produce easily understandable rules (structural alerts) for sets of noncongeneric compounds. The Progol SAR method was tested by prediction of a set ofmore » compounds that have been widely predicted by other SAR methods (the compounds used in the NTP`s first round of carcinogenesis predictions). For these compounds no method (human or machine) was significantly more accurate than Progol. Progol was the most accurate method that did not use data from biological tests on rodents (however, the difference in accuracy is not significant). The Progol predictions were based solely on chemical structure and the results of tests for Salmonella mutagenicity. Using the full NTP database, the prediction accuracy of Progol was estimated to be 63% ({+-}3%) using 5-fold cross validation. A set of structural alerts for carcinogenesis was automatically generated and the chemical rationale for them investigated-these structural alerts are statistically independent of the Salmonella mutagenicity. Carcinogenicity is predicted for the compounds used in the NTP`s second round of carcinogenesis predictions. The results for prediction of carcinogenesis, taken together with the previous successful applications of predicting mutagenicity in nitroaromatic compounds, and inhibition of angiogenesis by suramin analogues, show that Progol has a role to play in understanding the SARs of cancer-related compounds. 29 refs., 2 figs., 4 tabs.« less
Parameterizing Coefficients of a POD-Based Dynamical System
NASA Technical Reports Server (NTRS)
Kalb, Virginia L.
2010-01-01
A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter-continuation software can be used on the parameterized dynamical system to derive a bifurcation diagram that accurately predicts the temporal flow behavior.
Efficient Third Harmonic Generation for Wind Lidar Applications
NASA Technical Reports Server (NTRS)
Mordaunt, David W.; Cheung, Eric C.; Ho, James G.; Palese, Stephen P.
1998-01-01
The characterization of atmospheric winds on a global basis is a key parameter required for accurate weather prediction. The use of a space based lidar system for remote measurement of wind speed would provide detailed and highly accurate data for future weather prediction models. This paper reports the demonstration of efficient third harmonic conversion of a 1 micrometer laser to provide an ultraviolet (UV) source suitable for a wind lidar system based on atmospheric molecular scattering. Although infrared based lidars using aerosol scattering have been demonstrated to provide accurate wind measurement, a UV based system using molecular or Rayleigh scattering will provide accurate global wind measurements, even in those areas of the atmosphere where the aerosol density is too low to yield good infrared backscatter signals. The overall objective of this work is to demonstrate the maturity of the laser technology and its suitability for a near term flight aboard the space shuttle. The laser source is based on diode-pumped solid-state laser technology which has been extensively demonstrated at TRW in a variety of programs and internal development efforts. The pump laser used for the third harmonic demonstration is a breadboard system, designated the Laser for Risk Reduction Experiments (LARRE), which has been operating regularly for over 5 years. The laser technology has been further refined in an engineering model designated as the Compact Advanced Pulsed Solid-State Laser (CAPSSL), in which the laser head was packaged into an 8 x 8 x 18 inch volume with a weight of approximately 61 pounds. The CAPSSL system is a ruggedized configuration suitable for typical military applications. The LARRE and CAPSSL systems are based on Nd:YAG with an output wavelength of 1064 nm. The current work proves the viability of converting the Nd:YAG fundamental to the third harmonic wavelength at 355 nm for use in a direct detection wind lidar based on atmospheric Rayleigh scattering.
NASA Astrophysics Data System (ADS)
Unke, Oliver T.; Meuwly, Markus
2018-06-01
Despite the ever-increasing computer power, accurate ab initio calculations for large systems (thousands to millions of atoms) remain infeasible. Instead, approximate empirical energy functions are used. Most current approaches are either transferable between different chemical systems, but not particularly accurate, or they are fine-tuned to a specific application. In this work, a data-driven method to construct a potential energy surface based on neural networks is presented. Since the total energy is decomposed into local atomic contributions, the evaluation is easily parallelizable and scales linearly with system size. With prediction errors below 0.5 kcal mol-1 for both unknown molecules and configurations, the method is accurate across chemical and configurational space, which is demonstrated by applying it to datasets from nonreactive and reactive molecular dynamics simulations and a diverse database of equilibrium structures. The possibility to use small molecules as reference data to predict larger structures is also explored. Since the descriptor only uses local information, high-level ab initio methods, which are computationally too expensive for large molecules, become feasible for generating the necessary reference data used to train the neural network.
New Objective Refraction Metric Based on Sphere Fitting to the Wavefront
Martínez-Finkelshtein, Andreí
2017-01-01
Purpose To develop an objective refraction formula based on the ocular wavefront error (WFE) expressed in terms of Zernike coefficients and pupil radius, which would be an accurate predictor of subjective spherical equivalent (SE) for different pupil sizes. Methods A sphere is fitted to the ocular wavefront at the center and at a variable distance, t. The optimal fitting distance, topt, is obtained empirically from a dataset of 308 eyes as a function of objective refraction pupil radius, r0, and used to define the formula of a new wavefront refraction metric (MTR). The metric is tested in another, independent dataset of 200 eyes. Results For pupil radii r0 ≤ 2 mm, the new metric predicts the equivalent sphere with similar accuracy (<0.1D), however, for r0 > 2 mm, the mean error of traditional metrics can increase beyond 0.25D, and the MTR remains accurate. The proposed metric allows clinicians to obtain an accurate clinical spherical equivalent value without rescaling/refitting of the wavefront coefficients. It has the potential to be developed into a metric which will be able to predict full spherocylindrical refraction for the desired illumination conditions and corresponding pupil size. PMID:29104804
New Objective Refraction Metric Based on Sphere Fitting to the Wavefront.
Jaskulski, Mateusz; Martínez-Finkelshtein, Andreí; López-Gil, Norberto
2017-01-01
To develop an objective refraction formula based on the ocular wavefront error (WFE) expressed in terms of Zernike coefficients and pupil radius, which would be an accurate predictor of subjective spherical equivalent (SE) for different pupil sizes. A sphere is fitted to the ocular wavefront at the center and at a variable distance, t . The optimal fitting distance, t opt , is obtained empirically from a dataset of 308 eyes as a function of objective refraction pupil radius, r 0 , and used to define the formula of a new wavefront refraction metric (MTR). The metric is tested in another, independent dataset of 200 eyes. For pupil radii r 0 ≤ 2 mm, the new metric predicts the equivalent sphere with similar accuracy (<0.1D), however, for r 0 > 2 mm, the mean error of traditional metrics can increase beyond 0.25D, and the MTR remains accurate. The proposed metric allows clinicians to obtain an accurate clinical spherical equivalent value without rescaling/refitting of the wavefront coefficients. It has the potential to be developed into a metric which will be able to predict full spherocylindrical refraction for the desired illumination conditions and corresponding pupil size.
Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R
2017-02-14
Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.
Model-based prediction of myelosuppression and recovery based on frequent neutrophil monitoring.
Netterberg, Ida; Nielsen, Elisabet I; Friberg, Lena E; Karlsson, Mats O
2017-08-01
To investigate whether a more frequent monitoring of the absolute neutrophil counts (ANC) during myelosuppressive chemotherapy, together with model-based predictions, can improve therapy management, compared to the limited clinical monitoring typically applied today. Daily ANC in chemotherapy-treated cancer patients were simulated from a previously published population model describing docetaxel-induced myelosuppression. The simulated values were used to generate predictions of the individual ANC time-courses, given the myelosuppression model. The accuracy of the predicted ANC was evaluated under a range of conditions with reduced amount of ANC measurements. The predictions were most accurate when more data were available for generating the predictions and when making short forecasts. The inaccuracy of ANC predictions was highest around nadir, although a high sensitivity (≥90%) was demonstrated to forecast Grade 4 neutropenia before it occurred. The time for a patient to recover to baseline could be well forecasted 6 days (±1 day) before the typical value occurred on day 17. Daily monitoring of the ANC, together with model-based predictions, could improve anticancer drug treatment by identifying patients at risk for severe neutropenia and predicting when the next cycle could be initiated.
Comparing predictions of extinction risk using models and subjective judgement
NASA Astrophysics Data System (ADS)
McCarthy, Michael A.; Keith, David; Tietjen, Justine; Burgman, Mark A.; Maunder, Mark; Master, Larry; Brook, Barry W.; Mace, Georgina; Possingham, Hugh P.; Medellin, Rodrigo; Andelman, Sandy; Regan, Helen; Regan, Tracey; Ruckelshaus, Mary
2004-10-01
Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make subjective predictions more uncertain and less transparent than those based on models.
NASA Astrophysics Data System (ADS)
van Setten, M. J.; Giantomassi, M.; Gonze, X.; Rignanese, G.-M.; Hautier, G.
2017-10-01
The search for new materials based on computational screening relies on methods that accurately predict, in an automatic manner, total energy, atomic-scale geometries, and other fundamental characteristics of materials. Many technologically important material properties directly stem from the electronic structure of a material, but the usual workhorse for total energies, namely density-functional theory, is plagued by fundamental shortcomings and errors from approximate exchange-correlation functionals in its prediction of the electronic structure. At variance, the G W method is currently the state-of-the-art ab initio approach for accurate electronic structure. It is mostly used to perturbatively correct density-functional theory results, but is, however, computationally demanding and also requires expert knowledge to give accurate results. Accordingly, it is not presently used in high-throughput screening: fully automatized algorithms for setting up the calculations and determining convergence are lacking. In this paper, we develop such a method and, as a first application, use it to validate the accuracy of G0W0 using the PBE starting point and the Godby-Needs plasmon-pole model (G0W0GN @PBE) on a set of about 80 solids. The results of the automatic convergence study utilized provide valuable insights. Indeed, we find correlations between computational parameters that can be used to further improve the automatization of G W calculations. Moreover, we find that G0W0GN @PBE shows a correlation between the PBE and the G0W0GN @PBE gaps that is much stronger than that between G W and experimental gaps. However, the G0W0GN @PBE gaps still describe the experimental gaps more accurately than a linear model based on the PBE gaps. With this paper, we hence show that G W can be made automatic and is more accurate than using an empirical correction of the PBE gap, but that, for accurate predictive results for a broad class of materials, an improved starting point or some type of self-consistency is necessary.
An Economical Semi-Analytical Orbit Theory for Retarded Satellite Motion About an Oblate Planet
NASA Technical Reports Server (NTRS)
Gordon, R. A.
1980-01-01
Brouwer and Brouwer-Lyddanes' use of the Von Zeipel-Delaunay method is employed to develop an efficient analytical orbit theory suitable for microcomputers. A succinctly simple pseudo-phenomenologically conceptualized algorithm is introduced which accurately and economically synthesizes modeling of drag effects. The method epitomizes and manifests effortless efficient computer mechanization. Simulated trajectory data is employed to illustrate the theory's ability to accurately accommodate oblateness and drag effects for microcomputer ground based or onboard predicted orbital representation. Real tracking data is used to demonstrate that the theory's orbit determination and orbit prediction capabilities are favorably adaptable to and are comparable with results obtained utilizing complex definitive Cowell method solutions on satellites experiencing significant drag effects.
Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.
2017-01-01
The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623
NASA Astrophysics Data System (ADS)
Rylander, Marissa N.; Feng, Yusheng; Diller, Kenneth; Bass, J.
2005-04-01
Heat shock proteins (HSP) are critical components of a complex defense mechanism essential for preserving cell survival under adverse environmental conditions. It is inevitable that hyperthermia will enhance tumor tissue viability, due to HSP expression in regions where temperatures are insufficient to coagulate proteins, and would likely increase the probability of cancer recurrence. Although hyperthermia therapy is commonly used in conjunction with radiotherapy, chemotherapy, and gene therapy to increase therapeutic effectiveness, the efficacy of these therapies can be substantially hindered due to HSP expression when hyperthermia is applied prior to these procedures. Therefore, in planning hyperthermia protocols, prediction of the HSP response of the tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of overall tissue response. In this paper, we present a highly accurate, adaptive, finite element tumor model capable of predicting the HSP expression distribution and tissue damage region based on measured cellular data when hyperthermia protocols are specified. Cubic spline representations of HSP27 and HSP70, and Arrhenius damage models were integrated into the finite element model to enable prediction of the HSP expression and damage distribution in the tissue following laser heating. Application of the model can enable optimized treatment planning by controlling of the tissue response to therapy based on accurate prediction of the HSP expression and cell damage distribution.
Kozma, Bence; Hirsch, Edit; Gergely, Szilveszter; Párta, László; Pataki, Hajnalka; Salgó, András
2017-10-25
In this study, near-infrared (NIR) and Raman spectroscopy were compared in parallel to predict the glucose concentration of Chinese hamster ovary cell cultivations. A shake flask model system was used to quickly generate spectra similar to bioreactor cultivations therefore accelerating the development of a working model prior to actual cultivations. Automated variable selection and several pre-processing methods were tested iteratively during model development using spectra from six shake flask cultivations. The target was to achieve the lowest error of prediction for the glucose concentration in two independent shake flasks. The best model was then used to test the scalability of the two techniques by predicting spectra of a 10l and a 100l scale bioreactor cultivation. The NIR spectroscopy based model could follow the trend of the glucose concentration but it was not sufficiently accurate for bioreactor monitoring. On the other hand, the Raman spectroscopy based model predicted the concentration of glucose in both cultivation scales sufficiently accurately with an error around 4mM (0.72g/l), that is satisfactory for the on-line bioreactor monitoring purposes of the biopharma industry. Therefore, the shake flask model system was proven to be suitable for scalable spectroscopic model development. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes
Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian
2015-01-01
Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes. PMID:26294903
Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes.
Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian
2015-01-01
Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.
Age differences in recall and predicting recall of action events and words.
McDonald-Miszczak, L; Hubley, A M; Hultsch, D F
1996-03-01
Age differences in recall and prediction of recall were examined with different memory tasks. We asked 36 younger (19-28 yrs) and 36 older (60-81 yrs) women to provide both global and item-by-item predictions of their recall, and then to recall either (a) Subject Performance Tasks (SPTs), (b) verb-noun word-pairs memorized in list-like fashion (Word-Pairs), or (c) nonsense verb-noun word-pairs (Nonsense-Pairs) over three experimental trials. Based on previous research, we hypothesized that these tasks would vary in relative difficulty and flexibility of encoding. The results indicated that (a) age differences in global predictions (task specific self-efficacy) and recall performance across trials were minimized with SPT as compared with verbal materials, (b) global predictions were higher and more accurate for SPT as compared to verbal materials, and (c) item-by-item predictions were most accurate for materials encoded with the most flexibility (Nonsense Pairs). The results suggest that SPTs may provide some level of environmental support to reduce age differences in performance and task-specific self-efficacy, but that memory monitoring may depend on specific characteristics of the stimuli (i.e., flexibility of encoding) rather than their verbal or nonverbal nature.
Residual Strength Prediction of Fuselage Structures with Multiple Site Damage
NASA Technical Reports Server (NTRS)
Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1999-01-01
This paper summarizes recent results on simulating full-scale pressure tests of wide body, lap-jointed fuselage panels with multiple site damage (MSD). The crack tip opening angle (CTOA) fracture criterion and the FRANC3D/STAGS software program were used to analyze stable crack growth under conditions of general yielding. The link-up of multiple cracks and residual strength of damaged structures were predicted. Elastic-plastic finite element analysis based on the von Mises yield criterion and incremental flow theory with small strain assumption was used. A global-local modeling procedure was employed in the numerical analyses. Stress distributions from the numerical simulations are compared with strain gage measurements. Analysis results show that accurate representation of the load transfer through the rivets is crucial for the model to predict the stress distribution accurately. Predicted crack growth and residual strength are compared with test data. Observed and predicted results both indicate that the occurrence of small MSD cracks substantially reduces the residual strength. Modeling fatigue closure is essential to capture the fracture behavior during the early stable crack growth. Breakage of a tear strap can have a major influence on residual strength prediction.
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Clegg, S. M.; Frydenvang, J.
2015-12-01
One of the primary challenges faced by the ChemCam instrument on the Curiosity Mars rover is developing a regression model that can accurately predict the composition of the wide range of target types encountered (basalts, calcium sulfate, feldspar, oxides, etc.). The original calibration used 69 rock standards to train a partial least squares (PLS) model for each major element. By expanding the suite of calibration samples to >400 targets spanning a wider range of compositions, the accuracy of the model was improved, but some targets with "extreme" compositions (e.g. pure minerals) were still poorly predicted. We have therefore developed a simple method, referred to as "submodel PLS", to improve the performance of PLS across a wide range of target compositions. In addition to generating a "full" (0-100 wt.%) PLS model for the element of interest, we also generate several overlapping submodels (e.g. for SiO2, we generate "low" (0-50 wt.%), "mid" (30-70 wt.%), and "high" (60-100 wt.%) models). The submodels are generally more accurate than the "full" model for samples within their range because they are able to adjust for matrix effects that are specific to that range. To predict the composition of an unknown target, we first predict the composition with the submodels and the "full" model. Then, based on the predicted composition from the "full" model, the appropriate submodel prediction can be used (e.g. if the full model predicts a low composition, use the "low" model result, which is likely to be more accurate). For samples with "full" predictions that occur in a region of overlap between submodels, the submodel predictions are "blended" using a simple linear weighted sum. The submodel PLS method shows improvements in most of the major elements predicted by ChemCam and reduces the occurrence of negative predictions for low wt.% targets. Submodel PLS is currently being used in conjunction with ICA regression for the major element compositions of ChemCam data.
Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A
2018-01-09
Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.
A MELD-based model to determine risk of mortality among patients with acute variceal bleeding.
Reverter, Enric; Tandon, Puneeta; Augustin, Salvador; Turon, Fanny; Casu, Stefania; Bastiampillai, Ravin; Keough, Adam; Llop, Elba; González, Antonio; Seijo, Susana; Berzigotti, Annalisa; Ma, Mang; Genescà, Joan; Bosch, Jaume; García-Pagán, Joan Carles; Abraldes, Juan G
2014-02-01
Patients with cirrhosis with acute variceal bleeding (AVB) have high mortality rates (15%-20%). Previously described models are seldom used to determine prognoses of these patients, partially because they have not been validated externally and because they include subjective variables, such as bleeding during endoscopy and Child-Pugh score, which are evaluated inconsistently. We aimed to improve determination of risk for patients with AVB. We analyzed data collected from 178 patients with cirrhosis (Child-Pugh scores of A, B, and C: 15%, 57%, and 28%, respectively) and esophageal AVB who received standard therapy from 2007 through 2010. We tested the performance (discrimination and calibration) of previously described models, including the model for end-stage liver disease (MELD), and developed a new MELD calibration to predict the mortality of patients within 6 weeks of presentation with AVB. MELD-based predictions were validated in cohorts of patients from Canada (n = 240) and Spain (n = 221). Among study subjects, the 6-week mortality rate was 16%. MELD was the best model in terms of discrimination; it was recalibrated to predict the 6-week mortality rate with logistic regression (logit, -5.312 + 0.207 • MELD; bootstrapped R(2), 0.3295). MELD values of 19 or greater predicted 20% or greater mortality, whereas MELD scores less than 11 predicted less than 5% mortality. The model performed well for patients from Canada at all risk levels. In the Spanish validation set, in which all patients were treated with banding ligation, MELD predictions were accurate up to the 20% risk threshold. We developed a MELD-based model that accurately predicts mortality among patients with AVB, based on objective variables available at admission. This model could be useful to evaluate the efficacy of new therapies and stratify patients in randomized trials. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dutta, Ivy; Chowdhury, Anirban Roy; Kumbhakar, Dharmadas
2013-03-01
Using Chebyshev power series approach, accurate description for the first higher order (LP11) mode of graded index fibers having three different profile shape functions are presented in this paper and applied to predict their propagation characteristics. These characteristics include fractional power guided through the core, excitation efficiency and Petermann I and II spot sizes with their approximate analytic formulations. We have shown that where two and three Chebyshev points in LP11 mode approximation present fairly accurate results, the values based on our calculations involving four Chebyshev points match excellently with available exact numerical results.
NASA Technical Reports Server (NTRS)
Thurai, Merhala; Bringi, Viswanathan; Kennedy, Patrick; Notaros, Branislav; Gatlin, Patrick
2017-01-01
Accurate measurements of rain drop size distributions (DSD), with particular emphasis on small and tiny drops, are presented. Measurements were conducted in two very different climate regions, namely Northern Colorado and Northern Alabama. Both datasets reveal a combination of (i) a drizzle mode for drop diameters less than 0.7 mm and (ii) a precipitation mode for larger diameters. Scattering calculations using the DSDs are performed at S and X bands and compared with radar observations for the first location. Our accurate DSDs will improve radar-based rain rate estimates as well as propagation predictions.
Cancer of the esophagus--endoscopic ultrasound: selection for cure.
Caletti, G; Bocus, P; Fusaroli, P; Togliani, T; Marhefka, G; Roda, E
1998-01-01
Several treatment options are available to treat esophageal cancer. Ideally, treatment should be individualized, based on the projected treatment outcome for that individual. Accurate staging of the extent of the disease at the time of diagnosis offers the most rational attempt at stratifying patients into categories that can be used to affect treatment choices. Endoscopic ultrasonography (EUS) is the most accurate nonoperative technique for determining the depth of tumour infiltration and thus is accurate in predicting which patients will be able to undergo complete resection. EUS is also being used for tumour staging in order to guide treatment decisions in patients with esophageal cancer.
MOMENTARY BRAIN CONCENTRATION OF TRICHLOROETHYLENE PREDICTS THE EFFECTS ON RAT VISUAL FUNCTION.
This manuscript demonstrates that the level neurological impairment following acute reversible exposure to trichloroethylene, a volatile organic compound, is more accurately described when extrapolations across exposure conditions are based on target tissue (brain) dose level, th...
Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo
2017-09-13
We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.
NASA Astrophysics Data System (ADS)
Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo
2017-09-01
We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.
The Mira-Titan Universe. II. Matter Power Spectrum Emulation
NASA Astrophysics Data System (ADS)
Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana; Upadhye, Amol; Bingham, Derek; Habib, Salman; Higdon, David; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas
2017-09-01
We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k˜ 5 Mpc-1 and redshift z≤slant 2. In addition to covering the standard set of ΛCDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with 16 medium-resolution simulations and TimeRG perturbation theory results to provide accurate coverage over a wide k-range; the data set generated as part of this project is more than 1.2Pbytes. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-up results with more than a hundred cosmological models will soon achieve ˜ 1 % accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches. The new emulator code is publicly available.
The Mira-Titan Universe. II. Matter Power Spectrum Emulation
Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana; ...
2017-09-20
We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k ~ 5Mpc -1 and redshift z ≤ 2. Besides covering the standard set of CDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with sixteen medium-resolution simulations and TimeRG perturbation theory resultsmore » to provide accurate coverage of a wide k-range; the dataset generated as part of this project is more than 1.2Pbyte. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-on results with more than a hundred cosmological models will soon achieve ~1% accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches. The new emulator code is publicly available.« less
The Mira-Titan Universe. II. Matter Power Spectrum Emulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana
We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k similar to 5 Mpc(-1) and redshift z <= 2. In addition to covering the standard set of Lambda CDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with 16 medium-resolution simulations andmore » TimeRG perturbation theory results to provide accurate coverage over a wide k-range; the data set generated as part of this project is more than 1.2Pbytes. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-up results with more than a hundred cosmological models will soon achieve similar to 1% accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches.« less
The Mira-Titan Universe. II. Matter Power Spectrum Emulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana
We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k ~ 5Mpc -1 and redshift z ≤ 2. Besides covering the standard set of CDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with sixteen medium-resolution simulations and TimeRG perturbation theory resultsmore » to provide accurate coverage of a wide k-range; the dataset generated as part of this project is more than 1.2Pbyte. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-on results with more than a hundred cosmological models will soon achieve ~1% accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches. The new emulator code is publicly available.« less
NASA Astrophysics Data System (ADS)
Arshad, Muhammad Azeem; Maaroufi, AbdelKrim
2018-07-01
A beginning has been made in the present study regarding the accurate lifetime predictions of polymer solar cells. Certain reservations about the conventionally employed temperature accelerated lifetime measurements test for its unworthiness of predicting reliable lifetimes of polymer solar cells are brought into light. Critical issues concerning the accelerated lifetime testing include, assuming reaction mechanism instead of determining it, and relying solely on the temperature acceleration of a single property of material. An advanced approach comprising a set of theoretical models to estimate the accurate lifetimes of polymer solar cells is therefore suggested in order to suitably alternate the accelerated lifetime testing. This approach takes into account systematic kinetic modeling of various possible polymer degradation mechanisms under natural weathering conditions. The proposed kinetic approach is substantiated by its applications on experimental aging data-sets of polymer solar materials/solar cells including, P3HT polymer film, bulk heterojunction (MDMO-PPV:PCBM) and dye-sensitized solar cells. Based on the suggested approach, an efficacious lifetime determination formula for polymer solar cells is derived and tested on dye-sensitized solar cells. Some important merits of the proposed method are also pointed out and its prospective applications are discussed.
Motl, Robert W; Fernhall, Bo
2012-03-01
To examine the accuracy of predicting peak oxygen consumption (VO(2peak)) primarily from peak work rate (WR(peak)) recorded during a maximal, incremental exercise test on a cycle ergometer among persons with relapsing-remitting multiple sclerosis (RRMS) who had minimal disability. Cross-sectional study. Clinical research laboratory. Women with RRMS (n=32) and sex-, age-, height-, and weight-matched healthy controls (n=16) completed an incremental exercise test on a cycle ergometer to volitional termination. Not applicable. Measured and predicted VO(2peak) and WR(peak). There were strong, statistically significant associations between measured and predicted VO(2peak) in the overall sample (R(2)=.89, standard error of the estimate=127.4 mL/min) and subsamples with (R(2)=.89, standard error of the estimate=131.3 mL/min) and without (R(2)=.85, standard error of the estimate=126.8 mL/min) multiple sclerosis (MS) based on the linear regression analyses. Based on the 95% confidence limits for worst-case errors, the equation predicted VO(2peak) within 10% of its true value in 95 of every 100 subjects with MS. Peak VO(2) can be accurately predicted in persons with RRMS who have minimal disability as it is in controls by using established equations and WR(peak) recorded from a maximal, incremental exercise test on a cycle ergometer. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Marchand-Maillet, Florence; Debes, Claire; Garnier, Fanny; Dufeu, Nicolas; Sciard, Didier; Beaussier, Marc
2015-02-01
Patients flow in outpatient surgical unit is a major issue with regards to resource utilization, overall case load and patient satisfaction. An electronic Radio Frequency Identification Device (RFID) was used to document the overall time spent by the patients between their admission and discharge from the unit. The objective of this study was to evaluate how a RFID-based data collection system could provide an accurate prediction of the actual time for the patient to be discharged from the ambulatory surgical unit after surgery. This is an observational prospective evaluation carried out in an academic ambulatory surgery center (ASC). Data on length of stay at each step of the patient care, from admission to discharge, were recorded by a RFID device and analyzed according to the type of surgical procedure, the surgeon and the anesthetic technique. Based on these initial data (n = 1520), patients were scheduled in a sequential manner according to the expected duration of the previous case. The primary endpoint was the difference between actual and predicted time of discharge from the unit. A total of 414 consecutive patients were prospectively evaluated. One hundred seventy four patients (42%) were discharged at the predicted time ± 30 min. Only 24% were discharged behind predicted schedule. Using an automatic record of patient's length of stay would allow an accurate prediction of the discharge time according to the type of surgery, the surgeon and the anesthetic procedure.
Viskari, Toni; Hardiman, Brady; Desai, Ankur R; Dietze, Michael C
2015-03-01
Our limited ability to accurately simulate leaf phenology is a leading source of uncertainty in models of ecosystem carbon cycling. We evaluate if continuously updating canopy state variables with observations is beneficial for predicting phenological events. We employed ensemble adjustment Kalman filter (EAKF) to update predictions of leaf area index (LAI) and leaf extension using tower-based photosynthetically active radiation (PAR) and moderate resolution imaging spectrometer (MODIS) data for 2002-2005 at Willow Creek, Wisconsin, USA, a mature, even-aged, northern hardwood, deciduous forest. The ecosystem demography model version 2 (ED2) was used as the prediction model, forced by offline climate data. EAKF successfully incorporated information from both the observations and model predictions weighted by their respective uncertainties. The resulting. estimate reproduced the observed leaf phenological cycle in the spring and the fall better than a parametric model prediction. These results indicate that during spring the observations contribute most in determining the correct bud-burst date, after which the model performs well, but accurately modeling fall leaf senesce requires continuous model updating from observations. While the predicted net ecosystem exchange (NEE) of CO2 precedes tower observations and unassimilated model predictions in the spring, overall the prediction follows observed NEE better than the model alone. Our results show state data assimilation successfully simulates the evolution of plant leaf phenology and improves model predictions of forest NEE.
Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano
2016-07-07
Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.
NASA Astrophysics Data System (ADS)
Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano
2016-07-01
Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.
Validating a Predictive Model of Acute Advanced Imaging Biomarkers in Ischemic Stroke.
Bivard, Andrew; Levi, Christopher; Lin, Longting; Cheng, Xin; Aviv, Richard; Spratt, Neil J; Lou, Min; Kleinig, Tim; O'Brien, Billy; Butcher, Kenneth; Zhang, Jingfen; Jannes, Jim; Dong, Qiang; Parsons, Mark
2017-03-01
Advanced imaging to identify tissue pathophysiology may provide more accurate prognostication than the clinical measures used currently in stroke. This study aimed to derive and validate a predictive model for functional outcome based on acute clinical and advanced imaging measures. A database of prospectively collected sub-4.5 hour patients with ischemic stroke being assessed for thrombolysis from 5 centers who had computed tomographic perfusion and computed tomographic angiography before a treatment decision was assessed. Individual variable cut points were derived from a classification and regression tree analysis. The optimal cut points for each assessment variable were then used in a backward logic regression to predict modified Rankin scale (mRS) score of 0 to 1 and 5 to 6. The variables remaining in the models were then assessed using a receiver operating characteristic curve analysis. Overall, 1519 patients were included in the study, 635 in the derivation cohort and 884 in the validation cohort. The model was highly accurate at predicting mRS score of 0 to 1 in all patients considered for thrombolysis therapy (area under the curve [AUC] 0.91), those who were treated (AUC 0.88) and those with recanalization (AUC 0.89). Next, the model was highly accurate at predicting mRS score of 5 to 6 in all patients considered for thrombolysis therapy (AUC 0.91), those who were treated (0.89) and those with recanalization (AUC 0.91). The odds ratio of thrombolysed patients who met the model criteria achieving mRS score of 0 to 1 was 17.89 (4.59-36.35, P <0.001) and for mRS score of 5 to 6 was 8.23 (2.57-26.97, P <0.001). This study has derived and validated a highly accurate model at predicting patient outcome after ischemic stroke. © 2017 American Heart Association, Inc.
Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry
2016-10-01
The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future. © 2016 John Wiley & Sons Ltd.
Pan, Feng; Reifsnider, Odette; Zheng, Ying; Proskorovsky, Irina; Li, Tracy; He, Jianming; Sorensen, Sonja V
2018-04-01
Treatment landscape in prostate cancer has changed dramatically with the emergence of new medicines in the past few years. The traditional survival partition model (SPM) cannot accurately predict long-term clinical outcomes because it is limited by its ability to capture the key consequences associated with this changing treatment paradigm. The objective of this study was to introduce and validate a discrete-event simulation (DES) model for prostate cancer. A DES model was developed to simulate overall survival (OS) and other clinical outcomes based on patient characteristics, treatment received, and disease progression history. We tested and validated this model with clinical trial data from the abiraterone acetate phase III trial (COU-AA-302). The model was constructed with interim data (55% death) and validated with the final data (96% death). Predicted OS values were also compared with those from the SPM. The DES model's predicted time to chemotherapy and OS are highly consistent with the final observed data. The model accurately predicts the OS hazard ratio from the final data cut (predicted: 0.74; 95% confidence interval [CI] 0.64-0.85 and final actual: 0.74; 95% CI 0.6-0.88). The log-rank test to compare the observed and predicted OS curves indicated no statistically significant difference between observed and predicted curves. However, the predictions from the SPM based on interim data deviated significantly from the final data. Our study showed that a DES model with properly developed risk equations presents considerable improvements to the more traditional SPM in flexibility and predictive accuracy of long-term outcomes. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puskar, Joseph David; Quintana, Michael A.; Sorensen, Neil Robert
A program is underway at Sandia National Laboratories to predict long-term reliability of photovoltaic (PV) systems. The vehicle for the reliability predictions is a Reliability Block Diagram (RBD), which models system behavior. Because this model is based mainly on field failure and repair times, it can be used to predict current reliability, but it cannot currently be used to accurately predict lifetime. In order to be truly predictive, physics-informed degradation processes and failure mechanisms need to be included in the model. This paper describes accelerated life testing of metal foil tapes used in thin-film PV modules, and how tape jointmore » degradation, a possible failure mode, can be incorporated into the model.« less
Pseudo CT estimation from MRI using patch-based random forest
NASA Astrophysics Data System (ADS)
Yang, Xiaofeng; Lei, Yang; Shu, Hui-Kuo; Rossi, Peter; Mao, Hui; Shim, Hyunsuk; Curran, Walter J.; Liu, Tian
2017-02-01
Recently, MR simulators gain popularity because of unnecessary radiation exposure of CT simulators being used in radiation therapy planning. We propose a method for pseudo CT estimation from MR images based on a patch-based random forest. Patient-specific anatomical features are extracted from the aligned training images and adopted as signatures for each voxel. The most robust and informative features are identified using feature selection to train the random forest. The well-trained random forest is used to predict the pseudo CT of a new patient. This prediction technique was tested with human brain images and the prediction accuracy was assessed using the original CT images. Peak signal-to-noise ratio (PSNR) and feature similarity (FSIM) indexes were used to quantify the differences between the pseudo and original CT images. The experimental results showed the proposed method could accurately generate pseudo CT images from MR images. In summary, we have developed a new pseudo CT prediction method based on patch-based random forest, demonstrated its clinical feasibility, and validated its prediction accuracy. This pseudo CT prediction technique could be a useful tool for MRI-based radiation treatment planning and attenuation correction in a PET/MRI scanner.
Evaluation of hydrodynamic ocean models as a first step in larval dispersal modelling
NASA Astrophysics Data System (ADS)
Vasile, Roxana; Hartmann, Klaas; Hobday, Alistair J.; Oliver, Eric; Tracey, Sean
2018-01-01
Larval dispersal modelling, a powerful tool in studying population connectivity and species distribution, requires accurate estimates of the ocean state, on a high-resolution grid in both space (e.g. 0.5-1 km horizontal grid) and time (e.g. hourly outputs), particularly of current velocities and water temperature. These estimates are usually provided by hydrodynamic models based on which larval trajectories and survival are computed. In this study we assessed the accuracy of two hydrodynamic models around Australia - Bluelink ReANalysis (BRAN) and Hybrid Coordinate Ocean Model (HYCOM) - through comparison with empirical data from the Australian National Moorings Network (ANMN). We evaluated the models' predictions of seawater parameters most relevant to larval dispersal - temperature, u and v velocities and current speed and direction - on the continental shelf where spawning and nursery areas for major fishery species are located. The performance of each model in estimating ocean parameters was found to depend on the parameter investigated and to vary from one geographical region to another. Both BRAN and HYCOM models systematically overestimated the mean water temperature, particularly in the top 140 m of water column, with over 2 °C bias at some of the mooring stations. HYCOM model was more accurate than BRAN for water temperature predictions in the Great Australian Bight and along the east coast of Australia. Skill scores between each model and the in situ observations showed lower accuracy in the models' predictions of u and v ocean current velocities compared to water temperature predictions. For both models, the lowest accuracy in predicting ocean current velocities, speed and direction was observed at 200 m depth. Low accuracy of both model predictions was also observed in the top 10 m of the water column. BRAN had more accurate predictions of both u and v velocities in the upper 50 m of water column at all mooring station locations. While HYCOM predictions of ocean current speed were generally more accurate than BRAN, BRAN predictions of both ocean current speed and direction were more accurate than HYCOM along the southeast coast of Australia and Tasmania. This study identified important inaccuracies in the hydrodynamic models' estimations of the real ocean parameters and on time scales relevant to larval dispersal studies. These findings highlight the importance of the choice and validation of hydrodynamic models, and calls for estimates of such bias to be incorporated in dispersal studies.
Osmani, Feroz A; Thakkar, Savyasachi; Ramme, Austin; Elbuluk, Ameer; Wojack, Paul; Vigdorchik, Jonathan M
2017-12-01
Preoperative total hip arthroplasty templating can be performed with radiographs using acetate prints, digital viewing software, or with computed tomography (CT) images. Our hypothesis is that 3D templating is more precise and accurate with cup size prediction as compared to 2D templating with acetate prints and digital templating software. Data collected from 45 patients undergoing robotic-assisted total hip arthroplasty compared cup sizes templated on acetate prints and OrthoView software to MAKOplasty software that uses CT scan. Kappa analysis determined strength of agreement between each templating modality and the final size used. t tests compared mean cup-size variance from the final size for each templating technique. Interclass correlation coefficient (ICC) determined reliability of digital and acetate planning by comparing predictions of the operating surgeon and a blinded adult reconstructive fellow. The Kappa values for CT-guided, digital, and acetate templating with the final size was 0.974, 0.233, and 0.262, respectively. Both digital and acetate templating significantly overpredicted cup size, compared to CT-guided methods ( P < .001). There was no significant difference between digital and acetate templating ( P = .117). Interclass correlation coefficient value for digital and acetate templating was 0.928 and 0.931, respectively. CT-guided planning more accurately predicts hip implant cup size when compared to the significant overpredictions of digital and acetate templating. CT-guided templating may also lead to better outcomes due to bone stock preservation from a smaller and more accurate cup size predicted than that of digital and acetate predictions.
Predicting perturbation patterns from the topology of biological networks.
Santolini, Marc; Barabási, Albert-László
2018-06-20
High-throughput technologies, offering an unprecedented wealth of quantitative data underlying the makeup of living systems, are changing biology. Notably, the systematic mapping of the relationships between biochemical entities has fueled the rapid development of network biology, offering a suitable framework to describe disease phenotypes and predict potential drug targets. However, our ability to develop accurate dynamical models remains limited, due in part to the limited knowledge of the kinetic parameters underlying these interactions. Here, we explore the degree to which we can make reasonably accurate predictions in the absence of the kinetic parameters. We find that simple dynamically agnostic models are sufficient to recover the strength and sign of the biochemical perturbation patterns observed in 87 biological models for which the underlying kinetics are known. Surprisingly, a simple distance-based model achieves 65% accuracy. We show that this predictive power is robust to topological and kinetic parameter perturbations, and we identify key network properties that can increase up to 80% the recovery rate of the true perturbation patterns. We validate our approach using experimental data on the chemotactic pathway in bacteria, finding that a network model of perturbation spreading predicts with ∼80% accuracy the directionality of gene expression and phenotype changes in knock-out and overproduction experiments. These findings show that the steady advances in mapping out the topology of biochemical interaction networks opens avenues for accurate perturbation spread modeling, with direct implications for medicine and drug development.
Page, Richard B; Scrivani, Peter V; Dykes, Nathan L; Erb, Hollis N; Hobbs, Jeff M
2006-01-01
Our purpose was to determine the accuracy of increased thyroid activity for diagnosing hyperthyroidism in cats suspected of having that disease during pertechnetate scintigraphy using subcutaneous rather than intravenous radioisotope administration. Increased thyroid activity was determined by two methods: the thyroid:salivary ratio (T:S) and visual inspection. These assessments were made on the ventral scintigram of the head and neck. Scintigraphy was performed by injecting sodium pertechnetate (111 MBq, SQ) in the right-dorsal-lumbar region; static-acquisition images were obtained 20 min after injection. We used 49 cats; 34 (69%) had hyperthyroidism based on serum-chemistry analysis. Using a Wilcoxon's rank-sum test, a significant difference (P < 0.0001) was detected in the T:S between cats with and without hyperthyroidism. Using a decision criterion of 2.0 for the T:S, the test accurately predicted hyperthyroidism in 32/34 cats (sensitivity, 94%; 95% confidence interval (CI), 85-100%) and correctly predicted that hyperthyroidism was absent in 15/15 cats (specificity, 100%; CI, 97-100%). Using visual inspection, the test accurately predicted hyperthyroidism in 34/34 cats (sensitivity, 100%; CI, 99-100%) and correctly predicted that hyperthyroidism was absent in 12/15 cats (specificity, 80%; CI, 56-100%). The positive and negative predictive values were high for a wide range of prevalence of hyperthyroidism. And, the test had excellent agreement within and between examiners. Therefore, detecting increased thyroid activity during pertechnetate scintigraphy by subcutaneous injection is an accurate and reproducible test for feline hyperthyroidism.
Summary of Data from the First AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Levy, David W.; Zickuhr, Tom; Vassberg, John; Agrawal, Shreekant; Wahls, Richard A.; Pirzadeh, Shahyar; Hemsch, Michael J.
2002-01-01
The results from the first AIAA CFD Drag Prediction Workshop are summarized. The workshop was designed specifically to assess the state-of-the-art of computational fluid dynamics methods for force and moment prediction. An impartial forum was provided to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify areas needing additional research and development. The subject of the study was the DLR-F4 wing-body configuration, which is representative of transport aircraft designed for transonic flight. Specific test cases were required so that valid comparisons could be made. Optional test cases included constant-C(sub L) drag-rise predictions typically used in airplane design by industry. Results are compared to experimental data from three wind tunnel tests. A total of 18 international participants using 14 different codes submitted data to the workshop. No particular grid type or turbulence model was more accurate, when compared to each other, or to wind tunnel data. Most of the results overpredicted C(sub Lo) and C(sub Do), but induced drag (dC(sub D)/dC(sub L)(exp 2)) agreed fairly well. Drag rise at high Mach number was underpredicted, however, especially at high C(sub L). On average, the drag data were fairly accurate, but the scatter was greater than desired. The results show that well-validated Reynolds-Averaged Navier-Stokes CFD methods are sufficiently accurate to make design decisions based on predicted drag.
Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan
2014-09-01
This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Porru, Marcella; Özkan, Leyla
2017-05-24
This paper develops a new simulation model for crystal size distribution dynamics in industrial batch crystallization. The work is motivated by the necessity of accurate prediction models for online monitoring purposes. The proposed numerical scheme is able to handle growth, nucleation, and agglomeration kinetics by means of the population balance equation and the method of characteristics. The former offers a detailed description of the solid phase evolution, while the latter provides an accurate and efficient numerical solution. In particular, the accuracy of the prediction of the agglomeration kinetics, which cannot be ignored in industrial crystallization, has been assessed by comparing it with solutions in the literature. The efficiency of the solution has been tested on a simulation of a seeded flash cooling batch process. Since the proposed numerical scheme can accurately simulate the system behavior more than hundred times faster than the batch duration, it is suitable for online applications such as process monitoring tools based on state estimators.
A hybrid method for accurate star tracking using star sensor and gyros.
Lu, Jiazhen; Yang, Lie; Zhang, Hao
2017-10-01
Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.
2017-01-01
This paper develops a new simulation model for crystal size distribution dynamics in industrial batch crystallization. The work is motivated by the necessity of accurate prediction models for online monitoring purposes. The proposed numerical scheme is able to handle growth, nucleation, and agglomeration kinetics by means of the population balance equation and the method of characteristics. The former offers a detailed description of the solid phase evolution, while the latter provides an accurate and efficient numerical solution. In particular, the accuracy of the prediction of the agglomeration kinetics, which cannot be ignored in industrial crystallization, has been assessed by comparing it with solutions in the literature. The efficiency of the solution has been tested on a simulation of a seeded flash cooling batch process. Since the proposed numerical scheme can accurately simulate the system behavior more than hundred times faster than the batch duration, it is suitable for online applications such as process monitoring tools based on state estimators. PMID:28603342
Swanson, Jon; Audie, Joseph
2018-01-01
A fundamental and unsolved problem in biophysical chemistry is the development of a computationally simple, physically intuitive, and generally applicable method for accurately predicting and physically explaining protein-protein binding affinities from protein-protein interaction (PPI) complex coordinates. Here, we propose that the simplification of a previously described six-term PPI scoring function to a four term function results in a simple expression of all physically and statistically meaningful terms that can be used to accurately predict and explain binding affinities for a well-defined subset of PPIs that are characterized by (1) crystallographic coordinates, (2) rigid-body association, (3) normal interface size, and hydrophobicity and hydrophilicity, and (4) high quality experimental binding affinity measurements. We further propose that the four-term scoring function could be regarded as a core expression for future development into a more general PPI scoring function. Our work has clear implications for PPI modeling and structure-based drug design.
Gradient boosting machine for modeling the energy consumption of commercial buildings
Touzani, Samir; Granderson, Jessica; Fernandes, Samuel
2017-11-26
Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less
Gradient boosting machine for modeling the energy consumption of commercial buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touzani, Samir; Granderson, Jessica; Fernandes, Samuel
Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less
Passenger Flow Forecasting Research for Airport Terminal Based on SARIMA Time Series Model
NASA Astrophysics Data System (ADS)
Li, Ziyu; Bi, Jun; Li, Zhiyin
2017-12-01
Based on the data of practical operating of Kunming Changshui International Airport during2016, this paper proposes Seasonal Autoregressive Integrated Moving Average (SARIMA) model to predict the passenger flow. This article not only considers the non-stationary and autocorrelation of the sequence, but also considers the daily periodicity of the sequence. The prediction results can accurately describe the change trend of airport passenger flow and provide scientific decision support for the optimal allocation of airport resources and optimization of departure process. The result shows that this model is applicable to the short-term prediction of airport terminal departure passenger traffic and the average error ranges from 1% to 3%. The difference between the predicted and the true values of passenger traffic flow is quite small, which indicates that the model has fairly good passenger traffic flow prediction ability.
Predicting drug hydrolysis based on moisture uptake in various packaging designs.
Naversnik, Klemen; Bohanec, Simona
2008-12-18
An attempt was made to predict the stability of a moisture sensitive drug product based on the knowledge of the dependence of the degradation rate on tablet moisture. The moisture increase inside a HDPE bottle with the drug formulation was simulated with the sorption-desorption moisture transfer model, which, in turn, allowed an accurate prediction of the drug degradation kinetics. The stability prediction, obtained by computer simulation, was made in a considerably shorter time frame and required little resources compared to a conventional stability study. The prediction was finally upgraded to a stochastic Monte Carlo simulation, which allowed quantitative incorporation of uncertainty, stemming from various sources. The resulting distribution of the outcome of interest (amount of degradation product at expiry) is a comprehensive way of communicating the result along with its uncertainty, superior to single-value results or confidence intervals.
NASA Technical Reports Server (NTRS)
Duda, David P.; Minnis, Patrick
2009-01-01
Previous studies have shown that probabilistic forecasting may be a useful method for predicting persistent contrail formation. A probabilistic forecast to accurately predict contrail formation over the contiguous United States (CONUS) is created by using meteorological data based on hourly meteorological analyses from the Advanced Regional Prediction System (ARPS) and from the Rapid Update Cycle (RUC) as well as GOES water vapor channel measurements, combined with surface and satellite observations of contrails. Two groups of logistic models were created. The first group of models (SURFACE models) is based on surface-based contrail observations supplemented with satellite observations of contrail occurrence. The second group of models (OUTBREAK models) is derived from a selected subgroup of satellite-based observations of widespread persistent contrails. The mean accuracies for both the SURFACE and OUTBREAK models typically exceeded 75 percent when based on the RUC or ARPS analysis data, but decreased when the logistic models were derived from ARPS forecast data.
Cheminformatics-aided pharmacovigilance: application to Stevens-Johnson Syndrome
Low, Yen S; Caster, Ola; Bergvall, Tomas; Fourches, Denis; Zang, Xiaoling; Norén, G Niklas; Rusyn, Ivan; Edwards, Ralph
2016-01-01
Objective Quantitative Structure-Activity Relationship (QSAR) models can predict adverse drug reactions (ADRs), and thus provide early warnings of potential hazards. Timely identification of potential safety concerns could protect patients and aid early diagnosis of ADRs among the exposed. Our objective was to determine whether global spontaneous reporting patterns might allow chemical substructures associated with Stevens-Johnson Syndrome (SJS) to be identified and utilized for ADR prediction by QSAR models. Materials and Methods Using a reference set of 364 drugs having positive or negative reporting correlations with SJS in the VigiBase global repository of individual case safety reports (Uppsala Monitoring Center, Uppsala, Sweden), chemical descriptors were computed from drug molecular structures. Random Forest and Support Vector Machines methods were used to develop QSAR models, which were validated by external 5-fold cross validation. Models were employed for virtual screening of DrugBank to predict SJS actives and inactives, which were corroborated using knowledge bases like VigiBase, ChemoText, and MicroMedex (Truven Health Analytics Inc, Ann Arbor, Michigan). Results We developed QSAR models that could accurately predict if drugs were associated with SJS (area under the curve of 75%–81%). Our 10 most active and inactive predictions were substantiated by SJS reports (or lack thereof) in the literature. Discussion Interpretation of QSAR models in terms of significant chemical descriptors suggested novel SJS structural alerts. Conclusions We have demonstrated that QSAR models can accurately identify SJS active and inactive drugs. Requiring chemical structures only, QSAR models provide effective computational means to flag potentially harmful drugs for subsequent targeted surveillance and pharmacoepidemiologic investigations. PMID:26499102
Tools for Early Prediction of Drug Loading in Lipid-Based Formulations
2015-01-01
Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R2 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R2 0.85; Polysorbate 80, R2 0.90; Cremophor EL, R2 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R2 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R2 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug. PMID:26568134
Tools for Early Prediction of Drug Loading in Lipid-Based Formulations.
Alskär, Linda C; Porter, Christopher J H; Bergström, Christel A S
2016-01-04
Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R(2) 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R(2) 0.85; Polysorbate 80, R(2) 0.90; Cremophor EL, R(2) 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R(2) 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R(2) 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug.
NASA Technical Reports Server (NTRS)
Rejmankova, E.; Roberts, D. R.; Pawley, A.; Manguin, S.; Polanco, J.
1995-01-01
Remote sensing is particularly helpful for assessing the location and extent of vegetation formations, such as herbaceous wetlands, that are difficult to examine on the ground. Marshes that are sparsely populated with emergent macrophytes and dense cyanobacterial mats have previously been identified as very productive Anopheles albimanus larval habitats. This type of habitat was detectable on a classified multispectral System Probatoire d'Observation de la Terre image of northern Belize as a mixture of two isoclasses. A similar spectral signature is characteristic for vegetation of river margins consisting of aquatic grasses and water hyacinth, which constitutes another productive larval habitat. Based on the distance between human settlements (sites) of various sizes and the nearest marsh/river exhibiting this particular class combination, we selected two groups of sites: those located closer than 500 m and those located more than 1,500 m from such habitats. Based on previous adult collections near larval habitats, we defined a landing rate of 0.5 mosquitoes/human/min from 6:30 PM to 8:00 PM as the threshold for high (> or = 0.5 mosquitoes/human/min) versus low (< 0.5 mosquitoes/human/min) densities of An. albimanus. Sites located less than 500 m from the habitat were predicted as having values higher than this threshold, while lower values were predicted for sites located greater than 1,500 m from the habitat. Predictions were verified by collections of mosquitoes landing on humans. The predictions were 100% accurate for sites in the > 1,500-m category and 89% accurate for sites in the < 500-m category.
How Clean Are Hotel Rooms? Part I: Visual Observations vs. Microbiological Contamination.
Almanza, Barbara A; Kirsch, Katie; Kline, Sheryl Fried; Sirsat, Sujata; Stroia, Olivia; Choi, Jin Kyung; Neal, Jay
2015-01-01
Current evidence of hotel room cleanliness is based on observation rather than empirically based microbial assessment. The purpose of the study described here was to determine if observation provides an accurate indicator of cleanliness. Results demonstrated that visual assessment did not accurately predict microbial contamination. Although testing standards have not yet been established for hotel rooms and will be evaluated in Part II of the authors' study, potential microbial hazards included the sponge and mop (housekeeping cart), toilet, bathroom floor, bathroom sink, and light switch. Hotel managers should increase cleaning in key areas to reduce guest exposure to harmful bacteria.
Solar flare predictions and warnings
NASA Technical Reports Server (NTRS)
White, K. P., III; Mayfield, E. B.
1973-01-01
The real-time solar monitoring information supplied to support SPARCS-equipped rocket launches, the routine collection and analysis of 3.3-mm solar radio maps, short-term flare forecasts based on these maps, longer-term forecasts based on the recurrence of active regions, and results of the synoptic study of solar active regions at 3.3-mm wavelength are presented. Forecasted flares in the 24-hour forecasts were 81% accurate, and those in the 28-day forecasts were 97% accurate. Synoptic radio maps at 3.3-mm wavelength are presented for twenty-three solar rotations in 1967 and 1968, as well as synoptic flare charts for the same period.
Obtaining Accurate Probabilities Using Classifier Calibration
ERIC Educational Resources Information Center
Pakdaman Naeini, Mahdi
2016-01-01
Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are…
Kulp, John L.; Cloudsdale, Ian S.; Kulp, John L.
2017-01-01
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition. PMID:28837642
NASA Astrophysics Data System (ADS)
Bourke, Sarah A.; Hermann, Kristian J.; Hendry, M. Jim
2017-11-01
Elevated groundwater salinity associated with produced water, leaching from landfills or secondary salinity can degrade arable soils and potable water resources. Direct-push electrical conductivity (EC) profiling enables rapid, relatively inexpensive, high-resolution in-situ measurements of subsurface salinity, without requiring core collection or installation of groundwater wells. However, because the direct-push tool measures the bulk EC of both solid and liquid phases (ECa), incorporation of ECa data into regional or historical groundwater data sets requires the prediction of pore water EC (ECw) or chloride (Cl-) concentrations from measured ECa. Statistical linear regression and physically based models for predicting ECw and Cl- from ECa profiles were tested on a brine plume in central Saskatchewan, Canada. A linear relationship between ECa/ECw and porosity was more accurate for predicting ECw and Cl- concentrations than a power-law relationship (Archie's Law). Despite clay contents of up to 96%, the addition of terms to account for electrical conductance in the solid phase did not improve model predictions. In the absence of porosity data, statistical linear regression models adequately predicted ECw and Cl- concentrations from direct-push ECa profiles (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl- = 1,978 ECa - 1,398, R 2 = 0.73). These statistical models can be used to predict ECw in the absence of lithologic data and will be particularly useful for initial site assessments. The more accurate linear physically based model can be used to predict ECw and Cl- as porosity data become available and the site-specific ECw-Cl- relationship is determined.
Kulp, John L; Cloudsdale, Ian S; Kulp, John L; Guarnieri, Frank
2017-01-01
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition.
McCoy, Alene T; Bartels, Michael J; Rick, David L; Saghir, Shakil A
2012-07-01
TK Modeler 1.0 is a Microsoft® Excel®-based pharmacokinetic (PK) modeling program created to aid in the design of toxicokinetic (TK) studies. TK Modeler 1.0 predicts the diurnal blood/plasma concentrations of a test material after single, multiple bolus or dietary dosing using known PK information. Fluctuations in blood/plasma concentrations based on test material kinetics are calculated using one- or two-compartment PK model equations and the principle of superposition. This information can be utilized for the determination of appropriate dosing regimens based on reaching a specific desired C(max), maintaining steady-state blood/plasma concentrations, or other exposure target. This program can also aid in the selection of sampling times for accurate calculation of AUC(24h) (diurnal area under the blood concentration time curve) using sparse-sampling methodologies (one, two or three samples). This paper describes the construction, use and validation of TK Modeler. TK Modeler accurately predicted blood/plasma concentrations of test materials and provided optimal sampling times for the calculation of AUC(24h) with improved accuracy using sparse-sampling methods. TK Modeler is therefore a validated, unique and simple modeling program that can aid in the design of toxicokinetic studies. Copyright © 2012 Elsevier Inc. All rights reserved.
Tong, Tong; Gao, Qinquan; Guerrero, Ricardo; Ledig, Christian; Chen, Liang; Rueckert, Daniel; Initiative, Alzheimer's Disease Neuroimaging
2017-01-01
Identifying mild cognitive impairment (MCI) subjects who will progress to Alzheimer's disease (AD) is not only crucial in clinical practice, but also has a significant potential to enrich clinical trials. The purpose of this study is to develop an effective biomarker for an accurate prediction of MCI-to-AD conversion from magnetic resonance images. We propose a novel grading biomarker for the prediction of MCI-to-AD conversion. First, we comprehensively study the effects of several important factors on the performance in the prediction task including registration accuracy, age correction, feature selection, and the selection of training data. Based on the studies of these factors, a grading biomarker is then calculated for each MCI subject using sparse representation techniques. Finally, the grading biomarker is combined with age and cognitive measures to provide a more accurate prediction of MCI-to-AD conversion. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the proposed global grading biomarker achieved an area under the receiver operating characteristic curve (AUC) in the range of 79-81% for the prediction of MCI-to-AD conversion within three years in tenfold cross validations. The classification AUC further increases to 84-92% when age and cognitive measures are combined with the proposed grading biomarker. The obtained accuracy of the proposed biomarker benefits from the contributions of different factors: a tradeoff registration level to align images to the template space, the removal of the normal aging effect, selection of discriminative voxels, the calculation of the grading biomarker using AD and normal control groups, and the integration of sparse representation technique and the combination of cognitive measures. The evaluation on the ADNI dataset shows the efficacy of the proposed biomarker and demonstrates a significant contribution in accurate prediction of MCI-to-AD conversion.
Hannan, Edward L; Farrell, Louise Szypulski; Walford, Gary; Jacobs, Alice K; Berger, Peter B; Holmes, David R; Stamato, Nicholas J; Sharma, Samin; King, Spencer B
2013-06-01
This study sought to develop a percutaneous coronary intervention (PCI) risk score for in-hospital/30-day mortality. Risk scores are simplified linear scores that provide clinicians with quick estimates of patients' short-term mortality rates for informed consent and to determine the appropriate intervention. Earlier PCI risk scores were based on in-hospital mortality. However, for PCI, a substantial percentage of patients die within 30 days of the procedure after discharge. New York's Percutaneous Coronary Interventions Reporting System was used to develop an in-hospital/30-day logistic regression model for patients undergoing PCI in 2010, and this model was converted into a simple linear risk score that estimates mortality rates. The score was validated by applying it to 2009 New York PCI data. Subsequent analyses evaluated the ability of the score to predict complications and length of stay. A total of 54,223 patients were used to develop the risk score. There are 11 risk factors that make up the score, with risk factor scores ranging from 1 to 9, and the highest total score is 34. The score was validated based on patients undergoing PCI in the previous year, and accurately predicted mortality for all patients as well as patients who recently suffered a myocardial infarction (MI). The PCI risk score developed here enables clinicians to estimate in-hospital/30-day mortality very quickly and quite accurately. It accurately predicts mortality for patients undergoing PCI in the previous year and for MI patients, and is also moderately related to perioperative complications and length of stay. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
User's manual for the ALS base heating prediction code, volume 2
NASA Technical Reports Server (NTRS)
Reardon, John E.; Fulton, Michael S.
1992-01-01
The Advanced Launch System (ALS) Base Heating Prediction Code is based on a generalization of first principles in the prediction of plume induced base convective heating and plume radiation. It should be considered to be an approximate method for evaluating trends as a function of configuration variables because the processes being modeled are too complex to allow an accurate generalization. The convective methodology is based upon generalizing trends from four nozzle configurations, so an extension to use the code with strap-on boosters, multiple nozzle sizes, and variations in the propellants and chamber pressure histories cannot be precisely treated. The plume radiation is more amenable to precise computer prediction, but simplified assumptions are required to model the various aspects of the candidate configurations. Perhaps the most difficult area to characterize is the variation of radiation with altitude. The theory in the radiation predictions is described in more detail. This report is intended to familiarize a user with the interface operation and options, to summarize the limitations and restrictions of the code, and to provide information to assist in installing the code.
Less is more: Sampling chemical space with active learning
NASA Astrophysics Data System (ADS)
Smith, Justin S.; Nebgen, Ben; Lubbers, Nicholas; Isayev, Olexandr; Roitberg, Adrian E.
2018-06-01
The development of accurate and transferable machine learning (ML) potentials for predicting molecular energetics is a challenging task. The process of data generation to train such ML potentials is a task neither well understood nor researched in detail. In this work, we present a fully automated approach for the generation of datasets with the intent of training universal ML potentials. It is based on the concept of active learning (AL) via Query by Committee (QBC), which uses the disagreement between an ensemble of ML potentials to infer the reliability of the ensemble's prediction. QBC allows the presented AL algorithm to automatically sample regions of chemical space where the ML potential fails to accurately predict the potential energy. AL improves the overall fitness of ANAKIN-ME (ANI) deep learning potentials in rigorous test cases by mitigating human biases in deciding what new training data to use. AL also reduces the training set size to a fraction of the data required when using naive random sampling techniques. To provide validation of our AL approach, we develop the COmprehensive Machine-learning Potential (COMP6) benchmark (publicly available on GitHub) which contains a diverse set of organic molecules. Active learning-based ANI potentials outperform the original random sampled ANI-1 potential with only 10% of the data, while the final active learning-based model vastly outperforms ANI-1 on the COMP6 benchmark after training to only 25% of the data. Finally, we show that our proposed AL technique develops a universal ANI potential (ANI-1x) that provides accurate energy and force predictions on the entire COMP6 benchmark. This universal ML potential achieves a level of accuracy on par with the best ML potentials for single molecules or materials, while remaining applicable to the general class of organic molecules composed of the elements CHNO.
USDA-ARS?s Scientific Manuscript database
Larvae of Sparganothis sulfureana Clemens, frequently attack cranberries, often resulting in economic damage to the crop. Because temperature dictates insect growth rate, development can be accurately estimated based on daily temperature measurements. To better predict S. sulfureana development acro...
Linear regression models for solvent accessibility prediction in proteins.
Wagner, Michael; Adamczak, Rafał; Porollo, Aleksey; Meller, Jarosław
2005-04-01
The relative solvent accessibility (RSA) of an amino acid residue in a protein structure is a real number that represents the solvent exposed surface area of this residue in relative terms. The problem of predicting the RSA from the primary amino acid sequence can therefore be cast as a regression problem. Nevertheless, RSA prediction has so far typically been cast as a classification problem. Consequently, various machine learning techniques have been used within the classification framework to predict whether a given amino acid exceeds some (arbitrary) RSA threshold and would thus be predicted to be "exposed," as opposed to "buried." We have recently developed novel methods for RSA prediction using nonlinear regression techniques which provide accurate estimates of the real-valued RSA and outperform classification-based approaches with respect to commonly used two-class projections. However, while their performance seems to provide a significant improvement over previously published approaches, these Neural Network (NN) based methods are computationally expensive to train and involve several thousand parameters. In this work, we develop alternative regression models for RSA prediction which are computationally much less expensive, involve orders-of-magnitude fewer parameters, and are still competitive in terms of prediction quality. In particular, we investigate several regression models for RSA prediction using linear L1-support vector regression (SVR) approaches as well as standard linear least squares (LS) regression. Using rigorously derived validation sets of protein structures and extensive cross-validation analysis, we compare the performance of the SVR with that of LS regression and NN-based methods. In particular, we show that the flexibility of the SVR (as encoded by metaparameters such as the error insensitivity and the error penalization terms) can be very beneficial to optimize the prediction accuracy for buried residues. We conclude that the simple and computationally much more efficient linear SVR performs comparably to nonlinear models and thus can be used in order to facilitate further attempts to design more accurate RSA prediction methods, with applications to fold recognition and de novo protein structure prediction methods.
Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation
Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.
1990-04-10
An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.
Azarkhish, Iman; Raoufy, Mohammad Reza; Gharibzadeh, Shahriar
2012-06-01
Iron deficiency anemia (IDA) is the most common nutritional deficiency worldwide. Measuring serum iron is time consuming, expensive and not available in most hospitals. In this study, based on four accessible laboratory data (MCV, MCH, MCHC, Hb/RBC), we developed an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) to diagnose the IDA and to predict serum iron level. Our results represent that the neural network analysis is superior to ANFIS and logistic regression models in diagnosing IDA. Moreover, the results show that the ANN is likely to provide an accurate test for predicting serum iron levels with high accuracy and acceptable precision.
Semiautomated model building for RNA crystallography using a directed rotameric approach.
Keating, Kevin S; Pyle, Anna Marie
2010-05-04
Structured RNA molecules play essential roles in a variety of cellular processes; however, crystallographic studies of such RNA molecules present a large number of challenges. One notable complication arises from the low resolutions typical of RNA crystallography, which results in electron density maps that are imprecise and difficult to interpret. This problem is exacerbated by the lack of computational tools for RNA modeling, as many of the techniques commonly used in protein crystallography have no equivalents for RNA structure. This leads to difficulty and errors in the model building process, particularly in modeling of the RNA backbone, which is highly error prone due to the large number of variable torsion angles per nucleotide. To address this, we have developed a method for accurately building the RNA backbone into maps of intermediate or low resolution. This method is semiautomated, as it requires a crystallographer to first locate phosphates and bases in the electron density map. After this initial trace of the molecule, however, an accurate backbone structure can be built without further user intervention. To accomplish this, backbone conformers are first predicted using RNA pseudotorsions and the base-phosphate perpendicular distance. Detailed backbone coordinates are then calculated to conform both to the predicted conformer and to the previously located phosphates and bases. This technique is shown to produce accurate backbone structure even when starting from imprecise phosphate and base coordinates. A program implementing this methodology is currently available, and a plugin for the Coot model building program is under development.
Koskas, M; Chereau, E; Ballester, M; Dubernard, G; Lécuru, F; Heitz, D; Mathevet, P; Marret, H; Querleu, D; Golfier, F; Leblanc, E; Luton, D; Rouzier, R; Daraï, E
2013-01-01
Background: We developed a nomogram based on five clinical and pathological characteristics to predict lymph-node (LN) metastasis with a high concordance probability in endometrial cancer. Sentinel LN (SLN) biopsy has been suggested as a compromise between systematic lymphadenectomy and no dissection in patients with low-risk endometrial cancer. Methods: Patients with stage I–II endometrial cancer had pelvic SLN and systematic pelvic-node dissection. All LNs were histopathologically examined, and the SLNs were examined by immunohistochemistry. We compared the accuracy of the nomogram at predicting LN detected with conventional histopathology (macrometastasis) and ultrastaging procedure using SLN (micrometastasis). Results: Thirty-eight of the 187 patients (20%) had pelvic LN metastases, 20 had macrometastases and 18 had micrometastases. For the prediction of macrometastases, the nomogram showed good discrimination, with an area under the receiver operating characteristic curve (AUC) of 0.76, and was well calibrated (average error =2.1%). For the prediction of micro- and macrometastases, the nomogram showed poorer discrimination, with an AUC of 0.67, and was less well calibrated (average error =10.9%). Conclusion: Our nomogram is accurate at predicting LN macrometastases but less accurate at predicting micrometastases. Our results suggest that micrometastases are an ‘intermediate state' between disease-free LN and macrometastasis. PMID:23481184
Can We Predict Patient Wait Time?
Pianykh, Oleg S; Rosenthal, Daniel I
2015-10-01
The importance of patient wait-time management and predictability can hardly be overestimated: For most hospitals, it is the patient queues that drive and define every bit of clinical workflow. The objective of this work was to study the predictability of patient wait time and identify its most influential predictors. To solve this problem, we developed a comprehensive list of 25 wait-related parameters, suggested in earlier work and observed in our own experiments. All parameters were chosen as derivable from a typical Hospital Information System dataset. The parameters were fed into several time-predicting models, and the best parameter subsets, discovered through exhaustive model search, were applied to a large sample of actual patient wait data. We were able to discover the most efficient wait-time prediction factors and models, such as the line-size models introduced in this work. Moreover, these models proved to be equally accurate and computationally efficient. Finally, the selected models were implemented in our patient waiting areas, displaying predicted wait times on the monitors located at the front desks. The limitations of these models are also discussed. Optimal regression models based on wait-line sizes can provide accurate and efficient predictions for patient wait time. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Olama, Mohammed M.; Dong, Jin
The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed tomore » estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.« less
Kobayashi, Keisuke; Saeki, Yusuke; Kitazawa, Shinsuke; Kobayashi, Naohiro; Kikuchi, Shinji; Goto, Yukinobu; Sakai, Mitsuaki; Sato, Yukio
2017-11-01
It is important to accurately predict the patient's postoperative pulmonary function. The aim of this study was to compare the accuracy of predictions of the postoperative residual pulmonary function obtained with three-dimensional computed tomographic (3D-CT) volumetry with that of predictions obtained with the conventional segment-counting method. Fifty-three patients scheduled to undergo lung cancer resection, pulmonary function tests, and computed tomography were enrolled in this study. The postoperative residual pulmonary function was predicted based on the segment-counting and 3D-CT volumetry methods. The predicted postoperative values were compared with the results of postoperative pulmonary function tests. Regarding the linear correlation coefficients between the predicted postoperative values and the measured values, those obtained using the 3D-CT volumetry method tended to be higher than those acquired using the segment-counting method. In addition, the variations between the predicted and measured values were smaller with the 3D-CT volumetry method than with the segment-counting method. These results were more obvious in COPD patients than in non-COPD patients. Our findings suggested that the 3D-CT volumetry was able to predict the residual pulmonary function more accurately than the segment-counting method, especially in patients with COPD. This method might lead to the selection of appropriate candidates for surgery among patients with a marginal pulmonary function.
Forecasting municipal solid waste generation using artificial intelligence modelling approaches.
Abbasi, Maryam; El Hanandeh, Ali
2016-10-01
Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new method for enhancer prediction based on deep belief network.
Bu, Hongda; Gan, Yanglan; Wang, Yang; Zhou, Shuigeng; Guan, Jihong
2017-10-16
Studies have shown that enhancers are significant regulatory elements to play crucial roles in gene expression regulation. Since enhancers are unrelated to the orientation and distance to their target genes, it is a challenging mission for scholars and researchers to accurately predicting distal enhancers. In the past years, with the high-throughout ChiP-seq technologies development, several computational techniques emerge to predict enhancers using epigenetic or genomic features. Nevertheless, the inconsistency of computational models across different cell-lines and the unsatisfactory prediction performance call for further research in this area. Here, we propose a new Deep Belief Network (DBN) based computational method for enhancer prediction, which is called EnhancerDBN. This method combines diverse features, composed of DNA sequence compositional features, DNA methylation and histone modifications. Our computational results indicate that 1) EnhancerDBN outperforms 13 existing methods in prediction, and 2) GC content and DNA methylation can serve as relevant features for enhancer prediction. Deep learning is effective in boosting the performance of enhancer prediction.
NASA Astrophysics Data System (ADS)
Zhu, Shun-Peng; Huang, Hong-Zhong; Li, Haiqing; Sun, Rui; Zuo, Ming J.
2011-06-01
Based on ductility exhaustion theory and the generalized energy-based damage parameter, a new viscosity-based life prediction model is introduced to account for the mean strain/stress effects in the low cycle fatigue regime. The loading waveform parameters and cyclic hardening effects are also incorporated within this model. It is assumed that damage accrues by means of viscous flow and ductility consumption is only related to plastic strain and creep strain under high temperature low cycle fatigue conditions. In the developed model, dynamic viscosity is used to describe the flow behavior. This model provides a better prediction of Superalloy GH4133's fatigue behavior when compared to Goswami's ductility model and the generalized damage parameter. Under non-zero mean strain conditions, moreover, the proposed model provides more accurate predictions of Superalloy GH4133's fatigue behavior than that with zero mean strains.
Using Bayesian Networks for Candidate Generation in Consistency-based Diagnosis
NASA Technical Reports Server (NTRS)
Narasimhan, Sriram; Mengshoel, Ole
2008-01-01
Consistency-based diagnosis relies heavily on the assumption that discrepancies between model predictions and sensor observations can be detected accurately. When sources of uncertainty like sensor noise and model abstraction exist robust schemes have to be designed to make a binary decision on whether predictions are consistent with observations. This risks the occurrence of false alarms and missed alarms when an erroneous decision is made. Moreover when multiple sensors (with differing sensing properties) are available the degree of match between predictions and observations can be used to guide the search for fault candidates. In this paper we propose a novel approach to handle this problem using Bayesian networks. In the consistency- based diagnosis formulation, automatically generated Bayesian networks are used to encode a probabilistic measure of fit between predictions and observations. A Bayesian network inference algorithm is used to compute most probable fault candidates.
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.
1994-01-01
Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porcella, D.B.; Bowie, G.L.; Campbell, C.L.
The Ecosystem Assessment Model (EAM) of the Cooling Lake Assessment Methodology was applied to the extensive ecological field data collected at Lake Norman, North Carolina by Duke Power Company to evaluate its capability to simulate lake ecosystems and the ecological effects of steam electric power plants. The EAM provided simulations over a five-year verification period that behaved as expected based on a one-year calibration. Major state variables of interest to utilities and regulatory agencies are: temperature, dissolved oxygen, and fish community variables. In qualitative terms, temperature simulation was very accurate, dissolved oxygen simulation was accurate, and fish prediction was reasonablymore » accurate. The need for more accurate fisheries data collected at monthly intervals and non-destructive sampling techniques was identified.« less
Accurate Prediction of Motor Failures by Application of Multi CBM Tools: A Case Study
NASA Astrophysics Data System (ADS)
Dutta, Rana; Singh, Veerendra Pratap; Dwivedi, Jai Prakash
2018-02-01
Motor failures are very difficult to predict accurately with a single condition-monitoring tool as both electrical and the mechanical systems are closely related. Electrical problem, like phase unbalance, stator winding insulation failures can, at times, lead to vibration problem and at the same time mechanical failures like bearing failure, leads to rotor eccentricity. In this case study of a 550 kW blower motor it has been shown that a rotor bar crack was detected by current signature analysis and vibration monitoring confirmed the same. In later months in a similar motor vibration monitoring predicted bearing failure and current signature analysis confirmed the same. In both the cases, after dismantling the motor, the predictions were found to be accurate. In this paper we will be discussing the accurate predictions of motor failures through use of multi condition monitoring tools with two case studies.
New Equation for Prediction of Martensite Start Temperature in High Carbon Ferrous Alloys
NASA Astrophysics Data System (ADS)
Park, Jihye; Shim, Jae-Hyeok; Lee, Seok-Jae
2018-02-01
Since previous equations fail to predict M S temperature of high carbon ferrous alloys, we first propose an equation for prediction of M S temperature of ferrous alloys containing > 2 wt pct C. The presence of carbides (Fe3C and Cr-rich M 7C3) is thermodynamically considered to estimate the C concentration in austenite. Especially, equations individually specialized for lean and high Cr alloys very accurately reproduce experimental results. The chemical driving force for martensitic transformation is quantitatively analyzed based on the calculation of T 0 temperature.
Grid Quality and Resolution Issues from the Drag Prediction Workshop Series
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Levy, David;
2008-01-01
The drag prediction workshop series (DPW), held over the last six years, and sponsored by the AIAA Applied Aerodynamics Committee, has been extremely useful in providing an assessment of the state-of-the-art in computationally based aerodynamic drag prediction. An emerging consensus from the three workshop series has been the identification of spatial discretization errors as a dominant error source in absolute as well as incremental drag prediction. This paper provides an overview of the collective experience from the workshop series regarding the effect of grid-related issues on overall drag prediction accuracy. Examples based on workshop results are used to illustrate the effect of grid resolution and grid quality on drag prediction, and grid convergence behavior is examined in detail. For fully attached flows, various accurate and successful workshop results are demonstrated, while anomalous behavior is identified for a number of cases involving substantial regions of separated flow. Based on collective workshop experiences, recommendations for improvements in mesh generation technology which have the potential to impact the state-of-the-art of aerodynamic drag prediction are given.
Bodei, L; Kidd, M; Modlin, I M; Severi, S; Drozdov, I; Nicolini, S; Kwekkeboom, D J; Krenning, E P; Baum, R P; Paganelli, G
2016-05-01
Peptide receptor radionuclide therapy (PRRT) is an effective method for treating neuroendocrine tumors (NETs). It is limited, however, in the prediction of individual tumor response and the precise and early identification of changes in tumor size. Currently, response prediction is based on somatostatin receptor expression and efficacy by morphological imaging and/or chromogranin A (CgA) measurement. The aim of this study was to assess the accuracy of circulating NET transcripts as a measure of PRRT efficacy, and moreover to identify prognostic gene clusters in pretreatment blood that could be interpolated with relevant clinical features in order to define a biological index for the tumor and a predictive quotient for PRRT efficacy. NET patients (n = 54), M: F 37:17, median age 66, bronchial: n = 13, GEP-NET: n = 35, CUP: n = 6 were treated with (177)Lu-based-PRRT (cumulative activity: 6.5-27.8 GBq, median 18.5). At baseline: 47/54 low-grade (G1/G2; bronchial typical/atypical), 31/49 (18)FDG positive and 39/54 progressive. Disease status was assessed by RECIST1.1. Transcripts were measured by real-time quantitative reverse transcription PCR (qRT-PCR) and multianalyte algorithmic analysis (NETest); CgA by enzyme-linked immunosorbent assay (ELISA). Gene cluster (GC) derivations: regulatory network, protein:protein interactome analyses. chi-square, non-parametric measurements, multiple regression, receiver operating characteristic and Kaplan-Meier survival. The disease control rate was 72 %. Median PFS was not achieved (follow-up: 1-33 months, median: 16). Only grading was associated with response (p < 0.01). At baseline, 94 % of patients were NETest-positive, while CgA was elevated in 59 %. NETest accurately (89 %, χ(2) = 27.4; p = 1.2 × 10(-7)) correlated with treatment response, while CgA was 24 % accurate. Gene cluster expression (growth-factor signalome and metabolome) had an AUC of 0.74 ± 0.08 (z-statistic = 2.92, p < 0.004) for predicting response (76 % accuracy). Combination with grading reached an AUC: 0.90 ± 0.07, irrespective of tumor origin. Circulating transcripts correlated accurately (94 %) with PRRT responders (SD+PR+CR; 97 %) vs. non-responders (91 %). Blood NET transcript levels and the predictive quotient (circulating gene clusters+grading) accurately predicted PRRT efficacy. CgA was non-informative.
Kesler, Shelli R; Rao, Arvind; Blayney, Douglas W; Oakley-Girvan, Ingrid A; Karuturi, Meghan; Palesh, Oxana
2017-01-01
We aimed to determine if resting state functional magnetic resonance imaging (fMRI) acquired at pre-treatment baseline could accurately predict breast cancer-related cognitive impairment at long-term follow-up. We evaluated 31 patients with breast cancer (age 34-65) prior to any treatment, post-chemotherapy and 1 year later. Cognitive testing scores were normalized based on data obtained from 43 healthy female controls and then used to categorize patients as impaired or not based on longitudinal changes. We measured clustering coefficient, a measure of local connectivity, by applying graph theory to baseline resting state fMRI and entered these metrics along with relevant patient-related and medical variables into random forest classification. Incidence of cognitive impairment at 1 year follow-up was 55% and was predicted by classification algorithms with up to 100% accuracy ( p < 0.0001). The neuroimaging-based model was significantly more accurate than a model involving patient-related and medical variables ( p = 0.005). Hub regions belonging to several distinct functional networks were the most important predictors of cognitive outcome. Characteristics of these hubs indicated potential spread of brain injury from default mode to other networks over time. These findings suggest that resting state fMRI is a promising tool for predicting future cognitive impairment associated with breast cancer. This information could inform treatment decision making by identifying patients at highest risk for long-term cognitive impairment.
Kesler, Shelli R.; Rao, Arvind; Blayney, Douglas W.; Oakley-Girvan, Ingrid A.; Karuturi, Meghan; Palesh, Oxana
2017-01-01
We aimed to determine if resting state functional magnetic resonance imaging (fMRI) acquired at pre-treatment baseline could accurately predict breast cancer-related cognitive impairment at long-term follow-up. We evaluated 31 patients with breast cancer (age 34–65) prior to any treatment, post-chemotherapy and 1 year later. Cognitive testing scores were normalized based on data obtained from 43 healthy female controls and then used to categorize patients as impaired or not based on longitudinal changes. We measured clustering coefficient, a measure of local connectivity, by applying graph theory to baseline resting state fMRI and entered these metrics along with relevant patient-related and medical variables into random forest classification. Incidence of cognitive impairment at 1 year follow-up was 55% and was predicted by classification algorithms with up to 100% accuracy (p < 0.0001). The neuroimaging-based model was significantly more accurate than a model involving patient-related and medical variables (p = 0.005). Hub regions belonging to several distinct functional networks were the most important predictors of cognitive outcome. Characteristics of these hubs indicated potential spread of brain injury from default mode to other networks over time. These findings suggest that resting state fMRI is a promising tool for predicting future cognitive impairment associated with breast cancer. This information could inform treatment decision making by identifying patients at highest risk for long-term cognitive impairment. PMID:29187817
Improved patient size estimates for accurate dose calculations in abdomen computed tomography
NASA Astrophysics Data System (ADS)
Lee, Chang-Lae
2017-07-01
The radiation dose of CT (computed tomography) is generally represented by the CTDI (CT dose index). CTDI, however, does not accurately predict the actual patient doses for different human body sizes because it relies on a cylinder-shaped head (diameter : 16 cm) and body (diameter : 32 cm) phantom. The purpose of this study was to eliminate the drawbacks of the conventional CTDI and to provide more accurate radiation dose information. Projection radiographs were obtained from water cylinder phantoms of various sizes, and the sizes of the water cylinder phantoms were calculated and verified using attenuation profiles. The effective diameter was also calculated using the attenuation of the abdominal projection radiographs of 10 patients. When the results of the attenuation-based method and the geometry-based method shown were compared with the results of the reconstructed-axial-CT-image-based method, the effective diameter of the attenuation-based method was found to be similar to the effective diameter of the reconstructed-axial-CT-image-based method, with a difference of less than 3.8%, but the geometry-based method showed a difference of less than 11.4%. This paper proposes a new method of accurately computing the radiation dose of CT based on the patient sizes. This method computes and provides the exact patient dose before the CT scan, and can therefore be effectively used for imaging and dose control.
NASA Astrophysics Data System (ADS)
Rahmati, Mehdi
2017-08-01
Developing accurate and reliable pedo-transfer functions (PTFs) to predict soil non-readily available characteristics is one of the most concerned topic in soil science and selecting more appropriate predictors is a crucial factor in PTFs' development. Group method of data handling (GMDH), which finds an approximate relationship between a set of input and output variables, not only provide an explicit procedure to select the most essential PTF input variables, but also results in more accurate and reliable estimates than other mostly applied methodologies. Therefore, the current research was aimed to apply GMDH in comparison with multivariate linear regression (MLR) and artificial neural network (ANN) to develop several PTFs to predict soil cumulative infiltration point-basely at specific time intervals (0.5-45 min) using soil readily available characteristics (RACs). In this regard, soil infiltration curves as well as several soil RACs including soil primary particles (clay (CC), silt (Si), and sand (Sa)), saturated hydraulic conductivity (Ks), bulk (Db) and particle (Dp) densities, organic carbon (OC), wet-aggregate stability (WAS), electrical conductivity (EC), and soil antecedent (θi) and field saturated (θfs) water contents were measured at 134 different points in Lighvan watershed, northwest of Iran. Then, applying GMDH, MLR, and ANN methodologies, several PTFs have been developed to predict cumulative infiltrations using two sets of selected soil RACs including and excluding Ks. According to the test data, results showed that developed PTFs by GMDH and MLR procedures using all soil RACs including Ks resulted in more accurate (with E values of 0.673-0.963) and reliable (with CV values lower than 11 percent) predictions of cumulative infiltrations at different specific time steps. In contrast, ANN procedure had lower accuracy (with E values of 0.356-0.890) and reliability (with CV values up to 50 percent) compared to GMDH and MLR. The results also revealed that Ks exclusion from input variables list caused around 30 percent decrease in PTFs accuracy for all applied procedures. However, it seems that Ks exclusion resulted in more practical PTFs especially in the case of GMDH network applying input variables which are less time consuming than Ks. In general, it is concluded that GMDH provides more accurate and reliable estimates of cumulative infiltration (a non-readily available characteristic of soil) with a minimum set of input variables (2-4 input variables) and can be promising strategy to model soil infiltration combining the advantages of ANN and MLR methodologies.
Aerodynamic Parameters of a UK City Derived from Morphological Data
NASA Astrophysics Data System (ADS)
Millward-Hopkins, J. T.; Tomlin, A. S.; Ma, L.; Ingham, D. B.; Pourkashanian, M.
2013-03-01
Detailed three-dimensional building data and a morphometric model are used to estimate the aerodynamic roughness length z 0 and displacement height d over a major UK city (Leeds). Firstly, using an adaptive grid, the city is divided into neighbourhood regions that are each of a relatively consistent geometry throughout. Secondly, for each neighbourhood, a number of geometric parameters are calculated. Finally, these are used as input into a morphometric model that considers the influence of height variability to predict aerodynamic roughness length and displacement height. Predictions are compared with estimations made using standard tables of aerodynamic parameters. The comparison suggests that the accuracy of plan-area-density based tables is likely to be limited, and that height-based tables of aerodynamic parameters may be more accurate for UK cities. The displacement heights in the standard tables are shown to be lower than the current predictions. The importance of geometric details in determining z 0 and d is then explored. Height variability is observed to greatly increase the predicted values. However, building footprint shape only has a significant influence upon the predictions when height variability is not considered. Finally, we develop simple relations to quantify the influence of height variation upon predicted z 0 and d via the standard deviation of building heights. The difference in these predictions compared to the more complex approach highlights the importance of considering the specific shape of the building-height distributions. Collectively, these results suggest that to accurately predict aerodynamic parameters of real urban areas, height variability must be considered in detail, but it may be acceptable to make simple assumptions about building layout and footprint shape.
Achievable accuracy of hip screw holding power estimation by insertion torque measurement.
Erani, Paolo; Baleani, Massimiliano
2018-02-01
To ensure stability of proximal femoral fractures, the hip screw must firmly engage into the femoral head. Some studies suggested that screw holding power into trabecular bone could be evaluated, intraoperatively, through measurement of screw insertion torque. However, those studies used synthetic bone, instead of trabecular bone, as host material or they did not evaluate accuracy of predictions. We determined prediction accuracy, also assessing the impact of screw design and host material. We measured, under highly-repeatable experimental conditions, disregarding clinical procedure complexities, insertion torque and pullout strength of four screw designs, both in 120 synthetic and 80 trabecular bone specimens of variable density. For both host materials, we calculated the root-mean-square error and the mean-absolute-percentage error of predictions based on the best fitting model of torque-pullout data, in both single-screw and merged dataset. Predictions based on screw-specific regression models were the most accurate. Host material impacts on prediction accuracy: the replacement of synthetic with trabecular bone decreased both root-mean-square errors, from 0.54 ÷ 0.76 kN to 0.21 ÷ 0.40 kN, and mean-absolute-percentage errors, from 14 ÷ 21% to 10 ÷ 12%. However, holding power predicted on low insertion torque remained inaccurate, with errors up to 40% for torques below 1 Nm. In poor-quality trabecular bone, tissue inhomogeneities likely affect pullout strength and insertion torque to different extents, limiting the predictive power of the latter. This bias decreases when the screw engages good-quality bone. Under this condition, predictions become more accurate although this result must be confirmed by close in-vitro simulation of the clinical procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tail Separation and Density Effects on the Underwater Trajectory of the JDAM
2009-12-01
countermeasure technologies that fulfills this criteria—the use of the Joint Direct Attack Munition (JDAM) to clear a minefield. It updates the general...physics-based, six degrees of freedom model, STRIKE35, to predict the three-dimensional, free-fall trajectory and orientation of a MK-84 bomb...simulating the JDAM) through a water column. It accurately predicts the final detonation position relative to an underwater mine in the very shallow
A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades
Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan
2017-01-01
Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors. PMID:28773064
Real-time yield estimation based on deep learning
NASA Astrophysics Data System (ADS)
Rahnemoonfar, Maryam; Sheppard, Clay
2017-05-01
Crop yield estimation is an important task in product management and marketing. Accurate yield prediction helps farmers to make better decision on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on the manual counting of fruits is very time consuming and expensive process and it is not practical for big fields. Robotic systems including Unmanned Aerial Vehicles (UAV) and Unmanned Ground Vehicles (UGV), provide an efficient, cost-effective, flexible, and scalable solution for product management and yield prediction. Recently huge data has been gathered from agricultural field, however efficient analysis of those data is still a challenging task. Computer vision approaches currently face diffident challenges in automatic counting of fruits or flowers including occlusion caused by leaves, branches or other fruits, variance in natural illumination, and scale. In this paper a novel deep convolutional network algorithm was developed to facilitate the accurate yield prediction and automatic counting of fruits and vegetables on the images. Our method is robust to occlusion, shadow, uneven illumination and scale. Experimental results in comparison to the state-of-the art show the effectiveness of our algorithm.
An improvement in rollover detection of articulated vehicles using the grey system theory
NASA Astrophysics Data System (ADS)
Chou, Tao; Chu, Tzyy-Wen
2014-05-01
A Rollover Index combined with the grey system theory, called a Grey Rollover Index (GRI), is proposed to assess the rollover threat for articulated vehicles with a tractor-semitrailer combination. This index can predict future trends of vehicle dynamics based on current vehicle motion; thus, it is suitable for vehicle-rollover detection. Two difficulties are encountered when applying the GRI for rollover detection. The first difficulty is effectively predicting the rollover threat of the vehicles, and the second difficulty is achieving a definite definition of the real rollover timing of a vehicle. The following methods are used to resolve these problems. First, a nonlinear mathematical model is constructed to accurately describe the vehicle dynamics of articulated vehicles. This model is combined with the GRI to predict rollover propensity. Finally, TruckSim™ software is used to determine the real rollover timing and facilitate the accurate supply of information to the rollover detection system through the GRI. This index is used to verify the simulation based on the common manoeuvres that cause rollover accidents to reduce the occurrence of false signals and effectively increase the efficiency of the rollover detection system.
A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.
Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan
2017-06-26
Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.
NASA Astrophysics Data System (ADS)
Xiong, Chuan; Shi, Jiancheng
2014-01-01
To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.
Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.
2016-01-01
To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947
Li, Han; Liu, Yashu; Gong, Pinghua; Zhang, Changshui; Ye, Jieping
2014-01-01
Identifying patients with Mild Cognitive Impairment (MCI) who are likely to convert to dementia has recently attracted increasing attention in Alzheimer's disease (AD) research. An accurate prediction of conversion from MCI to AD can aid clinicians to initiate treatments at early stage and monitor their effectiveness. However, existing prediction systems based on the original biosignatures are not satisfactory. In this paper, we propose to fit the prediction models using pairwise biosignature interactions, thus capturing higher-order relationship among biosignatures. Specifically, we employ hierarchical constraints and sparsity regularization to prune the high-dimensional input features. Based on the significant biosignatures and underlying interactions identified, we build classifiers to predict the conversion probability based on the selected features. We further analyze the underlying interaction effects of different biosignatures based on the so-called stable expectation scores. We have used 293 MCI subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database that have MRI measurements at the baseline to evaluate the effectiveness of the proposed method. Our proposed method achieves better classification performance than state-of-the-art methods. Moreover, we discover several significant interactions predictive of MCI-to-AD conversion. These results shed light on improving the prediction performance using interaction features. PMID:24416143
Bekelis, Kimon; Bakhoum, Samuel F; Desai, Atman; Mackenzie, Todd A; Goodney, Philip; Labropoulos, Nicos
2013-04-01
Accurate knowledge of individualized risks and benefits is crucial to the surgical management of patients undergoing carotid endarterectomy (CEA). Although large randomized trials have determined specific cutoffs for the degree of stenosis, precise delineation of patient-level risks remains a topic of debate, especially in real world practice. We attempted to create a risk factor-based predictive model of outcomes in CEA. We performed a retrospective cohort study involving patients who underwent CEAs from 2005 to 2010 and were registered in the American College of Surgeons National Quality Improvement Project database. Of the 35 698 patients, 20 015 were asymptomatic (56.1%) and 15 683 were symptomatic (43.9%). These patients demonstrated a 1.64% risk of stroke, 0.69% risk of myocardial infarction, and 0.75% risk of death within 30 days after CEA. Multivariate analysis demonstrated that increasing age, male sex, history of chronic obstructive pulmonary disease, myocardial infarction, angina, congestive heart failure, peripheral vascular disease, previous stroke or transient ischemic attack, and dialysis were independent risk factors associated with an increased risk of the combined outcome of postoperative stroke, myocardial infarction, or death. A validated model for outcome prediction based on individual patient characteristics was developed. There was a steep effect of age on the risk of myocardial infarction and death. This national study confirms that that risks of CEA vary dramatically based on patient-level characteristics. Because of limited discrimination, it cannot be used for individual patient risk assessment. However, it can be used as a baseline for improvement and development of more accurate predictive models based on other databases or prospective studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Alyssa J. R.; Ghale, Kushal; Rieg, Carolin
In recent years, the popularity of density functional theory with periodic boundary conditions (DFT) has surged for the design and optimization of functional materials. However, no single DFT exchange–correlation functional currently available gives accurate adsorption energies on transition metals both when bonding to the surface is dominated by strong covalent or ionic bonding and when it has strong contributions from van der Waals interactions (i.e., dispersion forces). Here we present a new, simple method for accurately predicting adsorption energies on transition-metal surfaces based on DFT calculations, using an adaptively weighted sum of energies from RPBE and optB86b-vdW (or optB88-vdW) densitymore » functionals. This method has been benchmarked against a set of 39 reliable experimental energies for adsorption reactions. Our results show that this method has a mean absolute error and root mean squared error relative to experiments of 13.4 and 19.3 kJ/mol, respectively, compared to 20.4 and 26.4 kJ/mol for the BEEF-vdW functional. For systems with large van der Waals contributions, this method decreases these errors to 11.6 and 17.5 kJ/mol. Furthermore, this method provides predictions of adsorption energies both for processes dominated by strong covalent or ionic bonding and for those dominated by dispersion forces that are more accurate than those of any current standard DFT functional alone.« less
Hensley, Alyssa J. R.; Ghale, Kushal; Rieg, Carolin; ...
2017-01-26
In recent years, the popularity of density functional theory with periodic boundary conditions (DFT) has surged for the design and optimization of functional materials. However, no single DFT exchange–correlation functional currently available gives accurate adsorption energies on transition metals both when bonding to the surface is dominated by strong covalent or ionic bonding and when it has strong contributions from van der Waals interactions (i.e., dispersion forces). Here we present a new, simple method for accurately predicting adsorption energies on transition-metal surfaces based on DFT calculations, using an adaptively weighted sum of energies from RPBE and optB86b-vdW (or optB88-vdW) densitymore » functionals. This method has been benchmarked against a set of 39 reliable experimental energies for adsorption reactions. Our results show that this method has a mean absolute error and root mean squared error relative to experiments of 13.4 and 19.3 kJ/mol, respectively, compared to 20.4 and 26.4 kJ/mol for the BEEF-vdW functional. For systems with large van der Waals contributions, this method decreases these errors to 11.6 and 17.5 kJ/mol. Furthermore, this method provides predictions of adsorption energies both for processes dominated by strong covalent or ionic bonding and for those dominated by dispersion forces that are more accurate than those of any current standard DFT functional alone.« less
Updating Physical and Chemical Characteristics of Fly Ash for Use in Concrete
DOT National Transportation Integrated Search
2017-12-22
When incorporated in concrete mixtures, fly ashes are known to influence both its fresh and hardened properties. An accurate and quick technique to predict the extent of this influence based on the characteristics of fly ash would be highly beneficia...
Mace, Andy; Rudolph, David L.; Kachanoski , R. Gary
1998-01-01
The performance of parametric models used to describe soil water retention (SWR) properties and predict unsaturated hydraulic conductivity (K) as a function of volumetric water content (θ) is examined using SWR and K(θ) data for coarse sand and gravel sediments. Six 70 cm long, 10 cm diameter cores of glacial outwash were instrumented at eight depths with porous cup ten-siometers and time domain reflectometry probes to measure soil water pressure head (h) and θ, respectively, for seven unsaturated and one saturated steady-state flow conditions. Forty-two θ(h) and K(θ) relationships were measured from the infiltration tests on the cores. Of the four SWR models compared in the analysis, the van Genuchten (1980) equation with parameters m and n restricted according to the Mualem (m = 1 - 1/n) criterion is best suited to describe the θ(h) relationships. The accuracy of two models that predict K(θ) using parameter values derived from the SWR models was also evaluated. The model developed by van Genuchten (1980) based on the theoretical expression of Mualem (1976) predicted K(θ) more accurately than the van Genuchten (1980) model based on the theory of Burdine (1953). A sensitivity analysis shows that more accurate predictions of K(θ) are achieved using SWR model parameters derived with residual water content (θr) specified according to independent measurements of θ at values of h where θ/h ∼ 0 rather than model-fit θr values. The accuracy of the model K(θ) function improves markedly when at least one value of unsaturated K is used to scale the K(θ) function predicted using the saturated K. The results of this investigation indicate that the hydraulic properties of coarse-grained sediments can be accurately described using the parametric models. In addition, data collection efforts should focus on measuring at least one value of unsaturated hydraulic conductivity and as complete a set of SWR data as possible, particularly in the dry range.
Ryan, Natalia; Chorley, Brian; Tice, Raymond R; Judson, Richard; Corton, J Christopher
2016-05-01
Microarray profiling of chemical-induced effects is being increasingly used in medium- and high-throughput formats. Computational methods are described here to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through chromatin immunoprecipitation coupled with DNA sequencing analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression datasets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including "very weak" agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals, the balanced accuracies were 95% and 98% for activation or suppression, respectively. These results demonstrate that the ERα gene expression biomarker can accurately identify ERα modulators in large collections of microarray data derived from MCF-7 cells. Published by Oxford University Press on behalf of the Society of Toxicology 2016. This work is written by US Government employees and is in the public domain in the US.
Strauss, Ludwig G; Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2011-03-01
(18)F-FDG kinetics are quantified by a 2-tissue-compartment model. The routine use of dynamic PET is limited because of this modality's 1-h acquisition time. We evaluated shortened acquisition protocols up to 0-30 min regarding the accuracy for data analysis with the 2-tissue-compartment model. Full dynamic series for 0-60 min were analyzed using a 2-tissue-compartment model. The time-activity curves and the resulting parameters for the model were stored in a database. Shortened acquisition data were generated from the database using the following time intervals: 0-10, 0-16, 0-20, 0-25, and 0-30 min. Furthermore, the impact of adding a 60-min uptake value to the dynamic series was evaluated. The datasets were analyzed using dedicated software to predict the results of the full dynamic series. The software is based on a modified support vector machines (SVM) algorithm and predicts the compartment parameters of the full dynamic series. The SVM-based software provides user-independent results and was accurate at predicting the compartment parameters of the full dynamic series. If a squared correlation coefficient of 0.8 (corresponding to 80% explained variance of the data) was used as a limit, a shortened acquisition of 0-16 min was accurate at predicting the 60-min 2-tissue-compartment parameters. If a limit of 0.9 (90% explained variance) was used, a dynamic series of at least 0-20 min together with the 60-min uptake values is required. Shortened acquisition protocols can be used to predict the parameters of the 2-tissue-compartment model. Either a dynamic PET series of 0-16 min or a combination of a dynamic PET/CT series of 0-20 min and a 60-min uptake value is accurate for analysis with a 2-tissue-compartment model.
Smalheiser, Neil R; McDonagh, Marian S; Yu, Clement; Adams, Clive E; Davis, John M; Yu, Philip S
2015-01-01
Objective: For many literature review tasks, including systematic review (SR) and other aspects of evidence-based medicine, it is important to know whether an article describes a randomized controlled trial (RCT). Current manual annotation is not complete or flexible enough for the SR process. In this work, highly accurate machine learning predictive models were built that include confidence predictions of whether an article is an RCT. Materials and Methods: The LibSVM classifier was used with forward selection of potential feature sets on a large human-related subset of MEDLINE to create a classification model requiring only the citation, abstract, and MeSH terms for each article. Results: The model achieved an area under the receiver operating characteristic curve of 0.973 and mean squared error of 0.013 on the held out year 2011 data. Accurate confidence estimates were confirmed on a manually reviewed set of test articles. A second model not requiring MeSH terms was also created, and performs almost as well. Discussion: Both models accurately rank and predict article RCT confidence. Using the model and the manually reviewed samples, it is estimated that about 8000 (3%) additional RCTs can be identified in MEDLINE, and that 5% of articles tagged as RCTs in Medline may not be identified. Conclusion: Retagging human-related studies with a continuously valued RCT confidence is potentially more useful for article ranking and review than a simple yes/no prediction. The automated RCT tagging tool should offer significant savings of time and effort during the process of writing SRs, and is a key component of a multistep text mining pipeline that we are building to streamline SR workflow. In addition, the model may be useful for identifying errors in MEDLINE publication types. The RCT confidence predictions described here have been made available to users as a web service with a user query form front end at: http://arrowsmith.psych.uic.edu/cgi-bin/arrowsmith_uic/RCT_Tagger.cgi. PMID:25656516
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Foote, John; Litchford, Ron
2006-01-01
The objective of this effort is to perform design analyses for a non-nuclear hot-hydrogen materials tester, as a first step towards developing efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber design and analysis. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective, and thermal radiative heat transfers. The goals of the design analyses are to maintain maximum hot-hydrogen jet impingement energy and to minimize chamber wall heating. The results of analyses on three test fixture configurations and the rationale for final selection are presented. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.
Enhancing Flood Prediction Reliability Using Bayesian Model Averaging
NASA Astrophysics Data System (ADS)
Liu, Z.; Merwade, V.
2017-12-01
Uncertainty analysis is an indispensable part of modeling the hydrology and hydrodynamics of non-idealized environmental systems. Compared to reliance on prediction from one model simulation, using on ensemble of predictions that consider uncertainty from different sources is more reliable. In this study, Bayesian model averaging (BMA) is applied to Black River watershed in Arkansas and Missouri by combining multi-model simulations to get reliable deterministic water stage and probabilistic inundation extent predictions. The simulation ensemble is generated from 81 LISFLOOD-FP subgrid model configurations that include uncertainty from channel shape, channel width, channel roughness and discharge. Model simulation outputs are trained with observed water stage data during one flood event, and BMA prediction ability is validated for another flood event. Results from this study indicate that BMA does not always outperform all members in the ensemble, but it provides relatively robust deterministic flood stage predictions across the basin. Station based BMA (BMA_S) water stage prediction has better performance than global based BMA (BMA_G) prediction which is superior to the ensemble mean prediction. Additionally, high-frequency flood inundation extent (probability greater than 60%) in BMA_G probabilistic map is more accurate than the probabilistic flood inundation extent based on equal weights.
NASA Astrophysics Data System (ADS)
Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha
2018-01-01
It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.
Laine, Elodie; Carbone, Alessandra
2015-01-01
Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET2, an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET2 is freely available at www.lcqb.upmc.fr/JET2. PMID:26690684
Intermolecular potentials and the accurate prediction of the thermodynamic properties of water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au
2013-11-21
The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm{sup 3} for a wide range of temperatures (298–650 K) and pressures (0.1–700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys.more » 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.« less
NASA Astrophysics Data System (ADS)
Saleh, F.; Garambois, P. A.; Biancamaria, S.
2017-12-01
Floods are considered the major natural threats to human societies across all continents. Consequences of floods in highly populated areas are more dramatic with losses of human lives and substantial property damage. This risk is projected to increase with the effects of climate change, particularly sea-level rise, increasing storm frequencies and intensities and increasing population and economic assets in such urban watersheds. Despite the advances in computational resources and modeling techniques, significant gaps exist in predicting complex processes and accurately representing the initial state of the system. Improving flood prediction models and data assimilation chains through satellite has become an absolute priority to produce accurate flood forecasts with sufficient lead times. The overarching goal of this work is to assess the benefits of the Surface Water Ocean Topography SWOT satellite data from a flood prediction perspective. The near real time methodology is based on combining satellite data from a simulator that mimics the future SWOT data, numerical models, high resolution elevation data and real-time local measurement in the New York/New Jersey area.
Adaptive on-line prediction of the available power of lithium-ion batteries
NASA Astrophysics Data System (ADS)
Waag, Wladislaw; Fleischer, Christian; Sauer, Dirk Uwe
2013-11-01
In this paper a new approach for prediction of the available power of a lithium-ion battery pack is presented. It is based on a nonlinear battery model that includes current dependency of the battery resistance. It results in an accurate power prediction not only at room temperature, but also at lower temperatures at which the current dependency is substantial. The used model parameters are fully adaptable on-line to the given state of the battery (state of charge, state of health, temperature). This on-line adaption in combination with an explicit consideration of differences between characteristics of individual cells in a battery pack ensures an accurate power prediction under all possible conditions. The proposed trade-off between the number of used cell parameters and the total accuracy as well as the optimized algorithm results in a real-time capability of the method, which is demonstrated on a low-cost 16 bit microcontroller. The verification tests performed on a software-in-the-loop test bench system with four 40 Ah lithium-ion cells show promising results.
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Peck, Jeffrey A.
1992-01-01
Over the last three decades, multiwall structures have been analyzed extensively, primarily through experiment, as a means of increasing the protection afforded to spacecraft structure. However, as structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under impact loading conditions. This paper presents the results of a preliminary numerical/experimental investigation of the hypervelocity impact response of multiwall structures. The results of experimental high-speed impact tests are compared against the predictions of the HULL hydrodynamic computer code. It is shown that the hypervelocity impact response characteristics of a specific system cannot be accurately predicted from a limited number of HULL code impact simulations. However, if a wide range of impact loadings conditions are considered, then the ballistic limit curve of the system based on the entire series of numerical simulations can be used as a relatively accurate indication of actual system response.
Short time ahead wind power production forecast
NASA Astrophysics Data System (ADS)
Sapronova, Alla; Meissner, Catherine; Mana, Matteo
2016-09-01
An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.
Predictive Model and Software for Inbreeding-Purging Analysis of Pedigreed Populations
García-Dorado, Aurora; Wang, Jinliang; López-Cortegano, Eugenio
2016-01-01
The inbreeding depression of fitness traits can be a major threat to the survival of populations experiencing inbreeding. However, its accurate prediction requires taking into account the genetic purging induced by inbreeding, which can be achieved using a “purged inbreeding coefficient”. We have developed a method to compute purged inbreeding at the individual level in pedigreed populations with overlapping generations. Furthermore, we derive the inbreeding depression slope for individual logarithmic fitness, which is larger than that for the logarithm of the population fitness average. In addition, we provide a new software, PURGd, based on these theoretical results that allows analyzing pedigree data to detect purging, and to estimate the purging coefficient, which is the parameter necessary to predict the joint consequences of inbreeding and purging. The software also calculates the purged inbreeding coefficient for each individual, as well as standard and ancestral inbreeding. Analysis of simulation data show that this software produces reasonably accurate estimates for the inbreeding depression rate and for the purging coefficient that are useful for predictive purposes. PMID:27605515
Hatzis, Christos; Pusztai, Lajos; Valero, Vicente; Booser, Daniel J.; Esserman, Laura; Lluch, Ana; Vidaurre, Tatiana; Holmes, Frankie; Souchon, Eduardo; Martin, Miguel; Cotrina, José; Gomez, Henry; Hubbard, Rebekah; Chacón, J. Ignacio; Ferrer-Lozano, Jaime; Dyer, Richard; Buxton, Meredith; Gong, Yun; Wu, Yun; Ibrahim, Nuhad; Andreopoulou, Eleni; Ueno, Naoto T.; Hunt, Kelly; Yang, Wei; Nazario, Arlene; DeMichele, Angela; O’Shaughnessy, Joyce; Hortobagyi, Gabriel N.; Symmans, W. Fraser
2017-01-01
CONTEXT Accurate prediction of who will (or won’t) have high probability of survival benefit from standard treatments is fundamental for individualized cancer treatment strategies. OBJECTIVE To develop a predictor of response and survival from chemotherapy for newly diagnosed invasive breast cancer. DESIGN Development of different predictive signatures for resistance and response to neoadjuvant chemotherapy (stratified according to estrogen receptor (ER) status) from gene expression microarrays of newly diagnosed breast cancer (310 patients). Then prediction of breast cancer treatment-sensitivity using the combination of signatures for: 1) sensitivity to endocrine therapy, 2) chemo-resistance, and 3) chemo-sensitivity. Independent validation (198 patients) and comparison with other reported genomic predictors of chemotherapy response. SETTING Prospective multicenter study to develop and test genomic predictors for neoadjuvant chemotherapy. PATIENTS Newly diagnosed HER2-negative breast cancer treated with chemotherapy containing sequential taxane and anthracycline-based regimens then endocrine therapy (if hormone receptor-positive). MAIN OUTCOME MEASURES Distant relapse-free survival (DRFS) if predicted treatment-sensitive and absolute risk reduction (ARR, difference in DRFS of the two predicted groups) at median follow-up (3 years), and their 95% confidence intervals (CI). RESULTS Patients in the independent validation cohort (99% clinical Stage II–III) who were predicted to be treatment-sensitive (28% of total) had DRFS of 92% (CI 85–100) and survival benefit compared to others (absolute risk reduction (ARR) 18%; CI 6–28). Predictions were accurate if breast cancer was ER-positive (30% predicted sensitive, DRFS 97%, CI 91–100; ARR 11%, CI 0.1–21) or ER-negative (26% predicted sensitive, DRFS 83%, CI 68–100; ARR 26%, CI 4–28), and were significant in multivariate analysis after adjusting for relevant clinical-pathologic characteristics. Other genomic predictors showed paradoxically worse survival if predicted to be responsive to chemotherapy. CONCLUSION A genomic predictor combining ER status, predicted chemo-resistance, predicted chemo-sensitivity, and predicted endocrine sensitivity accurately identified patients with survival benefit following taxane-anthracycline chemotherapy. PMID:21558518
NASA Technical Reports Server (NTRS)
Simon, Frederick F.
2007-01-01
A program sponsored by the National Aeronautics and Space Administration (NASA) for the investigation of the heat transfer in the transition region of turbine vanes and blades with the object of improving the capability for predicting heat transfer is described,. The accurate prediction of gas-side heat transfer is important to the determination of turbine longevity, engine performance and developmental costs. The need for accurate predictions will become greater as the operating temperatures and stage loading levels of advanced turbine engines increase. The present methods for predicting transition shear stress and heat transfer on turbine blades are based on incomplete knowledge and are largely empirical. To meet the objectives of the NASA program, a team approach consisting of researchers from government, universities, a research institute, and a small business is presented. The research is divided into areas of experimentation, direct numerical simulation (DNS) and turbulence modeling. A summary of the results to date is given for the above research areas in a high-disturbance environment (bypass transition) with a discussion of the model development necessary for use in numerical codes.
Developing hybrid approaches to predict pKa values of ionizable groups
Witham, Shawn; Talley, Kemper; Wang, Lin; Zhang, Zhe; Sarkar, Subhra; Gao, Daquan; Yang, Wei
2011-01-01
Accurate predictions of pKa values of titratable groups require taking into account all relevant processes associated with the ionization/deionization. Frequently, however, the ionization does not involve significant structural changes and the dominating effects are purely electrostatic in origin allowing accurate predictions to be made based on the electrostatic energy difference between ionized and neutral forms alone using a static structure. On another hand, if the change of the charge state is accompanied by a structural reorganization of the target protein, then the relevant conformational changes have to be taken into account in the pKa calculations. Here we report a hybrid approach that first predicts the titratable groups, which ionization is expected to cause conformational changes, termed “problematic” residues, then applies a special protocol on them, while the rest of the pKa’s are predicted with rigid backbone approach as implemented in multi-conformation continuum electrostatics (MCCE) method. The backbone representative conformations for “problematic” groups are generated with either molecular dynamics simulations with charged and uncharged amino acid or with ab-initio local segment modeling. The corresponding ensembles are then used to calculate the pKa of the “problematic” residues and then the results are averaged. PMID:21744395
Schröder, Bernd; Freire, Mara G; Varanda, Fatima R; Marrucho, Isabel M; Santos, Luís M N B F; Coutinho, João A P
2011-07-01
The aqueous solubility of hexafluorobenzene has been determined, at 298.15K, using a shake-flask method with a spectrophotometric quantification technique. Furthermore, the solubility of hexafluorobenzene in saline aqueous solutions, at distinct salt concentrations, has been measured. Both salting-in and salting-out effects were observed and found to be dependent on the nature of the cationic/anionic composition of the salt. COSMO-RS, the Conductor-like Screening Model for Real Solvents, has been used to predict the corresponding aqueous solubilities at conditions similar to those used experimentally. The prediction results showed that the COSMO-RS approach is suitable for the prediction of salting-in/-out effects. The salting-in/-out phenomena have been rationalized with the support of COSMO-RS σ-profiles. The prediction potential of COSMO-RS regarding aqueous solubilities and octanol-water partition coefficients has been compared with typically used QSPR-based methods. Up to now, the absence of accurate solubility data for hexafluorobenzene hampered the calculation of the respective partition coefficients. Combining available accurate vapor pressure data with the experimentally determined water solubility, a novel air-water partition coefficient has been derived. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kumar, S.; Spaulding, S.A.; Stohlgren, T.J.; Hermann, K.A.; Schmidt, T.S.; Bahls, L.L.
2009-01-01
The diatom Didymosphenia geminata is a single-celled alga found in lakes, streams, and rivers. Nuisance blooms of D geminata affect the diversity, abundance, and productivity of other aquatic organisms. Because D geminata can be transported by humans on waders and other gear, accurate spatial prediction of habitat suitability is urgently needed for early detection and rapid response, as well as for evaluation of monitoring and control programs. We compared four modeling methods to predict D geminata's habitat distribution; two methods use presence-absence data (logistic regression and classification and regression tree [CART]), and two involve presence data (maximum entropy model [Maxent] and genetic algorithm for rule-set production [GARP]). Using these methods, we evaluated spatially explicit, bioclimatic and environmental variables as predictors of diatom distribution. The Maxent model provided the most accurate predictions, followed by logistic regression, CART, and GARP. The most suitable habitats were predicted to occur in the western US, in relatively cool sites, and at high elevations with a high base-flow index. The results provide insights into the factors that affect the distribution of D geminata and a spatial basis for the prediction of nuisance blooms. ?? The Ecological Society of America.
Consider the source: Children link the accuracy of text-based sources to the accuracy of the author.
Vanderbilt, Kimberly E; Ochoa, Karlena D; Heilbrun, Jayd
2018-05-06
The present research investigated whether young children link the accuracy of text-based information to the accuracy of its author. Across three experiments, three- and four-year-olds (N = 231) received information about object labels from accurate and inaccurate sources who provided information both in text and verbally. Of primary interest was whether young children would selectively rely on information provided by more accurate sources, regardless of the form in which the information was communicated. Experiment 1 tested children's trust in text-based information (e.g., books) written by an author with a history of either accurate or inaccurate verbal testimony and found that children showed greater trust in books written by accurate authors. Experiment 2 replicated the findings of Experiment 1 and extended them by showing that children's selective trust in more accurate text-based sources was not dependent on experience trusting or distrusting the author's verbal testimony. Experiment 3 investigated this understanding in reverse by testing children's trust in verbal testimony communicated by an individual who had authored either accurate or inaccurate text-based information. Experiment 3 revealed that children showed greater trust in individuals who had authored accurate rather than inaccurate books. Experiment 3 also demonstrated that children used the accuracy of text-based sources to make inferences about the mental states of the authors. Taken together, these results suggest children do indeed link the reliability of text-based sources to the reliability of the author. Statement of Contribution Existing knowledge Children use sources' prior accuracy to predict future accuracy in face-to-face verbal interactions. Children who are just learning to read show increased trust in text bases (vs. verbal) information. It is unknown whether children consider authors' prior accuracy when judging the accuracy of text-based information. New knowledge added by this article Preschool children track sources' accuracy across communication mediums - from verbal to text-based modalities and vice versa. Children link the reliability of text-based sources to the reliability of the author. © 2018 The British Psychological Society.
Accurate lithography simulation model based on convolutional neural networks
NASA Astrophysics Data System (ADS)
Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki
2017-07-01
Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.
An EQT-cDFT approach to determine thermodynamic properties of confined fluids.
Mashayak, S Y; Motevaselian, M H; Aluru, N R
2015-06-28
We present a continuum-based approach to predict the structure and thermodynamic properties of confined fluids at multiple length-scales, ranging from a few angstroms to macro-meters. The continuum approach is based on the empirical potential-based quasi-continuum theory (EQT) and classical density functional theory (cDFT). EQT is a simple and fast approach to predict inhomogeneous density and potential profiles of confined fluids. We use EQT potentials to construct a grand potential functional for cDFT. The EQT-cDFT-based grand potential can be used to predict various thermodynamic properties of confined fluids. In this work, we demonstrate the EQT-cDFT approach by simulating Lennard-Jones fluids, namely, methane and argon, confined inside slit-like channels of graphene. We show that the EQT-cDFT can accurately predict the structure and thermodynamic properties, such as density profiles, adsorption, local pressure tensor, surface tension, and solvation force, of confined fluids as compared to the molecular dynamics simulation results.
Xue, Yi; Skrynnikov, Nikolai R
2014-01-01
Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields. PMID:24452989
NASA Astrophysics Data System (ADS)
Castillo, Jose Alan A.; Apan, Armando A.; Maraseni, Tek N.; Salmo, Severino G.
2017-12-01
The recent launch of the Sentinel-1 (SAR) and Sentinel-2 (multispectral) missions offers a new opportunity for land-based biomass mapping and monitoring especially in the tropics where deforestation is highest. Yet, unlike in agriculture and inland land uses, the use of Sentinel imagery has not been evaluated for biomass retrieval in mangrove forest and the non-forest land uses that replaced mangroves. In this study, we evaluated the ability of Sentinel imagery for the retrieval and predictive mapping of above-ground biomass of mangroves and their replacement land uses. We used Sentinel SAR and multispectral imagery to develop biomass prediction models through the conventional linear regression and novel Machine Learning algorithms. We developed models each from SAR raw polarisation backscatter data, multispectral bands, vegetation indices, and canopy biophysical variables. The results show that the model based on biophysical variable Leaf Area Index (LAI) derived from Sentinel-2 was more accurate in predicting the overall above-ground biomass. In contrast, the model which utilised optical bands had the lowest accuracy. However, the SAR-based model was more accurate in predicting the biomass in the usually deficient to low vegetation cover non-forest replacement land uses such as abandoned aquaculture pond, cleared mangrove and abandoned salt pond. These models had 0.82-0.83 correlation/agreement of observed and predicted value, and root mean square error of 27.8-28.5 Mg ha-1. Among the Sentinel-2 multispectral bands, the red and red edge bands (bands 4, 5 and 7), combined with elevation data, were the best variable set combination for biomass prediction. The red edge-based Inverted Red-Edge Chlorophyll Index had the highest prediction accuracy among the vegetation indices. Overall, Sentinel-1 SAR and Sentinel-2 multispectral imagery can provide satisfactory results in the retrieval and predictive mapping of the above-ground biomass of mangroves and the replacement non-forest land uses, especially with the inclusion of elevation data. The study demonstrates encouraging results in biomass mapping of mangroves and other coastal land uses in the tropics using the freely accessible and relatively high-resolution Sentinel imagery.
Cao, Han; Ng, Marcus C K; Jusoh, Siti Azma; Tai, Hio Kuan; Siu, Shirley W I
2017-09-01
[Formula: see text]-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM . Website is implemented in PHP, MySQL and Apache, with all major browsers supported.
TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers
NASA Astrophysics Data System (ADS)
Cao, Han; Ng, Marcus C. K.; Jusoh, Siti Azma; Tai, Hio Kuan; Siu, Shirley W. I.
2017-09-01
α-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM. Website is implemented in PHP, MySQL and Apache, with all major browsers supported.
Extraordinary optical transmission inside a waveguide: spatial mode dependence.
Reichel, Kimberly S; Lu, Peter Y; Backus, Sterling; Mendis, Rajind; Mittleman, Daniel M
2016-12-12
We study the influence of the input spatial mode on the extraordinary optical transmission (EOT) effect. By placing a metal screen with a 1D array of subwavelength holes inside a terahertz (THz) parallel-plate waveguide (PPWG), we can directly compare the transmission spectra with different input waveguide modes. We observe that the transmitted spectrum depends strongly on the input mode. A conventional description of EOT based on the excitation of surface plasmons is not predictive in all cases. Instead, we utilize a formalism based on impedance matching, which accurately predicts the spectral resonances for both TEM and non-TEM input modes.
Accurate low-cost methods for performance evaluation of cache memory systems
NASA Technical Reports Server (NTRS)
Laha, Subhasis; Patel, Janak H.; Iyer, Ravishankar K.
1988-01-01
Methods of simulation based on statistical techniques are proposed to decrease the need for large trace measurements and for predicting true program behavior. Sampling techniques are applied while the address trace is collected from a workload. This drastically reduces the space and time needed to collect the trace. Simulation techniques are developed to use the sampled data not only to predict the mean miss rate of the cache, but also to provide an empirical estimate of its actual distribution. Finally, a concept of primed cache is introduced to simulate large caches by the sampling-based method.