Science.gov

Sample records for accurately reflect biological

  1. Biology Reflective Assessment Curriculum

    NASA Astrophysics Data System (ADS)

    Bayley, Cheryl Ann

    Often students and educators view assessments as an obligation and finality for a unit. In the current climate of high-stakes testing and accountability, the balance of time, resources and emphasis on students' scores related to assessment have been slanted considerably toward the summative side. This tension between assessment for accountability and assessment to inform teaching strains instruction and educators' ability to use that information to design learning opportunities that help students develop deeper conceptual understanding. A substantive body of research indicates that formative and reflective assessment can significantly improve student learning. Biology Reflective Assessment Curriculum (BRAC) examines support provided for high school science students through assessment practices. This investigation incorporates the usage of reflective assessments as a guiding practice for differentiated instruction and student choice. Reflective assessment is a metacognitive strategy that promotes self-monitoring and evaluation. The goals of the curriculum are to promote self-efficacy and conceptual understanding in students learning biology through developing their metacognitive awareness. BRAC was implemented in a high school biology classroom. Data from assessments, metacognitive surveys, self-efficacy surveys, reflective journals, student work, a culminating task and field notes were used to evaluate the effectiveness of the curriculum. The results suggest that students who develop their metacognitive skills developed a deeper conceptual understanding and improved feelings of self-efficacy when they were engaged in a reflective assessment unit embedded with student choice. BRAC is a tool for teachers to use assessments to assist students in becoming metacognitive and to guide student choice in learning opportunities.

  2. Accurate hydrogen depth profiling by reflection elastic recoil detection analysis

    SciTech Connect

    Verda, R. D.; Tesmer, Joseph R.; Nastasi, Michael Anthony,; Bower, R. W.

    2001-01-01

    A technique to convert reflection elastic recoil detection analysis spectra to depth profiles, the channel-depth conversion, was introduced by Verda, et al [1]. But the channel-depth conversion does not correct for energy spread, the unwanted broadening in the energy of the spectra, which can lead to errors in depth profiling. A work in progress introduces a technique that corrects for energy spread in elastic recoil detection analysis spectra, the energy spread correction [2]. Together, the energy spread correction and the channel-depth conversion comprise an accurate and convenient hydrogen depth profiling method.

  3. New Claus catalyst tests accurately reflect process conditions

    SciTech Connect

    Maglio, A.; Schubert, P.F.

    1988-09-12

    Methods for testing Claus catalysts are developed that more accurately represent the actual operating conditions in commercial sulfur recovery units. For measuring catalyst activity, an aging method has been developed that results in more meaningful activity data after the catalyst has been aged, because all catalysts undergo rapid initial deactivation in commercial units. An activity test method has been developed where catalysts can be compared at less than equilibrium conversion. A test has also been developed to characterize abrasion loss of Claus catalysts, in contrast to the traditional method of determining physical properties by measuring crush strengths. Test results from a wide range of materials correlated well with actual pneumatic conveyance attrition. Substantial differences in Claus catalyst properties were observed as a result of using these tests.

  4. [Around biological evolution. Reflections of a physicist].

    PubMed

    Sanchez-Palencia, Evariste

    2016-01-01

    This text is the written version of a talk at the Société de Biologie on February 17, 2016. It contains reflections of a non-biologist scientist on general problems of biological evolution, including the kind of causality involved, the ideas emerging from it, in particular the constructive and structuring character of phenomena such as predation, the role of stability and attractors. This leads to a larger reflection on dialectics, the general framework of evolving processes, which overpasses formal logic and instantaneousness.

  5. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown.

  6. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown. PMID:26767640

  7. The impact of different reference panels on spectral reflectance coefficients of some biological water pollutants

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Agnieszka; Walczykowski, Piotr

    2015-10-01

    Monitoring of water environment and ecosystem, detecting water contaminants and understanding water quality parameters are most important tasks in water management and protection of whole aquatic environment. Detection of biological contaminants play a very important role in preserving human health and water management. To obtain accurate and precise results of determination of the level of biological contamination and to distinguish its type it is necessary to determine precisely spectral reflectance coefficients of several water biological pollutants with inter alia spectroradiometer. This paper presents a methodology and preliminary results of acquisition of spectral reflectance coefficients with different reference panels (e.g. with 5%, 20%, 50%, 80% and 96% of reflectivity) of several biological pollutants. The authors' main task was to measure spectral reflectance coefficients of different biological water pollutants with several reference panels and to select optimal reference standard, which would allow for distinguish different types of several biological contaminants. Moreover it was necessary to indicate the spectral range in which it is possible to discriminate investigated samples of biological contaminants. By conducting many series of measurements of several samples of different types of biological pollutants, authors had concluded how the reflectivity of reference panel influences the accuracy of acquisition of spectral reflectance coefficients. This research was crucial in order to be able to distinguish several types of biological pollutants and to determine the useful spectral range for detection of different kinds of biological contaminants with multispectral and hyperspectral imagery.

  8. Models in biology: 'accurate descriptions of our pathetic thinking'.

    PubMed

    Gunawardena, Jeremy

    2014-01-01

    In this essay I will sketch some ideas for how to think about models in biology. I will begin by trying to dispel the myth that quantitative modeling is somehow foreign to biology. I will then point out the distinction between forward and reverse modeling and focus thereafter on the former. Instead of going into mathematical technicalities about different varieties of models, I will focus on their logical structure, in terms of assumptions and conclusions. A model is a logical machine for deducing the latter from the former. If the model is correct, then, if you believe its assumptions, you must, as a matter of logic, also believe its conclusions. This leads to consideration of the assumptions underlying models. If these are based on fundamental physical laws, then it may be reasonable to treat the model as 'predictive', in the sense that it is not subject to falsification and we can rely on its conclusions. However, at the molecular level, models are more often derived from phenomenology and guesswork. In this case, the model is a test of its assumptions and must be falsifiable. I will discuss three models from this perspective, each of which yields biological insights, and this will lead to some guidelines for prospective model builders. PMID:24886484

  9. An accurate dynamical electron diffraction algorithm for reflection high-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Huang, J.; Cai, C. Y.; Lv, C. L.; Zhou, G. W.; Wang, Y. G.

    2015-12-01

    The conventional multislice method (CMS) method, one of the most popular dynamical electron diffraction calculation procedures in transmission electron microscopy, was introduced to calculate reflection high-energy electron diffraction (RHEED) as it is well adapted to deal with the deviations from the periodicity in the direction parallel to the surface. However, in the present work, we show that the CMS method is no longer sufficiently accurate for simulating RHEED with the accelerating voltage 3-100 kV because of the high-energy approximation. An accurate multislice (AMS) method can be an alternative for more accurate RHEED calculations with reasonable computing time. A detailed comparison of the numerical calculation of the AMS method and the CMS method is carried out with respect to different accelerating voltages, surface structure models, Debye-Waller factors and glancing angles.

  10. [In search of biology. Reflections on evolution].

    PubMed

    Sandín, Máximo

    2009-01-01

    After 150 years conceiving and dealing with Nature in terms of competence, costs-benefits, exploitation of resources, strategies..., we have managed to make it enter into a "recession." This estrangement from reality and from natural phenomena, has seriously jeopardized the future of mankind on our planet and makes it necessary, even urgent, the search for a conception of biology based on scientific concepts and vocabulary that re-connects us with Nature before it is too late.

  11. Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition

    USGS Publications Warehouse

    Belnap, Jayne; Wilcox, Bradford P.; Van Scoyoc, Matthew V.; Phillips, Susan L.

    2013-01-01

    Biological soil crusts are a key component of many dryland ecosystems. Following disturbance, biological soil crusts will recover in stages. Recently, a simple classification of these stages has been developed, largely on the basis of external features of the crusts, which reflects their level of development (LOD). The classification system has six LOD classes, from low (1) to high (6). To determine whether the LOD of a crust is related to its ecohydrological function, we used rainfall simulation to evaluate differences in infiltration, runoff, and erosion among crusts in the various LODs, across a range of soil depths and with different wetting pre-treatments. We found large differences between the lowest and highest LODs, with runoff and erosion being greatest from the lowest LOD. Under dry antecedent conditions, about 50% of the water applied ran off the lowest LOD plots, whereas less than 10% ran off the plots of the two highest LODs. Similarly, sediment loss was 400 g m-2 from the lowest LOD and almost zero from the higher LODs. We scaled up the results from these simulations using the Rangeland Hydrology and Erosion Model. Modelling results indicate that erosion increases dramatically as slope length and gradient increase, especially beyond the threshold values of 10 m for slope length and 10% for slope gradient. Our findings confirm that the LOD classification is a quick, easy, nondestructive, and accurate index of hydrological condition and should be incorporated in field and modelling assessments of ecosystem health.

  12. Leap of Faith: Does serum luteinizing hormone always accurately reflect central reproductive neuroendocrine activity?

    PubMed Central

    Moenter, Suzanne M.

    2015-01-01

    Function of the central aspects of the hypothalamo-pituitary-gonadal axis has been assessed in a number of ways including direct measurements of hypothalamic output and indirect measures using gonadotropin release from the pituitary as a bioassay for reproductive neuroendocrine activity. Here, methods for monitoring these various parameters are briefly reviewed and then examples presented of both concordance and discrepancy between central and peripheral measurements, with a focus on situations in which elevated GnRH neurosecretion is not reflected accurately by pituitary luteinizing hormone release. Implications for interpretation of gonadotropin data are discussed. PMID:26278916

  13. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  14. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  15. Reflections on Designing a Biology/Humanities Interdisciplinary Module

    ERIC Educational Resources Information Center

    Stack, David; Battey, Nicholas

    2013-01-01

    This paper uses the reflections of a recent workshop on biology and the humanities subject areas to consider the potential for designing a first year interdisciplinary module that brings together teachers and learners in the Biosciences with their counterparts in English and History. It considers three building blocks of module design: aims and…

  16. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running.

    PubMed

    Jones, A M; Doust, J H

    1996-08-01

    When running indoors on a treadmill, the lack of air resistance results in a lower energy cost compared with running outdoors at the same velocity. A slight incline of the treadmill gradient can be used to increase the energy cost in compensation. The aim of this study was to determine the treadmill gradient that most accurately reflects the energy cost of outdoor running. Nine trained male runners, thoroughly habituated to treadmill running, ran for 6 min at six different velocities (2.92, 3.33, 3.75, 4.17, 4.58 and 5.0 m s-1) with 6 min recovery between runs. This routine was repeated six times, five times on a treadmill set at different grades (0%, 0%, 1%, 2%, 3%) and once outdoors along a level road. Duplicate collections of expired air were taken during the final 2 min of each run to determine oxygen consumption. The repeatability of the methodology was confirmed by high correlations (r = 0.99) and non-significant differences between the duplicate expired air collections and between the repeated runs at 0% grade. The relationship between oxygen uptake (VO2) and velocity for each grade was highly linear (r > 0.99). At the two lowest velocities, VO2 during road running was not significantly different from treadmill running at 0% or 1% grade, but was significantly less than 2% and 3% grade. For 3.75 m s-1, the VO2 during road running was significantly different from treadmill running at 0%, 2% and 3% grades but not from 1% grade. For 4.17 and 4.58 m s-1, the VO2 during road running was not significantly different from that at 1% or 2% grade but was significantly greater than 0% grade and significantly less than 3% grade. At 5.0 m s-1, the VO2 for road running fell between the VO2 value for 1% and 2% grade treadmill running but was not significantly different from any of the treadmill grade conditions. This study demonstrates equality of the energetic cost of treadmill and outdoor running with the use of a 1% treadmill grade over a duration of approximately 5 min

  17. The crystallization of biological macromolecules under microgravity: a way to more accurate three-dimensional structures?

    PubMed

    Lorber, Bernard

    2002-09-23

    The crystallization of proteins and other biological particles (including nucleic acids, nucleo-protein complexes and large assemblies such as nucleosomes, ribosomal subunits or viruses) in a microgravity environment can produce crystals having lesser defects than crystals prepared under normal gravity on earth. Such microgravity-grown crystals can diffract X-rays to a higher resolution and have a lower mosaic spread. The inferred electron density maps can be richer in details owing to which more accurate three-dimensional structure models can be built. Major results reported in this field of research are reviewed. Novel ones obtained with the Advanced Protein Crystallization Facility are presented. For structural biology, practical applications and implications associated with crystallization and crystallography onboard the International Space Station are discussed.

  18. Standardization of vitrinite reflectance measurements in shale petroleum systems: How accurate are my Ro data?

    USGS Publications Warehouse

    Hackley, Paul C.

    2014-01-01

    Vitrinite reflectance generally is considered the most robust thermal maturity parameter available for application to hydrocarbon exploration and petroleum system evaluation. However, until 2011 there was no standardized methodology available to provide guidelines for vitrinite reflectance measurements in shale. Efforts to correct this deficiency resulted in publication of ASTM D7708-11: Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. In 2012-2013, an interlaboratory exercise was conducted to establish precision limits for the measurement technique. Six samples, representing a wide variety of shale, were tested in duplicate by 28 analysts in 22 laboratories from 14 countries. Samples ranged from immature to overmature (Ro 0.31-1.53%), from organic-rich to organic-lean (1-22 wt.% total organic carbon), and contained Type I (lacustrine), Type II (marine), and Type III (terrestrial) kerogens. Repeatability values (difference between repetitive results from same operator, same conditions) ranged from 0.03-0.11% absolute reflectance, whereas reproducibility values (difference between results obtained on same test material by different operators, different laboratories) ranged from 0.12-0.54% absolute reflectance. Repeatability and reproducibility degraded consistently with increasing maturity and decreasing organic content. However, samples with terrestrial kerogens (Type III) fell off this trend, showing improved levels of reproducibility due to higher vitrinite content and improved ease of identification. Operators did not consistently meet the reporting requirements of the test method, indicating that a common reporting template is required to improve data quality. The most difficult problem encountered was the petrographic distinction of solid bitumens and low-reflecting inert macerals from vitrinite when vitrinite occurred with reflectance ranges overlapping the other components. Discussion among

  19. Accurate elevation and normal moveout corrections of seismic reflection data on rugged topography

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Chen, C.; Zhang, G.

    2005-01-01

    The application of the seismic reflection method is often limited in areas of complex terrain. The problem is the incorrect correction of time shifts caused by topography. To apply normal moveout (NMO) correction to reflection data correctly, static corrections are necessary to be applied in advance for the compensation of the time distortions of topography and the time delays from near-surface weathered layers. For environment and engineering investigation, weathered layers are our targets, so that the static correction mainly serves the adjustment of time shifts due to an undulating surface. In practice, seismic reflected raypaths are assumed to be almost vertical through the near-surface layers because they have much lower velocities than layers below. This assumption is acceptable in most cases since it results in little residual error for small elevation changes and small offsets in reflection events. Although static algorithms based on choosing a floating datum related to common midpoint gathers or residual surface-consistent functions are available and effective, errors caused by the assumption of vertical raypaths often generate pseudo-indications of structures. This paper presents the comparison of applying corrections based on the vertical raypaths and bias (non-vertical) raypaths. It also provides an approach of combining elevation and NMO corrections. The advantages of the approach are demonstrated by synthetic and real-world examples of multi-coverage seismic reflection surveys on rough topography. ?? The Royal Society of New Zealand 2005.

  20. Object-Oriented NeuroSys: Parallel Programs for Simulating Large Networks of Biologically Accurate Neurons

    SciTech Connect

    Pacheco, P; Miller, P; Kim, J; Leese, T; Zabiyaka, Y

    2003-05-07

    Object-oriented NeuroSys (ooNeuroSys) is a collection of programs for simulating very large networks of biologically accurate neurons on distributed memory parallel computers. It includes two principle programs: ooNeuroSys, a parallel program for solving the large systems of ordinary differential equations arising from the interconnected neurons, and Neurondiz, a parallel program for visualizing the results of ooNeuroSys. Both programs are designed to be run on clusters and use the MPI library to obtain parallelism. ooNeuroSys also includes an easy-to-use Python interface. This interface allows neuroscientists to quickly develop and test complex neuron models. Both ooNeuroSys and Neurondiz have a design that allows for both high performance and relative ease of maintenance.

  1. Developing a second generation Laue lens prototype: high-reflectivity crystals and accurate assembly

    NASA Astrophysics Data System (ADS)

    Barrière, Nicolas M.; Tomsick, John A.; Boggs, Steven E.; Lowell, Alexander; von Ballmoos, Peter

    2011-09-01

    Laue lenses are an emerging technology that will enhance gamma-ray telescope sensitivity by one to two orders of magnitude in selected energy bands of the ~100 keV to ~1.5 MeV range. This optic would be particularly well adapted to the observation of faint gamma ray lines, as required for the study of Supernovae and Galactic positron annihilation. It could also prove very useful for the study of hard X-ray tails from a variety of compact objects, especially making a difference by providing sufficient sensitivity for polarization to be measured by the focal plane detector. Our group has been addressing the two key issues relevant to improve performance with respect to the first generation of Laue lens prototypes: obtaining large numbers of efficient crystals and developing a method to fix them with accurate orientation and dense packing factor onto a substrate. We present preliminary results of an on-going study aiming to enable a large number of crystals suitable for diffraction at energies above 500 keV. In addition, we show the first results of the Laue lens prototype assembled using our beamline at SSL/UC Berkeley, which demonstrates our ability to orient and glue crystals with accuracy of a few arcsec, as required for an efficient Laue lens telescope.

  2. Hydrogen sulfide detection based on reflection: from a poison test approach of ancient China to single-cell accurate localization.

    PubMed

    Kong, Hao; Ma, Zhuoran; Wang, Song; Gong, Xiaoyun; Zhang, Sichun; Zhang, Xinrong

    2014-08-01

    With the inspiration of an ancient Chinese poison test approach, we report a rapid hydrogen sulfide detection strategy in specific areas of live cells using silver needles with good spatial resolution of 2 × 2 μm(2). Besides the accurate-localization ability, this reflection-based strategy also has attractive merits of convenience and robust response when free pretreatment and short detection time are concerned. The success of endogenous H2S level evaluation in cellular cytoplasm and nuclear of human A549 cells promises the application potential of our strategy in scientific research and medical diagnosis.

  3. Small pores in soils: Is the physico-chemical environment accurately reflected in biogeochemical models ?

    NASA Astrophysics Data System (ADS)

    Weber, Tobias K. D.; Riedel, Thomas

    2015-04-01

    Free water is a prerequesite to chemical reactions and biological activity in earth's upper crust essential to life. The void volume between the solid compounds provides space for water, air, and organisms that thrive on the consumption of minerals and organic matter thereby regulating soil carbon turnover. However, not all water in the pore space in soils and sediments is in its liquid state. This is a result of the adhesive forces which reduce the water activity in small pores and charged mineral surfaces. This water has a lower tendency to react chemically in solution as this additional binding energy lowers its activity. In this work, we estimated the amount of soil pore water that is thermodynamically different from a simple aqueous solution. The quantity of soil pore water with properties different to liquid water was found to systematically increase with increasing clay content. The significance of this is that the grain size and surface area apparently affects the thermodynamic state of water. This implies that current methods to determine the amount of water content, traditionally determined from bulk density or gravimetric water content after drying at 105°C overestimates the amount of free water in a soil especially at higher clay content. Our findings have consequences for biogeochemical processes in soils, e.g. nutrients may be contained in water which is not free which could enhance preservation. From water activity measurements on a set of various soils with 0 to 100 wt-% clay, we can show that 5 to 130 mg H2O per g of soil can generally be considered as unsuitable for microbial respiration. These results may therefore provide a unifying explanation for the grain size dependency of organic matter preservation in sedimentary environments and call for a revised view on the biogeochemical environment in soils and sediments. This could allow a different type of process oriented modelling.

  4. Sampling designs matching species biology produce accurate and affordable abundance indices

    PubMed Central

    Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which

  5. Sampling designs matching species biology produce accurate and affordable abundance indices.

    PubMed

    Harris, Grant; Farley, Sean; Russell, Gareth J; Butler, Matthew J; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km(2) cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions

  6. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity

    PubMed Central

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (BiologTM) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  7. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity.

    PubMed

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (Biolog(TM)) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  8. Numerical analysis of ultrasound propagation and reflection intensity for biological acoustic impedance microscope.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-08-01

    This paper proposes a new method for microscopic acoustic imaging that utilizes the cross sectional acoustic impedance of biological soft tissues. In the system, a focused acoustic beam with a wide band frequency of 30-100 MHz is transmitted across a plastic substrate on the rear side of which a soft tissue object is placed. By scanning the focal point along the surface, a 2-D reflection intensity profile is obtained. In the paper, interpretation of the signal intensity into a characteristic acoustic impedance is discussed. Because the acoustic beam is strongly focused, interpretation assuming vertical incidence may lead to significant error. To determine an accurate calibration curve, a numerical sound field analysis was performed. In these calculations, the reflection intensity from a target with an assumed acoustic impedance was compared with that from water, which was used as a reference material. The calibration curve was determined by changing the assumed acoustic impedance of the target material. The calibration curve was verified experimentally using saline solution, of which the acoustic impedance was known, as the target material. Finally, the cerebellar tissue of a rat was observed to create an acoustic impedance micro profile. In the paper, details of the numerical analysis and verification of the observation results will be described.

  9. Some biological reflections on the concept of life.

    PubMed

    Pennazio, Sergio

    2010-01-01

    Life is the natural phenomenon that has always aroused the largest interest of philosophers, theologians and scientists, on which a new science--biology--was founded two century ago just for throwing light on its mechanisms. As the pre-Hellenic culture was not able to separate distinctly philosophy from science, life was interpreted as a spurious flurry of the activity of Nature, in which religion, magic and science were interlaced in an intricate way. The Hippocratic medicine constituted the first attempt to focus attention on life by collecting some biological knowledge in order to maintain man's health. All the subsequent physiologists (from the Hellenic to the Latin period) benefited from the precepts of the Corpus Hippocraticum as long as the Christian religion imposed its theological rules that favoured the question relative to soul ever more closely interlaced with the physiology of body. The concept of life became therefore subjected to a number of opposite theories with strong prevalence of metaphysical conjectures until the 19th century but, in spite of this imposition, splendid successes were achieved by physiologists and naturalists such as Harvey, Descartes, Haller, Malpighi, Spallanzani, Wolff, and others, who laid the foundation of a biology that has Lamarck as promoter. The importance of Lamarck's biology came from the release from metaphysics with the introduction of physical and structural concepts which permeated the experimental biology to come. Three main events characterised the biology of the 19th century: i) the interplay of the new chemistry with biology, ii) the cell theory, iii) the concept of metabolism. These events led biology to the 20th century, the era of biochemistry and molecular genetics. The discoveries relative to metabolism characterised the first half of this century, while the second half was witness to the internal mechanisms regulating the life of cells, perhaps the most advanced success of the biology of all time. Today

  10. Reflections on metapsychology, theoretical coherence, hermeneutics, and biology.

    PubMed

    Gedo, J E

    1997-01-01

    Unable to correlate clinical findings with contemporary neurophysiology, Freud tried to anchor psychoanalysis within biology through a speculative metapsychology. Recently, epistemological objections have led to abandonment of his proposals qua scientific theory, although many still use them metaphorically. Others deny the need for any general theory of mental functions. Some theorists would espouse a hermeneutic basis for psychoanalysis, outside the boundaries of biology; they purport to confine their purview to mental contents but often use concepts based on metapsychological assumptions. Because the meanings of such contents are difficult to determine, their interpretation should be "constructed" in collaboration with analysands. By contrast, trained observers may reliably collect psychobiological data, accumulating knowledge of cognition, affectivity, communication, and the regulation of behavior--matters Freud encompassed via the economic and structural viewpoints. Hence analytic theory should be correlated with the findings of semiotics, cognitive psychology, and brain science. The hermeneutic focus on dynamics and genetics overlooks crucial data, such as the occurrence of trauma, leading to confusion about processes of pathogenesis, working through, and structural change. These and other biological phenomena (such as functional deficits and repetitive enactments) call for interventions beyond interpreting mental contents; improvement depends on learning better to process these contents. Change implies gradual establishment of alternative neural pathways; this does not automatically follow insight. Hence psychoanalysis must deal with intrapsychic phenomena beyond subjectivity. Intrapsychic conflicts represent efforts to ward off archaic mentality (primitive thought processing). Theories divorced from neurocognitive considerations encourage the theoretical fiction that analysands possess an "intact ego."

  11. Stable isotope ratios in hair and teeth reflect biologic rhythms.

    PubMed

    Appenzeller, Otto; Qualls, Clifford; Barbic, Franca; Furlan, Raffaello; Porta, Alberto

    2007-07-25

    Biologic rhythms give insight into normal physiology and disease. They can be used as biomarkers for neuronal degenerations. We present a diverse data set to show that hair and teeth contain an extended record of biologic rhythms, and that analysis of these tissues could yield signals of neurodegenerations. We examined hair from mummified humans from South America, extinct mammals and modern animals and people, both healthy and diseased, and teeth of hominins. We also monitored heart-rate variability, a measure of a biologic rhythm, in some living subjects and analyzed it using power spectra. The samples were examined to determine variations in stable isotope ratios along the length of the hair and across growth-lines of the enamel in teeth. We found recurring circa-annual periods of slow and fast rhythms in hydrogen isotope ratios in hair and carbon and oxygen isotope ratios in teeth. The power spectra contained slow and fast frequency power, matching, in terms of normalized frequency, the spectra of heart rate variability found in our living subjects. Analysis of the power spectra of hydrogen isotope ratios in hair from a patient with neurodegeneration revealed the same spectral features seen in the patient's heart-rate variability. Our study shows that spectral analysis of stable isotope ratios in readily available tissues such as hair could become a powerful diagnostic tool when effective treatments and neuroprotective drugs for neurodegenerative diseases become available. It also suggests that similar analyses of archaeological specimens could give insight into the physiology of ancient people and animals.

  12. Stable isotope ratios in hair and teeth reflect biologic rhythms.

    PubMed

    Appenzeller, Otto; Qualls, Clifford; Barbic, Franca; Furlan, Raffaello; Porta, Alberto

    2007-01-01

    Biologic rhythms give insight into normal physiology and disease. They can be used as biomarkers for neuronal degenerations. We present a diverse data set to show that hair and teeth contain an extended record of biologic rhythms, and that analysis of these tissues could yield signals of neurodegenerations. We examined hair from mummified humans from South America, extinct mammals and modern animals and people, both healthy and diseased, and teeth of hominins. We also monitored heart-rate variability, a measure of a biologic rhythm, in some living subjects and analyzed it using power spectra. The samples were examined to determine variations in stable isotope ratios along the length of the hair and across growth-lines of the enamel in teeth. We found recurring circa-annual periods of slow and fast rhythms in hydrogen isotope ratios in hair and carbon and oxygen isotope ratios in teeth. The power spectra contained slow and fast frequency power, matching, in terms of normalized frequency, the spectra of heart rate variability found in our living subjects. Analysis of the power spectra of hydrogen isotope ratios in hair from a patient with neurodegeneration revealed the same spectral features seen in the patient's heart-rate variability. Our study shows that spectral analysis of stable isotope ratios in readily available tissues such as hair could become a powerful diagnostic tool when effective treatments and neuroprotective drugs for neurodegenerative diseases become available. It also suggests that similar analyses of archaeological specimens could give insight into the physiology of ancient people and animals. PMID:17653263

  13. Models in biology: ‘accurate descriptions of our pathetic thinking’

    PubMed Central

    2014-01-01

    In this essay I will sketch some ideas for how to think about models in biology. I will begin by trying to dispel the myth that quantitative modeling is somehow foreign to biology. I will then point out the distinction between forward and reverse modeling and focus thereafter on the former. Instead of going into mathematical technicalities about different varieties of models, I will focus on their logical structure, in terms of assumptions and conclusions. A model is a logical machine for deducing the latter from the former. If the model is correct, then, if you believe its assumptions, you must, as a matter of logic, also believe its conclusions. This leads to consideration of the assumptions underlying models. If these are based on fundamental physical laws, then it may be reasonable to treat the model as ‘predictive’, in the sense that it is not subject to falsification and we can rely on its conclusions. However, at the molecular level, models are more often derived from phenomenology and guesswork. In this case, the model is a test of its assumptions and must be falsifiable. I will discuss three models from this perspective, each of which yields biological insights, and this will lead to some guidelines for prospective model builders. PMID:24886484

  14. Node Handprinting: A Scalable and Accurate Algorithm for Aligning Multiple Biological Networks.

    PubMed

    Radu, Alex; Charleston, Michael

    2015-07-01

    Due to recent advancements in high-throughput sequencing technologies, progressively more protein-protein interactions have been identified for a growing number of species. Subsequently, the protein-protein interaction networks for these species have been further refined. The increase in the quality and availability of these networks has in turn brought a demand for efficient methods to analyze such networks. The pairwise alignment of these networks has been moderately investigated, with numerous algorithms available, but there is very little progress in the field of multiple network alignment. Multiple alignment of networks from different organisms is ideal at finding abnormally conserved or disparate subnetworks. We present a fast and accurate algorithmic approach, Node Handprinting (NH), based on our previous work with Node Fingerprinting, which enables quick and accurate alignment of multiple networks. We also propose two new metrics for the analysis of multiple alignments, as the current metrics are not as sophisticated as their pairwise alignment counterparts. To assess the performance of NH, we use previously aligned datasets as well as protein interaction networks generated from the public database BioGRID. Our results indicate that NH compares favorably with current methodologies and is the only algorithm capable of performing the more complex alignments.

  15. SMETANA: Accurate and Scalable Algorithm for Probabilistic Alignment of Large-Scale Biological Networks

    PubMed Central

    Sahraeian, Sayed Mohammad Ebrahim; Yoon, Byung-Jun

    2013-01-01

    In this paper we introduce an efficient algorithm for alignment of multiple large-scale biological networks. In this scheme, we first compute a probabilistic similarity measure between nodes that belong to different networks using a semi-Markov random walk model. The estimated probabilities are further enhanced by incorporating the local and the cross-species network similarity information through the use of two different types of probabilistic consistency transformations. The transformed alignment probabilities are used to predict the alignment of multiple networks based on a greedy approach. We demonstrate that the proposed algorithm, called SMETANA, outperforms many state-of-the-art network alignment techniques, in terms of computational efficiency, alignment accuracy, and scalability. Our experiments show that SMETANA can easily align tens of genome-scale networks with thousands of nodes on a personal computer without any difficulty. The source code of SMETANA is available upon request. The source code of SMETANA can be downloaded from http://www.ece.tamu.edu/~bjyoon/SMETANA/. PMID:23874484

  16. Accurate treatments of electrostatics for computer simulations of biological systems: A brief survey of developments and existing problems

    NASA Astrophysics Data System (ADS)

    Yi, Sha-Sha; Pan, Cong; Hu, Zhong-Han

    2015-12-01

    Modern computer simulations of biological systems often involve an explicit treatment of the complex interactions among a large number of molecules. While it is straightforward to compute the short-ranged Van der Waals interaction in classical molecular dynamics simulations, it has been a long-lasting issue to develop accurate methods for the longranged Coulomb interaction. In this short review, we discuss three types of methodologies for the accurate treatment of electrostatics in simulations of explicit molecules: truncation-type methods, Ewald-type methods, and mean-field-type methods. Throughout the discussion, we brief the formulations and developments of these methods, emphasize the intrinsic connections among the three types of methods, and focus on the existing problems which are often associated with the boundary conditions of electrostatics. This brief survey is summarized with a short perspective on future trends along the method developments and applications in the field of biological simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 91127015 and 21522304) and the Open Project from the State Key Laboratory of Theoretical Physics, and the Innovation Project from the State Key Laboratory of Supramolecular Structure and Materials.

  17. Reflections on Supporting a Visually Impaired Student Complete a Biological Psychology Module

    ERIC Educational Resources Information Center

    Betts, Lucy R.; Cross, Amanda

    2010-01-01

    While there are a number of technologies that have been used, with varying levels of success, to support visually impaired students, the purpose of this article is to reflect upon the authors' experiences of supporting a visually impaired student through a nine-month level two undergraduate biological psychology module. The authors developed a…

  18. Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity

    PubMed Central

    Block, Stephan; Fast, Björn Johansson; Lundgren, Anders; Zhdanov, Vladimir P.; Höök, Fredrik

    2016-01-01

    Biological nanoparticles (BNPs) are of high interest due to their key role in various biological processes and use as biomarkers. BNP size and composition are decisive for their functions, but simultaneous determination of both properties with high accuracy remains challenging. Optical microscopy allows precise determination of fluorescence/scattering intensity, but not the size of individual BNPs. The latter is better determined by tracking their random motion in bulk, but the limited illumination volume for tracking this motion impedes reliable intensity determination. Here, we show that by attaching BNPs to a supported lipid bilayer, subjecting them to hydrodynamic flows and tracking their motion via surface-sensitive optical imaging enable determination of their diffusion coefficients and flow-induced drifts, from which accurate quantification of both BNP size and emission intensity can be made. For vesicles, the accuracy of this approach is demonstrated by resolving the expected radius-squared dependence of their fluorescence intensity for radii down to 15 nm. PMID:27658367

  19. Assessment of a sponge layer as a non-reflective boundary treatment with highly accurate gust–airfoil interaction results

    NASA Astrophysics Data System (ADS)

    Crivellini, A.

    2016-02-01

    This paper deals with the numerical performance of a sponge layer as a non-reflective boundary condition. This technique is well known and widely adopted, but only recently have the reasons for a sponge failure been recognised, in analysis by Mani. For multidimensional problems, the ineffectiveness of the method is due to the self-reflections of the sponge occurring when it interacts with an oblique acoustic wave. Based on his theoretical investigations, Mani gives some useful guidelines for implementing effective sponge layers. However, in our opinion, some practical indications are still missing from the current literature. Here, an extensive numerical study of the performance of this technique is presented. Moreover, we analyse a reduced sponge implementation characterised by undamped partial differential equations for the velocity components. The main aim of this paper relies on the determination of the minimal width of the layer, as well as of the corresponding strength, required to obtain a reflection error of no more than a few per cent of that observed when solving the same problem on the same grid, but without employing the sponge layer term. For this purpose, a test case of computational aeroacoustics, the single airfoil gust response problem, has been addressed in several configurations. As a direct consequence of our investigation, we present a well documented and highly validated reference solution for the far-field acoustic intensity, a result that is not well established in the literature. Lastly, the proof of the accuracy of an algorithm for coupling sub-domains solved by the linear and non-liner Euler governing equations is given. This result is here exploited to adopt a linear-based sponge layer even in a non-linear computation.

  20. Assessment of a sponge layer as a non-reflective boundary treatment with highly accurate gust-airfoil interaction results

    NASA Astrophysics Data System (ADS)

    Crivellini, A.

    2016-02-01

    This paper deals with the numerical performance of a sponge layer as a non-reflective boundary condition. This technique is well known and widely adopted, but only recently have the reasons for a sponge failure been recognised, in analysis by Mani. For multidimensional problems, the ineffectiveness of the method is due to the self-reflections of the sponge occurring when it interacts with an oblique acoustic wave. Based on his theoretical investigations, Mani gives some useful guidelines for implementing effective sponge layers. However, in our opinion, some practical indications are still missing from the current literature. Here, an extensive numerical study of the performance of this technique is presented. Moreover, we analyse a reduced sponge implementation characterised by undamped partial differential equations for the velocity components. The main aim of this paper relies on the determination of the minimal width of the layer, as well as of the corresponding strength, required to obtain a reflection error of no more than a few per cent of that observed when solving the same problem on the same grid, but without employing the sponge layer term. For this purpose, a test case of computational aeroacoustics, the single airfoil gust response problem, has been addressed in several configurations. As a direct consequence of our investigation, we present a well documented and highly validated reference solution for the far-field acoustic intensity, a result that is not well established in the literature. Lastly, the proof of the accuracy of an algorithm for coupling sub-domains solved by the linear and non-liner Euler governing equations is given. This result is here exploited to adopt a linear-based sponge layer even in a non-linear computation.

  1. An accurate treatment of diffuse reflection boundary conditions for a stochastic particle Fokker-Planck algorithm with large time steps

    NASA Astrophysics Data System (ADS)

    Önskog, Thomas; Zhang, Jun

    2015-12-01

    In this paper, we present a stochastic particle algorithm for the simulation of flows of wall-confined gases with diffuse reflection boundary conditions. Based on the theoretical observation that the change in location of the particles consists of a deterministic part and a Wiener process if the time scale is much larger than the relaxation time, a new estimate for the first hitting time at the boundary is obtained. This estimate facilitates the construction of an algorithm with large time steps for wall-confined flows. Numerical simulations verify that the proposed algorithm reproduces the correct boundary behaviour.

  2. Activity ratios of ribulose-1,5-bisphosphate carboxylase accurately reflect carbamylation ratios. [Phaseolus vulgaris, Spinacla oleracea

    SciTech Connect

    Butz, N.D.; Sharkey, T.D. )

    1989-03-01

    Activity ratios and carbamylation ratios of ribulose-1,5-bisphosphate carboxylase (RuBPCase) were determined for leaves of Phaseolus vulgaris and Spinacia oleracea exposed to a variety of partial pressures of CO{sub 2} and O{sub 2} and photon flux densities (PFD). It was found that activity ratios accurately predicted carbamylation ratios except in extracts from leaves held in low PFD. In particular, it was confirmed that the loss of FuBPCase activity in low partial pressure of O{sub 2} and high PFD results from reduced carbamylation. Activity ratios of RuBPCase were lower than carbamylation ratios for Phaseolus leaves sampled in low PFD, presumably because of the presence of 2-carboxyarabinitol 1-phosphate. Spinacia leaves sampled in darkness also exhibited lower activity ratios than carbamylation ratios indicating that this species may also have an RuBPCase inhibitor even though carboxyarabinitol 1-phosphate has not been detected in this species in the past.

  3. Delayed type hypersensitivity response to recall antigens does not accurately reflect immune competence in advanced stage breast cancer patients.

    PubMed

    Schiffman, Kathy; Rinn, Kristine; Disis, Mary L

    2002-07-01

    The development of delayed-type hypersensitivity (DTH) response to recall antigens has long been utilized as a measure of immune competence. It is assumed that because patients with advanced stage cancers exhibit multiple immune system defects they may not be responsive to immunization. We pre-selected patients with advanced HER-2/neu (HER2) overexpressing breast and ovarian cancers for enrolment into a phase I trial designed to evaluate the immunogenicity of a HER2 peptide vaccine based on the patient's immune competence as assessed by DTH skin testing to common recall antigens (Multitest CMI, Institut Merieux, Lyon, France). At the time of a positive DTH response to tetanus toxoid (tt) peripheral blood was obtained to measure T cell responses to tt. Of 53 patients evaluated, 38 (72%) were not anergic. Among the 15 (28%) who were, seven patients with advanced stage breast cancer were re-tested a median of 26 days (range 12-150 days) after receiving a tt bopster vaccination. Five of the seven had positive DTH responses when re-challenged with tt and six had peripheral blood tetanus specific T cell response with stimulation index >2.0. Thus, the majority of patients studied with advanced stage breast or ovarian cancer were able to mount a DTH response to common recall antigens. Moreover, a negative response by DTH testing to a battery of common recall antigens was not a reflection of the breast cancer patient's ability to mount a cell-mediated immune response to a vaccinated antigen, tt.

  4. Total-Internal-Reflection Platforms for Chemical and Biological Sensing Applications

    NASA Astrophysics Data System (ADS)

    Sapsford, Kim E.

    Sensing platforms based on the principle of total internal reflection (TIR) represent a fairly mature yet still expanding and exciting field of research. Sensor development has mainly been driven by the need for rapid, stand-alone, automated devices for application in the fields of clinical diagnosis and screening, food and water safety, environmental monitoring, and chemical and biological warfare agent detection. The technologies highlighted in this chapter are continually evolving, taking advantage of emerging advances in microfabrication, lab-on-a-chip, excitation, and detection techniques. This chapter describes many of the underlying principles of TIR-based sensing platforms and additionally focusses on planar TIR fluorescence (TIRF)-based chemical and biological sensors.

  5. Technique for examining biological materials using diffuse reflectance spectroscopy and the kubelka-munk function

    DOEpatents

    Alfano, Robert R.; Yang, Yuanlong

    2003-09-02

    Method and apparatus for examining biological materials using diffuse reflectance spectroscopy and the Kubelka-Munk function. In one aspect, the method is used to determine whether a tissue sample is cancerous or not and comprises the steps of (a) measuring the diffuse reflectance from the tissue sample at a first wavelength and at a second wavelength, wherein the first wavelength is a wavelength selected from the group consisting of 255-265 nm and wherein the second wavelength is a wavelength selected from the group consisting of 275-285 nm; (b) using the Kubelka-Munk function to transform the diffuse reflectance measurement obtained at the first and second wavelengths; and (c) comparing a ratio or a difference of the transformed Kubelka-Munk measurements at the first and second wavelengths to appropriate standards determine whether or not the tissue sample is cancerous. One can use the spectral profile of KMF between 250 nm to 300 nm to determine whether or not the tissue sample is cancerous or precancerous. According to the value at the first and second wavelengths determine whether or not the malignant tissue is invasive or mixed invasive and in situ or carcinoma in situ.

  6. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle.

    PubMed

    Maliva, R G; Knoll, A H; Siever, R

    1989-01-01

    In the modern oceans, the removal of dissolved silica from sea water is principally a biological process carried out by diatoms, with lesser contributions from radiolaria, silicoflagellates, and sponges. Because such silica in sediments is often redistributed locally during diagenesis to from nodular or bedded chert, stratigraphic changes in the facies distribution of early diagenetic chert provide important insights into the development of biological participation in the silica cycle. The abundance of chert in upper Proterozoic peritidal carbonates suggests that at this time silica was removed from seawater principally by abiological processes operating in part of the margins of the oceans. With the evolution of demosponges near the beginning of the Cambrian Period, subtidal biogenetic cherts became increasingly common, and with the Ordovician rise of radiolaria to ecological and biogeochemical prominence, sedimented skeletons became a principal sink for oceanic silica. Cherts of Silurian to Cretaceous age share many features of facies distribution and petrography but they differ from Cenozoic siliceous deposits. These differences are interpreted to reflect the mid-Cretaceous radiation of diatoms and their subsequent rise to domination of the silica cycle. Biogeochemical cycles provide an important framework for the paleobiological interpretation of the organisms that participate in them.

  7. Confocal reflectance quantitative phase microscopy system for cell biology studies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; So, Peter T. C.

    2016-03-01

    Quantitative phase microscopy (QPM), used to measure the refractive index, provides the optical path delay measurement at each point of the specimen under study and becomes an active field in biological science. In this work we present development of confocal reflection phase microscopy system to provide depth resolved quantitative phase information for investigation of intracellular structures and other biological specimen. The system hardware development is mainly divided into two major parts. First, creates a pinhole array for parallel confocal imaging of specimen at multiple locations simultaneously. Here a digital micro mirror device (DMD) is used to generate pinhole array by turning on a subset micro-mirrors arranged on a grid. Second is the detection of phase information of confocal imaging foci by using a common path interferometer. With this novel approach, it is possible to measure the nuclei membrane fluctuations and distinguish them from the plasma membrane fluctuations. Further, depth resolved quantitative phase can be correlated to the intracellular contents and 3D map of refractive index measurements.

  8. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle

    NASA Technical Reports Server (NTRS)

    Maliva, R. G.; Knoll, A. H.; Siever, R.

    1989-01-01

    In the modern oceans, the removal of dissolved silica from sea water is principally a biological process carried out by diatoms, with lesser contributions from radiolaria, silicoflagellates, and sponges. Because such silica in sediments is often redistributed locally during diagenesis to from nodular or bedded chert, stratigraphic changes in the facies distribution of early diagenetic chert provide important insights into the development of biological participation in the silica cycle. The abundance of chert in upper Proterozoic peritidal carbonates suggests that at this time silica was removed from seawater principally by abiological processes operating in part of the margins of the oceans. With the evolution of demosponges near the beginning of the Cambrian Period, subtidal biogenetic cherts became increasingly common, and with the Ordovician rise of radiolaria to ecological and biogeochemical prominence, sedimented skeletons became a principal sink for oceanic silica. Cherts of Silurian to Cretaceous age share many features of facies distribution and petrography but they differ from Cenozoic siliceous deposits. These differences are interpreted to reflect the mid-Cretaceous radiation of diatoms and their subsequent rise to domination of the silica cycle. Biogeochemical cycles provide an important framework for the paleobiological interpretation of the organisms that participate in them.

  9. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle.

    PubMed

    Maliva, R G; Knoll, A H; Siever, R

    1989-01-01

    In the modern oceans, the removal of dissolved silica from sea water is principally a biological process carried out by diatoms, with lesser contributions from radiolaria, silicoflagellates, and sponges. Because such silica in sediments is often redistributed locally during diagenesis to from nodular or bedded chert, stratigraphic changes in the facies distribution of early diagenetic chert provide important insights into the development of biological participation in the silica cycle. The abundance of chert in upper Proterozoic peritidal carbonates suggests that at this time silica was removed from seawater principally by abiological processes operating in part of the margins of the oceans. With the evolution of demosponges near the beginning of the Cambrian Period, subtidal biogenetic cherts became increasingly common, and with the Ordovician rise of radiolaria to ecological and biogeochemical prominence, sedimented skeletons became a principal sink for oceanic silica. Cherts of Silurian to Cretaceous age share many features of facies distribution and petrography but they differ from Cenozoic siliceous deposits. These differences are interpreted to reflect the mid-Cretaceous radiation of diatoms and their subsequent rise to domination of the silica cycle. Biogeochemical cycles provide an important framework for the paleobiological interpretation of the organisms that participate in them. PMID:11539810

  10. Serum and tissue PIVKA-II expression reflect the biological malignant potential of small hepatocellular carcinoma.

    PubMed

    Tamano, Masaya; Sugaya, Hitoshi; Oguma, Motoo; Iijima, Makoto; Yoneda, Masashi; Murohisa, Toshimitsu; Kojima, Kazuo; Kuniyoshi, Toru; Majima, Yuichi; Hashimoto, Takashi; Terano, Akira

    2002-04-01

    A sensitive method for measuring the serum level of protein-induced by vitamin K absence or antagonist II (PIVKA-II) has become so widely available that it is now used for the clinical diagnosis of small hepatocellular carcinoma (HCC). It is known that serum PIVKA-II can be a prognostic indicator for HCC, but there have been no detailed investigations concerning the tissue expression of PIVKA-II. The present study assessed the relationship between serum or tissue PIVKA-II and the biological malignant potential of HCC. The subjects were 25 patients with histologically confirmed HCC, that were solitary and 3 cm or less in diameter. Tissue PIVKA-II was detected by immunostaining using MU-3 as the primary antibody. The biological malignant potential of the tumors was evaluated on the basis of the Ki-67 labeling index of HCC cells and the tumor arterial vascularity assesed by angiography and CO(2) enhanced ultrasonography. The recurrence-free period after treatment was also evaluated. Among the 25 patients, eight were positive for tissue PIVKA-II. Serum PIVKA-II levels were significantly higher in the tissue PIVKA-II-positive patients compared with the negative patients, but serum and tissue PIVKA-II expressions were not consistently parallel. Tumor cell proliferation was closely correlated with the tissue PIVKA-II expression, while the recurrence-free period was correlated with the serum PIVKA-II level. Tumor arterial vascularity showed a strong correlation with the expression of both serum and tissue PIVKA-II. In conclusion, serum and tissue PIVKA-II expression reflect the biological malignant potential of HCC and thus may be useful indicators for the prognosis of small HCC.

  11. Diffuse reflectance spectroscopy and optical polarization imaging of in-vivo biological tissue

    NASA Astrophysics Data System (ADS)

    Mora-Núñez, A.; Castillejos, Y.; García-Torales, G.; Martínez-Ponce, G.

    2013-11-01

    A number of optical techniques have been reported in the scientific literature as accomplishable methodologies to diagnose diseases in biological tissue, for instance, diffuse reflectance spectroscopy (DRS) and optical polarization imaging (OPI). The skin is the largest organ in the body and consists of three primary layers, namely, the epidermis (the outermost layer exposed to the world), the dermis, and the hypodermis. The epidermis changes from to site to site, mainly because of difference in hydration. A lower water content increase light scattering and reduce the penetration depth of radiation. In this work, two hairless mice have been selected to evaluate their skin features by using DRS and OPI. Four areas of the specimen body were chosen to realize the comparison: back, abdomen, tail, and head. From DRS, it was possible to distinguish the skin nature because of different blood irrigation at dermis. In the other hand, OPI shows pseudo-depolarizing regions in the measured Mueller images related to a spatially varying propagation of the scattered light. This provides information about the cell size in the irradiated skin.

  12. Health literacy in HIV treatment: accurate understanding of key biological treatment principles is not required for good ART adherence.

    PubMed

    Laws, M Barton; Danielewicz, Michael; Rana, Aadia; Kogelman, Laura; Wilson, Ira B

    2015-04-01

    Findings on the relationship between health literacy and outcomes in HIV have been inconsistent. Health literacy has previously been operationalized as general functional literacy, but has not included content knowledge about HIV disease and treatment. Semi-structured interviews with people living with HIV in 2 U.S. cities, including questions about the etiology, pathophysiology and treatment of HIV. We compared responses to biomedical conceptions. The 32 respondents were demographically diverse. Although most understood that HIV degrades the immune system, none could explain the nature of a virus, or the mechanism of antiretroviral (ARV) drug action. Fewer than half accurately reported that it is desirable to have a high CD4+ cell count and low viral load. A minority understood the concept of drug resistance. While most believed that strict adherence to ARV regimens was important to maintain health, three believed that periodic treatment interruption was beneficial, and three believed they should not take ARVs when they used alcohol or illicit drugs. Respondents generally had very limited, and often inaccurate biomedical understanding of HIV disease. Most reported good regimen adherence but did not have any mechanistic rationale for it. The failure to find a consistent relationship between health literacy and ARV adherence may be largely because most people simply follow their doctors' instructions, without the need for deep understanding.

  13. Health Literacy in HIV Treatment: Accurate Understanding of Key Biological Treatment Principles is Not Required for Good ART Adherence

    PubMed Central

    Laws, M. Barton; Danielewicz, Michael; Rana, Aadia; Kogelman, Laura; Wilson, Ira B.

    2016-01-01

    Findings on the relationship between health literacy and outcomes in HIV have been inconsistent. Health literacy has previously been operationalized as general functional literacy, but has not included content knowledge about HIV disease and treatment. Semi-structured interviews with people living with HIV in 2 U.S. cities, including questions about the etiology, pathophysiology and treatment of HIV. We compared responses to biomedical conceptions. The 32 respondents were demographically diverse. Although most understood that HIV degrades the immune system, none could explain the nature of a virus, or the mechanism of antiretroviral (ARV) drug action. Fewer than half accurately reported that it is desirable to have a high CD4+ cell count and low viral load. A minority understood the concept of drug resistance. While most believed that strict adherence to ARV regimens was important to maintain health, three believed that periodic treatment interruption was beneficial, and three believed they should not take ARVs when they used alcohol or illicit drugs. Respondents generally had very limited, and often inaccurate biomedical understanding of HIV disease. Most reported good regimen adherence but did not have any mechanistic rationale for it. The failure to find a consistent relationship between health literacy and ARV adherence may be largely because most people simply follow their doctors’ instructions, without the need for deep understanding. PMID:25354736

  14. Implementation of an Explicit and Reflective Pedagogy in Introductory Biology Laboratories

    ERIC Educational Resources Information Center

    Bautista, Nazan Uludag; Schussler, Elisabeth E.

    2010-01-01

    Students need to reflect on the practice of science to fully understand the nature of science (NOS), which is an important component of scientific literacy. In this paper, the authors describe how to implement an explicit and reflective pedagogy in college science laboratories and share examples from their implementation in a multiple-section…

  15. Finding Clarity by Fostering Confusion: Reflections on Teaching an Undergraduate Integrated Biological Systems Course

    ERIC Educational Resources Information Center

    Martin, Kirsten H.

    2015-01-01

    Undergraduate biology programs in smaller liberal arts colleges are increasingly becoming focused on health science fields. This narrowing of focus potentially decreases opportunities for these students to explore other sub-fields of biology. This perspectives article highlights how one small university in Connecticut decided to institute a…

  16. The First Cut Is the Deepest: Reflections on the State of Animal Dissection in Biology Education

    ERIC Educational Resources Information Center

    De Villiers, Rian; Monk, Martin

    2005-01-01

    In biology education, the study of structure has traditionally involved the use of dissection. Animal-rights campaigners have caused biology educators and learners to question the necessity of dissections. This study reviews the research evidence for the efficacy of alternatives to dissection and then turns to research evidence on attitudes to…

  17. Effects on biological systems of reflected light from a satellite power system

    NASA Technical Reports Server (NTRS)

    White, M.

    1981-01-01

    Light reflection produced by the satellite power system and the possible effects of that light on the human eye, plants, and animals were studied. For the human eye, two cases of reflected light, might cause eye damage if viewed for too long. These cases are: (1) if, while in low Earth orbit, the orbital transfer vehicle is misaligned to reflect the Sun to Earth there exists a maximum safe fixation time for the naked eye of 42.4 secs; (2) reflection from the aluminum paint on the back of the orbital transfer vehicle, while in or near low Earth orbit, can be safely viewed by the naked eye for 129 sec. For plants and animals the intensity and timing of light are not a major problem. Ways for reducing and/or eliminating the irradiances are proposed.

  18. A Reflection on the Fate of Chiral 1,2,4-Triazole Fungicides in Biological Systems

    EPA Science Inventory

    In biological systems, stereoisomers of chiral compounds can exhibit significantly different pharmacokinetics (absorption, distribution, metabolism, and elimination) and pharmacodynamics (physiological effects). Pharmacokinetic processes (i.e., what the body does to the chemical)...

  19. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State 17O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds

    PubMed Central

    Rorick, Amber; Michael, Matthew A.; Yang, Liu; Zhang, Yong

    2015-01-01

    Oxygen is an important element in most biologically significant molecules and experimental solid-state 17O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state 17O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is of 1455 ppm, a major part of the reported 17O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of 17O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R2 of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R2 of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of 17O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins. PMID:26274812

  20. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds.

    PubMed

    Rorick, Amber; Michael, Matthew A; Yang, Liu; Zhang, Yong

    2015-09-01

    Oxygen is an important element in most biologically significant molecules, and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases, and in particular, each of the prior computational works is basically limited to one type of oxygen-containing system. This work provides the first systematic study of the effects of geometry refinement, method, and basis sets for metal and nonmetal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups (X = H, C, N, P, and metal). The experimental range studied is of 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors toward relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient (R(2)) value of 0.9880 and a mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and an R(2) value of 0.9926 for all shift-tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help the refinement and determination of active-site structures of some oxygen-containing substrate-bound proteins.

  1. Molecular dynamics simulations and neutron reflectivity as an effective approach to characterize biological membranes and related macromolecular assemblies.

    PubMed

    Darré, L; Iglesias-Fernandez, J; Kohlmeyer, A; Wacklin, H; Domene, C

    2015-10-13

    In combination with other spectroscopy, microscopy, and scattering techniques, neutron reflectivity is a powerful tool to characterize biological systems. Specular reflection of neutrons provides structural information at the nanometer and subnanometer length scales, probing the composition and organization of layered materials. Currently, analysis of neutron reflectivity data involves several simplifying assumptions about the structure of the sample under study, affecting the extraction and interpretation of information from the experimental data. Computer simulations can be used as a source of structural and dynamic data with atomic resolution. We present a novel tool to compare the structural properties determined by neutron reflectivity experiments with those obtained from molecular simulations. This tool allows benchmarking the ability of molecular dynamics simulations to reproduce experimental data, but it also promotes unbiased interpretation of experimentally determined quantities. Two application examples are presented to illustrate the capabilities of the new tool. The first example is the generation of reflectivity profiles for a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer from molecular dynamics simulations using data from both atomistic and coarse-grained models, and comparison with experimentally measured data. The second example is the calculation of lipid volume changes with temperature and composition from all atoms simulations of single and mixed 1,2-di-palmitoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. PMID:26574275

  2. Meaning Making: What Reflective Essays Reveal about Biology Students' Conceptions about Natural Selection

    ERIC Educational Resources Information Center

    Balgopal, Meena M.; Montplaisir, Lisa M.

    2011-01-01

    The process of reflective writing can play a central role in making meaning as learners process new information and connect it to prior knowledge. An examination of the written discourse can therefore be revealing of learners' cognitive understanding and affective (beliefs, feelings, motivation to learn) responses to concepts. Despite reflective…

  3. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application

    PubMed Central

    Muñoz Morales, Aarón A.; Vázquez y Montiel, Sergio

    2012-01-01

    The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications. PMID:23082281

  4. Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra

    NASA Astrophysics Data System (ADS)

    Sung, Kung-Bin; Shih, Kuang-Wei; Hsu, Fang-Wei; Hsieh, Hong-Po; Chuang, Min-Jie; Hsiao, Yi-Hsien; Su, Yu-Hui; Tien, Gen-Hao

    2014-07-01

    We are reporting on an experimental investigation of a movable diffuse reflectance spectroscopy system to extract diagnostically relevant optical properties of two-layered tissue phantoms simulating mucosae that are covered with stratified squamous epithelium. The reflectance spectra were measured at multiple source-detector separations using two imaging fiber bundles in contact with the phantoms, one with its optical axis perpendicular to the sample surface (perpendicular probe) and the other with its distal end beveled and optical axis tilted at 45 deg (oblique probe). Polystyrene microspheres and purified human hemoglobin were used to make tissue phantoms whose scattering and absorption properties could be well controlled and theoretically predicted. Monte Carlo simulations were used to predict the reflectance spectra for system calibration and an iterative curve fitting that simultaneously extracted the top layer reduced scattering coefficient, thickness, bottom layer reduced scattering coefficient, and hemoglobin concentration of the phantoms. The errors of the recovered parameters ranged from 7% to 20%. The oblique probe showed higher accuracy in the extracted top layer reduced scattering coefficient and thickness than the perpendicular probe. The developed system and data analysis methods provide a feasible tool to quantify the optical properties in vivo.

  5. Journal of Biological Education: A Personal Reflection on Its First 50 Years

    ERIC Educational Resources Information Center

    Reiss, Michael J.

    2016-01-01

    In this commentary, Michael Reiss describes his time with the "Journal of Biology Education" ("JBE") dating back to 1984 when the journal published his first article (Reiss 1984). Over the years, Reiss has authored 31 "JBE" pieces (excluding reviews) including one in honor of the journal's 25th anniversary (Reiss…

  6. Study of the influence of glucose on diffuse reflection of ultrashort laser pulses from a medium simulating a biological tissue

    SciTech Connect

    Bykov, A V; Indukaev, A K; Priezzhev, A V; Myllylae, R

    2008-05-31

    The influence of glucose on the diffuse reflection of near-IR femtosecond laser radiation from single- and three-layer media simulating biological tissues is studied experimentally. Based on a 800-nm femtosecond Ti:sapphire laser emitting 40-fs pulses and a VUV Agat streak camera, a setup is built for time and spatially resolved detection of radiation diffusely reflected from the volume of a strongly scattering medium. A multichannel fibreoptic system is developed for detecting pulses simultaneously at several fixed distances between a radiation source and detector. It is shown that the peak intensity and total energy of detected pulses are sensitive to variations in the glucose concentration in the medium under study from 0 to 1000 mg dL{sup -1}. The relative sensitivity in our experiments achieved 0.030% mg dL{sup -1}. (biophotonics)

  7. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation.

    PubMed

    Zheng, Tianyu; Bott, Steven; Huo, Qun

    2016-08-24

    Gold nanoparticles (AuNPs) have found broad applications in chemical and biological sensing, catalysis, biomolecular imaging, in vitro diagnostics, cancer therapy, and many other areas. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement and analysis. Due to its relatively low cost and ease of operation in comparison to other more sophisticated techniques, DLS is the primary choice of instrumentation for analyzing the size and size distribution of nanoparticle suspensions. However, many DLS users are unfamiliar with the principles behind the DLS measurement and are unware of some of the intrinsic limitations as well as the unique capabilities of this technique. The lack of sufficient understanding of DLS often leads to inappropriate experimental design and misinterpretation of the data. In this study, we performed DLS analyses on a series of citrate-stabilized AuNPs with diameters ranging from 10 to 100 nm. Our study shows that the measured hydrodynamic diameters of the AuNPs can vary significantly with concentration and incident laser power. The scattered light intensity of the AuNPs has a nearly sixth order power law increase with diameter, and the enormous scattered light intensity of AuNPs with diameters around or exceeding 80 nm causes a substantial multiple scattering effect in conventional DLS instruments. The effect leads to significant errors in the reported average hydrodynamic diameter of the AuNPs when the measurements are analyzed in the conventional way, without accounting for the multiple scattering. We present here some useful methods to obtain the accurate hydrodynamic size of the AuNPs using DLS. We also demonstrate and explain an extremely powerful aspect of DLS-its exceptional sensitivity in detecting gold nanoparticle aggregate formation, and the use of this unique capability for chemical and biological sensing applications. PMID:27472008

  8. Dose Addition Models Based on Biologically Relevant Reductions in Fetal Testosterone Accurately Predict Postnatal Reproductive Tract Alterations by a Phthalate Mixture in Rats.

    PubMed

    Howdeshell, Kembra L; Rider, Cynthia V; Wilson, Vickie S; Furr, Johnathan R; Lambright, Christy R; Gray, L Earl

    2015-12-01

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the current study were 2-fold: (1) to test whether a mixture model of dose addition based on the fetal T production data of individual phthalates would predict the effects of a 5 phthalate mixture on androgen-sensitive postnatal male reproductive tract development, and (2) to determine the biological relevance of the reductions in fetal T to induce abnormal postnatal reproductive tract development using data from the mixture study. We administered a dose range of the mixture (60, 40, 20, 10, and 5% of the top dose used in the previous fetal T production study consisting of 300 mg/kg per chemical of benzyl butyl (BBP), di(n)butyl (DBP), diethyl hexyl phthalate (DEHP), di-isobutyl phthalate (DiBP), and 100 mg dipentyl (DPP) phthalate/kg; the individual phthalates were present in equipotent doses based on their ability to reduce fetal T production) via gavage to Sprague Dawley rat dams on GD8-postnatal day 3. We compared observed mixture responses to predictions of dose addition based on the previously published potencies of the individual phthalates to reduce fetal T production relative to a reference chemical and published postnatal data for the reference chemical (called DAref). In addition, we predicted DA (called DAall) and response addition (RA) based on logistic regression analysis of all 5 individual phthalates when complete data were available. DA ref and DA all accurately predicted the observed mixture effect for 11 of 14 endpoints. Furthermore, reproductive tract malformations were seen in 17-100% of F1 males when fetal T production was reduced by about 25-72%, respectively. PMID:26350170

  9. CLARREO Cornerstone of the Earth Observing System: Measuring Decadal Change Through Accurate Emitted Infrared and Reflected Solar Spectra and Radio Occultation

    NASA Technical Reports Server (NTRS)

    Sandford, Stephen P.

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is one of four Tier 1 missions recommended by the recent NRC Decadal Survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to provide accurate, broadly acknowledged climate records that are used to enable validated long-term climate projections that become the foundation for informed decisions on mitigation and adaptation policies that address the effects of climate change on society. The CLARREO mission accomplishes this critical objective through rigorous SI traceable decadal change observations that are sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. These same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. For the first time CLARREO will make highly accurate, global, SI-traceable decadal change observations sensitive to the most critical, but least understood, climate forcings, responses, and feedbacks. The CLARREO breakthrough is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. The required accuracy levels are determined so that climate trend signals can be detected against a background of naturally occurring variability. Climate system natural variability therefore determines what level of accuracy is overkill, and what level is critical to obtain. In this sense, the CLARREO mission requirements are considered optimal from a science value perspective. The accuracy for decadal change traceability to SI standards includes uncertainties associated with instrument calibration, satellite orbit sampling, and analysis methods. Unlike most space missions, the CLARREO requirements are driven not by the instantaneous accuracy of the measurements, but by accuracy in

  10. High-throughput amplicon sequencing of rRNA genes requires a copy number correction to accurately reflect the effects of management practices on soil nematode community structure.

    PubMed

    Darby, B J; Todd, T C; Herman, M A

    2013-11-01

    Nematodes are abundant consumers in grassland soils, but more sensitive and specific methods of enumeration are needed to improve our understanding of how different nematode species affect, and are affected by, ecosystem processes. High-throughput amplicon sequencing is used to enumerate microbial and invertebrate communities at a high level of taxonomic resolution, but the method requires validation against traditional specimen-based morphological identifications. To investigate the consistency between these approaches, we enumerated nematodes from a 25-year field experiment using both morphological and molecular identification techniques in order to determine the long-term effects of annual burning and nitrogen enrichment on soil nematode communities. Family-level frequencies based on amplicon sequencing were not initially consistent with specimen-based counts, but correction for differences in rRNA gene copy number using a genetic algorithm improved quantitative accuracy. Multivariate analysis of corrected sequence-based abundances of nematode families was consistent with, but not identical to, analysis of specimen-based counts. In both cases, herbivores, fungivores and predator/omnivores generally were more abundant in burned than nonburned plots, while bacterivores generally were more abundant in nonburned or nitrogen-enriched plots. Discriminate analysis of sequence-based abundances identified putative indicator species representing each trophic group. We conclude that high-throughput amplicon sequencing can be a valuable method for characterizing nematode communities at high taxonomic resolution as long as rRNA gene copy number variation is accounted for and accurate sequence databases are available. PMID:24103081

  11. High-throughput amplicon sequencing of rRNA genes requires a copy number correction to accurately reflect the effects of management practices on soil nematode community structure.

    PubMed

    Darby, B J; Todd, T C; Herman, M A

    2013-11-01

    Nematodes are abundant consumers in grassland soils, but more sensitive and specific methods of enumeration are needed to improve our understanding of how different nematode species affect, and are affected by, ecosystem processes. High-throughput amplicon sequencing is used to enumerate microbial and invertebrate communities at a high level of taxonomic resolution, but the method requires validation against traditional specimen-based morphological identifications. To investigate the consistency between these approaches, we enumerated nematodes from a 25-year field experiment using both morphological and molecular identification techniques in order to determine the long-term effects of annual burning and nitrogen enrichment on soil nematode communities. Family-level frequencies based on amplicon sequencing were not initially consistent with specimen-based counts, but correction for differences in rRNA gene copy number using a genetic algorithm improved quantitative accuracy. Multivariate analysis of corrected sequence-based abundances of nematode families was consistent with, but not identical to, analysis of specimen-based counts. In both cases, herbivores, fungivores and predator/omnivores generally were more abundant in burned than nonburned plots, while bacterivores generally were more abundant in nonburned or nitrogen-enriched plots. Discriminate analysis of sequence-based abundances identified putative indicator species representing each trophic group. We conclude that high-throughput amplicon sequencing can be a valuable method for characterizing nematode communities at high taxonomic resolution as long as rRNA gene copy number variation is accounted for and accurate sequence databases are available.

  12. The status of and future research into Myalgic Encephalomyelitis and Chronic Fatigue Syndrome: the need of accurate diagnosis, objective assessment, and acknowledging biological and clinical subgroups

    PubMed Central

    Twisk, Frank N. M.

    2014-01-01

    Although Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS) are used interchangeably, the diagnostic criteria define two distinct clinical entities. Cognitive impairment, (muscle) weakness, circulatory disturbances, marked variability of symptoms, and, above all, post-exertional malaise: a long-lasting increase of symptoms after a minor exertion, are distinctive symptoms of ME. This latter phenomenon separates ME, a neuro-immune illness, from chronic fatigue (syndrome), other disorders and deconditioning. The introduction of the label, but more importantly the diagnostic criteria for CFS have generated much confusion, mostly because chronic fatigue is a subjective and ambiguous notion. CFS was redefined in 1994 into unexplained (persistent or relapsing) chronic fatigue, accompanied by at least four out of eight symptoms, e.g., headaches and unrefreshing sleep. Most of the research into ME and/or CFS in the last decades was based upon the multivalent CFS criteria, which define a heterogeneous patient group. Due to the fact that fatigue and other symptoms are non-discriminative, subjective experiences, research has been hampered. Various authors have questioned the physiological nature of the symptoms and qualified ME/CFS as somatization. However, various typical symptoms can be assessed objectively using standardized methods. Despite subjective and unclear criteria and measures, research has observed specific abnormalities in ME/CFS repetitively, e.g., immunological abnormalities, oxidative and nitrosative stress, neurological anomalies, circulatory deficits and mitochondrial dysfunction. However, to improve future research standards and patient care, it is crucial that patients with post-exertional malaise (ME) and patients without this odd phenomenon are acknowledged as separate clinical entities that the diagnosis of ME and CFS in research and clinical practice is based upon accurate criteria and an objective assessment of characteristic symptoms

  13. Instructional Experiences of Graduate Assistants Implementing Explicit and Reflective Introductory Biology Laboratories

    NASA Astrophysics Data System (ADS)

    Uludag Bautista, Nazan; Schussler, Elisabeth E.; Rybczynski, Stephen M.

    2014-05-01

    Science education reform documents identify nature of science (NOS) as a critical component of scientific literacy and call for universities, colleges, and K-12 schools to explicitly integrate NOS learning into science curricula. In response to these calls, this study investigated the classroom practices of nine graduate assistants (GAs) who taught expository and inquiry laboratories that implemented an explicit and reflective (ER) pedagogy to teach NOS. The purpose of this qualitative study was to better understand the experiences that enabled or inhibited GA implementation of an ER strategy in a college setting. The findings revealed that achieving quality implementation in this setting was very difficult. Factors such as GAs' ability to foster meaningful classroom discussions, laboratory logistics (e.g. lack of time and supplies), and the value undergraduates and GAs saw in learning about NOS were identified by GAs and observed by the researchers as barriers to the technique maximizing its potential. Thus, for meaningful infusion of NOS into science curricula, pedagogical support for GAs to manage meaningful classroom discussions in support of NOS or other complex topics is recommended for an ER approach to NOS learning to be successful in college settings.

  14. Reflections on implementing several models of teaching in a high school biology class

    NASA Astrophysics Data System (ADS)

    Baldwin, Michael E.

    This research investigates the challenges faced in enacting instructional models that previous research has found to foster student learning. In order to complete this study, the researcher documented, through a strategy of reflective practice, his return to teaching high school science after having served for a time as a science specialist and instructional coach. The study develops quality personal insights and questions that may be used by other educators and researchers to investigate the enactment of these different models and strategies. The research is limited to the spring of the 2010 school year and use notes, journals, and planner documents from the 2008--2009 school year. In order to appreciate complex interactions, triangulation was made through dovetailing personal observations with requested observations of the campus assistant principal, the district science specialist, and an out of district observer. Also, a short questionnaire administered to the students in these classes. Throughout this study, the researcher demonstrates that it is feasible to use these models. However, such external factors as imposed curriculum and standardized testing play a large role in everyday decision making of this particular teacher. The sheer amount of content to be covered under the Texas Essential Knowledge and Skills (TEKS) also influenced instructional decisions that were made. Choices about what strategy to use resided mainly within the teacher/researcher and were governed and affected mostly by his interactions with students and professional judgments about what would both bolster student understanding and help students score well on the Texas Assessment of Knowledge and Skills (TAKS).

  15. Cell lines from MYCN transgenic murine tumours reflect the molecular and biological characteristics of human neuroblastoma.

    PubMed

    Cheng, Andy J; Cheng, Ngan Ching; Ford, Jette; Smith, Janice; Murray, Jayne E; Flemming, Claudia; Lastowska, Maria; Jackson, Michael S; Hackett, Christopher S; Weiss, William A; Marshall, Glenn M; Kees, Ursula R; Norris, Murray D; Haber, Michelle

    2007-06-01

    Overexpression of the human MYCN oncogene driven by a tyrosine hydroxylase promoter causes tumours in transgenic mice that recapitulate the childhood cancer neuroblastoma. To establish an in vitro model to study this process, a series of isogenic cell lines were developed from these MYCN-driven murine tumours. Lines were established from tumours arising in homozygous and hemizygous MYCN transgenic mice. Hemizygous tumours gave rise to cell lines growing only in suspension. Homozygous tumours gave rise to similar suspension lines as well as morphologically distinct substrate-adherent lines characteristic of human S-type neuroblastoma cells. FISH analysis demonstrated selective MYCN transgene amplification in cell lines derived from hemizygous mice. Comparative genomic hybridisation (CGH) and fluorescence in situ hybridisation (FISH) analysis confirmed a range of neuroblastoma-associated genetic changes in the various lines, in particular, gain of regions syntenic with human 17q. These isogenic lines together with the transgenic mice thus represent valuable models for investigating the biological characteristics of aggressive neuroblastoma.

  16. Human retroviruses in leukaemia and AIDS: reflections on their discovery, biology and epidemiology.

    PubMed

    Karpas, Abraham

    2004-11-01

    The study of retroviruses has had a profound impact by unveiling an unusual form of viral replication: the multiplication of RNA viruses via a proviral DNA, for which Jan Svoboda provided the experimental model over forty years ago. In 1970 Temin, Mizutani and Baltimore discovered that this group of viruses contains a unique enzyme catalysing the synthesis of a DNA copy of the viral RNA: reverse transcriptase (RT). The discovery of RT has itself had an enormous impact on molecular biology in general, but also stimulated many premature claims of its detection in human disease. Claims by Gallo's laboratory that the cytoplasm of human leukaemia cells contained RT proved to be unfounded, as did his report in collaboration with Weiss that myeloid leukaemia contained HL23 virus, this organism proving not to be human but a laboratory contaminant of three monkey viruses. Conclusive demonstration of a retroviral involvement in human leukaemia was first provided in 1981 by Hinuma and his associates, showing that adult T-cell leukaemia (ATL), a rare form of leukaemia endemic to south-west Japan, is caused by a new retrovirus (ATLV). Other publications in December 1980 and through 1981 claimed the discovery of a new human T-cell leukaemia virus involved in mycosis fungoides (MF) and Sézary's syndrome (SS). This virus was termed HTLV by Gallo. The nucleotide sequence of ATLV is strongly conserved, that of my 1983 isolate from a black British ATL patient being practically identical with the Japanese virus isolates. After AIDS was recognised in 1981 by Gottlieb and coworkers as a new human disease, several papers were published by Gallo and his associates during 1983-4, invoking the oncovirus responsible for adult T-cell leukaemia as the cause of AIDS. In 1983 the French scientist Barré-Sinoussi and her colleagues succeeded in isolating a new agent in the disease, a lentivirus, which they named LAV. The French immunologist Klatzmann and his colleagues discovered that LAV killed

  17. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (p<0.05) and reproducible quantitative differences in ground-base ion radiation and spaceflight experiments respectively. The functions of ground-base radiation and spaceflight proteins were both involved in a wide range of biological processes. Gene Ontology enrichment analysis further revealed that ground-base radiation responsive proteins were mainly involved in removal of superoxide radicals, defense response to stimulus and photosynthesis, while spaceflight responsive proteins mainly participate in nucleoside metabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing

  18. Study and reflections on the functional and organizational role of neuromessenger nitric oxide in learning: An artificial and biological approach

    NASA Astrophysics Data System (ADS)

    Suárez Araujo, C. P.

    2000-05-01

    We present in this work a theoretical and conceptual study and some reflections on a fundamental aspect concerning with the structure and brain function: the Cellular Communication. The main interests of our study are the signal transmission mechanisms and the neuronal mechanisms responsible to learning. We propose the consideration of a new kind of communication mechanisms, different to the synaptic transmission, "Diffusion or Volume Transmission." This new alternative is based on a diffusing messenger as nitric oxide (NO). Our study aims towards the design of a conceptual framework, which covers implications of NO in the artificial neural networks (ANNs), both in neural architecture and learning processing. This conceptual frame might be able to provide possible biological support for many aspects of ANNs and to generate new concepts to improve the structure and operation of them. Some of these new concepts are The Fast Diffusion Neural Propagation (FDNP), the Diffuse Neighborhood (DNB), (1), the Diffusive Hybrid Neuromodulation (DHN), the Virtual Weights. Finally we will propose a new mathematical formulation for the Hebb learning law, taking into account the NO effect. Along the same lines, we will reflect on the possibility of a new formal framework for learning processes in ANNs, which consist of slow and fast learning concerning with co-operation between the classical neurotransmission and FDNP. We will develop this work from a computational neuroscience point of view, proposing a global study framework of diffusion messenger NO (GSFNO), using a hybrid natural/artificial approach. Finally it is important to note that we can consider this paper the first paper of a set of scientific work on nitric oxide (NO) and artificial neural networks (ANNs): NO and ANNs Series. We can say that this paper has a character of search and query on both subjects their implications and co-existence.

  19. Analogical reflection as a source for the science of life: Kant and the possibility of the biological sciences.

    PubMed

    Nassar, Dalia

    2016-08-01

    In contrast to the previously widespread view that Kant's work was largely in dialogue with the physical sciences, recent scholarship has highlighted Kant's interest in and contributions to the life sciences. Scholars are now investigating the extent to which Kant appealed to and incorporated insights from the life sciences and considering the ways he may have contributed to a new conception of living beings. The scholarship remains, however, divided in its interest: historians of science are concerned with the content of Kant's claims, and the ways in which they may or may not have contributed to the emerging science of life, while historians of philosophy focus on the systematic justifications for Kant's claims, e.g., the methodological and theoretical underpinnings of Kant's statement that living beings are mechanically inexplicable. My aim in this paper is to bring together these two strands of scholarship into dialogue by showing how Kant's methodological concerns (specifically, his notion of reflective judgment) contributed to his conception of living beings and to the ontological concern with life as a distinctive object of study. I argue that although Kant's explicit statement was that biology could not be a science, his implicit and more fundamental claim was that the study of living beings necessitates a distinctive mode of thought, a mode that is essentially analogical. I consider the implications of this view, and argue that it is by developing a new methodology for grasping organized beings that Kant makes his most important contribution to the new science of life.

  20. Analogical reflection as a source for the science of life: Kant and the possibility of the biological sciences.

    PubMed

    Nassar, Dalia

    2016-08-01

    In contrast to the previously widespread view that Kant's work was largely in dialogue with the physical sciences, recent scholarship has highlighted Kant's interest in and contributions to the life sciences. Scholars are now investigating the extent to which Kant appealed to and incorporated insights from the life sciences and considering the ways he may have contributed to a new conception of living beings. The scholarship remains, however, divided in its interest: historians of science are concerned with the content of Kant's claims, and the ways in which they may or may not have contributed to the emerging science of life, while historians of philosophy focus on the systematic justifications for Kant's claims, e.g., the methodological and theoretical underpinnings of Kant's statement that living beings are mechanically inexplicable. My aim in this paper is to bring together these two strands of scholarship into dialogue by showing how Kant's methodological concerns (specifically, his notion of reflective judgment) contributed to his conception of living beings and to the ontological concern with life as a distinctive object of study. I argue that although Kant's explicit statement was that biology could not be a science, his implicit and more fundamental claim was that the study of living beings necessitates a distinctive mode of thought, a mode that is essentially analogical. I consider the implications of this view, and argue that it is by developing a new methodology for grasping organized beings that Kant makes his most important contribution to the new science of life. PMID:27474186

  1. Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light

    NASA Astrophysics Data System (ADS)

    Libby, E.; Azofeifa, D. E.; Hernández-Jiménez, M.; Barboza-Aguilar, C.; Solís, A.; García-Aguilar, I.; Arce-Marenco, L.; Hernández, A.; Vargas, W. E.

    2014-08-01

    Measured reflection spectra from elytra of Chrysina aurigans scarabs are reported. They show a broad reflection band for wavelengths from 0.525 to 1.0 μm with a sequence of maxima and minima reflection values superimposed on a mean value of around 40% for the high reflection band. Different mechanisms contributing to the reflection spectra have been considered, with the dominant effect, reflection of left handed circularly polarized light, being produced by a laminated left handed twisted structure whose pitch changes with depth through the procuticle in a more complex way than that characterizing broad band circular polarizers based on cholesteric liquid crystals.

  2. The "What Is a System" Reflection Interview as a Knowledge Integration Activity for High School Students' Understanding of Complex Systems in Human Biology

    ERIC Educational Resources Information Center

    Tripto, Jaklin; Ben-Zvi Assaraf, Orit; Snapir, Zohar; Amit, Miriam

    2016-01-01

    This study examined the reflection interview as a tool for assessing and facilitating the use of "systems language" amongst 11th grade students who have recently completed their first year of high school biology. Eighty-three students composed two concept maps in the 10th grade--one at the beginning of the school year and one at its end.…

  3. Dose addition models based on biologically-relevant reductions in fetal testosterone accurately predict postnatal reproductive tract alterations by a phthalate mixture in rats

    EPA Science Inventory

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the curren...

  4. Cultural inter-population differences do not reflect biological distances: an example of interdisciplinary analysis of populations from Eastern Adriatic coast

    PubMed Central

    Bašić, Željana; Fox, Ayano R; Anterić, Ivana; Jerković, Ivan; Polašek, Ozren; Anđelinović, Šimun; Holland, Mitchell M; Primorac, Dragan

    2015-01-01

    Aim To compare the population group from the Šopot graveyard with population groups from traditional Croatian medieval graveyards by using anthropological, craniometrics, and mitochondrial (mtDNA) analysis and to examine if the cultural differences between population groups reflect biological differences. Methods We determined sex, age at death, pathological, and traumatic changes of skeletal remains from the Šopot graveyard and compared them with a cumulative medieval sample from the same region. We also performed principal component analysis to compare skeletal remains from Šopot with those from Ostrovica and other Central European samples according to 8 cranial measurements. Finally, we compared 46 skeletons from Šopot with medieval (Ostrovica) and contemporary populations using mDNA haplogroup profiling. Results The remains from Šopot were similar to the cumulative sample in lifestyle and quality of life markers. Principal component analysis showed that they were closely related to Eastern Adriatic coast sites (including Ostrovica and Šopot) in terms of cranial morphology, indicating similar biological makeup. According to mDNA testing, Šopot population showed no significant differences in the haplogroup prevalence from either medieval or contemporary populations. Conclusion This study shows that the Šopot population does not significantly differ from other medieval populations from this area. Besides similar quality of life markers, these populations also had similar biological markers. Substantial archeological differences can therefore be attributed to apparent cultural influences, which in this case do not reflect biological differences. PMID:26088847

  5. Prospective Technology Assessment of Synthetic Biology: Fundamental and Propaedeutic Reflections in Order to Enable an Early Assessment.

    PubMed

    Schmidt, Jan Cornelius

    2016-08-01

    Synthetic biology is regarded as one of the key technosciences of the future. The goal of this paper is to present some fundamental considerations to enable procedures of a technology assessment (TA) of synthetic biology. To accomplish such an early "upstream" assessment of a not yet fully developed technology, a special type of TA will be considered: Prospective TA (ProTA). At the center of ProTA are the analysis and the framing of "synthetic biology," including a characterization and assessment of the technological core. The thesis is that if there is any differentia specifica giving substance to the umbrella term "synthetic biology," it is the idea of harnessing self-organization for engineering purposes. To underline that we are likely experiencing an epochal break in the ontology of technoscientific systems, this new type of technology is called "late-modern technology." -I start this paper by analyzing the three most common visions of synthetic biology. Then I argue that one particular vision deserves more attention because it underlies the others: the vision of self-organization. I discuss the inherent limits of this new type of late-modern technology in the attempt to control and monitor possible risk issues. I refer to Hans Jonas' ethics and his early anticipation of the risks of a novel type of technology. I end by drawing conclusions for the approach of ProTA towards an early societal shaping of synthetic biology.

  6. Analysing Vee Diagram Reflections to Explore Pre-Service Science Teachers' Understanding the Nature of Science in Biology

    ERIC Educational Resources Information Center

    Savran-Gencer, Ayse

    2014-01-01

    Vee diagrams have been a metacognitive tool to help in learning the nature and structure of knowledge by reflecting on the scientific process and making knowledge much more explicit to learners during the practical work. This study aimed to assess pre-service science teachers' understanding some aspects of NOS by analyzing their reflections…

  7. Information Interactions between Members of Science-Profession Dyads as Reflected by Journal Use: Ichthyology and Fisheries Biology.

    ERIC Educational Resources Information Center

    Martin, F. Douglas

    1992-01-01

    This study examined the science-profession dyad of ichthyology and fisheries biology through citation analysis of the journal literature. It found that the fields overlap in the journals cited, and, although differences in citation behavior were identified, some exchange of information within the dyad was indicated. (38 references) (Author/MES)

  8. A Community College Instructor's Reflective Journey Toward Developing Pedagogical Content Knowledge for Nature of Science in a Non-majors Undergraduate Biology Course

    NASA Astrophysics Data System (ADS)

    Krajewski, Sarah J.; Schwartz, Renee

    2014-08-01

    Research supports an explicit-reflective approach to teaching about nature of science (NOS), but little is reported on teachers' journeys as they attempt to integrate NOS into everyday lessons. This participatory action research paper reports the challenges and successes encountered by an in-service teacher, Sarah, implementing NOS for the first time throughout four units of a community college biology course (genetics, molecular biology, evolution, and ecology). Through the action research cycles of planning, implementing, and reflecting, Sarah identified areas of challenge and success. This paper reports emergent themes that assisted her in successfully embedding NOS within the science content. Data include weekly lesson plans and pre/post reflective journaling before and after each lesson of this lecture/lab combination class that met twice a week. This course was taught back to back semesters, and this study is based on the results of a year-long process. Developing pedagogical content knowledge (PCK) for NOS involves coming to understand the overlaps and connections between NOS, other science subject matter, pedagogical strategies, and student learning. Sarah found that through action research she was able to grow and assimilate her understanding of NOS within the biology content she was teaching. A shift in orientation toward teaching products of science to teaching science processes was a necessary shift for NOS pedagogical success. This process enabled Sarah's development of PCK for NOS. As a practical example of putting research-based instructional recommendations into practice, this study may be very useful for other teachers who are learning to teach NOS.

  9. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  10. The `What is a system' reflection interview as a knowledge integration activity for high school students' understanding of complex systems in human biology

    NASA Astrophysics Data System (ADS)

    Tripto, Jaklin; Ben-Zvi Assaraf, Orit; Snapir, Zohar; Amit, Miriam

    2016-03-01

    This study examined the reflection interview as a tool for assessing and facilitating the use of 'systems language' amongst 11th grade students who have recently completed their first year of high school biology. Eighty-three students composed two concept maps in the 10th grade-one at the beginning of the school year and one at its end. The first part of the interview is dedicated to guiding the students through comparing their two concept maps and by means of both explicit and non-explicit teaching. Our study showed that the explicit guidance in comparing the two concept maps was more effective than the non-explicit, eliciting a variety of different, more specific, types of interactions and patterns (e.g. 'hierarchy', 'dynamism', 'homeostasis') in the students' descriptions of the human body system. The reflection interview as a knowledge integration activity was found to be an effective tool for assessing the subjects' conceptual models of 'system complexity', and for identifying those aspects of a system that are most commonly misunderstood.

  11. Use of high-intensity sonication for pre-treatment of biological tissues prior to multielemental analysis by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    La Calle, Inmaculada De; Costas, Marta; Cabaleiro, Noelia; Lavilla, Isela; Bendicho, Carlos

    2012-01-01

    In this work, two ultrasound-based procedures are developed for sample preparation prior to determination of P, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se and Sr in biological tissues by total reflection X-ray fluorescence spectrometry. Ultrasound-assisted extraction by means of a cup-horn sonoreactor and ultrasonic-probe slurry sampling were compared with a well-established procedure such as magnetic agitation slurry sampling. For that purpose, seven certified reference materials and different real samples of animal tissue were used. Similar accuracy and precision is obtained with the three sample preparation approaches tried. Limits of detection were dependent on both the sample matrix and the sample pre-treatment used, best values being achieved with ultrasound-assisted extraction. Advantages of ultrasound-assisted extraction include reduced sample handling, decreased contamination risks (neither addition of surfactants nor use of foreign objects inside the extraction vial), simpler background (no solid particles onto the sample carrier) and improved recovery for some elements such as P. A mixture of 10% v/v HNO3 + 20-40% v/v HCl was suitable for extraction from biological tissues.

  12. Reflecting Reflective Practice

    ERIC Educational Resources Information Center

    Galea, Simone

    2012-01-01

    This paper demystifies reflective practice on teaching by focusing on the idea of reflection itself and how it has been conceived by two philosophers, Plato and Irigaray. It argues that reflective practice has become a standardized method of defining the teacher in teacher education and teacher accreditation systems. It explores how practices of…

  13. Effect of mineralogical, geochemical and biological properties on soils reflectance to assess temporal and spatial dynamics of BSCs in Sahelian ecosystems

    NASA Astrophysics Data System (ADS)

    Bourguignon, A.; Cerdan, O.; Desprats, J. F.; Marin, B.; Malam Issa, O.; Valentin, C.; Rajot, J. L.

    2012-04-01

    Land degradation and desertification are among the major environmental problems, resulting in reduced productivity and development of bare surfaces in arid and semi-arid areas of the world. One important factor that acts to increase soil stability and nutrient content, and thus to prevent water and wind erosion and enhance soil productivity of arid environment, is the presence of biological soil crusts (BSCs). They are the dominant ground cover and a key component of arid environments built up mainly by cyanobacteria. They enhance degraded soil quality by providing a stable and water-retaining substratum and increasing fertility by N and C fixations. The BioCrust project, funded by ANR (VMCS 2008), focuses on BSCs in the Sahelian zone of West Africa (Niger), a highly vulnerable zone facing soil degradation due to the harsh climatic conditions, with variable rainfall, and high anthropic pressure on land use. Unlike arid areas of developed countries (USA, Australia and Israel) or China where BSCs have been extensively studied, studies from Sahelian zone (Africa) are limited (neither the inventory of their different form nor the estimation of their spatial extension has been carried out). The form, structure and composition of BSCs vary depending on characteristics related to soils and biological composition. This study focuses on the soils characterisation using ground-based spectroradiometry. An extensive database was built included spectral measurements on BSCs, bare soils and vegetation that occur in the same area, visual criteria, in situ and laboratory measurements on the physical, chemical and biological characteristics of BSCs and their substratum. The work is carried out on geo-statistical processing of data acquired in sites along a north-south climatic gradient and three types of representative land uses. The investigated areas are highly vulnerable zone facing soil degradation due to the harsh climatic conditions, with variable rainfall, and high anthropic

  14. Reflection and reflective practice.

    PubMed

    Schutz, Sue

    2007-09-01

    Reflection is an approach to the generation of understanding about practice that has become a largely accepted part of nursing education at both undergraduate and post-qualifying levels. It is also increasingly common now for healthcare professionals to use reflection in their practice communities as a part of their daily professional work. The literature is replete with accounts of the possible benefits to practitioners and clients of using reflection in practice, yet this amounts to a rather scant evidence base. For community nurses there are several challenges in the practical application of reflective practice, but these are not insurmountable. Issues such as lone-working and geographical distance may be a challenge. There are some key skills that will help public health and community practitioners get started in reflection and some important issues that should be addressed before beginning. Reflective practice has, however, the potential to help practitioners in all fields unlock the tacit knowledge and understanding that they have of their practice and use this to generate knowledge for future practice.

  15. Changes of color coordinates of biological tissue with superficial skin damage due to mechanical trauma

    NASA Astrophysics Data System (ADS)

    Pteruk, Vail; Mokanyuk, Olexander; Kvaternuk, Olena; Yakenina, Lesya; Kotyra, Andrzej; Romaniuk, Ryszard S.; Dussembayeva, Shynar

    2015-12-01

    Change of color coordinates of normal and pathological biological tissues is based on calculated spectral diffuse reflection. The proposed color coordinates of normal and pathological biological tissues of skin provided using standard light sources, allowing accurately diagnose skin damage due to mechanical trauma with a blunt object for forensic problems.

  16. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  17. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  18. Reflective Teaching

    ERIC Educational Resources Information Center

    Farrell, Thomas S. C.

    2013-01-01

    Thomas Farrell's "Reflective Teaching" outlines four principles that take teachers from just doing reflection to making it a way of being. Using the four principles, Reflective Practice Is Evidence Based, Reflective Practice Involves Dialogue, Reflective Practice Links Beliefs and Practices, and Reflective Practice Is a Way of Life,…

  19. Accurate Documentation of Malnutrition Diagnosis Reflects Increased Healthcare Resource Utilization.

    PubMed

    Phillips, Wendy

    2015-10-01

    Nutrition support professionals often care for the sickest of hospitalized patients. An understanding of healthcare payment models can help the nutrition support professional know how documentation of nutrition status can ensure maximum resources are available to care for these patients. Medicare is the major funding source for many hospitals in the United States. Hospitals receive payments using the Acute Care Hospital Inpatient Prospective Payment System, which classifies patients into Medical Severity Diagnosis-Related Groups (MS-DRGs) to determine payment amounts. Documentation of comorbidities and complications can increase the payment hospitals receive to offset increased resource utilization. This article explains how malnutrition documentation and coding can influence the case mix index, an indicator of level of acuity of patients treated at the hospital, and the payment the hospital receives to care for the patient.

  20. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  1. Reflection Coefficients.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1994-01-01

    Discusses and provides an example of reflectivity approximation to determine whether reflection will occur. Provides a method to show thin-film interference on a projection screen. Also applies the reflectivity concepts to electromagnetic wave systems. (MVL)

  2. Reflectance of aqueous solutions

    NASA Technical Reports Server (NTRS)

    Querry, M. R.

    1972-01-01

    The optical properties and optical constants of water and aqueous solutions were studied to develop an accurate tabulation of graphical representations of the optical constants through a broad spectrum. Manuscripts of articles are presented concerning extinction coefficients, relative specular reflectance, and temperature effect on the water spectrum. Graphs of absolute reflectance, phase shifts, index of refraction, and extinction coefficients for water, heavy water and aqueous solutions are included.

  3. Accurate Optical Reference Catalogs

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    2006-08-01

    Current and near future all-sky astrometric catalogs on the ICRF are reviewed with the emphasis on reference star data at optical wavelengths for user applications. The standard error of a Hipparcos Catalogue star position is now about 15 mas per coordinate. For the Tycho-2 data it is typically 20 to 100 mas, depending on magnitude. The USNO CCD Astrograph Catalog (UCAC) observing program was completed in 2004 and reductions toward the final UCAC3 release are in progress. This all-sky reference catalogue will have positional errors of 15 to 70 mas for stars in the 10 to 16 mag range, with a high degree of completeness. Proper motions for the about 60 million UCAC stars will be derived by combining UCAC astrometry with available early epoch data, including yet unpublished scans of the complete set of AGK2, Hamburg Zone astrograph and USNO Black Birch programs. Accurate positional and proper motion data are combined in the Naval Observatory Merged Astrometric Dataset (NOMAD) which includes Hipparcos, Tycho-2, UCAC2, USNO-B1, NPM+SPM plate scan data for astrometry, and is supplemented by multi-band optical photometry as well as 2MASS near infrared photometry. The Milli-Arcsecond Pathfinder Survey (MAPS) mission is currently being planned at USNO. This is a micro-satellite to obtain 1 mas positions, parallaxes, and 1 mas/yr proper motions for all bright stars down to about 15th magnitude. This program will be supplemented by a ground-based program to reach 18th magnitude on the 5 mas level.

  4. Accurate description of calcium solvation in concentrated aqueous solutions.

    PubMed

    Kohagen, Miriam; Mason, Philip E; Jungwirth, Pavel

    2014-07-17

    Calcium is one of the biologically most important ions; however, its accurate description by classical molecular dynamics simulations is complicated by strong electrostatic and polarization interactions with surroundings due to its divalent nature. Here, we explore the recently suggested approach for effectively accounting for polarization effects via ionic charge rescaling and develop a new and accurate parametrization of the calcium dication. Comparison to neutron scattering and viscosity measurements demonstrates that our model allows for an accurate description of concentrated aqueous calcium chloride solutions. The present model should find broad use in efficient and accurate modeling of calcium in aqueous environments, such as those encountered in biological and technological applications.

  5. A Community College Instructor's Reflective Journey toward Developing Pedagogical Content Knowledge for Nature of Science in a Non-Majors Undergraduate Biology Course

    ERIC Educational Resources Information Center

    Krajewski, Sarah J.; Schwartz, Renee

    2014-01-01

    Research supports an explicit-reflective approach to teaching about nature of science (NOS), but little is reported on teachers' journeys as they attempt to integrate NOS into everyday lessons. This participatory action research paper reports the challenges and successes encountered by an in-service teacher, Sarah, implementing NOS for the…

  6. The Reflective Learning Continuum: Reflecting on Reflection

    ERIC Educational Resources Information Center

    Peltier, James W.; Hay, Amanda; Drago, William

    2005-01-01

    The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research that considers reflection within the context of both the marketing and general business education literature. This article describes the use of an instrument that can be used to measure four identified levels of a…

  7. Reflected Glory

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  8. Reflected Glory

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  9. N,N prime -Dimethylthiourea dioxide formation from N,N prime -dimethylthiourea reflects hydrogen peroxide concentrations in simple biological systems

    SciTech Connect

    Curtis, W.E.; Muldrow, M.E.; Parker, N.B.; Barkley, R.; Linas, S.L.; Repine, J.E. )

    1988-05-01

    The authors hypothesized that measurement of a specific product from reaction of N,N{prime}-dimethylthiourea (Me{sub 2}TU) and H{sub 2}O{sub 2} would provide a good indication of the H{sub 2}O{sub 2} scavenging and protection seen after addition of Me{sub 2}TU to biological systems. They found that addition of H{sub 2}O{sub 2} to Me{sub 2}TU yielded a single stable product, Me{sub 2}TU dioxide. Me{sub 2}TU dioxide formation correlated with Me{sub 2}TU consumption as a function of added H{sub 2}O{sub 2} concentration and was prevented by simultaneous addition of catalase (but not boiled catalase), superoxide dismutase, dimethyl sulfoxide, mannitol, or sodium benzoate. Me{sub 2}TU dioxide formation, Me{sub 2}TU consumption, and H{sub 2}O{sub 2} concentration increases occurred in mixtures containing phorbol 12-myristate 13-acetate (PMA) and normal human neutrophils but not in mixtures containing PMA and neutrophils from patients with chronic granulomatous disease or in mixtures containing PMA and normal neutrophils and catalase. Me{sub 2}TU dioxide formation also occurred in isolated rat lungs perfused with Me{sub 2}TU and H{sub 2}O{sub 2} but not in lungs perfused with Me{sub 2}TU and elastase, histamine, or oleic acid. In contrast, Me{sub 2}TU dioxide formation did not occur after exposure of Me{sub 2}TU to {sup 60}Co-generated hydroxyl radical or hypochlorous acid in the presence of catalase. The results indicate that reaction of Me{sub 2}TU with H{sub 2}O{sub 2} selectively forms Me{sub 2}TU may be useful for assessing the presence and significance of H{sub 2}O{sub 2} in biological systems.

  10. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  11. A planar transmission-line sensor for measuring microwave permittivity of liquid and semisolid biological materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An accurate technique for determining the permittivity of biological materials with coplanar waveguide transmission line is presented. The technique utilizes closed-form approximations that relate the material permittivity to the line propagation constant. A thru-reflect-line calibration procedure i...

  12. Reflected Glory

    ERIC Educational Resources Information Center

    Forster, Colin

    2006-01-01

    The scientific model of how people see things is far removed from children's real-world experience. They know that light is needed in order to see an object, but may not know that light is reflected off the object and some of that light enters the eyes. In this article, the author explores children's understanding of reflection and how to develop…

  13. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  14. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  15. Reflecting on Reflecting on Practice

    ERIC Educational Resources Information Center

    Wilson, Arthur L.

    2009-01-01

    This article discusses three broad themes--reflection, power, and negotiation--that are evidenced in all of the articles in this issue. In this article, the author tries to transgress the articles at some middling altitude to seek some broader thematics. His observations about reflection, power, and negotiation do transcend individual efforts,…

  16. Radar reflectivity

    NASA Astrophysics Data System (ADS)

    1986-07-01

    This TOP describes a method for measuring the radar reflectivity characteristics of aircraft. It uses a rotating platform and various radar systems to obtain calibrated radar Automatic Gain Control values for each degree of aspect angle for the aircraft. The purpose of this test is to provide comparable values of radar reflectivity for Army aircraft at various radar frequencies and parameter for fixed positions and aspect angles on the aircraft. Data collected on each specific aircraft can be used to evaluate radar reflectivity characteristics of aircraft skin material, paint, and structural changes such as flat versus curved surfaces.

  17. Computational Systems Biology

    SciTech Connect

    McDermott, Jason E.; Samudrala, Ram; Bumgarner, Roger E.; Montogomery, Kristina; Ireton, Renee

    2009-05-01

    mRNA) and metabolomics. With such tools, research to consider systems as a whole are being conceived, planned and implemented experimentally on an ever more frequent and wider scale. The other is the growth of computational processing power and tools. Methods to analyze large data sets of this kind are often computationally demanding and, as is the case in other areas, the field has benefited from continuing improvements in computational hardware and methods. The field of computational biology is very much like a telescope with two sequential lenses: one lens represents the biological data and the other represents a computational and/or mathematical model of the data. Both lenses must be properly coordinated to yield an image that reflects biological reality. This means that the design parameters for both lenses must be designed in concert to create a system that yields a model of the organism that provides both predictive and mechanistic information. The chapters in this book describe the construction of subcomponents of such a system. Computational systems biology is a rapidly evolving field and no single group of investigators has yet developed a compete system that integrates both data generation and data analysis in such a way so as to allow full and accurate modeling of any single biological organism. However, the field is rapidly moving in that direction. The chapters in this book represent a snapshot of the current methods being developed and used in the area of computational systems biology. Each method or database described within represents one or more steps on the path to a complete description of a biological system. How these tools will evolve and ultimately be integrated is an area of intense research and interest. We hope that readers of this book will be motivated by the chapters within and become involved in this exciting area of research.

  18. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception.

  19. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception. PMID:24549293

  20. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages. PMID:8788799

  1. Normal-reflection image

    SciTech Connect

    Huang, L.; Fehler, Michael C.

    2003-01-01

    Common-angle wave-equation migration using the double-square-root is generally less accurate than the common-shot migration because the wavefield continuation equation for thc former involves additional approximations compared to that for the latter. We present a common-angle wave-equation migration that has the same accuracy as common-shot wave-equation migration. An image obtained from common-angle migration is a four- to five-dimensional output volume for 3D cases. We propose a normal-reflection imaging condition for common-angle migration to produce a 3D output volume for 3D migration. The image is closely related to the normal-reflection coefficients at interfaces. This imaging condition will allow amplitude-preserving migration to generate an image with clear physical meaning.

  2. Nursing students' reflections on racism.

    PubMed

    Schaefer, Karen Moore

    2008-01-01

    Racism is the systematic oppression of people of color at personal/interpersonal, institutional, and/or cultural levels. Discussions about racism often become emotional and personal. A discussion related to the accurate labeling of students on the basis of their heritage in an undergraduate professional issues class became emotionally charged. To prevent any further escalation of emotions, the author brought closure by asking students to read and write a reflective response to the Black Prayer. This article is a summary of urban nursing students' reflections and how giving voice to such reflections is a way of opening the door to frank discussions of racism and its effects.

  3. Toward Accurate and Quantitative Comparative Metagenomics.

    PubMed

    Nayfach, Stephen; Pollard, Katherine S

    2016-08-25

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  4. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  5. Rapid and accurate determination of tissue optical properties using least-squares support vector machines

    PubMed Central

    Barman, Ishan; Dingari, Narahara Chari; Rajaram, Narasimhan; Tunnell, James W.; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    Diffuse reflectance spectroscopy (DRS) has been extensively applied for the characterization of biological tissue, especially for dysplasia and cancer detection, by determination of the tissue optical properties. A major challenge in performing routine clinical diagnosis lies in the extraction of the relevant parameters, especially at high absorption levels typically observed in cancerous tissue. Here, we present a new least-squares support vector machine (LS-SVM) based regression algorithm for rapid and accurate determination of the absorption and scattering properties. Using physical tissue models, we demonstrate that the proposed method can be implemented more than two orders of magnitude faster than the state-of-the-art approaches while providing better prediction accuracy. Our results show that the proposed regression method has great potential for clinical applications including in tissue scanners for cancer margin assessment, where rapid quantification of optical properties is critical to the performance. PMID:21412464

  6. Rapid and accurate determination of tissue optical properties using least-squares support vector machines.

    PubMed

    Barman, Ishan; Dingari, Narahara Chari; Rajaram, Narasimhan; Tunnell, James W; Dasari, Ramachandra R; Feld, Michael S

    2011-01-01

    Diffuse reflectance spectroscopy (DRS) has been extensively applied for the characterization of biological tissue, especially for dysplasia and cancer detection, by determination of the tissue optical properties. A major challenge in performing routine clinical diagnosis lies in the extraction of the relevant parameters, especially at high absorption levels typically observed in cancerous tissue. Here, we present a new least-squares support vector machine (LS-SVM) based regression algorithm for rapid and accurate determination of the absorption and scattering properties. Using physical tissue models, we demonstrate that the proposed method can be implemented more than two orders of magnitude faster than the state-of-the-art approaches while providing better prediction accuracy. Our results show that the proposed regression method has great potential for clinical applications including in tissue scanners for cancer margin assessment, where rapid quantification of optical properties is critical to the performance. PMID:21412464

  7. Haitian reflections.

    PubMed

    Docrat, Fathima

    2010-08-01

    Natural disasters and acts of terrorism demonstrate a similar critical need for national preparedness. As one of a team of volunteers with a local South African NGO who recently went on a medical mission, I would like to share glimpses of our experience and reflect on the mistakes - and also to state the obvious: that we do not learn from our mistakes. A simple literature search has shown that the same mistakes happen repeatedly. 'Humanitarian disasters occur with frightening regularity, yet international responses remain fragmented, with organizations and responders being forced to "reinvent the wheel" with every new event'. This is the result of an obvious lack of preparedness.

  8. Reflective Packaging

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.

  9. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  10. Accurate Mass Measurements in Proteomics

    SciTech Connect

    Liu, Tao; Belov, Mikhail E.; Jaitly, Navdeep; Qian, Weijun; Smith, Richard D.

    2007-08-01

    To understand different aspects of life at the molecular level, one would think that ideally all components of specific processes should be individually isolated and studied in details. Reductionist approaches, i.e., studying one biological event at a one-gene or one-protein-at-a-time basis, indeed have made significant contributions to our understanding of many basic facts of biology. However, these individual “building blocks” can not be visualized as a comprehensive “model” of the life of cells, tissues, and organisms, without using more integrative approaches.1,2 For example, the emerging field of “systems biology” aims to quantify all of the components of a biological system to assess their interactions and to integrate diverse types of information obtainable from this system into models that could explain and predict behaviors.3-6 Recent breakthroughs in genomics, proteomics, and bioinformatics are making this daunting task a reality.7-14 Proteomics, the systematic study of the entire complement of proteins expressed by an organism, tissue, or cell under a specific set of conditions at a specific time (i.e., the proteome), has become an essential enabling component of systems biology. While the genome of an organism may be considered static over short timescales, the expression of that genome as the actual gene products (i.e., mRNAs and proteins) is a dynamic event that is constantly changing due to the influence of environmental and physiological conditions. Exclusive monitoring of the transcriptomes can be carried out using high-throughput cDNA microarray analysis,15-17 however the measured mRNA levels do not necessarily correlate strongly with the corresponding abundances of proteins,18-20 The actual amount of functional proteins can be altered significantly and become independent of mRNA levels as a result of post-translational modifications (PTMs),21 alternative splicing,22,23 and protein turnover.24,25 Moreover, the functions of expressed

  11. Biology and management of ependymomas.

    PubMed

    Wu, Jing; Armstrong, Terri S; Gilbert, Mark R

    2016-07-01

    Ependymomas are rare primary tumors of the central nervous system in children and adults that comprise histologically similar but genetically distinct subgroups. The tumor biology is typically more associated with the site of origin rather than being age-specific. Genetically distinct subgroups have been identified by genomic studies based on locations in classic grade II and III ependymomas. They are supratentorial ependymomas with C11orf95-RELA fusion or YAP1 fusion, infratentorial ependymomas with or without a hypermethylated phenotype (CIMP), and spinal cord ependymomas. Myxopapillary ependymomas and subependymomas have different biology than ependymomas with typical WHO grade II or III histology. Surgery and radiotherapy are the mainstays of treatment, while the role of chemotherapy has not yet been established. An in-depth understanding of tumor biology, developing reliable animal models that accurately reflect tumor molecule features, and high throughput drug screening are essential for developing new therapies. Collaborative efforts between scientists, physicians, and advocacy groups will enhance the translation of laboratory findings into clinical trials. Improvements in disease control underscore the need to incorporate assessment and management of patients' symptoms to ensure that treatment advances translate into improvement in quality of life. PMID:27022130

  12. SPLASH: Accurate OH maser positions

    NASA Astrophysics Data System (ADS)

    Walsh, Andrew; Gomez, Jose F.; Jones, Paul; Cunningham, Maria; Green, James; Dawson, Joanne; Ellingsen, Simon; Breen, Shari; Imai, Hiroshi; Lowe, Vicki; Jones, Courtney

    2013-10-01

    The hydroxyl (OH) 18 cm lines are powerful and versatile probes of diffuse molecular gas, that may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. In this proposal, we request ATCA time to follow up OH maser candidates. This will give us accurate (~10") positions of the masers, which can be compared to other maser positions from HOPS, MMB and MALT-45 and will provide full polarisation measurements towards a sample of OH masers that have not been observed in MAGMO.

  13. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  14. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  15. Soil spectra contributions to grass canopy spectral reflectance

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Miller, L. D.

    1977-01-01

    The soil or background spectra contribution to grass canopy spectral reflectance for the 0.35 to 0.80 micron region was investigated using in situ collected spectral reflectance data. Regression analysis was used to estimate accurately the unexposed soil spectral reflectance and to quantify maxima and minima for soil-green vegetation reflection contrasts.

  16. Diagnosis of the phase function of random media from light reflectance

    NASA Astrophysics Data System (ADS)

    Xu, Min

    2016-03-01

    Light reflectance has been widely used to diagnose random media in both in situ and in vivo applications. The quantification of the phase function of the medium from reflectance measurements, however, remains elusive due to the lack of an explicit connection between the light reflectance profile and the phase function. Here we first present an analytical model for reflectance of scattered light at an arbitrary source-detector separation by forward-peaked scattering media such as biological tissue and cells. The model incorporates the improved small-angle scattering approximation (SAA) to radiative transfer for sub-diffusive light reflectance and expresses the dependence of the light reflectance on the phase function of the scattering medium in a closed form. A spreading length scale, lΘ, is found to characterise subdiffusive light reflectance at the high spatial frequency (close separation) limit. After validation by Monte Carlo simulations, we then demonstrate the application of the model in accurate determination of the complete set of optical properties and the phase function of a turbid medium from the profile of subdiffusive and diffusive light reflectance.

  17. Diagnosis of the phase function of random media from light reflectance

    PubMed Central

    Xu, Min

    2016-01-01

    Light reflectance has been widely used to diagnose random media in both in situ and in vivo applications. The quantification of the phase function of the medium from reflectance measurements, however, remains elusive due to the lack of an explicit connection between the light reflectance profile and the phase function. Here we first present an analytical model for reflectance of scattered light at an arbitrary source-detector separation by forward-peaked scattering media such as biological tissue and cells. The model incorporates the improved small-angle scattering approximation (SAA) to radiative transfer for sub-diffusive light reflectance and expresses the dependence of the light reflectance on the phase function of the scattering medium in a closed form. A spreading length scale, lΘ, is found to characterise subdiffusive light reflectance at the high spatial frequency (close separation) limit. After validation by Monte Carlo simulations, we then demonstrate the application of the model in accurate determination of the complete set of optical properties and the phase function of a turbid medium from the profile of subdiffusive and diffusive light reflectance. PMID:26935167

  18. Reflections on Behavior Analysis and Evolutionary Biology: A Selective Review of Evolution Since Darwin—The First 150 Years. Edited by M. A. Bell, D. J. Futuyama, W. F. Eanes, & J. S. Levinton

    PubMed Central

    Donahoe, John W

    2012-01-01

    This review focuses on parallels between the selectionist sciences of evolutionary biology and behavior analysis. In selectionism, complex phenomena are interpreted as the cumulative products of relatively simple processes acting over time—natural selection in evolutionary biology and reinforcement in behavior analysis. Because evolutionary biology is the more mature science, an examination of the factors that led to the triumph of natural selection provides clues whereby reinforcement may achieve a similar fate in the science of behavior.

  19. A Reflective Look at Reflecting Teams

    ERIC Educational Resources Information Center

    Pender, Rebecca L.; Stinchfield, Tracy

    2012-01-01

    This article reviewed existing literature and research on the reflecting team process. There is a dearth of empirical research that explores the reflecting team process and the outcome of counseling that uses reflecting teams. Implications of using reflecting teams for counselors, counselor educators, and clients will be discussed. A call for…

  20. Partial Internal Reflections on Total Internal Reflection Fluorescent Microscopy

    PubMed Central

    Simon, Sanford

    2009-01-01

    Microscopy, especially fluorescence microscopy, has proven to be a powerful method for studying biological processes. Unfortunately, some of the same features that make biological membranes powerful (for example, all of the action taking place across a narrow 4 nm film) also make it difficult to visualize by fluorescence. Over the past 30 years numerous tricks have been developed to narrow the plane over which data is collected. One approach is particularly well suited for studying membrane events: total internal reflection fluorescence microscopy. A key issue to address, when using TIR to tackle a new biological problem is: How can one judge whether the signals being observed are actually the biological phenomena that one wishes to study? PMID:19818624

  1. Macrothermodynamics of Biological Evolution:

    NASA Astrophysics Data System (ADS)

    Gladyshev, Georgi P.

    The author sets forth general considerations pertaining to the thermodynamic theory of biological evolution and the aging of living organisms. It becomes much easier to comprehend the phenomenon of life scrutinizing the formation of structural hierarchies of biological matter applying different temporal scales. These scales are 'identified' by nature itself, and this is reflected in the law of temporal hierarchies. The author discusses some misunderstandings in thermodynamics and evolutionary biology. A simple physicochemical model of biological evolution and the development of living beings is proposed. The considered theory makes it possible to use physicochemical evaluations to develop effective anti-aging diets.

  2. Reflected Ceiling Plan/Reflected Deck Plan 2009; Reflected Ceiling Plan/Reflected Deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Reflected Ceiling Plan/Reflected Deck Plan 2009; Reflected Ceiling Plan/Reflected Deck Plan 2010 - Gilpin's Falls Covered Bridge, Spanning North East Creek at Former (Bypassed) Section of North East Road (SR 272), North East, Cecil County, MD

  3. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  4. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  5. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  7. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  8. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  9. How flatbed scanners upset accurate film dosimetry.

    PubMed

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  10. Reconstructing accurate ToF-SIMS depth profiles for organic materials with differential sputter rates

    PubMed Central

    Taylor, Adam J.; Graham, Daniel J.; Castner, David G.

    2015-01-01

    To properly process and reconstruct 3D ToF-SIMS data from systems such as multi-component polymers, drug delivery scaffolds, cells and tissues, it is important to understand the sputtering behavior of the sample. Modern cluster sources enable efficient and stable sputtering of many organics materials. However, not all materials sputter at the same rate and few studies have explored how different sputter rates may distort reconstructed depth profiles of multicomponent materials. In this study spun-cast bilayer polymer films of polystyrene and PMMA are used as model systems to optimize methods for the reconstruction of depth profiles in systems exhibiting different sputter rates between components. Transforming the bilayer depth profile from sputter time to depth using a single sputter rate fails to account for sputter rate variations during the profile. This leads to inaccurate apparent layer thicknesses and interfacial positions, as well as the appearance of continued sputtering into the substrate. Applying measured single component sputter rates to the bilayer films with a step change in sputter rate at the interfaces yields more accurate film thickness and interface positions. The transformation can be further improved by applying a linear sputter rate transition across the interface, thus modeling the sputter rate changes seen in polymer blends. This more closely reflects the expected sputtering behavior. This study highlights the need for both accurate evaluation of component sputter rates and the careful conversion of sputter time to depth, if accurate 3D reconstructions of complex multi-component organic and biological samples are to be achieved. The effects of errors in sputter rate determination are also explored. PMID:26185799

  11. Biological Threats

    MedlinePlus

    ... Thunderstorms & Lightning Tornadoes Tsunamis Volcanoes Wildfires Main Content Biological Threats Biological agents are organisms or toxins that ... Centers for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may ...

  12. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  13. Coverslip Cleaning and Functionalization for Total Internal Reflection Fluorescence Microscopy.

    PubMed

    Kudalkar, Emily M; Deng, Yi; Davis, Trisha N; Asbury, Charles L

    2016-01-01

    Total internal reflection fluorescence (TIRF) microscopy allows visualization of biological events at the single-molecule level by restricting excitation to a precise focal plane near the coverslip and eliminating out-of-focus fluorescence. The quality of TIRF imaging relies on a high signal-to-noise ratio and therefore it is imperative to prevent adherence of molecules to the glass coverslip. Nonspecific interactions can make it difficult to distinguish true binding events and may also interfere with accurate quantification of background noise. In addition, nonspecific binding of the fluorescently tagged protein will lower the effective working concentration, thereby altering values used to calculate affinity constants. To prevent spurious interactions, we thoroughly clean the surface of the coverslip and then functionalize the glass either by applying a layer of silane or by coating with a lipid bilayer. PMID:27140911

  14. Quality Self-Reflection through Reflection Training

    ERIC Educational Resources Information Center

    Gun, Bahar

    2011-01-01

    This research study discusses the importance of "reflection training" in teacher education programmes. The main premise of the study is that although teachers are constantly encouraged to "reflect" on their teaching, they are unable to do so effectively unless they are specifically trained in how to reflect (they tend to "react" rather than…

  15. Reflections on Reflective Learning in Professional Formation

    ERIC Educational Resources Information Center

    Warhurst, Russell

    2008-01-01

    Reflective learning is a standard and largely unquestioned pedagogy of initial in-service professional education. This case study problematises the processes of reflective learning and examines the constraints on beginning professionals' reflection. The paper outlines a theoretical framework to enable understanding of the nature of reflective…

  16. Molecular Models in Biology

    ERIC Educational Resources Information Center

    Goodman, Richard E.

    1970-01-01

    Describes types of molecular models (ball-and-stick, framework, and space-filling) and evaluates commercially available kits. Gives instructions for constructive models from polystyrene balls and pipe-cleaners. Models are useful for class demonstrations although not sufficiently accurate for research use. Illustrations show biologically important…

  17. Reflectance spectra of subarctic lichens

    NASA Technical Reports Server (NTRS)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  18. Systems biology and biomarker discovery

    SciTech Connect

    Rodland, Karin D.

    2010-12-01

    Medical practitioners have always relied on surrogate markers of inaccessible biological processes to make their diagnosis, whether it was the pallor of shock, the flush of inflammation, or the jaundice of liver failure. Obviously, the current implementation of biomarkers for disease is far more sophisticated, relying on highly reproducible, quantitative measurements of molecules that are often mechanistically associated with the disease in question, as in glycated hemoglobin for the diagnosis of diabetes [1] or the presence of cardiac troponins in the blood for confirmation of myocardial infarcts [2]. In cancer, where the initial symptoms are often subtle and the consequences of delayed diagnosis often drastic for disease management, the impetus to discover readily accessible, reliable, and accurate biomarkers for early detection is compelling. Yet despite years of intense activity, the stable of clinically validated, cost-effective biomarkers for early detection of cancer is pathetically small and still dominated by a handful of markers (CA-125, CEA, PSA) first discovered decades ago. It is time, one could argue, for a fresh approach to the discovery and validation of disease biomarkers, one that takes full advantage of the revolution in genomic technologies and in the development of computational tools for the analysis of large complex datasets. This issue of Disease Markers is dedicated to one such new approach, loosely termed the 'Systems Biology of Biomarkers'. What sets the Systems Biology approach apart from other, more traditional approaches, is both the types of data used, and the tools used for data analysis - and both reflect the revolution in high throughput analytical methods and high throughput computing that has characterized the start of the twenty first century.

  19. Light Field Imaging Based Accurate Image Specular Highlight Removal.

    PubMed

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into "unsaturated" and "saturated" category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  20. Light Field Imaging Based Accurate Image Specular Highlight Removal

    PubMed Central

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into “unsaturated” and “saturated” category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  1. Orientations to Reflective Practice.

    ERIC Educational Resources Information Center

    Wellington, Bud; Austin, Patricia

    1996-01-01

    Delineates five orientations to reflective practice: immediate, technical, deliberative, dialectic, and transpersonal, each reflecting different social science bases and beliefs and values about education. Views them as interactive, interdependent, noncompeting, aspects of reflective practice. (SK)

  2. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering.

    PubMed

    Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20  mm-1 at reduced scattering coefficients of 1 and 11.5  mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime

  3. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as

  4. Accurate multiplex gene synthesis from programmable DNA microchips

    NASA Astrophysics Data System (ADS)

    Tian, Jingdong; Gong, Hui; Sheng, Nijing; Zhou, Xiaochuan; Gulari, Erdogan; Gao, Xiaolian; Church, George

    2004-12-01

    Testing the many hypotheses from genomics and systems biology experiments demands accurate and cost-effective gene and genome synthesis. Here we describe a microchip-based technology for multiplex gene synthesis. Pools of thousands of `construction' oligonucleotides and tagged complementary `selection' oligonucleotides are synthesized on photo-programmable microfluidic chips, released, amplified and selected by hybridization to reduce synthesis errors ninefold. A one-step polymerase assembly multiplexing reaction assembles these into multiple genes. This technology enabled us to synthesize all 21 genes that encode the proteins of the Escherichia coli 30S ribosomal subunit, and to optimize their translation efficiency in vitro through alteration of codon bias. This is a significant step towards the synthesis of ribosomes in vitro and should have utility for synthetic biology in general.

  5. Self-reflection, gender and science achievement

    NASA Astrophysics Data System (ADS)

    Shoop, Kathleen A.

    Drawing on socio-cognitive learning theory, this study compared achievement scores of 134 male and female high school biology students randomly assigned to groups which either used self-reflection, used self-reflection and received feedback, or did not self-reflect. Following a pretest, the teacher provided self-reflection strategy instruction to students in the two intervention groups and then subsequently provided in-class self-reflection time for these groups. The posttest concluded the unit; the retention measure was five weeks later. A quasi-experimental 3 x 3 x 2 (time x intervention x gender) factorial repeated-measures control group design was used for this study; a repeated measures ANOVA and several one-way ANOVA's were used to answer the research questions. Results from the repeated-measures ANOVA revealed significant results for Time and Time x Intervention, with the reflection group demonstrating significantly lower gains from pretest to posttest than the other two groups. The ANOVA examining differences between those who reflected and those who reflected and received feedback provided significant results with similar results for the difference between the control group and the reflection group. For teachers and students this study provides several areas of practical significance. Primarily, teachers may find lower student achievement if students regularly self-reflect but do not receive feedback for their reflection.

  6. Identification of Terrestrial Reflectance From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Nolf, Scott R.; Stacy, Kathryn (Technical Monitor)

    2000-01-01

    Correcting for atmospheric effects is an essential part of surface-reflectance recovery from radiance measurements. Model-based atmospheric correction techniques enable an accurate identification and classification of terrestrial reflectances from multi-spectral imagery. Successful and efficient removal of atmospheric effects from remote-sensing data is a key factor in the success of Earth observation missions. This report assesses the performance, robustness and sensitivity of two atmospheric-correction and reflectance-recovery techniques as part of an end-to-end simulation of hyper-spectral acquisition, identification and classification.

  7. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  8. MODIS Solar Reflective Calibration Traceability

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, Jim

    2009-01-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify, measurement uncertainties, and to establish absolute scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bidirectional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser monitor (SDSM). This paper provides details of this calibration chain, from prelaunch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  9. Reflectivity, Reflexivity and Situated Reflective Practice

    ERIC Educational Resources Information Center

    Malthouse, Richard; Roffey-Barentsen, Jodi; Watts, Mike

    2014-01-01

    This paper describes an aspect of reflective practice referred to as situated reflective practice. The overarching theory is derived from social theories of structuration and reflexivity. In particular, from Giddens' theory of structuration, which sees social life as an interplay of agency and structure. Discussion of the research reported…

  10. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  11. Accurate Splicing of HDAC6 Pre-mRNA Requires SON

    PubMed Central

    Battini, Vishnu Priya; Bubulya, Athanasios; Bubulya, Paula A.

    2015-01-01

    Pre-mRNA splicing requires proper splice site selection mediated by many factors including snRNPs and serine-arginine rich (SR) splicing factors. Our lab previously reported that the SR-like protein SON maintains organization of pre-mRNA splicing factors in nuclear speckles as well as splicing of many human transcripts including mRNAs coding for the chromatin-modifying enzymes HDAC6, ADA and SETD8. However, the mechanism by which SON maintains accurate splicing is unknown. To build tools for understanding SON-dependent pre-mRNA splicing, we constructed a minigene reporter plasmid driving expression of the genomic sequence spanning exons 26 through 29 of HDAC6. Following SON depletion, we observed altered splicing of HDAC6 reporter transcripts that showed exclusion of exons 27 and 28, reflecting the splicing patterns of endogenous HDAC6 mRNA. Importantly, loss of HDAC6 biological function was also observed, as indicated by truncated HDAC6 protein and corresponding absence of aggresome assembly activities of HDAC6 binding-of-ubiquitin zinc finger (BUZ) domain. We therefore propose that SON-mediated splicing regulation of HDAC6 is essential for supporting protein degradation pathways that prevent human disease. PMID:25782155

  12. Do Ecological Niche Models Accurately Identify Climatic Determinants of Species Ranges?

    PubMed

    Searcy, Christopher A; Shaffer, H Bradley

    2016-04-01

    Defining species' niches is central to understanding their distributions and is thus fundamental to basic ecology and climate change projections. Ecological niche models (ENMs) are a key component of making accurate projections and include descriptions of the niche in terms of both response curves and rankings of variable importance. In this study, we evaluate Maxent's ranking of environmental variables based on their importance in delimiting species' range boundaries by asking whether these same variables also govern annual recruitment based on long-term demographic studies. We found that Maxent-based assessments of variable importance in setting range boundaries in the California tiger salamander (Ambystoma californiense; CTS) correlate very well with how important those variables are in governing ongoing recruitment of CTS at the population level. This strong correlation suggests that Maxent's ranking of variable importance captures biologically realistic assessments of factors governing population persistence. However, this result holds only when Maxent models are built using best-practice procedures and variables are ranked based on permutation importance. Our study highlights the need for building high-quality niche models and provides encouraging evidence that when such models are built, they can reflect important aspects of a species' ecology. PMID:27028071

  13. Inter-reflection Compensation of Immersive Projection Display by Spatio-Temporal Screen Reflectance Modulation.

    PubMed

    Takeda, Shoichi; Iwai, Daisuke; Sato, Kosuke

    2016-04-01

    We propose a novel inter-reflection compensation technique for immersive projection displays wherein we spatially modulate the reflectance pattern on the screen to improve the compensation performance of conventional methods. As the luminance of light reflected on a projection surface is mathematically represented as the multiplication of the illuminance of incident light and the surface reflectance, we can reduce undesirable intensity elevation because of inter-reflections by decreasing surface reflectance. Based on this principle, we improve conventional inter-reflection compensation techniques by applying reflectance pattern modulation. We realize spatial reflectance modulation of a projection screen by painting it with a photochromic compound, which changes its color (i.e., the reflectance of the screen) when ultraviolet (UV) light is applied and by controlling UV irradiation with a UV LED array placed behind the screen. The main contribution of this paper is a computational model to optimize a reflectance pattern for the accurate reproduction of a target appearance by decreasing the intensity elevation caused by inter-reflection while maintaining the maximum intensity of the target appearance. Through simulation and physical experiments, we demonstrate the feasibility of the proposed model and confirm its advantage over conventional methods. PMID:26780805

  14. Tunable reflection minima of nanostructured antireflective surfaces

    NASA Astrophysics Data System (ADS)

    Boden, S. A.; Bagnall, D. M.

    2008-09-01

    Broadband antireflection schemes for silicon surfaces based on the moth-eye principle and comprising arrays of subwavelength-scale pillars are applicable to solar cells, photodetectors, and stealth technologies and can exhibit very low reflectances. We show that rigorous coupled wave analysis can be used to accurately model the intricate reflectance behavior of these surfaces and so can be used to explore the effects of variations in pillar height, period, and shape. Low reflectance regions are identified, the extent of which are determined by the shape of the pillars. The wavelengths over which these low reflectance regions operate can be shifted by altering the period of the array. Thus the subtle features of the reflectance spectrum of a moth-eye array can be tailored for optimum performance for the input spectrum of a specific application.

  15. DCP-collected absolute target reflectance signatures assist accurate interpretation of ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Weber, F. P.

    1973-01-01

    Data collection platforms (DCP's) are being used at a Black Hills, South Dakota, test site (MMC 226A) to record radiometric measurements needed to determine solar and atmospheric parameters that affect ERTS-1 multispectral scanner radiance measurements. A total of 72 channels of analog data transmitted from an unattended ground truth site via three DCP's at least six times a day. The system has operated with only minor problems since September, sending forth daily measurements of biophysical responses and atmospheric conditions. Comparisons of scene radiance data calculated from ERTS images with that measured on the ground show the image-measured values to be 35 percent higher for the green channel and 20 percent higher for the red channel for the same scene targets. Radiance values for channels 6 and 7 are nearly the same from the ground data and from the imagery.

  16. Patient safety measures in burn care: do National reporting systems accurately reflect quality of burn care?

    PubMed

    Mandell, Samuel P; Robinson, Ellen F; Cooper, Claudette L; Klein, Matthew B; Gibran, Nicole S

    2010-01-01

    Recently, much attention has been placed on quality of care metrics and patient safety. Groups such as the University Health-System Consortium (UHC) collect and review patient safety data, monitor healthcare facilities, and often report data using mortality and complication rates as outcomes. The purpose of this study was to analyze the UHC database to determine if it differentiates quality of care across burn centers. We reviewed UHC clinical database (CDB) fields and available data from 2006 to 2008 for the burn product line. Based on the September 2008 American Burn Association (ABA) list of verified burn centers, we categorized centers as American Burn Association-verified burn centers, self-identified burn centers, and other centers that are not burn units but admit some burn patients. We compared total burn admissions, risk pool, complication rates, and mortality rates. Overall mortality was compared between the UHC and National Burn Repository. The UHC CDB provides fields for number of admissions, % intensive care unit admission, risk pool, length of stay, complication profiles, and mortality index. The overall numbers of burn patients in the database for the study period included 17,740 patients admitted to verified burn centers (mean 631 admissions/burn center/yr or per 2 years), 10,834 for self-identified burn centers (mean 437 admissions/burn center/yr or per 2 years), and 1,487 for other centers (mean 11.5 admissions/burn center/yr or per 2 years). Reported complication rates for verified burn centers (21.6%), self-identified burn centers (21.3%), and others (20%) were similar. Mortality rates were highest for self-identified burn centers (3.06%), less for verified centers (2.88%), and lowest for other centers (0.74%). However, these outcomes data may be misleading, because the risk pool criteria do not include burn-specific risk factors, and the inability to adjust for injury severity prevents rigorous comparison across centers. Databases such as the UHC CDB provide a potential to benchmark quality of care. However, reporting quality data for trauma and burns requires stringent understanding of injury data collection. Although quality measures are important for improving patient safety and establishing benchmarks for complication and mortality rates, caution must be taken when applying them to specific product lines.

  17. Biological Technicians

    MedlinePlus

    ... Biological technicians typically need a bachelor’s degree in biology or a closely related field. It is important ... Biological technicians typically need a bachelor’s degree in biology or a closely related field. It is important ...

  18. 78 FR 47319 - Fee Schedule for Reference Biological Standards and Biological Preparations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Rule (DFR) titled ``Distribution of Reference Biological Standards and Biological Preparations (78 FR... review should include any adjustment to reflect changes in costs or market value. HHS/CDC has conducted...

  19. Fast and Accurate Circuit Design Automation through Hierarchical Model Switching.

    PubMed

    Huynh, Linh; Tagkopoulos, Ilias

    2015-08-21

    In computer-aided biological design, the trifecta of characterized part libraries, accurate models and optimal design parameters is crucial for producing reliable designs. As the number of parts and model complexity increase, however, it becomes exponentially more difficult for any optimization method to search the solution space, hence creating a trade-off that hampers efficient design. To address this issue, we present a hierarchical computer-aided design architecture that uses a two-step approach for biological design. First, a simple model of low computational complexity is used to predict circuit behavior and assess candidate circuit branches through branch-and-bound methods. Then, a complex, nonlinear circuit model is used for a fine-grained search of the reduced solution space, thus achieving more accurate results. Evaluation with a benchmark of 11 circuits and a library of 102 experimental designs with known characterization parameters demonstrates a speed-up of 3 orders of magnitude when compared to other design methods that provide optimality guarantees.

  20. Reflections in art

    PubMed Central

    CAVANAGH, PATRICK; CHAO, JESSICA; WANG, DINA

    2009-01-01

    When artists depict a mirror in a painting, it necessarily lacks the most obvious property of a mirror: as we move around the painting of the mirror, the reflections we see in it do not change. And yet representations of mirrors and other reflecting surfaces can be quite convincing in paintings. Here, we will examine the rules of reflection, the many ways that painters can break those rules without losing the impression of reflection and the rules that cannot be broken. The rules that govern the perception of reflection are a small subset of the physical rules of reflection. PMID:18534102

  1. Accurate whole human genome sequencing using reversible terminator chemistry.

    PubMed

    Bentley, David R; Balasubramanian, Shankar; Swerdlow, Harold P; Smith, Geoffrey P; Milton, John; Brown, Clive G; Hall, Kevin P; Evers, Dirk J; Barnes, Colin L; Bignell, Helen R; Boutell, Jonathan M; Bryant, Jason; Carter, Richard J; Keira Cheetham, R; Cox, Anthony J; Ellis, Darren J; Flatbush, Michael R; Gormley, Niall A; Humphray, Sean J; Irving, Leslie J; Karbelashvili, Mirian S; Kirk, Scott M; Li, Heng; Liu, Xiaohai; Maisinger, Klaus S; Murray, Lisa J; Obradovic, Bojan; Ost, Tobias; Parkinson, Michael L; Pratt, Mark R; Rasolonjatovo, Isabelle M J; Reed, Mark T; Rigatti, Roberto; Rodighiero, Chiara; Ross, Mark T; Sabot, Andrea; Sankar, Subramanian V; Scally, Aylwyn; Schroth, Gary P; Smith, Mark E; Smith, Vincent P; Spiridou, Anastassia; Torrance, Peta E; Tzonev, Svilen S; Vermaas, Eric H; Walter, Klaudia; Wu, Xiaolin; Zhang, Lu; Alam, Mohammed D; Anastasi, Carole; Aniebo, Ify C; Bailey, David M D; Bancarz, Iain R; Banerjee, Saibal; Barbour, Selena G; Baybayan, Primo A; Benoit, Vincent A; Benson, Kevin F; Bevis, Claire; Black, Phillip J; Boodhun, Asha; Brennan, Joe S; Bridgham, John A; Brown, Rob C; Brown, Andrew A; Buermann, Dale H; Bundu, Abass A; Burrows, James C; Carter, Nigel P; Castillo, Nestor; Chiara E Catenazzi, Maria; Chang, Simon; Neil Cooley, R; Crake, Natasha R; Dada, Olubunmi O; Diakoumakos, Konstantinos D; Dominguez-Fernandez, Belen; Earnshaw, David J; Egbujor, Ugonna C; Elmore, David W; Etchin, Sergey S; Ewan, Mark R; Fedurco, Milan; Fraser, Louise J; Fuentes Fajardo, Karin V; Scott Furey, W; George, David; Gietzen, Kimberley J; Goddard, Colin P; Golda, George S; Granieri, Philip A; Green, David E; Gustafson, David L; Hansen, Nancy F; Harnish, Kevin; Haudenschild, Christian D; Heyer, Narinder I; Hims, Matthew M; Ho, Johnny T; Horgan, Adrian M; Hoschler, Katya; Hurwitz, Steve; Ivanov, Denis V; Johnson, Maria Q; James, Terena; Huw Jones, T A; Kang, Gyoung-Dong; Kerelska, Tzvetana H; Kersey, Alan D; Khrebtukova, Irina; Kindwall, Alex P; Kingsbury, Zoya; Kokko-Gonzales, Paula I; Kumar, Anil; Laurent, Marc A; Lawley, Cynthia T; Lee, Sarah E; Lee, Xavier; Liao, Arnold K; Loch, Jennifer A; Lok, Mitch; Luo, Shujun; Mammen, Radhika M; Martin, John W; McCauley, Patrick G; McNitt, Paul; Mehta, Parul; Moon, Keith W; Mullens, Joe W; Newington, Taksina; Ning, Zemin; Ling Ng, Bee; Novo, Sonia M; O'Neill, Michael J; Osborne, Mark A; Osnowski, Andrew; Ostadan, Omead; Paraschos, Lambros L; Pickering, Lea; Pike, Andrew C; Pike, Alger C; Chris Pinkard, D; Pliskin, Daniel P; Podhasky, Joe; Quijano, Victor J; Raczy, Come; Rae, Vicki H; Rawlings, Stephen R; Chiva Rodriguez, Ana; Roe, Phyllida M; Rogers, John; Rogert Bacigalupo, Maria C; Romanov, Nikolai; Romieu, Anthony; Roth, Rithy K; Rourke, Natalie J; Ruediger, Silke T; Rusman, Eli; Sanches-Kuiper, Raquel M; Schenker, Martin R; Seoane, Josefina M; Shaw, Richard J; Shiver, Mitch K; Short, Steven W; Sizto, Ning L; Sluis, Johannes P; Smith, Melanie A; Ernest Sohna Sohna, Jean; Spence, Eric J; Stevens, Kim; Sutton, Neil; Szajkowski, Lukasz; Tregidgo, Carolyn L; Turcatti, Gerardo; Vandevondele, Stephanie; Verhovsky, Yuli; Virk, Selene M; Wakelin, Suzanne; Walcott, Gregory C; Wang, Jingwen; Worsley, Graham J; Yan, Juying; Yau, Ling; Zuerlein, Mike; Rogers, Jane; Mullikin, James C; Hurles, Matthew E; McCooke, Nick J; West, John S; Oaks, Frank L; Lundberg, Peter L; Klenerman, David; Durbin, Richard; Smith, Anthony J

    2008-11-01

    DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost. Single molecules of DNA are attached to a flat surface, amplified in situ and used as templates for synthetic sequencing with fluorescent reversible terminator deoxyribonucleotides. Images of the surface are analysed to generate high-quality sequence. We demonstrate application of this approach to human genome sequencing on flow-sorted X chromosomes and then scale the approach to determine the genome sequence of a male Yoruba from Ibadan, Nigeria. We build an accurate consensus sequence from >30x average depth of paired 35-base reads. We characterize four million single-nucleotide polymorphisms and four hundred thousand structural variants, many of which were previously unknown. Our approach is effective for accurate, rapid and economical whole-genome re-sequencing and many other biomedical applications.

  2. Reflection modeling in ultraviolet phototherapy

    SciTech Connect

    Grimes, David Robert; Robbins, Chris; Martin, Colin J.; Phanco, Graeme; Hare, Neil John O'

    2011-07-15

    Purpose: Ultraviolet phototherapy is a widely used treatment which has exceptional success with a variety of skin conditions. Over-exposure to ultraviolet radiation (UVR) can however be detrimental and cause side effects such as erythema, photokeratisis, and even skin cancer. Quantifying patient dose is therefore imperative to ensure biologically effective treatment while minimizing negative repercussions. A dose model for treatment would be valuable in achieving these ends. Methods: Prior work by the authors concentrated on modeling the output of the lamps used in treatment and it was found a line source model described the output from the sources to a high degree. In practice, these lamps are surrounded by reflective anodized aluminum in patient treatment cabins and this work extends the model to quantify specular reflections from these planes on patient dose. Results: The extension of the model to allow for reflected images in addition to tube output shows a remarkably good fit to the actual data measured. Conclusions: The reflection model yields impressive accuracy and is a good basis for full UVR cabin modeling.

  3. The FLUKA Code: An Accurate Simulation Tool for Particle Therapy

    PubMed Central

    Battistoni, Giuseppe; Bauer, Julia; Boehlen, Till T.; Cerutti, Francesco; Chin, Mary P. W.; Dos Santos Augusto, Ricardo; Ferrari, Alfredo; Ortega, Pablo G.; Kozłowska, Wioletta; Magro, Giuseppe; Mairani, Andrea; Parodi, Katia; Sala, Paola R.; Schoofs, Philippe; Tessonnier, Thomas; Vlachoudis, Vasilis

    2016-01-01

    Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with both 4He and 12C ion beams. Accurate description of ionization energy losses and of particle scattering and interactions lead to the excellent agreement of calculated depth–dose profiles with those measured at leading European hadron therapy centers, both with proton and ion beams. In order to support the application of FLUKA in hospital-based environments, Flair, the FLUKA graphical interface, has been enhanced with the capability of translating CT DICOM images into voxel-based computational phantoms in a fast and well-structured way. The interface is capable of importing also radiotherapy treatment data described in DICOM RT standard. In addition, the interface is equipped with an intuitive PET scanner geometry generator and automatic recording of coincidence events. Clinically, similar cases will be presented both in terms of absorbed dose and biological dose calculations describing the various available features. PMID:27242956

  4. The FLUKA Code: An Accurate Simulation Tool for Particle Therapy.

    PubMed

    Battistoni, Giuseppe; Bauer, Julia; Boehlen, Till T; Cerutti, Francesco; Chin, Mary P W; Dos Santos Augusto, Ricardo; Ferrari, Alfredo; Ortega, Pablo G; Kozłowska, Wioletta; Magro, Giuseppe; Mairani, Andrea; Parodi, Katia; Sala, Paola R; Schoofs, Philippe; Tessonnier, Thomas; Vlachoudis, Vasilis

    2016-01-01

    Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with both (4)He and (12)C ion beams. Accurate description of ionization energy losses and of particle scattering and interactions lead to the excellent agreement of calculated depth-dose profiles with those measured at leading European hadron therapy centers, both with proton and ion beams. In order to support the application of FLUKA in hospital-based environments, Flair, the FLUKA graphical interface, has been enhanced with the capability of translating CT DICOM images into voxel-based computational phantoms in a fast and well-structured way. The interface is capable of importing also radiotherapy treatment data described in DICOM RT standard. In addition, the interface is equipped with an intuitive PET scanner geometry generator and automatic recording of coincidence events. Clinically, similar cases will be presented both in terms of absorbed dose and biological dose calculations describing the various available features. PMID:27242956

  5. A robust and accurate formulation of molecular and colloidal electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2016-08-01

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.

  6. A robust and accurate formulation of molecular and colloidal electrostatics.

    PubMed

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y C

    2016-08-01

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics. PMID:27497538

  7. Classification of the biological material with use of FTIR spectroscopy and statistical analysis

    NASA Astrophysics Data System (ADS)

    Bombalska, Aneta; Mularczyk-Oliwa, Monika; Kwaśny, Mirosław; Włodarski, Maksymilian; Kaliszewski, Miron; Kopczyński, Krzysztof; Szpakowska, Małgorzata; Trafny, Elżbieta A.

    2011-04-01

    Rapid detection and discrimination of dangerous biological materials such as bacteria and their spores has become a security aim of considerable importance. Various analytical methods, including FTIR spectroscopy combined with statistical analysis have been used to identify vegetative bacteria, bacterial spores and background interferants. The present work discusses the application of FTIR technique performed in reflectance mode using Horizontal Attenuated Total Reflectance accessory (HATR) to the discrimination of biological materials. In comparison with transmission technique the HATR is more rapid and do not require the sample destruction, simultaneously giving similar absorbance bands. HATR-FTIR results combined with statistical analysis PCA and HCA demonstrate that this combination provides novel and accurate microbial identification technique.

  8. Reflection Positivity for Parafermions

    NASA Astrophysics Data System (ADS)

    Jaffe, Arthur; Pedrocchi, Fabio L.

    2015-07-01

    We establish reflection positivity for Gibbs trace states for a class of gauge-invariant, reflection-invariant Hamiltonians describing parafermion interactions on a lattice. We relate these results to recent work in the condensed-matter physics literature.

  9. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  10. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  11. Untwisting the polarization properties of light reflected by scarab beetles

    NASA Astrophysics Data System (ADS)

    McDonald, Luke T.; Finlayson, Ewan D.; Vukusic, Peter

    2015-03-01

    The spectral and angle-dependent optical properties of two scarab beetle species belonging to the genus Chrysina are presented. The species display broadband reflectivity and selectively reflect left-circularly polarized light. We use electron microscopy to detail the left-handed, twisted lamellar structure present in these biological systems and imaging scatterometry to characterize their bidirectional reflectance distribution function. We show that the broadband nature of the beetles' reflectance originates due to the range of pitch dimensions found in the structure.

  12. Modified chemiluminescent NO analyzer accurately measures NOX

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1978-01-01

    Installation of molybdenum nitric oxide (NO)-to-higher oxides of nitrogen (NOx) converter in chemiluminescent gas analyzer and use of air purge allow accurate measurements of NOx in exhaust gases containing as much as thirty percent carbon monoxide (CO). Measurements using conventional analyzer are highly inaccurate for NOx if as little as five percent CO is present. In modified analyzer, molybdenum has high tolerance to CO, and air purge substantially quenches NOx destruction. In test, modified chemiluminescent analyzer accurately measured NO and NOx concentrations for over 4 months with no denegration in performance.

  13. Reflective Learning in Practice.

    ERIC Educational Resources Information Center

    Brockbank, Anne, Ed.; McGill, Ian, Ed.; Beech, Nic, Ed.

    This book contains 22 papers on reflective learning in practice. The following papers are included: "Our Purpose" (Ann Brockbank, Ian McGill, Nic Beech); "The Nature and Context of Learning" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning and Organizations" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning in Practice" (Ann…

  14. Liberating Moral Reflection

    ERIC Educational Resources Information Center

    Horell, Harold D.

    2013-01-01

    The author argues that if we are to foster life-giving and liberating moral reflection, we must first liberate moral reflection from distortions; specifically, from the distorting effects of moral insensitivity, destructive moral relativism, and confusions resulting from a failure to understand the dynamics of moral reflection. The author proposes…

  15. Teaching Critical Reflection

    ERIC Educational Resources Information Center

    Smith, Elizabeth

    2011-01-01

    Despite long-standing commitment to the notion of critical reflection across the healthcare professions it is unusual for critical theory and practice to be taught as explicit subjects in healthcare higher education. There is evidence to show that reflective techniques such as critical portfolios and reflective diaries can help students to…

  16. Biological Races in Humans

    PubMed Central

    Templeton, Alan R.

    2013-01-01

    Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two most commonly used biological concepts of race, chimpanzees are indeed subdivided into races but humans are not. Adaptive traits, such as skin color, have frequently been used to define races in humans, but such adaptive traits reflect the underlying environmental factor to which they are adaptive and not overall genetic differentiation, and different adaptive traits define discordant groups. There are no objective criteria for choosing one adaptive trait over another to define race. As a consequence, adaptive traits do not define races in humans. Much of the recent scientific literature on human evolution portrays human populations as separate branches on an evolutionary tree. A tree-like structure among humans has been falsified whenever tested, so this practice is scientifically indefensible. It is also socially irresponsible as these pictorial representations of human evolution have more impact on the general public than nuanced phrases in the text of a scientific paper. Humans have much genetic diversity, but the vast majority of this diversity reflects individual uniqueness and not race. PMID:23684745

  17. Improved Algorithms for Accurate Retrieval of UV - Visible Diffuse Attenuation Coefficients in Optically Complex, Inshore Waters

    NASA Technical Reports Server (NTRS)

    Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.

    2014-01-01

    Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This

  18. Can Appraisers Rate Work Performance Accurately?

    ERIC Educational Resources Information Center

    Hedge, Jerry W.; Laue, Frances J.

    The ability of individuals to make accurate judgments about others is examined and literature on this subject is reviewed. A wide variety of situational factors affects the appraisal of performance. It is generally accepted that the purpose of the appraisal influences the accuracy of the appraiser. The instrumentation, or tools, available to the…

  19. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  20. Biological Filters.

    ERIC Educational Resources Information Center

    Klemetson, S. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. The review is concerned with biological filters, and it covers: (1) trickling filters; (2) rotating biological contractors; and (3) miscellaneous reactors. A list of 14 references is also presented. (HM)

  1. Biological Agents

    MedlinePlus

    ... to Z Index Contact Us FAQs What's New Biological Agents This page requires that javascript be enabled ... and Health Topics A-Z Index What's New Biological agents include bacteria, viruses, fungi, other microorganisms and ...

  2. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  3. Neutron supermirrors: an accurate theory for layer thickness computation

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2001-11-01

    We present a new theory for the computation of Super-Mirror stacks, using accurate formulas derived from the classical optics field. Approximations are introduced into the computation, but at a later stage than existing theories, providing a more rigorous treatment of the problem. The final result is a continuous thickness stack, whose properties can be determined at the outset of the design. We find that the well-known fourth power dependence of number of layers versus maximum angle is (of course) asymptotically correct. We find a formula giving directly the relation between desired reflectance, maximum angle, and number of layers (for a given pair of materials). Note: The author of this article, a classical opticist, has limited knowledge of the Neutron world, and begs forgiveness for any shortcomings, erroneous assumptions and/or misinterpretation of previous authors' work on the subject.

  4. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  5. Aperture taper determination for the half-scale accurate antenna reflector

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.

    1990-01-01

    A simulation is described of a proposed microwave reflectance measurement in which the half scale reflector is used in a compact range type of application. The simulation is used to determine an acceptable aperture taper for the reflector which will allow for accurate measurements. Information on the taper is used in the design of a feed for the reflector.

  6. [Biological weapons].

    PubMed

    Kerwat, K; Becker, S; Wulf, H; Densow, D

    2010-08-01

    Biological weapons are weapons of mass destruction that use pathogens (bacteria, viruses) or the toxins produced by them to target living organisms or to contaminate non-living substances. In the past, biological warfare has been repeatedly used. Anthrax, plague and smallpox are regarded as the most dangerous biological weapons by various institutions. Nowadays it seems quite unlikely that biological warfare will be employed in any military campaigns. However, the possibility remains that biological weapons may be used in acts of bioterrorism. In addition all diseases caused by biological weapons may also occur naturally or as a result of a laboratory accident. Risk assessment with regard to biological danger often proves to be difficult. In this context, an early identification of a potentially dangerous situation through experts is essential to limit the degree of damage.

  7. Feedback about more accurate versus less accurate trials: differential effects on self-confidence and activation.

    PubMed

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-06-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected byfeedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On day 1, participants performed a golf putting task under one of two conditions: one group received feedback on the most accurate trials, whereas another group received feedback on the least accurate trials. On day 2, participants completed an anxiety questionnaire and performed a retention test. Shin conductance level, as a measure of arousal, was determined. The results indicated that feedback about more accurate trials resulted in more effective learning as well as increased self-confidence. Also, activation was a predictor of performance. PMID:22808705

  8. Reflections on Reflective Abstractions in Creative Thinking.

    ERIC Educational Resources Information Center

    Cohen, Leonora Marx

    This report proposes a modification of Jean Piaget's concept of "creative abstraction," the mechanism of creative thought, which develops both intelligence and creative ideas. By reflecting on one's actions and the coordinations of actions, the individual constructs new relationships, links, rules, or correspondences between and among them.…

  9. Two highly accurate methods for pitch calibration

    NASA Astrophysics Data System (ADS)

    Kniel, K.; Härtig, F.; Osawa, S.; Sato, O.

    2009-11-01

    Among profiles, helix and tooth thickness pitch is one of the most important parameters of an involute gear measurement evaluation. In principle, coordinate measuring machines (CMM) and CNC-controlled gear measuring machines as a variant of a CMM are suited for these kinds of gear measurements. Now the Japan National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) and the German national metrology institute the Physikalisch-Technische Bundesanstalt (PTB) have each developed independently highly accurate pitch calibration methods applicable to CMM or gear measuring machines. Both calibration methods are based on the so-called closure technique which allows the separation of the systematic errors of the measurement device and the errors of the gear. For the verification of both calibration methods, NMIJ/AIST and PTB performed measurements on a specially designed pitch artifact. The comparison of the results shows that both methods can be used for highly accurate calibrations of pitch standards.

  10. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  11. Accurate Guitar Tuning by Cochlear Implant Musicians

    PubMed Central

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  12. Preparation and accurate measurement of pure ozone.

    PubMed

    Janssen, Christof; Simone, Daniela; Guinet, Mickaël

    2011-03-01

    Preparation of high purity ozone as well as precise and accurate measurement of its pressure are metrological requirements that are difficult to meet due to ozone decomposition occurring in pressure sensors. The most stable and precise transducer heads are heated and, therefore, prone to accelerated ozone decomposition, limiting measurement accuracy and compromising purity. Here, we describe a vacuum system and a method for ozone production, suitable to accurately determine the pressure of pure ozone by avoiding the problem of decomposition. We use an inert gas in a particularly designed buffer volume and can thus achieve high measurement accuracy and negligible degradation of ozone with purities of 99.8% or better. The high degree of purity is ensured by comprehensive compositional analyses of ozone samples. The method may also be applied to other reactive gases. PMID:21456766

  13. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  14. Accurate modeling of parallel scientific computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Townsend, James C.

    1988-01-01

    Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top performance it is necessary to partition the grid so as to balance workload and minimize communication/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the course of the computation, and is not known until load time. Critical mapping and remapping decisions rest on the ability to accurately predict performance, given a description of a grid and its partition. This paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. The models constructed are shown to be accurate, and are used to find optimal remapping schedules.

  15. Line gas sampling system ensures accurate analysis

    SciTech Connect

    Not Available

    1992-06-01

    Tremendous changes in the natural gas business have resulted in new approaches to the way natural gas is measured. Electronic flow measurement has altered the business forever, with developments in instrumentation and a new sensitivity to the importance of proper natural gas sampling techniques. This paper reports that YZ Industries Inc., Snyder, Texas, combined its 40 years of sampling experience with the latest in microprocessor-based technology to develop the KynaPak 2000 series, the first on-line natural gas sampling system that is both compact and extremely accurate. This means the composition of the sampled gas must be representative of the whole and related to flow. If so, relative measurement and sampling techniques are married, gas volumes are accurately accounted for and adjustments to composition can be made.

  16. Accurate mask model for advanced nodes

    NASA Astrophysics Data System (ADS)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Ndiaye, El Hadji Omar; Mishra, Kushlendra; Paninjath, Sankaranarayanan; Bork, Ingo; Buck, Peter; Toublan, Olivier; Schanen, Isabelle

    2014-07-01

    Standard OPC models consist of a physical optical model and an empirical resist model. The resist model compensates the optical model imprecision on top of modeling resist development. The optical model imprecision may result from mask topography effects and real mask information including mask ebeam writing and mask process contributions. For advanced technology nodes, significant progress has been made to model mask topography to improve optical model accuracy. However, mask information is difficult to decorrelate from standard OPC model. Our goal is to establish an accurate mask model through a dedicated calibration exercise. In this paper, we present a flow to calibrate an accurate mask enabling its implementation. The study covers the different effects that should be embedded in the mask model as well as the experiment required to model them.

  17. Accurate maser positions for MALT-45

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher; Bains, Indra; Voronkov, Maxim; Lo, Nadia; Jones, Paul; Muller, Erik; Cunningham, Maria; Burton, Michael; Brooks, Kate; Green, James; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Urquhart, James; Morgan, Larry; Rowell, Gavin; Walsh, Andrew; Loenen, Edo; Baan, Willem; Hill, Tracey; Purcell, Cormac; Breen, Shari; Peretto, Nicolas; Jackson, James; Lowe, Vicki; Longmore, Steven

    2013-10-01

    MALT-45 is an untargeted survey, mapping the Galactic plane in CS (1-0), Class I methanol masers, SiO masers and thermal emission, and high frequency continuum emission. After obtaining images from the survey, a number of masers were detected, but without accurate positions. This project seeks to resolve each maser and its environment, with the ultimate goal of placing the Class I methanol maser into a timeline of high mass star formation.

  18. Accurate maser positions for MALT-45

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher; Bains, Indra; Voronkov, Maxim; Lo, Nadia; Jones, Paul; Muller, Erik; Cunningham, Maria; Burton, Michael; Brooks, Kate; Green, James; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Urquhart, James; Morgan, Larry; Rowell, Gavin; Walsh, Andrew; Loenen, Edo; Baan, Willem; Hill, Tracey; Purcell, Cormac; Breen, Shari; Peretto, Nicolas; Jackson, James; Lowe, Vicki; Longmore, Steven

    2013-04-01

    MALT-45 is an untargeted survey, mapping the Galactic plane in CS (1-0), Class I methanol masers, SiO masers and thermal emission, and high frequency continuum emission. After obtaining images from the survey, a number of masers were detected, but without accurate positions. This project seeks to resolve each maser and its environment, with the ultimate goal of placing the Class I methanol maser into a timeline of high mass star formation.

  19. Simple and accurate optical height sensor for wafer inspection systems

    NASA Astrophysics Data System (ADS)

    Shimura, Kei; Nakai, Naoya; Taniguchi, Koichi; Itoh, Masahide

    2016-02-01

    An accurate method for measuring the wafer surface height is required for wafer inspection systems to adjust the focus of inspection optics quickly and precisely. A method for projecting a laser spot onto the wafer surface obliquely and for detecting its image displacement using a one-dimensional position-sensitive detector is known, and a variety of methods have been proposed for improving the accuracy by compensating the measurement error due to the surface patterns. We have developed a simple and accurate method in which an image of a reticle with eight slits is projected on the wafer surface and its reflected image is detected using an image sensor. The surface height is calculated by averaging the coordinates of the images of the slits in both the two directions in the captured image. Pattern-related measurement error was reduced by applying the coordinates averaging to the multiple-slit-projection method. Accuracy of better than 0.35 μm was achieved for a patterned wafer at the reference height and ±0.1 mm from the reference height in a simple configuration.

  20. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    SciTech Connect

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  1. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGES

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  2. Automatic and Accurate Shadow Detection Using Near-Infrared Information.

    PubMed

    Rüfenacht, Dominic; Fredembach, Clément; Süsstrunk, Sabine

    2014-08-01

    We present a method to automatically detect shadows in a fast and accurate manner by taking advantage of the inherent sensitivity of digital camera sensors to the near-infrared (NIR) part of the spectrum. Dark objects, which confound many shadow detection algorithms, often have much higher reflectance in the NIR. We can thus build an accurate shadow candidate map based on image pixels that are dark both in the visible and NIR representations. We further refine the shadow map by incorporating ratios of the visible to the NIR image, based on the observation that commonly encountered light sources have very distinct spectra in the NIR band. The results are validated on a new database, which contains visible/NIR images for a large variety of real-world shadow creating illuminant conditions, as well as manually labeled shadow ground truth. Both quantitative and qualitative evaluations show that our method outperforms current state-of-the-art shadow detection algorithms in terms of accuracy and computational efficiency.

  3. Accurate Molecular Polarizabilities Based on Continuum Electrostatics

    PubMed Central

    Truchon, Jean-François; Nicholls, Anthony; Iftimie, Radu I.; Roux, Benoît; Bayly, Christopher I.

    2013-01-01

    A novel approach for representing the intramolecular polarizability as a continuum dielectric is introduced to account for molecular electronic polarization. It is shown, using a finite-difference solution to the Poisson equation, that the Electronic Polarization from Internal Continuum (EPIC) model yields accurate gas-phase molecular polarizability tensors for a test set of 98 challenging molecules composed of heteroaromatics, alkanes and diatomics. The electronic polarization originates from a high intramolecular dielectric that produces polarizabilities consistent with B3LYP/aug-cc-pVTZ and experimental values when surrounded by vacuum dielectric. In contrast to other approaches to model electronic polarization, this simple model avoids the polarizability catastrophe and accurately calculates molecular anisotropy with the use of very few fitted parameters and without resorting to auxiliary sites or anisotropic atomic centers. On average, the unsigned error in the average polarizability and anisotropy compared to B3LYP are 2% and 5%, respectively. The correlation between the polarizability components from B3LYP and this approach lead to a R2 of 0.990 and a slope of 0.999. Even the F2 anisotropy, shown to be a difficult case for existing polarizability models, can be reproduced within 2% error. In addition to providing new parameters for a rapid method directly applicable to the calculation of polarizabilities, this work extends the widely used Poisson equation to areas where accurate molecular polarizabilities matter. PMID:23646034

  4. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models. PMID:27111139

  5. Accurate phase-shift velocimetry in rock

    NASA Astrophysics Data System (ADS)

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R.; Holmes, William M.

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  6. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  7. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  8. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J.; Wendt, Joel R.

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  9. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  10. Accurate Determination of Conformational Transitions in Oligomeric Membrane Proteins

    PubMed Central

    Sanz-Hernández, Máximo; Vostrikov, Vitaly V.; Veglia, Gianluigi; De Simone, Alfonso

    2016-01-01

    The structural dynamics governing collective motions in oligomeric membrane proteins play key roles in vital biomolecular processes at cellular membranes. In this study, we present a structural refinement approach that combines solid-state NMR experiments and molecular simulations to accurately describe concerted conformational transitions identifying the overall structural, dynamical, and topological states of oligomeric membrane proteins. The accuracy of the structural ensembles generated with this method is shown to reach the statistical error limit, and is further demonstrated by correctly reproducing orthogonal NMR data. We demonstrate the accuracy of this approach by characterising the pentameric state of phospholamban, a key player in the regulation of calcium uptake in the sarcoplasmic reticulum, and by probing its dynamical activation upon phosphorylation. Our results underline the importance of using an ensemble approach to characterise the conformational transitions that are often responsible for the biological function of oligomeric membrane protein states. PMID:26975211

  11. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  12. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  13. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2016-08-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  14. Accurate measurements of dynamics and reproducibility in small genetic networks

    PubMed Central

    Dubuis, Julien O; Samanta, Reba; Gregor, Thomas

    2013-01-01

    Quantification of gene expression has become a central tool for understanding genetic networks. In many systems, the only viable way to measure protein levels is by immunofluorescence, which is notorious for its limited accuracy. Using the early Drosophila embryo as an example, we show that careful identification and control of experimental error allows for highly accurate gene expression measurements. We generated antibodies in different host species, allowing for simultaneous staining of four Drosophila gap genes in individual embryos. Careful error analysis of hundreds of expression profiles reveals that less than ∼20% of the observed embryo-to-embryo fluctuations stem from experimental error. These measurements make it possible to extract not only very accurate mean gene expression profiles but also their naturally occurring fluctuations of biological origin and corresponding cross-correlations. We use this analysis to extract gap gene profile dynamics with ∼1 min accuracy. The combination of these new measurements and analysis techniques reveals a twofold increase in profile reproducibility owing to a collective network dynamics that relays positional accuracy from the maternal gradients to the pair-rule genes. PMID:23340845

  15. Accurate, noninvasive detection of Helicobacter pylori DNA from stool samples: potential usefulness for monitoring treatment.

    PubMed

    Shuber, Anthony P; Ascaño, Jennifer J; Boynton, Kevin A; Mitchell, Anastasia; Frierson, Henry F; El-Rifai, Wa'el; Powell, Steven M

    2002-01-01

    A novel DNA assay demonstrating sensitive and accurate detection of Helicobacter pylori from stool samples is reported. Moreover, in three individuals tested for therapeutic response, the assay showed the disappearance of H. pylori DNA during treatment. Thus, this noninvasive molecular biology-based assay has the potential to be a powerful diagnostic tool given its ability to specifically identify H. pylori DNA.

  16. Total reflection X-ray fluorescence analysis of pollen as an indicator for atmospheric pollution*1

    NASA Astrophysics Data System (ADS)

    Pepponi, G.; Lazzeri, P.; Coghe, N.; Bersani, M.; Gottardini, E.; Cristofolini, F.; Clauser, G.; Torboli, A.

    2004-08-01

    The viability of pollen is affected by environmental pollution and its use as a bio-indicator is proposed. Such effects can be observed and quantified by biological tests. However, a more accurate identification of the agents affecting the viability is required in order to validate the biological assay for environmental monitoring. The chemical analysis of pollen is meant to ascertain the existence of a correlation between its reduced biological functions and the presence of pollutants. Moreover, such biological systems act as accumulators and allow the detection and quantification of species present in the environment at low concentrations. Total reflection X-ray fluorescence analysis (TXRF) has been chosen for the investigation due to its high sensitivity, multielement capability and wide dynamic range. Corylus avellana L. (hazel) pollen has been collected in areas with different anthropic impact in the province of Trento, Italy. For the TXRF measurements, a liquid sample is needed, especially if a quantitative analysis is required. In the present work, the analysis after a microwave digestion has been compared with the analysis of a suspension of the pollen samples. In both cases, an internal standard has been used for the quantification. The concentrations of 17 elements ranging from Al to Pb have been determined in 13 samples. Analysis of the suspensions showed to be comparable to that of digested samples in terms of spectral quality, but the latter preparation method gave better reproducibility. Sub-ppm lowest limits of detection were obtained for iron and heavier elements detected.

  17. Systems Biology

    SciTech Connect

    Wiley, H S.

    2006-06-01

    The biology revolution over the last 50 years has been driven by the ascendancy of molecular biology. This was enthusiastically embraced by most biologists because it took us into increasingly familiar territory. It took mysterious processes, such as the replication of genetic material and assigned them parts that could be readily understood by the human mind. When we think of ''molecular machines'' as being the underlying basis of life, we are using a paradigm derived from everyday experience. However, the price that we paid was a relentless drive towards reductionism and the attendant balkanization of biology. Now along comes ''systems biology'' that promises us a solution to the problem of ''knowing more and more about less and less''. Unlike molecular biology, systems biology appears to be taking us into unfamiliar intellectual territory, such as statistics, mathematics and computer modeling. Not surprisingly, systems biology has met with widespread skepticism and resistance. Why do we need systems biology anyway and how does this new area of research promise to change the face of biology in the next couple of decades?

  18. Transparencies and Reflections.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    1999-01-01

    Discusses the use of perspective, or showing things as the human eye sees them, when creating reflections and transparencies in works of art. Provides examples of artwork using transparency, reflection, and refraction by M. C. Escher, Richard Estes, and Janet Fish to give students an opportunity to learn about these three art techniques. (CMK)

  19. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  20. Renewable liquid reflection grating

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  1. Accurately Mapping M31's Microlensing Population

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2004-07-01

    We propose to augment an existing microlensing survey of M31 with source identifications provided by a modest amount of ACS {and WFPC2 parallel} observations to yield an accurate measurement of the masses responsible for microlensing in M31, and presumably much of its dark matter. The main benefit of these data is the determination of the physical {or "einstein"} timescale of each microlensing event, rather than an effective {"FWHM"} timescale, allowing masses to be determined more than twice as accurately as without HST data. The einstein timescale is the ratio of the lensing cross-sectional radius and relative velocities. Velocities are known from kinematics, and the cross-section is directly proportional to the {unknown} lensing mass. We cannot easily measure these quantities without knowing the amplification, hence the baseline magnitude, which requires the resolution of HST to find the source star. This makes a crucial difference because M31 lens m ass determinations can be more accurate than those towards the Magellanic Clouds through our Galaxy's halo {for the same number of microlensing events} due to the better constrained geometry in the M31 microlensing situation. Furthermore, our larger survey, just completed, should yield at least 100 M31 microlensing events, more than any Magellanic survey. A small amount of ACS+WFPC2 imaging will deliver the potential of this large database {about 350 nights}. For the whole survey {and a delta-function mass distribution} the mass error should approach only about 15%, or about 6% error in slope for a power-law distribution. These results will better allow us to pinpoint the lens halo fraction, and the shape of the halo lens spatial distribution, and allow generalization/comparison of the nature of halo dark matter in spiral galaxies. In addition, we will be able to establish the baseline magnitude for about 50, 000 variable stars, as well as measure an unprecedentedly deta iled color-magnitude diagram and luminosity

  2. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  3. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2016-07-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  4. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  5. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material.

  6. Accurate density functional thermochemistry for larger molecules.

    SciTech Connect

    Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A.; Lucent Tech.

    1997-06-20

    Density functional methods are combined with isodesmic bond separation reaction energies to yield accurate thermochemistry for larger molecules. Seven different density functionals are assessed for the evaluation of heats of formation, Delta H 0 (298 K), for a test set of 40 molecules composed of H, C, O and N. The use of bond separation energies results in a dramatic improvement in the accuracy of all the density functionals. The B3-LYP functional has the smallest mean absolute deviation from experiment (1.5 kcal mol/f).

  7. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material. PMID:11366835

  8. Universality: Accurate Checks in Dyson's Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Godina, J. J.; Meurice, Y.; Oktay, M. B.

    2003-06-01

    In this talk we present high-accuracy calculations of the susceptibility near βc for Dyson's hierarchical model in D = 3. Using linear fitting, we estimate the leading (γ) and subleading (Δ) exponents. Independent estimates are obtained by calculating the first two eigenvalues of the linearized renormalization group transformation. We found γ = 1.29914073 ± 10 -8 and, Δ = 0.4259469 ± 10-7 independently of the choice of local integration measure (Ising or Landau-Ginzburg). After a suitable rescaling, the approximate fixed points for a large class of local measure coincide accurately with a fixed point constructed by Koch and Wittwer.

  9. Challenges in accurate quantitation of lysophosphatidic acids in human biofluids

    PubMed Central

    Onorato, Joelle M.; Shipkova, Petia; Minnich, Anne; Aubry, Anne-Françoise; Easter, John; Tymiak, Adrienne

    2014-01-01

    Lysophosphatidic acids (LPAs) are biologically active signaling molecules involved in the regulation of many cellular processes and have been implicated as potential mediators of fibroblast recruitment to the pulmonary airspace, pointing to possible involvement of LPA in the pathology of pulmonary fibrosis. LPAs have been measured in various biological matrices and many challenges involved with their analyses have been documented. However, little published information is available describing LPA levels in human bronchoalveolar lavage fluid (BALF). We therefore conducted detailed investigations into the effects of extensive sample handling and sample preparation conditions on LPA levels in human BALF. Further, targeted lipid profiling of human BALF and plasma identified the most abundant lysophospholipids likely to interfere with LPA measurements. We present the findings from these investigations, highlighting the importance of well-controlled sample handling for the accurate quantitation of LPA. Further, we show that chromatographic separation of individual LPA species from their corresponding lysophospholipid species is critical to avoid reporting artificially elevated levels. The optimized sample preparation and LC/MS/MS method was qualified using a stable isotope-labeled LPA as a surrogate calibrant and used to determine LPA levels in human BALF and plasma from a Phase 0 clinical study comparing idiopathic pulmonary fibrosis patients to healthy controls. PMID:24872406

  10. The SILAC Fly Allows for Accurate Protein Quantification in Vivo*

    PubMed Central

    Sury, Matthias D.; Chen, Jia-Xuan; Selbach, Matthias

    2010-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is widely used to quantify protein abundance in tissue culture cells. Until now, the only multicellular organism completely labeled at the amino acid level was the laboratory mouse. The fruit fly Drosophila melanogaster is one of the most widely used small animal models in biology. Here, we show that feeding flies with SILAC-labeled yeast leads to almost complete labeling in the first filial generation. We used these “SILAC flies” to investigate sexual dimorphism of protein abundance in D. melanogaster. Quantitative proteome comparison of adult male and female flies revealed distinct biological processes specific for each sex. Using a tudor mutant that is defective for germ cell generation allowed us to differentiate between sex-specific protein expression in the germ line and somatic tissue. We identified many proteins with known sex-specific expression bias. In addition, several new proteins with a potential role in sexual dimorphism were identified. Collectively, our data show that the SILAC fly can be used to accurately quantify protein abundance in vivo. The approach is simple, fast, and cost-effective, making SILAC flies an attractive model system for the emerging field of in vivo quantitative proteomics. PMID:20525996

  11. A novel algorithm for scalable and accurate Bayesian network learning.

    PubMed

    Brown, Laura E; Tsamardinos, Ioannis; Aliferis, Constantin F

    2004-01-01

    Bayesian Networks (BN) is a knowledge representation formalism that has been proven to be valuable in biomedicine for constructing decision support systems and for generating causal hypotheses from data. Given the emergence of datasets in medicine and biology with thousands of variables and that current algorithms do not scale more than a few hundred variables in practical domains, new efficient and accurate algorithms are needed to learn high quality BNs from data. We present a new algorithm called Max-Min Hill-Climbing (MMHC) that builds upon and improves the Sparse Candidate (SC) algorithm; a state-of-the-art algorithm that scales up to datasets involving hundreds of variables provided the generating networks are sparse. Compared to the SC, on a number of datasets from medicine and biology, (a) MMHC discovers BNs that are structurally closer to the data-generating BN, (b) the discovered networks are more probable given the data, (c) MMHC is computationally more efficient and scalable than SC, and (d) the generating networks are not required to be uniformly sparse nor is the user of MMHC required to guess correctly the network connectivity

  12. Accurate multiple network alignment through context-sensitive random walk

    PubMed Central

    2015-01-01

    Background Comparative network analysis can provide an effective means of analyzing large-scale biological networks and gaining novel insights into their structure and organization. Global network alignment aims to predict the best overall mapping between a given set of biological networks, thereby identifying important similarities as well as differences among the networks. It has been shown that network alignment methods can be used to detect pathways or network modules that are conserved across different networks. Until now, a number of network alignment algorithms have been proposed based on different formulations and approaches, many of them focusing on pairwise alignment. Results In this work, we propose a novel multiple network alignment algorithm based on a context-sensitive random walk model. The random walker employed in the proposed algorithm switches between two different modes, namely, an individual walk on a single network and a simultaneous walk on two networks. The switching decision is made in a context-sensitive manner by examining the current neighborhood, which is effective for quantitatively estimating the degree of correspondence between nodes that belong to different networks, in a manner that sensibly integrates node similarity and topological similarity. The resulting node correspondence scores are then used to predict the maximum expected accuracy (MEA) alignment of the given networks. Conclusions Performance evaluation based on synthetic networks as well as real protein-protein interaction networks shows that the proposed algorithm can construct more accurate multiple network alignments compared to other leading methods. PMID:25707987

  13. The aesthetics of chemical biology.

    PubMed

    Parsons, Glenn

    2012-12-01

    Scientists and philosophers have long reflected on the place of aesthetics in science. In this essay, I review these discussions, identifying work of relevance to chemistry and, in particular, to the field of chemical biology. Topics discussed include the role of aesthetics in scientific theory choice, the aesthetics of molecular images, the beauty-making features of molecules, and the relation between the aesthetics of chemical biology and the aesthetics of industrial design.

  14. Is synthetic biology mechanical biology?

    PubMed

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  15. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  16. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  17. Accurate determination of characteristic relative permeability curves

    NASA Astrophysics Data System (ADS)

    Krause, Michael H.; Benson, Sally M.

    2015-09-01

    A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.

  18. How Accurately can we Calculate Thermal Systems?

    SciTech Connect

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-04-20

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K{sub eff}, for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors.

  19. Accurate Stellar Parameters for Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Brewer, John Michael; Fischer, Debra; Basu, Sarbani; Valenti, Jeff A.

    2015-01-01

    A large impedement to our understanding of planet formation is obtaining a clear picture of planet radii and densities. Although determining precise ratios between planet and stellar host are relatively easy, determining accurate stellar parameters is still a difficult and costly undertaking. High resolution spectral analysis has traditionally yielded precise values for some stellar parameters but stars in common between catalogs from different authors or analyzed using different techniques often show offsets far in excess of their uncertainties. Most analyses now use some external constraint, when available, to break observed degeneracies between surface gravity, effective temperature, and metallicity which can otherwise lead to correlated errors in results. However, these external constraints are impossible to obtain for all stars and can require more costly observations than the initial high resolution spectra. We demonstrate that these discrepencies can be mitigated by use of a larger line list that has carefully tuned atomic line data. We use an iterative modeling technique that does not require external constraints. We compare the surface gravity obtained with our spectral synthesis modeling to asteroseismically determined values for 42 Kepler stars. Our analysis agrees well with only a 0.048 dex offset and an rms scatter of 0.05 dex. Such accurate stellar gravities can reduce the primary source of uncertainty in radii by almost an order of magnitude over unconstrained spectral analysis.

  20. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including use of dwarf cichlids (fishes) in secondary school biology, teaching edge effects on stomatal diffusion, computer program on effects of selection on gene frequencies, biological oxidation/reduction reactions, short cuts with Drosophila, computer program…

  1. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Presents experiments, demonstrations, activities and ideas relating to various fields of biology to be used in biology courses in secondary schools. Among those experiments presented are demonstrating the early stages of ferns and mosses and simple culture methods for fern prothalli. (HM)

  2. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  3. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including chi-square tests on a microcomputer, an integrated biology game, microscope slides of leaf stomata, culturing soil nematodes, technique for watering locust egg-laying tubes, hazards of biological chemicals (such as benzene, benzidene, calchicine,…

  4. Implementing and evaluating reflective practice group sessions.

    PubMed

    McGrath, Deidre; Higgins, Agnes

    2006-05-01

    The rapidly changing and developing arenas of biological and medical technology, coupled with a myriad of social concerns and issues affecting individual, family and societal health, necessitates that nursing practitioners engage themselves fully with patients in the pursuit of health and healing. The above factors have not only served as catalysts in the development of educational curricula in general but also nursing curricula. Reflection in these curricula is often considered an appropriate vehicle for the analysis of nursing practice, fostering not only an understanding of nurse's work but also the development of critically thoughtful approaches essential for providing nursing care in complex environments [Duke, S., Appleton, J., 2000. The use of reflection in a palliative care programme: a qualitative study of the development of reflective skills over an academic year. J. Adv. Nurs. 32 (6), 1557-1568]. Consequently, nurse educators are being called upon to develop nurses who are reflective practitioners. The focus of this paper is on an exploration of issues that arose from the implementation of reflective sessions with a group of qualified nurses undertaking a diploma in nursing. This paper addresses the challenges experienced in the introduction of reflection as a teaching method. Recommendations for other lecturers when using this approach are also provided. It is anticipated this paper will provide practical advice and guidance for educators who wish to use reflective sessions to enhance the educational experience of their nursing students. PMID:19040874

  5. Weak shock reflection

    NASA Astrophysics Data System (ADS)

    Hunter, John K.; Brio, Moysey

    2000-05-01

    We present numerical solutions of a two-dimensional inviscid Burgers equation which provides an asymptotic description of the Mach reflection of weak shocks. In our numerical solutions, the incident, reflected, and Mach shocks meet at a triple point, and there is a supersonic patch behind the triple point, as proposed by Guderley for steady weak-shock reflection. A theoretical analysis indicates that there is an expansion fan at the triple point, in addition to the three shocks. The supersonic patch is extremely small, and this work is the first time it has been resolved.

  6. Information Complexity and Biology

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco; Bignone, Franco A.; Cecconi, Fabio; Politi, Antonio

    Kolmogorov contributed directly to Biology in essentially three problems: the analysis of population dynamics (Lotka-Volterra equations), the reaction-diffusion formulation of gene spreading (FKPP equation), and some discussions about Mendel's laws. However, the widely recognized importance of his contribution arises from his work on algorithmic complexity. In fact, the limited direct intervention in Biology reflects the generally slow growth of interest of mathematicians towards biological issues. From the early work of Vito Volterra on species competition, to the slow growth of dynamical systems theory, contributions to the study of matter and the physiology of the nervous system, the first 50-60 years have witnessed important contributions, but as scattered pieces apparently uncorrelated, and in branches often far away from Biology. Up to the 40' it is hard to see the initial loose build up of a convergence, for those theories that will become mainstream research by the end of the century, and connected by the study of biological systems per-se.

  7. Mechanism for accurate, protein-assisted DNA annealing by Deinococcus radiodurans DdrB.

    PubMed

    Sugiman-Marangos, Seiji N; Weiss, Yoni M; Junop, Murray S

    2016-04-19

    Accurate pairing of DNA strands is essential for repair of DNA double-strand breaks (DSBs). How cells achieve accurate annealing when large regions of single-strand DNA are unpaired has remained unclear despite many efforts focused on understanding proteins, which mediate this process. Here we report the crystal structure of a single-strand annealing protein [DdrB (DNA damage response B)] in complex with a partially annealed DNA intermediate to 2.2 Å. This structure and supporting biochemical data reveal a mechanism for accurate annealing involving DdrB-mediated proofreading of strand complementarity. DdrB promotes high-fidelity annealing by constraining specific bases from unauthorized association and only releases annealed duplex when bound strands are fully complementary. To our knowledge, this mechanism provides the first understanding for how cells achieve accurate, protein-assisted strand annealing under biological conditions that would otherwise favor misannealing.

  8. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  9. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  10. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  11. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  12. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  13. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  14. Accurate Telescope Mount Positioning with MEMS Accelerometers

    NASA Astrophysics Data System (ADS)

    Mészáros, L.; Jaskó, A.; Pál, A.; Csépány, G.

    2014-08-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate, and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the subarcminute range which is considerably smaller than the field-of-view of conventional imaging telescope systems. Here we present how this subarcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  15. The importance of accurate atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Payne, Dylan; Schroeder, John; Liang, Pang

    2014-11-01

    This paper will focus on the effect of atmospheric conditions on EO sensor performance using computer models. We have shown the importance of accurately modeling atmospheric effects for predicting the performance of an EO sensor. A simple example will demonstrated how real conditions for several sites in China will significantly impact on image correction, hyperspectral imaging, and remote sensing. The current state-of-the-art model for computing atmospheric transmission and radiance is, MODTRAN® 5, developed by the US Air Force Research Laboratory and Spectral Science, Inc. Research by the US Air Force, Navy and Army resulted in the public release of LOWTRAN 2 in the early 1970's. Subsequent releases of LOWTRAN and MODTRAN® have continued until the present. Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns. The paper will demonstrate the importance of using validated models and local measured meteorological, atmospheric and aerosol conditions to accurately simulate the atmospheric transmission and radiance. Frequently default conditions are used which can produce errors of as much as 75% in these values. This can have significant impact on remote sensing applications.

  16. Accurate Weather Forecasting for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  17. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.

  18. Biological Oceanography

    NASA Astrophysics Data System (ADS)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  19. Encouraging Counsellor Reflection.

    ERIC Educational Resources Information Center

    Upton, David; Asch, Rachel

    1999-01-01

    Describes the evolution and testing of an "attributes checklist" tool for assisting counselor development. These attributes relate to characteristics of case notes that indicate evidence of counselor reflection and consideration of the counseling process. (Author/GCP)

  20. Seasonal soybean crop reflectance

    NASA Technical Reports Server (NTRS)

    Lemaster, E. W. (Principal Investigator); Chance, J. E.

    1983-01-01

    Data are presented from field measurements of 1980 including 5 acquisitions of handheld radiometer reflectance measurements, 7 complete sets of parameters for implementing the Suits mode, and other biophysical parameters to characterize the soybean canopy. LANDSAT calculations on the simulated Brazilian soybean reflectance are included along with data collected during the summer and fall on 1981 on soybean single leaf optical parameters for three irrigation treatments. Tests of the Suits vegetative canopy reflectance model for the full hemisphere of observer directions as well as the nadir direction show moderate agreement for the visible channels of the MSS and poor agreement in the near infrared channel. Temporal changes in the spectral characteristics of the single leaves were seen to occur as a function of maturity which demonstrates that the absorptance of a soybean single leaf is more a function of thetransmittancee characteristics than the seasonally consistent single leaf reflectance.

  1. [Progress in synthetic biology of "973 Funding Program" in China].

    PubMed

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.

  2. BIOLOGICAL WARFARE

    PubMed Central

    Beeston, John

    1953-01-01

    The use of biological agents as controlled weapons of war is practical although uncertain. Three types of agents are feasible, including pathogenic organisms and biological pests, toxins, and synthetic hormones regulating plant growth. These agents may be chosen for selective effects varying from prolonged incipient illness to death of plants, man and domestic animals. For specific preventive and control measures required to combat these situations, there must be careful and detailed planning. The nucleus of such a program is available within the existing framework of public health activities. Additional research and expansion of established activities in time of attack are necessary parts of biological warfare defense. PMID:13059641

  3. Biological post

    PubMed Central

    Kumar, B. Suresh; Kumar, Senthil; Mohan Kumar, N. S.; Karunakaran, J. V.

    2015-01-01

    Anterior tooth fracture as a result of traumatic injuries, is frequently encountered in endodontic practice. Proper reconstruction of extensively damaged teeth can be achieved through the fragment reattachment procedure known as “biological restoration.” This case report refers to the esthetics and functional recovery of extensively damaged maxillary central incisor through the preparation and adhesive cementation of “biological post” in a young patient. Biological post obtained through extracted teeth from another individual–represent a low-cost option and alternative technique for the morphofunctional recovery of extensively damaged anterior teeth. PMID:26538952

  4. Selectively reflective transparent sheets

    NASA Astrophysics Data System (ADS)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  5. Motor equivalence during multi-finger accurate force production

    PubMed Central

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  6. Motor equivalence during multi-finger accurate force production.

    PubMed

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M; Latash, Mark L

    2015-02-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The "inverse piano" apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes in neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  7. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  8. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  9. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new experiments in biology are described by teachers for use in classrooms. Broad areas covered include enzyme action, growth regulation, microscopy, respiration, germination, plant succession, leaf structure and blood structure. Explanations are detailed. (PS)

  10. Bottle Biology.

    ERIC Educational Resources Information Center

    CSTA Journal, 1995

    1995-01-01

    Provides hands-on biology activities using plastic bottles that allow students to become engaged in asking questions, creating experiments, testing hypotheses, and generating answers. Activities explore terrestrial and aquatic systems. (MKR)

  11. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Some helpful ideas are proposed for use by biology teachers. Topics included are Food Webs,'' Key to Identification of Families,'' Viruses,'' Sieve Tube,'' Woodlice,'' Ecology of Oak Leaf Roller Moth,'' and Model Making.'' (PS)

  12. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Ten ideas that have been tried out by the authors in schools are presented for biology teachers. The areas covered include genetics, dispersal of seeds, habituation in earthworms, respiration, sensory neurons, fats and oils. A reading list is provided. (PS)

  13. Analytical elimination of substrate backside reflections from reflectance measurements.

    PubMed

    Wilbrandt, Steffen; Stenzel, Olaf

    2016-09-01

    An analytical approach to eliminate substrate backside reflections from measured reflectance of an unknown optical coating has been deducted. Thereby, measured transmittance, reflectance, and backside reflectance of the coating and transmittance and reflectance of the uncoated substrate at the desired angle of incidence and polarization state are required as input data. In the underlying theory, layer and substrate materials may be absorbing. PMID:27607274

  14. Reflection of a birth reflections midwife.

    PubMed

    Cooper, Meg

    2015-10-01

    Supporting a woman's emotional recovery following what can sometimes be a traumatic event is becoming an important part of postnatal care. That simple question, "How was the birth?" can be the first step in allowing a woman to acknowledge and voice her innermost anxieties around the birth of her baby, and put her on the right path towards feeling better about it, if need be. The birth reflections service has been running in our area for almost six years and its purpose is two fold: firstly it provides women with a safe environment in which to talk about their labour and birth, where they can become better informed about the birth and where they can express themselves freely. Secondly, it provides first hand feedback for the maternity service about the care that's been given, enabling us to change practice for the better.

  15. EDITORIAL: Physical Biology

    NASA Astrophysics Data System (ADS)

    Roscoe, Jane

    2004-06-01

    Physical Biology is a new peer-reviewed publication from Institute of Physics Publishing. Launched in 2004, the journal will foster the integration of biology with the traditionally more quantitative fields of physics, chemistry, computer science and other math-based disciplines. Its primary aim is to further the understanding of biological systems at all levels of complexity, ranging from the role of structure and dynamics of a single molecule to cellular networks and organisms. The journal encourages the development of a new biology-driven physics based on the extraordinary and increasingly rich data arising in biology, and provides research directions for those involved in the creation of novel bio-engineered systems. Physical Biology will publish a stimulating combination of full length research articles, communications, perspectives, reviews and tutorials from a wide range of disciplines covering topics such as: Single-molecule studies and nanobiotechnology Molecular interactions and protein folding Charge transfer and photobiology Ion channels; structure, function and ion regulation Molecular motors and force generation Subcellular processes Biological networks and neural systems Modeling aspects of molecular and cell biology Cell-cell signaling and interaction Biological patterns and development Evolutionary processes Novel tools and methods in physical biology Experts in the areas encompassed by the journal's scope have been appointed to the Editorial Scientific Committee and the composition of the Committee will be updated regularly to reflect the developments in this new and exciting field. Physical Biology is free online to everyone in 2004; you are invited to take advantage of this offer by visiting the journal homepage at http://physbio.iop.org This special print edition of Physical Biology is a combination of issues 1 and 2 of this electronic-only journal and it brings together an impressive range of articles in the fields covered, including a popular

  16. Accurate masses for dispersion-supported galaxies

    NASA Astrophysics Data System (ADS)

    Wolf, Joe; Martinez, Gregory D.; Bullock, James S.; Kaplinghat, Manoj; Geha, Marla; Muñoz, Ricardo R.; Simon, Joshua D.; Avedo, Frank F.

    2010-08-01

    We derive an accurate mass estimator for dispersion-supported stellar systems and demonstrate its validity by analysing resolved line-of-sight velocity data for globular clusters, dwarf galaxies and elliptical galaxies. Specifically, by manipulating the spherical Jeans equation we show that the mass enclosed within the 3D deprojected half-light radius r1/2 can be determined with only mild assumptions about the spatial variation of the stellar velocity dispersion anisotropy as long as the projected velocity dispersion profile is fairly flat near the half-light radius, as is typically observed. We find M1/2 = 3 G-1< σ2los > r1/2 ~= 4 G-1< σ2los > Re, where < σ2los > is the luminosity-weighted square of the line-of-sight velocity dispersion and Re is the 2D projected half-light radius. While deceptively familiar in form, this formula is not the virial theorem, which cannot be used to determine accurate masses unless the radial profile of the total mass is known a priori. We utilize this finding to show that all of the Milky Way dwarf spheroidal galaxies (MW dSphs) are consistent with having formed within a halo of a mass of approximately 3 × 109 Msolar, assuming a Λ cold dark matter cosmology. The faintest MW dSphs seem to have formed in dark matter haloes that are at least as massive as those of the brightest MW dSphs, despite the almost five orders of magnitude spread in luminosity between them. We expand our analysis to the full range of observed dispersion-supported stellar systems and examine their dynamical I-band mass-to-light ratios ΥI1/2. The ΥI1/2 versus M1/2 relation for dispersion-supported galaxies follows a U shape, with a broad minimum near ΥI1/2 ~= 3 that spans dwarf elliptical galaxies to normal ellipticals, a steep rise to ΥI1/2 ~= 3200 for ultra-faint dSphs and a more shallow rise to ΥI1/2 ~= 800 for galaxy cluster spheroids.

  17. Accurate, Fully-Automated NMR Spectral Profiling for Metabolomics

    PubMed Central

    Ravanbakhsh, Siamak; Liu, Philip; Bjordahl, Trent C.; Mandal, Rupasri; Grant, Jason R.; Wilson, Michael; Eisner, Roman; Sinelnikov, Igor; Hu, Xiaoyu; Luchinat, Claudio; Greiner, Russell; Wishart, David S.

    2015-01-01

    Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person’s biofluids, which means such diseases can often be readily detected from a person’s “metabolic profile"—i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person’s metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the “signatures” of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively—with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications

  18. Accurate atom-mapping computation for biochemical reactions.

    PubMed

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  19. Accurate, fully-automated NMR spectral profiling for metabolomics.

    PubMed

    Ravanbakhsh, Siamak; Liu, Philip; Bjorndahl, Trent C; Bjordahl, Trent C; Mandal, Rupasri; Grant, Jason R; Wilson, Michael; Eisner, Roman; Sinelnikov, Igor; Hu, Xiaoyu; Luchinat, Claudio; Greiner, Russell; Wishart, David S

    2015-01-01

    Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person's biofluids, which means such diseases can often be readily detected from a person's "metabolic profile"-i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person's metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the "signatures" of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively-with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of NMR in

  20. Robust and accurate transient light transport decomposition via convolutional sparse coding.

    PubMed

    Hu, Xuemei; Deng, Yue; Lin, Xing; Suo, Jinli; Dai, Qionghai; Barsi, Christopher; Raskar, Ramesh

    2014-06-01

    Ultrafast sources and detectors have been used to record the time-resolved scattering of light propagating through macroscopic scenes. In the context of computational imaging, decomposition of this transient light transport (TLT) is useful for applications, such as characterizing materials, imaging through diffuser layers, and relighting scenes dynamically. Here, we demonstrate a method of convolutional sparse coding to decompose TLT into direct reflections, inter-reflections, and subsurface scattering. The method relies on the sparsity composition of the time-resolved kernel. We show that it is robust and accurate to noise during the acquisition process.

  1. Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.

  2. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  3. Accurate free energy calculation along optimized paths.

    PubMed

    Chen, Changjun; Xiao, Yi

    2010-05-01

    The path-based methods of free energy calculation, such as thermodynamic integration and free energy perturbation, are simple in theory, but difficult in practice because in most cases smooth paths do not exist, especially for large molecules. In this article, we present a novel method to build the transition path of a peptide. We use harmonic potentials to restrain its nonhydrogen atom dihedrals in the initial state and set the equilibrium angles of the potentials as those in the final state. Through a series of steps of geometrical optimization, we can construct a smooth and short path from the initial state to the final state. This path can be used to calculate free energy difference. To validate this method, we apply it to a small 10-ALA peptide and find that the calculated free energy changes in helix-helix and helix-hairpin transitions are both self-convergent and cross-convergent. We also calculate the free energy differences between different stable states of beta-hairpin trpzip2, and the results show that this method is more efficient than the conventional molecular dynamics method in accurate free energy calculation.

  4. Accurate SHAPE-directed RNA structure determination

    PubMed Central

    Deigan, Katherine E.; Li, Tian W.; Mathews, David H.; Weeks, Kevin M.

    2009-01-01

    Almost all RNAs can fold to form extensive base-paired secondary structures. Many of these structures then modulate numerous fundamental elements of gene expression. Deducing these structure–function relationships requires that it be possible to predict RNA secondary structures accurately. However, RNA secondary structure prediction for large RNAs, such that a single predicted structure for a single sequence reliably represents the correct structure, has remained an unsolved problem. Here, we demonstrate that quantitative, nucleotide-resolution information from a SHAPE experiment can be interpreted as a pseudo-free energy change term and used to determine RNA secondary structure with high accuracy. Free energy minimization, by using SHAPE pseudo-free energies, in conjunction with nearest neighbor parameters, predicts the secondary structure of deproteinized Escherichia coli 16S rRNA (>1,300 nt) and a set of smaller RNAs (75–155 nt) with accuracies of up to 96–100%, which are comparable to the best accuracies achievable by comparative sequence analysis. PMID:19109441

  5. Accurate adiabatic correction in the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-01

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  6. Fast and Provably Accurate Bilateral Filtering.

    PubMed

    Chaudhury, Kunal N; Dabhade, Swapnil D

    2016-06-01

    The bilateral filter is a non-linear filter that uses a range filter along with a spatial filter to perform edge-preserving smoothing of images. A direct computation of the bilateral filter requires O(S) operations per pixel, where S is the size of the support of the spatial filter. In this paper, we present a fast and provably accurate algorithm for approximating the bilateral filter when the range kernel is Gaussian. In particular, for box and Gaussian spatial filters, the proposed algorithm can cut down the complexity to O(1) per pixel for any arbitrary S . The algorithm has a simple implementation involving N+1 spatial filterings, where N is the approximation order. We give a detailed analysis of the filtering accuracy that can be achieved by the proposed approximation in relation to the target bilateral filter. This allows us to estimate the order N required to obtain a given accuracy. We also present comprehensive numerical results to demonstrate that the proposed algorithm is competitive with the state-of-the-art methods in terms of speed and accuracy. PMID:27093722

  7. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  8. Fast and Accurate Exhaled Breath Ammonia Measurement

    PubMed Central

    Solga, Steven F.; Mudalel, Matthew L.; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations. PMID:24962141

  9. Accurate adiabatic correction in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  10. Accurate adiabatic correction in the hydrogen molecule.

    PubMed

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10(-12) at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10(-7) cm(-1), which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels. PMID:25494728

  11. MEMS accelerometers in accurate mount positioning systems

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  12. Radar reflectivity of titan.

    PubMed

    Muhleman, D O; Grossman, A W; Butler, B J; Slade, M A

    1990-05-25

    The present understanding of the atmosphere and surface conditions on Saturn's largest moon, Titan, including the stability of methane, and an application of thermodynamics leads to a strong prediction of liquid hydrocarbons in an ethane-methane mixture on the surface. Such a surface would have nearly unique microwave reflection properties due to the low dielectric constant. Attempts were made to obtain reflections at a wavelength of 3.5 centimeters by means of a 70-meter antenna in California as the transmitter and the Very Large Array in New Mexico as the receiving instrument. Statistically significant echoes were obtained that show Titan is not covered with a deep, global ocean of ethane, as previously thought. The experiment yielded radar cross sections normalized by the Titan disk of 0.38 +/- 0.15, 0.78 +/- 0.15, and 0.25 +/- 0.15 on three consecutive nights during which the sub-Earth longitude on Titan moved 50 degrees. The result for the combined data for the entire experiment is 0.35 +/- 0.08. The cross sections are very high, most consistent with those of the Galilean satellites; no evidence of the putative liquid ethane was seen in the reflection data. A global ocean as shallow as about 200 meters would have exhibited reflectivities smaller by an order of magnitude, and below the detection limit of the experiment. The measured emissivity at similar wavelengths of about 0.9 is somewhat inconsistent with the high reflectivity.

  13. Photonic structures in biology.

    PubMed

    Vukusic, Pete; Sambles, J Roy

    2003-08-14

    Millions of years before we began to manipulate the flow of light using synthetic structures, biological systems were using nanometre-scale architectures to produce striking optical effects. An astonishing variety of natural photonic structures exists: a species of Brittlestar uses photonic elements composed of calcite to collect light, Morpho butterflies use multiple layers of cuticle and air to produce their striking blue colour and some insects use arrays of elements, known as nipple arrays, to reduce reflectivity in their compound eyes. Natural photonic structures are providing inspiration for technological applications.

  14. Quantitative biology: where modern biology meets physical sciences

    PubMed Central

    Shekhar, Shashank; Zhu, Lian; Mazutis, Linas; Sgro, Allyson E.; Fai, Thomas G.; Podolski, Marija

    2014-01-01

    Quantitative methods and approaches have been playing an increasingly important role in cell biology in recent years. They involve making accurate measurements to test a predefined hypothesis in order to compare experimental data with predictions generated by theoretical models, an approach that has benefited physicists for decades. Building quantitative models in experimental biology not only has led to discoveries of counterintuitive phenomena but has also opened up novel research directions. To make the biological sciences more quantitative, we believe a two-pronged approach needs to be taken. First, graduate training needs to be revamped to ensure biology students are adequately trained in physical and mathematical sciences and vice versa. Second, students of both the biological and the physical sciences need to be provided adequate opportunities for hands-on engagement with the methods and approaches necessary to be able to work at the intersection of the biological and physical sciences. We present the annual Physiology Course organized at the Marine Biological Laboratory (Woods Hole, MA) as a case study for a hands-on training program that gives young scientists the opportunity not only to acquire the tools of quantitative biology but also to develop the necessary thought processes that will enable them to bridge the gap between these disciplines. PMID:25368426

  15. Quantitative biology: where modern biology meets physical sciences.

    PubMed

    Shekhar, Shashank; Zhu, Lian; Mazutis, Linas; Sgro, Allyson E; Fai, Thomas G; Podolski, Marija

    2014-11-01

    Quantitative methods and approaches have been playing an increasingly important role in cell biology in recent years. They involve making accurate measurements to test a predefined hypothesis in order to compare experimental data with predictions generated by theoretical models, an approach that has benefited physicists for decades. Building quantitative models in experimental biology not only has led to discoveries of counterintuitive phenomena but has also opened up novel research directions. To make the biological sciences more quantitative, we believe a two-pronged approach needs to be taken. First, graduate training needs to be revamped to ensure biology students are adequately trained in physical and mathematical sciences and vice versa. Second, students of both the biological and the physical sciences need to be provided adequate opportunities for hands-on engagement with the methods and approaches necessary to be able to work at the intersection of the biological and physical sciences. We present the annual Physiology Course organized at the Marine Biological Laboratory (Woods Hole, MA) as a case study for a hands-on training program that gives young scientists the opportunity not only to acquire the tools of quantitative biology but also to develop the necessary thought processes that will enable them to bridge the gap between these disciplines.

  16. A Reflection on Belief

    ERIC Educational Resources Information Center

    Cuevas, Joshua A.

    2013-01-01

    This paper explores the phenomenon in which, for many people, subjective personal belief is viewed as a more accurate representation of reality than objective scientific knowledge developed over the course of human history and transmitted through secular education. The first half of the article is based on personal observations of the author…

  17. A fast and accurate algorithm for diploid individual haplotype reconstruction.

    PubMed

    Wu, Jingli; Liang, Binbin

    2013-08-01

    Haplotypes can provide significant information in many research fields, including molecular biology and medical therapy. However, haplotyping is much more difficult than genotyping by using only biological techniques. With the development of sequencing technologies, it becomes possible to obtain haplotypes by combining sequence fragments. The haplotype reconstruction problem of diploid individual has received considerable attention in recent years. It assembles the two haplotypes for a chromosome given the collection of fragments coming from the two haplotypes. Fragment errors significantly increase the difficulty of the problem, and which has been shown to be NP-hard. In this paper, a fast and accurate algorithm, named FAHR, is proposed for haplotyping a single diploid individual. Algorithm FAHR reconstructs the SNP sites of a pair of haplotypes one after another. The SNP fragments that cover some SNP site are partitioned into two groups according to the alleles of the corresponding SNP site, and the SNP values of the pair of haplotypes are ascertained by using the fragments in the group that contains more SNP fragments. The experimental comparisons were conducted among the FAHR, the Fast Hare and the DGS algorithms by using the haplotypes on chromosome 1 of 60 individuals in CEPH samples, which were released by the International HapMap Project. Experimental results under different parameter settings indicate that the reconstruction rate of the FAHR algorithm is higher than those of the Fast Hare and the DGS algorithms, and the running time of the FAHR algorithm is shorter than those of the Fast Hare and the DGS algorithms. Moreover, the FAHR algorithm has high efficiency even for the reconstruction of long haplotypes and is very practical for realistic applications.

  18. Interference reflection microscopy.

    PubMed

    Barr, Valarie A; Bunnell, Stephen C

    2009-12-01

    Interference reflection microscopy (IRM) is an optical technique used to study cell adhesion or cell mobility on a glass coverslip. The interference of reflected light waves generates images with high contrast and definition. IRM can be used to examine almost any cell that will rest upon a glass surface, although it is most useful in examining sites of close contact between a cell and substratum. This unit presents methods for obtaining IRM images of cells with particular emphasis on IRM imaging with a laser scanning confocal microscope (LSCM), as most LSCM are already capable of recording these images without any modification of the instrument. Techniques are presented for imaging fixed and live cells, as well as simultaneous multi-channel capture of fluorescence and reflection images.

  19. Accurate Position Calibrations for Charged Fragments

    NASA Astrophysics Data System (ADS)

    Russell, Autumn; Finck, Joseph E.; Spyrou, Artemis; Thoennessen, Michael

    2009-10-01

    The Modular Neutron Array (MoNA), located at the National Superconducting Laboratory at Michigan State University, is used in conjunction with the MSU/FSU Sweeper Magnet to study the breakup of neutron-rich nuclei. Fragmentation reactions create particle-unstable nuclei near the neutron dripline which spontaneously break up by the decay of one or two neutrons with energies that reflect the nuclear structure of unbound excited and ground states. The neutrons continue forward into MoNA where their position and time of flight are recorded, and the charged fragments' position and energy are measured by an array of detectors following the Sweeper Magnet. In such experiments the identification of the fragment of interest is done through energy loss and time-of-flight measurements using plastic scintillators. The emitted angles of the fragments are determined with the use of CRDCs. The purpose of the present work was the calibration of the CRDCs in the X and Y axis (where Z is the beam axis) using specially designed masks. This calibration was also used for the correction of the signal of the plastic scintillators, which is position dependent. The results of this work are used for the determination of the ground state of the neutron-unbound ^24N.

  20. Toward accurate and fast iris segmentation for iris biometrics.

    PubMed

    He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao

    2009-09-01

    Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed. PMID:19574626

  1. Toward accurate and fast iris segmentation for iris biometrics.

    PubMed

    He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao

    2009-09-01

    Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed.

  2. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  3. Design for reflection.

    PubMed

    Bagnara, Sebastiano; Pozzi, Simone

    2012-01-01

    Since a few years, a number of academic papers have been proposing to shift from user-centered design to human-centered (or person) design. In this contribution, we discuss as the common tread underlying these works the idea that design should also address the reflective part of our human experience, and not only aim to maximize the experiential aspects. Our review is complemented with examples derived from the internet world and from ICT consumer products. The main research areas we see as promising for the approach of "design for reflection" are: design for pauses, design for detachment, design for serendipity. PMID:22316867

  4. Measuring Light Reflectance of BGO Crystal Surfaces

    SciTech Connect

    Janecek, Martin; Moses, William

    2008-07-28

    A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal?s light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air- coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2? of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 10^5:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.

  5. Towards Accurate Application Characterization for Exascale (APEX)

    SciTech Connect

    Hammond, Simon David

    2015-09-01

    Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.

  6. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  7. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  8. Accurate Thermal Conductivities from First Principles

    NASA Astrophysics Data System (ADS)

    Carbogno, Christian

    2015-03-01

    In spite of significant research efforts, a first-principles determination of the thermal conductivity at high temperatures has remained elusive. On the one hand, Boltzmann transport techniques that include anharmonic effects in the nuclear dynamics only perturbatively become inaccurate or inapplicable under such conditions. On the other hand, non-equilibrium molecular dynamics (MD) methods suffer from enormous finite-size artifacts in the computationally feasible supercells, which prevent an accurate extrapolation to the bulk limit of the thermal conductivity. In this work, we overcome this limitation by performing ab initio MD simulations in thermodynamic equilibrium that account for all orders of anharmonicity. The thermal conductivity is then assessed from the auto-correlation function of the heat flux using the Green-Kubo formalism. Foremost, we discuss the fundamental theory underlying a first-principles definition of the heat flux using the virial theorem. We validate our approach and in particular the techniques developed to overcome finite time and size effects, e.g., by inspecting silicon, the thermal conductivity of which is particularly challenging to converge. Furthermore, we use this framework to investigate the thermal conductivity of ZrO2, which is known for its high degree of anharmonicity. Our calculations shed light on the heat resistance mechanism active in this material, which eventually allows us to discuss how the thermal conductivity can be controlled by doping and co-doping. This work has been performed in collaboration with R. Ramprasad (University of Connecticut), C. G. Levi and C. G. Van de Walle (University of California Santa Barbara).

  9. A time-accurate high-resolution TVD scheme for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae; Liu, Nan-Suey

    1992-01-01

    A total variation diminishing (TVD) scheme has been developed and incorporated into an existing time-accurate high-resolution Navier-Stokes code. The accuracy and the robustness of the resulting solution procedure have been assessed by performing many calculations in four different areas: shock tube flows, regular shock reflection, supersonic boundary layer, and shock boundary layer interactions. These numerical results compare well with corresponding exact solutions or experimental data.

  10. A time-accurate high-resolution TVD scheme for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Liu, Nan-Suey

    1993-01-01

    A total variation diminishing (TVD) scheme has been developed and incorporated into an existing time-accurate high-resolution Navier-Stokes code. The accuracy and the robustness of the resulting solution procedure have been assessed by performing many calculations in four different areas: shock tube flows, regular shock reflection, supersonic boundary layer, and shock boundary layer interactions. These numerical results compare well with corresponding exact solutions or experimental data.

  11. Retinal Connectomics: Towards Complete, Accurate Networks

    PubMed Central

    Marc, Robert E.; Jones, Bryan W.; Watt, Carl B.; Anderson, James R.; Sigulinsky, Crystal; Lauritzen, Scott

    2013-01-01

    Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 1012–1015 byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication. PMID:24016532

  12. Retinal connectomics: towards complete, accurate networks.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Anderson, James R; Sigulinsky, Crystal; Lauritzen, Scott

    2013-11-01

    Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 10(12)-10(15) byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies of complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication. PMID:24016532

  13. SNAB: A New Advanced Level Biology Course

    ERIC Educational Resources Information Center

    Reiss, Michael J.

    2005-01-01

    Of all the sciences, biology has probably made the most rapid progress in recent years and the need for this to be reflected in a new Advanced Level biology course has long been recognised in the UK. After wide-ranging consultation and successful piloting in over 50 schools and colleges in England and Wales, the new Salters-Nuffield Advanced…

  14. Biological Oceanography

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  15. Biological preconcentrator

    DOEpatents

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  16. Biological monitoring

    SciTech Connect

    Miller, S.

    1984-06-01

    Recent research is reviewed from books, international committees and symposia which describes the usefulness of biological monitoring for exposure to such compounds as organometallic chemicals, carbon monoxide and cyanide. The types of analyses include the following measurements: the concentration of the chemical in various biological media such as blood, urine, and expired air; the concentration of metabolites of the individual chemical in the same media; and determination of nonadverse biological changes resulting from the reaction of the organism to exposure. A main goal of such monitoring is to ensure that the current or past levels of worker exposure are safe, so that such exposure does not involve an unacceptable health risk. It considers routes other than absorption by the lungs and is a good method for evaluating individual exposures.

  17. Biological rhythms

    NASA Technical Reports Server (NTRS)

    Halberg, F.

    1975-01-01

    An overview is given of basic features of biological rhythms. The classification of periodic behavior of physical and psychological characteristics as circadian, circannual, diurnal, and ultradian is discussed, and the notion of relativistic time as it applies in biology is examined. Special attention is given to circadian rhythms which are dependent on the adrenocortical cycle. The need for adequate understanding of circadian variations in the basic physiological indicators of an individual (heart rate, body temperature, systolic and diastolic blood pressure, etc.) to ensure the effectiveness of prophylactic and therapeutic measures is stressed.

  18. The Systems Biology Graphical Notation.

    PubMed

    Le Novère, Nicolas; Hucka, Michael; Mi, Huaiyu; Moodie, Stuart; Schreiber, Falk; Sorokin, Anatoly; Demir, Emek; Wegner, Katja; Aladjem, Mirit I; Wimalaratne, Sarala M; Bergman, Frank T; Gauges, Ralph; Ghazal, Peter; Kawaji, Hideya; Li, Lu; Matsuoka, Yukiko; Villéger, Alice; Boyd, Sarah E; Calzone, Laurence; Courtot, Melanie; Dogrusoz, Ugur; Freeman, Tom C; Funahashi, Akira; Ghosh, Samik; Jouraku, Akiya; Kim, Sohyoung; Kolpakov, Fedor; Luna, Augustin; Sahle, Sven; Schmidt, Esther; Watterson, Steven; Wu, Guanming; Goryanin, Igor; Kell, Douglas B; Sander, Chris; Sauro, Herbert; Snoep, Jacky L; Kohn, Kurt; Kitano, Hiroaki

    2009-08-01

    Circuit diagrams and Unified Modeling Language diagrams are just two examples of standard visual languages that help accelerate work by promoting regularity, removing ambiguity and enabling software tool support for communication of complex information. Ironically, despite having one of the highest ratios of graphical to textual information, biology still lacks standard graphical notations. The recent deluge of biological knowledge makes addressing this deficit a pressing concern. Toward this goal, we present the Systems Biology Graphical Notation (SBGN), a visual language developed by a community of biochemists, modelers and computer scientists. SBGN consists of three complementary languages: process diagram, entity relationship diagram and activity flow diagram. Together they enable scientists to represent networks of biochemical interactions in a standard, unambiguous way. We believe that SBGN will foster efficient and accurate representation, visualization, storage, exchange and reuse of information on all kinds of biological knowledge, from gene regulation, to metabolism, to cellular signaling.

  19. Interactive Reflective Logs

    ERIC Educational Resources Information Center

    Deaton, Cynthia Minchew; Deaton, Benjamin E.; Leland, Katina

    2010-01-01

    The authors created an interactive reflective log (IRL) to provide teachers with an opportunity to use a journal approach to record, evaluate, and communicate student understanding of science concepts. Unlike a traditional journal, the IRL incorporates prompts to encourage students to discuss their understanding of science content and science…

  20. Renew, Reflect, and Refresh

    ERIC Educational Resources Information Center

    Texley, Juliana

    2005-01-01

    Is that the sound of the last bus leaving the schoolyard? Or the staff's collective sigh of relief? School's out. Now it's time to nurture the lifelong learner deep inside with a summer reading list that will allow teachers to renew, reflect, and refresh. The National Science Education Standards reminds us, "Becoming an effective science teacher…

  1. Reflections: Children and Literature.

    ERIC Educational Resources Information Center

    And Others; Cianciolo, Patricia J.

    1980-01-01

    Six educational leaders--Patricia J. Cianciolo, Lee Bennett Hopkins, Nancy Larrick, Alan C. Purves, Morton Schindel, and James R. Squire--offer reflections on signficiant developments in children's literature during the 1970s, their hopes for the 1980s, and references that constitute required reading for elementary language arts teachers. (ET)

  2. Lights, Camera, Reflection!

    ERIC Educational Resources Information Center

    Mourlam, Daniel

    2013-01-01

    There are many ways to critique teaching, but few are more effective than video. Personal reflection through the use of video allows one to see what really happens in the classrooms--good and bad--and provides a visual path forward for improvement, whether it be in one's teaching, work with a particular student, or learning environment. This…

  3. Reflections on 1972

    ERIC Educational Resources Information Center

    Gutierrez, Ramon A.

    2007-01-01

    In this article, the author reflects on the events that took place in the year 1972. The author was a junior at the University of New Mexico back then, refusing to eat or buy grapes and lettuce, picketing grocers who did not carry United Farm Workers of America produce. He and his buddies cast their votes against granting Richard Nixon a second…

  4. Clinical Linguistics: Conversational Reflections

    ERIC Educational Resources Information Center

    Crystal, David

    2013-01-01

    This is a report of the main points I made in an informal "conversation" with Paul Fletcher and the audience at the 14th ICPLA conference in Cork. The observations arose randomly, as part of an unstructured 1-h Q&A, so they do not provide a systematic account of the subject, but simply reflect the issues which were raised by the conference…

  5. Reflections, 15 Years Later

    ERIC Educational Resources Information Center

    Knox, George

    2016-01-01

    George Knox reflects on his 15-year career as president of Labette Community College in Parsons, Kansas. Knox writes that, as a first-time president coming into a brand new system, he was very fortunate to have many seasoned presidents and mentors in Kansas and from the American Association of Community Colleges' (AACC) Presidents Academy. He says…

  6. Reflections on "La Esperanza"

    ERIC Educational Resources Information Center

    Cortez, Anita

    2007-01-01

    The author was recently asked to reflect on her "educational journey." As far as she can remember she has been hungry to learn. A friend once described her as having "hambres atrasadas," which he described as a kind of "hunger nipping at her heels." It goes back, of course, to her parents: Her father's and her early journeys scavenging the Wyoming…

  7. Reflecting on Data

    ERIC Educational Resources Information Center

    Kraus, Rudolf V.

    2014-01-01

    This article describes a two-day optics laboratory activity that investigates the scientific phenomenon of reflection, which students are generally familiar with but usually have not studied in depth. This investigation can be used on its own or as part of a larger unit on optics. This lesson encourages students to think critically and…

  8. Reflecting on Writing Autobiography

    ERIC Educational Resources Information Center

    Begg, Andy

    2011-01-01

    The following reflections relate to the reasons for and an approach to an autobiographic task, the notions that underpin it, and some thoughts about the quality and value of such a project. The focus was on the ways one views curriculum change over time; and the intention was to provide an example that others may sense as either familiar or at…

  9. Reflective Database Access Control

    ERIC Educational Resources Information Center

    Olson, Lars E.

    2009-01-01

    "Reflective Database Access Control" (RDBAC) is a model in which a database privilege is expressed as a database query itself, rather than as a static privilege contained in an access control list. RDBAC aids the management of database access controls by improving the expressiveness of policies. However, such policies introduce new interactions…

  10. Reflection by Porro Prisms

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2010-04-01

    Students all know that reflection from a plane mirror produces an image that is reversed right to left and so cannot be read by anyone but Leonardo da Vinci, who kept his notes in mirror writing. A useful counter-example is the Porro prism, which produces an image that is not reversed.

  11. Reflecting through Peshkin's I's

    ERIC Educational Resources Information Center

    Savage, Jonathan

    2007-01-01

    Reflection is an appropriate way of accounting for professional practice and is a standard way in which one can "become better acquainted with one's own story". Defining "subjectivity" as "the quality of an investigator that affects the results of observational investigation", Peshkin highlights the requirement for any observer of, or participant…

  12. First Amendment Reflections.

    ERIC Educational Resources Information Center

    Update on Law-Related Education, 1998

    1998-01-01

    Offers seven reflections on the First Amendment and related issues by attorneys, a professor, project directors, and a university president. Highlights an activity where pairs of students prepare either a pro or con argument for each of the seven excerpts and then participate in a debate. (CMK)

  13. Reflections on "Higher Education"

    ERIC Educational Resources Information Center

    Gilbert, Felix

    1974-01-01

    The elitist, professional, and philosophical elements of higher education are reflected upon with stress on the differences between higher education and higher learning, where education is concerned with giving wider groups a share in a broad image of man, and learning is concerned with increasing specialization. (JH)

  14. Simple and accurate methods for quantifying deformation, disruption, and development in biological tissues

    PubMed Central

    Boyle, John J.; Kume, Maiko; Wyczalkowski, Matthew A.; Taber, Larry A.; Pless, Robert B.; Xia, Younan; Genin, Guy M.; Thomopoulos, Stavros

    2014-01-01

    When mechanical factors underlie growth, development, disease or healing, they often function through local regions of tissue where deformation is highly concentrated. Current optical techniques to estimate deformation can lack precision and accuracy in such regions due to challenges in distinguishing a region of concentrated deformation from an error in displacement tracking. Here, we present a simple and general technique for improving the accuracy and precision of strain estimation and an associated technique for distinguishing a concentrated deformation from a tracking error. The strain estimation technique improves accuracy relative to other state-of-the-art algorithms by directly estimating strain fields without first estimating displacements, resulting in a very simple method and low computational cost. The technique for identifying local elevation of strain enables for the first time the successful identification of the onset and consequences of local strain concentrating features such as cracks and tears in a highly strained tissue. We apply these new techniques to demonstrate a novel hypothesis in prenatal wound healing. More generally, the analytical methods we have developed provide a simple tool for quantifying the appearance and magnitude of localized deformation from a series of digital images across a broad range of disciplines. PMID:25165601

  15. Accurate theoretical chemistry with coupled pair models.

    PubMed

    Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan

    2009-05-19

    Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now

  16. Scaffolded biology.

    PubMed

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology. PMID:27287514

  17. Bottle Biology.

    ERIC Educational Resources Information Center

    Jager, Peter

    1993-01-01

    Describes activities which utilize plastic drink bottles and are designed to foster the development of a wide range of biological and ecological concepts. Includes instructions for making a model compost column and presents a model that illustrates open versus closed ecosystems. (DDR)

  18. Biologic Vaccines

    PubMed Central

    ADAMS, KATHERINE T.

    2009-01-01

    The threat of new disease pandemics has spurred the development of biologic vaccines, which promise tremendous improvements in global and local health. Several lend themselves to the prevention or treatment of chronic diseases. But the uncertainties of whom to vaccinate raise the question of whether the health care system can make these promising products viable. PMID:22478749

  19. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1979

    1979-01-01

    Organized by topic is a reading list for A- and S-level biology. Described are experiments for measuring rate of water uptake in a shoot; questions to aid students in designing experiments; rise of overhead projection to demonstrate osmosis and blood cell counting; and microbial manufacture of vinegar. (CS)

  20. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in biology and environmental education instruction, including, among others, sampling in ecology using an overhead projector, the slide finder as an aid to microscopy, teaching kidney function, and teaching wildlife conservation-sand dune systems. (SK)

  1. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes nine biology experiments, including osmosis, genetics; oxygen content of blood, enzymes in bean seedlings, preparation of bird skins, vascularization in bean seedlings, a game called "sequences" (applied to review situations), crossword puzzle for human respiration, and physiology of the woodlouse. (CS)

  2. Scaffolded biology.

    PubMed

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  3. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including water relation exercise on auxin-treated artichoke tuber tissue; aerobic respiration in yeast; an improved potometer; use of mobiles in biological classification, and experiments on powdery mildews and banana polyphenol oxidase. Includes reading lists…

  4. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  5. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  6. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Presents content information and/or laboratory procedures and experiments on different biology topics including small-scale cultivation of watercress and its use in water-culture experiments, microbiology of the phylloplane, use of mouthbrooders in science class, and the gene. (DC)

  7. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Presents information on the teaching of nutrition (including new information relating to many current O-level syllabi) and part 16 of a reading list for A- and S-level biology. Also includes a note on using earthworms as a source of material for teaching meiosis. (JN)

  8. Sverdrup's Biology

    NASA Astrophysics Data System (ADS)

    McGowan, J.

    2002-12-01

    Sverdrup's contribution to Biological Oceanography were more than merely substantial, they were of fundamental importance. His plan for the training of graduate students at Scripps did not recognize the traditional division of the basic disciplines into separate categories of physics, chemistry, biology and geology. He insisted that Oceanography was a multi-disciplinary subject and that all entering students should study all four subjects. Today this is not very unusual but it was in the early 50s when I took those courses. We biologists carried away from those courses an appreciation of the importance of both spatial and temporal scale. It was of clear relevance to problems of oceanic population and community biology. But there was still more to his biology. He is responsible for a very simple, but very elegant model of the regulation of oceanic primary productivity. The elements of this model are found today in the ten or so highly derivative models. He also published a map predicting global ocean productivity based on the ideas in the model plus some wonderfully intuitive thinking. This map does not differ strongly from those glorious false color ones being published today.

  9. Marine Biology

    ERIC Educational Resources Information Center

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  10. Cancer Biology

    ERIC Educational Resources Information Center

    Dominiecki, Mary E.

    2004-01-01

    University of Colorado's Virtual Student Fellowship available at and developed by Bakemeier, Richard F. This website is designed to give students applying for a fellowship an overview of basic topics in biology and how they are used by cancer researchers to develop new treatments.

  11. Reflecting on Lab Practices

    ERIC Educational Resources Information Center

    Hunter, Jeffrey C.

    2014-01-01

    The National Science Education Standards (NSES) and the Biological Science Curriculum Study (BSCS) address the need for teachers to move classrooms toward an inquiry approach to learning. Currently, there is movement toward a new structure for science standards, the Next Generation Science Standards (NGSS). In this article, I will take the five…

  12. Computational optimization and biological evolution.

    PubMed

    Goryanin, Igor

    2010-10-01

    Modelling and optimization principles become a key concept in many biological areas, especially in biochemistry. Definitions of objective function, fitness and co-evolution, although they differ between biology and mathematics, are similar in a general sense. Although successful in fitting models to experimental data, and some biochemical predictions, optimization and evolutionary computations should be developed further to make more accurate real-life predictions, and deal not only with one organism in isolation, but also with communities of symbiotic and competing organisms. One of the future goals will be to explain and predict evolution not only for organisms in shake flasks or fermenters, but for real competitive multispecies environments.

  13. Atomic Coordination Reflects Peptide Immunogenicity

    PubMed Central

    Antipas, Georgios S. E.; Germenis, Anastasios E.

    2016-01-01

    We demonstrated that the immunological identity of variant peptides may be accurately predicted on the basis of atomic coordination of both unprotonated and protonated tertiary structures, provided that the structure of the native peptide (index) is known. The metric which was discovered to account for this discrimination is the coordination difference between the variant and the index; we also showed that increasing coordination difference in respect to the index was correlated to a correspondingly weakening immunological outcome of the variant. Additionally, we established that this metric quickly seizes to operate beyond the peptide scale, e.g., within a coordination shell inclusive of atoms up to a distance of 7 Å away from the peptide or over the entire pMHC-TCR complex. Analysis of molecular orbital interactions for a range of formal charges further revealed that the N-terminus of the agonists was always able to sustain a stable ammonium (NH3+) group which was consistently absent in antagonists. We deem that the presence of NH3+ constitutes a secondary observable with a biological consequence, signifying a change in T cell activation. While our analysis of protonated structures relied on the quantum chemical relaxation of the H species, the results were consistent across a wide range of peptide charge and spin polarization conditions. PMID:26793714

  14. Biological feasibility of measles eradication.

    PubMed

    Moss, William J; Strebel, Peter

    2011-07-01

    Recent progress in reducing global measles mortality has renewed interest in measles eradication. Three biological criteria are deemed important for disease eradication: (1) humans are the sole pathogen reservoir; (2) accurate diagnostic tests exist; and (3) an effective, practical intervention is available at reasonable cost. Interruption of transmission in large geographical areas for prolonged periods further supports the feasibility of eradication. Measles is thought by many experts to meet these criteria: no nonhuman reservoir is known to exist, accurate diagnostic tests are available, and attenuated measles vaccines are effective and immunogenic. Measles has been eliminated in large geographical areas, including the Americas. Measles eradication is biologically feasible. The challenges for measles eradication will be logistical, political, and financial.

  15. Automated geologic mapping using rock reflectances.

    NASA Technical Reports Server (NTRS)

    Watson, R. D.; Rowan, L. C.

    1971-01-01

    Investigation of the feasibility of preparing geologic maps automatically through computer processing of calibrated narrow-band visible and near IR reflectivity data collected with a 12-channel scanner. Five procedures were followed in the computer analysis of the radiances recorded as voltages on analog magnetic tape. Three recognition maps have been generated iteratively using a progressively more complex classification scheme. The overall accuracy of the first recognition map was 80%, but the discrimination of the limestone and dolomite was only 50-60%. All three maps are very accurate outcrop maps. The results demonstrate the feasibility of automated geologic mapping in this relatively simple setting.

  16. Measuring Reflective Power with the Eye

    NASA Astrophysics Data System (ADS)

    Chen, Xiang

    Although the legitimacy of using the eye as an essential instrument in photometric experiments had been questioned by critics, the practitioners of visual photometry in the 18th and 19th centuries were convinced that the eye was reliable and capable of making accurate judgments in comparing brightness. They demonstrated their belief through their efforts in searching for the optimal conditions for the eye in photometric measurements. Eventually, they were able to measure reflective power with accuracy comparable to today's standards by developing a body of practice, including both instrumental designs and experimental procedures, which aimed at maintaining the eye's sensibility in brightness comparison.

  17. Crowding of biological motion stimuli.

    PubMed

    Ikeda, Hanako; Watanabe, Katsumi; Cavanagh, Patrick

    2013-01-01

    It is difficult to identify a target in the peripheral visual field when it is flanked by distractors. In the present study, we investigated this "crowding" effect for biological motion stimuli. Three walking biological motion stimuli were presented horizontally in the periphery with various distances between them, and observers reported the walking direction of the central figure. When the inter-walker distance was small, discriminating the direction became difficult. Moreover, the reported direction for the central target was not simply noisier, but reflected a degree of pooling of the three directions from the target and two flankers. However, when the two flanking distractors were scrambled walking biological motion stimuli, crowding was not seen. This result suggests that the crowding of biological motion stimuli occurs at a high-level of motion perception.

  18. Trifid reflection nebulae

    SciTech Connect

    Lynds, B.T.; Oneil, E.J. Jr.

    1986-11-01

    CCD frames of reflected starlight in the blue continuum, 4693 A, associated with the Trifid emission nebulae have been used to deduce the optical depth, albedo, and phase function of the dust grains. The northern component of the Trifid, centered on the supergiant HD 164514, apparently has grains of higher albedo than those associated with the southern O star HD 164492A. IRAS data add further arguments to the assumption that the northern reflection nebula is illuminated by the supergiant, and that the dust grains surrounding the O star have a higher grain temperature. The entire complex is probably part of the Sgr OB I association and the short lifetime of the association puts constraints on the manner in which the properties of the grains can be modified by associated young stars. 26 references.

  19. The Trifid reflection nebulae

    NASA Astrophysics Data System (ADS)

    Lynds, Beverly T.; Oneil, Earl J., Jr.

    1986-11-01

    CCD frames of reflected starlight in the blue continuum, λ 4693, associated with the Trifid emission nebulae have been used to deduce the optical depth, albedo, and phase function of the dust grains. The northern component of the Trifid, centered on the supergiant HD 164514, apparently has grains of higher albedo than those associated with the southern O star HD 164492A. IRAS data add further arguments to the assumption that the northern reflection nebula is illuminated by the supergiant and that the dust grains surrounding the O star have a higher grain temperature. The entire complex is probably part of the Sgr OB I association and the short lifetime of the association puts constraints on the manner in which the properties of the grains can be modified by associated young stars.

  20. Computational Biology in microRNA.

    PubMed

    Li, Yue; Zhang, Zhaolei

    2015-01-01

    MicroRNA (miRNA) is a class of small endogenous noncoding RNA species, which regulate gene expression post-transcriptionally by forming imperfect base-pair at the 3' untranslated regions of the messenger RNAs. Since the 1993 discovery of the first miRNA let-7 in worms, a vast number of studies have been dedicated to functionally characterizing miRNAs with a special emphasis on their roles in cancer. A single miRNA can potentially target ∼ 400 distinct genes, and there are over a 1000 distinct endogenous miRNAs in the human genome. Thus, miRNAs are likely involved in virtually all biological processes and pathways including carcinogenesis. However, functionally characterizing miRNAs hinges on the accurate identification of their mRNA targets, which has been a challenging problem due to imperfect base-pairing and condition-specific miRNA regulatory dynamics. In this review, we will survey the current state-of-the-art computational methods to predict miRNA targets, which are divided into three main categories: (1) sequence-based methods that primarily utilizes the canonical seed-match model, evolutionary conservation, and binding energy; (2) expression-based target prediction methods using the increasingly available miRNA and mRNA expression data measured for the same sample; and (3) network-based method that aims identify miRNA regulatory modules, which reflect their synergism in conferring a global impact to the biological system of interest. We hope that the review will serve as a good reference to the new comers to the ever-growing miRNA research field as well as veterans, who would appreciate the detailed review on the technicalities, strength, and limitations of each representative computational method.

  1. Sidewall reflections in streamlined missile radomes

    NASA Astrophysics Data System (ADS)

    Huddleston, G. K.; Crockett, M. P.

    Predicted and measured patterns are presented which serve as dramatic illustrations of the 'LLoyd's mirror' effect, in which direct and reflected waves generate interference in the form of unexpected peaks and nulls in radome-enclosed receiving antenna patterns. These effects are associated with a low-gain antenna which is offset from the centerline of a streamlined tangent ogive radome intended for high-speed missile applications. Since many other airborne radome applications require that more than one antenna be located inside a radome cavity, these data furnish insight into what may be expected for offset-antenna locations. The geometrical optics approximations used to obtain reflected wave contributions are noted to be exceptionally accurate foir the small antennas considered.

  2. 77 FR 3800 - Accurate NDE & Inspection, LLC; Confirmatory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... COMMISSION Accurate NDE & Inspection, LLC; Confirmatory Order In the Matter of Accurate NDE & Docket: 150... request ADR with the NRC in an attempt to resolve issues associated with this matter. In response, on August 9, 2011, Accurate NDE requested ADR to resolve this matter with the NRC. On September 28,...

  3. Clinical linguistics: conversational reflections.

    PubMed

    Crystal, David

    2013-04-01

    This is a report of the main points I made in an informal "conversation" with Paul Fletcher and the audience at the 14th ICPLA conference in Cork. The observations arose randomly, as part of an unstructured 1-h Q&A, so they do not provide a systematic account of the subject, but simply reflect the issues which were raised by the conference participants during that time.

  4. Landsat surface reflectance data

    USGS Publications Warehouse

    ,

    2015-01-01

    Landsat satellite data have been produced, archived, and distributed by the U.S. Geological Survey since 1972. Users rely on these data for historical study of land surface change and require consistent radiometric data processed to the highest science standards. In support of the guidelines established through the Global Climate Observing System, the U.S. Geological Survey has embarked on production of higher-level Landsat data products to support land surface change studies. One such product is Landsat surface reflectance.

  5. Method and apparatus for characterizing reflected ultrasonic pulses

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1991-01-01

    The invention is a method of and apparatus for characterizing the amplitudes of a sequence of reflected pulses R1, R2, and R3 by converting them into corresponding electric signals E1, E2, and E3 to substantially the same value during each sequence thereby restoring the reflected pulses R1, R2, and R3 to their initial reflection values by timing means, an exponential generator, and a time gain compensator. Envelope and baseline reject circuits permit the display and accurate location of the time spaced sequence of electric signals having substantially the same amplitude on a measurement scale on a suitable video display or oscilloscope.

  6. Partial reflections of radio waves from the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Tanenbaum, S. B.

    1972-01-01

    The addition of phase difference measurements to partial reflection experiments is discussed, and some advantages of measuring electron density this way are pointed out. The additional information obtained reduces the requirement for an accurate predetermination of collision frequency. Calculations are also made to estimate the errors expected in partial-reflection experiments due to the assumption of Fresnel reflection and to the neglect of coupling between modes. In both cases, the errors are found to be of the same order as known errors in the measurements due to current instrumental limitations.

  7. Predicting genetic interactions with random walks on biological networks

    PubMed Central

    Chipman, Kyle C; Singh, Ambuj K

    2009-01-01

    Background Several studies have demonstrated that synthetic lethal genetic interactions between gene mutations provide an indication of functional redundancy between molecular complexes and pathways. These observations help explain the finding that organisms are able to tolerate single gene deletions for a large majority of genes. For example, system-wide gene knockout/knockdown studies in S. cerevisiae and C. elegans revealed non-viable phenotypes for a mere 18% and 10% of the genome, respectively. It has been postulated that the low percentage of essential genes reflects the extensive amount of genetic buffering that occurs within genomes. Consistent with this hypothesis, systematic double-knockout screens in S. cerevisiae and C. elegans show that, on average, 0.5% of tested gene pairs are synthetic sick or synthetic lethal. While knowledge of synthetic lethal interactions provides valuable insight into molecular functionality, testing all combinations of gene pairs represents a daunting task for molecular biologists, as the combinatorial nature of these relationships imposes a large experimental burden. Still, the task of mapping pairwise interactions between genes is essential to discovering functional relationships between molecular complexes and pathways, as they form the basis of genetic robustness. Towards the goal of alleviating the experimental workload, computational techniques that accurately predict genetic interactions can potentially aid in targeting the most likely candidate interactions. Building on previous studies that analyzed properties of network topology to predict genetic interactions, we apply random walks on biological networks to accurately predict pairwise genetic interactions. Furthermore, we incorporate all published non-interactions into our algorithm for measuring the topological relatedness between two genes. We apply our method to S. cerevisiae and C. elegans datasets and, using a decision tree classifier, integrate diverse

  8. IKK Biology

    PubMed Central

    Liu, Fei; Xia, Yifeng; Parker, Aaron S.; Verma, Inder M.

    2012-01-01

    Summary The inhibitor of nuclear factor-κB (IκB) kinase (IKK) complex is the master regulator of the NF-κB signaling pathway. The activation of the IKK complex is a tightly regulated, highly stimulus-specific, and target-specific event that is essential for the plethora of functions attributed to NF-κB. More recently, NF-κB independent roles of IKK members have brought increased complexity to its biological function. This review highlights some of the major advances in the studies of the process of IKK activation and the biological roles of IKK family members, with a focus on NF-κB independent functions. Understanding these complex processes is essential for targeting IKK for therapeutics. PMID:22435559

  9. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  10. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  11. Teaching Reflection Seismic Processing

    NASA Astrophysics Data System (ADS)

    Forel, D.; Benz, T.; Pennington, W. D.

    2004-12-01

    Without pictures, it is difficult to give students a feeling for wave propagation, transmission, and reflection. Even with pictures, wave propagation is still static to many. However, when students use and modify scripts that generate wavefronts and rays through a geologic model that they have modified themselves, we find that students gain a real feeling for wave propagation. To facilitate teaching 2-D seismic reflection data processing (from acquisition through migration) to our undergraduate and graduate Reflection Seismology students, we use Seismic Un*x (SU) software. SU is maintained and distributed by Colorado School of Mines, and it is freely available (at www.cwp.mines.edu/cwpcodes). Our approach includes use of synthetic and real seismic data, processing scripts, and detailed explanation of the scripts. Our real data were provided by Gregory F. Moore of the University of Hawaii. This approach can be used by any school at virtually no expense for either software or data, and can provide students with a sound introduction to techniques used in processing of reflection seismic data. The same software can be used for other purposes, such as research, with no additional expense. Students who have completed a course using SU are well equipped to begin using it for research, as well. Scripts for each processing step are supplied and explained to the students. Our detailed description of the scripts means students do not have to know anything about SU to start. Experience with the Unix operating system is preferable but not necessary -- our notes include Computer Hints to help the beginner work with the Unix operating system. We include several examples of synthetic model building, acquiring shot gathers through synthetic models, sorting shot gathers to CMP gathers, gain, 1-D frequency filtering, f-k filtering, deconvolution, semblance displays and velocity analysis, flattening data (NMO), stacking the CMPs, and migration. We use two real (marine) data sets. One

  12. Crusts: biological

    USGS Publications Warehouse

    Belnap, Jayne; Elias, Scott A.

    2013-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  13. Marine biology

    SciTech Connect

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  14. The biology of growth.

    PubMed

    Cameron, Noël

    2008-01-01

    Variability in human growth is not only in the timing of critical periods within the whole pattern of growth but also in the magnitude and rate of change coincident with the period. In addition, for a radical change in, e.g., height to occur there must also be changes in the anatomical parts that make up total height and these changes are themselves variable. Acceleration, for instance in height velocity, may be the result of different changes in the length of the spine, femur, and/or tibia, each of which may contribute differently to the total process. In addition, not only may the process be variable within a single child, it may also be variable between different children of the same or opposite sexes. The mathematical and statistical problems arising from the seemingly simple process of an increase in height are thus complex. In order to review the biology of human growth this contribution will discuss the principles of growth that are fundamental to our ability to interpret the response of the child to factors that might modify the genetically programmed pattern of growth from conception to maturity. In this way the biology of human growth will be described by a set of phenomena that reflect the actions of biological control mechanisms. These mechanisms are subject to genetic and environmental influences and their expression is characterised by variation in timing, magnitude, and duration. PMID:18196941

  15. Simulation Tool for GNSS Ocean Surface Reflections

    NASA Astrophysics Data System (ADS)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-04-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surface heights, and patterns of the general ocean circulation. In the reflection zone the measurements may derive parameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have shown such results leading. The coming satellite missions, CYGNSS, COSMIC-2, and GEROS on the International Space Station, are focusing on GNSS ocean reflection measurements. Thus, simulation studies highlighting the assumptions for the data retrievals and the precision and the accuracy of such measurements are of interest for assessing the observational method. The theory of propagation of microwaves in the atmosphere is well established, and methods for propagation modeling range from ray tracing to numerical solutions to the wave equation. Besides ray tracing there are propagation methods that use mode theory and a finite difference solution to the parabolic equation. The presented propagator is based on the solution of the parabolic equation. The parabolic equation in our simulator is solved using the split-step sine transformation. The Earth's surface is modeled with the use of an impedance model. The value of the Earth impedance is given as a function of the range along the surface of the Earth. This impedance concept gives an accurate lower boundary condition in the determination of the electromagnetic field, and makes it possible to simulate reflections and the effects of transitions between different mediums. A semi-isotropic Philips spectrum is used to represent the air-sea interaction. Simulated GPS ocean surface reflections will be presented and discussed based on different ocean characteristics. The spectra of the simulated surface reflections will be analyzed

  16. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  17. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  18. Global, long-term surface reflectance records from Landsat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global, long-term monitoring of changes in Earth’s land surface requires quantitative comparisons of satellite images acquired under widely varying atmospheric conditions. Although physically based estimates of surface reflectance (SR) ultimately provide the most accurate representation of Earth’s s...

  19. Seismic reflection imaging, accounting for primary and multiple reflections

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel

    2015-04-01

    Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are

  20. Accurate CpG and non-CpG cytosine methylation analysis by high-throughput locus-specific pyrosequencing in plants.

    PubMed

    How-Kit, Alexandre; Daunay, Antoine; Mazaleyrat, Nicolas; Busato, Florence; Daviaud, Christian; Teyssier, Emeline; Deleuze, Jean-François; Gallusci, Philippe; Tost, Jörg

    2015-07-01

    Pyrosequencing permits accurate quantification of DNA methylation of specific regions where the proportions of the C/T polymorphism induced by sodium bisulfite treatment of DNA reflects the DNA methylation level. The commercially available high-throughput locus-specific pyrosequencing instruments allow for the simultaneous analysis of 96 samples, but restrict the DNA methylation analysis to CpG dinucleotide sites, which can be limiting in many biological systems. In contrast to mammals where DNA methylation occurs nearly exclusively on CpG dinucleotides, plants genomes harbor DNA methylation also in other sequence contexts including CHG and CHH motives, which cannot be evaluated by these pyrosequencing instruments due to software limitations. Here, we present a complete pipeline for accurate CpG and non-CpG cytosine methylation analysis at single base-resolution using high-throughput locus-specific pyrosequencing. The devised approach includes the design and validation of PCR amplification on bisulfite-treated DNA and pyrosequencing assays as well as the quantification of the methylation level at every cytosine from the raw peak intensities of the Pyrograms by two newly developed Visual Basic Applications. Our method presents accurate and reproducible results as exemplified by the cytosine methylation analysis of the promoter regions of two Tomato genes (NOR and CNR) encoding transcription regulators of fruit ripening during different stages of fruit development. Our results confirmed a significant and temporally coordinated loss of DNA methylation on specific cytosines during the early stages of fruit development in both promoters as previously shown by WGBS. The manuscript describes thus the first high-throughput locus-specific DNA methylation analysis in plants using pyrosequencing.

  1. Accurate CpG and non-CpG cytosine methylation analysis by high-throughput locus-specific pyrosequencing in plants.

    PubMed

    How-Kit, Alexandre; Daunay, Antoine; Mazaleyrat, Nicolas; Busato, Florence; Daviaud, Christian; Teyssier, Emeline; Deleuze, Jean-François; Gallusci, Philippe; Tost, Jörg

    2015-07-01

    Pyrosequencing permits accurate quantification of DNA methylation of specific regions where the proportions of the C/T polymorphism induced by sodium bisulfite treatment of DNA reflects the DNA methylation level. The commercially available high-throughput locus-specific pyrosequencing instruments allow for the simultaneous analysis of 96 samples, but restrict the DNA methylation analysis to CpG dinucleotide sites, which can be limiting in many biological systems. In contrast to mammals where DNA methylation occurs nearly exclusively on CpG dinucleotides, plants genomes harbor DNA methylation also in other sequence contexts including CHG and CHH motives, which cannot be evaluated by these pyrosequencing instruments due to software limitations. Here, we present a complete pipeline for accurate CpG and non-CpG cytosine methylation analysis at single base-resolution using high-throughput locus-specific pyrosequencing. The devised approach includes the design and validation of PCR amplification on bisulfite-treated DNA and pyrosequencing assays as well as the quantification of the methylation level at every cytosine from the raw peak intensities of the Pyrograms by two newly developed Visual Basic Applications. Our method presents accurate and reproducible results as exemplified by the cytosine methylation analysis of the promoter regions of two Tomato genes (NOR and CNR) encoding transcription regulators of fruit ripening during different stages of fruit development. Our results confirmed a significant and temporally coordinated loss of DNA methylation on specific cytosines during the early stages of fruit development in both promoters as previously shown by WGBS. The manuscript describes thus the first high-throughput locus-specific DNA methylation analysis in plants using pyrosequencing. PMID:26072424

  2. Do changes in biomarkers from space radiation reflect dose or risk?

    NASA Astrophysics Data System (ADS)

    Brooks, A.

    . Following low-LET radiation exposure, the biological response often does not increase as a linear function of dose. Thus, the RBE and the subsequent risk predicted is dependent on the dose where the two radiation types are compared. To avoid this problem the standard procedure is to use the dose and dose-rate response and compare the linear components of the two r diation exposures. Important riska comparisons are often done at very low doses, where the reference radiation may either increase or decrease as a function of dose. Since the low-LET exposure often does not produce a significant change above the background level of damage, the derived RBE factors can become very large.Studies using micronuclei as biomarkers following exposure to mono-energetic neutrons, x-rays and gamma rays delivered at very low doses (up to 0.10 Gy) demonstrated the differences in the shape of each dose-response relationship and the problems associated with the RBE. These studies show that RBE may not accurately reflect the hazards or risk associated with space radiation exposure. As additional measures of biological change are developed, it may become possible to base risk on biological change and not on changes in radiation doses. Research funded through grants # DE-FG03-99ER62787 from DOE Office of Biological and Environmental Research and RO1 CA74053-01 from NIH/NASA to Washington State University Tri-Cities.

  3. Accurate Classification of RNA Structures Using Topological Fingerprints

    PubMed Central

    Li, Kejie; Gribskov, Michael

    2016-01-01

    While RNAs are well known to possess complex structures, functionally similar RNAs often have little sequence similarity. While the exact size and spacing of base-paired regions vary, functionally similar RNAs have pronounced similarity in the arrangement, or topology, of base-paired stems. Furthermore, predicted RNA structures often lack pseudoknots (a crucial aspect of biological activity), and are only partially correct, or incomplete. A topological approach addresses all of these difficulties. In this work we describe each RNA structure as a graph that can be converted to a topological spectrum (RNA fingerprint). The set of subgraphs in an RNA structure, its RNA fingerprint, can be compared with the fingerprints of other RNA structures to identify and correctly classify functionally related RNAs. Topologically similar RNAs can be identified even when a large fraction, up to 30%, of the stems are omitted, indicating that highly accurate structures are not necessary. We investigate the performance of the RNA fingerprint approach on a set of eight highly curated RNA families, with diverse sizes and functions, containing pseudoknots, and with little sequence similarity–an especially difficult test set. In spite of the difficult test set, the RNA fingerprint approach is very successful (ROC AUC > 0.95). Due to the inclusion of pseudoknots, the RNA fingerprint approach both covers a wider range of possible structures than methods based only on secondary structure, and its tolerance for incomplete structures suggests that it can be applied even to predicted structures. Source code is freely available at https://github.rcac.purdue.edu/mgribsko/XIOS_RNA_fingerprint. PMID:27755571

  4. Reflections on Rodent Implantation.

    PubMed

    Cha, Jeeyeon M; Dey, Sudhansu K

    2015-01-01

    Embryo implantation is a complex process involving endocrine, paracrine, autocrine, and juxtacrine modulators that span cell-cell and cell-matrix interactions. The quality of implantation is predictive for pregnancy success. Earlier observational studies formed the basis for genetic and molecular approaches that ensued with emerging technological advances. However, the precise sequence and details of the molecular interactions involved have yet to be defined. This review reflects briefly on aspects of our current understanding of rodent implantation as a tribute to Roger Short's lifelong contributions to the field of reproductive physiology. PMID:26450495

  5. Context, Cognition, and Biology in Applied Behavior Analysis.

    ERIC Educational Resources Information Center

    Morris, Edward K.

    Behavior analysts are having their professional identities challenged by the roles that cognition and biology are said to play in the conduct and outcome of applied behavior analysis and behavior therapy. For cogniphiliacs, cognition and biology are central to their interventions because cognition and biology are said to reflect various processes,…

  6. Reflected Deck Plan, Reflected Roof Plan, Deck Plan Bridgeport ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Reflected Deck Plan, Reflected Roof Plan, Deck Plan - Bridgeport Covered Bridge, Spanning South Fork of Yuba River at bypassed section of Pleasant Valley Road (originally Virginia Turnpike) in South Yuba River State Park , Bridgeport, Nevada County, CA

  7. Longitudinal Section AA; Reflected Deck Plan; Reflected Ceiling Plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Longitudinal Section A-A; Reflected Deck Plan; Reflected Ceiling Plan - Shoreham Railroad Bridge, Former Addison County Railroad (later, Rutland Railroad, Addison Branch), spanning Lemon Fair River above Richville Pond, west of East Shoreham Road, Shoreham, Addison County, VT

  8. Learning about reflection.

    PubMed

    Smith, A

    1998-10-01

    An understanding of the nature and function of reflection in recognizing and developing nursing knowledge is a key concern. This paper describes a longitudinal study investigating the ways in which undergraduate student nurses reflected about practice as they progressed through a 3-year programme in adult nursing. The method was qualitative, with data gained from written critical incidents based on practice experiences and classroom discussions, and analysed using the constant comparative method. Findings revealed the range of issues students perceived as most important, and to some extent, changes in levels of thinking. A strong theme occurring throughout related to the complexity of learning what it means to be a professional and, in consequence, what they learn about themselves. Students' preoccupation with emotional aspects of learning and nursing care was evident. They had difficulty in disentangling 'personal' and 'professional' involvement but later data indicates that they had begun to learn to differentiate between involvement as a general characteristic of nursing practice and a overwhelming personal attachment. They generally use their own and each others' experiences to examine meaning, in preference to formal theoretical explanations although there is evidence students moved from acceptance of information to the questioning and critiquing of arguments and professional assumptions, particularly concerning their relevance and appropriateness for practice.

  9. Quantitative Hyperspectral Reflectance Imaging

    PubMed Central

    Klein, Marvin E.; Aalderink, Bernard J.; Padoan, Roberto; de Bruin, Gerrit; Steemers, Ted A.G.

    2008-01-01

    Hyperspectral imaging is a non-destructive optical analysis technique that can for instance be used to obtain information from cultural heritage objects unavailable with conventional colour or multi-spectral photography. This technique can be used to distinguish and recognize materials, to enhance the visibility of faint or obscured features, to detect signs of degradation and study the effect of environmental conditions on the object. We describe the basic concept, working principles, construction and performance of a laboratory instrument specifically developed for the analysis of historical documents. The instrument measures calibrated spectral reflectance images at 70 wavelengths ranging from 365 to 1100 nm (near-ultraviolet, visible and near-infrared). By using a wavelength tunable narrow-bandwidth light-source, the light energy used to illuminate the measured object is minimal, so that any light-induced degradation can be excluded. Basic analysis of the hyperspectral data includes a qualitative comparison of the spectral images and the extraction of quantitative data such as mean spectral reflectance curves and statistical information from user-defined regions-of-interest. More sophisticated mathematical feature extraction and classification techniques can be used to map areas on the document, where different types of ink had been applied or where one ink shows various degrees of degradation. The developed quantitative hyperspectral imager is currently in use by the Nationaal Archief (National Archives of The Netherlands) to study degradation effects of artificial samples and original documents, exposed in their permanent exhibition area or stored in their deposit rooms.

  10. Monitoring Earth's Climate with Shortwave Hyperspectral Reflectance

    NASA Astrophysics Data System (ADS)

    Pilewskie, Peter

    The Sun provides nearly all the energy that fuels the dynamical, chemical, and biological processes in the Earth system. Absorbed solar radiation, the difference between incoming and reflected sunlight, defines Earth’s equilibrium temperature and, along with the emitted infrared radiation, determines the climate state of the planet. The transfer of solar radiation through the atmosphere is modulated by wavelength-specific interactions that are unique for given surface types and the intervening atmospheric gases and condensed species. Reflected radiation that exits the Earth’s atmosphere carries with it the complex fingerprint of the Earth system state. How this signal varies temporally, spatially, and spectrally is a measure of those processes within the Earth system that affect climate change. Despite its importance to the basic energy balance between Earth and the solar-terrestrial environment in which it resides, a precise record of the nature of reflected solar spectral radiation over all climate-relevant time scales remains elusive. A primary goal of a climate observing system is to obtain climate benchmark data records with sufficient accuracy for identifying climate variability on decadal time scales and longer, and with sufficient information content to attribute change to underlying causes. Until recently, detecting climate change signatures in reflected solar radiance has been hindered by instrument accuracy and stability, insufficient spectral coverage and resolution, and inherent sampling limitations from low-Earth orbit observations. This talk will discuss the challenges to monitoring the shortwave energy budget from space. I will present new studies on methods to separate the various contributions in the top-of-atmosphere outgoing shortwave radiance using existing satellite (SCIAMACHY) data and explore methods to enhance trend detection in hyperspectral reflectance time series. Finally, I look ahead to the requirements for a climate observing

  11. Reflection: Journals and Reflective Questions: A Strategy for Professional Learning

    ERIC Educational Resources Information Center

    Clarke, Maggie

    2004-01-01

    Reflective journals have been used widely in teacher education programs to promote reflective thinking (Freidus, 1998; Carter & Francis, 2000; Yost, Senter & Forlenzo-Bailey, 2000). Smyth (1992) advocated that posing a series of questions to be answered in written journals could enhance reflective thinking. It was for this reason that…

  12. Reflecting on Reflective Practice: (Re)Visiting Dewey and Schon

    ERIC Educational Resources Information Center

    Farrell, Thomas S. C.

    2012-01-01

    Since the author began work in reflective practice, at first informally in the late 1970s and then more formally in the mid-1980s, he has always looked at reflective practice as a compass of sorts to guide teachers when they may be seeking direction as to what they are doing in their classrooms. The metaphor of reflection as a compass enables…

  13. Evaluation of the Reflection Coefficient of Microstrip Elements for Reflectarray Antennas

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    Basis functions were studied and identified that provide efficient and accurate solutions for the induced patch currents and the reflection phase in microstrip reflect arrays. The integral equation of an infinite array of microstrip elements in the form of patches or crossed dipoles excited by a uniform plane wave is solved by the method-of-moments. Efficient choices of entire domain basis functions that yield accurate results have been described.

  14. Ultraviolet plumage reflectance distinguishes sibling bird species.

    PubMed

    Bleiweiss, Robert

    2004-11-23

    Realistic studies of plumage color need to consider that many birds can see near-UV light, which normal humans cannot perceive. Although previous investigations have revealed that UV-based plumage reflectance is an important component of various intraspecific social signals, the contribution of UV signals to inter-specific divergence and speciation in birds remains largely unexplored. I describe an avian example of an interspecific phenomenon in which related sympatric species that appear similar to humans (sibling species) differ dramatically in the UV. Both UV video images and physical reflectance spectra indicate that the dorsal plumage of the tanager Anisognathus notabilis has a strong UV-limited reflectance band that readily distinguishes this species from its sibling congener Anisognathus flavinuchus. The main human-visible distinction between A. notabilis (olive back) and coexisting A. flavinuchus (black back) also occurs among different geographic populations of A. flavinuchus. Notably, however, olive- and black-backed taxa interbreed (differentiated populations of A. flavinuchus) unless the additional UV distinction is present (A. notabilis vs. A. flavinuchus). Thus, UV-based reflectance can be an essential component of plumage divergence that relates to reproductive isolation, a key attribute of biological species.

  15. Depth-resolved measurements with elliptically polarized reflectance spectroscopy

    PubMed Central

    Bailey, Maria J.; Sokolov, Konstantin

    2016-01-01

    The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed. PMID:27446712

  16. Off-axis reflective optical apparatus

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor); Leary, David F. (Inventor); Mammini, Paul V. (Inventor)

    2005-01-01

    Embodiments of the present invention are directed to a simple apparatus and a convenient and accurate method of mounting the components to form an off-axis reflective optical apparatus such as a collimator. In one embodiment, an off-axis reflective optical apparatus comprises a mounting block having a ferrule holder support surface and an off-axis reflector support surface which is generally perpendicular to the ferrule holder support surface. An optical reflector is mounted on the off-axis reflector support surface and has a reflected beam centerline. The optical reflector has a conic reflective surface and a conic center. A ferrule holder is mounted on the ferrule holder support surface. The ferrule holder provides a ferrule for coupling to an optical fiber and orienting a fiber tip of the optical fiber along a fiber axis toward the optical reflector. The fiber axis is nonparallel to the reflected beam centerline. Prior to mounting the optical reflector to the off-axis reflector support surface and prior to mounting the ferrule holder to the ferrule holder support surface, the optical reflector is movable on the off-axis reflector surface and the ferrule holder is movable on the ferrule holder support surface to align the conic center of the optical reflector with respect to the fiber tip of the optical fiber, and the apparatus has at least one of the following features: (1) the optical reflector is movable on the off-axis reflector support surface to adjust a focus of the fiber tip with respect to the optical reflector, and (2) the ferrule holder is movable on the ferrule holder support surface to adjust the focus of the fiber tip with respect to the optical reflector.

  17. An improved thin film approximation to accurately determine the optical conductivity of graphene from infrared transmittance

    SciTech Connect

    Weber, J. W.; Bol, A. A.; Sanden, M. C. M. van de

    2014-07-07

    This work presents an improved thin film approximation to extract the optical conductivity from infrared transmittance in a simple yet accurate way. This approximation takes into account the incoherent reflections from the backside of the substrate. These reflections are shown to have a significant effect on the extracted optical conductivity and hence on derived parameters as carrier mobility and density. By excluding the backside reflections, the error for these parameters for typical chemical vapor deposited (CVD) graphene on a silicon substrate can be as high as 17% and 45% for the carrier mobility and density, respectively. For the mid- and near-infrared, the approximation can be simplified such that the real part of the optical conductivity is extracted without the need for a parameterization of the optical conductivity. This direct extraction is shown for Fourier transform infrared (FTIR) transmittance measurements of CVD graphene on silicon in the photon energy range of 370–7000 cm{sup −1}. From the real part of the optical conductivity, the carrier density, mobility, and number of graphene layers are determined but also residue, originating from the graphene transfer, is detected. FTIR transmittance analyzed with the improved thin film approximation is shown to be a non-invasive, easy, and accurate measurement and analysis method for assessing the quality of graphene and can be used for other 2-D materials.

  18. Reflections on conformal spectra

    NASA Astrophysics Data System (ADS)

    Kim, Hyungrok; Kravchuk, Petr; Ooguri, Hirosi

    2016-04-01

    We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions Δ0 of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite Δ0 as well as for large Δ0. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function.

  19. Nongray gas analyses for reflecting walls utilizing a flux technique

    NASA Technical Reports Server (NTRS)

    Menart, J. A.; Lee, Haeok S.

    1993-01-01

    A flux formulation for a planar slab of molecular gas radiation bounded by diffuse reflecting walls is developed. While this formulation is limited to the planar geometry, it is useful for studying approximations necessary in modeling nongray radiative heat transfer. The governing equations are derived by considering the history of multiple reflections between the walls. Accurate solutions are obtained by explicitly accounting for a finite number of reflections and approximating the spectral effects of the remaining reflections. Four approximate methods are presented and compared using a single absorption band of H2O. All four methods reduce to an identical zeroth-order formulation, which accounts for all reflections approximately but does handle nonreflected radiation correctly. A single absorption band of CO2 is also considered using the best-behaved approximation for higher orders. A zeroth-order formulation is sufficient to predict the radiative transfer accurately for many cases considered. For highly reflecting walls, higher order solutions are necessary for better accuracy. Including all the important bands of H2O, the radiative source distributions are also obtained for two different temperature and concentration profiles.

  20. Ocean color remote sensing using polarization properties of reflected sunlight

    NASA Technical Reports Server (NTRS)

    Frouin, R.; Pouliquen, E.; Breon, F.-M.

    1994-01-01

    The effects of the atmosphere and surface on sunlight backscattered to space by the ocean may be substantially reduced by using the unpolarized component of reflectance instead of total reflectance. At 450 nm, a wavelength of interest in ocean color remote sensing, and for typical conditions, 45% of the unpolarized reflectance may originate from the water body instead of 20% of the total reflectance, which represents a gain of a factor 2.2 in useful signal for water composition retrieval. The best viewing geometries are adjacent to the glitter region; they correspond to scattering angles around 100 deg, but they may change slightly depending on the polarization characteristics of the aerosols. As aerosol optical thickness increases, the atmosphere becomes less efficient at polarizing sunlight, and the enhancement of the water body contribution to unpolarized reflectance is reduced. Since the perturbing effects are smaller on unpolarized reflectance, at least for some viewing geometries, they may be more easily corrected, leading to a more accurate water-leaving signal and, therefore, more accurate estimates of phytoplankton pigment concentration.

  1. Biological membranes

    PubMed Central

    Watson, Helen

    2015-01-01

    Biological membranes allow life as we know it to exist. They form cells and enable separation between the inside and outside of an organism, controlling by means of their selective permeability which substances enter and leave. By allowing gradients of ions to be created across them, membranes also enable living organisms to generate energy. In addition, they control the flow of messages between cells by sending, receiving and processing information in the form of chemical and electrical signals. This essay summarizes the structure and function of membranes and the proteins within them, and describes their role in trafficking and transport, and their involvement in health and disease. Techniques for studying membranes are also discussed. PMID:26504250

  2. Structures for Facilitating Student Reflection

    ERIC Educational Resources Information Center

    Grossman, Robert

    2009-01-01

    The goal of this article is to describe a continuum of levels of reflection. It briefly focuses on Deanna Kuhn's research into the development of scientific thinking and Robert Kegan's Object-Subject Theory of Development applied to the problems of inspiring students to be able to reflect. Assignments for improving students' ability to reflect are…

  3. Reflections From a Fresnel Lens

    ERIC Educational Resources Information Center

    Keeports, David

    2005-01-01

    Reflection of light by a convex Fresnel lens gives rise to two distinct images. A highly convex inverted real reflective image forms on the object side of the lens, while an upright virtual reflective image forms on the opposite side of the lens. I describe here a set of laser experiments performed upon a Fresnel lens. These experiments provide…

  4. Reflective writing and nursing education.

    PubMed

    Craft, Melissa

    2005-02-01

    Reflective writing is a valued tool for teaching nursing students and for documentation, support, and generation of nursing knowledge among experienced nurses. Expressive or reflective writing is becoming widely accepted in both professional and lay publications as a mechanism for coping with critical incidents. This article explores reflective writing as a tool for nursing education.

  5. Deuteration in Biological Neutron Reflectometry.

    PubMed

    Heinrich, Frank

    2016-01-01

    Neutron reflectometry (NR) is uniquely positioned in structural biology, because of its ability to characterize biomolecular interfacial architectures like lipid membranes and membrane-associated proteins nondestructively and in their native environment. Mimicking biological processes, samples can be manipulated and their structural response can be measured. Specific deuteration is an integral part of biological NR as it is essential for resolving, for example, individual components of membrane-bound protein-protein complexes. Data analysis techniques have been developed in the past decade that extract the maximum structural detail from reflectivity data obtained from samples with complex deuteration schemes while avoiding overinterpretation. This is achieved by employing robust methods for the determination of modeling uncertainties. Integrative modeling approaches for NR are emerging as an essential part of the technique. PMID:26791980

  6. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  7. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden

  8. Bidirectional reflectance of zinc oxide

    NASA Technical Reports Server (NTRS)

    Scott, R.

    1973-01-01

    This investigation was undertaken to determine original and useful information about the bidirection reflectance of zinc oxide. The bidirectional reflectance will be studied for the spectra between .25-2.5 microns and the hemisphere above the specimen. The following factors will be considered: (1) surface conditions; (2) specimen preparation; (3) specimen substrate, (4) polarization; (5) depolarization; (6) wavelength; and (7) angles of incident and reflection. The bidirectional reflectance will be checked by experimentally determined angular hemispherical measurements or hemispherical measurements will be used to obtain absolute bidirectional reflectance.

  9. Quantum chemical calculations predict biological function: the case of T cell receptor interaction with a peptide/MHC class I

    PubMed Central

    Antipas, Georgios S. E.; Germenis, Anastasios E.

    2015-01-01

    A combination of atomic correlation statistics and quantum chemical calculations are shown to predict biological function. In the present study, various antigenic peptide-Major Histocompatibility Complex (pMHC) ligands with near-identical stereochemistries, in complexation with the same T cell receptor (TCR), were found to consistently induce distinctly different quantum chemical behavior, directly dependent on the peptide's electron spin density and intrinsically expressed by the protonation state of the peptide's N-terminus. Furthermore, the cumulative coordination difference of any variant in respect to the native peptide was found to accurately reflect peptide biological function and immerges as the physical observable which is directly related to the immunological end-effect of pMHC-TCR interaction. PMID:25713797

  10. Quantum chemical calculations predict biological function: The case of T cell receptor interaction with a peptide/MHC class I

    NASA Astrophysics Data System (ADS)

    Antipas, Georgios S. E.; Germenis, Anastasios

    2015-02-01

    A combination of atomic correlation statistics and quantum chemical calculations are shown to predict biological function. In the present study, various antigenic peptide-Major Histocompatibility Complex (pMHC) ligands with near-identical stereochemistries, in complexation with the same T cell receptor (TCR), were found to consistently induce distinctly different quantum chemical behavior, directly dependent on the peptide’s electron spin density and intrinsically expressed by the protonation state of the peptide’s N-terminus. Furthermore, the cumulative coordination difference of any variant in respect to the native peptide was found to accurately reflect peptide biological function and immerges as the physical observable which is directly related to the immunological end-effect of pMHC-TCR interaction.

  11. Structural Biology Fact Sheet

    MedlinePlus

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  12. The Experience of Addiction as Told by the Addicted: Incorporating Biological Understandings into Self-Story

    PubMed Central

    Hammer, Rachel R; Dingel, Molly J; Ostergren, Jenny E; Nowakowski, Katherine E; Koenig, Barbara A

    2012-01-01

    How do the addicted view addiction against the framework of formal theories that attempt to explain the condition? In this empirical paper, we report on the lived experience of addiction based on 63 semi-structured, open-ended interviews with individuals in treatment for alcohol and nicotine abuse at five sites in Minnesota. Using qualitative analysis, we identified four themes that provide insights into understanding how people who are addicted view their addiction, with particular emphasis on the biological model. More than half of our sample articulated a biological understanding of addiction as a disease. Themes did not cluster by addictive substance used; however, biological understandings of addiction did cluster by treatment center. Biological understandings have the potential to become dominant narratives of addiction in the current era. Though the desire for a “unified theory” of addiction seems curiously seductive to scholars, it lacks utility. Conceptual “disarray” may actually reflect a more accurate representation of the illness as told by those who live with it. For practitioners in the field of addiction, we suggest the practice of narrative medicine with its ethic of negative capability as a useful approach for interpreting and relating to diverse experiences of disease and illness. PMID:23081782

  13. Tube dimpling tool assures accurate dip-brazed joints

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.

    1968-01-01

    Portable, hand-held dimpling tool assures accurate brazed joints between tubes of different diameters. Prior to brazing, the tool performs precise dimpling and nipple forming and also provides control and accurate measuring of the height of nipples and depth of dimples so formed.

  14. 31 CFR 205.24 - How are accurate estimates maintained?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How are accurate estimates maintained... Treasury-State Agreement § 205.24 How are accurate estimates maintained? (a) If a State has knowledge that an estimate does not reasonably correspond to the State's cash needs for a Federal assistance...

  15. 78 FR 34604 - Submitting Complete and Accurate Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... COMMISSION 10 CFR Part 50 Submitting Complete and Accurate Information AGENCY: Nuclear Regulatory Commission... accurate information as would a licensee or an applicant for a license.'' DATES: Submit comments by August... may submit comments by any of the following methods (unless this document describes a different...

  16. Appraisal of Artificial Screening Techniques of Tomato to Accurately Reflect Field Performance of the Late Blight Resistance

    PubMed Central

    Nowakowska, Marzena; Nowicki, Marcin; Kłosińska, Urszula; Maciorowski, Robert; Kozik, Elżbieta U.

    2014-01-01

    Late blight (LB) caused by the oomycete Phytophthora infestans continues to thwart global tomato production, while only few resistant cultivars have been introduced locally. In order to gain from the released tomato germplasm with LB resistance, we compared the 5-year field performance of LB resistance in several tomato cultigens, with the results of controlled conditions testing (i.e., detached leaflet/leaf, whole plant). In case of these artificial screening techniques, the effects of plant age and inoculum concentration were additionally considered. In the field trials, LA 1033, L 3707, L 3708 displayed the highest LB resistance, and could be used for cultivar development under Polish conditions. Of the three methods using controlled conditions, the detached leaf and the whole plant tests had the highest correlation with thefield experiments. The plant age effect on LB resistance in tomato reported here, irrespective of the cultigen tested or inoculum concentration used, makes it important to standardize the test parameters when screening for resistance. Our results help show why other reports disagree on LB resistance in tomato. PMID:25279467

  17. How accurately does the VIVO Harvester reflect actual Clinical and Translational Sciences Award–affiliated faculty member publications?*

    PubMed Central

    Eldredge, Jonathan D.; Kroth, Philip J.; Murray-Krezan, Cristina; Hantak, Chad M.; Weagel, Edward F.; Hannigan, Gale G.

    2015-01-01

    Objective: The research tested the accuracy of the VIVO Harvester software in identifying publications authored by faculty members affiliated with a National Institutes of Health Clinical and Translational Sciences Award (CTSA) site. Methods: Health sciences librarians created “gold standard” lists of references for the years 2001 to 2011 from PubMed for twenty-five randomly selected investigators from one CTSA site. These gold standard lists were compared to the same twenty-five investigators' reference lists produced by VIVO Harvester. The authors subjected the discrepancies between the lists to sensitivity and specificity analyses. Results: The VIVO Harvester correctly identified only about 65% of the total eligible PubMed references for the years 2001–2011 for the CTSA-affiliated investigators. The identified references produced by VIVO Harvester were precise yet incomplete. The sensitivity rate was 0.65, and the specificity rate was 1.00. Conclusion: While the references produced by VIVO Harvester could be confirmed in PubMed, the VIVO Harvester retrieved only two-thirds of the required references from PubMed. National Institutes of Health CTSA sites will need to supplement VIVO Harvester–produced references with the expert searching skills of health sciences librarians. Implications: Health sciences librarians with searching skills need to alert their CTSA sites about these deficiencies and offer their skills to advance their sites' missions. PMID:25552940

  18. Biology Cognitive Preferences of Preservice Biology Teachers.

    ERIC Educational Resources Information Center

    Cheng, Yeong-Jing

    1991-01-01

    The Biology Cognitive Preference Inventory (BCPI) for investigating the biology cognitive preference styles of 143 students in the biology teacher education program was developed and validated. The cognitive preferences include factual information or recall, principles, questioning, and applications. Preservice biology teachers exhibited a strong…

  19. Simulating Biological and Non-Biological Motion

    ERIC Educational Resources Information Center

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  20. Biological Literacy in a College Biology Classroom.

    ERIC Educational Resources Information Center

    Demastes, Sherry; Wandersee, James H.

    1992-01-01

    Examines the proposed definition of biological literacy as the understanding of a small number of pervasive biological principles appropriate to making informed personal and societal decisions. Utilizes the content of a major daily newspaper to adjust biology instruction to focus on this notion of biological literacy. Discusses benefits and…

  1. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    SciTech Connect

    Nakhleh, Luay

    2014-03-12

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.

  2. Reflective Fourier ptychography.

    PubMed

    Pacheco, Shaun; Zheng, Guoan; Liang, Rongguang

    2016-02-01

    The Fourier ptychography technique in reflection mode has great potential applications in tissue imaging and optical inspection, but the current configuration either has a limitation on cut-off frequency or is not practical. By placing the imaging aperture stop outside the illumination path, the illumination numerical aperture (NA) can be greater than the imaging NA of the objective lens. Thus, the cut-off frequency achieved in the proposed optical system is greater than twice the objective's NA divided by the wavelength (2NAobj/λ ), which is the diffraction limit for the cut-off frequency in an incoherent epi-illumination configuration. We experimentally demonstrated that the synthesized NA is increased by a factor of 4.5 using the proposed optical concept. The key advantage of the proposed system is that it can achieve high-resolution imaging over a large field of view with a simple objective. It will have a great potential for applications in endoscopy, biomedical imaging, surface metrology, and industrial inspection. PMID:26891601

  3. Venus Highland Anomalous Reflectivity

    NASA Astrophysics Data System (ADS)

    Simpson, Richard A.; Tyler, G. L.; Häusler, B.; Mattei, R.; Patzold, M.

    2009-09-01

    Maxwell Montes was one of several unusually bright areas identified from early Venus radar backscatter observations. Pioneer Venus' orbiting radar associated low emissivity with the bright areas and established a correlation between reflectivity and altitude. Magellan, using an oblique bistatic geometry, showed that the bright surface dielectric constant was not only large but also imaginary -- i.e., the material was conducting, at least near Cleopatra Patera (Pettengill et al., Science, 272, 1996). Venus Express (VEX) repeated Magellan's bistatic observations over Maxwell, using the more conventional circular polarization carried by most spacecraft. Although VEX signal-to-noise ratio was lower than Magellan's, echoes were sufficiently strong to verify the Magellan conclusions near Cleopatra (see J. Geophys. Res., 114, E00B41, doi:10.1029/2008JE003156). Only about 40% of the surface at Cleopatra scatters specularly, opening the Fresnel (specular) interpretation model to question. Elsewhere in Maxwell, the specular percentage may be even lower. Nonetheless, the echo polarization is reversed throughout Maxwell, a result that is consistent with large dielectric constants and difficult to explain without resorting qualitatively (if not quantitatively) to specular models. VEX was scheduled to explore other high altitude regions when its S-Band (13-cm wavelength) radio system failed in late 2006, so further probing of high altitude targets awaits arrival of a new spacecraft.

  4. Measurement of temperature and emissivity of specularly reflecting glowing bodies

    NASA Technical Reports Server (NTRS)

    Hansen, G. P.; Hauge, R. H.; Margrave, J. L.; Krishnan, S.

    1988-01-01

    A new method of measuring the thermodynamic temperature of an object as well as the surface emissivity based on laser reflectivity has been developed. By using rotator analyzer ellipsometry, the light reflected from the sample at a specific angle of incidence can be analyzed for its ellipticity. The normal incidence reflectivity and emissivity are then extracted using standard relations. The thermodynamic temperature of the body is obtained simultaneously by measuring the intensity of emitted light at the same angle of incidence. Room temperature measurements are carried out on selected metals to test the system. Elevated temperature measurements on platinum foils show that this technique is reliable and accurate for monitoring and measuring the temperature and emissivity of specularly reflecting, glowing bodies.

  5. Hemispherical reflectance model for passive images in an outdoor environment.

    PubMed

    Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar

    2015-05-01

    We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.

  6. An empirical formula based on Monte Carlo simulation for diffuse reflectance from turbid media

    NASA Astrophysics Data System (ADS)

    Gnanatheepam, Einstein; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Diffuse reflectance spectroscopy has been widely used in diagnostic oncology and characterization of laser irradiated tissue. However, still accurate and simple analytical equation does not exist for estimation of diffuse reflectance from turbid media. In this work, a diffuse reflectance lookup table for a range of tissue optical properties was generated using Monte Carlo simulation. Based on the generated Monte Carlo lookup table, an empirical formula for diffuse reflectance was developed using surface fitting method. The variance between the Monte Carlo lookup table surface and the surface obtained from the proposed empirical formula is less than 1%. The proposed empirical formula may be used for modeling of diffuse reflectance from tissue.

  7. The Scientific and Societal Need for Accurate Global Remote Sensing of Marine Suspended Sediments

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2006-01-01

    Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.

  8. Modeling the effects of reflective roofing

    SciTech Connect

    Gartland, L.M.; Konopacki, S.J.; Akbari, H.

    1996-08-01

    Roofing materials which are highly reflective to sunlight are currently being developed. Reflective roofing is an effective summertime energy saver in warm and sunny climates. It has been demonstrated to save up to 40% of the energy needed to cool a building during the summer months. Buildings without air conditioning can reduce their indoor temperatures and improve occupant comfort during the summer if highly reflective roofing materials are used. But there are questions about the tradeoff between summer energy savings and extra wintertime energy use due to reduced heat collection by the roof. These questions are being answered by simulating buildings in various climates using the DOE-2 program (version 2.1E). Unfortunately, DOE-2 does not accurately model radiative, convective and conductive processes in the roof-attic. Radiative heat transfer from the underside of a reflective roof is much smaller than that of a roof which absorbs heat from sunlight, and must be accounted for in the building energy model. Convection correlations for the attic and the roof surface must be fine tuned. An equation to model the insulation`s conductivity dependence on temperature must also be added. A function was written to incorporate the attic heat transfer processes into the DOE-2 building energy simulation. This function adds radiative, convective and conductive equations to the energy balance of the roof. Results of the enhanced DOE-2 model were compared to measured data collected from a school bungalow in a Sacramento Municipal Utility District monitoring project, with particular attention paid to the year-round energy effects.

  9. [Predicting nitrogen concentrations from hyperspectral reflectance at hyperspectral reflectance at leaf and canopy for rape].

    PubMed

    Wang, Yuan; Huang, Jing-Feng; Wang, Fu-Min; Liu, Zhan-Yu

    2008-02-01

    An experiment was designed to determine whether nitrogen concentrations could be predicted from reflectance (R) spectra of rape leaves in laboratory, and, if so, whether the predictive spectral features could be correlated with nitrogen concentration of simple canopies of rape. The best predictors for nitrogen in leaves appeared with first-difference transformations of R, and the bands selected were similar to those found in other studies. Shortwave infrared bands were best predictors for nitrogen. In the shortwave infrared region, however, the absolute differences in reflectance at critical bands were extremely small, and the bands of high correlation were narrow. High spectral and radiance resolution are required to resolve these differences accurately. Variability in canopy reflectance in shortwave infrared region was at least an order of magnitude beyond that necessary to detect signals from chemicals. The variability in first-difference R and log 1/R on canopy scales were related to the arrangement of trees with respect to direct solar radiation, instrument noise, leaf fluttering, and small change in atmospheric moisture. The first-difference of reflectance R based regressions prediction of nitrogen concentration at canopy level gets a good fitness.

  10. POLARIZED LIGHT REFLECTED AND TRANSMITTED BY THICK RAYLEIGH SCATTERING ATMOSPHERES

    SciTech Connect

    Natraj, Vijay; Hovenier, J. W.

    2012-03-20

    Accurate values for the intensity and polarization of light reflected and transmitted by optically thick Rayleigh scattering atmospheres with a Lambert surface underneath are presented. A recently reported new method for solving integral equations describing Chandrasekhar's X- and Y-functions is used. The results have been validated using various tests and techniques, including the doubling-adding method, and are accurate to within one unit in the eighth decimal place. Tables are stored electronically and expected to be useful as benchmark results for the (exo)planetary science and astrophysics communities. Asymptotic expressions to obtain Stokes parameters for a thick layer from those of a semi-infinite atmosphere are also provided.

  11. Reflections on Perceived Measurement and Its Perception in Educational Research: Reflection on an M.Ed. Thesis.

    ERIC Educational Resources Information Center

    Cooke, David

    1999-01-01

    Describes a study of the effectiveness of introducing information and communications technology into the teaching of biology. The teacher of this college course conducted the research, administering questionnaires, interviews, and observations. The teacher's reflections on this educational research are presented. (SM)

  12. Accurate Analytic Results for the Steady State Distribution of the Eigen Model

    NASA Astrophysics Data System (ADS)

    Huang, Guan-Rong; Saakian, David B.; Hu, Chin-Kun

    2016-04-01

    Eigen model of molecular evolution is popular in studying complex biological and biomedical systems. Using the Hamilton-Jacobi equation method, we have calculated analytic equations for the steady state distribution of the Eigen model with a relative accuracy of O(1/N), where N is the length of genome. Our results can be applied for the case of small genome length N, as well as the cases where the direct numerics can not give accurate result, e.g., the tail of distribution.

  13. RapGene: a fast and accurate strategy for synthetic gene assembly in Escherichia coli

    PubMed Central

    Zampini, Massimiliano; Stevens, Pauline Rees; Pachebat, Justin A.; Kingston-Smith, Alison; Mur, Luis A. J.; Hayes, Finbarr

    2015-01-01

    The ability to assemble DNA sequences de novo through efficient and powerful DNA fabrication methods is one of the foundational technologies of synthetic biology. Gene synthesis, in particular, has been considered the main driver for the emergence of this new scientific discipline. Here we describe RapGene, a rapid gene assembly technique which was successfully tested for the synthesis and cloning of both prokaryotic and eukaryotic genes through a ligation independent approach. The method developed in this study is a complete bacterial gene synthesis platform for the quick, accurate and cost effective fabrication and cloning of gene-length sequences that employ the widely used host Escherichia coli. PMID:26062748

  14. Variable area light reflecting assembly

    DOEpatents

    Howard, Thomas C.

    1986-01-01

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  15. Variable area light reflecting assembly

    DOEpatents

    Howard, T.C.

    1986-12-23

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  16. Baffle system employing reflective surfaces

    NASA Astrophysics Data System (ADS)

    Linlor, W. I.

    1983-12-01

    Reflective baffles are proposed to reject off-axis light entering a telescope. Toroidal surfaces and adjacent cones are positioned so that off-axis rays make multiple reflections between these two surfaces. Meridional rays are reflected approximately parallel to the entering direction. Skew rays are reflected obliquely, but leave the telescope aperture. The range of incident angles for which these reflections are obtained is approximately 45 deg. A system is described that is designed specifically for the Space Shuttle Infrared Telescope Facility (SIRTF). Because of its reflective properties, the proposed baffle system rejects about 90 deg of the heat load from the SIRTF sunshade that would be absorbed in systems of conventional black baffles.

  17. On the distribution of seismic reflection coefficients and seismic amplitudes

    SciTech Connect

    Painter, S.; Paterson, L.; Beresford, G.

    1995-07-01

    Reflection coefficient sequences from 14 wells in Australia have a statistical character consistent with a non-Gaussian scaling noise model based on the Levy-stable family of probability distributions. Experimental histograms of reflection coefficients are accurately approximated by symmetric Levy-stable probability density functions with Levy index between 0.99 and 1.43. These distributions have the same canonical role in mathematical statistics as the Gaussian distribution, but they have slowly decaying tails and infinite moments. The distribution of reflection coefficients is independent of the spatial scale (statistically self-similar), and the reflection coefficient sequences have long-range dependence. These results suggest that the logarithm of seismic impedance can be modeled accurately using fractional Levy motion, which is a generalization of fractional Brownian motion. Synthetic seismograms produced from the authors` model for the reflection coefficients also have Levy-stable distributions. These isolations include transmission losses, the effects of reverberations, and the loss of resolution caused by band-limited wavelets, and suggest that actual seismic amplitudes with sufficient signal-to-noise ratio should also have a Levy-stable distribution. This prediction is verified using post-stack seismic data acquired in the Timor Sea and in the continental USA. However, prestack seismic amplitudes from the Timor Sea are nearly Gaussian. They attribute the difference between prestack and poststack data to the high level of measurement noise in the prestack data.

  18. Accurate calculation of diffraction-limited encircled and ensquared energy.

    PubMed

    Andersen, Torben B

    2015-09-01

    Mathematical properties of the encircled and ensquared energy functions for the diffraction-limited point-spread function (PSF) are presented. These include power series and a set of linear differential equations that facilitate the accurate calculation of these functions. Asymptotic expressions are derived that provide very accurate estimates for the relative amount of energy in the diffraction PSF that fall outside a square or rectangular large detector. Tables with accurate values of the encircled and ensquared energy functions are also presented. PMID:26368873

  19. Systems Biology and immune aging.

    PubMed

    O'Connor, José-Enrique; Herrera, Guadalupe; Martínez-Romero, Alicia; de Oyanguren, Francisco Sala; Díaz, Laura; Gomes, Angela; Balaguer, Susana; Callaghan, Robert C

    2014-11-01

    Many alterations of innate and adaptive immunity are common in the aging population, which reflect a deterioration of the immune system, and have lead to the terms "immune aging" or "immunosenescence". Systems Biology aims to the comprehensive knowledge of the structure, dynamics, control and design that define a given biological system. Systems Biology benefits from the continuous advances in the omics sciences, based on high-throughput and high-content technologies, as well as on bioinformatic tools for data mining and integration. The Systems Biology approach is becoming gradually used to propose and to test comprehensive models of aging, both at the level of the immune system and the whole organism. In this way, immune aging may be described by a dynamic view of the states and interactions of every individual cell and molecule of the immune system and their role in the context of aging and longevity. This mini-review presents a panoramics of the current strategies, tools and challenges for applying Systems Biology to immune aging.

  20. Kinetic Modeling of Biological Systems

    PubMed Central

    Petzold, Linda; Pettigrew, Michel F.

    2010-01-01

    The dynamics of how the constituent components of a natural system interact defines the spatio-temporal response of the system to stimuli. Modeling the kinetics of the processes that represent a biophysical system has long been pursued with the aim of improving our understanding of the studied system. Due to the unique properties of biological systems, in addition to the usual difficulties faced in modeling the dynamics of physical or chemical systems, biological simulations encounter difficulties that result from intrinsic multiscale and stochastic nature of the biological processes. This chapter discusses the implications for simulation of models involving interacting species with very low copy numbers, which often occur in biological systems and give rise to significant relative fluctuations. The conditions necessitating the use of stochastic kinetic simulation methods and the mathematical foundations of the stochastic simulation algorithms are presented. How the well-organized structural hierarchies often seen in biological systems can lead to multiscale problems, and possible ways to address the encountered computational difficulties are discussed. We present the details of the existing kinetic simulation methods, and discuss their strengths and shortcomings. A list of the publicly available kinetic simulation tools and our reflections for future prospects are also provided. PMID:19381542

  1. Atlas of soil reflectance properties

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Biehl, L. L.; Robinson, B. F.

    1979-01-01

    A compendium of soil spectral reflectance curves together with soil test results and site information is presented in an abbreviated manner listing those soil properties most important in influencing soil reflectance. Results are presented for 251 soils from 39 states and Brazil. A narrative key describes relationships between soil parameters and reflectance curves. All soils are classified according to the U.S. soil taxonomy and soil series name for ease of identification.

  2. Weak-shock reflection factors

    SciTech Connect

    Reichenbach, H.; Kuhl, A.L.

    1993-09-07

    The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: square-wave planar shock reflection from wedges; square-wave planar shock reflection from cylinders; and spherical blast wave reflection from a planar surface. We restrict ourselves to weak shocks. Shocks with a Mach number of M{sub O} < 1.56 in air or with an overpressure of {Delta}{sub PI} < 25 psi (1.66 bar) under normal ambient conditions are called weak.

  3. Studies of the Reflection, Refraction and Internal Reflection of Light

    ERIC Educational Resources Information Center

    Lanchester, P. C.

    2014-01-01

    An inexpensive apparatus and associated experiments are described for studying the basic laws of reflection and refraction of light at an air-glass interface, and multiple internal reflections within a glass block. In order to motivate students and encourage their active participation, a novel technique is described for determining the refractive…

  4. Embodied Reflection and the Epistemology of Reflective Practice

    ERIC Educational Resources Information Center

    Kinsella, Elizabeth Anne

    2007-01-01

    Donald Schon's theory of reflective practice has been extensively referred to and has had enormous impact in education and related fields. Nonetheless, there continues to be tremendous conceptual and practical confusion surrounding interpretations of reflective practice and philosophical assumptions underlying the theory. In this paper, I argue…

  5. Calculating the reflected paths of radiation in high reflectivity enclosures

    SciTech Connect

    Shaughnessy, B.M.; Newborough, M.

    1999-07-01

    A novel method of calculating the reflected paths of radiation in Monte Carlo simulations is described. This method is well suited to high reflectivity (e.g., p > 0.5) systems, which tend to have strong directional and bidirectional characteristics. The prime advantage of the described approach is that it retains the inherent flexibility of the traditional Monte Carlo approach, but allows the paths of reflected radiation to be evaluated without the need for ray-surface intersection calculations. The paths of reflected radiation can therefore be evaluated much more rapidly, and Monte Carlo simulation times can be substantially reduced. Simulations of an enclosure containing an obstruction, exhibiting directional emission and reflection, and bi-directional reflection, are described and compared with solutions obtained by traditional Monte Carlo. For the studied cases, predictions from the new and traditional methods are in close agreement. Application of the new method resulted in computational speeds being improved by up to a factor of eight, depending upon the chosen reflection function (directional, specular, or bi-directional) and the desired accuracy of radiative exchange-factor calculation. For example, to achieve an average exchange-factor uncertainty of {+-} 10% (95% confidence), computational performance improvements of approximately twofold for the bi-directional case and threefold for the specular case were attained. For an uncertainty of {+-} 5% (99% confidence), the performance improvements increased to six and eightfold for bi-directional and specular reflection respectively.

  6. Postgraduate Education to Support Organisation Change: A Reflection on Reflection

    ERIC Educational Resources Information Center

    Stewart, Jim; Keegan, Anne; Stevens, Pam

    2008-01-01

    Purpose: This paper aims to explore how teaching and assessing reflective learning skills can support postgraduate practitioners studying organisational change and explores the challenges for tutors in assessing these journals. Design/methodology/approach: Assessment criteria were developed from the literature on reflective practice and…

  7. Cell biology perspectives in phage biology.

    PubMed

    Ansaldi, Mireille

    2012-01-01

    Cellular biology has long been restricted to large cellular organisms. However, as the resolution of microscopic methods increased, it became possible to study smaller cells, in particular bacterial cells. Bacteriophage biology is one aspect of bacterial cell biology that has recently gained insight from cell biology. Despite their small size, bacteriophages could be successfully labeled and their cycle studied in the host cells. This review aims to put together, although non-extensively, several cell biology studies that recently pushed the elucidation of key mechanisms in phage biology, such as the lysis-lysogeny decision in temperate phages or genome replication and transcription, one step further.

  8. Rigidity analysis of protein biological assemblies and periodic crystal structures

    PubMed Central

    2013-01-01

    , and would not have been observed only from the asymmetric unit. For the Ribonuclease A protein (PDB file 5RSA), which is functionally active in the crystallized form, we found that the individual protein and its crystal form retain the flexibility parameters between the two states. In contrast, a derivative of Ribonuclease A (PDB file 9RSA), has no functional activity, and the protein in both the asymmetric and crystalline forms, is very rigid. For the vaccinia virus D13 scaffolding protein (PDB file 3SAQ), which has two biological assemblies, we observed a striking asymmetry in the rigidity cluster decomposition of one of them, which seems implausible, given its symmetry. Upon careful investigation, we tracked the cause to a placement decision by the Reduce software concerning the hydrogen atoms, thus affecting the distribution of certain hydrogen bonds. The surprising result is that the presence or lack of a very few, but critical, hydrogen bonds, can drastically affect the rigid cluster decomposition of the biological assembly. Conclusion The rigidity analysis of a single asymmetric unit may not accurately reflect the protein's behavior in the tightly packed crystal environment. Using our KINARI software, we demonstrated that additional functional and rigidity information can be gained by analyzing a protein's biological assembly and/or crystal structure. However, performing a larger scale study would be computationally expensive (due to the size of the molecules involved). Overcoming this limitation will require novel mathematical and computational extensions to our software. PMID:24564201

  9. NASA Biological Specimen Repository

    NASA Technical Reports Server (NTRS)

    Pietrzyk, Robert; McMonigal, K. A.; Sams, C. F.; Johnson, M. A.

    2009-01-01

    The NASA Biological Specimen Repository (NBSR) has been established to collect, process, annotate, store, and distribute specimens under the authority of the NASA/JSC Committee for the Protection of Human Subjects. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The NBSR is a secure controlled storage facility that is used to maintain biological specimens over extended periods of time, under well-controlled conditions, for future use in approved human spaceflight-related research protocols. The repository supports the Human Research Program, which is charged with identifying and investigating physiological changes that occur during human spaceflight, and developing and implementing effective countermeasures when necessary. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can validate clinical hypotheses, study space-flight related changes, and investigate physiological markers All samples collected require written informed consent from each long duration crewmember. The NBSR collects blood and urine samples from all participating long duration ISS crewmembers. These biological samples are collected pre-flight at approximately 45 days prior to launch, during flight on flight days 15, 30, 60 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days following landing. The number of inflight sessions is dependent on the duration of the mission. Operations began in 2007 and as of October 2009, 23 USOS crewmembers have completed or agreed to participate in this project. As currently planned, these human biological samples will be collected from crewmembers covering multiple ISS missions until the end of U.S. presence on the ISS or 2017. The NBSR will establish guidelines for sample distribution that are consistent with ethical principles

  10. Kinetic pinning and biological antifreezes.

    PubMed

    Sander, Leonard M; Tkachenko, Alexei V

    2004-09-17

    Biological antifreezes protect cold-water organisms from freezing. An example is the antifreeze proteins (AFP's) that attach to the surface of ice crystals and arrest growth. The mechanism for growth arrest has not been heretofore understood in a quantitative way. We present a complete theory based on a kinetic model. We use the "stones on a pillow" picture. Our theory of the suppression of the freezing point as a function of the concentration of the AFP is quantitatively accurate. It gives a correct description of the dependence of the freezing point suppression on the geometry of the protein, and might lead to advances in design of synthetic AFP's.

  11. Infrared reflectance spectra: effects of particle size, provenance and preparation

    NASA Astrophysics Data System (ADS)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, J. E.; Johnson, Timothy J.

    2014-10-01

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 - 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  12. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    SciTech Connect

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, James E.; Johnson, Timothy J.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  13. Accurate color synthesis of three-dimensional objects in an image

    NASA Astrophysics Data System (ADS)

    Xin, John H.; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing.

  14. Accurate color synthesis of three-dimensional objects in an image.

    PubMed

    Xin, John H; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing. PMID:15139423

  15. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review.

    PubMed

    Yang, Lu

    2009-01-01

    For many decades the accurate and precise determination of isotope ratios has remained a very strong interest to many researchers due to its important applications in earth, environmental, biological, archeological, and medical sciences. Traditionally, thermal ionization mass spectrometry (TIMS) has been the technique of choice for achieving the highest accuracy and precision. However, recent developments in multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) have brought a new dimension to this field. In addition to its simple and robust sample introduction, high sample throughput, and high mass resolution, the flat-topped peaks generated by this technique provide for accurate and precise determination of isotope ratios with precision reaching 0.001%, comparable to that achieved with TIMS. These features, in combination with the ability of the ICP source to ionize nearly all elements in the periodic table, have resulted in an increased use of MC-ICP-MS for such measurements in various sample matrices. To determine accurate and precise isotope ratios with MC-ICP-MS, utmost care must be exercised during sample preparation, optimization of the instrument, and mass bias corrections. Unfortunately, there are inconsistencies and errors evident in many MC-ICP-MS publications, including errors in mass bias correction models. This review examines "state-of-the-art" methodologies presented in the literature for achievement of precise and accurate determinations of isotope ratios by MC-ICP-MS. Some general rules for such accurate and precise measurements are suggested, and calculations of combined uncertainty of the data using a few common mass bias correction models are outlined.

  16. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  17. Deep learning for computational biology.

    PubMed

    Angermueller, Christof; Pärnamaa, Tanel; Parts, Leopold; Stegle, Oliver

    2016-01-01

    Technological advances in genomics and imaging have led to an explosion of molecular and cellular profiling data from large numbers of samples. This rapid increase in biological data dimension and acquisition rate is challenging conventional analysis strategies. Modern machine learning methods, such as deep learning, promise to leverage very large data sets for finding hidden structure within them, and for making accurate predictions. In this review, we discuss applications of this new breed of analysis approaches in regulatory genomics and cellular imaging. We provide background of what deep learning is, and the settings in which it can be successfully applied to derive biological insights. In addition to presenting specific applications and providing tips for practical use, we also highlight possible pitfalls and limitations to guide computational biologists when and how to make the most use of this new technology. PMID:27474269

  18. Mining literature for systems biology.

    PubMed

    Roberts, Phoebe M

    2006-12-01

    Currently, literature is integrated in systems biology studies in three ways. Hand-curated pathways have been sufficient for assembling models in numerous studies. Second, literature is frequently accessed in a derived form, such as the concepts represented by the Medical Subject Headings (MeSH) and Gene Ontologies (GO), or functional relationships captured in protein-protein interaction (PPI) databases; both of these are convenient, consistent reductions of more complex concepts expressed as free text in the literature. Moreover, their contents are easily integrated into computational processes required for dealing with large data sets. Last, mining text directly for specific types of information is on the rise as text analytics methods become more accurate and accessible. These uses of literature, specifically manual curation, derived concepts captured in ontologies and databases, and indirect and direct application of text mining, will be discussed as they pertain to systems biology.

  19. Deep learning for computational biology.

    PubMed

    Angermueller, Christof; Pärnamaa, Tanel; Parts, Leopold; Stegle, Oliver

    2016-07-29

    Technological advances in genomics and imaging have led to an explosion of molecular and cellular profiling data from large numbers of samples. This rapid increase in biological data dimension and acquisition rate is challenging conventional analysis strategies. Modern machine learning methods, such as deep learning, promise to leverage very large data sets for finding hidden structure within them, and for making accurate predictions. In this review, we discuss applications of this new breed of analysis approaches in regulatory genomics and cellular imaging. We provide background of what deep learning is, and the settings in which it can be successfully applied to derive biological insights. In addition to presenting specific applications and providing tips for practical use, we also highlight possible pitfalls and limitations to guide computational biologists when and how to make the most use of this new technology.

  20. Thoughts on the Psycho-biology of Aging

    ERIC Educational Resources Information Center

    Jarvik, Ussy F.

    1975-01-01

    Reflections on psychological perspectives of aging are focused around issues of biological changes and mental functioning, genetic factors in aging, psychological changes with aging, individual differences in mental functioning and the intellectual decline of the aged. (EH)

  1. Fast MS/MS acquisition without dynamic exclusion enables precise and accurate quantification of proteome by MS/MS fragment intensity

    PubMed Central

    Zhang, Shen; Wu, Qi; Shan, Yichu; Zhao, Qun; Zhao, Baofeng; Weng, Yejing; Sui, Zhigang; Zhang, Lihua; Zhang, Yukui

    2016-01-01

    Most currently proteomic studies use data-dependent acquisition with dynamic exclusion to identify and quantify the peptides generated by the digestion of biological sample. Although dynamic exclusion permits more identifications and higher possibility to find low abundant proteins, stochastic and irreproducible precursor ion selection caused by dynamic exclusion limit the quantification capabilities, especially for MS/MS based quantification. This is because a peptide is usually triggered for fragmentation only once due to dynamic exclusion. Therefore the fragment ions used for quantification only reflect the peptide abundances at that given time point. Here, we propose a strategy of fast MS/MS acquisition without dynamic exclusion to enable precise and accurate quantification of proteome by MS/MS fragment intensity. The results showed comparable proteome identification efficiency compared to the traditional data-dependent acquisition with dynamic exclusion, better quantitative accuracy and reproducibility regardless of label-free based quantification or isobaric labeling based quantification. It provides us with new insights to fully explore the potential of modern mass spectrometers. This strategy was applied to the relative quantification of two human disease cell lines, showing great promises for quantitative proteomic applications. PMID:27198003

  2. Examining integrative thinking through the transformation of students' written reflections into concept webs.

    PubMed

    Ziegler, Brittany; Montplaisir, Lisa

    2012-12-01

    A shift is currently taking place in which explicit connections between content are being emphasized. Biology is not an isolated discipline, yet undergraduate courses frequently focus on discrete knowledge. Students often engage in rote learning, struggle with transforming and applying content. Integrative thinking occurs when students recognize connections to content. Written reflections provide students with the opportunity to demonstrate this thinking. We transformed student-written reflections into concept webs to gain insights into how students connect biological concepts. We were interested in determining if characteristics of integrative thinking develop through reflections. The results indicate a significant relationship between concepts and integrated relationships. Integrative thinking varied but declined overall. Concept webs allow for an examination of student integrative thinking through the transformation of reflection and provide insights into the connections and relationships that students draw between biological concepts. Reflections can transform learning by facilitating and allowing for the evaluation of integrative thinking.

  3. Influence of reflected UV irradiance on occupational exposure from combinations of reflective wall surfaces.

    PubMed

    Turner, Joanna; Parisi, Alfio V

    2013-09-01

    Outdoor workers who occupationally spend large periods of time exposed to ultraviolet irradiance are at increased risk of developing certain types of non-melanoma skin cancer in addition to being prone to erythema and eye damage. UV exposure to workers is affected by a number of factors including geographic location, season, individual biological factors and the local surroundings. Urban environments can provide surrounds that contain surfaces that reflect UV radiation which can enhance UV exposure to construction workers, in both the vertical as well as horizontal plane. However it was unknown how different constructed configurations of the surfaces may additionally influence UV exposure for a worker, such as corners opposed to walls. This study shows that for highly UV reflective surfaces the influence on erythemal UV exposure is approximately the same regardless of constructive type, but there is statistically significant difference observed for lower UV reflecting surfaces in conjunction with constructive type. This is comparable to influence of body site on relative UV exposure, and together may provide a method that may assist in reduction in UV exposures. Regression analysis provides a more effective means to determine a UV reflective factor for a surface type, than previously used averaging methods. Additionally, this knowledge may be used by workers, workplaces and advisory bodies to assist with developing further protective strategies that aim to provide more moderate UV exposures to outdoor workers.

  4. Children's Literature-Some Reflections.

    ERIC Educational Resources Information Center

    Root, Shelton L., Jr.

    Ten reflections may be made regarding children's literature and its teaching. The reflections are as follows: (1) Teachers can make a profound difference in the lives of students and should attempt to do so. (2) Teachers of children's literature are a badly fragmented lot and need a common meeting ground where they can share their thinking. (3)…

  5. Reflectivity in Supervision and Teaching.

    ERIC Educational Resources Information Center

    Pavlovic, Steve; Friedland, Billie

    This paper reports on a strategy for encouraging preservice teachers to use reflective techniques when developing lesson plans. A focus on reflective practice incorporates and integrates the minimal teaching competencies required by West Virginia State Teacher Certification. Practicum students must provide evidence demonstrating at least minimal…

  6. Flexible Bistable Cholesteric Reflective Displays

    NASA Astrophysics Data System (ADS)

    Yang, Deng-Ke

    2006-03-01

    Cholesteric liquid crystals (ChLCs) exhibit two stable states at zero field condition-the reflecting planar state and the nonreflecting focal conic state. ChLCs are an excellent candidate for inexpensive and rugged electronic books and papers. This paper will review the display cell structure,materials and drive schemes for flexible bistable cholesteric (Ch) reflective displays.

  7. Ethical Reflections on Becoming Teachers

    ERIC Educational Resources Information Center

    Joseph, Pamela Bolotin

    2016-01-01

    This study analyzes narratives written in a culminating graduate seminar on reflective practice by 36 new secondary teachers who were asked to consider their moral beliefs, moral values and system of ethics as they reflected on their recent student teaching experiences. The findings explore how the participants depicted their constructed moral…

  8. Reflections on Justice in Schooling

    ERIC Educational Resources Information Center

    First, Patricia F.

    2012-01-01

    This article is a reflection on the concept of justice as practiced in the public schools in the United States. Examples of justice denied or misconstrued are included. Cases, stories, and concepts invite educational leaders to reflect anew on delivering justice in education to all children. Underlying the article is the belief that understanding…

  9. Can Reflective Practice Be Taught?

    ERIC Educational Resources Information Center

    Edwards, Gail; Thomas, Gary

    2010-01-01

    Almost ubiquitous in discourses about the development of teachers, reflective practice describes the process that occurs when persons are apprenticed to any meaningful activity. But reflective practice is a descriptive term for that process: it does not imply that the process is itself open to dissection and instruction. We contend that mistaken…

  10. Classroom Renewal through Teacher Reflection.

    ERIC Educational Resources Information Center

    Schoenbach, Ruth

    1994-01-01

    Describes a high school staff development project that successfully improved student communication skills. In the project, teacher reflection was critical in changing classroom practice, and it led to improved student outcomes. The article describes the project, vehicles for supporting teacher reflection, and lessons learned in using reflective…

  11. Parameter Estimation of Ion Current Formulations Requires Hybrid Optimization Approach to Be Both Accurate and Reliable

    PubMed Central

    Loewe, Axel; Wilhelms, Mathias; Schmid, Jochen; Krause, Mathias J.; Fischer, Fathima; Thomas, Dierk; Scholz, Eberhard P.; Dössel, Olaf; Seemann, Gunnar

    2016-01-01

    Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today’s high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non

  12. Accurate boundary conditions for exterior problems in gas dynamics

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.

    1988-01-01

    The numerical solution of exterior problems is typically accomplished by introducing an artificial, far field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.

  13. Accurate boundary conditions for exterior problems in gas dynamics

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.

    1988-01-01

    The numerical solution of exterior problems is typically accomplished by introducing an artificial, far-field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far-field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.

  14. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  15. Accurately measuring MPI broadcasts in a computational grid

    SciTech Connect

    Karonis N T; de Supinski, B R

    1999-05-06

    An MPI library's implementation of broadcast communication can significantly affect the performance of applications built with that library. In order to choose between similar implementations or to evaluate available libraries, accurate measurements of broadcast performance are required. As we demonstrate, existing methods for measuring broadcast performance are either inaccurate or inadequate. Fortunately, we have designed an accurate method for measuring broadcast performance, even in a challenging grid environment. Measuring broadcast performance is not easy. Simply sending one broadcast after another allows them to proceed through the network concurrently, thus resulting in inaccurate per broadcast timings. Existing methods either fail to eliminate this pipelining effect or eliminate it by introducing overheads that are as difficult to measure as the performance of the broadcast itself. This problem becomes even more challenging in grid environments. Latencies a long different links can vary significantly. Thus, an algorithm's performance is difficult to predict from it's communication pattern. Even when accurate pre-diction is possible, the pattern is often unknown. Our method introduces a measurable overhead to eliminate the pipelining effect, regardless of variations in link latencies. choose between different available implementations. Also, accurate and complete measurements could guide use of a given implementation to improve application performance. These choices will become even more important as grid-enabled MPI libraries [6, 7] become more common since bad choices are likely to cost significantly more in grid environments. In short, the distributed processing community needs accurate, succinct and complete measurements of collective communications performance. Since successive collective communications can often proceed concurrently, accurately measuring them is difficult. Some benchmarks use knowledge of the communication algorithm to predict the

  16. Induced Dual-Nanospray: A Novel Internal Calibration Method for Convenient and Accurate Mass Measurement

    NASA Astrophysics Data System (ADS)

    Li, Yafeng; Zhang, Ning; Zhou, Yueming; Wang, Jianing; Zhang, Yiming; Wang, Jiyun; Xiong, Caiqiao; Chen, Suming; Nie, Zongxiu

    2013-09-01

    Accurate mass information is of great importance in the determination of unknown compounds. An effective and easy-to-control internal mass calibration method will dramatically benefit accurate mass measurement. Here we reported a simple induced dual-nanospray internal calibration device which has the following three advantages: (1) the two sprayers are in the same alternating current field; thus both reference ions and sample ions can be simultaneously generated and recorded. (2) It is very simple and can be easily assembled. Just two metal tubes, two nanosprayers, and an alternating current power supply are included. (3) With the low-flow-rate character and the versatility of nanoESI, this calibration method is capable of calibrating various samples, even untreated complex samples such as urine and other biological samples with small sample volumes. The calibration errors are around 1 ppm in positive ion mode and 3 ppm in negative ion mode with good repeatability. This new internal calibration method opens up new possibilities in the determination of unknown compounds, and it has great potential for the broad applications in biological and chemical analysis.

  17. RNASequel: accurate and repeat tolerant realignment of RNA-seq reads.

    PubMed

    Wilson, Gavin W; Stein, Lincoln D

    2015-10-15

    RNA-seq is a key technology for understanding the biology of the cell because of its ability to profile transcriptional and post-transcriptional regulation at single nucleotide resolutions. Compared to DNA sequencing alignment algorithms, RNA-seq alignment algorithms have a diminished ability to accurately detect and map base pair substitutions, gaps, discordant pairs and repetitive regions. These shortcomings adversely affect experiments that require a high degree of accuracy, notably the ability to detect RNA editing. We have developed RNASequel, a software package that runs as a post-processing step in conjunction with an RNA-seq aligner and systematically corrects common alignment artifacts. Its key innovations are a two-pass splice junction alignment system that includes de novo splice junctions and the use of an empirically determined estimate of the fragment size distribution when resolving read pairs. We demonstrate that RNASequel produces improved alignments when used in conjunction with STAR or Tophat2 using two simulated datasets. We then show that RNASequel improves the identification of adenosine to inosine RNA editing sites on biological datasets. This software will be useful in applications requiring the accurate identification of variants in RNA sequencing data, the discovery of RNA editing sites and the analysis of alternative splicing.

  18. Using fatty acids to fingerprint biofilm communities: a means to quickly and accurately assess stream quality.

    PubMed

    DeForest, Jared L; Drerup, Samuel A; Vis, Morgan L

    2016-05-01

    The assessment of lotic ecosystem quality plays an essential role to help determine the extent of environmental stress and the effectiveness of restoration activities. Methods that incorporate biological properties are considered ideal because they provide direct assessment of the end goal of a vigorous biological community. Our primary objective was to use biofilm lipids to develop an accurate biomonitoring tool that requires little expertise and time to facilitate assessment. A model was created of fatty acid biomarkers most associated with predetermined stream quality classification, exceptional warm water habitat (EWH), warm water habitat (WWH), and limited resource (LR-AMD), and validated along a gradient of known stream qualities. The fatty acid fingerprint of the biofilm community was statistically different (P = 0.03) and was generally unique to recognized stream quality. One striking difference was essential fatty acids (DHA, EPA, and ARA) were absent from LR-AMD and only recovered from WWH and EWH, 45 % more in EWH than WWH. Independently testing the model along a stream quality gradient, this model correctly categorized six of the seven sites, with no match due to low sample biomass. These results provide compelling evidence that biofilm fatty acid analysis can be a sensitive, accurate, and cost-effective biomonitoring tool. We conceive of future studies expanding this research to more in-depth studies of remediation efforts, determining the applicable geographic area for the method and the addition of multiple stressors with the possibility of distinguishing among stressors.

  19. Ontology-based aggregation of biological pathway datasets.

    PubMed

    Jiang, Keyuan; Nash, Christopher

    2005-01-01

    The massive accumulation of biological data in the past decades has generated a significant amount of biological knowledge which is represented in one way as biological pathways. The existence of over 150 pathway databases reflects the diversity of the biological data and heterogeneity of data models, storage formats and access methods. To address an intriguing biological question, it is not uncommon for a biologist to query more one pathway database to acquire a more complete picture of current understanding of biology. To facility life scientists in searching biological pathway data, we designed a biological pathway aggregator which aggregates various pathway datasets via the BioPAX ontology, a community-developed ontology based upon the concept of Semantic Web for integrating and exchanging biological pathway data. Our aggregator is composed of modules that retrieve the data from various sources, transform the raw data to BioPAX format, persist the converted data in the persistent data store, and enable queries by other applications.

  20. Modeling ion channel dynamics through reflected stochastic differential equations.

    PubMed

    Dangerfield, Ciara E; Kay, David; Burrage, Kevin

    2012-05-01

    Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks.