Science.gov

Sample records for accurately reflect current

  1. Accurate hydrogen depth profiling by reflection elastic recoil detection analysis

    SciTech Connect

    Verda, R. D.; Tesmer, Joseph R.; Nastasi, Michael Anthony,; Bower, R. W.

    2001-01-01

    A technique to convert reflection elastic recoil detection analysis spectra to depth profiles, the channel-depth conversion, was introduced by Verda, et al [1]. But the channel-depth conversion does not correct for energy spread, the unwanted broadening in the energy of the spectra, which can lead to errors in depth profiling. A work in progress introduces a technique that corrects for energy spread in elastic recoil detection analysis spectra, the energy spread correction [2]. Together, the energy spread correction and the channel-depth conversion comprise an accurate and convenient hydrogen depth profiling method.

  2. New Claus catalyst tests accurately reflect process conditions

    SciTech Connect

    Maglio, A.; Schubert, P.F.

    1988-09-12

    Methods for testing Claus catalysts are developed that more accurately represent the actual operating conditions in commercial sulfur recovery units. For measuring catalyst activity, an aging method has been developed that results in more meaningful activity data after the catalyst has been aged, because all catalysts undergo rapid initial deactivation in commercial units. An activity test method has been developed where catalysts can be compared at less than equilibrium conversion. A test has also been developed to characterize abrasion loss of Claus catalysts, in contrast to the traditional method of determining physical properties by measuring crush strengths. Test results from a wide range of materials correlated well with actual pneumatic conveyance attrition. Substantial differences in Claus catalyst properties were observed as a result of using these tests.

  3. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown.

  4. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown. PMID:26767640

  5. An accurate continuous calibration system for high voltage current transformer

    NASA Astrophysics Data System (ADS)

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  6. Parameter Estimation of Ion Current Formulations Requires Hybrid Optimization Approach to Be Both Accurate and Reliable

    PubMed Central

    Loewe, Axel; Wilhelms, Mathias; Schmid, Jochen; Krause, Mathias J.; Fischer, Fathima; Thomas, Dierk; Scholz, Eberhard P.; Dössel, Olaf; Seemann, Gunnar

    2016-01-01

    Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today’s high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non

  7. An accurate dynamical electron diffraction algorithm for reflection high-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Huang, J.; Cai, C. Y.; Lv, C. L.; Zhou, G. W.; Wang, Y. G.

    2015-12-01

    The conventional multislice method (CMS) method, one of the most popular dynamical electron diffraction calculation procedures in transmission electron microscopy, was introduced to calculate reflection high-energy electron diffraction (RHEED) as it is well adapted to deal with the deviations from the periodicity in the direction parallel to the surface. However, in the present work, we show that the CMS method is no longer sufficiently accurate for simulating RHEED with the accelerating voltage 3-100 kV because of the high-energy approximation. An accurate multislice (AMS) method can be an alternative for more accurate RHEED calculations with reasonable computing time. A detailed comparison of the numerical calculation of the AMS method and the CMS method is carried out with respect to different accelerating voltages, surface structure models, Debye-Waller factors and glancing angles.

  8. Return stroke current reflections in rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Caicedo, J. A.; Biagi, C.; Uman, M. A.; Jordan, D. M.; Hare, B.

    2016-03-01

    Ten upward propagating return stroke currents in eight triggered lightning flashes have been observed to reflect downward from 140 to 300 m altitude by way of measurements of the channel base current, close electric field and electric field derivative, and high-speed video. The current reflections appear as dips in the measured channel base current and in the electric fields and as bipolar pulses in the electric field derivative waveforms. The current dips occur 2.7 to 13.9 μs after the initiation of the return stroke current at ground. The observed phenomenon results from a portion of the upward propagating return stroke current wave being reflected from a channel impedance discontinuity apparently associated with an isolated section of unexploded triggering wire, as inferred from high-speed video records. A transmission line model is used to model the close electric field and electric field derivative of the postulated initial and reflected current waves, starting with the measured channel base current, and the results are compared favorably with measurements made at 92 to 326 m. From the measured time between the return stroke current initiation at the ground and the time the current reflection reaches the channel base and produces the current dip, along with the reflection height inferred from the video records, we find the average of the upward and downward reflected return stroke current speed for each of the 10 strokes to be between 0.81 and 2.06 × 108 m s-1.

  9. Montessori Elementary Philosophy Reflects Current Motivation Theories

    ERIC Educational Resources Information Center

    Murray, Angela

    2011-01-01

    Montessori's theories, developed more than 100 years ago, certainly resonate with current psychological research on improving education. Autonomy, interest, competence, and relatedness form the foundation for three contemporary efforts to organize the vast literature on motivation into a parsimonious theory. These four elements also comprise…

  10. Leap of Faith: Does serum luteinizing hormone always accurately reflect central reproductive neuroendocrine activity?

    PubMed Central

    Moenter, Suzanne M.

    2015-01-01

    Function of the central aspects of the hypothalamo-pituitary-gonadal axis has been assessed in a number of ways including direct measurements of hypothalamic output and indirect measures using gonadotropin release from the pituitary as a bioassay for reproductive neuroendocrine activity. Here, methods for monitoring these various parameters are briefly reviewed and then examples presented of both concordance and discrepancy between central and peripheral measurements, with a focus on situations in which elevated GnRH neurosecretion is not reflected accurately by pituitary luteinizing hormone release. Implications for interpretation of gonadotropin data are discussed. PMID:26278916

  11. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  12. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  13. Hippocampal theta sequences reflect current goals.

    PubMed

    Wikenheiser, Andrew M; Redish, A David

    2015-02-01

    Hippocampal information processing is discretized by oscillations, and the ensemble activity of place cells is organized into temporal sequences bounded by theta cycles. Theta sequences represent time-compressed trajectories through space. Their forward-directed nature makes them an intuitive candidate mechanism for planning future trajectories, but their connection to goal-directed behavior remains unclear. As rats performed a value-guided decision-making task, the extent to which theta sequences projected ahead of the animal's current location varied on a moment-by-moment basis depending on the rat's goals. Look-ahead extended farther on journeys to distant goals than on journeys to more proximal goals and was predictive of the animal's destination. On arrival at goals, however, look-ahead was similar regardless of where the animal began its journey from. Together, these results provide evidence that hippocampal theta sequences contain information related to goals or intentions, pointing toward a potential spatial basis for planning.

  14. Hippocampal theta sequences reflect current goals

    PubMed Central

    Wikenheiser, Andrew M; Redish, A David

    2015-01-01

    Hippocampal information processing is discretized by oscillations, and the ensemble activity of place cells is organized into temporal sequences bounded by theta cycles. Theta sequences represent time-compressed trajectories through space. Their forward-directed nature makes them an intuitive candidate mechanism for planning future trajectories, but their connection to goal-directed behavior remains unclear. As rats performed a value-guided decision-making task, the extent to which theta sequences projected ahead of the animal’s current location varied on a moment-by-moment basis depending on the rat’s goals. Look-ahead extended farther on journeys to distant goals than on journeys to more proximal goals and was predictive of the animal’s destination. On arrival at goals, however, look-ahead was similar regardless of where the animal began its journey from. Together, these results provide evidence that hippocampal theta sequences contain information related to goals or intentions, pointing toward a potential spatial basis for planning. PMID:25559082

  15. Return Stroke Current Reflections in Rocket-Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Caicedo, J.; Uman, M. A.; Jordan, D.; Biagi, C. J.; Hare, B.

    2015-12-01

    In the six years from 2009 to 2014, there have been eight triggered flashes at the ICLRT, from a total of 125, in which a total of ten return stroke channel-base currents exhibited a dip 3.0 to 16.6 μs after the initial current peak. Close range electric field measurements show a related dip following the initial electric field peak, and electric field derivative measurements show an associated bipolar pulse, confirming that this phenomenon is not an instrumentation effect in the current measurement. For six of the eight flashes, high-speed video frames show what appears to be suspended sections of unexploded triggering wire at heights of about 150 to 300 m that are illuminated when the upward current wave reaches them. The suspended wire can act as an impedance discontinuity, perhaps as it explodes, and cause a downward reflection of some portion of the upward-propagating current wave. This reflected wave travels down the channel and causes the dip in the measured channel-base current when it reaches ground and reflects upward. The modified transmission line model with exponential decay (MTLE) is used to model the close electric field and electric field derivatives of the postulated initial and reflected current waves, starting with the measured channel base current, and the results are compared favorably with measurements made at distances ranging from 92 to 444 m. From the measured time between current impulse initiation and the time the current reflection reaches the channel base and the current dip initiates, along with the reflection height from the video records, we find the average return stroke current speed for each of the ten strokes to be from 0.28 to 1.9×108 ms-1, with an error of ±0.01×108 ms-1 due to a ±0.1 μs uncertainty in the measurement. This represents the first direct measurement of return stroke current speed, all previous return stroke speed measurements being derived from the luminosity of the process.

  16. Reflection of Constructivist Theories in Current Educational Practice

    ERIC Educational Resources Information Center

    Juvova, Alena; Chudy, Stefan; Neumeister, Pavel; Plischke, Jitka; Kvintova, Jana

    2015-01-01

    In this overview study, we would like to present the basic constructivist approaches that have affected or influenced the current concept of education. The teacher-student interaction is reflected by personality, psychological traits, attitudes and cultural capital of the participants of the educational process as well as the teacher's effort to…

  17. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running.

    PubMed

    Jones, A M; Doust, J H

    1996-08-01

    When running indoors on a treadmill, the lack of air resistance results in a lower energy cost compared with running outdoors at the same velocity. A slight incline of the treadmill gradient can be used to increase the energy cost in compensation. The aim of this study was to determine the treadmill gradient that most accurately reflects the energy cost of outdoor running. Nine trained male runners, thoroughly habituated to treadmill running, ran for 6 min at six different velocities (2.92, 3.33, 3.75, 4.17, 4.58 and 5.0 m s-1) with 6 min recovery between runs. This routine was repeated six times, five times on a treadmill set at different grades (0%, 0%, 1%, 2%, 3%) and once outdoors along a level road. Duplicate collections of expired air were taken during the final 2 min of each run to determine oxygen consumption. The repeatability of the methodology was confirmed by high correlations (r = 0.99) and non-significant differences between the duplicate expired air collections and between the repeated runs at 0% grade. The relationship between oxygen uptake (VO2) and velocity for each grade was highly linear (r > 0.99). At the two lowest velocities, VO2 during road running was not significantly different from treadmill running at 0% or 1% grade, but was significantly less than 2% and 3% grade. For 3.75 m s-1, the VO2 during road running was significantly different from treadmill running at 0%, 2% and 3% grades but not from 1% grade. For 4.17 and 4.58 m s-1, the VO2 during road running was not significantly different from that at 1% or 2% grade but was significantly greater than 0% grade and significantly less than 3% grade. At 5.0 m s-1, the VO2 for road running fell between the VO2 value for 1% and 2% grade treadmill running but was not significantly different from any of the treadmill grade conditions. This study demonstrates equality of the energetic cost of treadmill and outdoor running with the use of a 1% treadmill grade over a duration of approximately 5 min

  18. High-power CMOS current driver with accurate transconductance for electrical impedance tomography.

    PubMed

    Constantinou, Loucas; Triantis, Iasonas F; Bayford, Richard; Demosthenous, Andreas

    2014-08-01

    Current drivers are fundamental circuits in bioimpedance measurements including electrical impedance tomography (EIT). In the case of EIT, the current driver is required to have a large output impedance to guarantee high current accuracy over a wide range of load impedance values. This paper presents an integrated current driver which meets these requirements and is capable of delivering large sinusoidal currents to the load. The current driver employs a differential architecture and negative feedback, the latter allowing the output current to be accurately set by the ratio of the input voltage to a resistor value. The circuit was fabricated in a 0.6- μm high-voltage CMOS process technology and its core occupies a silicon area of 0.64 mm (2) . It operates from a ± 9 V power supply and can deliver output currents up to 5 mA p-p. The accuracy of the maximum output current is within 0.41% up to 500 kHz, reducing to 0.47% at 1 MHz with a total harmonic distortion of 0.69%. The output impedance is 665 k Ω at 100 kHz and 372 k Ω at 500 kHz.

  19. Standardization of vitrinite reflectance measurements in shale petroleum systems: How accurate are my Ro data?

    USGS Publications Warehouse

    Hackley, Paul C.

    2014-01-01

    Vitrinite reflectance generally is considered the most robust thermal maturity parameter available for application to hydrocarbon exploration and petroleum system evaluation. However, until 2011 there was no standardized methodology available to provide guidelines for vitrinite reflectance measurements in shale. Efforts to correct this deficiency resulted in publication of ASTM D7708-11: Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. In 2012-2013, an interlaboratory exercise was conducted to establish precision limits for the measurement technique. Six samples, representing a wide variety of shale, were tested in duplicate by 28 analysts in 22 laboratories from 14 countries. Samples ranged from immature to overmature (Ro 0.31-1.53%), from organic-rich to organic-lean (1-22 wt.% total organic carbon), and contained Type I (lacustrine), Type II (marine), and Type III (terrestrial) kerogens. Repeatability values (difference between repetitive results from same operator, same conditions) ranged from 0.03-0.11% absolute reflectance, whereas reproducibility values (difference between results obtained on same test material by different operators, different laboratories) ranged from 0.12-0.54% absolute reflectance. Repeatability and reproducibility degraded consistently with increasing maturity and decreasing organic content. However, samples with terrestrial kerogens (Type III) fell off this trend, showing improved levels of reproducibility due to higher vitrinite content and improved ease of identification. Operators did not consistently meet the reporting requirements of the test method, indicating that a common reporting template is required to improve data quality. The most difficult problem encountered was the petrographic distinction of solid bitumens and low-reflecting inert macerals from vitrinite when vitrinite occurred with reflectance ranges overlapping the other components. Discussion among

  20. Accurate elevation and normal moveout corrections of seismic reflection data on rugged topography

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Chen, C.; Zhang, G.

    2005-01-01

    The application of the seismic reflection method is often limited in areas of complex terrain. The problem is the incorrect correction of time shifts caused by topography. To apply normal moveout (NMO) correction to reflection data correctly, static corrections are necessary to be applied in advance for the compensation of the time distortions of topography and the time delays from near-surface weathered layers. For environment and engineering investigation, weathered layers are our targets, so that the static correction mainly serves the adjustment of time shifts due to an undulating surface. In practice, seismic reflected raypaths are assumed to be almost vertical through the near-surface layers because they have much lower velocities than layers below. This assumption is acceptable in most cases since it results in little residual error for small elevation changes and small offsets in reflection events. Although static algorithms based on choosing a floating datum related to common midpoint gathers or residual surface-consistent functions are available and effective, errors caused by the assumption of vertical raypaths often generate pseudo-indications of structures. This paper presents the comparison of applying corrections based on the vertical raypaths and bias (non-vertical) raypaths. It also provides an approach of combining elevation and NMO corrections. The advantages of the approach are demonstrated by synthetic and real-world examples of multi-coverage seismic reflection surveys on rough topography. ?? The Royal Society of New Zealand 2005.

  1. Logrithmic current simulator generates electrical currents accurately between 10 to the minus 11 ampere to 10 to the minus 3 ampere

    NASA Technical Reports Server (NTRS)

    Wilson, J.

    1966-01-01

    Current generator accurately simulates electric currents in the range of 10 to the minus 11th power to 0.001 ampere. Compensation networks have been devised to improve the accuracy at the lower current levels.

  2. Accurate verification of the conserved-vector-current and standard-model predictions

    SciTech Connect

    Sirlin, A.; Zucchini, R.

    1986-10-20

    An approximate analytic calculation of O(Z..cap alpha../sup 2/) corrections to Fermi decays is presented. When the analysis of Koslowsky et al. is modified to take into account the new results, it is found that each of the eight accurately studied scrFt values differs from the average by approx. <1sigma, thus significantly improving the comparison of experiments with conserved-vector-current predictions. The new scrFt values are lower than before, which also brings experiments into very good agreement with the three-generation standard model, at the level of its quantum corrections.

  3. Accurate estimation of the RMS emittance from single current amplifier data

    SciTech Connect

    Stockli, Martin P.; Welton, R.F.; Keller, R.; Letchford, A.P.; Thomae, R.W.; Thomason, J.W.G.

    2002-05-31

    This paper presents the SCUBEEx rms emittance analysis, a self-consistent, unbiased elliptical exclusion method, which combines traditional data-reduction methods with statistical methods to obtain accurate estimates for the rms emittance. Rather than considering individual data, the method tracks the average current density outside a well-selected, variable boundary to separate the measured beam halo from the background. The average outside current density is assumed to be part of a uniform background and not part of the particle beam. Therefore the average outside current is subtracted from the data before evaluating the rms emittance within the boundary. As the boundary area is increased, the average outside current and the inside rms emittance form plateaus when all data containing part of the particle beam are inside the boundary. These plateaus mark the smallest acceptable exclusion boundary and provide unbiased estimates for the average background and the rms emittance. Small, trendless variations within the plateaus allow for determining the uncertainties of the estimates caused by variations of the measured background outside the smallest acceptable exclusion boundary. The robustness of the method is established with complementary variations of the exclusion boundary. This paper presents a detailed comparison between traditional data reduction methods and SCUBEEx by analyzing two complementary sets of emittance data obtained with a Lawrence Berkeley National Laboratory and an ISIS H{sup -} ion source.

  4. Developing a second generation Laue lens prototype: high-reflectivity crystals and accurate assembly

    NASA Astrophysics Data System (ADS)

    Barrière, Nicolas M.; Tomsick, John A.; Boggs, Steven E.; Lowell, Alexander; von Ballmoos, Peter

    2011-09-01

    Laue lenses are an emerging technology that will enhance gamma-ray telescope sensitivity by one to two orders of magnitude in selected energy bands of the ~100 keV to ~1.5 MeV range. This optic would be particularly well adapted to the observation of faint gamma ray lines, as required for the study of Supernovae and Galactic positron annihilation. It could also prove very useful for the study of hard X-ray tails from a variety of compact objects, especially making a difference by providing sufficient sensitivity for polarization to be measured by the focal plane detector. Our group has been addressing the two key issues relevant to improve performance with respect to the first generation of Laue lens prototypes: obtaining large numbers of efficient crystals and developing a method to fix them with accurate orientation and dense packing factor onto a substrate. We present preliminary results of an on-going study aiming to enable a large number of crystals suitable for diffraction at energies above 500 keV. In addition, we show the first results of the Laue lens prototype assembled using our beamline at SSL/UC Berkeley, which demonstrates our ability to orient and glue crystals with accuracy of a few arcsec, as required for an efficient Laue lens telescope.

  5. Hydrogen sulfide detection based on reflection: from a poison test approach of ancient China to single-cell accurate localization.

    PubMed

    Kong, Hao; Ma, Zhuoran; Wang, Song; Gong, Xiaoyun; Zhang, Sichun; Zhang, Xinrong

    2014-08-01

    With the inspiration of an ancient Chinese poison test approach, we report a rapid hydrogen sulfide detection strategy in specific areas of live cells using silver needles with good spatial resolution of 2 × 2 μm(2). Besides the accurate-localization ability, this reflection-based strategy also has attractive merits of convenience and robust response when free pretreatment and short detection time are concerned. The success of endogenous H2S level evaluation in cellular cytoplasm and nuclear of human A549 cells promises the application potential of our strategy in scientific research and medical diagnosis.

  6. Small pores in soils: Is the physico-chemical environment accurately reflected in biogeochemical models ?

    NASA Astrophysics Data System (ADS)

    Weber, Tobias K. D.; Riedel, Thomas

    2015-04-01

    Free water is a prerequesite to chemical reactions and biological activity in earth's upper crust essential to life. The void volume between the solid compounds provides space for water, air, and organisms that thrive on the consumption of minerals and organic matter thereby regulating soil carbon turnover. However, not all water in the pore space in soils and sediments is in its liquid state. This is a result of the adhesive forces which reduce the water activity in small pores and charged mineral surfaces. This water has a lower tendency to react chemically in solution as this additional binding energy lowers its activity. In this work, we estimated the amount of soil pore water that is thermodynamically different from a simple aqueous solution. The quantity of soil pore water with properties different to liquid water was found to systematically increase with increasing clay content. The significance of this is that the grain size and surface area apparently affects the thermodynamic state of water. This implies that current methods to determine the amount of water content, traditionally determined from bulk density or gravimetric water content after drying at 105°C overestimates the amount of free water in a soil especially at higher clay content. Our findings have consequences for biogeochemical processes in soils, e.g. nutrients may be contained in water which is not free which could enhance preservation. From water activity measurements on a set of various soils with 0 to 100 wt-% clay, we can show that 5 to 130 mg H2O per g of soil can generally be considered as unsuitable for microbial respiration. These results may therefore provide a unifying explanation for the grain size dependency of organic matter preservation in sedimentary environments and call for a revised view on the biogeochemical environment in soils and sediments. This could allow a different type of process oriented modelling.

  7. How Should Risk-Based Regulation Reflect Current Public Opinion?

    PubMed

    Pollock, Christopher John

    2016-08-01

    Risk-based regulation of novel agricultural products with public choice manifest via traceability and labelling is a more effective approach than the use of regulatory processes to reflect public concerns, which may not always be supported by evidence.

  8. How Should Risk-Based Regulation Reflect Current Public Opinion?

    PubMed

    Pollock, Christopher John

    2016-08-01

    Risk-based regulation of novel agricultural products with public choice manifest via traceability and labelling is a more effective approach than the use of regulatory processes to reflect public concerns, which may not always be supported by evidence. PMID:27266813

  9. Popular films do not reflect current tobacco use.

    PubMed Central

    Hazan, A R; Lipton, H L; Glantz, S A

    1994-01-01

    This study examined trends in tobacco use in a random sample of 2 of the 20 top-grossing US films each year from 1960 through 1990 (62 films). The overall rate of tobacco use did not change. Films continue to portray smokers as successful, attractive White males. Smoking groups became larger, smoking alone declined, hostility and stress reduction were increasingly associated with smoking, and smoking by minor characters increased. Although smoking among elite characters fell, it remained nearly three times as prevalent as in actual population data during the 3 decades. Events involving young people more than doubled. Films do not accurately represent smoking in the United States. PMID:8203700

  10. Assessment of a sponge layer as a non-reflective boundary treatment with highly accurate gust–airfoil interaction results

    NASA Astrophysics Data System (ADS)

    Crivellini, A.

    2016-02-01

    This paper deals with the numerical performance of a sponge layer as a non-reflective boundary condition. This technique is well known and widely adopted, but only recently have the reasons for a sponge failure been recognised, in analysis by Mani. For multidimensional problems, the ineffectiveness of the method is due to the self-reflections of the sponge occurring when it interacts with an oblique acoustic wave. Based on his theoretical investigations, Mani gives some useful guidelines for implementing effective sponge layers. However, in our opinion, some practical indications are still missing from the current literature. Here, an extensive numerical study of the performance of this technique is presented. Moreover, we analyse a reduced sponge implementation characterised by undamped partial differential equations for the velocity components. The main aim of this paper relies on the determination of the minimal width of the layer, as well as of the corresponding strength, required to obtain a reflection error of no more than a few per cent of that observed when solving the same problem on the same grid, but without employing the sponge layer term. For this purpose, a test case of computational aeroacoustics, the single airfoil gust response problem, has been addressed in several configurations. As a direct consequence of our investigation, we present a well documented and highly validated reference solution for the far-field acoustic intensity, a result that is not well established in the literature. Lastly, the proof of the accuracy of an algorithm for coupling sub-domains solved by the linear and non-liner Euler governing equations is given. This result is here exploited to adopt a linear-based sponge layer even in a non-linear computation.

  11. Assessment of a sponge layer as a non-reflective boundary treatment with highly accurate gust-airfoil interaction results

    NASA Astrophysics Data System (ADS)

    Crivellini, A.

    2016-02-01

    This paper deals with the numerical performance of a sponge layer as a non-reflective boundary condition. This technique is well known and widely adopted, but only recently have the reasons for a sponge failure been recognised, in analysis by Mani. For multidimensional problems, the ineffectiveness of the method is due to the self-reflections of the sponge occurring when it interacts with an oblique acoustic wave. Based on his theoretical investigations, Mani gives some useful guidelines for implementing effective sponge layers. However, in our opinion, some practical indications are still missing from the current literature. Here, an extensive numerical study of the performance of this technique is presented. Moreover, we analyse a reduced sponge implementation characterised by undamped partial differential equations for the velocity components. The main aim of this paper relies on the determination of the minimal width of the layer, as well as of the corresponding strength, required to obtain a reflection error of no more than a few per cent of that observed when solving the same problem on the same grid, but without employing the sponge layer term. For this purpose, a test case of computational aeroacoustics, the single airfoil gust response problem, has been addressed in several configurations. As a direct consequence of our investigation, we present a well documented and highly validated reference solution for the far-field acoustic intensity, a result that is not well established in the literature. Lastly, the proof of the accuracy of an algorithm for coupling sub-domains solved by the linear and non-liner Euler governing equations is given. This result is here exploited to adopt a linear-based sponge layer even in a non-linear computation.

  12. Reflections on academic careers by current dental school faculty.

    PubMed

    Rogér, James M; Wehmeyer, Meggan M H; Milliner, Matthew S

    2008-04-01

    commitment, financial frustration, political frustration, lack of mentorship, required research emphasis, lack of teaching skills development, student engagement, isolation, and funding uncertainty. This article reports the approximate frequency of each theme, presents representative statements that describe the motivations and attitudes of dental faculty members who were interviewed, and concludes with a review of programs/methods aimed at marketing academic careers to current students. The purpose of this review of the rewards, benefits, and challenges that current dental faculty face is to provide students who are considering dental education with a frame of reference to guide their further exploration of this career path and to help students appreciate the many positive aspects of academic life that may not be readily apparent from their own interactions with faculty members. PMID:18381851

  13. [Reflection on 2 current viral diseases: yellow fever and dengue].

    PubMed

    Chastel, C

    1997-01-01

    Yellow fever and dengue are two current viral diseases induced by flaviviruses and usually transmitted by the same mosquito vector, Aedes aegypti. From 1987 to 1991, 18,753 cases of yellow fever, mainly from Africa, have been notified to WHO, leading to 4,522 deaths. On the other hand, WHO estimates that 2.5 billions individuals living in tropical areas are at risk to contract dengue fevers. In fact, 500,000 patients are hospitalized each year for dengue hemorrhagic fever/dengue shock syndrome and 90% of them are children. Nevertheless, the control of these two viral diseases would be reached easily in destroying mechanically the mosquito larval resting places. Although superficially similar, the two entities are in fact quite different. Relatively few is known about the pathogenesis of yellow fever whereas, for dengue fevers, it is difficult to integrate so many results accumulated to explain the occurrence of haemorrhagic phenomena according to the two main theories so far proposed which are not exclusive. The immunological one (S.B. Halstead) tries to explain the pathological events by the effect of anti-dengue enhancing antibodies acquired during a previous exposure to one of the dengue viruses, whereas that of increased virus virulence (L. Rosen) refers to fast passages between individuals during explosive epidemics.

  14. Extracting accurate strain measurements in bone mechanics: A critical review of current methods.

    PubMed

    Grassi, Lorenzo; Isaksson, Hanna

    2015-10-01

    Osteoporosis related fractures are a social burden that advocates for more accurate fracture prediction methods. Mechanistic methods, e.g. finite element models, have been proposed as a tool to better predict bone mechanical behaviour and strength. However, there is little consensus about the optimal constitutive law to describe bone as a material. Extracting reliable and relevant strain data from experimental tests is of fundamental importance to better understand bone mechanical properties, and to validate numerical models. Several techniques have been used to measure strain in experimental mechanics, with substantial differences in terms of accuracy, precision, time- and length-scale. Each technique presents upsides and downsides that must be carefully evaluated when designing the experiment. Moreover, additional complexities are often encountered when applying such strain measurement techniques to bone, due to its complex composite structure. This review of literature examined the four most commonly adopted methods for strain measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and digital volume correlation), with a focus on studies with bone as a substrate material, at the organ and tissue level. For each of them the working principles, a summary of the main applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons are provided. PMID:26099201

  15. Moving Forward from the Past: Early Writings and Current Reflections of Middle School Founders.

    ERIC Educational Resources Information Center

    David, Robert, Ed.

    Twenty-three articles by five educators who wrote in the 1960's and 1970's about the then new concept of the middle school are gathered, along with current essays reflecting on the insight these papers provide for current middle-school concerns. In the first section, C. Kenneth McEwin reflects on the current impact of these writings of William M.…

  16. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    PubMed

    Petrov, Drazen; Zagrovic, Bojan

    2014-05-01

    The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD) simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded) and oxidatively damaged (unfolded) forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP) as well as indirectly shown for additional two (AMBER94, OPLS-AAL), and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields may distort the

  17. Are Current Atomistic Force Fields Accurate Enough to Study Proteins in Crowded Environments?

    PubMed Central

    Petrov, Drazen; Zagrovic, Bojan

    2014-01-01

    The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD) simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded) and oxidatively damaged (unfolded) forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP) as well as indirectly shown for additional two (AMBER94, OPLS-AAL), and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields may distort the

  18. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    PubMed

    Petrov, Drazen; Zagrovic, Bojan

    2014-05-01

    The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD) simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded) and oxidatively damaged (unfolded) forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP) as well as indirectly shown for additional two (AMBER94, OPLS-AAL), and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields may distort the

  19. Reflections on current and future applications of multiangle imaging to aerosol and cloud remote sensing

    NASA Astrophysics Data System (ADS)

    Diner, David

    2010-05-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global Earth data from NASA's Terra satellite since February 2000. With its 9 along-track view angles, 4 spectral bands, intrinsic spatial resolution of 275 m, and stable radiometric and geometric calibration, no instrument that combines MISR's attributes has previously flown in space, nor is there is a similar capability currently available on any other satellite platform. Multiangle imaging offers several tools for remote sensing of aerosol and cloud properties, including bidirectional reflectance and scattering measurements, stereoscopic pattern matching, time lapse sequencing, and potentially, optical tomography. Current data products from MISR employ several of these techniques. Observations of the intensity of scattered light as a function of view angle and wavelength provide accurate measures of aerosol optical depths (AOD) over land, including bright desert and urban source regions. Partitioning of AOD according to retrieved particle classification and incorporation of height information improves the relationship between AOD and surface PM2.5 (fine particulate matter, a regulated air pollutant), constituting an important step toward a satellite-based particulate pollution monitoring system. Stereoscopic cloud-top heights provide a unique metric for detecting interannual variability of clouds and exceptionally high quality and sensitivity for detection and height retrieval for low-level clouds. Using the several-minute time interval between camera views, MISR has enabled a pole-to-pole, height-resolved atmospheric wind measurement system. Stereo imagery also makes possible global measurement of the injection heights and advection speeds of smoke plumes, volcanic plumes, and dust clouds, for which a large database is now available. To build upon what has been learned during the first decade of MISR observations, we are evaluating algorithm updates that not only refine retrieval

  20. 40 CFR 450.21 - Effluent limitations reflecting the best practicable technology currently available (BPT).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stormwater volume and velocity to minimize soil erosion in order to minimize pollutant discharges; (2... limitations reflecting the best practicable technology currently available (BPT). Except as provided in 40 CFR... the best practicable control technology currently available (BPT). (a) Erosion and sediment...

  1. An accurate treatment of diffuse reflection boundary conditions for a stochastic particle Fokker-Planck algorithm with large time steps

    NASA Astrophysics Data System (ADS)

    Önskog, Thomas; Zhang, Jun

    2015-12-01

    In this paper, we present a stochastic particle algorithm for the simulation of flows of wall-confined gases with diffuse reflection boundary conditions. Based on the theoretical observation that the change in location of the particles consists of a deterministic part and a Wiener process if the time scale is much larger than the relaxation time, a new estimate for the first hitting time at the boundary is obtained. This estimate facilitates the construction of an algorithm with large time steps for wall-confined flows. Numerical simulations verify that the proposed algorithm reproduces the correct boundary behaviour.

  2. Activity ratios of ribulose-1,5-bisphosphate carboxylase accurately reflect carbamylation ratios. [Phaseolus vulgaris, Spinacla oleracea

    SciTech Connect

    Butz, N.D.; Sharkey, T.D. )

    1989-03-01

    Activity ratios and carbamylation ratios of ribulose-1,5-bisphosphate carboxylase (RuBPCase) were determined for leaves of Phaseolus vulgaris and Spinacia oleracea exposed to a variety of partial pressures of CO{sub 2} and O{sub 2} and photon flux densities (PFD). It was found that activity ratios accurately predicted carbamylation ratios except in extracts from leaves held in low PFD. In particular, it was confirmed that the loss of FuBPCase activity in low partial pressure of O{sub 2} and high PFD results from reduced carbamylation. Activity ratios of RuBPCase were lower than carbamylation ratios for Phaseolus leaves sampled in low PFD, presumably because of the presence of 2-carboxyarabinitol 1-phosphate. Spinacia leaves sampled in darkness also exhibited lower activity ratios than carbamylation ratios indicating that this species may also have an RuBPCase inhibitor even though carboxyarabinitol 1-phosphate has not been detected in this species in the past.

  3. Alfven Wave Reflection Model of Field-Aligned Currents at Mercury

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James

    2010-01-01

    An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.

  4. Delayed type hypersensitivity response to recall antigens does not accurately reflect immune competence in advanced stage breast cancer patients.

    PubMed

    Schiffman, Kathy; Rinn, Kristine; Disis, Mary L

    2002-07-01

    The development of delayed-type hypersensitivity (DTH) response to recall antigens has long been utilized as a measure of immune competence. It is assumed that because patients with advanced stage cancers exhibit multiple immune system defects they may not be responsive to immunization. We pre-selected patients with advanced HER-2/neu (HER2) overexpressing breast and ovarian cancers for enrolment into a phase I trial designed to evaluate the immunogenicity of a HER2 peptide vaccine based on the patient's immune competence as assessed by DTH skin testing to common recall antigens (Multitest CMI, Institut Merieux, Lyon, France). At the time of a positive DTH response to tetanus toxoid (tt) peripheral blood was obtained to measure T cell responses to tt. Of 53 patients evaluated, 38 (72%) were not anergic. Among the 15 (28%) who were, seven patients with advanced stage breast cancer were re-tested a median of 26 days (range 12-150 days) after receiving a tt bopster vaccination. Five of the seven had positive DTH responses when re-challenged with tt and six had peripheral blood tetanus specific T cell response with stimulation index >2.0. Thus, the majority of patients studied with advanced stage breast or ovarian cancer were able to mount a DTH response to common recall antigens. Moreover, a negative response by DTH testing to a battery of common recall antigens was not a reflection of the breast cancer patient's ability to mount a cell-mediated immune response to a vaccinated antigen, tt.

  5. 40 CFR 450.21 - Effluent limitations reflecting the best practicable technology currently available (BPT).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stormwater volume and velocity within the site to minimize soil erosion; (2) Control stormwater discharges... downstream channel and streambank erosion; (3) Minimize the amount of soil exposed during construction... limitations reflecting the best practicable technology currently available (BPT). Except as provided in 40...

  6. 40 CFR 450.21 - Effluent limitations reflecting the best practicable technology currently available (BPT).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stormwater volume and velocity within the site to minimize soil erosion; (2) Control stormwater discharges... downstream channel and streambank erosion; (3) Minimize the amount of soil exposed during construction... limitations reflecting the best practicable technology currently available (BPT). Except as provided in 40...

  7. Reflectivity dependence of threshold current in GaInAsP/InP surface emitting laser

    SciTech Connect

    Oshikiri, M.; Kawasaki, H.; Koyama, F.; Iga, K.

    1989-01-01

    The authors have made a systematic study on changing the reflectivity of Si/SiO/sub 2/ mirror for 1.3 ..mu..m GaInAsP/InP surface emitting lasers. The effective threshold current of 4.5 mA at 77K continuous operation has been obtained. This indicates a possibility of a sub-mA threshold at 77K and greater than or equal to20m at 300K by optimizing the mirror reflectivity.

  8. Do inverse ecosystem models accurately reconstruct plankton trophic flows? Comparing two solution methods using field data from the California Current

    NASA Astrophysics Data System (ADS)

    Stukel, Michael R.; Landry, Michael R.; Ohman, Mark D.; Goericke, Ralf; Samo, Ty; Benitez-Nelson, Claudia R.

    2012-03-01

    Despite the increasing use of linear inverse modeling techniques to elucidate fluxes in undersampled marine ecosystems, the accuracy with which they estimate food web flows has not been resolved. New Markov Chain Monte Carlo (MCMC) solution methods have also called into question the biases of the commonly used L2 minimum norm (L 2MN) solution technique. Here, we test the abilities of MCMC and L 2MN methods to recover field-measured ecosystem rates that are sequentially excluded from the model input. For data, we use experimental measurements from process cruises of the California Current Ecosystem (CCE-LTER) Program that include rate estimates of phytoplankton and bacterial production, micro- and mesozooplankton grazing, and carbon export from eight study sites varying from rich coastal upwelling to offshore oligotrophic conditions. Both the MCMC and L 2MN methods predicted well-constrained rates of protozoan and mesozooplankton grazing with reasonable accuracy, but the MCMC method overestimated primary production. The MCMC method more accurately predicted the poorly constrained rate of vertical carbon export than the L 2MN method, which consistently overestimated export. Results involving DOC and bacterial production were equivocal. Overall, when primary production is provided as model input, the MCMC method gives a robust depiction of ecosystem processes. Uncertainty in inverse ecosystem models is large and arises primarily from solution under-determinacy. We thus suggest that experimental programs focusing on food web fluxes expand the range of experimental measurements to include the nature and fate of detrital pools, which play large roles in the model.

  9. Electrical detection of spin polarized current in semiconductors using Andreev reflection

    NASA Astrophysics Data System (ADS)

    Mitra, Partha; Zhu, Meng; Samarth, Nitin

    2008-03-01

    Electron transport across the interface between a superconductor and a normal conductor is sensitive to the spin populations of electrons in the conduction band of the latter, leading to the phenomenon of Andreev reflection. A characteristic non-linear behavior in differential conductance is observed in superconductor/ferromagnet bilayers, with a suppression of the conductivity below the superconducting gap. This allows the carrier spin polarization in the normal conductor to be extracted. We attempt to exploit Andreev reflection for measuring hole spin diffusion lengths in p-GaAs by studying a series of hybrid heterostructures of superconducting metal ( In or Nb) and a ferromagnetic semiconductor (GaMnAs), separated by p-GaAs spacer layers of different thickness. Qualitatively, our data show evidence for a finite spin polarization in the current that decreases with spacer thickness.

  10. Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors.

    PubMed

    He, James J; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y; Law, K T

    2014-01-01

    Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors.

  11. Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors

    PubMed Central

    He, James J.; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y.; Law, K. T.

    2014-01-01

    Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors. PMID:24492649

  12. Bulk excitonic currents in a bilayer quantum Hall system and Andreev reflection

    NASA Astrophysics Data System (ADS)

    Finck, A. D. K.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    2011-03-01

    Bilayer 2D electron systems in the quantum Hall regime can support a novel interlayer coherent phase which may be viewed as a Bose condensate of interlayer excitons. While numerous experiments over the past decade have revealed a host of remarkable properties of this strongly correlated quantum fluid, heretofore none have directly demonstrated the transport of excitons across the electrically insulating bulk of the system. We report here just such an observation. Our experimental results show that excitons may be launched into the bulk of the 2D system via a process analogous to Andreev reflection. Excitons are emitted into the bulk of the bilayer when electrons are injected into one 2D layer and withdrawn from the other along a common edge of the system. Similarly, we demonstrate that excitons arriving at the edge of the Hall droplet can drive current through external circuitry connected to contacts along that edge.

  13. CLARREO Cornerstone of the Earth Observing System: Measuring Decadal Change Through Accurate Emitted Infrared and Reflected Solar Spectra and Radio Occultation

    NASA Technical Reports Server (NTRS)

    Sandford, Stephen P.

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is one of four Tier 1 missions recommended by the recent NRC Decadal Survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to provide accurate, broadly acknowledged climate records that are used to enable validated long-term climate projections that become the foundation for informed decisions on mitigation and adaptation policies that address the effects of climate change on society. The CLARREO mission accomplishes this critical objective through rigorous SI traceable decadal change observations that are sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. These same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. For the first time CLARREO will make highly accurate, global, SI-traceable decadal change observations sensitive to the most critical, but least understood, climate forcings, responses, and feedbacks. The CLARREO breakthrough is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. The required accuracy levels are determined so that climate trend signals can be detected against a background of naturally occurring variability. Climate system natural variability therefore determines what level of accuracy is overkill, and what level is critical to obtain. In this sense, the CLARREO mission requirements are considered optimal from a science value perspective. The accuracy for decadal change traceability to SI standards includes uncertainties associated with instrument calibration, satellite orbit sampling, and analysis methods. Unlike most space missions, the CLARREO requirements are driven not by the instantaneous accuracy of the measurements, but by accuracy in

  14. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    NASA Astrophysics Data System (ADS)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  15. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    SciTech Connect

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-15

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  16. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    PubMed

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class. PMID:23902112

  17. Streptococcus dysgalactiae subsp. equisimilis Isolated From Infections in Dogs and Humans: Are Current Subspecies Identification Criteria accurate?

    PubMed

    Ciszewski, Marcin; Zegarski, Kamil; Szewczyk, Eligia M

    2016-11-01

    Streptococcus dysgalactiae is a pyogenic species pathogenic both for humans and animals. Until recently, it has been considered an exclusive animal pathogen causing infections in wild as well as domestic animals. Currently, human infections are being reported with increasing frequency, and their clinical picture is often similar to the ones caused by Streptococcus pyogenes. Due to the fact that S. dysgalactiae is a heterogeneous species, it was divided into two subspecies: S. dysgalactiae subsp. equisimilis (SDSE) and S. dysgalactiae subsp. dysgalactiae (SDSD). The first differentiation criterion, described in 1996, was based on strain isolation source. Currently applied criteria, published in 1998, are based on hemolysis type and Lancefield group classification. In this study, we compared subspecies identification results for 36 strains isolated from clinical cases both in humans and animals. Species differentiation was based on two previously described criteria as well as MALDI-TOF and genetic analyses: RISA and 16S rRNA genes sequencing. Antimicrobial susceptibility profiles were also determined according to CLSI guidelines. The results presented in our study suggest that the subspecies differentiation criteria previously described in the above two literature positions seem to be inaccurate in analyzed group of strains, the hemolysis type on blood agar, and Lancefield classification should not be here longer considered as criteria in subspecies identification. The antimicrobial susceptibility tests indicate emerging of multiresistant human SDSE strains resistant also to vancomycin, linezolid and tigecycline, which might pose a substantial problem in treatment. PMID:27502064

  18. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    PubMed Central

    El-Amrawy, Fatema

    2015-01-01

    Objectives The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Methods Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. Results The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. Conclusions The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure. PMID:26618039

  19. Do Current State Standards and Assessments Reflect College Readiness?: A Case Study. Issues in College Readiness

    ERIC Educational Resources Information Center

    ACT, Inc., 2005

    2005-01-01

    Do state standards and assessments provide accurate, meaningful information about the college readiness levels of the state's high school students? To suggest an answer to this question, this study examined data from one state in which students in grades 8 and 10 take both a statewide assessment and the corresponding component of ACT's Educational…

  20. Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra

    NASA Astrophysics Data System (ADS)

    Sung, Kung-Bin; Shih, Kuang-Wei; Hsu, Fang-Wei; Hsieh, Hong-Po; Chuang, Min-Jie; Hsiao, Yi-Hsien; Su, Yu-Hui; Tien, Gen-Hao

    2014-07-01

    We are reporting on an experimental investigation of a movable diffuse reflectance spectroscopy system to extract diagnostically relevant optical properties of two-layered tissue phantoms simulating mucosae that are covered with stratified squamous epithelium. The reflectance spectra were measured at multiple source-detector separations using two imaging fiber bundles in contact with the phantoms, one with its optical axis perpendicular to the sample surface (perpendicular probe) and the other with its distal end beveled and optical axis tilted at 45 deg (oblique probe). Polystyrene microspheres and purified human hemoglobin were used to make tissue phantoms whose scattering and absorption properties could be well controlled and theoretically predicted. Monte Carlo simulations were used to predict the reflectance spectra for system calibration and an iterative curve fitting that simultaneously extracted the top layer reduced scattering coefficient, thickness, bottom layer reduced scattering coefficient, and hemoglobin concentration of the phantoms. The errors of the recovered parameters ranged from 7% to 20%. The oblique probe showed higher accuracy in the extracted top layer reduced scattering coefficient and thickness than the perpendicular probe. The developed system and data analysis methods provide a feasible tool to quantify the optical properties in vivo.

  1. Analytical determination of the reflection coefficient by the evanescent modes model during the wave-current-horizontal plate interaction

    NASA Astrophysics Data System (ADS)

    Errifaiy, Meriem; Naasse, Smail; Chahine, Chakib

    2016-07-01

    Our work presents an analytical study of the determination of the reflection coefficient during the interaction between the regular wave current and a horizontal plate. This study was done using the linearized potential flow theory with the evanescent modes model, while searching for complex solutions to the dispersion equation that are neither real pure nor imaginary pure. To validate the established model, it has been confronted with the experimental results of V. Rey and J. Touboul, in a first phase, and then compared to those of the numerical study by H.-X. Lin et al. Then, this model was used to study the effect of current on the reflection coefficient. xml:lang="fr"

  2. Reflection of Transverse Waves in a Structure "Dielectric-Piezoelectric Semiconductor with Current"

    NASA Astrophysics Data System (ADS)

    Lyamshev, L. M.; Shevyakhov, N. S.

    2000-05-01

    Reflection of a plane monochromatic transverse wave by the boundary of the acoustic contact of a dielectric with a hexagonal piezoelectric semiconductor in the presence of a longitudinal charge drift is treated in the small-signal approximation within the framework of the hydrodynamic description of a charge carrier plasma. A procedure of selecting the branches with allowance for the conversion of the quasi-acoustic mode (a refracted transverse wave) into plasma-acoustic disturbances, both in-leaking at the boundary or out-leaking from it, is proposed for the determination of the solution under the conditions of a supersonic drift and “overcritical” angles of incidence. Beyond the restrictions of White’s theory of ultrasonic wave propagation in piezoelectric semiconductors, it is demonstrated that this technique removes the defects of the solutions obtained earlier in the form of discontinuities in angular dependences of the modulus of the reflection coefficient of a transverse wave in the vicinity of the “critical” angle of incidence and leads to a solution that does not contain a resonance singularity of a polar type.

  3. "At This Point Now": Older Workers' Reflections on Their Current Employment Experiences

    ERIC Educational Resources Information Center

    Noonan, Anne E.

    2005-01-01

    Despite the frequently referenced graying of the U.S. workforce, we know relatively little about the work-related concerns and experiences of older workers--those aged 55+. This qualitative study addresses that gap by examining the current employment situations of a purposive sample of 37 older workers. Thematic content analysis revealed a vast…

  4. 40 CFR 450.21 - Effluent limitations reflecting the best practicable technology currently available (BPT).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... velocity within the site to minimize soil erosion; (2) Control stormwater discharges, including both peak... streambank erosion; (3) Minimize the amount of soil exposed during construction activity; (4) Minimize the... the best practicable technology currently available (BPT). Except as provided in 40 CFR 125.30...

  5. 40 CFR 450.21 - Effluent limitations reflecting the best practicable technology currently available (BPT).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... velocity within the site to minimize soil erosion; (2) Control stormwater discharges, including both peak... streambank erosion; (3) Minimize the amount of soil exposed during construction activity; (4) Minimize the... the best practicable technology currently available (BPT). Except as provided in 40 CFR 125.30...

  6. High-throughput amplicon sequencing of rRNA genes requires a copy number correction to accurately reflect the effects of management practices on soil nematode community structure.

    PubMed

    Darby, B J; Todd, T C; Herman, M A

    2013-11-01

    Nematodes are abundant consumers in grassland soils, but more sensitive and specific methods of enumeration are needed to improve our understanding of how different nematode species affect, and are affected by, ecosystem processes. High-throughput amplicon sequencing is used to enumerate microbial and invertebrate communities at a high level of taxonomic resolution, but the method requires validation against traditional specimen-based morphological identifications. To investigate the consistency between these approaches, we enumerated nematodes from a 25-year field experiment using both morphological and molecular identification techniques in order to determine the long-term effects of annual burning and nitrogen enrichment on soil nematode communities. Family-level frequencies based on amplicon sequencing were not initially consistent with specimen-based counts, but correction for differences in rRNA gene copy number using a genetic algorithm improved quantitative accuracy. Multivariate analysis of corrected sequence-based abundances of nematode families was consistent with, but not identical to, analysis of specimen-based counts. In both cases, herbivores, fungivores and predator/omnivores generally were more abundant in burned than nonburned plots, while bacterivores generally were more abundant in nonburned or nitrogen-enriched plots. Discriminate analysis of sequence-based abundances identified putative indicator species representing each trophic group. We conclude that high-throughput amplicon sequencing can be a valuable method for characterizing nematode communities at high taxonomic resolution as long as rRNA gene copy number variation is accounted for and accurate sequence databases are available. PMID:24103081

  7. High-throughput amplicon sequencing of rRNA genes requires a copy number correction to accurately reflect the effects of management practices on soil nematode community structure.

    PubMed

    Darby, B J; Todd, T C; Herman, M A

    2013-11-01

    Nematodes are abundant consumers in grassland soils, but more sensitive and specific methods of enumeration are needed to improve our understanding of how different nematode species affect, and are affected by, ecosystem processes. High-throughput amplicon sequencing is used to enumerate microbial and invertebrate communities at a high level of taxonomic resolution, but the method requires validation against traditional specimen-based morphological identifications. To investigate the consistency between these approaches, we enumerated nematodes from a 25-year field experiment using both morphological and molecular identification techniques in order to determine the long-term effects of annual burning and nitrogen enrichment on soil nematode communities. Family-level frequencies based on amplicon sequencing were not initially consistent with specimen-based counts, but correction for differences in rRNA gene copy number using a genetic algorithm improved quantitative accuracy. Multivariate analysis of corrected sequence-based abundances of nematode families was consistent with, but not identical to, analysis of specimen-based counts. In both cases, herbivores, fungivores and predator/omnivores generally were more abundant in burned than nonburned plots, while bacterivores generally were more abundant in nonburned or nitrogen-enriched plots. Discriminate analysis of sequence-based abundances identified putative indicator species representing each trophic group. We conclude that high-throughput amplicon sequencing can be a valuable method for characterizing nematode communities at high taxonomic resolution as long as rRNA gene copy number variation is accounted for and accurate sequence databases are available.

  8. Do future thoughts reflect personal goals? Current concerns and mental time travel into the past and future.

    PubMed

    Cole, Scott N; Berntsen, Dorthe

    2016-01-01

    Our overriding hypothesis was that future thinking would be linked with goals to a greater extent than memories; conceptualizing goals as current concerns (i.e., uncompleted personal goals). We also hypothesized that current-concern-related events would differ from non-current-concern-related events on a set of phenomenological characteristics. We report novel data from a study examining involuntary and voluntary mental time travel using an adapted laboratory paradigm. Specifically, after autobiographical memories or future thoughts were elicited (between participants) in an involuntary and voluntary retrieval mode (within participants), participants self-generated five current concerns and decided whether each event was relevant or not to their current concerns. Consistent with our hypothesis, compared with memories, a larger percentage of involuntary and voluntary future thoughts reflected current concerns. Furthermore, events related to current concerns differed from non-concern-related events on a range of cognitive, representational, and affective phenomenological measures. These effects were consistent across temporal direction. In general, our results agree with the proposition that involuntary and voluntary future thinking is important for goal-directed cognition and behaviour.

  9. "It would have been impossible before:" reflections on current gay life in Estonia.

    PubMed

    LaSala, Michael C; Revere, Elyse J

    2011-01-01

    Estonian gays and lesbians currently enjoy more freedom than ever before. However, they still lack many basic legal protections as well an ongoing, organized political movement. The findings of this small, exploratory study along with the personal experiences of the first author, suggests how cultural factors like individualism, a strong preference for privacy, and distrust of the government not only impede political action and community organization but also obstruct empirical investigation.

  10. "It would have been impossible before:" reflections on current gay life in Estonia.

    PubMed

    LaSala, Michael C; Revere, Elyse J

    2011-01-01

    Estonian gays and lesbians currently enjoy more freedom than ever before. However, they still lack many basic legal protections as well an ongoing, organized political movement. The findings of this small, exploratory study along with the personal experiences of the first author, suggests how cultural factors like individualism, a strong preference for privacy, and distrust of the government not only impede political action and community organization but also obstruct empirical investigation. PMID:21360394

  11. Current management of bipolar affective disorder: is it reflective of the BAP guidelines?

    PubMed

    Farrelly, N; Dibben, C; Hunt, N

    2006-01-01

    In October 2003 the British Association of Psychopharmacology (BAP) published evidence-based guidelines on the management of bipolar disorder. The aim of this study was to assess whether the guidelines could provide the basis for examining clinical decisions and the extent to which practice accords with these guidelines. Case notes of out patients with bipolar disorder were reviewed. Demographic details, and treatment recommendations were determined. The management of affective episodes was evaluated and compared with BAP guidelines. In 84 subjects, 224 affective episodes were identified. Treatment was consistent with BAP guidelines in 72% of episodes. Mania was more likely to be managed in accordance with guidelines than depression or mixed episodes. The use of antidepressant medication was the most likely intervention to deviate from recommendations. Reasons for treatments at odds with the guidelines were identified. Our study demonstrates that clinical practice among a range of psychiatrists broadly reflects the guidelines that have been issued by the British Association of Psychopharmacology (BAP). The BAP guidelines offer a practical and auditable basis for the short- and long-term treatment of bipolar affective disorder.

  12. Reflections on the current status of the national sickle cell disease program in the United States.

    PubMed

    Scott, R B

    1979-07-01

    Some clouds of concern now appear on the horizon for the national sickle cell disease program. There is flagging general attention by the black population and a dilution of interest in and visibility of the sickle cell problem brought about by political maneuvering to bring the program under the legislative umbrella of many other genetic diseases (which occur predominantly in Caucasians). In addition, the federal program has recently phased-out six comprehensive sickle cell centers and imposed budgetary cutbacks in the remaining centers. The victims of this disease, the black population in general, and the researchers and investigators who seek ways to bring this disease under control need reassurance from the current national administration that the sickle cell program will not be permitted to die a slow death from financial attrition, attenuation of interest, and skillful neglect leading to the phasing-out of another "minority project." The national sickle cell program, in the relatively short span of six years, has made significant and notable progress not only in research endeavor but also in improved patient care and community-wide education. In this context, certainly, the positive aspects of the national sickle cell disease program continue to far outweigh any negative ones.(1)

  13. Reflections on the current status of the national sickle cell disease program in the United States.

    PubMed

    Scott, R B

    1979-07-01

    Some clouds of concern now appear on the horizon for the national sickle cell disease program. There is flagging general attention by the black population and a dilution of interest in and visibility of the sickle cell problem brought about by political maneuvering to bring the program under the legislative umbrella of many other genetic diseases (which occur predominantly in Caucasians). In addition, the federal program has recently phased-out six comprehensive sickle cell centers and imposed budgetary cutbacks in the remaining centers. The victims of this disease, the black population in general, and the researchers and investigators who seek ways to bring this disease under control need reassurance from the current national administration that the sickle cell program will not be permitted to die a slow death from financial attrition, attenuation of interest, and skillful neglect leading to the phasing-out of another "minority project." The national sickle cell program, in the relatively short span of six years, has made significant and notable progress not only in research endeavor but also in improved patient care and community-wide education. In this context, certainly, the positive aspects of the national sickle cell disease program continue to far outweigh any negative ones.(1) PMID:529329

  14. Reflections on the current and future roles of clinician-scientists.

    PubMed

    Baumal, Reuben; Benbassat, Jochanan; Van, Julie A D

    2014-08-01

    "Clinician-scientists" is an all-inclusive term for board-certified specialists who engage in patient care and laboratory-based (biomedical) research, patient-based (clinical) research, or population-based (epidemiological) research. In recent years, the number of medical graduates who choose to combine patient care and research has declined, generating concerns about the future of medical research. This paper reviews: a) the various current categories of clinician-scientists, b) the reasons proposed for the declining number of medical graduates who opt for a career as clinician-scientists, c) the various interventions aimed at reversing this trend, and d) the projections for the future role of clinician-scientists. Efforts to encourage students to combine patient care and research include providing financial and institutional support, and reducing the duration of the training of clinician-scientists. However, recent advances in clinical and biomedical knowledge have increased the difficulties in maintaining the dual role of care-providers and scientists. It was therefore suggested that rather than expecting clinician-scientists to compete with full-time clinicians in providing patient care, and with full-time investigators in performing research, clinician-scientists will increasingly assume the role of leading/coordinating interdisciplinary teams. Such teams would focus either on patient-based research or on the clinical, biomedical and epidemiological aspects of specific clinical disorders, such as hypertension and diabetes.

  15. St. Augustine’s Reflections on Memory and Time and the Current Concept of Subjective Time in Mental Time Travel

    PubMed Central

    Manning, Liliann; Cassel, Daniel; Cassel, Jean-Christophe

    2013-01-01

    Reconstructing the past and anticipating the future, i.e., the ability of travelling in mental time, is thought to be at the heart of consciousness and, by the same token, at the center of human cognition. This extraordinary mental activity is possible thanks to the ability of being aware of ‘subjective time’. In the present study, we attempt to trace back the first recorded reflections on the relations between time and memory, to the end of the fourth century’s work, the Confessions, by the theologian and philosopher, St. Augustine. We concentrate on Book 11, where he extensively developed a series of articulated and detailed observations on memory and time. On the bases of selected paragraphs, we endeavor to highlight some concepts that may be considered as the product of the first or, at least, very early reflections related to our current notions of subjective time in mental time travel. We also draw a fundamental difference inherent to the frameworks within which the questions were raised. The contribution of St. Augustine on time and memory remains significant, notwithstanding the 16 centuries elapsed since it was made, likely because of the universality of its contents. PMID:25379236

  16. A spatially nonselective baseline signal in parietal cortex reflects the probability of a monkey's success on the current trial.

    PubMed

    Zhang, Mingsha; Wang, Xiaolan; Goldberg, Michael E

    2014-06-17

    We recorded the activity of neurons in the lateral intraparietal area of two monkeys while they performed two similar visual search tasks, one difficult, one easy. Each task began with a period of fixation followed by an array consisting of a single capital T and a number of lowercase t's. The monkey had to find the capital T and report its orientation, upright or inverted, with a hand movement. In the easy task the monkey could explore the array with saccades. In the difficult task the monkey had to continue fixating and find the capital T in the visual periphery. The baseline activity measured during the fixation period, at a time in which the monkey could not know if the impending task would be difficult or easy or where the target would appear, predicted the monkey's probability of success or failure on the task. The baseline activity correlated inversely with the monkey's recent history of success and directly with the intensity of the response to the search array on the current trial. The baseline activity was unrelated to the monkey's spatial locus of attention as determined by the location of the cue in a cued visual reaction time task. We suggest that rather than merely reflecting the noise in the system, the baseline signal reflects the cortical manifestation of modulatory state, motivational, or arousal pathways, which determine the efficiency of cortical sensorimotor processing and the quality of the monkey's performance.

  17. St. Augustine's Reflections on Memory and Time and the Current Concept of Subjective Time in Mental Time Travel.

    PubMed

    Manning, Liliann; Cassel, Daniel; Cassel, Jean-Christophe

    2013-06-01

    Reconstructing the past and anticipating the future, i.e., the ability of travelling in mental time, is thought to be at the heart of consciousness and, by the same token, at the center of human cognition. This extraordinary mental activity is possible thanks to the ability of being aware of 'subjective time'. In the present study, we attempt to trace back the first recorded reflections on the relations between time and memory, to the end of the fourth century's work, the Confessions, by the theologian and philosopher, St. Augustine. We concentrate on Book 11, where he extensively developed a series of articulated and detailed observations on memory and time. On the bases of selected paragraphs, we endeavor to highlight some concepts that may be considered as the product of the first or, at least, very early reflections related to our current notions of subjective time in mental time travel. We also draw a fundamental difference inherent to the frameworks within which the questions were raised. The contribution of St. Augustine on time and memory remains significant, notwithstanding the 16 centuries elapsed since it was made, likely because of the universality of its contents.

  18. Oxygen vacancies induced Spin polarized current in Co-doped ZnO by Andreev reflection technique

    NASA Astrophysics Data System (ADS)

    Yang, Kung-Shang; Chou, Hsiung; Chan, Wen Ling; Chen, Bo-Yu; Shang-Fan Lee Collaboration

    Dilute magnetic semiconductor (DMO) is a semiconducting system with spin-polarized carriers and magnetic properties. However, since most studies had been focused on existence of FM, the proportion of spin-polarized current (SPC) in DMO is far from being determined. We used Point-contact Andreev reflection measurements on various Zn0.95Co0.05O thin films, with controlled oxygen vacancies by sputtering in various H2 partial pressure with Ar atmosphere. We found that conductance versus voltage (G-V) spectra suppresses as oxygen vacancy concentration increases. It indicates oxygen vacancies play significant role in inducing the SPC. To understand the origin of spin polarized current at the interface of the superconducting tip/CZO system, we use modified Blonder-Tinkham-Klapwijk (MBTK) model in ballistic and diffusive regime to interpret GV curve. The extracted SPC value were up to 70% in ballistic regime and 65% in diffusive regime. The results suggest tiny routes have been formed by oxygen vacancies which are extended throughout the whole films. This result confirmed that MBTK model in ballistic regime is more suitable for our GV spectra and this explains the observation of such a high SPC Institute of Physics, Academia Sinica Taiwan.

  19. The calculation of accurate 17O hyperfine coupling constants in the hydroxyl radical: A difficult problem for current quantum chemical methods

    NASA Astrophysics Data System (ADS)

    Wetmore, Stacey D.; Eriksson, Leif A.; Boyd, Russell J.

    1998-12-01

    The hyperfine coupling constants (HFCCs) in the hydroxyl radical are investigated through comparison of results obtained from a variety of quantum chemical methods. The couplings obtained from the multi-reference configuration interaction (MRCI) wave function, built upon the restricted open-shell Hartree-Fock (ROHF) reference determinant, are investigated in terms of the basis set, the configuration selection energy threshold, and the size of the reference space. Overall results which converge to the experimental couplings are obtained for hydrogen, but not for oxygen. In particular, the MRCI method shows no improvement over density functional theory (the B3LYP functional), for the calculation of Aiso(17O). On the other hand, results in excellent agreement with experiment are obtained through the use of the quadratic configuration interaction (QCISD) method based on the unrestricted HF (UHF) reference determinant with the identical basis sets. Examination of UHF and ROHF based coupled-cluster methods, CCSD and CCSD(T), indicates that once a high enough level of electron correlation is included, the oxygen HFCC is independent of the form of the reference determinant. Unlike the ROHF-CCSD method, which yields reliable results once the effects of triple excitations have been taken into account, the MRCI wave function cannot easily be adjusted to account for the inadequacies of the ROHF reference determinant in order to accurately predict 17O HFCCs.

  20. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  1. Cost reduction and minimization of land based on an accurate determination of fault current distribution in shield wires and grounding systems

    SciTech Connect

    Daily, W.K. ); Dawalibi, F. )

    1993-01-01

    Careful analysis of Fault Current Distribution in neutral metallic paths, Power System Protection requirements and Ground Potential Rise (GPR) evaluations were carried out at FPL's Lauderdale Power Plant and associated switchyard. These studies resulted in substantial cost savings and land utilization minimization for the power system expansions at Lauderdale Plant by confirming that the in-situ expansion and reconfiguration aimed at constructing two electrically independent substations sharing the same site and grounding system is a sound economical alternative to the construction of a new substation and associated significant site preparation and construction costs. This paper describes the methodology used to conduct this study.

  2. Development and Evaluation of an Inquiry-Based Elementary Science Teacher Education Program Reflecting Current Reform Movements

    NASA Astrophysics Data System (ADS)

    Luera, Gail R.; Otto, Charlotte A.

    2005-08-01

    The National Science Education Standards (National Research Council 1996, National science education standards. Washington, DC: National Academy Press) and various other national and state documents call for teachers who possess science content knowledge, employ an inquiry approach in teaching, and engage in reflective practices. This paper describes a rationale for choosing particular recommendations to implement and how we incorporated those as we revised our elementary science education program. An analysis of the impact of the reformed inquiry-based content courses revealed that students who take more than one reformed content course improve their science content knowledge and efficacy towards teaching science significantly more than students who take fewer courses.

  3. Healthy Universities: current activity and future directions--findings and reflections from a national-level qualitative research study.

    PubMed

    Dooris, Mark; Doherty, Sharon

    2010-09-01

    This qualitative study used questionnaires to scope and explore 'healthy universities' activity taking place within English higher education institutions (HEIs). The findings revealed a wealth of health-related activity and confirmed growing interest in the healthy universities approach--reflecting an increasing recognition that investment for health within the sector will contribute not only to health targets but also to mainstream agendas such as staff and student recruitment, experience and retention; and institutional and societal productivity and sustainability. However, they also suggested that, while there is growing understanding of the need for a comprehensive whole system approach to improving health within higher education settings, there are a number of very real challenges--including a lack of rigorous evaluation, the difficulty of integrating health into a 'non-health' sector and the complexity of securing sustainable cultural change. Noting that health and well-being remain largely marginal to the core mission and organization of higher education, the article goes on to reflect on the wider implications for future research and policy at national and international levels. Within England, whereas there are Healthy Schools and Healthy Further Education Programmes, there is as yet no government-endorsed programme for universities. Similarly, at an international level, there has been no systematic investment in higher education mirroring the comprehensive and multifaceted Health Promoting Schools Programme. Key issues highlighted are: securing funding for evaluative research within and across HEIs to enable the development of a more robust evidence base for the approach; advocating for an English National Healthy Higher Education Programme that can help to build consistency across the entire spectrum of education; and exploring with the World Health Organization (WHO) and the International Union for Health Promotion and Education (IUHPE) the feasibility

  4. From Information to Knowledge: Some Reflections on the Origin of the Current Shifting Towards Knowledge Processing and Further Perspective.

    ERIC Educational Resources Information Center

    Oluic-Vukovic, Vesna

    2001-01-01

    Examines reasons that prompted the current shift from information to knowledge processing, encompassing both social contextualization and the recent technological advance. Discusses knowledge production, viewed as a five-step process. The highly interdisciplinary perspective and the primacy of the user are distinguished as necessary prerequisites…

  5. Al-based Ohmic reflectors with low leakage currents and high reflectance for p-GaN flip-chip processes

    NASA Astrophysics Data System (ADS)

    Chae, S. W.; Kim, D. H.; Kim, T. G.; Ko, K. Y.; Sung, Y. M.

    2007-05-01

    The authors report the improvement of InGaN /GaN light-emitting diodes on Al reflectors, commonly used as n-type GaN contacts. A Cu-doped indium oxide (CIO) (5nm)/indium tin oxide (ITO) (380nm) interlayer was deposited and annealed at 500°C, after which an Al (400nm)/Ti-W (30nm) layer was sputtered on the ITO interlayer to reflect the light. The reflectance of CIO /ITO/Al/Ti-W was ˜92% at 460nm, higher than that of the popular Ni /Ag/Pt scheme, and the forward voltage was 3.2-3.3V, similar to that of the Ni /Ag/Pt contact. Furthermore, the mean leakage current of CIO /ITO/Al/Ti-W was 0.12μA, much lower than 0.54μA of Ni /Ag/Pt at -5V.

  6. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  7. Focus group reflections on the current and future state of cognitive assessment tools in geriatric health care

    PubMed Central

    Whitehead, Jocelyne C; Gambino, Sara A; Richter, Jeffrey D; Ryan, Jennifer D

    2015-01-01

    Objective This study provides insight into the thoughts and opinions of geriatric health-care professionals toward cognitive assessments and the use of emerging technologies, such as eye-tracking, to supplement current tools. Methods Two focus group sessions were conducted with nurses and physicians who routinely administer neurocognitive assessments to geriatric populations. Video recordings of the focus group sessions were transcribed and a thematic analysis was performed. Results Participants reported the need for assessment and diagnostic tools that are accessible and efficient, and that are capable of accommodating the rapid growth in the aging population. The prevalence of more complex ailments experienced by older adults has had repercussions in the quality of care that the clients receive, and has contributed to lengthy wait times and resource shortages. Health-care professionals stated that they are hampered by the disjointed structure of the health-care system and that they would benefit from a more efficient allocation of responsibilities made possible through tools that did not require extensive training or certification. Eyetracking-based cognitive assessments were thought to strongly complement this system, yet it was thought that difficulty would be faced in gaining the support and increased uptake by health-care professionals due to the nonintuitive relationship between eyetracking and cognition. Conclusion The findings suggest that health-care professionals are receptive to the use of eyetracking technology to assess for cognitive health as it would conserve resources by allowing frontline staff to administer assessments with minimal training. PMID:26109860

  8. A Systematic Review of Athletes’ and Coaches’ Nutrition Knowledge and Reflections on the Quality of Current Nutrition Knowledge Measures

    PubMed Central

    Trakman, Gina L.; Forsyth, Adrienne; Devlin, Brooke L.; Belski, Regina

    2016-01-01

    Context: Nutrition knowledge can influence dietary choices and impact on athletic performance. Valid and reliable measures are needed to assess the nutrition knowledge of athletes and coaches. Objectives: (1) To systematically review the published literature on nutrition knowledge of adult athletes and coaches and (2) to assess the quality of measures used to assess nutrition knowledge. Data Sources: MEDLINE, CINAHL, SPORTDiscuss, Web of Science, and SCOPUS. Study Selection: 36 studies that provided a quantitative measure of nutrition knowledge and described the measurement tool that was used were included. Data extraction: Participant description, questionnaire description, results (mean correct and responses to individual items), study quality, and questionnaire quality. Data synthesis: All studies were of neutral quality. Tools used to measure knowledge did not consider health literacy, were outdated with regards to consensus recommendations, and lacked appropriate and adequate validation. The current status of nutrition knowledge in athletes and coaches is difficult to ascertain. Gaps in knowledge also remain unclear, but it is likely that energy density, the need for supplementation, and the role of protein are frequently misunderstood. Conclusions: Previous reports of nutrition knowledge need to be interpreted with caution. A new, universal, up-to-date, validated measure of general and sports nutrition knowledge is required to allow for assessment of nutrition knowledge. PMID:27649242

  9. Accurate Optical Reference Catalogs

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    2006-08-01

    Current and near future all-sky astrometric catalogs on the ICRF are reviewed with the emphasis on reference star data at optical wavelengths for user applications. The standard error of a Hipparcos Catalogue star position is now about 15 mas per coordinate. For the Tycho-2 data it is typically 20 to 100 mas, depending on magnitude. The USNO CCD Astrograph Catalog (UCAC) observing program was completed in 2004 and reductions toward the final UCAC3 release are in progress. This all-sky reference catalogue will have positional errors of 15 to 70 mas for stars in the 10 to 16 mag range, with a high degree of completeness. Proper motions for the about 60 million UCAC stars will be derived by combining UCAC astrometry with available early epoch data, including yet unpublished scans of the complete set of AGK2, Hamburg Zone astrograph and USNO Black Birch programs. Accurate positional and proper motion data are combined in the Naval Observatory Merged Astrometric Dataset (NOMAD) which includes Hipparcos, Tycho-2, UCAC2, USNO-B1, NPM+SPM plate scan data for astrometry, and is supplemented by multi-band optical photometry as well as 2MASS near infrared photometry. The Milli-Arcsecond Pathfinder Survey (MAPS) mission is currently being planned at USNO. This is a micro-satellite to obtain 1 mas positions, parallaxes, and 1 mas/yr proper motions for all bright stars down to about 15th magnitude. This program will be supplemented by a ground-based program to reach 18th magnitude on the 5 mas level.

  10. Reflecting Reflective Practice

    ERIC Educational Resources Information Center

    Galea, Simone

    2012-01-01

    This paper demystifies reflective practice on teaching by focusing on the idea of reflection itself and how it has been conceived by two philosophers, Plato and Irigaray. It argues that reflective practice has become a standardized method of defining the teacher in teacher education and teacher accreditation systems. It explores how practices of…

  11. The Pursuit of K: Reflections on the Current State-of-the-Art in Stress Intensity Factor Solutions for Practical Aerospace Applications

    NASA Technical Reports Server (NTRS)

    CraigMcClung, R.; Lee, Yi-Der; Cardinal, Joseph W.; Guo, Yajun

    2012-01-01

    The elastic stress intensity factor (SIF, commonly denoted as K) is the foundation of practical fracture mechanics (FM) analysis for aircraft structures. This single parameter describes the first-order effects of stress magnitude and distribution as well as the geometry of both structure/component and crack. Hence, the calculation of K is often the most significant step in fatigue analysis based on FM. This presentation will provide several reflections on the current state-of-the-art in SIF solution methods used for practical aerospace applications, including a brief historical perspective, descriptions of some recent and ongoing advances, and comments on some remaining challenges. Newman and Raju made significant early contributions to practical structural analysis by developing closed-form SIF equations for surface and corner cracks in simplified geometries, often based on empirical fits of finite element (FE) solutions. Those solutions (and others like them) were sometimes revised as new analyses were conducted or limitations discovered. The foundational solutions have exhibited striking longevity, despite the relatively "coarse" FE models employed many decades ago. However, in recent years, the accumulation of different generations of solutions for the same nominal geometry has led to some confusion (which solution is correct?), and steady increases in computational capabilities have facilitated the discovery of inaccuracies in some (not all!) of the legacy solutions. Some examples of problems and solutions are presented and discussed, including the challenge of maintaining consistency with legacy design applications. As computational power has increased, the prospect of calculating large numbers of SIF solutions for specific complex geometries with advanced numerical methods has grown more attractive. Fawaz and Andersson, for example, have been generating literally millions of new SIF solutions for different combinations of multiple cracks under simplified

  12. Conductance and persistent current in quasi-one-dimensional systems with grain boundaries: Effects of the strongly reflecting and columnar grains

    NASA Astrophysics Data System (ADS)

    Feilhauer, J.; Moško, M.

    2011-08-01

    We study mesoscopic transport in the quasi-one-dimensional wires and rings made of a two-dimensional conductor of width W and length L≫W. Our aim is to compare an impurity-free conductor with grain boundaries with a grain-free conductor with impurity disorder. A single grain boundary is modeled as a set of the two-dimensional δ-function-like barriers positioned equidistantly on a straight line and disorder is emulated by a large number of such straight lines, intersecting the conductor with random orientation in random positions. The impurity disorder is modeled by the two-dimensional δ barriers with the randomly chosen positions and signs. The electron transmission through the wires is calculated by the scattering-matrix method, and the Landauer conductance is obtained. Moreover, we calculate the persistent current in the rings threaded by magnetic flux: We incorporate into the scattering-matrix method the flux-dependent cyclic boundary conditions and we introduce a trick allowing us to study the persistent currents in rings of almost realistic size. We mainly focus on the numerical results for L much larger than the electron mean-free path, when the transport is diffusive. If the grain boundaries are weakly reflecting, the systems with grain boundaries show the same (mean) conductance and the same (typical) persistent current as the systems with impurities, and the results also agree with the single-particle theories treating disorder as a white-noise-like potential. If the grain boundaries are strongly reflecting, the rings with the grain boundaries show the typical persistent currents about three times larger than the white-noise-based theory, thus resembling the experimental data of Jariwala [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.86.1594 86, 1594 (2001)]. Finally, we extend our study to the three-dimensional wires/rings with columnar grains. Due to the columnar shape of the grains, the resulting persistent current exceeds the white

  13. Reflected Glory

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  14. The effect of deformation after backarc spreading between the rear arc and current volcanic front in Shikoku Basin obtained by seismic reflection survey

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Takahashi, N.; Nakanishi, A.; Kodaira, S.; Tamura, Y.

    2012-12-01

    Detailed crustal structure information of a back-arc basin must be obtained to elucidate the mechanism of its opening. Especially, the Shikoku Basin, which occupies the northern part of the Philippine Sea Plate between the Kyushu-Palau Ridge and the Izu-Bonin (Ogasawara) Arc, is an important area to understand the evolution of the back-arc basins as a part of the growth process of the Philippine Sea. Especially, the crustal structure oft the east side of Shikoku Basin is complicated by colliding to the Izu Peninsula Japan Agency for Marine-Earth Science and Technology has been carried out many multi-channel seismic reflection surveys since 2004 in Izu-Bonin region. Kodaira et al. (2008) reported the results of a refraction seismic survey along a north-south profile within paleoarc in the rear arc (i.e., the Nishi-shichito ridge) about 150 km west of current volcanic front. According to their results, the variation relationship of crustal thickness between the rear arc and volcanic front is suggested the evidence of rifting from current volcanic arc. There is the en-echelon arrangement is located in the eastern side of Shikoku Basin from current arc to rear arc, and it is known to activate after ceased spreading at 15 Ma (Okino et al., 1994) of Shikoku Basin by geologic sampling of Ishizuka et al. (2003). Our MCS results are also recognized the recent lateral fault zone is located in east side of Shikoku Basin. We carried out high density grid multi-channel seismic reflection (MCS) survey using tuned airgun in order to obtain the relationship between the lateral faults and en-echelon arrangement in KR08-04 cruise. We identified the deformation of sediments in Shikoku Basin after activity of Kanbun seamount at 8 Ma in MCS profile. It is estimated to activate a part of the eastern side of Shikoku Basin after construction of en-echelon arrangement and termination of Shikoku Basin spreading. Based on analyses of magnetic and gravity anomalies, Yamazaki and Yuasa (1998

  15. Reflection and reflective practice.

    PubMed

    Schutz, Sue

    2007-09-01

    Reflection is an approach to the generation of understanding about practice that has become a largely accepted part of nursing education at both undergraduate and post-qualifying levels. It is also increasingly common now for healthcare professionals to use reflection in their practice communities as a part of their daily professional work. The literature is replete with accounts of the possible benefits to practitioners and clients of using reflection in practice, yet this amounts to a rather scant evidence base. For community nurses there are several challenges in the practical application of reflective practice, but these are not insurmountable. Issues such as lone-working and geographical distance may be a challenge. There are some key skills that will help public health and community practitioners get started in reflection and some important issues that should be addressed before beginning. Reflective practice has, however, the potential to help practitioners in all fields unlock the tacit knowledge and understanding that they have of their practice and use this to generate knowledge for future practice.

  16. Evaluation of the Reflection Coefficient of Microstrip Elements for Reflectarray Antennas

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    Basis functions were studied and identified that provide efficient and accurate solutions for the induced patch currents and the reflection phase in microstrip reflect arrays. The integral equation of an infinite array of microstrip elements in the form of patches or crossed dipoles excited by a uniform plane wave is solved by the method-of-moments. Efficient choices of entire domain basis functions that yield accurate results have been described.

  17. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  18. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  19. Coordinated analyses of Antarctic sediments as Mars analog materials using reflectance spectroscopy and current flight-like instruments for CheMin, SAM and MOMA

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Franz, Heather B.; Goetz, Walter; Blake, David F.; Freissinet, Caroline; Steininger, Harald; Goesmann, Fred; Brinckerhoff, William B.; Getty, Stephanie; Pinnick, Veronica T.; Mahaffy, Paul R.; Dyar, M. Darby

    2013-06-01

    Coordinated analyses of mineralogy and chemistry of sediments from the Antarctic Dry Valleys illustrate how data obtained using flight-ready technology of current NASA and ESA missions can be combined for greater understanding of the samples. Mineralogy was measured by X-ray diffraction (XRD) and visible/near-infrared (VNIR) reflectance spectroscopy. Chemical analyses utilized a quadrupole mass spectrometer (QMS) to perform pyrolysis-evolved gas analysis (EGA) and gas chromatography-mass spectrometry (GC/MS) both with and without derivatization, as well as laser desorption-mass spectrometry (LD/MS) techniques. These analyses are designed to demonstrate some of the capabilities of near-term landed Mars missions, to provide ground truthing of VNIR reflectance data acquired from orbit by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on MRO and to provide detection limits for surface-operated instruments: the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instrument suites onboard Mars Science Laboratory (MSL) and the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars-2018. The new data from this study are compared with previous analyses of the sediments performed with other techniques. Tremolite was found in the oxic region samples for the first time using the CheMin-like XRD instrument. The NIR spectral features of tremolite are consistent with those observed in these samples. Although the tremolite bands are weak in spectra of these samples, spectral features near 2.32 and 2.39 μm could be detected by CRISM if tremolite is present on the martian surface. Allophane was found to be a good match to weak NIR features at ˜1.37-1.41, 1.92, and 2.19 μm in spectra of the oxic region sediments and is a common component of immature volcanic soils. Biogenic methane was found to be associated with calcite in the oxic region samples by the SAM/EGA instrument and a phosphoric acid derivative was found in the anoxic region sample using

  20. Coordinated Analyses of Antarctic Sediments as Mars Analog Materials Using Reflectance Spectroscopy and Current Flight-Like Instruments for CheMin, SAM and MOMA

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Franz, Heather B.; Goetz, Walter; Blake, David F.; Freissinet, Caroline; Steininger, Harald; Goesmann, Fred; Brinckerhoff, William B.; Getty, Stephanie; Pinnick, Veronica T.; Mahaffy, Paul R.; Dyar, M. Darby

    2013-01-01

    Coordinated analyses of mineralogy and chemistry of sediments from the Antarctic Dry Valleys illustrate how data obtained using flight-ready technology of current NASA and ESA missions can be combined for greater understanding of the samples. Mineralogy was measured by X-ray diffraction (XRD) and visible/ near-infrared (VNIR) reflectance spectroscopy. Chemical analyses utilized a quadrupole mass spectrometer (QMS) to perform pyrolysis-evolved gas analysis (EGA) and gas chromatography-mass spectrometry (GC/MS) both with and without derivatization, as well as laser desorption-mass spectrometry (LD/MS) techniques. These analyses are designed to demonstrate some of the capabilities of near-term landed Mars missions, to provide ground truthing of VNIR reflectance data acquired from orbit by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on MRO and to provide detection limits for surface- operated instruments: the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instrument suites onboard Mars Science Laboratory (MSL) and the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars-2018. The new data from this study are compared with previous analyses of the sediments performed with other techniques. Tremolite was found in the oxic region samples for the first time using the CheMin-like XRD instrument. The NIR spectral features of tremolite are consistent with those observed in these samples. Although the tremolite bands are weak in spectra of these samples, spectral features near 2.32 and 2.39 micrometers could be detected by CRISM if tremolite is present on the martian surface. Allophane was found to be a good match to weak NIR features at 1.37-1.41, 1.92, and 2.19 micrometers in spectra of the oxic region sediments and is a common component of immature volcanic soils. Biogenic methane was found to be associated with calcite in the oxic region samples by the SAM/EGA instrument and a phosphoric acid derivative was found in the anoxic

  1. Reflective Teaching

    ERIC Educational Resources Information Center

    Farrell, Thomas S. C.

    2013-01-01

    Thomas Farrell's "Reflective Teaching" outlines four principles that take teachers from just doing reflection to making it a way of being. Using the four principles, Reflective Practice Is Evidence Based, Reflective Practice Involves Dialogue, Reflective Practice Links Beliefs and Practices, and Reflective Practice Is a Way of Life,…

  2. Accurate Documentation of Malnutrition Diagnosis Reflects Increased Healthcare Resource Utilization.

    PubMed

    Phillips, Wendy

    2015-10-01

    Nutrition support professionals often care for the sickest of hospitalized patients. An understanding of healthcare payment models can help the nutrition support professional know how documentation of nutrition status can ensure maximum resources are available to care for these patients. Medicare is the major funding source for many hospitals in the United States. Hospitals receive payments using the Acute Care Hospital Inpatient Prospective Payment System, which classifies patients into Medical Severity Diagnosis-Related Groups (MS-DRGs) to determine payment amounts. Documentation of comorbidities and complications can increase the payment hospitals receive to offset increased resource utilization. This article explains how malnutrition documentation and coding can influence the case mix index, an indicator of level of acuity of patients treated at the hospital, and the payment the hospital receives to care for the patient.

  3. Antigenic analysis of divergent genotypes human Enterovirus 71 viruses by a panel of neutralizing monoclonal antibodies: current genotyping of EV71 does not reflect their antigenicity.

    PubMed

    Chen, Yixin; Li, Chuan; He, Delei; Cheng, Tong; Ge, Shengxiang; Shih, James Wai-Kuo; Zhao, Qinjian; Chen, Pei-Jer; Zhang, Jun; Xia, Ningshao

    2013-01-01

    In recent year, Enterovirus 71 (EV71)-associated hand, foot and mouth disease (HFMD) has become an important public health issue in China. EV71 has been classified into genotypes A, B1-B5 and C1-C5. With such genetic diversity, whether the convalescent or recovery antibody responses can cross-protect infections from other genotypes remains a question. Understanding of the antigenicity of such diverse genetic EV71 isolates is crucial for the EV71 vaccine development. Here, a total of 186 clones anti-EV71 MAbs was generated and characterized with Western blot and cell-based neutralization assay. Forty neutralizing anti-EV71 MAbs were further used to analyze the antigenic properties of 18 recent EV71 isolates representing seven genotypes in neutralization assay. We found that most neutralizing anti-EV71 MAbs are specific to conformational epitopes. We also classified the 40 neutralizing anti-EV71 MAbs into two classes according to their reactivity patterns with 18 EV71 isolates. Class I MAb can neutralize all isolates, suggesting conserved epitopes are present among EV71. Class II MAb includes four subclasses (IIa-IId) and neutralizes only subgroups of EV71 strains. Conversely, 18 EV71 strains were grouped into antigenic types 1 and four antigenic subtypes (2.1-2.4). These results suggest that the current genotyping of EV71 does not reflect their antigenicity which may be important in the selection of EV71 vaccine strains. This panel of neutralizing anti-EV71 MAbs may be useful for the recognition of emerging antigenic variants of EV71 and vaccine development.

  4. Reflection Coefficients.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1994-01-01

    Discusses and provides an example of reflectivity approximation to determine whether reflection will occur. Provides a method to show thin-film interference on a projection screen. Also applies the reflectivity concepts to electromagnetic wave systems. (MVL)

  5. Reflectance of aqueous solutions

    NASA Technical Reports Server (NTRS)

    Querry, M. R.

    1972-01-01

    The optical properties and optical constants of water and aqueous solutions were studied to develop an accurate tabulation of graphical representations of the optical constants through a broad spectrum. Manuscripts of articles are presented concerning extinction coefficients, relative specular reflectance, and temperature effect on the water spectrum. Graphs of absolute reflectance, phase shifts, index of refraction, and extinction coefficients for water, heavy water and aqueous solutions are included.

  6. Partial reflections of radio waves from the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Tanenbaum, S. B.

    1972-01-01

    The addition of phase difference measurements to partial reflection experiments is discussed, and some advantages of measuring electron density this way are pointed out. The additional information obtained reduces the requirement for an accurate predetermination of collision frequency. Calculations are also made to estimate the errors expected in partial-reflection experiments due to the assumption of Fresnel reflection and to the neglect of coupling between modes. In both cases, the errors are found to be of the same order as known errors in the measurements due to current instrumental limitations.

  7. The Reflective Learning Continuum: Reflecting on Reflection

    ERIC Educational Resources Information Center

    Peltier, James W.; Hay, Amanda; Drago, William

    2005-01-01

    The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research that considers reflection within the context of both the marketing and general business education literature. This article describes the use of an instrument that can be used to measure four identified levels of a…

  8. Renewable liquid reflection grating

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  9. Reflected Glory

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  10. Measuring Light Reflectance of BGO Crystal Surfaces

    SciTech Connect

    Janecek, Martin; Moses, William

    2008-07-28

    A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal?s light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air- coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2? of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 10^5:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.

  11. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  12. Automatic and Accurate Shadow Detection Using Near-Infrared Information.

    PubMed

    Rüfenacht, Dominic; Fredembach, Clément; Süsstrunk, Sabine

    2014-08-01

    We present a method to automatically detect shadows in a fast and accurate manner by taking advantage of the inherent sensitivity of digital camera sensors to the near-infrared (NIR) part of the spectrum. Dark objects, which confound many shadow detection algorithms, often have much higher reflectance in the NIR. We can thus build an accurate shadow candidate map based on image pixels that are dark both in the visible and NIR representations. We further refine the shadow map by incorporating ratios of the visible to the NIR image, based on the observation that commonly encountered light sources have very distinct spectra in the NIR band. The results are validated on a new database, which contains visible/NIR images for a large variety of real-world shadow creating illuminant conditions, as well as manually labeled shadow ground truth. Both quantitative and qualitative evaluations show that our method outperforms current state-of-the-art shadow detection algorithms in terms of accuracy and computational efficiency.

  13. Reflected Glory

    ERIC Educational Resources Information Center

    Forster, Colin

    2006-01-01

    The scientific model of how people see things is far removed from children's real-world experience. They know that light is needed in order to see an object, but may not know that light is reflected off the object and some of that light enters the eyes. In this article, the author explores children's understanding of reflection and how to develop…

  14. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  15. Reflecting on Reflecting on Practice

    ERIC Educational Resources Information Center

    Wilson, Arthur L.

    2009-01-01

    This article discusses three broad themes--reflection, power, and negotiation--that are evidenced in all of the articles in this issue. In this article, the author tries to transgress the articles at some middling altitude to seek some broader thematics. His observations about reflection, power, and negotiation do transcend individual efforts,…

  16. Radar reflectivity

    NASA Astrophysics Data System (ADS)

    1986-07-01

    This TOP describes a method for measuring the radar reflectivity characteristics of aircraft. It uses a rotating platform and various radar systems to obtain calibrated radar Automatic Gain Control values for each degree of aspect angle for the aircraft. The purpose of this test is to provide comparable values of radar reflectivity for Army aircraft at various radar frequencies and parameter for fixed positions and aspect angles on the aircraft. Data collected on each specific aircraft can be used to evaluate radar reflectivity characteristics of aircraft skin material, paint, and structural changes such as flat versus curved surfaces.

  17. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment

    PubMed Central

    Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    Background Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8–12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. Objective We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment “echoes.” To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous α-frequency. Methods 12 healthy participants were stimulated at around individual α-frequency for 11–15 min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8 s long. EEG α-phase and power changes were compared after and between episodes of α-tACS across conditions and against sham. Results α-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Conclusion Our results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. PMID:25648377

  18. Andreev Reflections in Micrometer-Scale Normal Metal-Insulator-Superconductor Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Lowell, Peter J.; O'Neil, Galen C.; Underwood, Jason M.; Ullom, Joel N.

    2011-11-01

    Understanding the subgap behavior of Normal metal-Insulator-Superconductor (NIS) tunnel junctions is important in order to be able to accurately model the thermal properties of the junctions. Hekking and Nazarov (Phys. Rev. B 49:6847, 1994) developed a theory in which NIS subgap current in thin-film structures can be modeled by multiple Andreev reflections. In their theory, the current due to Andreev reflections depends on the junction area and the junction resistance area product. We have measured the current due to Andreev reflections in NIS tunnel junctions for various junction sizes and junction resistance area products and found that the multiple reflection theory is in agreement with our data.

  19. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception.

  20. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception. PMID:24549293

  1. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages. PMID:8788799

  2. Normal-reflection image

    SciTech Connect

    Huang, L.; Fehler, Michael C.

    2003-01-01

    Common-angle wave-equation migration using the double-square-root is generally less accurate than the common-shot migration because the wavefield continuation equation for thc former involves additional approximations compared to that for the latter. We present a common-angle wave-equation migration that has the same accuracy as common-shot wave-equation migration. An image obtained from common-angle migration is a four- to five-dimensional output volume for 3D cases. We propose a normal-reflection imaging condition for common-angle migration to produce a 3D output volume for 3D migration. The image is closely related to the normal-reflection coefficients at interfaces. This imaging condition will allow amplitude-preserving migration to generate an image with clear physical meaning.

  3. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material.

  4. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material. PMID:11366835

  5. Nursing students' reflections on racism.

    PubMed

    Schaefer, Karen Moore

    2008-01-01

    Racism is the systematic oppression of people of color at personal/interpersonal, institutional, and/or cultural levels. Discussions about racism often become emotional and personal. A discussion related to the accurate labeling of students on the basis of their heritage in an undergraduate professional issues class became emotionally charged. To prevent any further escalation of emotions, the author brought closure by asking students to read and write a reflective response to the Black Prayer. This article is a summary of urban nursing students' reflections and how giving voice to such reflections is a way of opening the door to frank discussions of racism and its effects.

  6. Selectively reflective transparent sheets

    NASA Astrophysics Data System (ADS)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  7. Simulation Tool for GNSS Ocean Surface Reflections

    NASA Astrophysics Data System (ADS)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-04-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surface heights, and patterns of the general ocean circulation. In the reflection zone the measurements may derive parameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have shown such results leading. The coming satellite missions, CYGNSS, COSMIC-2, and GEROS on the International Space Station, are focusing on GNSS ocean reflection measurements. Thus, simulation studies highlighting the assumptions for the data retrievals and the precision and the accuracy of such measurements are of interest for assessing the observational method. The theory of propagation of microwaves in the atmosphere is well established, and methods for propagation modeling range from ray tracing to numerical solutions to the wave equation. Besides ray tracing there are propagation methods that use mode theory and a finite difference solution to the parabolic equation. The presented propagator is based on the solution of the parabolic equation. The parabolic equation in our simulator is solved using the split-step sine transformation. The Earth's surface is modeled with the use of an impedance model. The value of the Earth impedance is given as a function of the range along the surface of the Earth. This impedance concept gives an accurate lower boundary condition in the determination of the electromagnetic field, and makes it possible to simulate reflections and the effects of transitions between different mediums. A semi-isotropic Philips spectrum is used to represent the air-sea interaction. Simulated GPS ocean surface reflections will be presented and discussed based on different ocean characteristics. The spectra of the simulated surface reflections will be analyzed

  8. Haitian reflections.

    PubMed

    Docrat, Fathima

    2010-08-01

    Natural disasters and acts of terrorism demonstrate a similar critical need for national preparedness. As one of a team of volunteers with a local South African NGO who recently went on a medical mission, I would like to share glimpses of our experience and reflect on the mistakes - and also to state the obvious: that we do not learn from our mistakes. A simple literature search has shown that the same mistakes happen repeatedly. 'Humanitarian disasters occur with frightening regularity, yet international responses remain fragmented, with organizations and responders being forced to "reinvent the wheel" with every new event'. This is the result of an obvious lack of preparedness.

  9. Reflective Packaging

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.

  10. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  11. SPLASH: Accurate OH maser positions

    NASA Astrophysics Data System (ADS)

    Walsh, Andrew; Gomez, Jose F.; Jones, Paul; Cunningham, Maria; Green, James; Dawson, Joanne; Ellingsen, Simon; Breen, Shari; Imai, Hiroshi; Lowe, Vicki; Jones, Courtney

    2013-10-01

    The hydroxyl (OH) 18 cm lines are powerful and versatile probes of diffuse molecular gas, that may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. In this proposal, we request ATCA time to follow up OH maser candidates. This will give us accurate (~10") positions of the masers, which can be compared to other maser positions from HOPS, MMB and MALT-45 and will provide full polarisation measurements towards a sample of OH masers that have not been observed in MAGMO.

  12. Improved x-ray reflectivity calculations for rough surfaces and interfaces

    NASA Astrophysics Data System (ADS)

    Fujii, Yoshikazu

    2011-09-01

    We have investigated the fact that the calculated x-ray reflectivity based on the Parratt formalism, coupled with the use of the Nevot-Croce representation of roughness, show a strange phenomenon where the amplitude of the oscillation due to interference effects increases for a rougher surface. Here, we propose that the strange result has its origin in a currently used equation due to a serious mistake in which the Fresnel transmission coefficient in the reflectivity equation is increased at a rough interface, and the increase in the transmission coefficient completely overpowers any decrease in the value of the reflection coefficient because of a lack of consideration of diffuse scattering. The mistake in Nevot and Croce's treatment originates in the fact that the modified Fresnel coefficients were calculated based on the theory which contains the x-ray energy conservation rule at surface and interface. In their discussion, the transmission coefficients were replaced approximately by the reflection coefficients by the ignoring diffuse scattering term at the rough interface, and according to the principle of conservation energy at the rough interface also. The errors of transmittance without the modification cannot be ignored. It is meaningless to try to precisely match the numerical result based on a wrong calculating formula even to details of the reflectivity profile of the experimental result. Thus, because Nevot and Croce's treatment of the Parratt formalism contains a fundamental mistake regardless of the size of roughness, this approach needs to be corrected. In the present study, we present a new accurate formalism that corrects this mistake, and thereby derive an accurate analysis of the x-ray reflectivity from a multilayer surface, taking into account the effect of roughness-induced diffuse scattering. The calculated reflectivity obtained by the use of this accurate reflectivity equation gives a physically reasonable result, and should enable the

  13. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  14. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  15. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  16. Soil spectra contributions to grass canopy spectral reflectance

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Miller, L. D.

    1977-01-01

    The soil or background spectra contribution to grass canopy spectral reflectance for the 0.35 to 0.80 micron region was investigated using in situ collected spectral reflectance data. Regression analysis was used to estimate accurately the unexposed soil spectral reflectance and to quantify maxima and minima for soil-green vegetation reflection contrasts.

  17. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  18. Toward Accurate and Quantitative Comparative Metagenomics.

    PubMed

    Nayfach, Stephen; Pollard, Katherine S

    2016-08-25

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  19. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  20. Biology Reflective Assessment Curriculum

    NASA Astrophysics Data System (ADS)

    Bayley, Cheryl Ann

    Often students and educators view assessments as an obligation and finality for a unit. In the current climate of high-stakes testing and accountability, the balance of time, resources and emphasis on students' scores related to assessment have been slanted considerably toward the summative side. This tension between assessment for accountability and assessment to inform teaching strains instruction and educators' ability to use that information to design learning opportunities that help students develop deeper conceptual understanding. A substantive body of research indicates that formative and reflective assessment can significantly improve student learning. Biology Reflective Assessment Curriculum (BRAC) examines support provided for high school science students through assessment practices. This investigation incorporates the usage of reflective assessments as a guiding practice for differentiated instruction and student choice. Reflective assessment is a metacognitive strategy that promotes self-monitoring and evaluation. The goals of the curriculum are to promote self-efficacy and conceptual understanding in students learning biology through developing their metacognitive awareness. BRAC was implemented in a high school biology classroom. Data from assessments, metacognitive surveys, self-efficacy surveys, reflective journals, student work, a culminating task and field notes were used to evaluate the effectiveness of the curriculum. The results suggest that students who develop their metacognitive skills developed a deeper conceptual understanding and improved feelings of self-efficacy when they were engaged in a reflective assessment unit embedded with student choice. BRAC is a tool for teachers to use assessments to assist students in becoming metacognitive and to guide student choice in learning opportunities.

  1. Modeling the effects of reflective roofing

    SciTech Connect

    Gartland, L.M.; Konopacki, S.J.; Akbari, H.

    1996-08-01

    Roofing materials which are highly reflective to sunlight are currently being developed. Reflective roofing is an effective summertime energy saver in warm and sunny climates. It has been demonstrated to save up to 40% of the energy needed to cool a building during the summer months. Buildings without air conditioning can reduce their indoor temperatures and improve occupant comfort during the summer if highly reflective roofing materials are used. But there are questions about the tradeoff between summer energy savings and extra wintertime energy use due to reduced heat collection by the roof. These questions are being answered by simulating buildings in various climates using the DOE-2 program (version 2.1E). Unfortunately, DOE-2 does not accurately model radiative, convective and conductive processes in the roof-attic. Radiative heat transfer from the underside of a reflective roof is much smaller than that of a roof which absorbs heat from sunlight, and must be accounted for in the building energy model. Convection correlations for the attic and the roof surface must be fine tuned. An equation to model the insulation`s conductivity dependence on temperature must also be added. A function was written to incorporate the attic heat transfer processes into the DOE-2 building energy simulation. This function adds radiative, convective and conductive equations to the energy balance of the roof. Results of the enhanced DOE-2 model were compared to measured data collected from a school bungalow in a Sacramento Municipal Utility District monitoring project, with particular attention paid to the year-round energy effects.

  2. A Reflective Look at Reflecting Teams

    ERIC Educational Resources Information Center

    Pender, Rebecca L.; Stinchfield, Tracy

    2012-01-01

    This article reviewed existing literature and research on the reflecting team process. There is a dearth of empirical research that explores the reflecting team process and the outcome of counseling that uses reflecting teams. Implications of using reflecting teams for counselors, counselor educators, and clients will be discussed. A call for…

  3. Characterization of Multilayer Reflective Coatings for Extreme Ultraviolet Lithography

    SciTech Connect

    Wedowski, M.; Gullikson, E.M.; Underwood, J.H.; Spiller, E.A.; Montcalm, C.; Kearney, P.A.; Bajt, S.; Schmidt, M.A.; Folta, J.A.

    1999-11-01

    The synchrotron-based reflectometer at beamline 6.3.2 of the Advanced Light Source (ALS) in Berkeley is an important metrology tool within the current Extreme Ultraviolet Lithography (EUVL) program. This program is a joint activity of three National Laboratories and a consortium of leading semiconductor manufacturers. Its goal is the development of a technology for routine production of sub-100 nm feature sizes for microelectronic circuits. Multilayer-coated normal-incidence optical surfaces reflecting in the Extreme Ultraviolet (EUV) spectral range near 13 nm are the basis for this emerging technology. All optical components of EUV lithographic steppers need to be characterized at-wavelength during their development and manufacturing process. Multilayer coating uniformity and gradient, accurate wavelength matching and high peak reflectances are the main parameters to be optimized. The mechanical and optical properties of the reflectometer at ALS beamline 6.3.2 proved to be well suited for the needs of the current EUVL program. In particular the facility is highly precise in its wavelength calibration and the determination of absolute EUV reflectance. The reproducibility of results of measurements at ALS beamline 6.3.2 is 0.2 % for reflectivity and 0.002 nm for wavelength.

  4. Broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Cobb, E.D.

    1993-01-01

    The broad-band acoustic Doppler current profiler is an instrument that determines velocity based on the Doppler principle by reflecting acoustic signals off sediment particles in the water. The instrument is capable of measuring velocity magnitude and direction throughout a water column and of measuring water depth. It is also capable of bottom tracking and can, therefore, keep track of its own relative position as it is moved across a channel. Discharge measurements can be made quickly and, based on limited tests, accurately with this instrument. ?? 1993.

  5. Reflected Ceiling Plan/Reflected Deck Plan 2009; Reflected Ceiling Plan/Reflected Deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Reflected Ceiling Plan/Reflected Deck Plan 2009; Reflected Ceiling Plan/Reflected Deck Plan 2010 - Gilpin's Falls Covered Bridge, Spanning North East Creek at Former (Bypassed) Section of North East Road (SR 272), North East, Cecil County, MD

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  7. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  8. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  9. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  10. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  11. The importance of accurate atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Payne, Dylan; Schroeder, John; Liang, Pang

    2014-11-01

    This paper will focus on the effect of atmospheric conditions on EO sensor performance using computer models. We have shown the importance of accurately modeling atmospheric effects for predicting the performance of an EO sensor. A simple example will demonstrated how real conditions for several sites in China will significantly impact on image correction, hyperspectral imaging, and remote sensing. The current state-of-the-art model for computing atmospheric transmission and radiance is, MODTRAN® 5, developed by the US Air Force Research Laboratory and Spectral Science, Inc. Research by the US Air Force, Navy and Army resulted in the public release of LOWTRAN 2 in the early 1970's. Subsequent releases of LOWTRAN and MODTRAN® have continued until the present. Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns. The paper will demonstrate the importance of using validated models and local measured meteorological, atmospheric and aerosol conditions to accurately simulate the atmospheric transmission and radiance. Frequently default conditions are used which can produce errors of as much as 75% in these values. This can have significant impact on remote sensing applications.

  12. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  13. How flatbed scanners upset accurate film dosimetry.

    PubMed

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  14. Reflections on Rodent Implantation.

    PubMed

    Cha, Jeeyeon M; Dey, Sudhansu K

    2015-01-01

    Embryo implantation is a complex process involving endocrine, paracrine, autocrine, and juxtacrine modulators that span cell-cell and cell-matrix interactions. The quality of implantation is predictive for pregnancy success. Earlier observational studies formed the basis for genetic and molecular approaches that ensued with emerging technological advances. However, the precise sequence and details of the molecular interactions involved have yet to be defined. This review reflects briefly on aspects of our current understanding of rodent implantation as a tribute to Roger Short's lifelong contributions to the field of reproductive physiology. PMID:26450495

  15. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  16. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    PubMed

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  17. Quality Self-Reflection through Reflection Training

    ERIC Educational Resources Information Center

    Gun, Bahar

    2011-01-01

    This research study discusses the importance of "reflection training" in teacher education programmes. The main premise of the study is that although teachers are constantly encouraged to "reflect" on their teaching, they are unable to do so effectively unless they are specifically trained in how to reflect (they tend to "react" rather than…

  18. Reflections on Reflective Learning in Professional Formation

    ERIC Educational Resources Information Center

    Warhurst, Russell

    2008-01-01

    Reflective learning is a standard and largely unquestioned pedagogy of initial in-service professional education. This case study problematises the processes of reflective learning and examines the constraints on beginning professionals' reflection. The paper outlines a theoretical framework to enable understanding of the nature of reflective…

  19. Reflectance spectra of subarctic lichens

    NASA Technical Reports Server (NTRS)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  20. Light Field Imaging Based Accurate Image Specular Highlight Removal.

    PubMed

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into "unsaturated" and "saturated" category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  1. Light Field Imaging Based Accurate Image Specular Highlight Removal

    PubMed Central

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into “unsaturated” and “saturated” category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  2. Orientations to Reflective Practice.

    ERIC Educational Resources Information Center

    Wellington, Bud; Austin, Patricia

    1996-01-01

    Delineates five orientations to reflective practice: immediate, technical, deliberative, dialectic, and transpersonal, each reflecting different social science bases and beliefs and values about education. Views them as interactive, interdependent, noncompeting, aspects of reflective practice. (SK)

  3. Questioning Intuition through Reflective Engagement

    ERIC Educational Resources Information Center

    Schmidt, Christopher D.

    2014-01-01

    Current literature on ethics and moral development focuses on discussion concerning the impact of intuition on moral decision-making. Through the use of student journal reflections over the course of one semester, this study utilized a grounded theory approach in order to explore and understand participant levels of awareness and understanding of…

  4. Teaching Student Teachers to Reflect.

    ERIC Educational Resources Information Center

    Zeichner, Kenneth M.; Liston, Daniel P.

    1987-01-01

    The authors argue that the current teacher education program model, featuring apprenticeship, inhibits the self-directed growth of student teachers and fails to promote their full professional development. They describe an alternative model used at the University of Wisconsin, Madison, that promotes reflective teaching, teacher autonomy, and…

  5. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  6. Accurate and approximate calculations of Raman scattering in the atmosphere of Neptune

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.

    2005-01-01

    Raman scattering by H 2 in Neptune's atmosphere has significant effects on its reflectivity for λ<0.5 μm, producing baseline decreases of ˜20% in a clear atmosphere and ˜10% in a hazy atmosphere. However, few accurate Raman calculations are carried out because of their complexity and computational costs. Here we present the first radiation transfer algorithm that includes both polarization and Raman scattering and facilitates computation of spatially resolved spectra. New calculations show that Cochran and Trafton's (1978, Astrophys. J. 219, 756-762) suggestion that light reflected in the deep CH 4 bands is mainly Raman scattered is not valid for current estimates of the CH 4 vertical distribution, which implies only a 4% Raman contribution. Comparisons with IUE, HST, and groundbased observations confirm that high altitude haze absorption is reducing Neptune's geometric albedo by ˜6% in the 0.22-0.26 μm range and by ˜13% in the 0.35-0.45 μm range. A sample haze model with 0.2 optical depths of 0.2-μm radius particles between 0.1 and 0.8 bars fits reasonably well, but is not a unique solution. We used accurate calculations to evaluate several approximations of Raman scattering. The Karkoschka (1994, Icarus 111, 174-192) method of applying Raman corrections to calculated spectra and removing Raman effects from observed spectra is shown to have limited applicability and to undercorrect the depths of weak CH 4 absorption bands. The relatively large Q-branch contribution observed by Karkoschka is shown to be consistent with current estimates of Raman cross-sections. The Wallace (1972, Astrophys. J. 176, 249-257) approximation, produces geometric albedo ˜5% low as originally proposed, but can be made much more accurate by including a scattering contribution from the vibrational transition. The original Pollack et al. (1986, Icarus 65, 442-466) approximation is inaccurate and unstable, but can be greatly improved by several simple modifications. A new

  7. Simulating Scintillator Light Collection Using Measured Optical Reflectance

    SciTech Connect

    Janecek, Martin; Moses, William

    2010-01-28

    To accurately predict the light collection from a scintillating crystal through Monte Carlo simulations, it is crucial to know the angular distribution from the surface reflectance. Current Monte Carlo codes allow the user to set the optical reflectance to a linear combination of backscatter spike, specular spike, specular lobe, and Lambertian reflections. However, not all light distributions can be expressed in this way. In addition, the user seldom has the detailed knowledge about the surfaces that is required for accurate modeling. We have previously measured the angular distributions within BGO crystals and now incorporate these data as look-up-tables (LUTs) into modified Geant4 and GATE Monte Carlo codes. The modified codes allow the user to specify the surface treatment (ground, etched, or polished), the attached reflector (Lumirror(R), Teflon(R), ESR film, Tyvek(R), or TiO paint), and the bonding type (air-coupled or glued). Each LUT consists of measured angular distributions with 4o by 5o resolution in theta and phi, respectively, for incidence angles from 0? to 90? degrees, in 1o-steps. We compared the new codes to the original codes by running simulations with a 3 x 10 x 30 mm3 BGO crystal coupled to a PMT. The simulations were then compared to measurements. Light output was measured by counting the photons detected by the PMT with the 3 x 10, 3 x 30, or 10 x 30 mm2 side coupled to the PMT, respectively. Our new code shows better agreement with the measured data than the current Geant4 code. The new code can also simulate reflector materials that are not pure specular or Lambertian reflectors, as was previously required. Our code is also more user friendly, as no detailed knowledge about the surfaces or light distributions is required from the user.

  8. Quantitative Hyperspectral Reflectance Imaging

    PubMed Central

    Klein, Marvin E.; Aalderink, Bernard J.; Padoan, Roberto; de Bruin, Gerrit; Steemers, Ted A.G.

    2008-01-01

    Hyperspectral imaging is a non-destructive optical analysis technique that can for instance be used to obtain information from cultural heritage objects unavailable with conventional colour or multi-spectral photography. This technique can be used to distinguish and recognize materials, to enhance the visibility of faint or obscured features, to detect signs of degradation and study the effect of environmental conditions on the object. We describe the basic concept, working principles, construction and performance of a laboratory instrument specifically developed for the analysis of historical documents. The instrument measures calibrated spectral reflectance images at 70 wavelengths ranging from 365 to 1100 nm (near-ultraviolet, visible and near-infrared). By using a wavelength tunable narrow-bandwidth light-source, the light energy used to illuminate the measured object is minimal, so that any light-induced degradation can be excluded. Basic analysis of the hyperspectral data includes a qualitative comparison of the spectral images and the extraction of quantitative data such as mean spectral reflectance curves and statistical information from user-defined regions-of-interest. More sophisticated mathematical feature extraction and classification techniques can be used to map areas on the document, where different types of ink had been applied or where one ink shows various degrees of degradation. The developed quantitative hyperspectral imager is currently in use by the Nationaal Archief (National Archives of The Netherlands) to study degradation effects of artificial samples and original documents, exposed in their permanent exhibition area or stored in their deposit rooms.

  9. Identification of Terrestrial Reflectance From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Nolf, Scott R.; Stacy, Kathryn (Technical Monitor)

    2000-01-01

    Correcting for atmospheric effects is an essential part of surface-reflectance recovery from radiance measurements. Model-based atmospheric correction techniques enable an accurate identification and classification of terrestrial reflectances from multi-spectral imagery. Successful and efficient removal of atmospheric effects from remote-sensing data is a key factor in the success of Earth observation missions. This report assesses the performance, robustness and sensitivity of two atmospheric-correction and reflectance-recovery techniques as part of an end-to-end simulation of hyper-spectral acquisition, identification and classification.

  10. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  11. MODIS Solar Reflective Calibration Traceability

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, Jim

    2009-01-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify, measurement uncertainties, and to establish absolute scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bidirectional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser monitor (SDSM). This paper provides details of this calibration chain, from prelaunch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  12. Reflectivity, Reflexivity and Situated Reflective Practice

    ERIC Educational Resources Information Center

    Malthouse, Richard; Roffey-Barentsen, Jodi; Watts, Mike

    2014-01-01

    This paper describes an aspect of reflective practice referred to as situated reflective practice. The overarching theory is derived from social theories of structuration and reflexivity. In particular, from Giddens' theory of structuration, which sees social life as an interplay of agency and structure. Discussion of the research reported…

  13. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  14. Editorial Commentary: Reflections From a Mature Arthroscopic Shoulder Surgeon on the History and Current Benefits of Augmentation for the Revision of a Massive Rotator Cuff Tear Using Acellular Human Dermal Matrix Allograft.

    PubMed

    Snyder, Stephen J

    2016-09-01

    Acellular human dermal matrix allografts are now being used to augment and sometimes replace severely damaged rotator cuff tissue. I have been interested in this important aspect of orthopaedics for 15 years and am pleased to have the opportunity to share my personal reflections of some of the highlights in science and the literature that helped get to the point now where we can expect greater than 80% healing even in these difficult cases of revision after massive failed cuff repair. The field of tissue engineering will certainly be a critical part of our rotator cuff surgical future.

  15. Editorial Commentary: Reflections From a Mature Arthroscopic Shoulder Surgeon on the History and Current Benefits of Augmentation for the Revision of a Massive Rotator Cuff Tear Using Acellular Human Dermal Matrix Allograft.

    PubMed

    Snyder, Stephen J

    2016-09-01

    Acellular human dermal matrix allografts are now being used to augment and sometimes replace severely damaged rotator cuff tissue. I have been interested in this important aspect of orthopaedics for 15 years and am pleased to have the opportunity to share my personal reflections of some of the highlights in science and the literature that helped get to the point now where we can expect greater than 80% healing even in these difficult cases of revision after massive failed cuff repair. The field of tissue engineering will certainly be a critical part of our rotator cuff surgical future. PMID:27594327

  16. Inter-reflection Compensation of Immersive Projection Display by Spatio-Temporal Screen Reflectance Modulation.

    PubMed

    Takeda, Shoichi; Iwai, Daisuke; Sato, Kosuke

    2016-04-01

    We propose a novel inter-reflection compensation technique for immersive projection displays wherein we spatially modulate the reflectance pattern on the screen to improve the compensation performance of conventional methods. As the luminance of light reflected on a projection surface is mathematically represented as the multiplication of the illuminance of incident light and the surface reflectance, we can reduce undesirable intensity elevation because of inter-reflections by decreasing surface reflectance. Based on this principle, we improve conventional inter-reflection compensation techniques by applying reflectance pattern modulation. We realize spatial reflectance modulation of a projection screen by painting it with a photochromic compound, which changes its color (i.e., the reflectance of the screen) when ultraviolet (UV) light is applied and by controlling UV irradiation with a UV LED array placed behind the screen. The main contribution of this paper is a computational model to optimize a reflectance pattern for the accurate reproduction of a target appearance by decreasing the intensity elevation caused by inter-reflection while maintaining the maximum intensity of the target appearance. Through simulation and physical experiments, we demonstrate the feasibility of the proposed model and confirm its advantage over conventional methods. PMID:26780805

  17. Tunable reflection minima of nanostructured antireflective surfaces

    NASA Astrophysics Data System (ADS)

    Boden, S. A.; Bagnall, D. M.

    2008-09-01

    Broadband antireflection schemes for silicon surfaces based on the moth-eye principle and comprising arrays of subwavelength-scale pillars are applicable to solar cells, photodetectors, and stealth technologies and can exhibit very low reflectances. We show that rigorous coupled wave analysis can be used to accurately model the intricate reflectance behavior of these surfaces and so can be used to explore the effects of variations in pillar height, period, and shape. Low reflectance regions are identified, the extent of which are determined by the shape of the pillars. The wavelengths over which these low reflectance regions operate can be shifted by altering the period of the array. Thus the subtle features of the reflectance spectrum of a moth-eye array can be tailored for optimum performance for the input spectrum of a specific application.

  18. DCP-collected absolute target reflectance signatures assist accurate interpretation of ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Weber, F. P.

    1973-01-01

    Data collection platforms (DCP's) are being used at a Black Hills, South Dakota, test site (MMC 226A) to record radiometric measurements needed to determine solar and atmospheric parameters that affect ERTS-1 multispectral scanner radiance measurements. A total of 72 channels of analog data transmitted from an unattended ground truth site via three DCP's at least six times a day. The system has operated with only minor problems since September, sending forth daily measurements of biophysical responses and atmospheric conditions. Comparisons of scene radiance data calculated from ERTS images with that measured on the ground show the image-measured values to be 35 percent higher for the green channel and 20 percent higher for the red channel for the same scene targets. Radiance values for channels 6 and 7 are nearly the same from the ground data and from the imagery.

  19. Patient safety measures in burn care: do National reporting systems accurately reflect quality of burn care?

    PubMed

    Mandell, Samuel P; Robinson, Ellen F; Cooper, Claudette L; Klein, Matthew B; Gibran, Nicole S

    2010-01-01

    Recently, much attention has been placed on quality of care metrics and patient safety. Groups such as the University Health-System Consortium (UHC) collect and review patient safety data, monitor healthcare facilities, and often report data using mortality and complication rates as outcomes. The purpose of this study was to analyze the UHC database to determine if it differentiates quality of care across burn centers. We reviewed UHC clinical database (CDB) fields and available data from 2006 to 2008 for the burn product line. Based on the September 2008 American Burn Association (ABA) list of verified burn centers, we categorized centers as American Burn Association-verified burn centers, self-identified burn centers, and other centers that are not burn units but admit some burn patients. We compared total burn admissions, risk pool, complication rates, and mortality rates. Overall mortality was compared between the UHC and National Burn Repository. The UHC CDB provides fields for number of admissions, % intensive care unit admission, risk pool, length of stay, complication profiles, and mortality index. The overall numbers of burn patients in the database for the study period included 17,740 patients admitted to verified burn centers (mean 631 admissions/burn center/yr or per 2 years), 10,834 for self-identified burn centers (mean 437 admissions/burn center/yr or per 2 years), and 1,487 for other centers (mean 11.5 admissions/burn center/yr or per 2 years). Reported complication rates for verified burn centers (21.6%), self-identified burn centers (21.3%), and others (20%) were similar. Mortality rates were highest for self-identified burn centers (3.06%), less for verified centers (2.88%), and lowest for other centers (0.74%). However, these outcomes data may be misleading, because the risk pool criteria do not include burn-specific risk factors, and the inability to adjust for injury severity prevents rigorous comparison across centers. Databases such as the UHC CDB provide a potential to benchmark quality of care. However, reporting quality data for trauma and burns requires stringent understanding of injury data collection. Although quality measures are important for improving patient safety and establishing benchmarks for complication and mortality rates, caution must be taken when applying them to specific product lines.

  20. Blogging for Reflection: The Use of Online Journals to Engage Students in Reflective Learning

    ERIC Educational Resources Information Center

    Muncy, James A.

    2014-01-01

    Reflective learning has long been studied in many disciplines. A primary way that reflective learning has been taught is through journaling. With the advent of e-learning, journaling has moved to the Web in the form of blogs. The current paper reviews the current state of journaling and blogging research with specific recommendations for marketing…

  1. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  2. Accurate theoretical chemistry with coupled pair models.

    PubMed

    Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan

    2009-05-19

    Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now

  3. Reflections in art

    PubMed Central

    CAVANAGH, PATRICK; CHAO, JESSICA; WANG, DINA

    2009-01-01

    When artists depict a mirror in a painting, it necessarily lacks the most obvious property of a mirror: as we move around the painting of the mirror, the reflections we see in it do not change. And yet representations of mirrors and other reflecting surfaces can be quite convincing in paintings. Here, we will examine the rules of reflection, the many ways that painters can break those rules without losing the impression of reflection and the rules that cannot be broken. The rules that govern the perception of reflection are a small subset of the physical rules of reflection. PMID:18534102

  4. A robust and accurate formulation of molecular and colloidal electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2016-08-01

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.

  5. A robust and accurate formulation of molecular and colloidal electrostatics.

    PubMed

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y C

    2016-08-01

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics. PMID:27497538

  6. Reflection Positivity for Parafermions

    NASA Astrophysics Data System (ADS)

    Jaffe, Arthur; Pedrocchi, Fabio L.

    2015-07-01

    We establish reflection positivity for Gibbs trace states for a class of gauge-invariant, reflection-invariant Hamiltonians describing parafermion interactions on a lattice. We relate these results to recent work in the condensed-matter physics literature.

  7. Benchmarking accurate spectral phase retrieval of single attosecond pulses

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Le, Anh-Thu; Morishita, Toru; Yu, Chao; Lin, C. D.

    2015-02-01

    A single extreme-ultraviolet (XUV) attosecond pulse or pulse train in the time domain is fully characterized if its spectral amplitude and phase are both determined. The spectral amplitude can be easily obtained from photoionization of simple atoms where accurate photoionization cross sections have been measured from, e.g., synchrotron radiations. To determine the spectral phase, at present the standard method is to carry out XUV photoionization in the presence of a dressing infrared (IR) laser. In this work, we examine the accuracy of current phase retrieval methods (PROOF and iPROOF) where the dressing IR is relatively weak such that photoelectron spectra can be accurately calculated by second-order perturbation theory. We suggest a modified method named swPROOF (scattering wave phase retrieval by omega oscillation filtering) which utilizes accurate one-photon and two-photon dipole transition matrix elements and removes the approximations made in PROOF and iPROOF. We show that the swPROOF method can in general retrieve accurate spectral phase compared to other simpler models that have been suggested. We benchmark the accuracy of these phase retrieval methods through simulating the spectrogram by solving the time-dependent Schrödinger equation numerically using several known single attosecond pulses with a fixed spectral amplitude but different spectral phases.

  8. A Reflective Conversation with James H. Borland

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.; Moore, Tammy-Lynne; Borland, James H.

    2014-01-01

    James H. Borland, Ph.D. is Professor of Education in the Department of Curriculum and Teaching at Teachers College, Columbia University in New York City. In this reflective conversation, he reflects on his experiences in an urban environment and the current challenges in gifted education. He argues for ongoing diagnosis of learners' needs…

  9. Building the Reflective Capacity of Practicing Principals

    ERIC Educational Resources Information Center

    Rich, Robert A.; Jackson, Sherion H.

    2006-01-01

    Reflection is often used as a professional development tool in coaching and mentoring leaders. Outside of education, research is underway to learn how managers can develop as learning facilitators in the workplace. However, the current focus on learning communities and learning organizations within education makes reflective thinking particularly…

  10. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  11. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  12. Modified chemiluminescent NO analyzer accurately measures NOX

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1978-01-01

    Installation of molybdenum nitric oxide (NO)-to-higher oxides of nitrogen (NOx) converter in chemiluminescent gas analyzer and use of air purge allow accurate measurements of NOx in exhaust gases containing as much as thirty percent carbon monoxide (CO). Measurements using conventional analyzer are highly inaccurate for NOx if as little as five percent CO is present. In modified analyzer, molybdenum has high tolerance to CO, and air purge substantially quenches NOx destruction. In test, modified chemiluminescent analyzer accurately measured NO and NOx concentrations for over 4 months with no denegration in performance.

  13. Reflective Learning in Practice.

    ERIC Educational Resources Information Center

    Brockbank, Anne, Ed.; McGill, Ian, Ed.; Beech, Nic, Ed.

    This book contains 22 papers on reflective learning in practice. The following papers are included: "Our Purpose" (Ann Brockbank, Ian McGill, Nic Beech); "The Nature and Context of Learning" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning and Organizations" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning in Practice" (Ann…

  14. Liberating Moral Reflection

    ERIC Educational Resources Information Center

    Horell, Harold D.

    2013-01-01

    The author argues that if we are to foster life-giving and liberating moral reflection, we must first liberate moral reflection from distortions; specifically, from the distorting effects of moral insensitivity, destructive moral relativism, and confusions resulting from a failure to understand the dynamics of moral reflection. The author proposes…

  15. Teaching Critical Reflection

    ERIC Educational Resources Information Center

    Smith, Elizabeth

    2011-01-01

    Despite long-standing commitment to the notion of critical reflection across the healthcare professions it is unusual for critical theory and practice to be taught as explicit subjects in healthcare higher education. There is evidence to show that reflective techniques such as critical portfolios and reflective diaries can help students to…

  16. RF current sensor

    DOEpatents

    Moore, James A.; Sparks, Dennis O.

    1998-11-10

    An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

  17. Can Appraisers Rate Work Performance Accurately?

    ERIC Educational Resources Information Center

    Hedge, Jerry W.; Laue, Frances J.

    The ability of individuals to make accurate judgments about others is examined and literature on this subject is reviewed. A wide variety of situational factors affects the appraisal of performance. It is generally accepted that the purpose of the appraisal influences the accuracy of the appraiser. The instrumentation, or tools, available to the…

  18. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  19. Methods for accurate homology modeling by global optimization.

    PubMed

    Joo, Keehyoung; Lee, Jinwoo; Lee, Jooyoung

    2012-01-01

    High accuracy protein modeling from its sequence information is an important step toward revealing the sequence-structure-function relationship of proteins and nowadays it becomes increasingly more useful for practical purposes such as in drug discovery and in protein design. We have developed a protocol for protein structure prediction that can generate highly accurate protein models in terms of backbone structure, side-chain orientation, hydrogen bonding, and binding sites of ligands. To obtain accurate protein models, we have combined a powerful global optimization method with traditional homology modeling procedures such as multiple sequence alignment, chain building, and side-chain remodeling. We have built a series of specific score functions for these steps, and optimized them by utilizing conformational space annealing, which is one of the most successful combinatorial optimization algorithms currently available.

  20. Remotely Sensing the Photochemical Reflectance Index (PRI)

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern

    2015-01-01

    In remote sensing, the Photochemical Reflectance Index (PRI) provides insight into physiological processes occurring inside the leaves in a stand of plants. Developed by Gamon et al., (1990 and 1992), PRI evolved from laboratory measurements of the reflectance of individual leaves (Bilger et al.,1989). Yet in a remotely sensed image, a pixel measurement may include light from both reflecting and transmitting leaves. We conducted laboratory experiments comparing values of PRI based upon polarized reflectance and transmittance measurements of water and nutrient stressed leaves. We illuminated single detached leaves using a current controlled light source (Oriel model 66881) and measured the leaf weight using an analytical balance (Mettler model AE 260) and the light reflected and transmitted by the leaf during dry down using two Analytical Spectral Devices spectroradiometers. Polarizers on the incident and reflected light beams allowed us to divide the leaf reflectance into two parts: a polarized surface reflectance and a non-polarized 'leaf interior' reflectance. Our results underscore the importance when calculating PRI of removing the leaf surface reflection, which contains no information about physiological processes ongoing in the leaf interior. The results show that the leaf physiology information is in the leaf interior reflectance, not the leaf transmittance. Applied to a plant stand, these results suggest use of polarization measurements in sun-view directions that minimize the number of sunlit transmitting leaves in the sensor field of view.

  1. On the importance of having accurate data for astrophysical modelling

    NASA Astrophysics Data System (ADS)

    Lique, Francois

    2016-06-01

    The Herschel telescope and the ALMA and NOEMA interferometers have opened new windows of observation for wavelengths ranging from far infrared to sub-millimeter with spatial and spectral resolutions previously unmatched. To make the most of these observations, an accurate knowledge of the physical and chemical processes occurring in the interstellar and circumstellar media is essential.In this presentation, I will discuss what are the current needs of astrophysics in terms of molecular data and I will show that accurate molecular data are crucial for the proper determination of the physical conditions in molecular clouds.First, I will focus on collisional excitation studies that are needed for molecular lines modelling beyond the Local Thermodynamic Equilibrium (LTE) approach. In particular, I will show how new collisional data for the HCN and HNC isomers, two tracers of star forming conditions, have allowed solving the problem of their respective abundance in cold molecular clouds. I will also present the last collisional data that have been computed in order to analyse new highly resolved observations provided by the ALMA interferometer.Then, I will present the calculation of accurate rate constants for the F+H2 → HF+H and Cl+H2 ↔ HCl+H reactions, which have allowed a more accurate determination of the physical conditions in diffuse molecular clouds. I will also present the recent work on the ortho-para-H2 conversion due to hydrogen exchange that allow more accurate determination of the ortho-to-para-H2 ratio in the universe and that imply a significant revision of the cooling mechanism in astrophysical media.

  2. A study of the current knowledge base in treating snake bite amongst doctors in the high-risk countries of India and Pakistan: does snake bite treatment training reflect local requirements?

    PubMed

    Simpson, Ian D

    2008-11-01

    The call for greater production of better quality anti-snake venom (ASV) is a major thrust in the effort to reduce snake bite mortality. However, snake bite mortality has many causes and these should also be addressed. A key feature of efficient ASV usage is ensuring that doctors are trained to administer ASV only when it is required and in amounts that are necessary to neutralize venom. The need for better snake bite management training has been referred to, but little attention has been paid to how effectively medical education actually prepares doctors to treat snake bite. The objective of this study is to evaluate the current level of knowledge amongst doctors in India and Pakistan, two countries with the highest snake bite mortality in absolute terms. Results show that the use of current textbooks and medical education do not adequately prepare doctors to treat snake bite, particularly in the areas of use of ASV, dealing with adverse reactions to ASV and specific measures to deal with neurotoxic bites. The central conclusion of the paper is that local protocols and training are required to adequately prepare doctors to improve treatment and reduce mortality.

  3. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  4. Neutron supermirrors: an accurate theory for layer thickness computation

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2001-11-01

    We present a new theory for the computation of Super-Mirror stacks, using accurate formulas derived from the classical optics field. Approximations are introduced into the computation, but at a later stage than existing theories, providing a more rigorous treatment of the problem. The final result is a continuous thickness stack, whose properties can be determined at the outset of the design. We find that the well-known fourth power dependence of number of layers versus maximum angle is (of course) asymptotically correct. We find a formula giving directly the relation between desired reflectance, maximum angle, and number of layers (for a given pair of materials). Note: The author of this article, a classical opticist, has limited knowledge of the Neutron world, and begs forgiveness for any shortcomings, erroneous assumptions and/or misinterpretation of previous authors' work on the subject.

  5. Reflective Fourier ptychography.

    PubMed

    Pacheco, Shaun; Zheng, Guoan; Liang, Rongguang

    2016-02-01

    The Fourier ptychography technique in reflection mode has great potential applications in tissue imaging and optical inspection, but the current configuration either has a limitation on cut-off frequency or is not practical. By placing the imaging aperture stop outside the illumination path, the illumination numerical aperture (NA) can be greater than the imaging NA of the objective lens. Thus, the cut-off frequency achieved in the proposed optical system is greater than twice the objective's NA divided by the wavelength (2NAobj/λ ), which is the diffraction limit for the cut-off frequency in an incoherent epi-illumination configuration. We experimentally demonstrated that the synthesized NA is increased by a factor of 4.5 using the proposed optical concept. The key advantage of the proposed system is that it can achieve high-resolution imaging over a large field of view with a simple objective. It will have a great potential for applications in endoscopy, biomedical imaging, surface metrology, and industrial inspection. PMID:26891601

  6. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  7. Aperture taper determination for the half-scale accurate antenna reflector

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.

    1990-01-01

    A simulation is described of a proposed microwave reflectance measurement in which the half scale reflector is used in a compact range type of application. The simulation is used to determine an acceptable aperture taper for the reflector which will allow for accurate measurements. Information on the taper is used in the design of a feed for the reflector.

  8. Feedback about more accurate versus less accurate trials: differential effects on self-confidence and activation.

    PubMed

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-06-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected byfeedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On day 1, participants performed a golf putting task under one of two conditions: one group received feedback on the most accurate trials, whereas another group received feedback on the least accurate trials. On day 2, participants completed an anxiety questionnaire and performed a retention test. Shin conductance level, as a measure of arousal, was determined. The results indicated that feedback about more accurate trials resulted in more effective learning as well as increased self-confidence. Also, activation was a predictor of performance. PMID:22808705

  9. Reflections on Reflective Abstractions in Creative Thinking.

    ERIC Educational Resources Information Center

    Cohen, Leonora Marx

    This report proposes a modification of Jean Piaget's concept of "creative abstraction," the mechanism of creative thought, which develops both intelligence and creative ideas. By reflecting on one's actions and the coordinations of actions, the individual constructs new relationships, links, rules, or correspondences between and among them.…

  10. Two highly accurate methods for pitch calibration

    NASA Astrophysics Data System (ADS)

    Kniel, K.; Härtig, F.; Osawa, S.; Sato, O.

    2009-11-01

    Among profiles, helix and tooth thickness pitch is one of the most important parameters of an involute gear measurement evaluation. In principle, coordinate measuring machines (CMM) and CNC-controlled gear measuring machines as a variant of a CMM are suited for these kinds of gear measurements. Now the Japan National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) and the German national metrology institute the Physikalisch-Technische Bundesanstalt (PTB) have each developed independently highly accurate pitch calibration methods applicable to CMM or gear measuring machines. Both calibration methods are based on the so-called closure technique which allows the separation of the systematic errors of the measurement device and the errors of the gear. For the verification of both calibration methods, NMIJ/AIST and PTB performed measurements on a specially designed pitch artifact. The comparison of the results shows that both methods can be used for highly accurate calibrations of pitch standards.

  11. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  12. Accurate Guitar Tuning by Cochlear Implant Musicians

    PubMed Central

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  13. Preparation and accurate measurement of pure ozone.

    PubMed

    Janssen, Christof; Simone, Daniela; Guinet, Mickaël

    2011-03-01

    Preparation of high purity ozone as well as precise and accurate measurement of its pressure are metrological requirements that are difficult to meet due to ozone decomposition occurring in pressure sensors. The most stable and precise transducer heads are heated and, therefore, prone to accelerated ozone decomposition, limiting measurement accuracy and compromising purity. Here, we describe a vacuum system and a method for ozone production, suitable to accurately determine the pressure of pure ozone by avoiding the problem of decomposition. We use an inert gas in a particularly designed buffer volume and can thus achieve high measurement accuracy and negligible degradation of ozone with purities of 99.8% or better. The high degree of purity is ensured by comprehensive compositional analyses of ozone samples. The method may also be applied to other reactive gases. PMID:21456766

  14. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  15. Accurate modeling of parallel scientific computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Townsend, James C.

    1988-01-01

    Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top performance it is necessary to partition the grid so as to balance workload and minimize communication/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the course of the computation, and is not known until load time. Critical mapping and remapping decisions rest on the ability to accurately predict performance, given a description of a grid and its partition. This paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. The models constructed are shown to be accurate, and are used to find optimal remapping schedules.

  16. Line gas sampling system ensures accurate analysis

    SciTech Connect

    Not Available

    1992-06-01

    Tremendous changes in the natural gas business have resulted in new approaches to the way natural gas is measured. Electronic flow measurement has altered the business forever, with developments in instrumentation and a new sensitivity to the importance of proper natural gas sampling techniques. This paper reports that YZ Industries Inc., Snyder, Texas, combined its 40 years of sampling experience with the latest in microprocessor-based technology to develop the KynaPak 2000 series, the first on-line natural gas sampling system that is both compact and extremely accurate. This means the composition of the sampled gas must be representative of the whole and related to flow. If so, relative measurement and sampling techniques are married, gas volumes are accurately accounted for and adjustments to composition can be made.

  17. Accurate mask model for advanced nodes

    NASA Astrophysics Data System (ADS)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Ndiaye, El Hadji Omar; Mishra, Kushlendra; Paninjath, Sankaranarayanan; Bork, Ingo; Buck, Peter; Toublan, Olivier; Schanen, Isabelle

    2014-07-01

    Standard OPC models consist of a physical optical model and an empirical resist model. The resist model compensates the optical model imprecision on top of modeling resist development. The optical model imprecision may result from mask topography effects and real mask information including mask ebeam writing and mask process contributions. For advanced technology nodes, significant progress has been made to model mask topography to improve optical model accuracy. However, mask information is difficult to decorrelate from standard OPC model. Our goal is to establish an accurate mask model through a dedicated calibration exercise. In this paper, we present a flow to calibrate an accurate mask enabling its implementation. The study covers the different effects that should be embedded in the mask model as well as the experiment required to model them.

  18. Photovoltaic module with light reflecting backskin

    DOEpatents

    Gonsiorawski, Ronald C.

    2007-07-03

    A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

  19. Accurate maser positions for MALT-45

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher; Bains, Indra; Voronkov, Maxim; Lo, Nadia; Jones, Paul; Muller, Erik; Cunningham, Maria; Burton, Michael; Brooks, Kate; Green, James; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Urquhart, James; Morgan, Larry; Rowell, Gavin; Walsh, Andrew; Loenen, Edo; Baan, Willem; Hill, Tracey; Purcell, Cormac; Breen, Shari; Peretto, Nicolas; Jackson, James; Lowe, Vicki; Longmore, Steven

    2013-10-01

    MALT-45 is an untargeted survey, mapping the Galactic plane in CS (1-0), Class I methanol masers, SiO masers and thermal emission, and high frequency continuum emission. After obtaining images from the survey, a number of masers were detected, but without accurate positions. This project seeks to resolve each maser and its environment, with the ultimate goal of placing the Class I methanol maser into a timeline of high mass star formation.

  20. Accurate maser positions for MALT-45

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher; Bains, Indra; Voronkov, Maxim; Lo, Nadia; Jones, Paul; Muller, Erik; Cunningham, Maria; Burton, Michael; Brooks, Kate; Green, James; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Urquhart, James; Morgan, Larry; Rowell, Gavin; Walsh, Andrew; Loenen, Edo; Baan, Willem; Hill, Tracey; Purcell, Cormac; Breen, Shari; Peretto, Nicolas; Jackson, James; Lowe, Vicki; Longmore, Steven

    2013-04-01

    MALT-45 is an untargeted survey, mapping the Galactic plane in CS (1-0), Class I methanol masers, SiO masers and thermal emission, and high frequency continuum emission. After obtaining images from the survey, a number of masers were detected, but without accurate positions. This project seeks to resolve each maser and its environment, with the ultimate goal of placing the Class I methanol maser into a timeline of high mass star formation.

  1. Simple and accurate optical height sensor for wafer inspection systems

    NASA Astrophysics Data System (ADS)

    Shimura, Kei; Nakai, Naoya; Taniguchi, Koichi; Itoh, Masahide

    2016-02-01

    An accurate method for measuring the wafer surface height is required for wafer inspection systems to adjust the focus of inspection optics quickly and precisely. A method for projecting a laser spot onto the wafer surface obliquely and for detecting its image displacement using a one-dimensional position-sensitive detector is known, and a variety of methods have been proposed for improving the accuracy by compensating the measurement error due to the surface patterns. We have developed a simple and accurate method in which an image of a reticle with eight slits is projected on the wafer surface and its reflected image is detected using an image sensor. The surface height is calculated by averaging the coordinates of the images of the slits in both the two directions in the captured image. Pattern-related measurement error was reduced by applying the coordinates averaging to the multiple-slit-projection method. Accuracy of better than 0.35 μm was achieved for a patterned wafer at the reference height and ±0.1 mm from the reference height in a simple configuration.

  2. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    SciTech Connect

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  3. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGES

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  4. Accurate Molecular Polarizabilities Based on Continuum Electrostatics

    PubMed Central

    Truchon, Jean-François; Nicholls, Anthony; Iftimie, Radu I.; Roux, Benoît; Bayly, Christopher I.

    2013-01-01

    A novel approach for representing the intramolecular polarizability as a continuum dielectric is introduced to account for molecular electronic polarization. It is shown, using a finite-difference solution to the Poisson equation, that the Electronic Polarization from Internal Continuum (EPIC) model yields accurate gas-phase molecular polarizability tensors for a test set of 98 challenging molecules composed of heteroaromatics, alkanes and diatomics. The electronic polarization originates from a high intramolecular dielectric that produces polarizabilities consistent with B3LYP/aug-cc-pVTZ and experimental values when surrounded by vacuum dielectric. In contrast to other approaches to model electronic polarization, this simple model avoids the polarizability catastrophe and accurately calculates molecular anisotropy with the use of very few fitted parameters and without resorting to auxiliary sites or anisotropic atomic centers. On average, the unsigned error in the average polarizability and anisotropy compared to B3LYP are 2% and 5%, respectively. The correlation between the polarizability components from B3LYP and this approach lead to a R2 of 0.990 and a slope of 0.999. Even the F2 anisotropy, shown to be a difficult case for existing polarizability models, can be reproduced within 2% error. In addition to providing new parameters for a rapid method directly applicable to the calculation of polarizabilities, this work extends the widely used Poisson equation to areas where accurate molecular polarizabilities matter. PMID:23646034

  5. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models. PMID:27111139

  6. Accurate phase-shift velocimetry in rock

    NASA Astrophysics Data System (ADS)

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R.; Holmes, William M.

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  7. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  8. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  9. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J.; Wendt, Joel R.

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  10. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  11. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    SciTech Connect

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented.

  12. Disambiguating past events: Accurate source memory for time and context depends on different retrieval processes.

    PubMed

    Persson, Bjorn M; Ainge, James A; O'Connor, Akira R

    2016-07-01

    Current animal models of episodic memory are usually based on demonstrating integrated memory for what happened, where it happened, and when an event took place. These models aim to capture the testable features of the definition of human episodic memory which stresses the temporal component of the memory as a unique piece of source information that allows us to disambiguate one memory from another. Recently though, it has been suggested that a more accurate model of human episodic memory would include contextual rather than temporal source information, as humans' memory for time is relatively poor. Here, two experiments were carried out investigating human memory for temporal and contextual source information, along with the underlying dual process retrieval processes, using an immersive virtual environment paired with a 'Remember-Know' memory task. Experiment 1 (n=28) showed that contextual information could only be retrieved accurately using recollection, while temporal information could be retrieved using either recollection or familiarity. Experiment 2 (n=24), which used a more difficult task, resulting in reduced item recognition rates and therefore less potential for contamination by ceiling effects, replicated the pattern of results from Experiment 1. Dual process theory predicts that it should only be possible to retrieve source context from an event using recollection, and our results are consistent with this prediction. That temporal information can be retrieved using familiarity alone suggests that it may be incorrect to view temporal context as analogous to other typically used source contexts. This latter finding supports the alternative proposal that time since presentation may simply be reflected in the strength of memory trace at retrieval - a measure ideally suited to trace strength interrogation using familiarity, as is typically conceptualised within the dual process framework. PMID:27174312

  13. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  14. Weak shock wave reflection from concave surfaces

    NASA Astrophysics Data System (ADS)

    Gruber, Sebastien; Skews, Beric

    2013-07-01

    The reflection of very weak shock waves from concave curved surfaces has not been well documented in the past, and recent studies have shown the possible existence of a variation in the accepted reflection configuration evolution as a shock wave encounters an increasing gradient on the reflecting surface. The current study set out to investigate this anomaly using high-resolution photography. Shock tube tests were done on various concave circular and parabolic geometries, all with zero initial ramp angle. Although the results have limitations due to the achievable image resolution, the results indicate that for very weak Mach numbers, M S < 1.1, there may be a region in which the reflection configuration resembles that of a regular reflection, unlike for the stronger shock wave case. This region exists after the triple point of the Mach reflection meets the reflecting surface and prior to the formation of the additional shock structures that represent a transitioned regular reflection. The Mach and transitioned regular reflections at 1.03 < M s < 1.05 also exhibit no signs of a visible shear layer, or a clear discontinuity at the triple point, and are thus also apparently different in the weak shock regime than what has been described for stronger shocks, similar to what has been shown for weak shocks reflecting off a plane wedge.

  15. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  16. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2016-08-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  17. Tsunami currents in ports.

    PubMed

    Borrero, Jose C; Lynett, Patrick J; Kalligeris, Nikos

    2015-10-28

    Tsunami-induced currents present an obvious hazard to maritime activities and ports in particular. The historical record is replete with accounts from ship captains and harbour masters describing their fateful encounters with currents and surges caused by these destructive waves. Despite the well-known hazard, only since the trans-oceanic tsunamis of the early twenty-first century (2004, 2010 and 2011) have coastal and port engineering practitioners begun to develop port-specific warning and response products that accurately assess the effects of tsunami-induced currents in addition to overland flooding and inundation. The hazard from strong currents induced by far-field tsunami remains an underappreciated risk in the port and maritime community. In this paper, we will discuss the history of tsunami current observations in ports, look into the current state of the art in port tsunami hazard assessment and discuss future research trends.

  18. Tsunami currents in ports.

    PubMed

    Borrero, Jose C; Lynett, Patrick J; Kalligeris, Nikos

    2015-10-28

    Tsunami-induced currents present an obvious hazard to maritime activities and ports in particular. The historical record is replete with accounts from ship captains and harbour masters describing their fateful encounters with currents and surges caused by these destructive waves. Despite the well-known hazard, only since the trans-oceanic tsunamis of the early twenty-first century (2004, 2010 and 2011) have coastal and port engineering practitioners begun to develop port-specific warning and response products that accurately assess the effects of tsunami-induced currents in addition to overland flooding and inundation. The hazard from strong currents induced by far-field tsunami remains an underappreciated risk in the port and maritime community. In this paper, we will discuss the history of tsunami current observations in ports, look into the current state of the art in port tsunami hazard assessment and discuss future research trends. PMID:26392622

  19. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  20. Transparencies and Reflections.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    1999-01-01

    Discusses the use of perspective, or showing things as the human eye sees them, when creating reflections and transparencies in works of art. Provides examples of artwork using transparency, reflection, and refraction by M. C. Escher, Richard Estes, and Janet Fish to give students an opportunity to learn about these three art techniques. (CMK)

  1. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  2. More accurate phylogenies inferred from low-recombination regions in the presence of incomplete lineage sorting.

    PubMed

    Pease, James B; Hahn, Matthew W

    2013-08-01

    When speciation events occur in rapid succession, incomplete lineage sorting (ILS) can cause disagreement among individual gene trees. The probability that ILS affects a given locus is directly related to its effective population size (Ne ), which in turn is proportional to the recombination rate if there is strong selection across the genome. Based on these expectations, we hypothesized that low-recombination regions of the genome, as well as sex chromosomes and nonrecombining chromosomes, should exhibit lower levels of ILS. We tested this hypothesis in phylogenomic datasets from primates, the Drosophila melanogaster clade, and the Drosophila simulans clade. In all three cases, regions of the genome with low or no recombination showed significantly stronger support for the putative species tree, although results from the X chromosome differed among clades. Our results suggest that recurrent selection is acting in these low-recombination regions, such that current levels of diversity also reflect past decreases in the effective population size at these same loci. The results also demonstrate how considering the genomic context of a gene tree can assist in more accurate determination of the true species phylogeny, especially in cases where a whole-genome phylogeny appears to be an unresolvable polytomy. PMID:23888858

  3. More accurate phylogenies inferred from low-recombination regions in the presence of incomplete lineage sorting

    PubMed Central

    Pease, James B.; Hahn, Matthew W.

    2014-01-01

    When speciation events occur in rapid succession, incomplete lineage sorting (ILS) can cause disagreement among individual gene trees. The probability that ILS affects a given locus is directly related to its effective population size (Ne), which in turn is proportional to the recombination rate if there is strong selection across the genome. Based on these expectations, we hypothesized that low-recombination regions of the genome, as well as sex chromosomes and non-recombining chromosomes, should exhibit lower levels of ILS. We tested this hypothesis in phylogenomic datasets from primates, the Drosophila melanogaster clade, and the D. simulans clade. In all three cases, regions of the genome with low or no recombination showed significantly stronger support for the putative species tree, although results from the X chromosome differed among clades. Our results suggest that recurrent selection is acting in these low-recombination regions, such that current levels of diversity also reflect past decreases in the effective population size at these same loci. The results also demonstrate how considering the genomic context of a gene tree can assist in more accurate determination of the true species phylogeny, especially in cases where a whole-genome phylogeny appears to be an unresolvable polytomy. PMID:23888858

  4. Accurately Mapping M31's Microlensing Population

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2004-07-01

    We propose to augment an existing microlensing survey of M31 with source identifications provided by a modest amount of ACS {and WFPC2 parallel} observations to yield an accurate measurement of the masses responsible for microlensing in M31, and presumably much of its dark matter. The main benefit of these data is the determination of the physical {or "einstein"} timescale of each microlensing event, rather than an effective {"FWHM"} timescale, allowing masses to be determined more than twice as accurately as without HST data. The einstein timescale is the ratio of the lensing cross-sectional radius and relative velocities. Velocities are known from kinematics, and the cross-section is directly proportional to the {unknown} lensing mass. We cannot easily measure these quantities without knowing the amplification, hence the baseline magnitude, which requires the resolution of HST to find the source star. This makes a crucial difference because M31 lens m ass determinations can be more accurate than those towards the Magellanic Clouds through our Galaxy's halo {for the same number of microlensing events} due to the better constrained geometry in the M31 microlensing situation. Furthermore, our larger survey, just completed, should yield at least 100 M31 microlensing events, more than any Magellanic survey. A small amount of ACS+WFPC2 imaging will deliver the potential of this large database {about 350 nights}. For the whole survey {and a delta-function mass distribution} the mass error should approach only about 15%, or about 6% error in slope for a power-law distribution. These results will better allow us to pinpoint the lens halo fraction, and the shape of the halo lens spatial distribution, and allow generalization/comparison of the nature of halo dark matter in spiral galaxies. In addition, we will be able to establish the baseline magnitude for about 50, 000 variable stars, as well as measure an unprecedentedly deta iled color-magnitude diagram and luminosity

  5. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2016-07-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  6. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  7. Accurate density functional thermochemistry for larger molecules.

    SciTech Connect

    Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A.; Lucent Tech.

    1997-06-20

    Density functional methods are combined with isodesmic bond separation reaction energies to yield accurate thermochemistry for larger molecules. Seven different density functionals are assessed for the evaluation of heats of formation, Delta H 0 (298 K), for a test set of 40 molecules composed of H, C, O and N. The use of bond separation energies results in a dramatic improvement in the accuracy of all the density functionals. The B3-LYP functional has the smallest mean absolute deviation from experiment (1.5 kcal mol/f).

  8. Universality: Accurate Checks in Dyson's Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Godina, J. J.; Meurice, Y.; Oktay, M. B.

    2003-06-01

    In this talk we present high-accuracy calculations of the susceptibility near βc for Dyson's hierarchical model in D = 3. Using linear fitting, we estimate the leading (γ) and subleading (Δ) exponents. Independent estimates are obtained by calculating the first two eigenvalues of the linearized renormalization group transformation. We found γ = 1.29914073 ± 10 -8 and, Δ = 0.4259469 ± 10-7 independently of the choice of local integration measure (Ising or Landau-Ginzburg). After a suitable rescaling, the approximate fixed points for a large class of local measure coincide accurately with a fixed point constructed by Koch and Wittwer.

  9. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  10. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  11. Accurate determination of characteristic relative permeability curves

    NASA Astrophysics Data System (ADS)

    Krause, Michael H.; Benson, Sally M.

    2015-09-01

    A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.

  12. How Accurately can we Calculate Thermal Systems?

    SciTech Connect

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-04-20

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K{sub eff}, for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors.

  13. Accurate Stellar Parameters for Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Brewer, John Michael; Fischer, Debra; Basu, Sarbani; Valenti, Jeff A.

    2015-01-01

    A large impedement to our understanding of planet formation is obtaining a clear picture of planet radii and densities. Although determining precise ratios between planet and stellar host are relatively easy, determining accurate stellar parameters is still a difficult and costly undertaking. High resolution spectral analysis has traditionally yielded precise values for some stellar parameters but stars in common between catalogs from different authors or analyzed using different techniques often show offsets far in excess of their uncertainties. Most analyses now use some external constraint, when available, to break observed degeneracies between surface gravity, effective temperature, and metallicity which can otherwise lead to correlated errors in results. However, these external constraints are impossible to obtain for all stars and can require more costly observations than the initial high resolution spectra. We demonstrate that these discrepencies can be mitigated by use of a larger line list that has carefully tuned atomic line data. We use an iterative modeling technique that does not require external constraints. We compare the surface gravity obtained with our spectral synthesis modeling to asteroseismically determined values for 42 Kepler stars. Our analysis agrees well with only a 0.048 dex offset and an rms scatter of 0.05 dex. Such accurate stellar gravities can reduce the primary source of uncertainty in radii by almost an order of magnitude over unconstrained spectral analysis.

  14. Improved Algorithms for Accurate Retrieval of UV - Visible Diffuse Attenuation Coefficients in Optically Complex, Inshore Waters

    NASA Technical Reports Server (NTRS)

    Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.

    2014-01-01

    Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This

  15. Weak shock reflection

    NASA Astrophysics Data System (ADS)

    Hunter, John K.; Brio, Moysey

    2000-05-01

    We present numerical solutions of a two-dimensional inviscid Burgers equation which provides an asymptotic description of the Mach reflection of weak shocks. In our numerical solutions, the incident, reflected, and Mach shocks meet at a triple point, and there is a supersonic patch behind the triple point, as proposed by Guderley for steady weak-shock reflection. A theoretical analysis indicates that there is an expansion fan at the triple point, in addition to the three shocks. The supersonic patch is extremely small, and this work is the first time it has been resolved.

  16. Surface reflectance degradation by microbial communities

    SciTech Connect

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophic microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.

  17. Surface reflectance degradation by microbial communities

    DOE PAGES

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  18. Positive Experiences as Input for Reflection by Student Teachers

    ERIC Educational Resources Information Center

    Janssen, Fred; de Hullu, Els; Tigelaar, Dineke

    2008-01-01

    In many teacher training courses, reflection upon practice plays a very important role in learning to teach. A number of strategies have been developed to help student teachers learn to reflect. Current reflection strategies often focus on problematic instead of on positive experiences. Ideas from positive psychology and solution-based therapy…

  19. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  20. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  1. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  2. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  3. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  4. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  5. Accurate Telescope Mount Positioning with MEMS Accelerometers

    NASA Astrophysics Data System (ADS)

    Mészáros, L.; Jaskó, A.; Pál, A.; Csépány, G.

    2014-08-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate, and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the subarcminute range which is considerably smaller than the field-of-view of conventional imaging telescope systems. Here we present how this subarcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  6. Accurate Weather Forecasting for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  7. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.

  8. Encouraging Counsellor Reflection.

    ERIC Educational Resources Information Center

    Upton, David; Asch, Rachel

    1999-01-01

    Describes the evolution and testing of an "attributes checklist" tool for assisting counselor development. These attributes relate to characteristics of case notes that indicate evidence of counselor reflection and consideration of the counseling process. (Author/GCP)

  9. Seasonal soybean crop reflectance

    NASA Technical Reports Server (NTRS)

    Lemaster, E. W. (Principal Investigator); Chance, J. E.

    1983-01-01

    Data are presented from field measurements of 1980 including 5 acquisitions of handheld radiometer reflectance measurements, 7 complete sets of parameters for implementing the Suits mode, and other biophysical parameters to characterize the soybean canopy. LANDSAT calculations on the simulated Brazilian soybean reflectance are included along with data collected during the summer and fall on 1981 on soybean single leaf optical parameters for three irrigation treatments. Tests of the Suits vegetative canopy reflectance model for the full hemisphere of observer directions as well as the nadir direction show moderate agreement for the visible channels of the MSS and poor agreement in the near infrared channel. Temporal changes in the spectral characteristics of the single leaves were seen to occur as a function of maturity which demonstrates that the absorptance of a soybean single leaf is more a function of thetransmittancee characteristics than the seasonally consistent single leaf reflectance.

  10. Dynamic Harris current sheet thickness from Cluster current density and plasma measurements

    NASA Technical Reports Server (NTRS)

    Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; McPherron, R. L.; Weygand, J. M.; Balogh, A.; Reme, H.; Kistler, L. M.

    2005-01-01

    We use the first accurate measurements of current densities in the plasma sheet to calculate the half-thickness and position of the current sheet as a function of time. Our technique assumes a Harris current sheet model, which is parameterized by lobe magnetic field B(o), current sheet half-thickness h, and current sheet position z(sub o). Cluster measurements of magnetic field, current density, and plasma pressure are used to infer the three parameters as a function of time. We find that most long timescale (6-12 hours) current sheet crossings observed by Cluster cannot be described by a static Harris current sheet with a single set of parameters B(sub o), h, and z(sub o). Noting the presence of high-frequency fluctuations that appear to be superimposed on lower frequency variations, we average over running 6-min intervals and use the smoothed data to infer the parameters h(t) and z(sub o)(t), constrained by the pressure balance lobe magnetic field B(sub o)(t). Whereas this approach has been used in previous studies, the spatial gnuhen& now provided by the Cluster magnetometers were unavailable or not well constrained in earlier studies. We place the calculated hdf&cknessa in a magnetospheric context by examining the change in thickness with substorm phase for three case study events and 21 events in a superposed epoch analysis. We find that the inferred half-thickness in many cases reflects the nominal changes experienced by the plasma sheet during substorms (i.e., thinning during growth phase, thickening following substorm onset). We conclude with an analysis of the relative contribution of (Delta)B(sub z)/(Delta)X to the cross-tail current density during substorms. We find that (Delta)B(sub z)/(Delta)X can contribute a significant portion of the cross-tail c m n t around substorm onset.

  11. Motor equivalence during multi-finger accurate force production

    PubMed Central

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  12. Motor equivalence during multi-finger accurate force production.

    PubMed

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M; Latash, Mark L

    2015-02-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The "inverse piano" apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes in neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  13. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  14. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  15. Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture.

    PubMed

    Gao, Zhiquan; Yu, Yao; Zhou, Yu; Du, Sidan

    2015-09-22

    Accurate motion capture plays an important role in sports analysis, the medical field and virtual reality. Current methods for motion capture often suffer from occlusions, which limits the accuracy of their pose estimation. In this paper, we propose a complete system to measure the pose parameters of the human body accurately. Different from previous monocular depth camera systems, we leverage two Kinect sensors to acquire more information about human movements, which ensures that we can still get an accurate estimation even when significant occlusion occurs. Because human motion is temporally constant, we adopt a learning analysis to mine the temporal information across the posture variations. Using this information, we estimate human pose parameters accurately, regardless of rapid movement. Our experimental results show that our system can perform an accurate pose estimation of the human body with the constraint of information from the temporal domain.

  16. Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture

    PubMed Central

    Gao, Zhiquan; Yu, Yao; Zhou, Yu; Du, Sidan

    2015-01-01

    Accurate motion capture plays an important role in sports analysis, the medical field and virtual reality. Current methods for motion capture often suffer from occlusions, which limits the accuracy of their pose estimation. In this paper, we propose a complete system to measure the pose parameters of the human body accurately. Different from previous monocular depth camera systems, we leverage two Kinect sensors to acquire more information about human movements, which ensures that we can still get an accurate estimation even when significant occlusion occurs. Because human motion is temporally constant, we adopt a learning analysis to mine the temporal information across the posture variations. Using this information, we estimate human pose parameters accurately, regardless of rapid movement. Our experimental results show that our system can perform an accurate pose estimation of the human body with the constraint of information from the temporal domain. PMID:26402681

  17. Analytical elimination of substrate backside reflections from reflectance measurements.

    PubMed

    Wilbrandt, Steffen; Stenzel, Olaf

    2016-09-01

    An analytical approach to eliminate substrate backside reflections from measured reflectance of an unknown optical coating has been deducted. Thereby, measured transmittance, reflectance, and backside reflectance of the coating and transmittance and reflectance of the uncoated substrate at the desired angle of incidence and polarization state are required as input data. In the underlying theory, layer and substrate materials may be absorbing. PMID:27607274

  18. Foundations of Refugee Rights: How Legal Language Reflects Current Trends.

    ERIC Educational Resources Information Center

    Goldsmith, Andrew

    1996-01-01

    Addresses the recent anti-immigrant sentiment in the United States and examines the forces causing it. The article examines legal language and opinion in court cases showing shifting anti-immigrant sentiment, including the language used in California's Proposition 187, and argues that this legal language in which court decisions and legislation…

  19. Multilingualism in Australia: Reflections on Current and Future Research Trends

    ERIC Educational Resources Information Center

    Rubino, Antonia

    2010-01-01

    This paper gives a critical overview of Australian research in the area of immigrant languages, arguing that this field of study is a significant component of the wider applied linguistics scene in Australia and has also contributed to enhancing the broad appreciation of the cultural and linguistic diversity of the country. It shows that research…

  20. Reflection of a birth reflections midwife.

    PubMed

    Cooper, Meg

    2015-10-01

    Supporting a woman's emotional recovery following what can sometimes be a traumatic event is becoming an important part of postnatal care. That simple question, "How was the birth?" can be the first step in allowing a woman to acknowledge and voice her innermost anxieties around the birth of her baby, and put her on the right path towards feeling better about it, if need be. The birth reflections service has been running in our area for almost six years and its purpose is two fold: firstly it provides women with a safe environment in which to talk about their labour and birth, where they can become better informed about the birth and where they can express themselves freely. Secondly, it provides first hand feedback for the maternity service about the care that's been given, enabling us to change practice for the better.

  1. Fair & Accurate Grading for Exceptional Learners

    ERIC Educational Resources Information Center

    Jung, Lee Ann; Guskey, Thomas R.

    2011-01-01

    Despite the many changes in education over the past century, grading and reporting practices have essentially remained the same. In part, this is because few teacher preparation programs offer any guidance on sound grading practices. As a result, most current grading practices are grounded in tradition, rather than research on best practice. In an…

  2. Accurate diagnosis of Helicobacter pylori. Other tests.

    PubMed

    Bravos, E D; Gilman, R H

    2000-12-01

    The application of polymerase chain reaction (PCR) with respect to Helicobacter pylori is useful for molecular epidemiologic aspects and detection purposes. The authors address the current detection methods by PCR aimed at detecting H. pylori in clinical samples collected by less invasive methods, such as gastric juice, saliva, dental plaque, and feces. Enzyme immunoassay also is discussed.

  3. Accurate masses for dispersion-supported galaxies

    NASA Astrophysics Data System (ADS)

    Wolf, Joe; Martinez, Gregory D.; Bullock, James S.; Kaplinghat, Manoj; Geha, Marla; Muñoz, Ricardo R.; Simon, Joshua D.; Avedo, Frank F.

    2010-08-01

    We derive an accurate mass estimator for dispersion-supported stellar systems and demonstrate its validity by analysing resolved line-of-sight velocity data for globular clusters, dwarf galaxies and elliptical galaxies. Specifically, by manipulating the spherical Jeans equation we show that the mass enclosed within the 3D deprojected half-light radius r1/2 can be determined with only mild assumptions about the spatial variation of the stellar velocity dispersion anisotropy as long as the projected velocity dispersion profile is fairly flat near the half-light radius, as is typically observed. We find M1/2 = 3 G-1< σ2los > r1/2 ~= 4 G-1< σ2los > Re, where < σ2los > is the luminosity-weighted square of the line-of-sight velocity dispersion and Re is the 2D projected half-light radius. While deceptively familiar in form, this formula is not the virial theorem, which cannot be used to determine accurate masses unless the radial profile of the total mass is known a priori. We utilize this finding to show that all of the Milky Way dwarf spheroidal galaxies (MW dSphs) are consistent with having formed within a halo of a mass of approximately 3 × 109 Msolar, assuming a Λ cold dark matter cosmology. The faintest MW dSphs seem to have formed in dark matter haloes that are at least as massive as those of the brightest MW dSphs, despite the almost five orders of magnitude spread in luminosity between them. We expand our analysis to the full range of observed dispersion-supported stellar systems and examine their dynamical I-band mass-to-light ratios ΥI1/2. The ΥI1/2 versus M1/2 relation for dispersion-supported galaxies follows a U shape, with a broad minimum near ΥI1/2 ~= 3 that spans dwarf elliptical galaxies to normal ellipticals, a steep rise to ΥI1/2 ~= 3200 for ultra-faint dSphs and a more shallow rise to ΥI1/2 ~= 800 for galaxy cluster spheroids.

  4. Robust and accurate transient light transport decomposition via convolutional sparse coding.

    PubMed

    Hu, Xuemei; Deng, Yue; Lin, Xing; Suo, Jinli; Dai, Qionghai; Barsi, Christopher; Raskar, Ramesh

    2014-06-01

    Ultrafast sources and detectors have been used to record the time-resolved scattering of light propagating through macroscopic scenes. In the context of computational imaging, decomposition of this transient light transport (TLT) is useful for applications, such as characterizing materials, imaging through diffuser layers, and relighting scenes dynamically. Here, we demonstrate a method of convolutional sparse coding to decompose TLT into direct reflections, inter-reflections, and subsurface scattering. The method relies on the sparsity composition of the time-resolved kernel. We show that it is robust and accurate to noise during the acquisition process.

  5. Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.

  6. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  7. Accurate free energy calculation along optimized paths.

    PubMed

    Chen, Changjun; Xiao, Yi

    2010-05-01

    The path-based methods of free energy calculation, such as thermodynamic integration and free energy perturbation, are simple in theory, but difficult in practice because in most cases smooth paths do not exist, especially for large molecules. In this article, we present a novel method to build the transition path of a peptide. We use harmonic potentials to restrain its nonhydrogen atom dihedrals in the initial state and set the equilibrium angles of the potentials as those in the final state. Through a series of steps of geometrical optimization, we can construct a smooth and short path from the initial state to the final state. This path can be used to calculate free energy difference. To validate this method, we apply it to a small 10-ALA peptide and find that the calculated free energy changes in helix-helix and helix-hairpin transitions are both self-convergent and cross-convergent. We also calculate the free energy differences between different stable states of beta-hairpin trpzip2, and the results show that this method is more efficient than the conventional molecular dynamics method in accurate free energy calculation.

  8. Accurate SHAPE-directed RNA structure determination

    PubMed Central

    Deigan, Katherine E.; Li, Tian W.; Mathews, David H.; Weeks, Kevin M.

    2009-01-01

    Almost all RNAs can fold to form extensive base-paired secondary structures. Many of these structures then modulate numerous fundamental elements of gene expression. Deducing these structure–function relationships requires that it be possible to predict RNA secondary structures accurately. However, RNA secondary structure prediction for large RNAs, such that a single predicted structure for a single sequence reliably represents the correct structure, has remained an unsolved problem. Here, we demonstrate that quantitative, nucleotide-resolution information from a SHAPE experiment can be interpreted as a pseudo-free energy change term and used to determine RNA secondary structure with high accuracy. Free energy minimization, by using SHAPE pseudo-free energies, in conjunction with nearest neighbor parameters, predicts the secondary structure of deproteinized Escherichia coli 16S rRNA (>1,300 nt) and a set of smaller RNAs (75–155 nt) with accuracies of up to 96–100%, which are comparable to the best accuracies achievable by comparative sequence analysis. PMID:19109441

  9. Accurate adiabatic correction in the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-01

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  10. Fast and Provably Accurate Bilateral Filtering.

    PubMed

    Chaudhury, Kunal N; Dabhade, Swapnil D

    2016-06-01

    The bilateral filter is a non-linear filter that uses a range filter along with a spatial filter to perform edge-preserving smoothing of images. A direct computation of the bilateral filter requires O(S) operations per pixel, where S is the size of the support of the spatial filter. In this paper, we present a fast and provably accurate algorithm for approximating the bilateral filter when the range kernel is Gaussian. In particular, for box and Gaussian spatial filters, the proposed algorithm can cut down the complexity to O(1) per pixel for any arbitrary S . The algorithm has a simple implementation involving N+1 spatial filterings, where N is the approximation order. We give a detailed analysis of the filtering accuracy that can be achieved by the proposed approximation in relation to the target bilateral filter. This allows us to estimate the order N required to obtain a given accuracy. We also present comprehensive numerical results to demonstrate that the proposed algorithm is competitive with the state-of-the-art methods in terms of speed and accuracy. PMID:27093722

  11. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  12. Fast and Accurate Exhaled Breath Ammonia Measurement

    PubMed Central

    Solga, Steven F.; Mudalel, Matthew L.; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations. PMID:24962141

  13. Accurate adiabatic correction in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  14. Accurate adiabatic correction in the hydrogen molecule.

    PubMed

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10(-12) at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10(-7) cm(-1), which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels. PMID:25494728

  15. MEMS accelerometers in accurate mount positioning systems

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  16. Accurate phylogenetic classification of DNA fragments based onsequence composition

    SciTech Connect

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis; Hugenholtz, Philip; Rigoutsos, Isidore

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequence characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.

  17. An Accurate Temperature Correction Model for Thermocouple Hygrometers 1

    PubMed Central

    Savage, Michael J.; Cass, Alfred; de Jager, James M.

    1982-01-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241

  18. An accurate temperature correction model for thermocouple hygrometers.

    PubMed

    Savage, M J; Cass, A; de Jager, J M

    1982-02-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques.In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38 degrees C). The model based on calibration at two temperatures is superior to that based on only one calibration.The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25 degrees C, if the calibration slopes are corrected for temperature.

  19. Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency

    NASA Astrophysics Data System (ADS)

    Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao

    2008-05-01

    Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.

  20. An accurate temperature correction model for thermocouple hygrometers.

    PubMed

    Savage, M J; Cass, A; de Jager, J M

    1982-02-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques.In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38 degrees C). The model based on calibration at two temperatures is superior to that based on only one calibration.The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25 degrees C, if the calibration slopes are corrected for temperature. PMID:16662241

  1. Radar reflectivity of titan.

    PubMed

    Muhleman, D O; Grossman, A W; Butler, B J; Slade, M A

    1990-05-25

    The present understanding of the atmosphere and surface conditions on Saturn's largest moon, Titan, including the stability of methane, and an application of thermodynamics leads to a strong prediction of liquid hydrocarbons in an ethane-methane mixture on the surface. Such a surface would have nearly unique microwave reflection properties due to the low dielectric constant. Attempts were made to obtain reflections at a wavelength of 3.5 centimeters by means of a 70-meter antenna in California as the transmitter and the Very Large Array in New Mexico as the receiving instrument. Statistically significant echoes were obtained that show Titan is not covered with a deep, global ocean of ethane, as previously thought. The experiment yielded radar cross sections normalized by the Titan disk of 0.38 +/- 0.15, 0.78 +/- 0.15, and 0.25 +/- 0.15 on three consecutive nights during which the sub-Earth longitude on Titan moved 50 degrees. The result for the combined data for the entire experiment is 0.35 +/- 0.08. The cross sections are very high, most consistent with those of the Galilean satellites; no evidence of the putative liquid ethane was seen in the reflection data. A global ocean as shallow as about 200 meters would have exhibited reflectivities smaller by an order of magnitude, and below the detection limit of the experiment. The measured emissivity at similar wavelengths of about 0.9 is somewhat inconsistent with the high reflectivity.

  2. Knowledge translation: the role and place of practice reflection.

    PubMed

    Lockyer, Jocelyn; Gondocz, S Tunde; Thivierge, Robert L

    2004-01-01

    Reflection is the mechanism by which we contemplate and try to understand relatively complex and sometimes troubling ideas for which there is no obvious solution. Reflection allows us to transform current ideas and experiences into new knowledge and action. Personal experiences and organizational feedback can trigger reflection, whereas a lack of time, available colleagues, and social networks detract from the ability professionals have to reflect. Educational programs can encourage reflection through the judicious use of case-based discussion, formal and informal needs assessments, and commitment to change exercises. Learning journals and personal learning projects are self-directed methods that facilitate reflection. In the workplace, critical incident techniques and debriefing of cases provide opportunities for thoughtful inquiry. Additional study is needed to understand how and why reflection works to transform surface learning into deep learning and change in practice; how reflection enhances the integration of reading, collegial interchange, and classroom discussion into practice; and how technology can enhance reflection. PMID:15069912

  3. A Reflection on Belief

    ERIC Educational Resources Information Center

    Cuevas, Joshua A.

    2013-01-01

    This paper explores the phenomenon in which, for many people, subjective personal belief is viewed as a more accurate representation of reality than objective scientific knowledge developed over the course of human history and transmitted through secular education. The first half of the article is based on personal observations of the author…

  4. A new accurate pill recognition system using imprint information

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Kamata, Sei-ichiro

    2013-12-01

    Great achievements in modern medicine benefit human beings. Also, it has brought about an explosive growth of pharmaceuticals that current in the market. In daily life, pharmaceuticals sometimes confuse people when they are found unlabeled. In this paper, we propose an automatic pill recognition technique to solve this problem. It functions mainly based on the imprint feature of the pills, which is extracted by proposed MSWT (modified stroke width transform) and described by WSC (weighted shape context). Experiments show that our proposed pill recognition method can reach an accurate rate up to 92.03% within top 5 ranks when trying to classify more than 10 thousand query pill images into around 2000 categories.

  5. Calculation of Accurate Hexagonal Discontinuity Factors for PARCS

    SciTech Connect

    Pounders. J., Bandini, B. R. , Xu, Y, and Downar, T. J.

    2007-11-01

    In this study we derive a methodology for calculating discontinuity factors consistent with the Triangle-based Polynomial Expansion Nodal (TPEN) method implemented in PARCS for hexagonal reactor geometries. The accuracy of coarse-mesh nodal methods is greatly enhanced by permitting flux discontinuities at node boundaries, but the practice of calculating discontinuity factors from infinite-medium (zero-current) single bundle calculations may not be sufficiently accurate for more challenging problems in which there is a large amount of internodal neutron streaming. The authors therefore derive a TPEN-based method for calculating discontinuity factors that are exact with respect to generalized equivalence theory. The method is validated by reproducing the reference solution for a small hexagonal core.

  6. Interference reflection microscopy.

    PubMed

    Barr, Valarie A; Bunnell, Stephen C

    2009-12-01

    Interference reflection microscopy (IRM) is an optical technique used to study cell adhesion or cell mobility on a glass coverslip. The interference of reflected light waves generates images with high contrast and definition. IRM can be used to examine almost any cell that will rest upon a glass surface, although it is most useful in examining sites of close contact between a cell and substratum. This unit presents methods for obtaining IRM images of cells with particular emphasis on IRM imaging with a laser scanning confocal microscope (LSCM), as most LSCM are already capable of recording these images without any modification of the instrument. Techniques are presented for imaging fixed and live cells, as well as simultaneous multi-channel capture of fluorescence and reflection images.

  7. Accurate Position Calibrations for Charged Fragments

    NASA Astrophysics Data System (ADS)

    Russell, Autumn; Finck, Joseph E.; Spyrou, Artemis; Thoennessen, Michael

    2009-10-01

    The Modular Neutron Array (MoNA), located at the National Superconducting Laboratory at Michigan State University, is used in conjunction with the MSU/FSU Sweeper Magnet to study the breakup of neutron-rich nuclei. Fragmentation reactions create particle-unstable nuclei near the neutron dripline which spontaneously break up by the decay of one or two neutrons with energies that reflect the nuclear structure of unbound excited and ground states. The neutrons continue forward into MoNA where their position and time of flight are recorded, and the charged fragments' position and energy are measured by an array of detectors following the Sweeper Magnet. In such experiments the identification of the fragment of interest is done through energy loss and time-of-flight measurements using plastic scintillators. The emitted angles of the fragments are determined with the use of CRDCs. The purpose of the present work was the calibration of the CRDCs in the X and Y axis (where Z is the beam axis) using specially designed masks. This calibration was also used for the correction of the signal of the plastic scintillators, which is position dependent. The results of this work are used for the determination of the ground state of the neutron-unbound ^24N.

  8. Toward accurate and fast iris segmentation for iris biometrics.

    PubMed

    He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao

    2009-09-01

    Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed. PMID:19574626

  9. Toward accurate and fast iris segmentation for iris biometrics.

    PubMed

    He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao

    2009-09-01

    Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed.

  10. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  11. Design for reflection.

    PubMed

    Bagnara, Sebastiano; Pozzi, Simone

    2012-01-01

    Since a few years, a number of academic papers have been proposing to shift from user-centered design to human-centered (or person) design. In this contribution, we discuss as the common tread underlying these works the idea that design should also address the reflective part of our human experience, and not only aim to maximize the experiential aspects. Our review is complemented with examples derived from the internet world and from ICT consumer products. The main research areas we see as promising for the approach of "design for reflection" are: design for pauses, design for detachment, design for serendipity. PMID:22316867

  12. Towards Accurate Application Characterization for Exascale (APEX)

    SciTech Connect

    Hammond, Simon David

    2015-09-01

    Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.

  13. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  14. Accurate Thermal Conductivities from First Principles

    NASA Astrophysics Data System (ADS)

    Carbogno, Christian

    2015-03-01

    In spite of significant research efforts, a first-principles determination of the thermal conductivity at high temperatures has remained elusive. On the one hand, Boltzmann transport techniques that include anharmonic effects in the nuclear dynamics only perturbatively become inaccurate or inapplicable under such conditions. On the other hand, non-equilibrium molecular dynamics (MD) methods suffer from enormous finite-size artifacts in the computationally feasible supercells, which prevent an accurate extrapolation to the bulk limit of the thermal conductivity. In this work, we overcome this limitation by performing ab initio MD simulations in thermodynamic equilibrium that account for all orders of anharmonicity. The thermal conductivity is then assessed from the auto-correlation function of the heat flux using the Green-Kubo formalism. Foremost, we discuss the fundamental theory underlying a first-principles definition of the heat flux using the virial theorem. We validate our approach and in particular the techniques developed to overcome finite time and size effects, e.g., by inspecting silicon, the thermal conductivity of which is particularly challenging to converge. Furthermore, we use this framework to investigate the thermal conductivity of ZrO2, which is known for its high degree of anharmonicity. Our calculations shed light on the heat resistance mechanism active in this material, which eventually allows us to discuss how the thermal conductivity can be controlled by doping and co-doping. This work has been performed in collaboration with R. Ramprasad (University of Connecticut), C. G. Levi and C. G. Van de Walle (University of California Santa Barbara).

  15. A time-accurate high-resolution TVD scheme for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae; Liu, Nan-Suey

    1992-01-01

    A total variation diminishing (TVD) scheme has been developed and incorporated into an existing time-accurate high-resolution Navier-Stokes code. The accuracy and the robustness of the resulting solution procedure have been assessed by performing many calculations in four different areas: shock tube flows, regular shock reflection, supersonic boundary layer, and shock boundary layer interactions. These numerical results compare well with corresponding exact solutions or experimental data.

  16. A time-accurate high-resolution TVD scheme for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Liu, Nan-Suey

    1993-01-01

    A total variation diminishing (TVD) scheme has been developed and incorporated into an existing time-accurate high-resolution Navier-Stokes code. The accuracy and the robustness of the resulting solution procedure have been assessed by performing many calculations in four different areas: shock tube flows, regular shock reflection, supersonic boundary layer, and shock boundary layer interactions. These numerical results compare well with corresponding exact solutions or experimental data.

  17. Doublecortin expression levels in adult brain reflect neurogenesis.

    PubMed

    Couillard-Despres, Sebastien; Winner, Beate; Schaubeck, Susanne; Aigner, Robert; Vroemen, Maurice; Weidner, Norbert; Bogdahn, Ulrich; Winkler, Jürgen; Kuhn, Hans-Georg; Aigner, Ludwig

    2005-01-01

    Progress in the field of neurogenesis is currently limited by the lack of tools enabling fast and quantitative analysis of neurogenesis in the adult brain. Doublecortin (DCX) has recently been used as a marker for neurogenesis. However, it was not clear whether DCX could be used to assess modulations occurring in the rate of neurogenesis in the adult mammalian central nervous system following lesioning or stimulatory factors. Using two paradigms increasing neurogenesis levels (physical activity and epileptic seizures), we demonstrate that quantification of DCX-expressing cells allows for an accurate measurement of modulations in the rate of adult neurogenesis. Importantly, we excluded induction of DCX expression during physiological or reactive gliogenesis and excluded also DCX re-expression during regenerative axonal growth. Our data validate DCX as a reliable and specific marker that reflects levels of adult neurogenesis and its modulation. We demonstrate that DCX is a valuable alternative to techniques currently used to measure the levels of neurogenesis. Importantly, in contrast to conventional techniques, analysis of neurogenesis through the detection of DCX does not require in vivo labelling of proliferating cells, thereby opening new avenues for the study of human neurogenesis under normal and pathological conditions. PMID:15654838

  18. Modeling Spectralon's Bidirectional Reflectance for In-flight Calibration of Earth-Orbiting Sensors

    NASA Technical Reports Server (NTRS)

    Flasse, Stephane P.; Verstraete, Michel M.; Pinty, Bernard; Bruegge, Carol J.

    1993-01-01

    The in-flight calibration of the EOS Multi-angle Imaging SpectroRadiometer (MISR) will be achieved, in part, by observing deployable Spectralon panels. This material reflects light diffusely, and allows all cameras to view a near constant radiance field. This is particularly true when a panel is illuminated near the surface normal. To meet the challenging MISR calibration requirements, however, very accurate knowledge of the panel reflectance must be known for all utilized angles of illumination, and for all camera and monitoring photodiode view angles. It is believed that model predictions of the panels Bidirectional Reflectance Distribution Function (BRDF) can be used in conjunction with a measurements program to provide the required characterization. This paper describes the results of a model inversion which was conducted using measured Spectralon BRDF data at several illumination angles. Four physical parameters of the material were retrieved, and are available for use with the model to predict reflectance for any arbitrary illumination or view angle. With these data the root mean square difference between the model and the observations is currently of the order of the noise in the data, at about +/- l%. With this success the model will now be used in a variety of future studies, including the development of a measurements test plan, the validation of these data, and the prediction of a new BRDF profile, should the material degrade in space.

  19. What does reflection from cloud sides tell us about vertical distribution of cloud droplets?

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Kaufman, Yoram; Martins, V.; Zubko, Victor

    2006-01-01

    In order to accurately measure the interaction of clouds with aerosols, we have to resolve the vertical distribution of cloud droplet sizes and determine the temperature of glaciation for clean and polluted clouds. Knowledge of the droplet vertical profile is also essential for understanding precipitation. So far, all existing satellites either measure cloud microphysics only at cloud top (e.g., MODIS) or give a vertical profile of precipitation sized droplets (e.g., Cloudsat). What if one measures cloud microphysical properties in the vertical by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides? This was the idea behind CLAIM-3D (A 3D - cloud aerosol interaction mission) recently proposed by NASA GSFC. This presentation will focus on the interpretation of the radiation reflected from cloud sides. In contrast to plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer will be used for interpreting the observed reflectances. As a proof of concept, we will show a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with prescribed microphysics. Instead of fixed values of the retrieved effective radii, the probability density functions of droplet size distributions will serve as possible retrievals.

  20. Evaluation of Experimental Data from the GAINS Balloon GPS Surface Reflection Instrument

    NASA Technical Reports Server (NTRS)

    Gance, George G.; Johnson, Thomas A.

    2004-01-01

    The GPS Surface Reflection Instrument was integrated as an experiment on the GAINS (Global Airocean IN-situ System) 48-hour balloon mission flown in September 2001. The data collected by similar instruments in the past has been used to measure sea state from which ocean surface winds can be accurately estimated. The GPS signal has also been shown to be reflected from wetland areas and even from subsurface moisture. The current version of the instrument has been redesigned to be more compact, use less power, and withstand a greater variation in environmental conditions than previous versions. This instrument has also incorporated a new data collection mode to track 5 direct satellites (providing a continuous navigation solution) and multiplex the remaining 7 channels to track the reflected signal of the satellite tracked in channel 0. The new software mode has been shown to increase the signal to noise ratio of the collected data and enhance the science return of the instrument. During the 48-hour flight over the Northwest US, the instrument will measure surface reflections that can be detected over the balloon's ground track. Since ground surface elevations in this area vary widely from the WGS-84 ellipsoid altitude, the instrument software has been modified to incorporate a surface altitude correction based on USGS 30-minute Digital Elevation Models. Information presented will include facts about instrument design goals, data collection methodologies and algorithms, and results of the science data analyses for the 48-hour mission.

  1. Evaluation of Experimental Data from the Gains Balloon GPS Surface Reflection Instrument

    NASA Technical Reports Server (NTRS)

    Ganoe, George G.; Johnson, Thomas A.; Somero, John Ryan

    2002-01-01

    The GPS Surface Reflection Instrument was integrated as an experiment on the GAINS (Global Airocean IN-situ System) 48-hour balloon mission flown in June 2002. The data collected by similar instruments in the past has been used to measure sea state from which ocean surface winds can be accurately estimated. The GPS signal has also been shown to be reflected from wetland areas and even from subsurface moisture. The current version of the instrument has been redesigned to be more compact, use less power, and withstand a greater variation in environmental conditions than previous versions. This instrument has also incorporated a new data collection mode to track 5 direct satellites (providing a continuous navigation solution) and multiplex the remaining 7 channels to track the reflected signal of the satellite tracked in channel 0. The new software mode has been shown to increase the signal to noise ratio of the collected data and enhance the science return of the instrument. During the GAINS balloon flight over the Northwest US, the instrument measured surface reflections as they were detected over the balloon's ground track. Since ground surface elevations in this area vary widely from the WGS-84 ellipsoid altitude, the instrument software has been modified to incorporate a surface altitude correction based on USGS 30-minute Digital Elevation Models. Information presented will include facts about instrument design goals, data collection methodologies and algorithms, and will focus on results of the science data analyses for the mission.

  2. A simple, sensitive, and accurate alcohol electrode

    SciTech Connect

    Verduyn, C.; Scheffers, W.A.; Van Dijken, J.P.

    1983-04-01

    The construction and performance of an enzyme electrode is described which specifically detects lower primary aliphatic alcohols in aqueous solutions. The electrode consists of a commercial Clark-type oxygen electrode on which alcohol oxidase (E.C. 1.1.3.13) and catalase were immobilized. The decrease in electrode current is linearly proportional to ethanol concentrations betwee 1 and 25 ppm. The response of the electrode remains constant during 400 assays over a period of two weeks. The response time is between 1 and 2 min. Assembly of the electrode takes less than 1 h.

  3. Interactive Reflective Logs

    ERIC Educational Resources Information Center

    Deaton, Cynthia Minchew; Deaton, Benjamin E.; Leland, Katina

    2010-01-01

    The authors created an interactive reflective log (IRL) to provide teachers with an opportunity to use a journal approach to record, evaluate, and communicate student understanding of science concepts. Unlike a traditional journal, the IRL incorporates prompts to encourage students to discuss their understanding of science content and science…

  4. Renew, Reflect, and Refresh

    ERIC Educational Resources Information Center

    Texley, Juliana

    2005-01-01

    Is that the sound of the last bus leaving the schoolyard? Or the staff's collective sigh of relief? School's out. Now it's time to nurture the lifelong learner deep inside with a summer reading list that will allow teachers to renew, reflect, and refresh. The National Science Education Standards reminds us, "Becoming an effective science teacher…

  5. Reflections: Children and Literature.

    ERIC Educational Resources Information Center

    And Others; Cianciolo, Patricia J.

    1980-01-01

    Six educational leaders--Patricia J. Cianciolo, Lee Bennett Hopkins, Nancy Larrick, Alan C. Purves, Morton Schindel, and James R. Squire--offer reflections on signficiant developments in children's literature during the 1970s, their hopes for the 1980s, and references that constitute required reading for elementary language arts teachers. (ET)

  6. Lights, Camera, Reflection!

    ERIC Educational Resources Information Center

    Mourlam, Daniel

    2013-01-01

    There are many ways to critique teaching, but few are more effective than video. Personal reflection through the use of video allows one to see what really happens in the classrooms--good and bad--and provides a visual path forward for improvement, whether it be in one's teaching, work with a particular student, or learning environment. This…

  7. Reflections on 1972

    ERIC Educational Resources Information Center

    Gutierrez, Ramon A.

    2007-01-01

    In this article, the author reflects on the events that took place in the year 1972. The author was a junior at the University of New Mexico back then, refusing to eat or buy grapes and lettuce, picketing grocers who did not carry United Farm Workers of America produce. He and his buddies cast their votes against granting Richard Nixon a second…

  8. Clinical Linguistics: Conversational Reflections

    ERIC Educational Resources Information Center

    Crystal, David

    2013-01-01

    This is a report of the main points I made in an informal "conversation" with Paul Fletcher and the audience at the 14th ICPLA conference in Cork. The observations arose randomly, as part of an unstructured 1-h Q&A, so they do not provide a systematic account of the subject, but simply reflect the issues which were raised by the conference…

  9. Reflections, 15 Years Later

    ERIC Educational Resources Information Center

    Knox, George

    2016-01-01

    George Knox reflects on his 15-year career as president of Labette Community College in Parsons, Kansas. Knox writes that, as a first-time president coming into a brand new system, he was very fortunate to have many seasoned presidents and mentors in Kansas and from the American Association of Community Colleges' (AACC) Presidents Academy. He says…

  10. Reflections on "La Esperanza"

    ERIC Educational Resources Information Center

    Cortez, Anita

    2007-01-01

    The author was recently asked to reflect on her "educational journey." As far as she can remember she has been hungry to learn. A friend once described her as having "hambres atrasadas," which he described as a kind of "hunger nipping at her heels." It goes back, of course, to her parents: Her father's and her early journeys scavenging the Wyoming…

  11. Reflecting on Data

    ERIC Educational Resources Information Center

    Kraus, Rudolf V.

    2014-01-01

    This article describes a two-day optics laboratory activity that investigates the scientific phenomenon of reflection, which students are generally familiar with but usually have not studied in depth. This investigation can be used on its own or as part of a larger unit on optics. This lesson encourages students to think critically and…

  12. Reflecting on Writing Autobiography

    ERIC Educational Resources Information Center

    Begg, Andy

    2011-01-01

    The following reflections relate to the reasons for and an approach to an autobiographic task, the notions that underpin it, and some thoughts about the quality and value of such a project. The focus was on the ways one views curriculum change over time; and the intention was to provide an example that others may sense as either familiar or at…

  13. Reflective Database Access Control

    ERIC Educational Resources Information Center

    Olson, Lars E.

    2009-01-01

    "Reflective Database Access Control" (RDBAC) is a model in which a database privilege is expressed as a database query itself, rather than as a static privilege contained in an access control list. RDBAC aids the management of database access controls by improving the expressiveness of policies. However, such policies introduce new interactions…

  14. Reflection by Porro Prisms

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2010-04-01

    Students all know that reflection from a plane mirror produces an image that is reversed right to left and so cannot be read by anyone but Leonardo da Vinci, who kept his notes in mirror writing. A useful counter-example is the Porro prism, which produces an image that is not reversed.

  15. Reflecting through Peshkin's I's

    ERIC Educational Resources Information Center

    Savage, Jonathan

    2007-01-01

    Reflection is an appropriate way of accounting for professional practice and is a standard way in which one can "become better acquainted with one's own story". Defining "subjectivity" as "the quality of an investigator that affects the results of observational investigation", Peshkin highlights the requirement for any observer of, or participant…

  16. First Amendment Reflections.

    ERIC Educational Resources Information Center

    Update on Law-Related Education, 1998

    1998-01-01

    Offers seven reflections on the First Amendment and related issues by attorneys, a professor, project directors, and a university president. Highlights an activity where pairs of students prepare either a pro or con argument for each of the seven excerpts and then participate in a debate. (CMK)

  17. Reflections on "Higher Education"

    ERIC Educational Resources Information Center

    Gilbert, Felix

    1974-01-01

    The elitist, professional, and philosophical elements of higher education are reflected upon with stress on the differences between higher education and higher learning, where education is concerned with giving wider groups a share in a broad image of man, and learning is concerned with increasing specialization. (JH)

  18. Accurate Radiometry from Space: An Essential Tool for Climate Studies

    NASA Technical Reports Server (NTRS)

    Fox, Nigel; Kaiser-Weiss, Andrea; Schmutz, Werner; Thome, Kurtis; Young, Dave; Wielicki, Bruce; Winkler, Rainer; Woolliams, Emma

    2011-01-01

    The Earth s climate is undoubtedly changing; however, the time scale, consequences and causal attribution remain the subject of significant debate and uncertainty. Detection of subtle indicators from a background of natural variability requires measurements over a time base of decades. This places severe demands on the instrumentation used, requiring measurements of sufficient accuracy and sensitivity that can allow reliable judgements to be made decades apart. The International System of Units (SI) and the network of National Metrology Institutes were developed to address such requirements. However, ensuring and maintaining SI traceability of sufficient accuracy in instruments orbiting the Earth presents a significant new challenge to the metrology community. This paper highlights some key measurands and applications driving the uncertainty demand of the climate community in the solar reflective domain, e.g. solar irradiances and reflectances/radiances of the Earth. It discusses how meeting these uncertainties facilitate significant improvement in the forecasting abilities of climate models. After discussing the current state of the art, it describes a new satellite mission, called TRUTHS, which enables, for the first time, high-accuracy SI traceability to be established in orbit. The direct use of a primary standard and replication of the terrestrial traceability chain extends the SI into space, in effect realizing a metrology laboratory in space . Keywords: climate change; Earth observation; satellites; radiometry; solar irradiance

  19. Accurate and comprehensive sequencing of personal genomes.

    PubMed

    Ajay, Subramanian S; Parker, Stephen C J; Abaan, Hatice Ozel; Fajardo, Karin V Fuentes; Margulies, Elliott H

    2011-09-01

    As whole-genome sequencing becomes commoditized and we begin to sequence and analyze personal genomes for clinical and diagnostic purposes, it is necessary to understand what constitutes a complete sequencing experiment for determining genotypes and detecting single-nucleotide variants. Here, we show that the current recommendation of ∼30× coverage is not adequate to produce genotype calls across a large fraction of the genome with acceptably low error rates. Our results are based on analyses of a clinical sample sequenced on two related Illumina platforms, GAII(x) and HiSeq 2000, to a very high depth (126×). We used these data to establish genotype-calling filters that dramatically increase accuracy. We also empirically determined how the callable portion of the genome varies as a function of the amount of sequence data used. These results help provide a "sequencing guide" for future whole-genome sequencing decisions and metrics by which coverage statistics should be reported.

  20. Liver transplantation: current concepts.

    PubMed Central

    Wall, W J

    1988-01-01

    In this decade liver transplantation has been established as the preferred treatment for children and adults with irreversible end-stage liver disease. Biliary atresia in children and nonalcoholic cirrhosis in adults are the most common indications for the procedure. Transplantation currently plays only a minor role in the treatment of hepatic malignant disease. Blood group compatibility between donor and recipient is preferred, but histocompatibility matching (tissue typing) currently has no significant role in the selection of recipients. Approximately 70% of recipients survive for 1 year, and these patients have an excellent prospect of long-term survival. The emerging evidence indicates that the quality of life and rehabilitation of most liver recipients are good. The current success of liver transplantation can be attributed to critical selection of recipients, modern anesthetic and surgical techniques, improved perioperative care, accurate diagnosis of rejection and superior immunosuppression with cyclosporine. PMID:3289710

  1. Reflection in Education: A Kantian Epistemology

    ERIC Educational Resources Information Center

    Procee, Henk

    2006-01-01

    As even its defenders admit, reflection in education suffers from a lack of conceptual clarity. In this essay, Henk Procee provides a philosophical analysis of the central concepts in this domain. In the current literature, these concepts are usually taken from the pragmatic school of John Dewey and from critical social theory associated with…

  2. AGU leadership reflects back, looks forward

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie; Buhrman, Joan

    2011-09-01

    AGU president Mike McPhaden, president-elect Carol Finn, and executive director Chris McEntee have served in their current capacities for approximately a year. In this interview, held 18 August after the AGU Council meeting, they reflect back on the year and discuss prospects for the future.

  3. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular

  4. Critical reflectance derived from MODIS: Application for the retrieval of aerosol absorption over desert regions

    NASA Astrophysics Data System (ADS)

    Wells, Kelley C.; Martins, J. Vanderlei; Remer, Lorraine A.; Kreidenweis, Sonia M.; Stephens, Graeme L.

    2012-02-01

    The determination of aerosol direct radiative forcing over desert regions requires accurate information about the aerosol single-scattering albedo (SSA); however, the brightness of desert surfaces in the visible and near-IR range complicates the retrieval of aerosol optical properties using passive space-based measurements. Here we use the critical reflectance method to retrieve spectral aerosol absorption from space over North Africa, a desert region that is predominantly impacted by absorbing dust and biomass burning aerosol. We examine the sensitivity of the critical reflectance parameter to aerosol physical and optical properties that are representative of the region, and we find that the critical reflectance has low sensitivity to assumptions of aerosol size and refractive index for dust-like particles, except at scattering angles near 180°, which should be avoided with this method. We use our findings to retrieve spectral SSA from critical reflectance derived from Moderate Resolution Imaging Spectroradiometer (MODIS) reflectances in the vicinity of two Aerosol Robotic Network (AERONET) stations: Tamanrasset, in the Algerian Sahara, and Banizoumbou, in the Sahel. We retrieve lower aerosol SSAs at Banizoumbou, which is often impacted by dust-smoke mixtures, and higher SSAs at Tamanrasset, where pure desert dust is the dominant aerosol. Our results generally fall within the AERONET uncertainty envelopes, although at Banizoumbou we retrieve a spectral dependence different from that of AERONET. On the basis of our analysis, we expect to be able to retrieve SSA from critical reflectance for pure dust with an uncertainty of 0.02 and to provide spatial and spectral SSA information that will help reduce current uncertainties in the aerosol radiative forcing over desert regions.

  5. Accurate calculation of field and carrier distributions in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Yang, Wenji; Tang, Jianping; Yu, Hongchun; Wang, Yanguo

    2012-06-01

    We use the numerical squeezing algorithm(NSA) combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs) in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP) - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD) systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.

  6. Nanoparticle counting: towards accurate determination of the molar concentration.

    PubMed

    Shang, Jing; Gao, Xiaohu

    2014-11-01

    Innovations in nanotechnology have brought tremendous opportunities for the advancement of many research frontiers, ranging from electronics, photonics, energy, to medicine. To maximize the benefits of nano-scaled materials in different devices and systems, precise control of their concentration is a prerequisite. While concentrations of nanoparticles have been provided in other forms (e.g., mass), accurate determination of molar concentration, arguably the most useful one for chemical reactions and applications, has been a major challenge (especially for nanoparticles smaller than 30 nm). Towards this significant yet chronic problem, a variety of strategies are currently under development. Most of these strategies are applicable to a specialized group of nanoparticles due to their restrictions on the composition and size range of nanoparticles. As research and uses of nanomaterials are being explored in an unprecedented speed, it is necessary to develop universal strategies that are easy to use and are compatible with nanoparticles of different sizes, compositions, and shapes. This review outlines the theories and applications of current strategies to measure nanoparticle molar concentration, discusses the advantages and limitations of these methods, and provides insights into future directions.

  7. Multi-reference-based multiple alignment statistics enables accurate protein-particle pickup from noisy images.

    PubMed

    Kawata, Masaaki; Sato, Chikara

    2013-04-01

    Data mining from noisy data/images is one of the most important themes in modern science and technology. Statistical image processing is a promising technique for analysing such data. Automation of particle pickup from noisy electron micrographs is essential, especially when improvement of the resolution of single particle analysis requires a huge number of particle images. For such a purpose, reference-based matching using primary three-dimensional (3D) model projections is mainly adopted. In the matching, however, the highest peaks of the correlation may not accurately indicate particles when the image is very noisy. In contrast, the density and the heights of the peaks should reflect the probability distribution of the particles. To statistically determine the particle positions from the peak distributions, we have developed a density-based peak search followed by a peak selection based on average peak height, using multi-reference alignment (MRA). Its extension, using multi-reference multiple alignment (MRMA), was found to enable particle pickup at higher accuracy even from extremely noisy images with a signal-to-noise ratio of 0.001. We refer to these new methods as stochastic pickup with MRA (MRA-StoPICK) or with MRMA (MRMA-StoPICK). MRMA-StoPICK has a higher pickup accuracy and furthermore, is almost independent of parameter settings. They were successfully applied to cryo-electron micrographs of Rice dwarf virus. Because current computational resources and parallel data processing environments allow somewhat CPU-intensive MRA-StoPICK and MRMA-StoPICK to be performed in a short period, these methods are expected to allow high-resolution analysis of the 3D structure of particles.

  8. Dual-arm multiple-reflection Michelson interferometer for large multiple reflections and increased sensitivity

    NASA Astrophysics Data System (ADS)

    Joenathan, Charles; Bernal, Ashley; Woonghee, Youn; Bunch, Robert M.; Hakoda, Christopher

    2016-02-01

    Michelson interferometer is one of the most popular optical interferometric systems used in optical metrology. Typically, Michelson interferometers are used to measure object displacement with wavefront shapes to one half of the laser wavelength. As testing components and device sizes reduce to micro and nano size, a sensitivity of half the wavelength of light cannot be used to measure several hundred picometer displacement. Multiple-reflection interferometers have been proposed and are used to increase the sensitivity in a Michelson interferometer; however, when altering the number of reflections, the system alignment becomes cumbersome. We describe some of the problems associated with the current multiple-reflection interferometer and introduce a setup for matching path lengths to increase the resolution and allow for the reduction of the stringent requirement on the coherence length of the lasers used. Theoretically, we show that more than 1000 reflections can be achieved. Experimental results of up to 100 reflections are presented in this paper.

  9. Automated geologic mapping using rock reflectances.

    NASA Technical Reports Server (NTRS)

    Watson, R. D.; Rowan, L. C.

    1971-01-01

    Investigation of the feasibility of preparing geologic maps automatically through computer processing of calibrated narrow-band visible and near IR reflectivity data collected with a 12-channel scanner. Five procedures were followed in the computer analysis of the radiances recorded as voltages on analog magnetic tape. Three recognition maps have been generated iteratively using a progressively more complex classification scheme. The overall accuracy of the first recognition map was 80%, but the discrimination of the limestone and dolomite was only 50-60%. All three maps are very accurate outcrop maps. The results demonstrate the feasibility of automated geologic mapping in this relatively simple setting.

  10. Measuring Reflective Power with the Eye

    NASA Astrophysics Data System (ADS)

    Chen, Xiang

    Although the legitimacy of using the eye as an essential instrument in photometric experiments had been questioned by critics, the practitioners of visual photometry in the 18th and 19th centuries were convinced that the eye was reliable and capable of making accurate judgments in comparing brightness. They demonstrated their belief through their efforts in searching for the optimal conditions for the eye in photometric measurements. Eventually, they were able to measure reflective power with accuracy comparable to today's standards by developing a body of practice, including both instrumental designs and experimental procedures, which aimed at maintaining the eye's sensibility in brightness comparison.

  11. Current limiters

    SciTech Connect

    Loescher, D.H.; Noren, K.

    1996-09-01

    The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.

  12. Trifid reflection nebulae

    SciTech Connect

    Lynds, B.T.; Oneil, E.J. Jr.

    1986-11-01

    CCD frames of reflected starlight in the blue continuum, 4693 A, associated with the Trifid emission nebulae have been used to deduce the optical depth, albedo, and phase function of the dust grains. The northern component of the Trifid, centered on the supergiant HD 164514, apparently has grains of higher albedo than those associated with the southern O star HD 164492A. IRAS data add further arguments to the assumption that the northern reflection nebula is illuminated by the supergiant, and that the dust grains surrounding the O star have a higher grain temperature. The entire complex is probably part of the Sgr OB I association and the short lifetime of the association puts constraints on the manner in which the properties of the grains can be modified by associated young stars. 26 references.

  13. The Trifid reflection nebulae

    NASA Astrophysics Data System (ADS)

    Lynds, Beverly T.; Oneil, Earl J., Jr.

    1986-11-01

    CCD frames of reflected starlight in the blue continuum, λ 4693, associated with the Trifid emission nebulae have been used to deduce the optical depth, albedo, and phase function of the dust grains. The northern component of the Trifid, centered on the supergiant HD 164514, apparently has grains of higher albedo than those associated with the southern O star HD 164492A. IRAS data add further arguments to the assumption that the northern reflection nebula is illuminated by the supergiant and that the dust grains surrounding the O star have a higher grain temperature. The entire complex is probably part of the Sgr OB I association and the short lifetime of the association puts constraints on the manner in which the properties of the grains can be modified by associated young stars.

  14. Sidewall reflections in streamlined missile radomes

    NASA Astrophysics Data System (ADS)

    Huddleston, G. K.; Crockett, M. P.

    Predicted and measured patterns are presented which serve as dramatic illustrations of the 'LLoyd's mirror' effect, in which direct and reflected waves generate interference in the form of unexpected peaks and nulls in radome-enclosed receiving antenna patterns. These effects are associated with a low-gain antenna which is offset from the centerline of a streamlined tangent ogive radome intended for high-speed missile applications. Since many other airborne radome applications require that more than one antenna be located inside a radome cavity, these data furnish insight into what may be expected for offset-antenna locations. The geometrical optics approximations used to obtain reflected wave contributions are noted to be exceptionally accurate foir the small antennas considered.

  15. 77 FR 3800 - Accurate NDE & Inspection, LLC; Confirmatory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... COMMISSION Accurate NDE & Inspection, LLC; Confirmatory Order In the Matter of Accurate NDE & Docket: 150... request ADR with the NRC in an attempt to resolve issues associated with this matter. In response, on August 9, 2011, Accurate NDE requested ADR to resolve this matter with the NRC. On September 28,...

  16. Clinical linguistics: conversational reflections.

    PubMed

    Crystal, David

    2013-04-01

    This is a report of the main points I made in an informal "conversation" with Paul Fletcher and the audience at the 14th ICPLA conference in Cork. The observations arose randomly, as part of an unstructured 1-h Q&A, so they do not provide a systematic account of the subject, but simply reflect the issues which were raised by the conference participants during that time.

  17. Landsat surface reflectance data

    USGS Publications Warehouse

    ,

    2015-01-01

    Landsat satellite data have been produced, archived, and distributed by the U.S. Geological Survey since 1972. Users rely on these data for historical study of land surface change and require consistent radiometric data processed to the highest science standards. In support of the guidelines established through the Global Climate Observing System, the U.S. Geological Survey has embarked on production of higher-level Landsat data products to support land surface change studies. One such product is Landsat surface reflectance.

  18. Caregiver's Country of Birth Is a Significant Determinant of Accurate Perception of Preschool-Age Children's Weight

    ERIC Educational Resources Information Center

    Natale, Ruby; Uhlhorn, Susan B.; Lopez-Mitnik, Gabriela; Camejo, Stephanie; Englebert, Nicole; Delamater, Alan M.; Messiah, Sarah E.

    2016-01-01

    Background: One in four preschool-age children in the United States are currently overweight or obese. Previous studies have shown that caregivers of this age group often have difficulty accurately recognizing their child's weight status. The purpose of this study was to examine factors associated with accurate/inaccurate perception of child body…

  19. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  20. Method and apparatus for characterizing reflected ultrasonic pulses

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1991-01-01

    The invention is a method of and apparatus for characterizing the amplitudes of a sequence of reflected pulses R1, R2, and R3 by converting them into corresponding electric signals E1, E2, and E3 to substantially the same value during each sequence thereby restoring the reflected pulses R1, R2, and R3 to their initial reflection values by timing means, an exponential generator, and a time gain compensator. Envelope and baseline reject circuits permit the display and accurate location of the time spaced sequence of electric signals having substantially the same amplitude on a measurement scale on a suitable video display or oscilloscope.

  1. A new approach to compute accurate velocity of meteors

    NASA Astrophysics Data System (ADS)

    Egal, Auriane; Gural, Peter; Vaubaillon, Jeremie; Colas, Francois; Thuillot, William

    2016-10-01

    The CABERNET project was designed to push the limits of meteoroid orbit measurements by improving the determination of the meteors' velocities. Indeed, despite of the development of the cameras networks dedicated to the observation of meteors, there is still an important discrepancy between the measured orbits of meteoroids computed and the theoretical results. The gap between the observed and theoretic semi-major axis of the orbits is especially significant; an accurate determination of the orbits of meteoroids therefore largely depends on the computation of the pre-atmospheric velocities. It is then imperative to dig out how to increase the precision of the measurements of the velocity.In this work, we perform an analysis of different methods currently used to compute the velocities and trajectories of the meteors. They are based on the intersecting planes method developed by Ceplecha (1987), the least squares method of Borovicka (1990), and the multi-parameter fitting (MPF) method published by Gural (2012).In order to objectively compare the performances of these techniques, we have simulated realistic meteors ('fakeors') reproducing the different error measurements of many cameras networks. Some fakeors are built following the propagation models studied by Gural (2012), and others created by numerical integrations using the Borovicka et al. 2007 model. Different optimization techniques have also been investigated in order to pick the most suitable one to solve the MPF, and the influence of the geometry of the trajectory on the result is also presented.We will present here the results of an improved implementation of the multi-parameter fitting that allow an accurate orbit computation of meteors with CABERNET. The comparison of different velocities computation seems to show that if the MPF is by far the best method to solve the trajectory and the velocity of a meteor, the ill-conditioning of the costs functions used can lead to large estimate errors for noisy

  2. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  3. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  4. Teaching Reflection Seismic Processing

    NASA Astrophysics Data System (ADS)

    Forel, D.; Benz, T.; Pennington, W. D.

    2004-12-01

    Without pictures, it is difficult to give students a feeling for wave propagation, transmission, and reflection. Even with pictures, wave propagation is still static to many. However, when students use and modify scripts that generate wavefronts and rays through a geologic model that they have modified themselves, we find that students gain a real feeling for wave propagation. To facilitate teaching 2-D seismic reflection data processing (from acquisition through migration) to our undergraduate and graduate Reflection Seismology students, we use Seismic Un*x (SU) software. SU is maintained and distributed by Colorado School of Mines, and it is freely available (at www.cwp.mines.edu/cwpcodes). Our approach includes use of synthetic and real seismic data, processing scripts, and detailed explanation of the scripts. Our real data were provided by Gregory F. Moore of the University of Hawaii. This approach can be used by any school at virtually no expense for either software or data, and can provide students with a sound introduction to techniques used in processing of reflection seismic data. The same software can be used for other purposes, such as research, with no additional expense. Students who have completed a course using SU are well equipped to begin using it for research, as well. Scripts for each processing step are supplied and explained to the students. Our detailed description of the scripts means students do not have to know anything about SU to start. Experience with the Unix operating system is preferable but not necessary -- our notes include Computer Hints to help the beginner work with the Unix operating system. We include several examples of synthetic model building, acquiring shot gathers through synthetic models, sorting shot gathers to CMP gathers, gain, 1-D frequency filtering, f-k filtering, deconvolution, semblance displays and velocity analysis, flattening data (NMO), stacking the CMPs, and migration. We use two real (marine) data sets. One

  5. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  6. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  7. Troubling Muddy Waters: Problematizing Reflective Practice in Global Medical Education.

    PubMed

    Naidu, Thirusha; Kumagai, Arno K

    2016-03-01

    The idea of exporting the concept of reflective practice for a global medical education audience is growing. However, the uncritical export and adoption of Western concepts of reflection may be inappropriate in non-Western societies. The emphasis in Western medical education on the use of reflection for a specific end--that is, the improvement of individual clinical practice--tends to ignore the range of reflective practice, concentrating on reflection alone while overlooking critical reflection and reflexivity. This Perspective places the concept of reflective practice under a critical lens to explore a broader view for its application in medical education outside the West. The authors suggest that ideas about reflection in medicine and medical education may not be as easily transferable from Western to non-Western contexts as concepts from biomedical science are. The authors pose the question, When "exporting" Western medical education strategies and principles, how often do Western-trained educators authentically open up to the possibility that there are alternative ways of seeing and knowing that may be valuable in educating Western physicians? One answer lies in the assertion that educators should aspire to turn exportation of educational theory into a truly bidirectional, collaborative exchange in which culturally conscious views of reflective practice contribute to humanistic, equitable patient care. This discussion engages in troubling the already-muddy waters of reflective practice by exploring the global applicability of reflective practice as it is currently applied in medical education. The globalization of medical education demands critical reflection on reflection itself.

  8. Global, long-term surface reflectance records from Landsat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global, long-term monitoring of changes in Earth’s land surface requires quantitative comparisons of satellite images acquired under widely varying atmospheric conditions. Although physically based estimates of surface reflectance (SR) ultimately provide the most accurate representation of Earth’s s...

  9. Seismic reflection imaging, accounting for primary and multiple reflections

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel

    2015-04-01

    Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are

  10. An accurate single-electron pump based on a highly tunable silicon quantum dot.

    PubMed

    Rossi, Alessandro; Tanttu, Tuomo; Tan, Kuan Yen; Iisakka, Ilkka; Zhao, Ruichen; Chan, Kok Wai; Tettamanzi, Giuseppe C; Rogge, Sven; Dzurak, Andrew S; Möttönen, Mikko

    2014-06-11

    Nanoscale single-electron pumps can be used to generate accurate currents, and can potentially serve to realize a new standard of electrical current based on elementary charge. Here, we use a silicon-based quantum dot with tunable tunnel barriers as an accurate source of quantized current. The charge transfer accuracy of our pump can be dramatically enhanced by controlling the electrostatic confinement of the dot using purposely engineered gate electrodes. Improvements in the operational robustness, as well as suppression of nonadiabatic transitions that reduce pumping accuracy, are achieved via small adjustments of the gate voltages. We can produce an output current in excess of 80 pA with experimentally determined relative uncertainty below 50 parts per million.

  11. Detecting Children's Lies: Are Parents Accurate Judges of Their Own Children's Lies?

    ERIC Educational Resources Information Center

    Talwar, Victoria; Renaud, Sarah-Jane; Conway, Lauryn

    2015-01-01

    The current study investigated whether parents are accurate judges of their own children's lie-telling behavior. Participants included 250 mother-child dyads. Children were between three and 11 years of age. A temptation resistance paradigm was used to elicit a minor transgressive behavior from the children involving peeking at a forbidden toy and…

  12. Reflections on Chemical Equations.

    ERIC Educational Resources Information Center

    Gorman, Mel

    1981-01-01

    The issue of how much emphasis balancing chemical equations should have in an introductory chemistry course is discussed. The current heavy emphasis on finishing such equations is viewed as misplaced. (MP)

  13. Reflected Deck Plan, Reflected Roof Plan, Deck Plan Bridgeport ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Reflected Deck Plan, Reflected Roof Plan, Deck Plan - Bridgeport Covered Bridge, Spanning South Fork of Yuba River at bypassed section of Pleasant Valley Road (originally Virginia Turnpike) in South Yuba River State Park , Bridgeport, Nevada County, CA

  14. Longitudinal Section AA; Reflected Deck Plan; Reflected Ceiling Plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Longitudinal Section A-A; Reflected Deck Plan; Reflected Ceiling Plan - Shoreham Railroad Bridge, Former Addison County Railroad (later, Rutland Railroad, Addison Branch), spanning Lemon Fair River above Richville Pond, west of East Shoreham Road, Shoreham, Addison County, VT

  15. Learning about reflection.

    PubMed

    Smith, A

    1998-10-01

    An understanding of the nature and function of reflection in recognizing and developing nursing knowledge is a key concern. This paper describes a longitudinal study investigating the ways in which undergraduate student nurses reflected about practice as they progressed through a 3-year programme in adult nursing. The method was qualitative, with data gained from written critical incidents based on practice experiences and classroom discussions, and analysed using the constant comparative method. Findings revealed the range of issues students perceived as most important, and to some extent, changes in levels of thinking. A strong theme occurring throughout related to the complexity of learning what it means to be a professional and, in consequence, what they learn about themselves. Students' preoccupation with emotional aspects of learning and nursing care was evident. They had difficulty in disentangling 'personal' and 'professional' involvement but later data indicates that they had begun to learn to differentiate between involvement as a general characteristic of nursing practice and a overwhelming personal attachment. They generally use their own and each others' experiences to examine meaning, in preference to formal theoretical explanations although there is evidence students moved from acceptance of information to the questioning and critiquing of arguments and professional assumptions, particularly concerning their relevance and appropriateness for practice.

  16. Current Titles

    SciTech Connect

    Various

    2006-06-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Jane Cavlina, Administrator, at 510/486-6036.

  17. Reflection: Journals and Reflective Questions: A Strategy for Professional Learning

    ERIC Educational Resources Information Center

    Clarke, Maggie

    2004-01-01

    Reflective journals have been used widely in teacher education programs to promote reflective thinking (Freidus, 1998; Carter & Francis, 2000; Yost, Senter & Forlenzo-Bailey, 2000). Smyth (1992) advocated that posing a series of questions to be answered in written journals could enhance reflective thinking. It was for this reason that…

  18. Reflecting on Reflective Practice: (Re)Visiting Dewey and Schon

    ERIC Educational Resources Information Center

    Farrell, Thomas S. C.

    2012-01-01

    Since the author began work in reflective practice, at first informally in the late 1970s and then more formally in the mid-1980s, he has always looked at reflective practice as a compass of sorts to guide teachers when they may be seeking direction as to what they are doing in their classrooms. The metaphor of reflection as a compass enables…

  19. Delivery devices for the administration of paediatric formulations: overview of current practice, challenges and recent developments.

    PubMed

    Walsh, Jennifer; Bickmann, Deborah; Breitkreutz, Joerg; Chariot-Goulet, Maryvonne

    2011-08-30

    The European Paediatric Formulation Initiative (EuPFI), a group consisting of paediatric formulation experts from industry, academia and clinical pharmacy was founded with the aim of raising awareness of paediatric formulation issues. It is imperative that paediatric medicines can be administered accurately to ensure the correct dose is provided and that the administration device is easy to use and acceptable from the patient's and carer's perspectives. This reflection paper provides an overview of currently available paediatric administration devices and highlights some of the challenges associated with, recommendations and recent developments in delivery devices for the oral, inhaled, parenteral, nasal and ocular administration of paediatric formulations, on behalf of the EuPFI.

  20. Canada's National Forest Inventory (responding to current information needs).

    PubMed

    Gillis, M D

    2001-01-01

    Canada's current National Forest Inventory is a periodic compilation of existing inventory material from across the country. While the current approach has many advantages, it lacks information on the nature and rate of changes to the resource, and does not permit projections or forecasts. Being a compilation of inventories of different dates, the current national forest inventory cannot reflect the current state of the forests and therefore cannot be used as a satisfactory baseline for monitoring change. The current format of Canada's National Forest Inventory has served its purpose by providing national statistical compilations and reporting. However, its useful life is coming to a conclusion. To meet new demands, Canada is considering a new National Forest Inventory design consisting of a plot-based system of permanent observational units located on a national grid. The objective of the new inventory design is to assess and monitor the extent, state and sustainability of Canada's forests in a timely and accurate manner. Details of the new inventory design are described. A strategy to respond to Canada's national and international forest reporting commitments through a National Forest Information System is also discussed.

  1. Accurate stereochemistry for two related 22,26-epiminocholestene derivatives

    SciTech Connect

    Vega-Baez, José Luis; Sandoval-Ramírez, Jesús; Meza-Reyes, Socorro; Montiel-Smith, Sara; Gómez-Calvario, Victor; Bernès, Sylvain

    2008-04-01

    Regioselective opening of ring E of solasodine under various conditions afforded (25R)-22,26-epimino@@cholesta-5,22(N)-di@@ene-3β,16β-diyl diacetate (previously known as 3,16-diacetyl pseudosolasodine B), C{sub 31}H{sub 47}NO{sub 4}, or (22S,25R)-16β-hydr@@oxy-22,26-epimino@@cholesta-5-en-3β-yl acetate (a derivative of the naturally occurring alkaloid oblonginine), C{sub 29}H{sub 47}NO{sub 3}. In both cases, the reactions are carried out with retention of chirality at the C16, C20 and C25 stereogenic centers, which are found to be S, S and R, respectively. Although pseudosolasodine was synthesized 50 years ago, these accurate assignments clarify some controversial points about the actual stereochemistry for these alkaloids. This is of particular importance in the case of oblonginine, since this compound is currently under consideration for the treatment of aphasia arising from apoplexy; the present study defines a diastereoisomerically pure compound for pharmacological studies.

  2. Novel Cortical Thickness Pattern for Accurate Detection of Alzheimer's Disease.

    PubMed

    Zheng, Weihao; Yao, Zhijun; Hu, Bin; Gao, Xiang; Cai, Hanshu; Moore, Philip

    2015-01-01

    Brain network occupies an important position in representing abnormalities in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Currently, most studies only focused on morphological features of regions of interest without exploring the interregional alterations. In order to investigate the potential discriminative power of a morphological network in AD diagnosis and to provide supportive evidence on the feasibility of an individual structural network study, we propose a novel approach of extracting the correlative features from magnetic resonance imaging, which consists of a two-step approach for constructing an individual thickness network with low computational complexity. Firstly, multi-distance combination is utilized for accurate evaluation of between-region dissimilarity; and then the dissimilarity is transformed to connectivity via calculation of correlation function. An evaluation of the proposed approach has been conducted with 189 normal controls, 198 MCI subjects, and 163 AD patients using machine learning techniques. Results show that the observed correlative feature suggests significant promotion in classification performance compared with cortical thickness, with accuracy of 89.88% and area of 0.9588 under receiver operating characteristic curve. We further improved the performance by integrating both thickness and apolipoprotein E ɛ4 allele information with correlative features. New achieved accuracies are 92.11% and 79.37% in separating AD from normal controls and AD converters from non-converters, respectively. Differences between using diverse distance measurements and various correlation transformation functions are also discussed to explore an optimal way for network establishment. PMID:26444768

  3. A novel algorithm for scalable and accurate Bayesian network learning.

    PubMed

    Brown, Laura E; Tsamardinos, Ioannis; Aliferis, Constantin F

    2004-01-01

    Bayesian Networks (BN) is a knowledge representation formalism that has been proven to be valuable in biomedicine for constructing decision support systems and for generating causal hypotheses from data. Given the emergence of datasets in medicine and biology with thousands of variables and that current algorithms do not scale more than a few hundred variables in practical domains, new efficient and accurate algorithms are needed to learn high quality BNs from data. We present a new algorithm called Max-Min Hill-Climbing (MMHC) that builds upon and improves the Sparse Candidate (SC) algorithm; a state-of-the-art algorithm that scales up to datasets involving hundreds of variables provided the generating networks are sparse. Compared to the SC, on a number of datasets from medicine and biology, (a) MMHC discovers BNs that are structurally closer to the data-generating BN, (b) the discovered networks are more probable given the data, (c) MMHC is computationally more efficient and scalable than SC, and (d) the generating networks are not required to be uniformly sparse nor is the user of MMHC required to guess correctly the network connectivity

  4. Accurate Inference of Local Phased Ancestry of Modern Admixed Populations

    PubMed Central

    Ma, Yamin; Zhao, Jian; Wong, Jian-Syuan; Ma, Li; Li, Wenzhi; Fu, Guoxing; Xu, Wei; Zhang, Kui; Kittles, Rick A.; Li, Yun; Song, Qing

    2014-01-01

    Population stratification is a growing concern in genetic-association studies. Averaged ancestry at the genome level (global ancestry) is insufficient for detecting the population substructures and correcting population stratifications in association studies. Local and phase stratification are needed for human genetic studies, but current technologies cannot be applied on the entire genome data due to various technical caveats. Here we developed a novel approach (aMAP, ancestry of Modern Admixed Populations) for inferring local phased ancestry. It took about 3 seconds on a desktop computer to finish a local ancestry analysis for each human genome with 1.4-million SNPs. This method also exhibits the scalability to larger datasets with respect to the number of SNPs, the number of samples, and the size of reference panels. It can detect the lack of the proxy of reference panels. The accuracy was 99.4%. The aMAP software has a capacity for analyzing 6-way admixed individuals. As the biomedical community continues to expand its efforts to increase the representation of diverse populations, and as the number of large whole-genome sequence datasets continues to grow rapidly, there is an increasing demand on rapid and accurate local ancestry analysis in genetics, pharmacogenomics, population genetics, and clinical diagnosis. PMID:25052506

  5. Accurate multiple network alignment through context-sensitive random walk

    PubMed Central

    2015-01-01

    Background Comparative network analysis can provide an effective means of analyzing large-scale biological networks and gaining novel insights into their structure and organization. Global network alignment aims to predict the best overall mapping between a given set of biological networks, thereby identifying important similarities as well as differences among the networks. It has been shown that network alignment methods can be used to detect pathways or network modules that are conserved across different networks. Until now, a number of network alignment algorithms have been proposed based on different formulations and approaches, many of them focusing on pairwise alignment. Results In this work, we propose a novel multiple network alignment algorithm based on a context-sensitive random walk model. The random walker employed in the proposed algorithm switches between two different modes, namely, an individual walk on a single network and a simultaneous walk on two networks. The switching decision is made in a context-sensitive manner by examining the current neighborhood, which is effective for quantitatively estimating the degree of correspondence between nodes that belong to different networks, in a manner that sensibly integrates node similarity and topological similarity. The resulting node correspondence scores are then used to predict the maximum expected accuracy (MEA) alignment of the given networks. Conclusions Performance evaluation based on synthetic networks as well as real protein-protein interaction networks shows that the proposed algorithm can construct more accurate multiple network alignments compared to other leading methods. PMID:25707987

  6. How Accurate Are Transition States from Simulations of Enzymatic Reactions?

    PubMed Central

    2015-01-01

    The rate expression of traditional transition state theory (TST) assumes no recrossing of the transition state (TS) and thermal quasi-equilibrium between the ground state and the TS. Currently, it is not well understood to what extent these assumptions influence the nature of the activated complex obtained in traditional TST-based simulations of processes in the condensed phase in general and in enzymes in particular. Here we scrutinize these assumptions by characterizing the TSs for hydride transfer catalyzed by the enzyme Escherichia coli dihydrofolate reductase obtained using various simulation approaches. Specifically, we compare the TSs obtained with common TST-based methods and a dynamics-based method. Using a recently developed accurate hybrid quantum mechanics/molecular mechanics potential, we find that the TST-based and dynamics-based methods give considerably different TS ensembles. This discrepancy, which could be due equilibrium solvation effects and the nature of the reaction coordinate employed and its motion, raises major questions about how to interpret the TSs determined by common simulation methods. We conclude that further investigation is needed to characterize the impact of various TST assumptions on the TS phase-space ensemble and on the reaction kinetics. PMID:24860275

  7. Accurate ab initio vibrational energies of methyl chloride

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  8. Accurate inference of local phased ancestry of modern admixed populations.

    PubMed

    Ma, Yamin; Zhao, Jian; Wong, Jian-Syuan; Ma, Li; Li, Wenzhi; Fu, Guoxing; Xu, Wei; Zhang, Kui; Kittles, Rick A; Li, Yun; Song, Qing

    2014-01-01

    Population stratification is a growing concern in genetic-association studies. Averaged ancestry at the genome level (global ancestry) is insufficient for detecting the population substructures and correcting population stratifications in association studies. Local and phase stratification are needed for human genetic studies, but current technologies cannot be applied on the entire genome data due to various technical caveats. Here we developed a novel approach (aMAP, ancestry of Modern Admixed Populations) for inferring local phased ancestry. It took about 3 seconds on a desktop computer to finish a local ancestry analysis for each human genome with 1.4-million SNPs. This method also exhibits the scalability to larger datasets with respect to the number of SNPs, the number of samples, and the size of reference panels. It can detect the lack of the proxy of reference panels. The accuracy was 99.4%. The aMAP software has a capacity for analyzing 6-way admixed individuals. As the biomedical community continues to expand its efforts to increase the representation of diverse populations, and as the number of large whole-genome sequence datasets continues to grow rapidly, there is an increasing demand on rapid and accurate local ancestry analysis in genetics, pharmacogenomics, population genetics, and clinical diagnosis. PMID:25052506

  9. Accurate calculations of bound rovibrational states for argon trimer

    SciTech Connect

    Brandon, Drew; Poirier, Bill

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  10. Off-axis reflective optical apparatus

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor); Leary, David F. (Inventor); Mammini, Paul V. (Inventor)

    2005-01-01

    Embodiments of the present invention are directed to a simple apparatus and a convenient and accurate method of mounting the components to form an off-axis reflective optical apparatus such as a collimator. In one embodiment, an off-axis reflective optical apparatus comprises a mounting block having a ferrule holder support surface and an off-axis reflector support surface which is generally perpendicular to the ferrule holder support surface. An optical reflector is mounted on the off-axis reflector support surface and has a reflected beam centerline. The optical reflector has a conic reflective surface and a conic center. A ferrule holder is mounted on the ferrule holder support surface. The ferrule holder provides a ferrule for coupling to an optical fiber and orienting a fiber tip of the optical fiber along a fiber axis toward the optical reflector. The fiber axis is nonparallel to the reflected beam centerline. Prior to mounting the optical reflector to the off-axis reflector support surface and prior to mounting the ferrule holder to the ferrule holder support surface, the optical reflector is movable on the off-axis reflector surface and the ferrule holder is movable on the ferrule holder support surface to align the conic center of the optical reflector with respect to the fiber tip of the optical fiber, and the apparatus has at least one of the following features: (1) the optical reflector is movable on the off-axis reflector support surface to adjust a focus of the fiber tip with respect to the optical reflector, and (2) the ferrule holder is movable on the ferrule holder support surface to adjust the focus of the fiber tip with respect to the optical reflector.

  11. An improved thin film approximation to accurately determine the optical conductivity of graphene from infrared transmittance

    SciTech Connect

    Weber, J. W.; Bol, A. A.; Sanden, M. C. M. van de

    2014-07-07

    This work presents an improved thin film approximation to extract the optical conductivity from infrared transmittance in a simple yet accurate way. This approximation takes into account the incoherent reflections from the backside of the substrate. These reflections are shown to have a significant effect on the extracted optical conductivity and hence on derived parameters as carrier mobility and density. By excluding the backside reflections, the error for these parameters for typical chemical vapor deposited (CVD) graphene on a silicon substrate can be as high as 17% and 45% for the carrier mobility and density, respectively. For the mid- and near-infrared, the approximation can be simplified such that the real part of the optical conductivity is extracted without the need for a parameterization of the optical conductivity. This direct extraction is shown for Fourier transform infrared (FTIR) transmittance measurements of CVD graphene on silicon in the photon energy range of 370–7000 cm{sup −1}. From the real part of the optical conductivity, the carrier density, mobility, and number of graphene layers are determined but also residue, originating from the graphene transfer, is detected. FTIR transmittance analyzed with the improved thin film approximation is shown to be a non-invasive, easy, and accurate measurement and analysis method for assessing the quality of graphene and can be used for other 2-D materials.

  12. Tracking daily land surface albedo and reflectance anisotropy with moderate-resolution imaging spectroradiometer (MODIS)

    NASA Astrophysics Data System (ADS)

    Shuai, Yanmin

    A new algorithm provides daily values of land surface albedo and angular reflectance at a 500-m spatial resolution using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently in orbit on NASA's Terra and Aqua satellite platforms. To overcome the day-to-day variance in observed surface reflectance induced by differences in view and solar illumination angles, the algorithm uses the RossThickLiSparse-Reciprocal bidirectional reflectance model, which is fitted to all MODIS observations of a 500-m resolution cell acquired during a 16-day moving window. Individual observations are weighted by their quality, observation coverage, and proximity to the production date of interest. Product quality is measured by (1) the root mean square error (RMSE) of observations against the best model fit; and (2) the ability of the angular sampling pattern of the observations at hand to determine reflectance model parameters accurately. A regional analysis of model fits to data from selected MODIS data tiles establishes the bounds of these quality measures for application in the daily algorithm. The algorithm, which is now available to users of direct broadcast satellite data from MODIS, allows daily monitoring of rapid surface radiation and land surface change phenomena such as crop development and forest foliage cycles. In two demonstrations, the daily algorithm captured rapid change in plant phenology. The growth phases of a winter wheat crop, as monitored at the Yucheng agricultural research station in Yucheng, China, matched MODIS daily multispectral reflectance data very well, especially during the flowering and heading stages. The daily algorithm also captured the daily change in autumn leaf color in New England, documenting the ability of the algorithm to work well over large regions with varying degrees of cloud cover and atmospheric conditions. Daily surface albedos measured using ground-based instruments on towers at the agricultural and

  13. Reflections on Investigating Emotion in Educational Activity Settings

    ERIC Educational Resources Information Center

    Schutz, Paul A.; Hong, Ji Y.; Cross, Dionne I.; Osbon, Jennifer N.

    2006-01-01

    This article represents our current reflections on our approach to inquiry on emotions in education. Our views reflect an eclectic blend of, educational, psychological, and social historical approaches to inquiry on emotion and emotional regulation. In an effort to explicate our approach, we address our working definitions of emotion and emotional…

  14. Reflections on conformal spectra

    NASA Astrophysics Data System (ADS)

    Kim, Hyungrok; Kravchuk, Petr; Ooguri, Hirosi

    2016-04-01

    We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions Δ0 of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite Δ0 as well as for large Δ0. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function.

  15. Accurate description of calcium solvation in concentrated aqueous solutions.

    PubMed

    Kohagen, Miriam; Mason, Philip E; Jungwirth, Pavel

    2014-07-17

    Calcium is one of the biologically most important ions; however, its accurate description by classical molecular dynamics simulations is complicated by strong electrostatic and polarization interactions with surroundings due to its divalent nature. Here, we explore the recently suggested approach for effectively accounting for polarization effects via ionic charge rescaling and develop a new and accurate parametrization of the calcium dication. Comparison to neutron scattering and viscosity measurements demonstrates that our model allows for an accurate description of concentrated aqueous calcium chloride solutions. The present model should find broad use in efficient and accurate modeling of calcium in aqueous environments, such as those encountered in biological and technological applications.

  16. Nongray gas analyses for reflecting walls utilizing a flux technique

    NASA Technical Reports Server (NTRS)

    Menart, J. A.; Lee, Haeok S.

    1993-01-01

    A flux formulation for a planar slab of molecular gas radiation bounded by diffuse reflecting walls is developed. While this formulation is limited to the planar geometry, it is useful for studying approximations necessary in modeling nongray radiative heat transfer. The governing equations are derived by considering the history of multiple reflections between the walls. Accurate solutions are obtained by explicitly accounting for a finite number of reflections and approximating the spectral effects of the remaining reflections. Four approximate methods are presented and compared using a single absorption band of H2O. All four methods reduce to an identical zeroth-order formulation, which accounts for all reflections approximately but does handle nonreflected radiation correctly. A single absorption band of CO2 is also considered using the best-behaved approximation for higher orders. A zeroth-order formulation is sufficient to predict the radiative transfer accurately for many cases considered. For highly reflecting walls, higher order solutions are necessary for better accuracy. Including all the important bands of H2O, the radiative source distributions are also obtained for two different temperature and concentration profiles.

  17. Ocean color remote sensing using polarization properties of reflected sunlight

    NASA Technical Reports Server (NTRS)

    Frouin, R.; Pouliquen, E.; Breon, F.-M.

    1994-01-01

    The effects of the atmosphere and surface on sunlight backscattered to space by the ocean may be substantially reduced by using the unpolarized component of reflectance instead of total reflectance. At 450 nm, a wavelength of interest in ocean color remote sensing, and for typical conditions, 45% of the unpolarized reflectance may originate from the water body instead of 20% of the total reflectance, which represents a gain of a factor 2.2 in useful signal for water composition retrieval. The best viewing geometries are adjacent to the glitter region; they correspond to scattering angles around 100 deg, but they may change slightly depending on the polarization characteristics of the aerosols. As aerosol optical thickness increases, the atmosphere becomes less efficient at polarizing sunlight, and the enhancement of the water body contribution to unpolarized reflectance is reduced. Since the perturbing effects are smaller on unpolarized reflectance, at least for some viewing geometries, they may be more easily corrected, leading to a more accurate water-leaving signal and, therefore, more accurate estimates of phytoplankton pigment concentration.

  18. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    PubMed

    Price, Erin P; Sarovich, Derek S; Webb, Jessica R; Ginther, Jennifer L; Mayo, Mark; Cook, James M; Seymour, Meagan L; Kaestli, Mirjam; Theobald, Vanessa; Hall, Carina M; Busch, Joseph D; Foster, Jeffrey T; Keim, Paul; Wagner, David M; Tuanyok, Apichai; Pearson, Talima; Currie, Bart J

    2013-01-01

    Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  19. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  20. The challenge of accurately quantifying future megadrought risk in the American Southwest

    NASA Astrophysics Data System (ADS)

    Coats, Sloan; Mankin, Justin S.

    2016-09-01

    American Southwest (ASW) megadroughts represent decadal-scale periods of dry conditions the near-term risks of which arise from natural low-frequency hydroclimate variability and anthropogenic forcing. A large single-climate-model ensemble indicates that anthropogenic forcing increases near-term ASW megadrought risk by a factor of 100; however, accurate risk assessment remains a challenge. At the global-scale we find that anthropogenic forcing may alter the variability driving megadroughts over 55% of land areas, undermining accurate assessments of their risk. For the remaining areas, current ensembles are too small to characterize megadroughts' driving variability. For example, constraining uncertainty in near-term ASW megadrought risk to 5 percentage points with high confidence requires 287 simulations. Such ensemble sizes are beyond current computational and storage resources, and these limitations suggest that constraining errors in near-term megadrought risk projections with high confidence—even in places where underlying variability is stationary—is not currently possible.

  1. Structures for Facilitating Student Reflection

    ERIC Educational Resources Information Center

    Grossman, Robert

    2009-01-01

    The goal of this article is to describe a continuum of levels of reflection. It briefly focuses on Deanna Kuhn's research into the development of scientific thinking and Robert Kegan's Object-Subject Theory of Development applied to the problems of inspiring students to be able to reflect. Assignments for improving students' ability to reflect are…

  2. Reflections From a Fresnel Lens

    ERIC Educational Resources Information Center

    Keeports, David

    2005-01-01

    Reflection of light by a convex Fresnel lens gives rise to two distinct images. A highly convex inverted real reflective image forms on the object side of the lens, while an upright virtual reflective image forms on the opposite side of the lens. I describe here a set of laser experiments performed upon a Fresnel lens. These experiments provide…

  3. Reflective writing and nursing education.

    PubMed

    Craft, Melissa

    2005-02-01

    Reflective writing is a valued tool for teaching nursing students and for documentation, support, and generation of nursing knowledge among experienced nurses. Expressive or reflective writing is becoming widely accepted in both professional and lay publications as a mechanism for coping with critical incidents. This article explores reflective writing as a tool for nursing education.

  4. Reflections on Measuring Thinking, while Listening to Mozart's "Jupiter" Symphony.

    ERIC Educational Resources Information Center

    Wasserman, Selma

    1989-01-01

    Reflects on educators' current preoccupation with assessment of higher order thinking skills. Easy-to-mark, forced-choice, pencil-and-paper tests with single numerical scores may trivialize the wonderful complexity of human capabilities. Includes 17 references. (MLH)

  5. Reflecting on Lab Practices

    ERIC Educational Resources Information Center

    Hunter, Jeffrey C.

    2014-01-01

    The National Science Education Standards (NSES) and the Biological Science Curriculum Study (BSCS) address the need for teachers to move classrooms toward an inquiry approach to learning. Currently, there is movement toward a new structure for science standards, the Next Generation Science Standards (NGSS). In this article, I will take the five…

  6. Computer programs for eddy-current defect studies

    SciTech Connect

    Pate, J. R.; Dodd, C. V.

    1990-06-01

    Several computer programs to aid in the design of eddy-current tests and probes have been written. The programs, written in Fortran, deal in various ways with the response to defects exhibited by four types of probes: the pancake probe, the reflection probe, the circumferential boreside probe, and the circumferential encircling probe. Programs are included which calculate the impedance or voltage change in a coil due to a defect, which calculate and plot the defect sensitivity factor of a coil, and which invert calculated or experimental readings to obtain the size of a defect. The theory upon which the programs are based is the Burrows point defect theory, and thus the calculations of the programs will be more accurate for small defects. 6 refs., 21 figs.

  7. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  8. Current titles

    SciTech Connect

    1995-07-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Gretchen Hermes at (510) 486-5006 or address below for a User`s Guide. Copies of available papers can be ordered from: Theda Crawford National Center for Electron Microscopy, Lawrence Berkeley Laboratory, One Cyclotron Rd., MS72, Berkeley, California, USA 94720.

  9. Bidirectional reflectance of zinc oxide

    NASA Technical Reports Server (NTRS)

    Scott, R.

    1973-01-01

    This investigation was undertaken to determine original and useful information about the bidirection reflectance of zinc oxide. The bidirectional reflectance will be studied for the spectra between .25-2.5 microns and the hemisphere above the specimen. The following factors will be considered: (1) surface conditions; (2) specimen preparation; (3) specimen substrate, (4) polarization; (5) depolarization; (6) wavelength; and (7) angles of incident and reflection. The bidirectional reflectance will be checked by experimentally determined angular hemispherical measurements or hemispherical measurements will be used to obtain absolute bidirectional reflectance.

  10. Reflective Practice in Action: A Case Study of a Writing Teacher's Reflection on Practice

    ERIC Educational Resources Information Center

    Farrell, Thomas S. C.

    2006-01-01

    Reflective practice, a popular item in current second-language teacher education and development programs, can help bridge the gap between a teacher's beliefs and classroom practices. This article outlines a case study, highlighting how one teacher of academic writing initiated the exploration of her teaching and how she used classroom…

  11. Diffuse reflection imaging of sub-epidermal tissue haematocrit using a simple RGB camera

    NASA Astrophysics Data System (ADS)

    Leahy, Martin J.; O'Doherty, Jim; McNamara, Paul; Henricson, Joakim; Nilsson, Gert E.; Anderson, Chris; Sjoberg, Folke

    2007-05-01

    This paper describes the design and evaluation of a novel easy to use, tissue viability imaging system (TiVi). The system is based on the methods of diffuse reflectance spectroscopy and polarization spectroscopy. The technique has been developed as an alternative to current imaging technology in the area of microcirculation imaging, most notably optical coherence tomography (OCT) and laser Doppler perfusion imaging (LDPI). The system is based on standard digital camera technology, and is sensitive to red blood cells (RBCs) in the microcirculation. Lack of clinical acceptance of both OCT and LDPI fuels the need for an objective, simple, reproducible and portable imaging method that can provide accurate measurements related to stimulus vasoactivity in the microvasculature. The limitations of these technologies are discussed in this paper. Uses of the Tissue Viability system include skin care products, drug development, and assessment spatial and temporal aspects of vasodilation (erythema) and vasoconstriction (blanching).

  12. Tube dimpling tool assures accurate dip-brazed joints

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.

    1968-01-01

    Portable, hand-held dimpling tool assures accurate brazed joints between tubes of different diameters. Prior to brazing, the tool performs precise dimpling and nipple forming and also provides control and accurate measuring of the height of nipples and depth of dimples so formed.

  13. 31 CFR 205.24 - How are accurate estimates maintained?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How are accurate estimates maintained... Treasury-State Agreement § 205.24 How are accurate estimates maintained? (a) If a State has knowledge that an estimate does not reasonably correspond to the State's cash needs for a Federal assistance...

  14. 78 FR 34604 - Submitting Complete and Accurate Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... COMMISSION 10 CFR Part 50 Submitting Complete and Accurate Information AGENCY: Nuclear Regulatory Commission... accurate information as would a licensee or an applicant for a license.'' DATES: Submit comments by August... may submit comments by any of the following methods (unless this document describes a different...

  15. Appraisal of Artificial Screening Techniques of Tomato to Accurately Reflect Field Performance of the Late Blight Resistance

    PubMed Central

    Nowakowska, Marzena; Nowicki, Marcin; Kłosińska, Urszula; Maciorowski, Robert; Kozik, Elżbieta U.

    2014-01-01

    Late blight (LB) caused by the oomycete Phytophthora infestans continues to thwart global tomato production, while only few resistant cultivars have been introduced locally. In order to gain from the released tomato germplasm with LB resistance, we compared the 5-year field performance of LB resistance in several tomato cultigens, with the results of controlled conditions testing (i.e., detached leaflet/leaf, whole plant). In case of these artificial screening techniques, the effects of plant age and inoculum concentration were additionally considered. In the field trials, LA 1033, L 3707, L 3708 displayed the highest LB resistance, and could be used for cultivar development under Polish conditions. Of the three methods using controlled conditions, the detached leaf and the whole plant tests had the highest correlation with thefield experiments. The plant age effect on LB resistance in tomato reported here, irrespective of the cultigen tested or inoculum concentration used, makes it important to standardize the test parameters when screening for resistance. Our results help show why other reports disagree on LB resistance in tomato. PMID:25279467

  16. How accurately does the VIVO Harvester reflect actual Clinical and Translational Sciences Award–affiliated faculty member publications?*

    PubMed Central

    Eldredge, Jonathan D.; Kroth, Philip J.; Murray-Krezan, Cristina; Hantak, Chad M.; Weagel, Edward F.; Hannigan, Gale G.

    2015-01-01

    Objective: The research tested the accuracy of the VIVO Harvester software in identifying publications authored by faculty members affiliated with a National Institutes of Health Clinical and Translational Sciences Award (CTSA) site. Methods: Health sciences librarians created “gold standard” lists of references for the years 2001 to 2011 from PubMed for twenty-five randomly selected investigators from one CTSA site. These gold standard lists were compared to the same twenty-five investigators' reference lists produced by VIVO Harvester. The authors subjected the discrepancies between the lists to sensitivity and specificity analyses. Results: The VIVO Harvester correctly identified only about 65% of the total eligible PubMed references for the years 2001–2011 for the CTSA-affiliated investigators. The identified references produced by VIVO Harvester were precise yet incomplete. The sensitivity rate was 0.65, and the specificity rate was 1.00. Conclusion: While the references produced by VIVO Harvester could be confirmed in PubMed, the VIVO Harvester retrieved only two-thirds of the required references from PubMed. National Institutes of Health CTSA sites will need to supplement VIVO Harvester–produced references with the expert searching skills of health sciences librarians. Implications: Health sciences librarians with searching skills need to alert their CTSA sites about these deficiencies and offer their skills to advance their sites' missions. PMID:25552940

  17. Venus Highland Anomalous Reflectivity

    NASA Astrophysics Data System (ADS)

    Simpson, Richard A.; Tyler, G. L.; Häusler, B.; Mattei, R.; Patzold, M.

    2009-09-01

    Maxwell Montes was one of several unusually bright areas identified from early Venus radar backscatter observations. Pioneer Venus' orbiting radar associated low emissivity with the bright areas and established a correlation between reflectivity and altitude. Magellan, using an oblique bistatic geometry, showed that the bright surface dielectric constant was not only large but also imaginary -- i.e., the material was conducting, at least near Cleopatra Patera (Pettengill et al., Science, 272, 1996). Venus Express (VEX) repeated Magellan's bistatic observations over Maxwell, using the more conventional circular polarization carried by most spacecraft. Although VEX signal-to-noise ratio was lower than Magellan's, echoes were sufficiently strong to verify the Magellan conclusions near Cleopatra (see J. Geophys. Res., 114, E00B41, doi:10.1029/2008JE003156). Only about 40% of the surface at Cleopatra scatters specularly, opening the Fresnel (specular) interpretation model to question. Elsewhere in Maxwell, the specular percentage may be even lower. Nonetheless, the echo polarization is reversed throughout Maxwell, a result that is consistent with large dielectric constants and difficult to explain without resorting qualitatively (if not quantitatively) to specular models. VEX was scheduled to explore other high altitude regions when its S-Band (13-cm wavelength) radio system failed in late 2006, so further probing of high altitude targets awaits arrival of a new spacecraft.

  18. Reference module selection criteria for accurate testing of photovoltaic (PV) panels

    SciTech Connect

    Roy, J.N.; Gariki, Govardhan Rao; Nagalakhsmi, V.

    2010-01-15

    It is shown that for accurate testing of PV panels the correct selection of reference modules is important. A detailed description of the test methodology is given. Three different types of reference modules, having different I{sub SC} (short circuit current) and power (in Wp) have been used for this study. These reference modules have been calibrated from NREL. It has been found that for accurate testing, both I{sub SC} and power of the reference module must be either similar or exceed to that of modules under test. In case corresponding values of the test modules are less than a particular limit, the measurements may not be accurate. The experimental results obtained have been modeled by using simple equivalent circuit model and associated I-V equations. (author)

  19. Induced Current Measurement of Rod Vibrations

    NASA Astrophysics Data System (ADS)

    Sawicki, Charles A.

    2003-01-01

    The longitudinal normal modes of vibration of rods are similar to the modes seen in pipes open at both ends. A maximum of particle displacement exists at both ends and an integral number (n) of half wavelengths fit into the rod length. The frequencies fn of the normal modes is given by Eq. (1), where L is the rod length and V is the wave velocity: fn = nV/2L. Many methods have been used to measure the velocity of these waves. The Kundt's tube method commonly used in student labs will not be discussed here. A simpler related method has been described by Nicklin.2 Kluk3 measured velocities in a wide range of materials using a frequency counter and microphone to study sounds produced by impacts. Several earlier methods4,5 used phonograph cartridges complete with needles to detect vibrations in excited rods. A recent interesting experiment6 used wave-induced changes in magnetization produced in an iron rod by striking one end. The travel time, measured as the impulsive wave reflects back and forth, gave the wave velocity for the iron rod. In the method described here, a small magnet is attached to the rod with epoxy, and vibrations are detected using the current induced in a few loops of wire. The experiment is simple and yields very accurate velocity values.

  20. Measurement of temperature and emissivity of specularly reflecting glowing bodies

    NASA Technical Reports Server (NTRS)

    Hansen, G. P.; Hauge, R. H.; Margrave, J. L.; Krishnan, S.

    1988-01-01

    A new method of measuring the thermodynamic temperature of an object as well as the surface emissivity based on laser reflectivity has been developed. By using rotator analyzer ellipsometry, the light reflected from the sample at a specific angle of incidence can be analyzed for its ellipticity. The normal incidence reflectivity and emissivity are then extracted using standard relations. The thermodynamic temperature of the body is obtained simultaneously by measuring the intensity of emitted light at the same angle of incidence. Room temperature measurements are carried out on selected metals to test the system. Elevated temperature measurements on platinum foils show that this technique is reliable and accurate for monitoring and measuring the temperature and emissivity of specularly reflecting, glowing bodies.

  1. Hemispherical reflectance model for passive images in an outdoor environment.

    PubMed

    Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar

    2015-05-01

    We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.

  2. An empirical formula based on Monte Carlo simulation for diffuse reflectance from turbid media

    NASA Astrophysics Data System (ADS)

    Gnanatheepam, Einstein; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Diffuse reflectance spectroscopy has been widely used in diagnostic oncology and characterization of laser irradiated tissue. However, still accurate and simple analytical equation does not exist for estimation of diffuse reflectance from turbid media. In this work, a diffuse reflectance lookup table for a range of tissue optical properties was generated using Monte Carlo simulation. Based on the generated Monte Carlo lookup table, an empirical formula for diffuse reflectance was developed using surface fitting method. The variance between the Monte Carlo lookup table surface and the surface obtained from the proposed empirical formula is less than 1%. The proposed empirical formula may be used for modeling of diffuse reflectance from tissue.

  3. Contribution of Chlorophyll Fluorescence to the Apparent Reflectance of Vegetation

    NASA Technical Reports Server (NTRS)

    Campbell, P. K. Entcheva; Middleton, E. M.; Kim, M. S.

    2007-01-01

    Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance (R) measurements, whi ch provide estimates of relative vegetation vigor based primarily on chlorophyll content. Vegetation chlorophyll fluorescence (CF) offers a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, monitoring of vegetation vigor based on CF may allow earlier stress detection and more accurate carbon sequestra tion estimates, than is possible using R data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contrib utions from both the reflected and fluoresced radiation. The aim of t his study is to determine the relative R and CF fractions contributing to Ra from the vegetation in the red to near-infrared region of the spectrum. The practical objectives of the study are to: 1) evaluate t he relationship between CF and R at the foliar level for corn, soybean, maple; and 2) for corn, determine if the relationship established f or healthy (optimal N) vegetation changes under N defiiency. To obtai n generally applicable results, experimental measurements were conducted on unrelated crop and tree species (maple, soybean and corn), unde r controlled conditions and a gradient of inorganic N fertilization l evels. Optical R spectra and actively induced CF emissions were obtained on the same foliar samples, in conjunction with measurements of p hotosynthetic function, pigment levels, and C and N content. The comm on spectral trends or similarities were examined. On average, 10-20% of apparent R at 685 nm was actually due to CF. The spectral trends in steady and maximum F varied significantly, with Fs (especially red) showing higher ability for species and treatment separation. The relative contribution of ChF to R varied significantly among species, with maple emitting much higher F amounts, as

  4. High-frequency techniques for RCS prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.

    1994-01-01

    Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model.

  5. Bidirectional Reflectance of Flat, Optically Thick Particulate Layers: An Efficient Radiative Transfer Solution and Applications to Snow and Soil Surfaces

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yanovitsku, Edgard G.; Zakharova, Nadia T.

    1999-01-01

    We describe a simple and highly efficient and accurate radiative transfer technique for computing bidirectional reflectance of a macroscopically flat scattering layer composed of nonabsorbing or weakly absorbing, arbitrarily shaped, randomly oriented and randomly distributed particles. The layer is assumed to be homogeneous and optically semi-infinite, and the bidirectional reflection function (BRF) is found by a simple iterative solution of the Ambartsumian's nonlinear integral equation. As an exact Solution of the radiative transfer equation, the reflection function thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. Since this technique bypasses the computation of the internal radiation field, it is by far the fastest numerical approach available and can be used as an ideal input for Monte Carlo procedures calculating BRFs of scattering layers with macroscopically rough surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web at http://ww,,v.giss.nasa.gov/-crmim/brf.html and can be applied to a wide range of remote sensing, engineering, and biophysical problems. We also examine the potential effect of ice crystal shape on the bidirectional reflectance of flat snow surfaces and the applicability of the Henyey-Greenstein phase function and the 6-Eddington approximation in calculations for soil surfaces.

  6. [Predicting nitrogen concentrations from hyperspectral reflectance at hyperspectral reflectance at leaf and canopy for rape].

    PubMed

    Wang, Yuan; Huang, Jing-Feng; Wang, Fu-Min; Liu, Zhan-Yu

    2008-02-01

    An experiment was designed to determine whether nitrogen concentrations could be predicted from reflectance (R) spectra of rape leaves in laboratory, and, if so, whether the predictive spectral features could be correlated with nitrogen concentration of simple canopies of rape. The best predictors for nitrogen in leaves appeared with first-difference transformations of R, and the bands selected were similar to those found in other studies. Shortwave infrared bands were best predictors for nitrogen. In the shortwave infrared region, however, the absolute differences in reflectance at critical bands were extremely small, and the bands of high correlation were narrow. High spectral and radiance resolution are required to resolve these differences accurately. Variability in canopy reflectance in shortwave infrared region was at least an order of magnitude beyond that necessary to detect signals from chemicals. The variability in first-difference R and log 1/R on canopy scales were related to the arrangement of trees with respect to direct solar radiation, instrument noise, leaf fluttering, and small change in atmospheric moisture. The first-difference of reflectance R based regressions prediction of nitrogen concentration at canopy level gets a good fitness.

  7. POLARIZED LIGHT REFLECTED AND TRANSMITTED BY THICK RAYLEIGH SCATTERING ATMOSPHERES

    SciTech Connect

    Natraj, Vijay; Hovenier, J. W.

    2012-03-20

    Accurate values for the intensity and polarization of light reflected and transmitted by optically thick Rayleigh scattering atmospheres with a Lambert surface underneath are presented. A recently reported new method for solving integral equations describing Chandrasekhar's X- and Y-functions is used. The results have been validated using various tests and techniques, including the doubling-adding method, and are accurate to within one unit in the eighth decimal place. Tables are stored electronically and expected to be useful as benchmark results for the (exo)planetary science and astrophysics communities. Asymptotic expressions to obtain Stokes parameters for a thick layer from those of a semi-infinite atmosphere are also provided.

  8. Variable area light reflecting assembly

    DOEpatents

    Howard, Thomas C.

    1986-01-01

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  9. Variable area light reflecting assembly

    DOEpatents

    Howard, T.C.

    1986-12-23

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  10. Baffle system employing reflective surfaces

    NASA Astrophysics Data System (ADS)

    Linlor, W. I.

    1983-12-01

    Reflective baffles are proposed to reject off-axis light entering a telescope. Toroidal surfaces and adjacent cones are positioned so that off-axis rays make multiple reflections between these two surfaces. Meridional rays are reflected approximately parallel to the entering direction. Skew rays are reflected obliquely, but leave the telescope aperture. The range of incident angles for which these reflections are obtained is approximately 45 deg. A system is described that is designed specifically for the Space Shuttle Infrared Telescope Facility (SIRTF). Because of its reflective properties, the proposed baffle system rejects about 90 deg of the heat load from the SIRTF sunshade that would be absorbed in systems of conventional black baffles.

  11. On the distribution of seismic reflection coefficients and seismic amplitudes

    SciTech Connect

    Painter, S.; Paterson, L.; Beresford, G.

    1995-07-01

    Reflection coefficient sequences from 14 wells in Australia have a statistical character consistent with a non-Gaussian scaling noise model based on the Levy-stable family of probability distributions. Experimental histograms of reflection coefficients are accurately approximated by symmetric Levy-stable probability density functions with Levy index between 0.99 and 1.43. These distributions have the same canonical role in mathematical statistics as the Gaussian distribution, but they have slowly decaying tails and infinite moments. The distribution of reflection coefficients is independent of the spatial scale (statistically self-similar), and the reflection coefficient sequences have long-range dependence. These results suggest that the logarithm of seismic impedance can be modeled accurately using fractional Levy motion, which is a generalization of fractional Brownian motion. Synthetic seismograms produced from the authors` model for the reflection coefficients also have Levy-stable distributions. These isolations include transmission losses, the effects of reverberations, and the loss of resolution caused by band-limited wavelets, and suggest that actual seismic amplitudes with sufficient signal-to-noise ratio should also have a Levy-stable distribution. This prediction is verified using post-stack seismic data acquired in the Timor Sea and in the continental USA. However, prestack seismic amplitudes from the Timor Sea are nearly Gaussian. They attribute the difference between prestack and poststack data to the high level of measurement noise in the prestack data.

  12. Accurate calculation of diffraction-limited encircled and ensquared energy.

    PubMed

    Andersen, Torben B

    2015-09-01

    Mathematical properties of the encircled and ensquared energy functions for the diffraction-limited point-spread function (PSF) are presented. These include power series and a set of linear differential equations that facilitate the accurate calculation of these functions. Asymptotic expressions are derived that provide very accurate estimates for the relative amount of energy in the diffraction PSF that fall outside a square or rectangular large detector. Tables with accurate values of the encircled and ensquared energy functions are also presented. PMID:26368873

  13. Atlas of soil reflectance properties

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Biehl, L. L.; Robinson, B. F.

    1979-01-01

    A compendium of soil spectral reflectance curves together with soil test results and site information is presented in an abbreviated manner listing those soil properties most important in influencing soil reflectance. Results are presented for 251 soils from 39 states and Brazil. A narrative key describes relationships between soil parameters and reflectance curves. All soils are classified according to the U.S. soil taxonomy and soil series name for ease of identification.

  14. Weak-shock reflection factors

    SciTech Connect

    Reichenbach, H.; Kuhl, A.L.

    1993-09-07

    The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: square-wave planar shock reflection from wedges; square-wave planar shock reflection from cylinders; and spherical blast wave reflection from a planar surface. We restrict ourselves to weak shocks. Shocks with a Mach number of M{sub O} < 1.56 in air or with an overpressure of {Delta}{sub PI} < 25 psi (1.66 bar) under normal ambient conditions are called weak.

  15. Studies of the Reflection, Refraction and Internal Reflection of Light

    ERIC Educational Resources Information Center

    Lanchester, P. C.

    2014-01-01

    An inexpensive apparatus and associated experiments are described for studying the basic laws of reflection and refraction of light at an air-glass interface, and multiple internal reflections within a glass block. In order to motivate students and encourage their active participation, a novel technique is described for determining the refractive…

  16. Embodied Reflection and the Epistemology of Reflective Practice

    ERIC Educational Resources Information Center

    Kinsella, Elizabeth Anne

    2007-01-01

    Donald Schon's theory of reflective practice has been extensively referred to and has had enormous impact in education and related fields. Nonetheless, there continues to be tremendous conceptual and practical confusion surrounding interpretations of reflective practice and philosophical assumptions underlying the theory. In this paper, I argue…

  17. Calculating the reflected paths of radiation in high reflectivity enclosures

    SciTech Connect

    Shaughnessy, B.M.; Newborough, M.

    1999-07-01

    A novel method of calculating the reflected paths of radiation in Monte Carlo simulations is described. This method is well suited to high reflectivity (e.g., p > 0.5) systems, which tend to have strong directional and bidirectional characteristics. The prime advantage of the described approach is that it retains the inherent flexibility of the traditional Monte Carlo approach, but allows the paths of reflected radiation to be evaluated without the need for ray-surface intersection calculations. The paths of reflected radiation can therefore be evaluated much more rapidly, and Monte Carlo simulation times can be substantially reduced. Simulations of an enclosure containing an obstruction, exhibiting directional emission and reflection, and bi-directional reflection, are described and compared with solutions obtained by traditional Monte Carlo. For the studied cases, predictions from the new and traditional methods are in close agreement. Application of the new method resulted in computational speeds being improved by up to a factor of eight, depending upon the chosen reflection function (directional, specular, or bi-directional) and the desired accuracy of radiative exchange-factor calculation. For example, to achieve an average exchange-factor uncertainty of {+-} 10% (95% confidence), computational performance improvements of approximately twofold for the bi-directional case and threefold for the specular case were attained. For an uncertainty of {+-} 5% (99% confidence), the performance improvements increased to six and eightfold for bi-directional and specular reflection respectively.

  18. Postgraduate Education to Support Organisation Change: A Reflection on Reflection

    ERIC Educational Resources Information Center

    Stewart, Jim; Keegan, Anne; Stevens, Pam

    2008-01-01

    Purpose: This paper aims to explore how teaching and assessing reflective learning skills can support postgraduate practitioners studying organisational change and explores the challenges for tutors in assessing these journals. Design/methodology/approach: Assessment criteria were developed from the literature on reflective practice and…

  19. Infrared reflectance spectra: effects of particle size, provenance and preparation

    NASA Astrophysics Data System (ADS)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, J. E.; Johnson, Timothy J.

    2014-10-01

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 - 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  20. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    SciTech Connect

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, James E.; Johnson, Timothy J.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  1. Accurate color synthesis of three-dimensional objects in an image

    NASA Astrophysics Data System (ADS)

    Xin, John H.; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing.

  2. Accurate color synthesis of three-dimensional objects in an image.

    PubMed

    Xin, John H; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing. PMID:15139423

  3. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  4. Progress toward accurate high spatial resolution actinide analysis by EPMA

    NASA Astrophysics Data System (ADS)

    Jercinovic, M. J.; Allaz, J. M.; Williams, M. L.

    2010-12-01

    High precision, high spatial resolution EPMA of actinides is a significant issue for geochronology, resource geochemistry, and studies involving the nuclear fuel cycle. Particular interest focuses on understanding of the behavior of Th and U in the growth and breakdown reactions relevant to actinide-bearing phases (monazite, zircon, thorite, allanite, etc.), and geochemical fractionation processes involving Th and U in fluid interactions. Unfortunately, the measurement of minor and trace concentrations of U in the presence of major concentrations of Th and/or REEs is particularly problematic, especially in complexly zoned phases with large compositional variation on the micro or nanoscale - spatial resolutions now accessible with modern instruments. Sub-micron, high precision compositional analysis of minor components is feasible in very high Z phases where scattering is limited at lower kV (15kV or less) and where the beam diameter can be kept below 400nm at high current (e.g. 200-500nA). High collection efficiency spectrometers and high performance electron optics in EPMA now allow the use of lower overvoltage through an exceptional range in beam current, facilitating higher spatial resolution quantitative analysis. The U LIII edge at 17.2 kV precludes L-series analysis at low kV (high spatial resolution), requiring careful measurements of the actinide M series. Also, U-La detection (wavelength = 0.9A) requires the use of LiF (220) or (420), not generally available on most instruments. Strong peak overlaps of Th on U make highly accurate interference correction mandatory, with problems compounded by the ThMIV and ThMV absorption edges affecting peak, background, and interference calibration measurements (especially the interference of the Th M line family on UMb). Complex REE bearing phases such as monazite, zircon, and allanite have particularly complex interference issues due to multiple peak and background overlaps from elements present in the activation

  5. The NCTM Research Presession: A Brief History and Reflection

    ERIC Educational Resources Information Center

    Journal for Research in Mathematics Education, 2014

    2014-01-01

    The NCTM Research Committee invited Richard Lesh, instrumental in the founding of the NCTM Research Presession, to join the members of the current Research Committee in reflecting on its formation, the hopes he and others had in mind when they started it, and the current state and future of research in the field.

  6. In Their Own Words: Teachers' Reflections on Adaptability

    ERIC Educational Resources Information Center

    Vaughn, Margaret; Parsons, Seth A.; Burrowbridge, Sarah Cohen; Weesner, Janice; Taylor, Laurel

    2016-01-01

    Current research explores adaptability by gathering teachers' reflections on their adaptations. However, the field knows little of what the term "adaptability" means to teachers who currently teach in today's educational context. In this article, adaptability is discussed from the perspectives of 3 practicing classroom educators,…

  7. Troubling Muddy Waters: Problematizing Reflective Practice in Global Medical Education.

    PubMed

    Naidu, Thirusha; Kumagai, Arno K

    2016-03-01

    The idea of exporting the concept of reflective practice for a global medical education audience is growing. However, the uncritical export and adoption of Western concepts of reflection may be inappropriate in non-Western societies. The emphasis in Western medical education on the use of reflection for a specific end--that is, the improvement of individual clinical practice--tends to ignore the range of reflective practice, concentrating on reflection alone while overlooking critical reflection and reflexivity. This Perspective places the concept of reflective practice under a critical lens to explore a broader view for its application in medical education outside the West. The authors suggest that ideas about reflection in medicine and medical education may not be as easily transferable from Western to non-Western contexts as concepts from biomedical science are. The authors pose the question, When "exporting" Western medical education strategies and principles, how often do Western-trained educators authentically open up to the possibility that there are alternative ways of seeing and knowing that may be valuable in educating Western physicians? One answer lies in the assertion that educators should aspire to turn exportation of educational theory into a truly bidirectional, collaborative exchange in which culturally conscious views of reflective practice contribute to humanistic, equitable patient care. This discussion engages in troubling the already-muddy waters of reflective practice by exploring the global applicability of reflective practice as it is currently applied in medical education. The globalization of medical education demands critical reflection on reflection itself. PMID:26630601

  8. Children's Literature-Some Reflections.

    ERIC Educational Resources Information Center

    Root, Shelton L., Jr.

    Ten reflections may be made regarding children's literature and its teaching. The reflections are as follows: (1) Teachers can make a profound difference in the lives of students and should attempt to do so. (2) Teachers of children's literature are a badly fragmented lot and need a common meeting ground where they can share their thinking. (3)…

  9. Reflectivity in Supervision and Teaching.

    ERIC Educational Resources Information Center

    Pavlovic, Steve; Friedland, Billie

    This paper reports on a strategy for encouraging preservice teachers to use reflective techniques when developing lesson plans. A focus on reflective practice incorporates and integrates the minimal teaching competencies required by West Virginia State Teacher Certification. Practicum students must provide evidence demonstrating at least minimal…

  10. Flexible Bistable Cholesteric Reflective Displays

    NASA Astrophysics Data System (ADS)

    Yang, Deng-Ke

    2006-03-01

    Cholesteric liquid crystals (ChLCs) exhibit two stable states at zero field condition-the reflecting planar state and the nonreflecting focal conic state. ChLCs are an excellent candidate for inexpensive and rugged electronic books and papers. This paper will review the display cell structure,materials and drive schemes for flexible bistable cholesteric (Ch) reflective displays.

  11. Ethical Reflections on Becoming Teachers

    ERIC Educational Resources Information Center

    Joseph, Pamela Bolotin

    2016-01-01

    This study analyzes narratives written in a culminating graduate seminar on reflective practice by 36 new secondary teachers who were asked to consider their moral beliefs, moral values and system of ethics as they reflected on their recent student teaching experiences. The findings explore how the participants depicted their constructed moral…

  12. Reflections on Justice in Schooling

    ERIC Educational Resources Information Center

    First, Patricia F.

    2012-01-01

    This article is a reflection on the concept of justice as practiced in the public schools in the United States. Examples of justice denied or misconstrued are included. Cases, stories, and concepts invite educational leaders to reflect anew on delivering justice in education to all children. Underlying the article is the belief that understanding…

  13. Can Reflective Practice Be Taught?

    ERIC Educational Resources Information Center

    Edwards, Gail; Thomas, Gary

    2010-01-01

    Almost ubiquitous in discourses about the development of teachers, reflective practice describes the process that occurs when persons are apprenticed to any meaningful activity. But reflective practice is a descriptive term for that process: it does not imply that the process is itself open to dissection and instruction. We contend that mistaken…

  14. Classroom Renewal through Teacher Reflection.

    ERIC Educational Resources Information Center

    Schoenbach, Ruth

    1994-01-01

    Describes a high school staff development project that successfully improved student communication skills. In the project, teacher reflection was critical in changing classroom practice, and it led to improved student outcomes. The article describes the project, vehicles for supporting teacher reflection, and lessons learned in using reflective…

  15. Accurate boundary conditions for exterior problems in gas dynamics

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.

    1988-01-01

    The numerical solution of exterior problems is typically accomplished by introducing an artificial, far field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.

  16. Accurate boundary conditions for exterior problems in gas dynamics

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.

    1988-01-01

    The numerical solution of exterior problems is typically accomplished by introducing an artificial, far-field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far-field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.

  17. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  18. Accurately measuring MPI broadcasts in a computational grid

    SciTech Connect

    Karonis N T; de Supinski, B R

    1999-05-06

    An MPI library's implementation of broadcast communication can significantly affect the performance of applications built with that library. In order to choose between similar implementations or to evaluate available libraries, accurate measurements of broadcast performance are required. As we demonstrate, existing methods for measuring broadcast performance are either inaccurate or inadequate. Fortunately, we have designed an accurate method for measuring broadcast performance, even in a challenging grid environment. Measuring broadcast performance is not easy. Simply sending one broadcast after another allows them to proceed through the network concurrently, thus resulting in inaccurate per broadcast timings. Existing methods either fail to eliminate this pipelining effect or eliminate it by introducing overheads that are as difficult to measure as the performance of the broadcast itself. This problem becomes even more challenging in grid environments. Latencies a long different links can vary significantly. Thus, an algorithm's performance is difficult to predict from it's communication pattern. Even when accurate pre-diction is possible, the pattern is often unknown. Our method introduces a measurable overhead to eliminate the pipelining effect, regardless of variations in link latencies. choose between different available implementations. Also, accurate and complete measurements could guide use of a given implementation to improve application performance. These choices will become even more important as grid-enabled MPI libraries [6, 7] become more common since bad choices are likely to cost significantly more in grid environments. In short, the distributed processing community needs accurate, succinct and complete measurements of collective communications performance. Since successive collective communications can often proceed concurrently, accurately measuring them is difficult. Some benchmarks use knowledge of the communication algorithm to predict the

  19. Optimal Current Transfer in Dendrites

    PubMed Central

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  20. Segmentation of diffuse reflectance hyperspectral datasets with noise for detection of Melanoma.

    PubMed

    Hennessy, Ricky; Bish, Sheldon; Tunnell, James W; Markey, Mia K

    2012-01-01

    We present a segmentation algorithm that allows optical properties to be extracted from diffuse reflectance hyperspectral datasets with a speedup of three orders of magnitude when compared to current methods. Such data could be used for the detection of melanoma. The algorithm first performs dimensionality reduction using principal component analysis, and then the image is segmented using k-means clustering. The mean spectrum from each cluster is then calculated and can be used to extract chemical information. By reducing the number of spectra to be analyzed, extraction of physiological information can be achieved three orders of magnitude faster than methods requiring the analysis of every spectrum in the hyperspectral dataset. The effect of noise on the ability of the algorithm to accurately segment images was tested using digital phantoms, for which the noise level was under the control of the investigators. The analysis showed a linear relationship between the level of noise and the smallest difference in scattering that the algorithm was able to accurately detect and segment. This finding can be used to determine the maximum amount of noise in the imaging system that will still allow detection of the difference in optical properties between non-melanoma and melanoma. PMID:23366182

  1. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  2. Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties

    PubMed Central

    Chen, Yu-Wen; Tseng, Sheng-Hao

    2015-01-01

    In general, diffuse reflectance spectroscopy (DRS) systems work with photon diffusion models to determine the absorption coefficient μa and reduced scattering coefficient μs' of turbid samples. However, in some DRS measurement scenarios, such as using short source-detector separations to investigate superficial tissues with comparable μa and μs', photon diffusion models might be invalid or might not have analytical solutions. In this study, a systematic workflow of constructing a rapid, accurate photon transport model that is valid at short source-detector separations (SDSs) and at a wide range of sample albedo is revealed. To create such a model, we first employed a GPU (Graphic Processing Unit) based Monte Carlo model to calculate the reflectance at various sample optical property combinations and established a database at high speed. The database was then utilized to train an artificial neural network (ANN) for determining the sample absorption and reduced scattering coefficients from the reflectance measured at several SDSs without applying spectral constraints. The robustness of the produced ANN model was rigorously validated. We evaluated the performance of a successfully trained ANN using tissue simulating phantoms. We also determined the 500-1000 nm absorption and reduced scattering spectra of in-vivo skin using our ANN model and found that the values agree well with those reported in several independent studies. PMID:25798300

  3. Inference of dense spectral reflectance images from sparse reflectance measurement using non-linear regression modeling

    NASA Astrophysics Data System (ADS)

    Deglint, Jason; Kazemzadeh, Farnoud; Wong, Alexander; Clausi, David A.

    2015-09-01

    One method to acquire multispectral images is to sequentially capture a series of images where each image contains information from a different bandwidth of light. Another method is to use a series of beamsplitters and dichroic filters to guide different bandwidths of light onto different cameras. However, these methods are very time consuming and expensive and perform poorly in dynamic scenes or when observing transient phenomena. An alternative strategy to capturing multispectral data is to infer this data using sparse spectral reflectance measurements captured using an imaging device with overlapping bandpass filters, such as a consumer digital camera using a Bayer filter pattern. Currently the only method of inferring dense reflectance spectra is the Wiener adaptive filter, which makes Gaussian assumptions about the data. However, these assumptions may not always hold true for all data. We propose a new technique to infer dense reflectance spectra from sparse spectral measurements through the use of a non-linear regression model. The non-linear regression model used in this technique is the random forest model, which is an ensemble of decision trees and trained via the spectral characterization of the optical imaging system and spectral data pair generation. This model is then evaluated by spectrally characterizing different patches on the Macbeth color chart, as well as by reconstructing inferred multispectral images. Results show that the proposed technique can produce inferred dense reflectance spectra that correlate well with the true dense reflectance spectra, which illustrates the merits of the technique.

  4. Combined EUV reflectance and X-ray reflectivity data analysis of periodic multilayer structures.

    PubMed

    Yakunin, S N; Makhotkin, I A; Nikolaev, K V; van de Kruijs, R W E; Chuev, M A; Bijkerk, F

    2014-08-25

    We present a way to analyze the chemical composition of periodical multilayer structures using the simultaneous analysis of grazing incidence hard X-Ray reflectivity (GIXR) and normal incidence extreme ultraviolet reflectance (EUVR). This allows to combine the high sensitivity of GIXR data to layer and interface thicknesses with the sensitivity of EUVR to the layer densities and atomic compositions. This method was applied to the reconstruction of the layered structure of a LaN/B multilayer mirror with 3.5 nm periodicity. We have compared profiles obtained by simultaneous EUVR and GIXR and GIXR-only data analysis, both reconstructed profiles result in a similar description of the layered structure. However, the simultaneous analysis of both EUVR and GIXR by a single algorithm lead to a ∼ 2x increased accuracy of the reconstructed layered model, or a more narrow range of solutions, as compared to the GIXR analysis only. It also explains the inherent difficulty of accurately predicting EUV reflectivity from a GIXR-only analysis. PMID:25321217

  5. It's About Time: How Accurate Can Geochronology Become?

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Baldwin, S.; Caffee, M. W.; Gehrels, G. E.; Schoene, B.; Shuster, D. L.; Singer, B. S.

    2015-12-01

    As isotope ratio precisions have improved to as low as ±1 ppm, geochronologic precision has remained essentially unchanged. This largely reflects the nature of radioactivity whereby the parent decays into a different chemical species thus putting as much emphasis on the determining inter-element ratios as isotopic. Even the best current accuracy grows into errors of >0.6 m.y. during the Paleozoic - a span of time equal to ¼ of the Pleistocene. If we are to understand the nature of Paleozoic species variation and climate change at anything like the Cenozoic, we need a 10x improvement in accuracy. The good news is that there is no physical impediment to realizing this. There are enough Pb* atoms in the outer few μm's of a Paleozoic zircon grown moments before eruption to permit ±0.01% accuracy in the U-Pb system. What we need are the resources to synthesize the spikes, enhance ionization yields, exploit microscale sampling, and improve knowledge of λ correspondingly. Despite advances in geochronology over the past 40 years (multicollection, multi-isotope spikes, in situ dating), our ability to translate a daughter atom into a detected ion has remained at the level of 1% or so. This means that a ~102 increase in signal can be achieved before we approach a physical limit. Perhaps the most promising approach is use of broad spectrum lasers that can ionize all neutrals. Radical new approaches to providing mass separation of such signals are emerging, including trapped ion cyclotron resonance and multi-turn, sputtered neutral TOF spectrometers capable of mass resolutions in excess of 105. These innovations hold great promise in geochronology but are largely being developed for cosmochemistry. This may make sense at first glance as cosmochemists are classically atom-limited (IDPs, stardust) but can be a misperception as the outer few μm's of a zircon may represent no more mass than a stardust mote. To reach the fundamental limits of geochronologic signals we need to

  6. Plant canopy specular reflectance model

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.

    1985-01-01

    A model is derived for the amount of light specularly reflected and polarized by a plant canopy. The model is based on the morphological and phenological characteristics of the canopy and upon the Fresnel equations of optics. The theory demonstrates that the specular reflectance of the plant canopy is a function of the angle of incidence and potentially contains information to help discriminate between species. The theory relates the specular reflectance to botanical condition of the canopy - to factors such as development stage, plant vigor, and leaf area index (LAI).

  7. Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis.

    PubMed Central

    Sieracki, M E; Reichenbach, S E; Webb, K L

    1989-01-01

    The accurate measurement of bacterial and protistan cell biomass is necessary for understanding their population and trophic dynamics in nature. Direct measurement of fluorescently stained cells is often the method of choice. The tedium of making such measurements visually on the large numbers of cells required has prompted the use of automatic image analysis for this purpose. Accurate measurements by image analysis require an accurate, reliable method of segmenting the image, that is, distinguishing the brightly fluorescing cells from a dark background. This is commonly done by visually choosing a threshold intensity value which most closely coincides with the outline of the cells as perceived by the operator. Ideally, an automated method based on the cell image characteristics should be used. Since the optical nature of edges in images of light-emitting, microscopic fluorescent objects is different from that of images generated by transmitted or reflected light, it seemed that automatic segmentation of such images may require special considerations. We tested nine automated threshold selection methods using standard fluorescent microspheres ranging in size and fluorescence intensity and fluorochrome-stained samples of cells from cultures of cyanobacteria, flagellates, and ciliates. The methods included several variations based on the maximum intensity gradient of the sphere profile (first derivative), the minimum in the second derivative of the sphere profile, the minimum of the image histogram, and the midpoint intensity. Our results indicated that thresholds determined visually and by first-derivative methods tended to overestimate the threshold, causing an underestimation of microsphere size. The method based on the minimum of the second derivative of the profile yielded the most accurate area estimates for spheres of different sizes and brightnesses and for four of the five cell types tested. A simple model of the optical properties of fluorescing objects and

  8. Reflectance and Fluorescence Spectral Recovery via Actively Lit RGB Images.

    PubMed

    Fu, Ying; Lam, Antony; Sato, Imari; Okabe, Takahiro; Sato, Yoichi

    2016-07-01

    In recent years, fluorescence analysis of scenes has received attention in computer vision. Fluorescence can provide additional information about scenes, and has been used in applications such as camera spectral sensitivity estimation, 3D reconstruction, and color relighting. In particular, hyperspectral images of reflective-fluorescent scenes provide a rich amount of data. However, due to the complex nature of fluorescence, hyperspectral imaging methods rely on specialized equipment such as hyperspectral cameras and specialized illuminants. In this paper, we propose a more practical approach to hyperspectral imaging of reflective-fluorescent scenes using only a conventional RGB camera and varied colored illuminants. The key idea of our approach is to exploit a unique property of fluorescence: the chromaticity of fluorescent emissions are invariant under different illuminants. This allows us to robustly estimate spectral reflectance and fluorescent emission chromaticity. We then show that given the spectral reflectance and fluorescent chromaticity, the fluorescence absorption and emission spectra can also be estimated. We demonstrate in results that all scene spectra can be accurately estimated from RGB images. Finally, we show that our method can be used to accurately relight scenes under novel lighting. PMID:27295456

  9. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  10. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  11. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  12. A high order accurate difference scheme for complex flow fields

    SciTech Connect

    Dexun Fu; Yanwen Ma

    1997-06-01

    A high order accurate finite difference method for direct numerical simulation of coherent structure in the mixing layers is presented. The reason for oscillation production in numerical solutions is analyzed. It is caused by a nonuniform group velocity of wavepackets. A method of group velocity control for the improvement of the shock resolution is presented. In numerical simulation the fifth-order accurate upwind compact difference relation is used to approximate the derivatives in the convection terms of the compressible N-S equations, a sixth-order accurate symmetric compact difference relation is used to approximate the viscous terms, and a three-stage R-K method is used to advance in time. In order to improve the shock resolution the scheme is reconstructed with the method of diffusion analogy which is used to control the group velocity of wavepackets. 18 refs., 12 figs., 1 tab.

  13. Remineralization of enamel caries can decrease optical reflectivity.

    PubMed

    Jones, R S; Fried, D

    2006-09-01

    The remineralization of enamel caries can lead to distinct optical changes within a lesion. We hypothesized that the restoration of mineral volume would result in a measurable decrease in the depth-resolved reflectivity of polarized light from the lesion. To test this hypothesis, we measured optical changes in artificial caries undergoing remineralization as a function of depth, using Polarization-sensitive Optical Coherence Tomography (PS-OCT). Lesions were imaged non-destructively before and after exposure to a remineralization regimen. After imaging, microradiographs of histological thin sections indicated that the significant reflectivity reduction measured by PS-OCT accurately represented the increase in mineral content within a larger repaired surface zone. Mineral volume changes arising from remineralization can be measured on the basis of the optical reflectivity of the lesion. PMID:16931861

  14. The Advantages of an Attenuated Total Internal Reflection Infrared Microspectroscopic Imaging Approach for Kidney Biopsy Analysis

    PubMed Central

    Gulley-Stahl, Heather J.; Bledsoe, Sharon B.; Evan, Andrew P.; Sommer, André J.

    2011-01-01

    The benefits of an ATR-FTIR imaging approach for kidney biopsy analysis are described. Biopsy sections collected from kidney stone formers are analyzed at the initial stages of stone development to provide insights into stone growth and formation. The majority of tissue analysis currently conducted with IR microspectroscopy is performed with a transflection method. The research presented in this manuscript demonstrates that ATR overcomes many of the disadvantages of transflection or transmission measurements for tissue analysis including an elimination of spectral artifacts. When kidney biopsies with small mineral inclusions are analyzed with a transflection approach, specular reflection, and the Christiansen effect (anomalous dispersion) can occur leading to spectral artifacts. Another effect specific to the analysis of mineral inclusions present in kidney biopsies is known as the reststrahlen effect where the inclusions become strong reflectors near an absorption band. ATR eliminates these effects by immersing the sample in a high index medium. Additionally, the focused beam size for ATR is decreased by a factor of four when a germanium internal reflection element is used, allowing the acquisition of spectra from small mineral inclusions several micrometers in diameter. If quantitative analysis of small mineral inclusions is ultimately desired, ATR provides the photometrically accurate spectra necessary for quantification. PMID:20132593

  15. Accurate stress resultants equations for laminated composite deep thick shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.

  16. Must Kohn-Sham oscillator strengths be accurate at threshold?

    SciTech Connect

    Yang Zenghui; Burke, Kieron; Faassen, Meta van

    2009-09-21

    The exact ground-state Kohn-Sham (KS) potential for the helium atom is known from accurate wave function calculations of the ground-state density. The threshold for photoabsorption from this potential matches the physical system exactly. By carefully studying its absorption spectrum, we show the answer to the title question is no. To address this problem in detail, we generate a highly accurate simple fit of a two-electron spectrum near the threshold, and apply the method to both the experimental spectrum and that of the exact ground-state Kohn-Sham potential.

  17. Accurate upwind-monotone (nonoscillatory) methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1992-01-01

    The well known MUSCL scheme of Van Leer is constructed using a piecewise linear approximation. The MUSCL scheme is second order accurate at the smooth part of the solution except at extrema where the accuracy degenerates to first order due to the monotonicity constraint. To construct accurate schemes which are free from oscillations, the author introduces the concept of upwind monotonicity. Several classes of schemes, which are upwind monotone and of uniform second or third order accuracy are then presented. Results for advection with constant speed are shown. It is also shown that the new scheme compares favorably with state of the art methods.

  18. Student Reflective Writing: Cognition and Affect before, during, and after Study Abroad

    ERIC Educational Resources Information Center

    Savicki, Victor; Price, Michele V.

    2015-01-01

    Reflective thinking is an important feature of study-abroad learning, yet research on reflection in this context is sparse. The current study examined student reflection on 3 content areas (Academic Expectations, Cultural Expectations, and Psychological Issues) at 3 times (before, during, and after study abroad). A content analysis approach with…

  19. Exploring Pre-Service Classroom Teachers' Reflections on Teaching Physical Education

    ERIC Educational Resources Information Center

    Tsangaridou, Niki; Polemitou, Irene

    2015-01-01

    The aim of the current study was to provide descriptions of the nature of pre-service primary teachers' reflection during their student teaching experience. The principal research question that guided the investigation was "what do these pre-service classroom teachers reflect on during their teaching and how is this reflection related to…

  20. The Constellation-X Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Allen, Jean C.

    2006-01-01

    The Reflection Grating Spectrometer on the Constellation-X mission will provide high sensitivity, high-resolution spectra in the soft x-ray band. The RGS performance requirements are specified as a resolving power of greater than 300 and an effective area of greater than 1000 sq cm across most of the 0.25 to 2.0 keV band. These requirements are driven by the science goals of the mission. We will describe the performance requirements and goals, the reference design of the spectrometer, and examples of science cases where we expect data from the RGS to significantly advance our current understanding of the universe.

  1. Crossed Andreev reflection-induced magnetoresistance.

    PubMed

    Giazotto, Francesco; Taddei, Fabio; Beltram, Fabio; Fazio, Rosario

    2006-08-25

    We show that very large negative magnetoresistance can be obtained in magnetic trilayers in a current-in-plane geometry owing to the existence of crossed Andreev reflection. This spin valve consists of a thin superconducting film sandwiched between two ferromagnetic layers whose magnetization is allowed to be either parallelly or antiparallelly aligned. For a suitable choice of structure parameters and nearly fully spin-polarized ferromagnets, the magnetoresistance can exceed -80%. Our results are relevant for the design and implementation of spintronic devices exploiting ferromagnet-superconductor structures. PMID:17026324

  2. In vivo assessment of human brain oscillations during application of transcranial electric currents.

    PubMed

    Soekadar, Surjo R; Witkowski, Matthias; Cossio, Eliana G; Birbaumer, Niels; Robinson, Stephen E; Cohen, Leonardo G

    2013-01-01

    Brain oscillations reflect pattern formation of cell assemblies' activity, which is often disturbed in neurological and psychiatric diseases like depression, schizophrenia and stroke. In the neurobiological analysis and treatment of these conditions, transcranial electric currents applied to the brain proved beneficial. However, the direct effects of these currents on brain oscillations have remained an enigma because of the inability to record them simultaneously. Here we report a novel strategy that resolves this problem. We describe accurate reconstructed localization of dipolar sources and changes of brain oscillatory activity associated with motor actions in primary cortical brain regions undergoing transcranial electric stimulation. This new method allows for the first time direct measurement of the effects of non-invasive electrical brain stimulation on brain oscillatory activity and behavior. PMID:23787780

  3. Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar.

    PubMed

    Nakajima, T Y; Imai, T; Uchino, O; Nagai, T

    1999-08-20

    The influence of daylight and noise current on cloud and aerosol observations by realistic spaceborne lidar was examined by computer simulations. The reflected solar radiations, which contaminate the daytime return signals of lidar operations, were strictly and explicitly estimated by accurate radiative transfer calculations. It was found that the model multilayer cirrus clouds and the boundary layer aerosols could be observed during the daytime and the nighttime with only a few laser shots. However, high background noise and noise current make it difficult to observe volcanic aerosols in middle and upper atmospheric layers. Optimal combinations of the laser power and receiver field of view are proposed to compensate for the negative influence that is due to these noises. For the computer simulations, we used a realistic set of lidar parameters similar to the Experimental Lidar in-Space Equipment of the National Space Development Agency of Japan.

  4. Propagation of structured light beams after multiple reflections in a spiral phase plate

    NASA Astrophysics Data System (ADS)

    Rumala, Yisa S.

    2015-11-01

    This work presents propagation dynamics of structured light (complex light) containing optical vortices after it has undergone multiple reflections in a spiral phase plate (SPP) device having a nonzero surface reflection. In the calculations, the thick-plate approximation is assumed as it is expected to give a more accurate representation of the standard geometry of an SPP device from a low-surface reflection to a high-surface reflection. Calculations showing the propagation of counter-rotating optical vortices are presented, and the effect of the statistical nature of photons on the observation of the angular intensity modulation of the beam is discussed.

  5. Reflection of cylindrical surface waves.

    PubMed

    Gordon, Reuven

    2009-10-12

    The reflection of the radially polarized surface wave on a metal wire at an abrupt end is derived. This theory allows for straightforward calculation of the reflection coefficient, including the phase and the amplitude, which will prove useful to the many applications in nanoplasmonics and terahertz spectroscopy. The theory shows excellent quantitative agreement with past comprehensive numerical simulations for small wires and for predicting the minima in reflection for larger wires. Using this theory, the wavelength dependent reflection is calculated for gold rods of diameter 10 nm, 26 nm and 85 nm, from which the Fabry-Perot resonance wavelengths are found. The Fabry-Perot resonances show good agreement with experimentally measured surface plasmon resonances in nanorods. This demonstrates the predictive ability of the theory for applications involving widely-used nanorods, optical antennas and plasmonic resonators. PMID:20372593

  6. Parental reflective functioning: an introduction.

    PubMed

    Slade, Arietta

    2005-09-01

    Reflective functioning refers to the essential human capacity to understand behavior in light of underlying mental states and intentions. The construct, introduced by Fonagy, Steele, Steele, Moran, and Higgitt in 1991, and elaborated by Fonagy and his colleagues over the course of the next decade, has had an enormous impact on developmental theory and clinical practice. This paper introduces the construct of parental reflective functioning, which refers to the parent's capacity to hold the child's mental states in mind, and begins with a review of Fonagy and his colleagues' essential ideas regarding the reflective function. Next, the applicability of this construct to parental representations of the child and the parent-child relationship is considered. A system for coding parental reflective functioning, which will serve as the organizing framework for this special issue, is described. Finally, the three papers that make up this special section are introduced.

  7. Ocular tuberculosis: current perspectives

    PubMed Central

    Shakarchi, Faiz I

    2015-01-01

    The World Health Organization currently estimates that nearly two billion people, or one-third of the world’s population, are infected by tuberculosis, and that roughly 10% of the infected people are symptomatic. Tuberculosis affects the lungs in 80% of patients, while in the remaining 20% the disease may affect other organs, including the eye. Uveitis can be seen concurrently with tuberculosis, but a direct association is difficult to prove. Ocular tuberculosis is usually not associated with clinical evidence of pulmonary tuberculosis, as up to 60% of extrapulmonary tuberculosis patients may not have pulmonary disease. The diagnosis of tuberculous uveitis is often problematic and in nearly all reported cases, the diagnosis was only presumptive. Tuberculous uveitis is a great mimicker of various uveitis entities and it can be considered in the differential diagnosis of any type of intraocular inflammation. It is still unknown if ocular manifestations result from a direct mycobacterium infection or hypersensitivity reaction and this is reflected on the management of tuberculous uveitis. Prevalence of tuberculosis as an etiology of uveitis may reach up to 10% in endemic areas. Tuberculous uveitis is a vision-threatening disease that inevitably leads to blindness if not properly diagnosed and treated. The aim of this review is to illustrate the various clinical features and management of presumed tuberculous uveitis. The current review focuses on the diagnostic criteria, significance of tuberculin skin test, and use of systemic corticosteroids in the management of tuberculous uveitis as recommended in recent publications. PMID:26648690

  8. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  9. IDO Scheme for Accurate Computation of Seismic Waves I. Plane-Wave Response of a Vertically Heterogeneous Medium

    NASA Astrophysics Data System (ADS)

    Ohkawauchi, K.; Takenaka, H.

    2006-12-01

    We propose a new method for the calculation of seismic wave propagation using the interpolated differential operator (IDO, Aoki,1997) which is a numerical method for solving the partial differential equations and is based on a high accurate interpolation of the profile for the independent variables over a local area. It improves the accuracy of wave computation with high accuracy because the local interpolation can represent high order behavior of wave field between grid points. In addition, locality of this approach makes possible treatment of boundary conditions exactly. In this study, we address computation of plane-wave responses of vertically heterogeneous structure models. We then solve the elastodynamic equation for plane wave derived by Tanaka and Takenaka (2005). The equations to be solved in our method are not only velocity-stress equations but also the corresponding ones integrated over each cell between adjacent grid points. We use two staggered-grid systems which can be non-uniform, and then discretize the governing equations using a finite-difference scheme of second-order accurate in time, and the second-order Hermite interpolation in space. In this method, the second-order Hermite interpolation of particle velocity or stress is obtained from the values at the adjacent two grid points and the integration value at the cell between the grid points. The time marching of the original and integrated quantities are proceeded, and in the following time step the quantities are computed on the alternative grid system to that used in the current time step. In implementation of a free-surface boundary condition, all field quantities locate just on the free surface. Their computational accuracy is the same order as those in the other spatial domain. We also implement the interface condition in a similarly way to the free surface condition. We used some simple models to test the scheme. The results showed that the waveforms calculated by our method fit the

  10. Differences in the Association between Segment and Language: Early Bilinguals Pattern with Monolinguals and Are Less Accurate than Late Bilinguals.

    PubMed

    Blanco, Cynthia P; Bannard, Colin; Smiljanic, Rajka

    2016-01-01

    Early bilinguals often show as much sensitivity to L2-specific contrasts as monolingual speakers of the L2, but most work on cross-language speech perception has focused on isolated segments, and typically only on neighboring vowels or stop contrasts. In tasks that include sounds in context, listeners' success is more variable, so segment discrimination in isolation may not adequately represent the phonetic detail in stored representations. The current study explores the relationship between language experience and sensitivity to segmental cues in context by comparing the categorization patterns of monolingual English listeners and early and late Spanish-English bilinguals. Participants categorized nonce words containing different classes of English- and Spanish-specific sounds as being more English-like or more Spanish-like; target segments included phonemic cues, cues for which there is no analogous sound in the other language, or phonetic cues, cues for which English and Spanish share the category but for which each language varies in its phonetic implementation. Listeners' language categorization accuracy and reaction times were analyzed. Our results reveal a largely uniform categorization pattern across listener groups: Spanish cues were categorized more accurately than English cues, and phonemic cues were easier for listeners to categorize than phonetic cues. There were no differences in the sensitivity of monolinguals and early bilinguals to language-specific cues, suggesting that the early bilinguals' exposure to Spanish did not fundamentally change their representations of English phonology. However, neither did the early bilinguals show more sensitivity than the monolinguals to Spanish sounds. The late bilinguals however, were significantly more accurate than either of the other groups. These findings indicate that listeners with varying exposure to English and Spanish are able to use language-specific cues in a nonce-word language categorization task

  11. Accurate Time-Dependent Traveling-Wave Tube Model Developed for Computational Bit-Error-Rate Testing

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2001-01-01

    The phenomenal growth of the satellite communications industry has created a large demand for traveling-wave tubes (TWT's) operating with unprecedented specifications requiring the design and production of many novel devices in record time. To achieve this, the TWT industry heavily relies on computational modeling. However, the TWT industry's computational modeling capabilities need to be improved because there are often discrepancies between measured TWT data and that predicted by conventional two-dimensional helical TWT interaction codes. This limits the analysis and design of novel devices or TWT's with parameters differing from what is conventionally manufactured. In addition, the inaccuracy of current computational tools limits achievable TWT performance because optimized designs require highly accurate models. To address these concerns, a fully three-dimensional, time-dependent, helical TWT interaction model was developed using the electromagnetic particle-in-cell code MAFIA (Solution of MAxwell's equations by the Finite-Integration-Algorithm). The model includes a short section of helical slow-wave circuit with excitation fed by radiofrequency input/output couplers, and an electron beam contained by periodic permanent magnet focusing. A cutaway view of several turns of the three-dimensional helical slow-wave circuit with input/output couplers is shown. This has been shown to be more accurate than conventionally used two-dimensional models. The growth of the communications industry has also imposed a demand for increased data rates for the transmission of large volumes of data. To achieve increased data rates, complex modulation and multiple access techniques are employed requiring minimum distortion of the signal as it is passed through the TWT. Thus, intersymbol interference (ISI) becomes a major consideration, as well as suspected causes such as reflections within the TWT. To experimentally investigate effects of the physical TWT on ISI would be

  12. Differences in the Association between Segment and Language: Early Bilinguals Pattern with Monolinguals and Are Less Accurate than Late Bilinguals

    PubMed Central

    Blanco, Cynthia P.; Bannard, Colin; Smiljanic, Rajka

    2016-01-01

    Early bilinguals often show as much sensitivity to L2-specific contrasts as monolingual speakers of the L2, but most work on cross-language speech perception has focused on isolated segments, and typically only on neighboring vowels or stop contrasts. In tasks that include sounds in context, listeners’ success is more variable, so segment discrimination in isolation may not adequately represent the phonetic detail in stored representations. The current study explores the relationship between language experience and sensitivity to segmental cues in context by comparing the categorization patterns of monolingual English listeners and early and late Spanish–English bilinguals. Participants categorized nonce words containing different classes of English- and Spanish-specific sounds as being more English-like or more Spanish-like; target segments included phonemic cues, cues for which there is no analogous sound in the other language, or phonetic cues, cues for which English and Spanish share the category but for which each language varies in its phonetic implementation. Listeners’ language categorization accuracy and reaction times were analyzed. Our results reveal a largely uniform categorization pattern across listener groups: Spanish cues were categorized more accurately than English cues, and phonemic cues were easier for listeners to categorize than phonetic cues. There were no differences in the sensitivity of monolinguals and early bilinguals to language-specific cues, suggesting that the early bilinguals’ exposure to Spanish did not fundamentally change their representations of English phonology. However, neither did the early bilinguals show more sensitivity than the monolinguals to Spanish sounds. The late bilinguals however, were significantly more accurate than either of the other groups. These findings indicate that listeners with varying exposure to English and Spanish are able to use language-specific cues in a nonce-word language categorization

  13. Reflections on wisdom and self.

    PubMed

    Samuel, Sophie

    2012-12-01

    The end of the year is often a time of reflection. For most of us, 2012 will have brought events that were planned, perhaps for years, as well as others that were full of serendipity or unexpected misfortune. We are invariably older than we were in January. We approach December with our own rituals: summer holidays, Hanukkah, Christmas or New Year's Eve. We may reflect on our joys and disappointments, or our actions and lessons learnt. PMID:23342382

  14. Reflections on wisdom and self.

    PubMed

    Samuel, Sophie

    2012-12-01

    The end of the year is often a time of reflection. For most of us, 2012 will have brought events that were planned, perhaps for years, as well as others that were full of serendipity or unexpected misfortune. We are invariably older than we were in January. We approach December with our own rituals: summer holidays, Hanukkah, Christmas or New Year's Eve. We may reflect on our joys and disappointments, or our actions and lessons learnt.

  15. Reflective Practice in Physical Education and Physical Education Teacher Education: A Review of the Literature since 1995

    ERIC Educational Resources Information Center

    Standal, Oyvind F.; Moe, Vegard F.

    2013-01-01

    Reflection and reflective practice are key concepts in the educational literature as well as in research on physical education (PE) and physical education teacher education (PETE). The purpose of this article is to review the current empirical knowledge base for reflection and reflective practice in PE and PETE from 1995 to 2011. The review…

  16. Service robots in the mirror of reflective research.

    PubMed

    Decker, Michael

    2012-12-01

    Service robotics has increasingly become the focus of reflective research on new technologies over the last decade. The current state of technology is characterized by prototypical robot systems developed for specific application scenarios outside factories. This has enabled context-based Science and Technology Studies and technology assessments of service robotic systems. This contribution describes the status quo of this reflective research as the starting point for interdisciplinary technology assessment (TA), taking account of TA studies and, in particular, of publications from the ethical and empirical social science perspective. Finally, based on this status quo, evaluation criteria for service robots are developed, which are relevant for further reflective research.

  17. Rethinking reflective education: What would Dewey have done?

    PubMed

    Rolfe, Gary

    2014-08-01

    Reflective practice has largely failed to live up to its promise of offering a radical critique of technical rationality and of ushering in a new philosophy of nursing practice and education. I argue in this paper that the failure lies not with the idea of reflective practice itself, but with the way in which it has been misunderstood, misinterpreted and misapplied by managers, theorists, educators and practitioners over the past two decades. I suggest that if reflective practice is to offer a credible alternative to the current technical-rational evidence-based approach to nursing, then it needs to rediscover its radical origins in the work of John Dewey and Donald Schön. In particular, nurses need to look beyond their current fixation with reflection-on-action and engage fully with Schön's notion of the reflective practitioner who reflects in action through on-the-spot experimentation and hypothesis testing. Finally, the implications of this radical approach to reflective practice are developed in relation to the practice of nursing, education and scholarship, where they are applied to the challenge of resolving what Rittel and Webber refer to as 'wicked problems'.

  18. Experiments on Guderley Mach reflection

    NASA Astrophysics Data System (ADS)

    Skews, Beric William; Li, Gavin; Paton, Randall

    2009-06-01

    Experiments have been conducted in a large shock tube to examine the four-wave shock reflection pattern, now known as Guderley reflection (GR). The fourth wave, an expansion, is clearly identified, as is the supersonic patch behind the reflected wave. A shocklet terminating the supersonic patch behind the reflected wave is identified, which forms a second triple point further down the Mach stem. Evidence is presented showing the presence of more than one expansion wave and more than one shocklet, thus indicating the existence of more than one supersonic patch. In order to distinguish between cases with a single patch without the shocklet as originally proposed by Guderley and found in some computations, and the indications of a multi-patch geometry found here, and also in other computations, this latter case is designated Guderley Mach reflection (GMR). Multi-exposure images of the shock propagation superimposed on a single image frame enable estimates to be made of the strength of the major waves, and it is shown that the reflected wave is very weak.

  19. Reflections on intuition and expertise.

    PubMed

    Perry, M A

    2000-01-01

    Reflective practice now appears firmly established in the English speaking world of professional nursing practice and development. Outside this linguistic context, however, the concept seems less well-known. This paper describes an experience drawn from clinical practice and education in French-speaking Switzerland followed by explicit reflection grounded in questions generated by Johns' model for structured reflection. Thus, a concept well-described in the English-language literature underpins an innovative approach to a French-language clinical teaching situation. The professional implications of this situation are explored through meaningful reflection providing new insight into familiar circumstances as they relate to the nurse tutor's role. This exploration is followed by a critical approach to the experience and the subsequent structured reflection in order to address relationships between intuition and expertise and self-awareness through reflection. A hermeneutic perspective provides additional insight into the nurse-patient relationship where both come to the situation with their own 'pre-understandings'. Individual horizons thus endorse a new understanding going beyond taken-for-granted meanings.

  20. Hyperspectral Fluorescence and Reflectance Imaging Instrument

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; O'Neal, S. Duane; Lanoue, Mark; Russell, Jeffrey

    2008-01-01

    The system is a single hyperspectral imaging instrument that has the unique capability to acquire both fluorescence and reflectance high-spatial-resolution data that is inherently spatially and spectrally registered. Potential uses of this instrument include plant stress monitoring, counterfeit document detection, biomedical imaging, forensic imaging, and general materials identification. Until now, reflectance and fluorescence spectral imaging have been performed by separate instruments. Neither a reflectance spectral image nor a fluorescence spectral image alone yields as much information about a target surface as does a combination of the two modalities. Before this system was developed, to benefit from this combination, analysts needed to perform time-consuming post-processing efforts to co-register the reflective and fluorescence information. With this instrument, the inherent spatial and spectral registration of the reflectance and fluorescence images minimizes the need for this post-processing step. The main challenge for this technology is to detect the fluorescence signal in the presence of a much stronger reflectance signal. To meet this challenge, the instrument modulates artificial light sources from ultraviolet through the visible to the near-infrared part of the spectrum; in this way, both the reflective and fluorescence signals can be measured through differencing processes to optimize fluorescence and reflectance spectra as needed. The main functional components of the instrument are a hyperspectral imager, an illumination system, and an image-plane scanner. The hyperspectral imager is a one-dimensional (line) imaging spectrometer that includes a spectrally dispersive element and a two-dimensional focal plane detector array. The spectral range of the current imaging spectrometer is between 400 to 1,000 nm, and the wavelength resolution is approximately 3 nm. The illumination system consists of narrowband blue, ultraviolet, and other discrete