Science.gov

Sample records for accurately reflect current

  1. Ellipsoidal-mirror reflectometer accurately measures infrared reflectance of materials

    NASA Technical Reports Server (NTRS)

    Dunn, S. T.; Richmond, J. C.

    1967-01-01

    Reflectometer accurately measures the reflectance of specimens in the infrared beyond 2.5 microns and under geometric conditions approximating normal irradiation and hemispherical viewing. It includes an ellipsoidal mirror, a specially coated averaging sphere associated with a detector for minimizing spatial and angular sensitivity, and an incident flux chopper.

  2. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown.

  3. Apparatus designed for very accurate measurement of the optical reflection.

    PubMed

    Piombini, Hervé; Voarino, Philippe

    2007-12-20

    The described instrument is a new reflectometer designed to check the normal specular reflectance of 40,000 reflectors necessary for the Laser Megajoule (LMJ). This new reflectometer has a high accuracy over the 400-950 nm wavelength range and allows the delicate measurement of shaped parts. The measurements are relative and several reference mirrors, which are low loss dielectric mirrors [R(lambda)>99.9%], are used for the standardization. The apparatus gives an excellent repeatability (< 0.06% at 2sigma) thanks to its design and automatic focalization imaging system. After a brief review that is related to performance evolution of the spectrophotometers, our facility and its components are described. The methodology of focusing and calibration are explained. The capabilities of our device are illustrated through some measurements realized on flat or shaped samples.

  4. Liquid crystal skin thermometry: an accurate reflection of core temperature?

    PubMed

    Brull, S J; Cunningham, A J; Connelly, N R; O'Connor, T Z; Silverman, D G

    1993-04-01

    Oesophageal, rectal, bladder, tympanic and pulmonary artery sites are used intraoperatively to measure body temperature. However, the temperatures measured at each site have different physiological and practical importance. The present two-part study sought to compare liquid crystal (CR) skin temperature with other temperature monitors which are used routinely during surgery. The first part compared CR with oesophageal (OS) temperature during general inhalational anaesthesia. The second part compared CR with OS, pulmonary artery (PA), and bladder (BL) temperatures during the periods of rapid temperature change associated with cardiopulmonary bypass (CPB). During the first part, the mean difference between OS and CR was -0.14 +/- 0.85 degrees C; this difference remained consistent over time (P < 0.05 by repeated measures analysis of variance). During the second part, the difference in temperature readings between CR and each of the other monitors remained consistent except for CR vs PA and CR vs OS during the cooling period of CPB, when the iced cardioplegia slush directly affected the PA and OS temperatures. This study suggests that CR, an inexpensive and noninvasive means of temperature monitoring, reflects trends in temperature changes in the clinical setting.

  5. An accurate continuous calibration system for high voltage current transformer

    SciTech Connect

    Tong Yue; Li Binhong

    2011-02-15

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  6. Montessori Elementary Philosophy Reflects Current Motivation Theories

    ERIC Educational Resources Information Center

    Murray, Angela

    2011-01-01

    Montessori's theories, developed more than 100 years ago, certainly resonate with current psychological research on improving education. Autonomy, interest, competence, and relatedness form the foundation for three contemporary efforts to organize the vast literature on motivation into a parsimonious theory. These four elements also comprise…

  7. How accurate is the Kubelka-Munk theory of diffuse reflection? A quantitative answer

    NASA Astrophysics Data System (ADS)

    Joseph, Richard I.; Thomas, Michael E.

    2012-10-01

    The (heuristic) Kubelka-Munk theory of diffuse reflectance and transmittance of a film on a substrate, which is widely used because it gives simple analytic results, is compared to the rigorous radiative transfer model of Chandrasekhar. The rigorous model has to be numerically solved, thus is less intuitive. The Kubelka-Munk theory uses an absorption coefficient and scatter coefficient as inputs, similar to the rigorous model of Chandrasekhar. The relationship between these two sets of coefficients is addressed. It is shown that the Kubelka-Munk theory is remarkably accurate if one uses the proper albedo parameter.

  8. Leap of Faith: Does serum luteinizing hormone always accurately reflect central reproductive neuroendocrine activity?

    PubMed Central

    Moenter, Suzanne M.

    2015-01-01

    Function of the central aspects of the hypothalamo-pituitary-gonadal axis has been assessed in a number of ways including direct measurements of hypothalamic output and indirect measures using gonadotropin release from the pituitary as a bioassay for reproductive neuroendocrine activity. Here, methods for monitoring these various parameters are briefly reviewed and then examples presented of both concordance and discrepancy between central and peripheral measurements, with a focus on situations in which elevated GnRH neurosecretion is not reflected accurately by pituitary luteinizing hormone release. Implications for interpretation of gonadotropin data are discussed. PMID:26278916

  9. A fast and accurate image-based measuring system for isotropic reflection materials

    NASA Astrophysics Data System (ADS)

    Kim, Duck Bong; Kim, Kang Yeon; Park, Kang Su; Seo, Myoung Kook; Lee, Kwan H.

    2008-08-01

    We present a novel image-based BRDF (Bidirectional Reflectance Distribution Function) measurement system for materials that have isotropic reflectance properties. Our proposed system is fast due to simple set up and automated operations. It also provides a wide angular coverage and noise reduction capability so that it achieves accuracy that is needed for computer graphics applications. We test the uniformity and constancy of the light source and the reciprocity of the measurement system. We perform a photometric calibration of HDR (High Dynamic Range) camera to recover an accurate radiance map from each HDR image. We verify our proposed system by comparing it with a previous imagebased BRDF measurement system. We demonstrate the efficiency and accuracy of our proposed system by generating photorealistic images of the measured BRDF data that include glossy blue, green plastics, gold coated metal and gold metallic paints.

  10. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  11. Hippocampal theta sequences reflect current goals.

    PubMed

    Wikenheiser, Andrew M; Redish, A David

    2015-02-01

    Hippocampal information processing is discretized by oscillations, and the ensemble activity of place cells is organized into temporal sequences bounded by theta cycles. Theta sequences represent time-compressed trajectories through space. Their forward-directed nature makes them an intuitive candidate mechanism for planning future trajectories, but their connection to goal-directed behavior remains unclear. As rats performed a value-guided decision-making task, the extent to which theta sequences projected ahead of the animal's current location varied on a moment-by-moment basis depending on the rat's goals. Look-ahead extended farther on journeys to distant goals than on journeys to more proximal goals and was predictive of the animal's destination. On arrival at goals, however, look-ahead was similar regardless of where the animal began its journey from. Together, these results provide evidence that hippocampal theta sequences contain information related to goals or intentions, pointing toward a potential spatial basis for planning.

  12. Accurate formula for conversion of tunneling current in dynamic atomic force spectroscopy

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Sugimoto, Yoshiaki

    2010-07-01

    Recent developments in frequency modulation atomic force microscopy enable simultaneous measurement of frequency shift and time-averaged tunneling current. Determination of the interaction force is facilitated using an analytical formula, valid for arbitrary oscillation amplitudes [Sader and Jarvis, Appl. Phys. Lett. 84, 1801 (2004)]. Here we present the complementary formula for evaluation of the instantaneous tunneling current from the time-averaged tunneling current. This simple and accurate formula is valid for any oscillation amplitude and current law. The resulting theoretical framework allows for simultaneous measurement of the instantaneous tunneling current and interaction force in dynamic atomic force microscopy.

  13. Reflection of Constructivist Theories in Current Educational Practice

    ERIC Educational Resources Information Center

    Juvova, Alena; Chudy, Stefan; Neumeister, Pavel; Plischke, Jitka; Kvintova, Jana

    2015-01-01

    In this overview study, we would like to present the basic constructivist approaches that have affected or influenced the current concept of education. The teacher-student interaction is reflected by personality, psychological traits, attitudes and cultural capital of the participants of the educational process as well as the teacher's effort to…

  14. Standardization of vitrinite reflectance measurements in shale petroleum systems: How accurate are my Ro data?

    USGS Publications Warehouse

    Hackley, Paul C.

    2014-01-01

    Vitrinite reflectance generally is considered the most robust thermal maturity parameter available for application to hydrocarbon exploration and petroleum system evaluation. However, until 2011 there was no standardized methodology available to provide guidelines for vitrinite reflectance measurements in shale. Efforts to correct this deficiency resulted in publication of ASTM D7708-11: Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. In 2012-2013, an interlaboratory exercise was conducted to establish precision limits for the measurement technique. Six samples, representing a wide variety of shale, were tested in duplicate by 28 analysts in 22 laboratories from 14 countries. Samples ranged from immature to overmature (Ro 0.31-1.53%), from organic-rich to organic-lean (1-22 wt.% total organic carbon), and contained Type I (lacustrine), Type II (marine), and Type III (terrestrial) kerogens. Repeatability values (difference between repetitive results from same operator, same conditions) ranged from 0.03-0.11% absolute reflectance, whereas reproducibility values (difference between results obtained on same test material by different operators, different laboratories) ranged from 0.12-0.54% absolute reflectance. Repeatability and reproducibility degraded consistently with increasing maturity and decreasing organic content. However, samples with terrestrial kerogens (Type III) fell off this trend, showing improved levels of reproducibility due to higher vitrinite content and improved ease of identification. Operators did not consistently meet the reporting requirements of the test method, indicating that a common reporting template is required to improve data quality. The most difficult problem encountered was the petrographic distinction of solid bitumens and low-reflecting inert macerals from vitrinite when vitrinite occurred with reflectance ranges overlapping the other components. Discussion among

  15. Accurate elevation and normal moveout corrections of seismic reflection data on rugged topography

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Chen, C.; Zhang, G.

    2005-01-01

    The application of the seismic reflection method is often limited in areas of complex terrain. The problem is the incorrect correction of time shifts caused by topography. To apply normal moveout (NMO) correction to reflection data correctly, static corrections are necessary to be applied in advance for the compensation of the time distortions of topography and the time delays from near-surface weathered layers. For environment and engineering investigation, weathered layers are our targets, so that the static correction mainly serves the adjustment of time shifts due to an undulating surface. In practice, seismic reflected raypaths are assumed to be almost vertical through the near-surface layers because they have much lower velocities than layers below. This assumption is acceptable in most cases since it results in little residual error for small elevation changes and small offsets in reflection events. Although static algorithms based on choosing a floating datum related to common midpoint gathers or residual surface-consistent functions are available and effective, errors caused by the assumption of vertical raypaths often generate pseudo-indications of structures. This paper presents the comparison of applying corrections based on the vertical raypaths and bias (non-vertical) raypaths. It also provides an approach of combining elevation and NMO corrections. The advantages of the approach are demonstrated by synthetic and real-world examples of multi-coverage seismic reflection surveys on rough topography. ?? The Royal Society of New Zealand 2005.

  16. Logrithmic current simulator generates electrical currents accurately between 10 to the minus 11 ampere to 10 to the minus 3 ampere

    NASA Technical Reports Server (NTRS)

    Wilson, J.

    1966-01-01

    Current generator accurately simulates electric currents in the range of 10 to the minus 11th power to 0.001 ampere. Compensation networks have been devised to improve the accuracy at the lower current levels.

  17. Accurate verification of the conserved-vector-current and standard-model predictions

    SciTech Connect

    Sirlin, A.; Zucchini, R.

    1986-10-20

    An approximate analytic calculation of O(Z..cap alpha../sup 2/) corrections to Fermi decays is presented. When the analysis of Koslowsky et al. is modified to take into account the new results, it is found that each of the eight accurately studied scrFt values differs from the average by approx. <1sigma, thus significantly improving the comparison of experiments with conserved-vector-current predictions. The new scrFt values are lower than before, which also brings experiments into very good agreement with the three-generation standard model, at the level of its quantum corrections.

  18. Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies.

    PubMed

    Arielly, Rani; Ofarim, Ayelet; Noy, Gilad; Selzer, Yoram

    2011-07-13

    Current rectification, i.e., induction of dc current by oscillating electromagnetic fields, is demonstrated in molecular junctions at an optical frequency. The magnitude of rectification is used to accurately determine the effective oscillating potentials in the junctions induced by the irradiating laser. Since the gap size of the junctions used in this study is precisely determined by the length of the embedded molecules, the oscillating potential can be used to calculate the plasmonic enhancement of the electromagnetic field in the junctions. With a set of junctions based on alkyl thiolated molecules with identical HOMO-LUMO gap and different lengths, an exponential dependence of the plasmonic field enhancement on gap size is observed.

  19. Accurate estimation of the RMS emittance from single current amplifier data

    SciTech Connect

    Stockli, Martin P.; Welton, R.F.; Keller, R.; Letchford, A.P.; Thomae, R.W.; Thomason, J.W.G.

    2002-05-31

    This paper presents the SCUBEEx rms emittance analysis, a self-consistent, unbiased elliptical exclusion method, which combines traditional data-reduction methods with statistical methods to obtain accurate estimates for the rms emittance. Rather than considering individual data, the method tracks the average current density outside a well-selected, variable boundary to separate the measured beam halo from the background. The average outside current density is assumed to be part of a uniform background and not part of the particle beam. Therefore the average outside current is subtracted from the data before evaluating the rms emittance within the boundary. As the boundary area is increased, the average outside current and the inside rms emittance form plateaus when all data containing part of the particle beam are inside the boundary. These plateaus mark the smallest acceptable exclusion boundary and provide unbiased estimates for the average background and the rms emittance. Small, trendless variations within the plateaus allow for determining the uncertainties of the estimates caused by variations of the measured background outside the smallest acceptable exclusion boundary. The robustness of the method is established with complementary variations of the exclusion boundary. This paper presents a detailed comparison between traditional data reduction methods and SCUBEEx by analyzing two complementary sets of emittance data obtained with a Lawrence Berkeley National Laboratory and an ISIS H{sup -} ion source.

  20. Urinary Excretion of Liver Type Fatty Acid Binding Protein Accurately Reflects the Degree of Tubulointerstitial Damage

    PubMed Central

    Yokoyama, Takeshi; Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hoshino, Seiko; Yasuda, Takashi; Kimura, Kenjiro

    2009-01-01

    To investigate the relationship between liver-type fatty acid-binding protein (L-FABP), a biomarker of chronic kidney disease, in the kidney and the degree of tubulointerstitial damage, folic acid (FA)-induced nephropathy was studied in a mouse model system. As renal L-FABP is not expressed in wild-type mice, human L-FABP (hL-FABP) transgenic mice were used in this study. hL-FABP is expressed in the renal proximal tubules of the transgenic mice that were injected intraperitoneally with FA in NaHCO3 (the FA group) or only NaHCO3 (the control group) and oral saline solution daily during the experimental period. The FA group developed severe tubulointerstitial damage with the infiltration of macrophages and the deposition of type I collagen on days 3 and 7 and recovered to the control level on day 14. The gene and protein expression levels of hL-FABP in the kidney were significantly enhanced on days 3 and 7. Urinary hL-FABP in the FA group was elevated on days 3 and 7 and decreased to the control level on day 14. The protein expression levels of hL-FABP in both the kidney and urine significantly correlated with the degree of tubulointerstitial damage, the infiltration of macrophages, and the deposition of type I collagen. In conclusion, renal expression and urinary excretion of hL-FABP significantly reflected the severity of tubulointerstitial damage in FA-induced nephropathy. PMID:19435794

  1. Hydrogen sulfide detection based on reflection: from a poison test approach of ancient China to single-cell accurate localization.

    PubMed

    Kong, Hao; Ma, Zhuoran; Wang, Song; Gong, Xiaoyun; Zhang, Sichun; Zhang, Xinrong

    2014-08-05

    With the inspiration of an ancient Chinese poison test approach, we report a rapid hydrogen sulfide detection strategy in specific areas of live cells using silver needles with good spatial resolution of 2 × 2 μm(2). Besides the accurate-localization ability, this reflection-based strategy also has attractive merits of convenience and robust response when free pretreatment and short detection time are concerned. The success of endogenous H2S level evaluation in cellular cytoplasm and nuclear of human A549 cells promises the application potential of our strategy in scientific research and medical diagnosis.

  2. Improved Ecosystem Predictions of the California Current System via Accurate Light Calculations

    DTIC Science & Technology

    2011-09-30

    System via Accurate Light Calculations Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 107 Bellevue, WA 98005 phone: 425...incorporate extremely fast but accurate light calculations into coupled physical-biological-optical ocean ecosystem models as used for operational three...dimensional ecosystem predictions. Improvements in light calculations lead to improvements in predictions of chlorophyll concentrations and other

  3. Fast and Accurate Hybrid Stream PCRTMSOLAR Radiative Transfer Model for Reflected Solar Spectrum Simulation in the Cloudy Atmosphere

    NASA Technical Reports Server (NTRS)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.

    2016-01-01

    A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.

  4. Do anthropometric indices accurately reflect directly measured body composition in men and women with chronic heart failure?

    PubMed

    Oreopoulos, Antigone; Fonarow, Gregg C; Ezekowitz, Justin A; McAlister, Finlay A; Sharma, Arya M; Kalantar-Zadeh, Kamyar; Norris, Colleen M; Johnson, Jeffery A; Padwal, Raj S

    2011-01-01

    How well anthropometric indices such as body mass index (BMI), waist circumference, waist-stature ratio, and waist index correlate with direct measures of body composition (lean body mass, body fat) in men and women with chronic heart failure (CHF) has not been reported. Body composition was assessed by dual-energy x-ray absorptiometry in 140 patients with CHF. Age-adjusted Pearson correlations between each index and measures of body composition for men and women were calculated. Diagnostic accuracy of detecting obesity or high central fat was also examined. In men, all of the anthropometric indices except waist index were just as strongly correlated with lean body mass (correlation coefficients varied between 0.56 for waist-stature ratio to 0.74 for BMI) as with percentage of body fat (correlation coefficients varied between 0.72 for BMI to 0.79 for waist circumference). In women, all 4 anthropometric measures were unable to significantly differentiate between body fat and lean body mass. The positive likelihood ratios for the detection of obesity varied between 2.26 for waist circumference and 3.42 for BMI, waist-stature ratio, and waist index. Anthropometric indices do not accurately reflect body composition in patients with CHF, especially in women. When accurate assessment of body composition is required, direct measurements should be obtained.

  5. Critical reflections on the currently leading definition of sustainable employability.

    PubMed

    Fleuren, Bram Bi; de Grip, Andries; Jansen, Nicole Wh; Kant, Imjert; Zijlstra, Fred Rh

    2016-06-01

    claims can be made, such relationships need to be tested with SE as criterion. This is, however, impossible within the approach van der Klink et al provides. (1), as SE is equated with its predictor(s). Therefore, similar to the first conceptual issue, it seems unlikely that the capability set adequately reflects SE. Fourth, the definition by van der Klink et al (1) suggests that SE only applies to individuals who are employed. In the Abma et al publication (9), which accompanies van der Klink's definition paper as a validation paper, this is shown by the way in which capabilities are measured. Moreover, the definition also suggests this because individuals can only be considered to be sustainably employable if their work context enables them to achieve tangible opportunities. However, individuals who are not currently working can still be highly employable and even sustainably so, but just be between jobs. It is therefore not required for individuals to be enabled by their employer to be sustainably employable. Consequently, in line with our aforementioned points on improving the definition, being enabled by an employer to achieve value may be an important predictor of SE, but it is not necessarily part of SE itself. Moreover, future approaches to SE should define the concept in such a way that it is applicable to every individual regardless of employment status. Finally, the definition and operationalization of SE in the form of a capability set do not include any specification on how the longitudinal aspect of SE should be captured. The definition rightfully acknowledges the longitudinal dimension of SE, but its operationalization focuses solely on achieving value. Although achieving value at work may be an important predictor of SE, a complete operationalization and definition should include its longitudinal nature as well. Outlook In conclusion, while van der Klink et al's definition of SE (1) does have strong merits, it requires further improvement. The approach

  6. Extracting accurate strain measurements in bone mechanics: A critical review of current methods.

    PubMed

    Grassi, Lorenzo; Isaksson, Hanna

    2015-10-01

    Osteoporosis related fractures are a social burden that advocates for more accurate fracture prediction methods. Mechanistic methods, e.g. finite element models, have been proposed as a tool to better predict bone mechanical behaviour and strength. However, there is little consensus about the optimal constitutive law to describe bone as a material. Extracting reliable and relevant strain data from experimental tests is of fundamental importance to better understand bone mechanical properties, and to validate numerical models. Several techniques have been used to measure strain in experimental mechanics, with substantial differences in terms of accuracy, precision, time- and length-scale. Each technique presents upsides and downsides that must be carefully evaluated when designing the experiment. Moreover, additional complexities are often encountered when applying such strain measurement techniques to bone, due to its complex composite structure. This review of literature examined the four most commonly adopted methods for strain measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and digital volume correlation), with a focus on studies with bone as a substrate material, at the organ and tissue level. For each of them the working principles, a summary of the main applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons are provided.

  7. Addressing the current bottlenecks of metabolomics: Isotopic Ratio Outlier Analysis™, an isotopic-labeling technique for accurate biochemical profiling.

    PubMed

    de Jong, Felice A; Beecher, Chris

    2012-09-01

    Metabolomics or biochemical profiling is a fast emerging science; however, there are still many associated bottlenecks to overcome before measurements will be considered robust. Advances in MS resolution and sensitivity, ultra pressure LC-MS, ESI, and isotopic approaches such as flux analysis and stable-isotope dilution, have made it easier to quantitate biochemicals. The digitization of mass spectrometers has simplified informatic aspects. However, issues of analytical variability, ion suppression and metabolite identification still plague metabolomics investigators. These hurdles need to be overcome for accurate metabolite quantitation not only for in vitro systems, but for complex matrices such as biofluids and tissues, before it is possible to routinely identify biomarkers that are associated with the early prediction and diagnosis of diseases. In this report, we describe a novel isotopic-labeling method that uses the creation of distinct biochemical signatures to eliminate current bottlenecks and enable accurate metabolic profiling.

  8. Reflections on current and future applications of multiangle imaging to aerosol and cloud remote sensing

    NASA Astrophysics Data System (ADS)

    Diner, David

    2010-05-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global Earth data from NASA's Terra satellite since February 2000. With its 9 along-track view angles, 4 spectral bands, intrinsic spatial resolution of 275 m, and stable radiometric and geometric calibration, no instrument that combines MISR's attributes has previously flown in space, nor is there is a similar capability currently available on any other satellite platform. Multiangle imaging offers several tools for remote sensing of aerosol and cloud properties, including bidirectional reflectance and scattering measurements, stereoscopic pattern matching, time lapse sequencing, and potentially, optical tomography. Current data products from MISR employ several of these techniques. Observations of the intensity of scattered light as a function of view angle and wavelength provide accurate measures of aerosol optical depths (AOD) over land, including bright desert and urban source regions. Partitioning of AOD according to retrieved particle classification and incorporation of height information improves the relationship between AOD and surface PM2.5 (fine particulate matter, a regulated air pollutant), constituting an important step toward a satellite-based particulate pollution monitoring system. Stereoscopic cloud-top heights provide a unique metric for detecting interannual variability of clouds and exceptionally high quality and sensitivity for detection and height retrieval for low-level clouds. Using the several-minute time interval between camera views, MISR has enabled a pole-to-pole, height-resolved atmospheric wind measurement system. Stereo imagery also makes possible global measurement of the injection heights and advection speeds of smoke plumes, volcanic plumes, and dust clouds, for which a large database is now available. To build upon what has been learned during the first decade of MISR observations, we are evaluating algorithm updates that not only refine retrieval

  9. Accuracy in interpersonal expectations: a reflection-construction analysis of current and classic research.

    PubMed

    Jussim, L

    1993-12-01

    Research and theory on interpersonal expectations have been dominated by a strong social constructivist perspective arguing that expectancies are often inaccurate and a major force in the creation of social reality. The reflection-construction model is an attempt to examine these strong claims conceptually and empirically. This model assumes that social perception includes both constructivist phenomena and accuracy. When this model is used as a framework for interpreting research on teacher expectations and on the role of stereotypes in person perception, it shows that interpersonal expectancies are often accurate, and usually lead only to relatively small biases and self-fulfilling prophecies. The model also is used to interpret research on expectancies that has provided some of the foundations for the strong constructivist perspective. This reflection-construction analysis shows that even those studies strongly suggest that people's expectations generally will be highly accurate.

  10. A new method of accurate broken rotor bar diagnosis based on modulation signal bispectrum analysis of motor current signals

    NASA Astrophysics Data System (ADS)

    Gu, F.; Wang, T.; Alwodai, A.; Tian, X.; Shao, Y.; Ball, A. D.

    2015-01-01

    Motor current signature analysis (MCSA) has been an effective way of monitoring electrical machines for many years. However, inadequate accuracy in diagnosing incipient broken rotor bars (BRB) has motivated many studies into improving this method. In this paper a modulation signal bispectrum (MSB) analysis is applied to motor currents from different broken bar cases and a new MSB based sideband estimator (MSB-SE) and sideband amplitude estimator are introduced for obtaining the amplitude at (1 ± 2 s)fs (s is the rotor slip and fs is the fundamental supply frequency) with high accuracy. As the MSB-SE has a good performance of noise suppression, the new estimator produces more accurate results in predicting the number of BRB, compared with conventional power spectrum analysis. Moreover, the paper has also developed an improved model for motor current signals under rotor fault conditions and an effective method to decouple the BRB current which interferes with that of speed oscillations associated with BRB. These provide theoretical supports for the new estimators and clarify the issues in using conventional bispectrum analysis.

  11. Activity ratios of ribulose-1,5-bisphosphate carboxylase accurately reflect carbamylation ratios. [Phaseolus vulgaris, Spinacla oleracea

    SciTech Connect

    Butz, N.D.; Sharkey, T.D. )

    1989-03-01

    Activity ratios and carbamylation ratios of ribulose-1,5-bisphosphate carboxylase (RuBPCase) were determined for leaves of Phaseolus vulgaris and Spinacia oleracea exposed to a variety of partial pressures of CO{sub 2} and O{sub 2} and photon flux densities (PFD). It was found that activity ratios accurately predicted carbamylation ratios except in extracts from leaves held in low PFD. In particular, it was confirmed that the loss of FuBPCase activity in low partial pressure of O{sub 2} and high PFD results from reduced carbamylation. Activity ratios of RuBPCase were lower than carbamylation ratios for Phaseolus leaves sampled in low PFD, presumably because of the presence of 2-carboxyarabinitol 1-phosphate. Spinacia leaves sampled in darkness also exhibited lower activity ratios than carbamylation ratios indicating that this species may also have an RuBPCase inhibitor even though carboxyarabinitol 1-phosphate has not been detected in this species in the past.

  12. Alfven Wave Reflection Model of Field-Aligned Currents at Mercury

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James

    2010-01-01

    An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.

  13. Comparing Resident Self-Report to Chart Audits for Quality Improvement Projects: Accurate Reflection or Cherry-Picking?

    PubMed Central

    Kuperman, Ethan F.; Tobin, Kristen; Kraschnewski, Jennifer L.

    2014-01-01

    Background Resident engagement in quality improvement is a requirement for graduate medical education, but the optimal means of instruction and evaluation of resident progress remain unknown. Objective To determine the accuracy of self-reported chart audits in measuring resident adherence to primary care clinical practice guidelines. Methods During the 2010–2011 academic year, second- and third-year internal medicine residents at a single, university hospital–based program performed chart audits on 10 patients from their primary care clinic to determine adherence to 16 US Preventive Services Task Force primary care guidelines. We compared residents' responses to independent audits of randomly selected patient charts by a single external reviewer. Results Self-reported data were collected by 18 second-year and 15 third-year residents for 330 patients. Independently, 70 patient charts were randomly selected for review by an external auditor. Overall guideline compliance was significantly higher on self-reported audits compared to external audits (82% versus 68%, P < .001). Of 16 guidelines, external audits found significantly lower rates of adherence for 5 (tetanus vaccination, osteoporosis screening, colon cancer screening, cholesterol screening, and obesity screening). Chlamydia screening was more common in audited charts than in self-reported data. Although third-year residents self-reported higher guideline adherence than second-year residents (86% versus 78%, P < .001), external audits for third-year residents found lower overall adherence (64% versus 72%, P  =  .040). Conclusions Residents' self-reported chart audits may significantly overestimate guideline adherence. Increased supervision and independent review appear necessary to accurately evaluate resident performance. PMID:26140117

  14. Extent to Which Teacher Beliefs and Practices Reflect Current Research on Historical Thinking and Understanding

    ERIC Educational Resources Information Center

    Carroll, Erich C.

    2013-01-01

    This study examined the extent to which teacher beliefs and practices at the high school level reflect current research on historical thinking and understanding. The topic is significant as teachers are a crucial variable in a child's education and evidence over the years has revealed that students have long struggled in developing conceptual…

  15. Impact of the accurateness of bidirectional reflectance distribution function data on the intensity and luminance distributions of a light-emitting diode mixing chamber as obtained by simulations

    NASA Astrophysics Data System (ADS)

    Audenaert, Jan; Leloup, Frédéric B.; Van Giel, Bart; Durinck, Guy; Deconinck, Geert; Hanselaer, Peter

    2013-09-01

    The reliability of ray tracing simulations is strongly dependent on the accuracy of the input data such as the bidirectional reflectance distribution function (BRDF). Software developers offer the possibility to implement BRDF data in different ways, ranging from simple predefined functions to detailed tabulated data. The impact of the accuracy of the implemented reflectance model on ray tracing simulations has been investigated. A light-emitting diode device including a frequently employed diffuse reflector [microcellular polyethylene terephthalate (MCPET)] was constructed. The luminous intensity distribution (LID) and luminance distribution from a specific viewpoint were measured with a near-field goniophotometer. Both distributions were also simulated by use of ray tracing software. Three different reflection models of MCPET were introduced, varying in complexity: a diffuse model, a diffuse/specular model, and a model containing tabulated BRDF data. A good agreement between the measured and simulated LID was found irrespective of the applied model. However, the luminance distributions only corresponded when the most accurate BRDF model was applied. This proves that even for diffuse reflective materials, a simple BRDF model may only be employed for simulations of the LID; for evaluation of luminance distributions, more complex models are needed.

  16. Do inverse ecosystem models accurately reconstruct plankton trophic flows? Comparing two solution methods using field data from the California Current

    NASA Astrophysics Data System (ADS)

    Stukel, Michael R.; Landry, Michael R.; Ohman, Mark D.; Goericke, Ralf; Samo, Ty; Benitez-Nelson, Claudia R.

    2012-03-01

    Despite the increasing use of linear inverse modeling techniques to elucidate fluxes in undersampled marine ecosystems, the accuracy with which they estimate food web flows has not been resolved. New Markov Chain Monte Carlo (MCMC) solution methods have also called into question the biases of the commonly used L2 minimum norm (L 2MN) solution technique. Here, we test the abilities of MCMC and L 2MN methods to recover field-measured ecosystem rates that are sequentially excluded from the model input. For data, we use experimental measurements from process cruises of the California Current Ecosystem (CCE-LTER) Program that include rate estimates of phytoplankton and bacterial production, micro- and mesozooplankton grazing, and carbon export from eight study sites varying from rich coastal upwelling to offshore oligotrophic conditions. Both the MCMC and L 2MN methods predicted well-constrained rates of protozoan and mesozooplankton grazing with reasonable accuracy, but the MCMC method overestimated primary production. The MCMC method more accurately predicted the poorly constrained rate of vertical carbon export than the L 2MN method, which consistently overestimated export. Results involving DOC and bacterial production were equivocal. Overall, when primary production is provided as model input, the MCMC method gives a robust depiction of ecosystem processes. Uncertainty in inverse ecosystem models is large and arises primarily from solution under-determinacy. We thus suggest that experimental programs focusing on food web fluxes expand the range of experimental measurements to include the nature and fate of detrital pools, which play large roles in the model.

  17. Interaction of reflected ions with the firehose marginally stable current sheet - Implications for plasma sheet convection

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Coroniti, F. V.

    1992-01-01

    The firehose marginally stable current sheet, which may model the flow away from the distant reconnection neutral line, assumes that the accelerated particles escape and never return to re-encounter the current region. This assumption fails on the earthward side where the accelerated ions mirror in the geomagnetic dipole field and return to the current sheet at distances up to about 30 R(E) down the tail. Two-dimensional particle simulations are used to demonstrate that the reflected ions drive a 'shock-like' structure in which the incoming flow is decelerated and the Bz field is highly compressed. These effects are similar to those produced by adiabatic choking of steady convection. Possible implications of this interaction for the dynamics of the tail are considered.

  18. TU-EF-204-01: Accurate Prediction of CT Tube Current Modulation: Estimating Tube Current Modulation Schemes for Voxelized Patient Models Used in Monte Carlo Simulations

    SciTech Connect

    McMillan, K; Bostani, M; McNitt-Gray, M; McCollough, C

    2015-06-15

    Purpose: Most patient models used in Monte Carlo-based estimates of CT dose, including computational phantoms, do not have tube current modulation (TCM) data associated with them. While not a problem for fixed tube current simulations, this is a limitation when modeling the effects of TCM. Therefore, the purpose of this work was to develop and validate methods to estimate TCM schemes for any voxelized patient model. Methods: For 10 patients who received clinically-indicated chest (n=5) and abdomen/pelvis (n=5) scans on a Siemens CT scanner, both CT localizer radiograph (“topogram”) and image data were collected. Methods were devised to estimate the complete x-y-z TCM scheme using patient attenuation data: (a) available in the Siemens CT localizer radiograph/topogram itself (“actual-topo”) and (b) from a simulated topogram (“sim-topo”) derived from a projection of the image data. For comparison, the actual TCM scheme was extracted from the projection data of each patient. For validation, Monte Carlo simulations were performed using each TCM scheme to estimate dose to the lungs (chest scans) and liver (abdomen/pelvis scans). Organ doses from simulations using the actual TCM were compared to those using each of the estimated TCM methods (“actual-topo” and “sim-topo”). Results: For chest scans, the average differences between doses estimated using actual TCM schemes and estimated TCM schemes (“actual-topo” and “sim-topo”) were 3.70% and 4.98%, respectively. For abdomen/pelvis scans, the average differences were 5.55% and 6.97%, respectively. Conclusion: Strong agreement between doses estimated using actual and estimated TCM schemes validates the methods for simulating Siemens topograms and converting attenuation data into TCM schemes. This indicates that the methods developed in this work can be used to accurately estimate TCM schemes for any patient model or computational phantom, whether a CT localizer radiograph is available or not

  19. Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors.

    PubMed

    He, James J; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y; Law, K T

    2014-01-01

    Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors.

  20. The Ulcerative Colitis Endoscopic Index of Severity More Accurately Reflects Clinical Outcomes and Long-term Prognosis than the Mayo Endoscopic Score

    PubMed Central

    Ikeya, Kentaro; Sugimoto, Ken; Osawa, Satoshi; Kawasaki, Shinsuke; Iida, Takayuki; Maruyama, Yasuhiko; Watanabe, Fumitoshi

    2016-01-01

    Background and Aims: The Ulcerative Colitis Endoscopic Index of Severity (UCEIS) and the Mayo endoscopic score (Mayo ES) are used to evaluate ulcerative colitis (UC) severity. This study compared UCEIS and the Mayo ES for evaluating UC severity and outcomes in patients undergoing remission induction during routine clinical practice with the aim of predicting medium- to long-term prognosis. Methods: Forty-one UC patients who received colonoscopy before and after tacrolimus remission induction therapy were included. An index of clinical activity and endoscopic findings scored by both the UCEIS and the Mayo ES were determined. Changes in UCEIS and Mayo ES before and after induction therapy were compared. Results: The mean UCEIS improved from 6.2±0.9 to 3.4±2.1 (p < 0.001). Based on the UCEIS, a significant reduction was reached in both the response and the remission groups. In contrast, the Mayo ES did not reflect a significant change in the response group. The discrepancy appeared to be due to ulcers becoming smaller and shallower during the early stages of mucosal healing; the Mayo ES seems to miss these early changes. In other words, whereas the UCEIS indicates improvements when ulcers shrink, the Mayo ES does not distinguish deep ulcers from shallow ulcers and is 3 (severe UC) for both deep and shallow ulcers. Additionally, better UCEIS strata after induction therapy were associated with lower incidences of colectomy (p = 0.0001) or relapse (p = 0.0008). Conclusions: The UCEIS accurately reflects clinical outcomes and predicts the medium- to long-term prognosis in UC patients undergoing induction therapy. These findings should support decision-making in clinical practice settings. PMID:26581895

  1. A new interpretation of electrochemical impedance spectroscopy to measure accurate doping levels for conducting polymers: Separating Faradaic and capacitive currents

    NASA Astrophysics Data System (ADS)

    Ulgut, Burak; Grose, Jacob E.; Kiya, Yasuyuki; Ralph, Daniel C.; Abruña, Héctor D.

    2009-12-01

    We report an electrochemical impedance spectroscopy (EIS) based method to measure the doping level of conducting polymers. Using EIS the Faradaic current and the capacitive charging current can be separated without relying on any unverifiable assumptions. We demonstrate the method for three types of conducting polymer thin films that are the basis for many commercial applications (poly(3,4-ethylenedioxythiophene), poly-3-hexylthiophene and polypyrrole).

  2. Analysis and design of a high-current, high-voltage accurate power supply for the APS storage ring

    SciTech Connect

    Fathizadeh, M.

    1993-08-01

    There are 81 dipole magnets contained in the storage ring at the Advanced Photon Source (APS). These magnets are connected in series and are energized by only one 12-phase power supply. The eighty-first magnet is located in a temperature-controlled room with an NMR probe to monitor the magnetic field in the magnet and provide a reference signal for correction of the field drift due to aging of the components. The current in the magnets will be held at 497 A. The required current stability of the power supply is {plus_minus}30 ppM, the current reproducibility is {plus_minus}50 ppM, and the current ripple is {plus_minus}400 ppM. The voltage required to maintain such a current in the magnets is about 1700 V. Different schemes for regulating current in the magnets are studied. Pspice software is used to simulate the behavior and the design of such a power supply under different conditions. The pros and cons of each scheme will be given and the proper power and regulating scheme will be selected.

  3. CLARREO Cornerstone of the Earth Observing System: Measuring Decadal Change Through Accurate Emitted Infrared and Reflected Solar Spectra and Radio Occultation

    NASA Technical Reports Server (NTRS)

    Sandford, Stephen P.

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is one of four Tier 1 missions recommended by the recent NRC Decadal Survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to provide accurate, broadly acknowledged climate records that are used to enable validated long-term climate projections that become the foundation for informed decisions on mitigation and adaptation policies that address the effects of climate change on society. The CLARREO mission accomplishes this critical objective through rigorous SI traceable decadal change observations that are sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. These same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. For the first time CLARREO will make highly accurate, global, SI-traceable decadal change observations sensitive to the most critical, but least understood, climate forcings, responses, and feedbacks. The CLARREO breakthrough is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. The required accuracy levels are determined so that climate trend signals can be detected against a background of naturally occurring variability. Climate system natural variability therefore determines what level of accuracy is overkill, and what level is critical to obtain. In this sense, the CLARREO mission requirements are considered optimal from a science value perspective. The accuracy for decadal change traceability to SI standards includes uncertainties associated with instrument calibration, satellite orbit sampling, and analysis methods. Unlike most space missions, the CLARREO requirements are driven not by the instantaneous accuracy of the measurements, but by accuracy in

  4. Dopamine D(2)-class receptor supersensitivity as reflected in Ca2+ current modulation in neostriatal neurons.

    PubMed

    Prieto, G A; Perez-Burgos, A; Fiordelisio, T; Salgado, H; Galarraga, E; Drucker-Colin, R; Bargas, J

    2009-12-01

    The loss of dopaminergic neurons followed by dopamine (DA) depletion in the neostriatum is a hallmark of Parkinson's disease. Among other changes, DA D(2)-receptor class (D(2)R-class) supersensitivity is a result of striatal DA depletion. Pharmacological, biochemical and behavioral data have documented this phenomenon, but clear electrophysiological-functional correlates are still lacking. This work describes an electrophysiological correlate of D(2)R-class supersensitivity in DA-depleted striata after unilateral 6-hydroxydopamine (6-OHDA) lesions in the rat substantia nigra compacta (SNc). Ca2+ current modulation mediated by D(2)R-class activation reflected an altered sensitivity. Thus, while the concentration-response relationship (C-R plot) from control striata was better fit with a two sites model, the C-R plot obtained from DA-depleted striata was better fit by a three sites model, exhibited a considerable leftward shift, and presented an increased maximal response. Because Ca2+ current modulation by D(2)R-class activation is involved in the control of spiny neurons excitability and their synaptic GABA release, the present findings may help to explain several functional changes found in the striatal circuitry after dopaminergic denervation.

  5. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    SciTech Connect

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-15

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  6. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    PubMed

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  7. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    NASA Astrophysics Data System (ADS)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  8. Streptococcus dysgalactiae subsp. equisimilis Isolated From Infections in Dogs and Humans: Are Current Subspecies Identification Criteria accurate?

    PubMed

    Ciszewski, Marcin; Zegarski, Kamil; Szewczyk, Eligia M

    2016-11-01

    Streptococcus dysgalactiae is a pyogenic species pathogenic both for humans and animals. Until recently, it has been considered an exclusive animal pathogen causing infections in wild as well as domestic animals. Currently, human infections are being reported with increasing frequency, and their clinical picture is often similar to the ones caused by Streptococcus pyogenes. Due to the fact that S. dysgalactiae is a heterogeneous species, it was divided into two subspecies: S. dysgalactiae subsp. equisimilis (SDSE) and S. dysgalactiae subsp. dysgalactiae (SDSD). The first differentiation criterion, described in 1996, was based on strain isolation source. Currently applied criteria, published in 1998, are based on hemolysis type and Lancefield group classification. In this study, we compared subspecies identification results for 36 strains isolated from clinical cases both in humans and animals. Species differentiation was based on two previously described criteria as well as MALDI-TOF and genetic analyses: RISA and 16S rRNA genes sequencing. Antimicrobial susceptibility profiles were also determined according to CLSI guidelines. The results presented in our study suggest that the subspecies differentiation criteria previously described in the above two literature positions seem to be inaccurate in analyzed group of strains, the hemolysis type on blood agar, and Lancefield classification should not be here longer considered as criteria in subspecies identification. The antimicrobial susceptibility tests indicate emerging of multiresistant human SDSE strains resistant also to vancomycin, linezolid and tigecycline, which might pose a substantial problem in treatment.

  9. Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations

    PubMed Central

    Calabro, Katherine W.; Bigio, Irving J.

    2014-01-01

    Abstract. Diffuse reflectance spectroscopy, which has been demonstrated as a noninvasive diagnostic technique, relies on quantitative models for extracting optical property values from turbid media, such as biological tissues. We review and compare reflectance models that have been published, and we test similar models over a much wider range of measurement parameters than previously published, with specific focus on the effects of the scattering phase function and the source-detector distance. It has previously been shown that the dependence of a forward reflectance model on the scattering phase function can be described more accurately using a variable, γ, which is a more predictive variable for reflectance than the traditional anisotropy factor, g. We show that variations in the reflectance model due to the phase function are strongly dependent on the source-detector separation, and we identify a dimensionless scattering distance at which reflectance is insensitive to the phase function. Further, we evaluate how variations in the phase function and source-detector separation affect the accuracy of inverse property extraction. By simultaneously fitting two or more reflectance spectra, measured at different source-detector separations, we also demonstrate that an estimate of γ can be extracted, in addition to the reduced scattering and absorption coefficients. PMID:25027000

  10. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    PubMed Central

    El-Amrawy, Fatema

    2015-01-01

    Objectives The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Methods Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. Results The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. Conclusions The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure. PMID:26618039

  11. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Nonlocal Andreev reflection and spin current in a three-terminal Aharonov-Bohm interferometer

    NASA Astrophysics Data System (ADS)

    Peng, Ju; Yu, Hua-Ling; Wang, Zhi-Guo

    2009-12-01

    This paper theoretically reports the nonlocal Andreev reflection and spin current in a normal metal-ferromagnetic metal-superconducting Aharonov-Bohm interferometer. It is found that the electronic current and spin current are sensitive to systematic parameters, such as the gate voltage of quantum dots and the external magnetic flux. The electronic current in the normal metal lead results from two competing processes: quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero spin-up electronic current (or spin-down electronic current) signals the existence of nonlocal Andreev reflection, and the presence of zero electronic current results in the appearance of pure spin current.

  12. Susceptibility patterns for amoxicillin/clavulanate tests mimicking the licensed formulations and pharmacokinetic relationships: do the MIC obtained with 2:1 ratio testing accurately reflect activity against beta-lactamase-producing strains of Haemophilus influenzae and Moraxella catarrhalis?

    PubMed

    Pottumarthy, Sudha; Sader, Helio S; Fritsche, Thomas R; Jones, Ronald N

    2005-11-01

    results indicate that, for the beta-lactamase-positive strains of H. influenzae and M. catarrhalis, the results of the amoxicillin/clavulanate reference 2:1 ratio testing do not accurately represent all the currently licensed formulations. Pharmacokinetic/pharmacodynamic (PK/PD) target attainment might be compromised when higher amoxicillin/clavulanate ratios are used clinically. With a better understanding of PK/PD parameters, reevaluation of the amoxicillin/clavulanate in vitro susceptibility testing should be considered by the standardizing authorities to reflect the licensed formulations and accurately predict clinical outcomes.

  13. Psychoanalytically informed treatment of psychosis: reflections on its U.S. history and current dilemmas.

    PubMed

    Silver, Ann-Louise S

    2013-04-01

    This paper reviews the history of psychodynamic treatment of psychosis in the United States, emphasizing the current severe problems in this area, and exploring their causes. It recommends that we bring back the older interpersonal, humanistic approaches, recognizing that reliance on salience-muting medications is both short-sighted and dangerous.

  14. Do future thoughts reflect personal goals? Current concerns and mental time travel into the past and future.

    PubMed

    Cole, Scott N; Berntsen, Dorthe

    2016-01-01

    Our overriding hypothesis was that future thinking would be linked with goals to a greater extent than memories; conceptualizing goals as current concerns (i.e., uncompleted personal goals). We also hypothesized that current-concern-related events would differ from non-current-concern-related events on a set of phenomenological characteristics. We report novel data from a study examining involuntary and voluntary mental time travel using an adapted laboratory paradigm. Specifically, after autobiographical memories or future thoughts were elicited (between participants) in an involuntary and voluntary retrieval mode (within participants), participants self-generated five current concerns and decided whether each event was relevant or not to their current concerns. Consistent with our hypothesis, compared with memories, a larger percentage of involuntary and voluntary future thoughts reflected current concerns. Furthermore, events related to current concerns differed from non-concern-related events on a range of cognitive, representational, and affective phenomenological measures. These effects were consistent across temporal direction. In general, our results agree with the proposition that involuntary and voluntary future thinking is important for goal-directed cognition and behaviour.

  15. Current management of bipolar affective disorder: is it reflective of the BAP guidelines?

    PubMed

    Farrelly, N; Dibben, C; Hunt, N

    2006-01-01

    In October 2003 the British Association of Psychopharmacology (BAP) published evidence-based guidelines on the management of bipolar disorder. The aim of this study was to assess whether the guidelines could provide the basis for examining clinical decisions and the extent to which practice accords with these guidelines. Case notes of out patients with bipolar disorder were reviewed. Demographic details, and treatment recommendations were determined. The management of affective episodes was evaluated and compared with BAP guidelines. In 84 subjects, 224 affective episodes were identified. Treatment was consistent with BAP guidelines in 72% of episodes. Mania was more likely to be managed in accordance with guidelines than depression or mixed episodes. The use of antidepressant medication was the most likely intervention to deviate from recommendations. Reasons for treatments at odds with the guidelines were identified. Our study demonstrates that clinical practice among a range of psychiatrists broadly reflects the guidelines that have been issued by the British Association of Psychopharmacology (BAP). The BAP guidelines offer a practical and auditable basis for the short- and long-term treatment of bipolar affective disorder.

  16. Fragmentation of Patient Safety Research: A Critical Reflection of Current Human Factors Approaches to Patient Handover

    PubMed Central

    Manser, Tanja

    2013-01-01

    The integration of human factors science in research and interventions aimed at increased patient safety has led to considerable improvements. However, some challenges to patient safety persist and may require human factors experts to critically reflect upon their predominant approaches to research and improvement. This paper is a call to start a discussion of these issues in the area of patient handover. Briefly reviewing recent handover research shows that while these studies have provided valuable insights into the communication practices for a range of handover situations, the predominant research strategy of studying isolated handover episodes replicates the very problem of fragmentation of care that the studies aim to overcome. Thus, there seems to be a need for a patient-centred approach to handover research that aims to investigate the interdependencies of handover episodes during a series of transitions occurring along the care path. Such an approach may contribute to novel insights and help to increase the effectiveness and sustainability of interventions to improve handover. Significance for public health While much of public health research has a preventive focus, health services research is generally concerned with the ways in which care is provided to those requiring treatment. This paper calls for a patient-centred approach to research on patient handover; a significant contributor to adverse events in healthcare. It is argued that this approach has the potential to improve our understanding of handover processes along the continuum of care. Thus, it can provide a scientific foundation for effective improvements in handover that are likely to reduce patient harm and help to maintain patient safety. PMID:25170504

  17. Malaria in Greece: historical and current reflections on a re-emerging vector borne disease.

    PubMed

    Danis, Kostas; Lenglet, Annick; Tseroni, Maria; Baka, Agoritsa; Tsiodras, Sotiris; Bonovas, Stefanos

    2013-01-01

    Between 2009 and September 2012, locally acquired cases of P. vivax infection were reported in Greece, mostly from the agricultural area of Evrotas, Lakonia (n = 48), but also sporadically from five other regions (n = 14), suggesting that conditions in these areas are favourable for local transmission of malaria. The risk of re-establishment of malaria in Greece will depend on whether the receptivity for disease transmission (presence of the mosquito vector and adequate ecological and climatic factors) and the vulnerability (importation of the parasite in human reservoirs or presence of infected mosquito vectors) continue to be present in the country. The continuous implementation of the integrated preparedness and response plan for malaria that covers all aspects from surveillance and laboratory diagnosis to vector control and the reorganization of public health infrastructures are necessary to prevent transmission and control the disease in the long term. However, the impact of the severe economic crisis on current health-care, public health infrastructures and vector control constitute a great challenge for the future. The current threat of renewed sustained local malaria transmission in Greece (and thus in continental Europe) merits an international response, including financial and technical support, from European and international stakeholders.

  18. Reflecting on the mirror neuron system in autism: a systematic review of current theories.

    PubMed

    Hamilton, Antonia F de C

    2013-01-01

    There is much interest in the claim that dysfunction of the mirror neuron system in individuals with autism spectrum condition causes difficulties in social interaction and communication. This paper systematically reviews all published studies using neuroscience methods (EEG/MEG/TMS/eyetracking/EMG/fMRI) to examine the integrity of the mirror system in autism. 25 suitable papers are reviewed. The review shows that current data are very mixed and that studies using weakly localised measures of the integrity of the mirror system are hard to interpret. The only well localised measure of mirror system function is fMRI. In fMRI studies, those using emotional stimuli have reported group differences, but studies using non-emotional hand action stimuli do not. Overall, there is little evidence for a global dysfunction of the mirror system in autism. Current data can be better understood under an alternative model in which social top-down response modulation is abnormal in autism. The implications of this model and future research directions are discussed.

  19. Caregiving-related needs analysis: a proposed model reflecting current research and socio-political developments.

    PubMed

    Rossi Ferrario, Silvia; Zotti, Anna Maria; Ippoliti, Marzia; Zotti, Paola

    2003-03-01

    The present authors have developed a model for assessing caregiving-related problems and needs, the Economic, Social, Psychological and Educational Requirements Table (ESPERT). The model was based on an analysis of the international literature concerning caregiving-related problems, and current specific European and Italian legislation, as well as the authors' own research results (which also permitted them to design a specific instrument for the general assessment of caregivers). This paper describes the socio-psychological and socio-political background prompting the development of the model, the general instrument for the assessment of caregivers and an example of its use in a sample of caregivers of cancer patients. In the example study, 80 caregivers of cancer patients were asked to complete questionnaires evaluating their state and trait anxiety, depressive symptoms, personality traits, and specifically, their neuroticism or emotional instability, caregiving strain and the degree of satisfaction with their lives. In addition to the specific information obtained about this group of caregivers, the present results show that the completion of the ESPERT makes it possible to identify the proportion of subjects at economic, social and emotional risk, and to decide rapidly what kind of resources/interventions can be implemented, bearing in mind the most balanced cost-benefit ratio.

  20. Reflections on the current and future roles of clinician-scientists.

    PubMed

    Baumal, Reuben; Benbassat, Jochanan; Van, Julie A D

    2014-08-01

    "Clinician-scientists" is an all-inclusive term for board-certified specialists who engage in patient care and laboratory-based (biomedical) research, patient-based (clinical) research, or population-based (epidemiological) research. In recent years, the number of medical graduates who choose to combine patient care and research has declined, generating concerns about the future of medical research. This paper reviews: a) the various current categories of clinician-scientists, b) the reasons proposed for the declining number of medical graduates who opt for a career as clinician-scientists, c) the various interventions aimed at reversing this trend, and d) the projections for the future role of clinician-scientists. Efforts to encourage students to combine patient care and research include providing financial and institutional support, and reducing the duration of the training of clinician-scientists. However, recent advances in clinical and biomedical knowledge have increased the difficulties in maintaining the dual role of care-providers and scientists. It was therefore suggested that rather than expecting clinician-scientists to compete with full-time clinicians in providing patient care, and with full-time investigators in performing research, clinician-scientists will increasingly assume the role of leading/coordinating interdisciplinary teams. Such teams would focus either on patient-based research or on the clinical, biomedical and epidemiological aspects of specific clinical disorders, such as hypertension and diabetes.

  1. St. Augustine’s Reflections on Memory and Time and the Current Concept of Subjective Time in Mental Time Travel

    PubMed Central

    Manning, Liliann; Cassel, Daniel; Cassel, Jean-Christophe

    2013-01-01

    Reconstructing the past and anticipating the future, i.e., the ability of travelling in mental time, is thought to be at the heart of consciousness and, by the same token, at the center of human cognition. This extraordinary mental activity is possible thanks to the ability of being aware of ‘subjective time’. In the present study, we attempt to trace back the first recorded reflections on the relations between time and memory, to the end of the fourth century’s work, the Confessions, by the theologian and philosopher, St. Augustine. We concentrate on Book 11, where he extensively developed a series of articulated and detailed observations on memory and time. On the bases of selected paragraphs, we endeavor to highlight some concepts that may be considered as the product of the first or, at least, very early reflections related to our current notions of subjective time in mental time travel. We also draw a fundamental difference inherent to the frameworks within which the questions were raised. The contribution of St. Augustine on time and memory remains significant, notwithstanding the 16 centuries elapsed since it was made, likely because of the universality of its contents. PMID:25379236

  2. St. Augustine's Reflections on Memory and Time and the Current Concept of Subjective Time in Mental Time Travel.

    PubMed

    Manning, Liliann; Cassel, Daniel; Cassel, Jean-Christophe

    2013-06-01

    Reconstructing the past and anticipating the future, i.e., the ability of travelling in mental time, is thought to be at the heart of consciousness and, by the same token, at the center of human cognition. This extraordinary mental activity is possible thanks to the ability of being aware of 'subjective time'. In the present study, we attempt to trace back the first recorded reflections on the relations between time and memory, to the end of the fourth century's work, the Confessions, by the theologian and philosopher, St. Augustine. We concentrate on Book 11, where he extensively developed a series of articulated and detailed observations on memory and time. On the bases of selected paragraphs, we endeavor to highlight some concepts that may be considered as the product of the first or, at least, very early reflections related to our current notions of subjective time in mental time travel. We also draw a fundamental difference inherent to the frameworks within which the questions were raised. The contribution of St. Augustine on time and memory remains significant, notwithstanding the 16 centuries elapsed since it was made, likely because of the universality of its contents.

  3. COIN Goes "GLOCAL": Traditional COIN With a Global Perspective: Does the Current US Strategy Reflect COIN Theory, Doctrine and Principles

    DTIC Science & Technology

    2007-05-17

    COIN goes “ GLOCAL ”: Traditional COIN with a Global Perspective: Does the Current US Strategy Reflect COIN Theory, Doctrine and Principles? A...TITLE AND SUBTITLE COIN goes “ GLOCAL ”: Traditional COIN with a Global P ti D th C t US St t R fl t COIN 5a. CONTRACT NUMBER Perspective: Does...Monograph: COIN goes “ GLOCAL ”: Traditional COIN with a Global Perspective: Does the Current US Strategy Reflect COIN Theory, Doctrine and Principles

  4. Influence of Andreev reflection on current-voltage characteristics of superconductor/ferromagnet/superconductor metallic weak links

    NASA Astrophysics Data System (ADS)

    Popović, Z.; Dobrosavljević-Grujić, L.; Zikic, R.

    2012-05-01

    We develop a quantitative theory describing the behavior of current-voltage characteristics (CVCs) in superconductor (S)/ferromagnet (F)/superconductor (SFS) weak links with transparent S/F interfaces. The approach of Kümmel, Gunsenheimer, and Nikolsky [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.42.3992 42, 3992 (1990)], developed for S/normal metal (N)/S junctions with an N barrier and based on the solution of time-dependent Bogoliubov-de Gennes equations combined with the time-relaxation model, is generalized to the SFS case. CVCs are calculated as a function of the barrier material parameters: the exchange energy h, the barrier thickness d, and the mean free path l. CVC peculiarities, such as a steep rise in the current and negative differential conductance at a low voltage, as well as the h-dependent position of the peaks, are obtained for a weak exchange energy h lower than or comparable to the superconducting energy gap Δ=Δ(T). They are interpreted to be induced by multiple Andreev reflections, modified in the presence of h in ferromagnets.

  5. Publication Bias Currently Makes an Accurate Estimate of the Benefits of Enrichment Programs Difficult: A Postmortem of Two Meta-Analyses Using Statistical Power Analysis

    ERIC Educational Resources Information Center

    Warne, Russell T.

    2016-01-01

    Recently Kim (2016) published a meta-analysis on the effects of enrichment programs for gifted students. She found that these programs produced substantial effects for academic achievement (g = 0.96) and socioemotional outcomes (g = 0.55). However, given current theory and empirical research these estimates of the benefits of enrichment programs…

  6. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  7. Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption.

    PubMed

    Bydlon, Torre M; Nachabé, Rami; Ramanujam, Nimmi; Sterenborg, Henricus J C M; Hendriks, Benno H W

    2015-01-01

    Diffuse reflectance spectroscopy is a rapidly growing technology in the biophotonics community where it has shown promise in its ability to classify different tissues. In the steady-state domain a wide spectrum of clinical applications is supported with this technology ranging from diagnostic to guided interventions. Diffuse reflectance spectra provide a wealth of information about tissue composition; however, extracting biologically relevant information from the spectra in terms of chromophores may be more useful to gain acceptance into the clinical community. The chromophores that absorb light in the visible and near infrared wavelengths can provide information about tissue composition. The key characteristics of these chromophores and their relevance in different organs and clinical applications is the focus of this review, along with translating their use to the clinic.

  8. Incidence and reflection of internal waves and wave-induced currents at a jump in buoyancy frequency

    NASA Astrophysics Data System (ADS)

    McHugh, J. P.

    2015-05-01

    Weakly nonlinear internal gravity waves are treated in a two-layer fluid with a set of nonlinear Schrodinger equations. The layers have a sharp interface with a jump in buoyancy frequency approximately modeling the tropopause. The waves are periodic in the horizontal but modulated in the vertical and Boussinesq flow is assumed. The equation governing the incident wave packet is directly coupled to the equation for the reflected packet, while the equation governing transmitted waves is only coupled at the interface. Solutions are obtained numerically. The results indicate that the waves create a mean flow that is strong near and underneath the interface, and discontinuous at the interface. Furthermore, the mean flow has an oscillatory component that can contaminate the wave envelope and has a vertical wavelength that decreases as the wave packet interacts with the interface.

  9. Healthy Universities: current activity and future directions--findings and reflections from a national-level qualitative research study.

    PubMed

    Dooris, Mark; Doherty, Sharon

    2010-09-01

    This qualitative study used questionnaires to scope and explore 'healthy universities' activity taking place within English higher education institutions (HEIs). The findings revealed a wealth of health-related activity and confirmed growing interest in the healthy universities approach--reflecting an increasing recognition that investment for health within the sector will contribute not only to health targets but also to mainstream agendas such as staff and student recruitment, experience and retention; and institutional and societal productivity and sustainability. However, they also suggested that, while there is growing understanding of the need for a comprehensive whole system approach to improving health within higher education settings, there are a number of very real challenges--including a lack of rigorous evaluation, the difficulty of integrating health into a 'non-health' sector and the complexity of securing sustainable cultural change. Noting that health and well-being remain largely marginal to the core mission and organization of higher education, the article goes on to reflect on the wider implications for future research and policy at national and international levels. Within England, whereas there are Healthy Schools and Healthy Further Education Programmes, there is as yet no government-endorsed programme for universities. Similarly, at an international level, there has been no systematic investment in higher education mirroring the comprehensive and multifaceted Health Promoting Schools Programme. Key issues highlighted are: securing funding for evaluative research within and across HEIs to enable the development of a more robust evidence base for the approach; advocating for an English National Healthy Higher Education Programme that can help to build consistency across the entire spectrum of education; and exploring with the World Health Organization (WHO) and the International Union for Health Promotion and Education (IUHPE) the feasibility

  10. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  11. To retain or remove user fees?: reflections on the current debate in low- and middle-income countries.

    PubMed

    James, Chris D; Hanson, Kara; McPake, Barbara; Balabanova, Dina; Gwatkin, Davidson; Hopwood, Ian; Kirunga, Christina; Knippenberg, Rudolph; Meessen, Bruno; Morris, Saul S; Preker, Alexander; Souteyrand, Yves; Tibouti, Abdelmajid; Villeneuve, Pascal; Xu, Ke

    2006-01-01

    Many low- and middle-income countries continue to search for better ways of financing their health systems. Common to many of these systems are problems of inadequate resource mobilisation, as well as inefficient and inequitable use of existing resources. The poor and other vulnerable groups who need healthcare the most are also the most affected by these shortcomings. In particular, these groups have a high reliance on user fees and other out-of-pocket expenditures on health which are both impoverishing and provide a financial barrier to care. It is within this context, and in light of recent policy initiatives on user fee removal, that a debate on the role of user fees in health financing systems has recently returned. This paper provides some reflections on the recent user fees debate, drawing from the evidence presented and subsequent discussions at a recent UNICEF consultation on user fees in the health sector, and relates the debate to the wider issue of access to adequate healthcare. It is argued that, from the wealth of evidence on user fees and other health system reforms, a broad consensus is emerging. First, user fees are an important barrier to accessing health services, especially for poor people. They also negatively impact on adherence to long-term expensive treatments. However, this is offset to some extent by potentially positive impacts on quality. Secondly, user fees are not the only barrier that the poor face. As well as other cost barriers, a number of quality, information and cultural barriers must also be overcome before the poor can access adequate health services. Thirdly, initial evidence on fee abolition in Uganda suggests that this policy has improved access to outpatient services for the poor. For this to be sustainable and effective in reaching the poor, fee removal needs to be part of a broader package of reforms that includes increased budgets to offset lost fee revenue (as was the case in Uganda). Fourthly, implementation matters

  12. Focus group reflections on the current and future state of cognitive assessment tools in geriatric health care

    PubMed Central

    Whitehead, Jocelyne C; Gambino, Sara A; Richter, Jeffrey D; Ryan, Jennifer D

    2015-01-01

    Objective This study provides insight into the thoughts and opinions of geriatric health-care professionals toward cognitive assessments and the use of emerging technologies, such as eye-tracking, to supplement current tools. Methods Two focus group sessions were conducted with nurses and physicians who routinely administer neurocognitive assessments to geriatric populations. Video recordings of the focus group sessions were transcribed and a thematic analysis was performed. Results Participants reported the need for assessment and diagnostic tools that are accessible and efficient, and that are capable of accommodating the rapid growth in the aging population. The prevalence of more complex ailments experienced by older adults has had repercussions in the quality of care that the clients receive, and has contributed to lengthy wait times and resource shortages. Health-care professionals stated that they are hampered by the disjointed structure of the health-care system and that they would benefit from a more efficient allocation of responsibilities made possible through tools that did not require extensive training or certification. Eyetracking-based cognitive assessments were thought to strongly complement this system, yet it was thought that difficulty would be faced in gaining the support and increased uptake by health-care professionals due to the nonintuitive relationship between eyetracking and cognition. Conclusion The findings suggest that health-care professionals are receptive to the use of eyetracking technology to assess for cognitive health as it would conserve resources by allowing frontline staff to administer assessments with minimal training. PMID:26109860

  13. A Systematic Review of Athletes’ and Coaches’ Nutrition Knowledge and Reflections on the Quality of Current Nutrition Knowledge Measures

    PubMed Central

    Trakman, Gina L.; Forsyth, Adrienne; Devlin, Brooke L.; Belski, Regina

    2016-01-01

    Context: Nutrition knowledge can influence dietary choices and impact on athletic performance. Valid and reliable measures are needed to assess the nutrition knowledge of athletes and coaches. Objectives: (1) To systematically review the published literature on nutrition knowledge of adult athletes and coaches and (2) to assess the quality of measures used to assess nutrition knowledge. Data Sources: MEDLINE, CINAHL, SPORTDiscuss, Web of Science, and SCOPUS. Study Selection: 36 studies that provided a quantitative measure of nutrition knowledge and described the measurement tool that was used were included. Data extraction: Participant description, questionnaire description, results (mean correct and responses to individual items), study quality, and questionnaire quality. Data synthesis: All studies were of neutral quality. Tools used to measure knowledge did not consider health literacy, were outdated with regards to consensus recommendations, and lacked appropriate and adequate validation. The current status of nutrition knowledge in athletes and coaches is difficult to ascertain. Gaps in knowledge also remain unclear, but it is likely that energy density, the need for supplementation, and the role of protein are frequently misunderstood. Conclusions: Previous reports of nutrition knowledge need to be interpreted with caution. A new, universal, up-to-date, validated measure of general and sports nutrition knowledge is required to allow for assessment of nutrition knowledge. PMID:27649242

  14. How Current Clinical Practice Guidelines for Low Back Pain Reflect Traditional Medicine in East Asian Countries: A Systematic Review of Clinical Practice Guidelines and Systematic Reviews

    PubMed Central

    Cho, Hyun-Woo; Hwang, Eui-Hyoung; Lim, Byungmook; Heo, Kwang-Ho; Liu, Jian-Ping; Tsutani, Kiichiro; Lee, Myeong Soo; Shin, Byung-Cheul

    2014-01-01

    Objectives The aims of this study were to investigate whether there is a gap between evidence of traditional medicine (TM) interventions in East-Asian countries from the current Clinical Practice Guidelines (CPGs) and evidence from current systematic reviews and meta-analyses (SR-MAs) and to analyze the impact of this gap on present CPGs. Methods We examined 5 representative TM interventions in the health care systems of East-Asian countries. We searched seven relevant databases for CPGs to identify whether core CPGs included evidence of TM interventions, and we searched 11 databases for SR-MAs to re-evaluate current evidence on TM interventions. We then compared the gap between the evidence from CPGs and SR-MAs. Results Thirteen CPGs and 22 SR-MAs met our inclusion criteria. Of the 13 CPGs, 7 CPGs (54%) mentioned TM interventions, and all were for acupuncture (only one was for both acupuncture and acupressure). However, the CPGs did not recommend acupuncture (or acupressure). Of 22 SR-MAs, 16 were for acupuncture, 5 for manual therapy, 1 for cupping, and none for moxibustion and herbal medicine. Comparing the evidence from CPGs and SR-MAs, an underestimation or omission of evidence for acupuncture, cupping, and manual therapy in current CPGs was detected. Thus, applying the results from the SR-MAs, we moderately recommend acupuncture for chronic LBP, but we inconclusively recommend acupuncture for (sub)acute LBP due to the limited current evidence. Furthermore, we weakly recommend cupping and manual therapy for both (sub)acute and chronic LBP. We cannot provide recommendations for moxibustion and herbal medicine due to a lack of evidence. Conclusions The current CPGs did not fully reflect the evidence for TM interventions. As relevant studies such as SR-MAs are conducted and evidence increases, the current evidence on acupuncture, cupping, and manual therapy should be rigorously considered in the process of developing or updating the CPG system. PMID:24505363

  15. Reflecting Reflective Practice

    ERIC Educational Resources Information Center

    Galea, Simone

    2012-01-01

    This paper demystifies reflective practice on teaching by focusing on the idea of reflection itself and how it has been conceived by two philosophers, Plato and Irigaray. It argues that reflective practice has become a standardized method of defining the teacher in teacher education and teacher accreditation systems. It explores how practices of…

  16. The Pursuit of K: Reflections on the Current State-of-the-Art in Stress Intensity Factor Solutions for Practical Aerospace Applications

    NASA Technical Reports Server (NTRS)

    CraigMcClung, R.; Lee, Yi-Der; Cardinal, Joseph W.; Guo, Yajun

    2012-01-01

    The elastic stress intensity factor (SIF, commonly denoted as K) is the foundation of practical fracture mechanics (FM) analysis for aircraft structures. This single parameter describes the first-order effects of stress magnitude and distribution as well as the geometry of both structure/component and crack. Hence, the calculation of K is often the most significant step in fatigue analysis based on FM. This presentation will provide several reflections on the current state-of-the-art in SIF solution methods used for practical aerospace applications, including a brief historical perspective, descriptions of some recent and ongoing advances, and comments on some remaining challenges. Newman and Raju made significant early contributions to practical structural analysis by developing closed-form SIF equations for surface and corner cracks in simplified geometries, often based on empirical fits of finite element (FE) solutions. Those solutions (and others like them) were sometimes revised as new analyses were conducted or limitations discovered. The foundational solutions have exhibited striking longevity, despite the relatively "coarse" FE models employed many decades ago. However, in recent years, the accumulation of different generations of solutions for the same nominal geometry has led to some confusion (which solution is correct?), and steady increases in computational capabilities have facilitated the discovery of inaccuracies in some (not all!) of the legacy solutions. Some examples of problems and solutions are presented and discussed, including the challenge of maintaining consistency with legacy design applications. As computational power has increased, the prospect of calculating large numbers of SIF solutions for specific complex geometries with advanced numerical methods has grown more attractive. Fawaz and Andersson, for example, have been generating literally millions of new SIF solutions for different combinations of multiple cracks under simplified

  17. Reflected Glory

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  18. Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum.

    PubMed

    Fontaine, Johannes; Schirmer, Barbara; Hörr, Jutta

    2002-07-03

    Further NIRS calibrations were developed for the accurate and fast prediction of the total contents of methionine, cystine, lysine, threonine, tryptophan, and other essential amino acids, protein, and moisture in the most important cereals and brans or middlings for animal feed production. More than 1100 samples of global origin collected over five years were analyzed for amino acids following the Official Methods of the United States and European Union. Detailed data and graphics are given to characterize the obtained calibration equations. NIRS was validated with 98 independent samples for wheat and 78 samples for corn and compared to amino acid predictions using linear crude protein regression equations. With a few exceptions, validation showed that 70-98% of the amino acid variance in the samples could be explained using NIRS. Especially for lysine and methionine, the most limiting amino acids for farm animals, NIRS can predict contents in cereals much better than crude protein regressions. Through low cost and high speed of analysis NIRS enables the amino acid analysis of many samples in order to improve the accuracy of feed formulation and obtain better quality and lower production costs.

  19. Evaluation of the Reflection Coefficient of Microstrip Elements for Reflectarray Antennas

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    Basis functions were studied and identified that provide efficient and accurate solutions for the induced patch currents and the reflection phase in microstrip reflect arrays. The integral equation of an infinite array of microstrip elements in the form of patches or crossed dipoles excited by a uniform plane wave is solved by the method-of-moments. Efficient choices of entire domain basis functions that yield accurate results have been described.

  20. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  1. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  2. Coordinated Analyses of Antarctic Sediments as Mars Analog Materials Using Reflectance Spectroscopy and Current Flight-Like Instruments for CheMin, SAM and MOMA

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Franz, Heather B.; Goetz, Walter; Blake, David F.; Freissinet, Caroline; Steininger, Harald; Goesmann, Fred; Brinckerhoff, William B.; Getty, Stephanie; Pinnick, Veronica T.; Mahaffy, Paul R.; Dyar, M. Darby

    2013-01-01

    Coordinated analyses of mineralogy and chemistry of sediments from the Antarctic Dry Valleys illustrate how data obtained using flight-ready technology of current NASA and ESA missions can be combined for greater understanding of the samples. Mineralogy was measured by X-ray diffraction (XRD) and visible/ near-infrared (VNIR) reflectance spectroscopy. Chemical analyses utilized a quadrupole mass spectrometer (QMS) to perform pyrolysis-evolved gas analysis (EGA) and gas chromatography-mass spectrometry (GC/MS) both with and without derivatization, as well as laser desorption-mass spectrometry (LD/MS) techniques. These analyses are designed to demonstrate some of the capabilities of near-term landed Mars missions, to provide ground truthing of VNIR reflectance data acquired from orbit by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on MRO and to provide detection limits for surface- operated instruments: the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instrument suites onboard Mars Science Laboratory (MSL) and the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars-2018. The new data from this study are compared with previous analyses of the sediments performed with other techniques. Tremolite was found in the oxic region samples for the first time using the CheMin-like XRD instrument. The NIR spectral features of tremolite are consistent with those observed in these samples. Although the tremolite bands are weak in spectra of these samples, spectral features near 2.32 and 2.39 micrometers could be detected by CRISM if tremolite is present on the martian surface. Allophane was found to be a good match to weak NIR features at 1.37-1.41, 1.92, and 2.19 micrometers in spectra of the oxic region sediments and is a common component of immature volcanic soils. Biogenic methane was found to be associated with calcite in the oxic region samples by the SAM/EGA instrument and a phosphoric acid derivative was found in the anoxic

  3. Coordinated analyses of Antarctic sediments as Mars analog materials using reflectance spectroscopy and current flight-like instruments for CheMin, SAM and MOMA

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Franz, Heather B.; Goetz, Walter; Blake, David F.; Freissinet, Caroline; Steininger, Harald; Goesmann, Fred; Brinckerhoff, William B.; Getty, Stephanie; Pinnick, Veronica T.; Mahaffy, Paul R.; Dyar, M. Darby

    2013-06-01

    Coordinated analyses of mineralogy and chemistry of sediments from the Antarctic Dry Valleys illustrate how data obtained using flight-ready technology of current NASA and ESA missions can be combined for greater understanding of the samples. Mineralogy was measured by X-ray diffraction (XRD) and visible/near-infrared (VNIR) reflectance spectroscopy. Chemical analyses utilized a quadrupole mass spectrometer (QMS) to perform pyrolysis-evolved gas analysis (EGA) and gas chromatography-mass spectrometry (GC/MS) both with and without derivatization, as well as laser desorption-mass spectrometry (LD/MS) techniques. These analyses are designed to demonstrate some of the capabilities of near-term landed Mars missions, to provide ground truthing of VNIR reflectance data acquired from orbit by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on MRO and to provide detection limits for surface-operated instruments: the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instrument suites onboard Mars Science Laboratory (MSL) and the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars-2018. The new data from this study are compared with previous analyses of the sediments performed with other techniques. Tremolite was found in the oxic region samples for the first time using the CheMin-like XRD instrument. The NIR spectral features of tremolite are consistent with those observed in these samples. Although the tremolite bands are weak in spectra of these samples, spectral features near 2.32 and 2.39 μm could be detected by CRISM if tremolite is present on the martian surface. Allophane was found to be a good match to weak NIR features at ˜1.37-1.41, 1.92, and 2.19 μm in spectra of the oxic region sediments and is a common component of immature volcanic soils. Biogenic methane was found to be associated with calcite in the oxic region samples by the SAM/EGA instrument and a phosphoric acid derivative was found in the anoxic region sample using

  4. Antigenic analysis of divergent genotypes human Enterovirus 71 viruses by a panel of neutralizing monoclonal antibodies: current genotyping of EV71 does not reflect their antigenicity.

    PubMed

    Chen, Yixin; Li, Chuan; He, Delei; Cheng, Tong; Ge, Shengxiang; Shih, James Wai-Kuo; Zhao, Qinjian; Chen, Pei-Jer; Zhang, Jun; Xia, Ningshao

    2013-01-02

    In recent year, Enterovirus 71 (EV71)-associated hand, foot and mouth disease (HFMD) has become an important public health issue in China. EV71 has been classified into genotypes A, B1-B5 and C1-C5. With such genetic diversity, whether the convalescent or recovery antibody responses can cross-protect infections from other genotypes remains a question. Understanding of the antigenicity of such diverse genetic EV71 isolates is crucial for the EV71 vaccine development. Here, a total of 186 clones anti-EV71 MAbs was generated and characterized with Western blot and cell-based neutralization assay. Forty neutralizing anti-EV71 MAbs were further used to analyze the antigenic properties of 18 recent EV71 isolates representing seven genotypes in neutralization assay. We found that most neutralizing anti-EV71 MAbs are specific to conformational epitopes. We also classified the 40 neutralizing anti-EV71 MAbs into two classes according to their reactivity patterns with 18 EV71 isolates. Class I MAb can neutralize all isolates, suggesting conserved epitopes are present among EV71. Class II MAb includes four subclasses (IIa-IId) and neutralizes only subgroups of EV71 strains. Conversely, 18 EV71 strains were grouped into antigenic types 1 and four antigenic subtypes (2.1-2.4). These results suggest that the current genotyping of EV71 does not reflect their antigenicity which may be important in the selection of EV71 vaccine strains. This panel of neutralizing anti-EV71 MAbs may be useful for the recognition of emerging antigenic variants of EV71 and vaccine development.

  5. Does forehead liquid crystal temperature accurately reflect "core" temperature?

    PubMed

    Allen, G C; Horrow, J C; Rosenberg, H

    1990-09-01

    Liquid crystal thermometry (LCT) is a non-invasive alternative to temperature monitoring. We evaluated the ability of forehead LCT, rectal temperature, and axillary skin temperature to trend distal oesophageal temperature during rapid warming on cardiopulmonary bypass. In 24 patients undergoing open heart surgery, temperatures were measured during the rapid warming phase on bypass (12-35 min). Scattergrams of temperature vs time for the four temperature sites each contained 150 data points. Polynomial regression analysis revealed that LCT, but not axillary or rectal temperatures, correlated with oesophageal temperature. We conclude that forehead LCT may be useful to monitor temperature trends and to detect rapid elevations in body temperature when more invasive temperature monitoring is inappropriate or unavailable.

  6. Reflection Coefficients.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1994-01-01

    Discusses and provides an example of reflectivity approximation to determine whether reflection will occur. Provides a method to show thin-film interference on a projection screen. Also applies the reflectivity concepts to electromagnetic wave systems. (MVL)

  7. Reflectance of aqueous solutions

    NASA Technical Reports Server (NTRS)

    Querry, M. R.

    1972-01-01

    The optical properties and optical constants of water and aqueous solutions were studied to develop an accurate tabulation of graphical representations of the optical constants through a broad spectrum. Manuscripts of articles are presented concerning extinction coefficients, relative specular reflectance, and temperature effect on the water spectrum. Graphs of absolute reflectance, phase shifts, index of refraction, and extinction coefficients for water, heavy water and aqueous solutions are included.

  8. Partial reflections of radio waves from the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Tanenbaum, S. B.

    1972-01-01

    The addition of phase difference measurements to partial reflection experiments is discussed, and some advantages of measuring electron density this way are pointed out. The additional information obtained reduces the requirement for an accurate predetermination of collision frequency. Calculations are also made to estimate the errors expected in partial-reflection experiments due to the assumption of Fresnel reflection and to the neglect of coupling between modes. In both cases, the errors are found to be of the same order as known errors in the measurements due to current instrumental limitations.

  9. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  10. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  11. Redesigning Academic Essays to Promote Teacher Reflection on Selected Issues of Learning and Teaching Related to the Current Educational Reform in Hong Kong

    ERIC Educational Resources Information Center

    Ng, Chi-hung Clarence

    2012-01-01

    Teachers in Hong Kong have faced constant demand for practice renewal due to successive waves of educational reforms in the past decade. This paper describes the design of an assignment structure that promotes teacher reflection on important issues related to a major education reform in Hong Kong. This particular assignment structure includes…

  12. The Reflective Learning Continuum: Reflecting on Reflection

    ERIC Educational Resources Information Center

    Peltier, James W.; Hay, Amanda; Drago, William

    2005-01-01

    The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research that considers reflection within the context of both the marketing and general business education literature. This article describes the use of an instrument that can be used to measure four identified levels of a…

  13. Renewable liquid reflection grating

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  14. Submerged Reflectance

    DTIC Science & Technology

    1976-08-01

    at 450 and viewed at 0* (i.e., viewed nor1al to the surface). Instruments for performing this particular bi-directional reflectance measurement are...are described below. 3.1 THEORY OF ABSOLUTE SUBMERGED REFLECTANCE MEASUREMENT An absolute measurement of the reflectance of a surface can be obtained by...relative reflectance measurement is shown in Figure 2. The irradiance across the target will vary within the field of view of the photometer because

  15. Na+ current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression.

    PubMed

    Zhang, Quan; Chibalina, Margarita V; Bengtsson, Martin; Groschner, Lukas N; Ramracheya, Reshma; Rorsman, Nils J G; Leiss, Veronika; Nassar, Mohammed A; Welling, Andrea; Gribble, Fiona M; Reimann, Frank; Hofmann, Franz; Wood, John N; Ashcroft, Frances M; Rorsman, Patrik

    2014-11-01

    Mouse pancreatic β- and α-cells are equipped with voltage-gated Na(+) currents that inactivate over widely different membrane potentials (half-maximal inactivation (V0.5) at -100 mV and -50 mV in β- and α-cells, respectively). Single-cell PCR analyses show that both α- and β-cells have Nav1.3 (Scn3) and Nav1.7 (Scn9a) α subunits, but their relative proportions differ: β-cells principally express Nav1.7 and α-cells Nav1.3. In α-cells, genetically ablating Scn3a reduces the Na(+) current by 80%. In β-cells, knockout of Scn9a lowers the Na(+) current by >85%, unveiling a small Scn3a-dependent component. Glucagon and insulin secretion are inhibited in Scn3a(-/-) islets but unaffected in Scn9a-deficient islets. Thus, Nav1.3 is the functionally important Na(+) channel α subunit in both α- and β-cells because Nav1.7 is largely inactive at physiological membrane potentials due to its unusually negative voltage dependence of inactivation. Interestingly, the Nav1.7 sequence in brain and islets is identical and yet the V0.5 for inactivation is >30 mV more negative in β-cells. This may indicate the presence of an intracellular factor that modulates the voltage dependence of inactivation.

  16. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  17. From the coliseum to the convention centre: a reflection on the current state of medical education conferences and conference-goers.

    PubMed

    Blanchard, Rebecca D; Engle, Deborah L; Howley, Lisa D; Whicker, Shari A; Nagler, Alisa

    2016-12-01

    The advancement of knowledge and development of policy in the field of medical education require critical academic discourse among the most intelligent medical educators; and critical academic discourse requires coffee. In this essay, we reflect on the state of professional development conferences in the field of medical education and the rituals that surround their success. Having begun in ancient Greece, symposia were ripe with debauchery. Today, sedated by the light brown walls of hotel conference centres, symposia are more serious endeavours, engaging men and women in the sometimes turbulent waters of epistemological debate. The abstract submission process (summed up by: 'Yay! It was accepted for presentation' [Deep breath] 'Oh no…it was accepted for presentation'), the 'juggling act' of parent attendees, the acting prowess of abstract presenters and the unapologetic approach to buffet eating are all by-products of the collision of true intellects among medical education scholars. We hold these rituals in high regard and argue that they are required to advance the field of medical education. These rituals bind the walls supporting true progressive thought and innovative research, all fuelled by the glass of wine purchased with that one coveted drink ticket.

  18. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  19. Reflecting on Reflecting on Practice

    ERIC Educational Resources Information Center

    Wilson, Arthur L.

    2009-01-01

    This article discusses three broad themes--reflection, power, and negotiation--that are evidenced in all of the articles in this issue. In this article, the author tries to transgress the articles at some middling altitude to seek some broader thematics. His observations about reflection, power, and negotiation do transcend individual efforts,…

  20. Reflective Practice: Origins and Interpretations

    ERIC Educational Resources Information Center

    Reynolds, Michael

    2011-01-01

    The idea of reflection is central to the theory and practice of learning--especially learning which is grounded in past or current experience. This paper proposes a working definition of reflection and reviews its origins and recent developments. The author also provides an account of "critical reflection", including its rationale and…

  1. Reflectance Modeling

    NASA Technical Reports Server (NTRS)

    Smith, J. A. (Principal Investigator)

    1985-01-01

    The overall goal of this work has been to develop a set of computational tools and media abstractions for the terrain bidirectional reflectance problem. The modeling of soil and vegetation surfaces has been emphasized with a gradual increase in the complexity of the media geometries treated. Pragmatic problems involved in the combined modeling of soil, vegetation, and atmospheric effects have been of interest and one of the objectives has been to describe the canopy reflectance problem in a classical radiative transfer sense permitting easier inclusion of our work by other workers in the radiative transfer field.

  2. Wundt on Introspection: Reflection on Current Controversy.

    ERIC Educational Resources Information Center

    Leahey, Thomas H.; And Others

    Wilhelm Wundt provided a complete and concise description of his introspective method in a 1907 paper criticizing the thought experiments conducted by the Wurzburg psychologists. This major work is now being translated for the first time. For Wundt, the role of experimental method was to ensure the best conditions for observing and reporting…

  3. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material.

  4. Normal-reflection image

    SciTech Connect

    Huang, L.; Fehler, Michael C.

    2003-01-01

    Common-angle wave-equation migration using the double-square-root is generally less accurate than the common-shot migration because the wavefield continuation equation for thc former involves additional approximations compared to that for the latter. We present a common-angle wave-equation migration that has the same accuracy as common-shot wave-equation migration. An image obtained from common-angle migration is a four- to five-dimensional output volume for 3D cases. We propose a normal-reflection imaging condition for common-angle migration to produce a 3D output volume for 3D migration. The image is closely related to the normal-reflection coefficients at interfaces. This imaging condition will allow amplitude-preserving migration to generate an image with clear physical meaning.

  5. Andreev Reflection in Bosonic Condensates

    SciTech Connect

    Zapata, I.; Sols, F.

    2009-05-08

    We study the bosonic analog of Andreev reflection at a normal-superfluid interface where the superfluid is a boson condensate. We model the normal region as a zone where nonlinear effects can be neglected. Against the background of a decaying condensate, we identify a novel contribution to the current of reflected atoms. The group velocity of this Andreev reflected component differs from that of the normally reflected one. For a three-dimensional planar or two-dimensional linear interface Andreev reflection is neither specular nor conjugate.

  6. Neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice; Menelle, Alain

    2015-10-01

    The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples) and two examples related to the materials for energy.

  7. Selectively reflective transparent sheets

    NASA Astrophysics Data System (ADS)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  8. Simulation Tool for GNSS Ocean Surface Reflections

    NASA Astrophysics Data System (ADS)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-04-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surface heights, and patterns of the general ocean circulation. In the reflection zone the measurements may derive parameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have shown such results leading. The coming satellite missions, CYGNSS, COSMIC-2, and GEROS on the International Space Station, are focusing on GNSS ocean reflection measurements. Thus, simulation studies highlighting the assumptions for the data retrievals and the precision and the accuracy of such measurements are of interest for assessing the observational method. The theory of propagation of microwaves in the atmosphere is well established, and methods for propagation modeling range from ray tracing to numerical solutions to the wave equation. Besides ray tracing there are propagation methods that use mode theory and a finite difference solution to the parabolic equation. The presented propagator is based on the solution of the parabolic equation. The parabolic equation in our simulator is solved using the split-step sine transformation. The Earth's surface is modeled with the use of an impedance model. The value of the Earth impedance is given as a function of the range along the surface of the Earth. This impedance concept gives an accurate lower boundary condition in the determination of the electromagnetic field, and makes it possible to simulate reflections and the effects of transitions between different mediums. A semi-isotropic Philips spectrum is used to represent the air-sea interaction. Simulated GPS ocean surface reflections will be presented and discussed based on different ocean characteristics. The spectra of the simulated surface reflections will be analyzed

  9. Reflective Packaging

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.

  10. Diffuse and specular characteristics of leaf reflectance

    NASA Technical Reports Server (NTRS)

    Grant, Lois

    1987-01-01

    In this paper, the evolution of current understanding of the mechanisms of leaf reflectance is reviewed. The use of measurements of polarized reflectance to separate leaf reflectance into diffuse and specular components is discussed. A section on the factors influencing leaf reflectance - leaf structure and physiological disturbances - is included along with discussion on the manner in which these influences are manifested.

  11. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  12. Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region.

    PubMed

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K; Yang, Ping

    2016-10-10

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTM-SOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1  cm-1 resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10-3  mW/cm2/sr/cm-1 and the relative error is typically less than 0.2%.

  13. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  14. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  15. Soil spectra contributions to grass canopy spectral reflectance

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Miller, L. D.

    1977-01-01

    The soil or background spectra contribution to grass canopy spectral reflectance for the 0.35 to 0.80 micron region was investigated using in situ collected spectral reflectance data. Regression analysis was used to estimate accurately the unexposed soil spectral reflectance and to quantify maxima and minima for soil-green vegetation reflection contrasts.

  16. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  17. Ground reflectance measurement techniques: a comparison.

    PubMed

    Duggin, M J; Cunia, T

    1983-12-01

    The relative accuracies of reflectance factor measurement methods involving the simultaneous, as compared to the sequential, measurement of irradiance on and radiance reflected from the target are discussed. Data are presented to support a statistical demonstration that the simultaneous measurement technique is the more accurate.

  18. Accurate ab Initio Spin Densities.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Legeza, Ors; Reiher, Markus

    2012-06-12

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].

  19. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  20. Obtaining accurate translations from expressed sequence tags.

    PubMed

    Wasmuth, James; Blaxter, Mark

    2009-01-01

    The genomes of an increasing number of species are being investigated through the generation of expressed sequence tags (ESTs). However, ESTs are prone to sequencing errors and typically define incomplete transcripts, making downstream annotation difficult. Annotation would be greatly improved with robust polypeptide translations. Many current solutions for EST translation require a large number of full-length gene sequences for training purposes, a resource that is not available for the majority of EST projects. As part of our ongoing EST programs investigating these "neglected" genomes, we have developed a polypeptide prediction pipeline, prot4EST. It incorporates freely available software to produce final translations that are more accurate than those derived from any single method. We describe how this integrated approach goes a long way to overcoming the deficit in training data.

  1. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a

  2. Biology Reflective Assessment Curriculum

    NASA Astrophysics Data System (ADS)

    Bayley, Cheryl Ann

    Often students and educators view assessments as an obligation and finality for a unit. In the current climate of high-stakes testing and accountability, the balance of time, resources and emphasis on students' scores related to assessment have been slanted considerably toward the summative side. This tension between assessment for accountability and assessment to inform teaching strains instruction and educators' ability to use that information to design learning opportunities that help students develop deeper conceptual understanding. A substantive body of research indicates that formative and reflective assessment can significantly improve student learning. Biology Reflective Assessment Curriculum (BRAC) examines support provided for high school science students through assessment practices. This investigation incorporates the usage of reflective assessments as a guiding practice for differentiated instruction and student choice. Reflective assessment is a metacognitive strategy that promotes self-monitoring and evaluation. The goals of the curriculum are to promote self-efficacy and conceptual understanding in students learning biology through developing their metacognitive awareness. BRAC was implemented in a high school biology classroom. Data from assessments, metacognitive surveys, self-efficacy surveys, reflective journals, student work, a culminating task and field notes were used to evaluate the effectiveness of the curriculum. The results suggest that students who develop their metacognitive skills developed a deeper conceptual understanding and improved feelings of self-efficacy when they were engaged in a reflective assessment unit embedded with student choice. BRAC is a tool for teachers to use assessments to assist students in becoming metacognitive and to guide student choice in learning opportunities.

  3. Modeling the effects of reflective roofing

    SciTech Connect

    Gartland, L.M.; Konopacki, S.J.; Akbari, H.

    1996-08-01

    Roofing materials which are highly reflective to sunlight are currently being developed. Reflective roofing is an effective summertime energy saver in warm and sunny climates. It has been demonstrated to save up to 40% of the energy needed to cool a building during the summer months. Buildings without air conditioning can reduce their indoor temperatures and improve occupant comfort during the summer if highly reflective roofing materials are used. But there are questions about the tradeoff between summer energy savings and extra wintertime energy use due to reduced heat collection by the roof. These questions are being answered by simulating buildings in various climates using the DOE-2 program (version 2.1E). Unfortunately, DOE-2 does not accurately model radiative, convective and conductive processes in the roof-attic. Radiative heat transfer from the underside of a reflective roof is much smaller than that of a roof which absorbs heat from sunlight, and must be accounted for in the building energy model. Convection correlations for the attic and the roof surface must be fine tuned. An equation to model the insulation`s conductivity dependence on temperature must also be added. A function was written to incorporate the attic heat transfer processes into the DOE-2 building energy simulation. This function adds radiative, convective and conductive equations to the energy balance of the roof. Results of the enhanced DOE-2 model were compared to measured data collected from a school bungalow in a Sacramento Municipal Utility District monitoring project, with particular attention paid to the year-round energy effects.

  4. Broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Cobb, E.D.

    1993-01-01

    The broad-band acoustic Doppler current profiler is an instrument that determines velocity based on the Doppler principle by reflecting acoustic signals off sediment particles in the water. The instrument is capable of measuring velocity magnitude and direction throughout a water column and of measuring water depth. It is also capable of bottom tracking and can, therefore, keep track of its own relative position as it is moved across a channel. Discharge measurements can be made quickly and, based on limited tests, accurately with this instrument. ?? 1993.

  5. A Reflective Look at Reflecting Teams

    ERIC Educational Resources Information Center

    Pender, Rebecca L.; Stinchfield, Tracy

    2012-01-01

    This article reviewed existing literature and research on the reflecting team process. There is a dearth of empirical research that explores the reflecting team process and the outcome of counseling that uses reflecting teams. Implications of using reflecting teams for counselors, counselor educators, and clients will be discussed. A call for…

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  7. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  8. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  9. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  10. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  11. Reflected Ceiling Plan/Reflected Deck Plan 2009; Reflected Ceiling Plan/Reflected Deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Reflected Ceiling Plan/Reflected Deck Plan 2009; Reflected Ceiling Plan/Reflected Deck Plan 2010 - Gilpin's Falls Covered Bridge, Spanning North East Creek at Former (Bypassed) Section of North East Road (SR 272), North East, Cecil County, MD

  12. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  13. Occurrence and Magnitude of High Reflectance Materials on the Moon

    NASA Astrophysics Data System (ADS)

    Nuno, R. G.; Boyd, A. K.; Robinson, M. S.

    2013-12-01

    We utilize a Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) 643 nm photometrically normalized (30°, 0°, 30°; i, e, g) reflectance map to investigate the occurrence and origin of high reflectance materials on the Moon. Compositional differences (mainly iron and titanium content) and maturity state (e.g. Copernican crater rays and swirls) are the predominant factors affecting reflectance variations observed on the Moon. Therefore, comparing reflectance values of different regions yields insight into the composition and relative exposure age of lunar materials. But an accurate comparison requires precise reflectance values normalized across every region being investigated. The WAC [1] obtains monthly near-global ground coverage, each month's observations acquired with different lighting conditions. Boyd et al. [2] utilized a geologically homogeneous subset [0°N to 90°N, 146°E to 148°E] of the WAC observations to determine an equation that describes how viewing and lighting angles affect reflectance values. A normalized global reflectance map was generated by applying the local empirical solution globally, with photometric angles derived from the WAC Global Lunar Digital Terrain Model (DTM)(GLD100) [3]. The GLD100 enables accurate correction of reflectance differences caused by local topographic undulations at the scale of 300 meters. We compare reflectance values across the Moon within 80°S to 80°N latitude. The features with the highest reflectance are steep crater walls within Copernican aged craters, such as the walls of Giordano Bruno, which have normalized reflectance values up to 0.35. Near-impact ejecta of some craters have high reflectance values, such as Virtanen (0.22). There are also broad relatively flat features with high reflectance, such as the 900-km Thales-Compton region (0.24) and the 600-km extent of Anaxagoras (Copernican age) ejecta (0.20). Since the interior of Anaxagoras contains occurrences of pure anorthosite [4], the high

  14. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    PubMed

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  15. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  16. Accurate thermoplasmonic simulation of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Da-Miao; Liu, Yan-Nan; Tian, Fa-Lin; Pan, Xiao-Min; Sheng, Xin-Qing

    2017-01-01

    Thermoplasmonics leads to enhanced heat generation due to the localized surface plasmon resonances. The measurement of heat generation is fundamentally a complicated task, which necessitates the development of theoretical simulation techniques. In this paper, an efficient and accurate numerical scheme is proposed for applications with complex metallic nanostructures. Light absorption and temperature increase are, respectively, obtained by solving the volume integral equation (VIE) and the steady-state heat diffusion equation through the method of moments (MoM). Previously, methods based on surface integral equations (SIEs) were utilized to obtain light absorption. However, computing light absorption from the equivalent current is as expensive as O(NsNv), where Ns and Nv, respectively, denote the number of surface and volumetric unknowns. Our approach reduces the cost to O(Nv) by using VIE. The accuracy, efficiency and capability of the proposed scheme are validated by multiple simulations. The simulations show that our proposed method is more efficient than the approach based on SIEs under comparable accuracy, especially for the case where many incidents are of interest. The simulations also indicate that the temperature profile can be tuned by several factors, such as the geometry configuration of array, beam direction, and light wavelength.

  17. Accurate method for computing correlated color temperature.

    PubMed

    Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier

    2016-06-27

    For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 106 K.

  18. Accurate Theoretical Thermochemistry for Fluoroethyl Radicals.

    PubMed

    Ganyecz, Ádám; Kállay, Mihály; Csontos, József

    2017-02-09

    An accurate coupled-cluster (CC) based model chemistry was applied to calculate reliable thermochemical quantities for hydrofluorocarbon derivatives including radicals 1-fluoroethyl (CH3-CHF), 1,1-difluoroethyl (CH3-CF2), 2-fluoroethyl (CH2F-CH2), 1,2-difluoroethyl (CH2F-CHF), 2,2-difluoroethyl (CHF2-CH2), 2,2,2-trifluoroethyl (CF3-CH2), 1,2,2,2-tetrafluoroethyl (CF3-CHF), and pentafluoroethyl (CF3-CF2). The model chemistry used contains iterative triple and perturbative quadruple excitations in CC theory, as well as scalar relativistic and diagonal Born-Oppenheimer corrections. To obtain heat of formation values with better than chemical accuracy perturbative quadruple excitations and scalar relativistic corrections were inevitable. Their contributions to the heats of formation steadily increase with the number of fluorine atoms in the radical reaching 10 kJ/mol for CF3-CF2. When discrepancies were found between the experimental and our values it was always possible to resolve the issue by recalculating the experimental result with currently recommended auxiliary data. For each radical studied here this study delivers the best heat of formation as well as entropy data.

  19. Accurate Fission Data for Nuclear Safety

    NASA Astrophysics Data System (ADS)

    Solders, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Lantz, M.; Mattera, A.; Penttilä, H.; Pomp, S.; Rakopoulos, V.; Rinta-Antila, S.

    2014-05-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyväskylä. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (1012 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.

  20. Accurate torque-speed performance prediction for brushless dc motors

    NASA Astrophysics Data System (ADS)

    Gipper, Patrick D.

    Desirable characteristics of the brushless dc motor (BLDCM) have resulted in their application for electrohydrostatic (EH) and electromechanical (EM) actuation systems. But to effectively apply the BLDCM requires accurate prediction of performance. The minimum necessary performance characteristics are motor torque versus speed, peak and average supply current and efficiency. BLDCM nonlinear simulation software specifically adapted for torque-speed prediction is presented. The capability of the software to quickly and accurately predict performance has been verified on fractional to integral HP motor sizes, and is presented. Additionally, the capability of torque-speed prediction with commutation angle advance is demonstrated.

  1. In-line sensor for accurate rf power measurements

    NASA Astrophysics Data System (ADS)

    Gahan, D.; Hopkins, M. B.

    2005-10-01

    An in-line sensor has been constructed with 50Ω characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  2. In-line sensor for accurate rf power measurements

    SciTech Connect

    Gahan, D.; Hopkins, M.B.

    2005-10-15

    An in-line sensor has been constructed with 50 {omega} characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  3. Reflectance spectra of subarctic lichens

    NASA Technical Reports Server (NTRS)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  4. Accurate measurement of the helical twisting power of chiral dopants

    NASA Astrophysics Data System (ADS)

    Kosa, Tamas; Bodnar, Volodymyr; Taheri, Bahman; Palffy-Muhoray, Peter

    2002-03-01

    We propose a method for the accurate determination of the helical twisting power (HTP) of chiral dopants. In the usual Cano-wedge method, the wedge angle is determined from the far-field separation of laser beams reflected from the windows of the test cell. Here we propose to use an optical fiber based spectrometer to accurately measure the cell thickness. Knowing the cell thickness at the positions of the disclination lines allows determination of the HTP. We show that this extension of the Cano-wedge method greatly increases the accuracy with which the HTP is determined. We show the usefulness of this method by determining the HTP of ZLI811 in a variety of hosts with negative dielectric anisotropy.

  5. Light Field Imaging Based Accurate Image Specular Highlight Removal

    PubMed Central

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into “unsaturated” and “saturated” category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  6. Orientations to Reflective Practice.

    ERIC Educational Resources Information Center

    Wellington, Bud; Austin, Patricia

    1996-01-01

    Delineates five orientations to reflective practice: immediate, technical, deliberative, dialectic, and transpersonal, each reflecting different social science bases and beliefs and values about education. Views them as interactive, interdependent, noncompeting, aspects of reflective practice. (SK)

  7. Simulations and Observations of GNSS Ocean Surface Reflections

    NASA Astrophysics Data System (ADS)

    Hoeg, P.; Benzon, H.

    2013-12-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean and ice surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surface heights, and patterns of the general ocean circulation. In the reflection zone the measurements may derive parameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from mountain tops and airplanes have shown results leading to some of these parameters. Coming satellite missions, as CYGNSS, COSMIC-2, and GEROS on the International Space Station, have underlined the need for simulation studies highlighting the assumptions for the data retrievals and the precision and the accuracy of such measurements. Forward simulation of the measured signals has often been used in the development of retrieval algorithms. The retrieval algorithms are used in the calculations of the geophysical parameters. This presentation describes a wave propagator that can be used to simulate GNSS reflected signals from ocean surfaces. The theory of propagation of microwaves in the atmosphere is well established, and methods for propagation modeling range from ray tracing to numerical solutions to the wave equation. Besides ray tracing there are propagation methods that use mode theory and a finite difference solution to the parabolic equation. The presented propagator is based on the solution of the parabolic equation. The parabolic equation in our simulator is solved using the split-step sine transformation. The Earth's surface is modeled with the use of an impedance model. The value of the Earth impedance is given as a function of the range along the surface of the Earth. This impedance concept gives an accurate lower boundary condition in the determination of the electromagnetic field, and makes it possible to simulate reflections and the effects of transitions between different mediums. A semi

  8. Accurate orbit propagation with planetary close encounters

    NASA Astrophysics Data System (ADS)

    Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca

    2015-08-01

    We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).

  9. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  10. Questioning Intuition through Reflective Engagement

    ERIC Educational Resources Information Center

    Schmidt, Christopher D.

    2014-01-01

    Current literature on ethics and moral development focuses on discussion concerning the impact of intuition on moral decision-making. Through the use of student journal reflections over the course of one semester, this study utilized a grounded theory approach in order to explore and understand participant levels of awareness and understanding of…

  11. Nonexposure Accurate Location K-Anonymity Algorithm in LBS

    PubMed Central

    2014-01-01

    This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR. PMID:24605060

  12. Nonexposure accurate location K-anonymity algorithm in LBS.

    PubMed

    Jia, Jinying; Zhang, Fengli

    2014-01-01

    This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR.

  13. Simulating Scintillator Light Collection Using Measured Optical Reflectance

    SciTech Connect

    Janecek, Martin; Moses, William

    2010-01-28

    To accurately predict the light collection from a scintillating crystal through Monte Carlo simulations, it is crucial to know the angular distribution from the surface reflectance. Current Monte Carlo codes allow the user to set the optical reflectance to a linear combination of backscatter spike, specular spike, specular lobe, and Lambertian reflections. However, not all light distributions can be expressed in this way. In addition, the user seldom has the detailed knowledge about the surfaces that is required for accurate modeling. We have previously measured the angular distributions within BGO crystals and now incorporate these data as look-up-tables (LUTs) into modified Geant4 and GATE Monte Carlo codes. The modified codes allow the user to specify the surface treatment (ground, etched, or polished), the attached reflector (Lumirror(R), Teflon(R), ESR film, Tyvek(R), or TiO paint), and the bonding type (air-coupled or glued). Each LUT consists of measured angular distributions with 4o by 5o resolution in theta and phi, respectively, for incidence angles from 0? to 90? degrees, in 1o-steps. We compared the new codes to the original codes by running simulations with a 3 x 10 x 30 mm3 BGO crystal coupled to a PMT. The simulations were then compared to measurements. Light output was measured by counting the photons detected by the PMT with the 3 x 10, 3 x 30, or 10 x 30 mm2 side coupled to the PMT, respectively. Our new code shows better agreement with the measured data than the current Geant4 code. The new code can also simulate reflector materials that are not pure specular or Lambertian reflectors, as was previously required. Our code is also more user friendly, as no detailed knowledge about the surfaces or light distributions is required from the user.

  14. Reflection for Learning: Teaching Reflective Practice at the Beginning of University Study

    ERIC Educational Resources Information Center

    Pretorius, Lynette; Ford, Allie

    2016-01-01

    Reflective practice is a key skill in many professions and is considered an essential attribute of healthcare practitioners. Healthcare students are often expected to develop reflection skills through their assignments, and this is frequently expected to occur with little explicit instruction, practice or guidance about how to reflect. Currently,…

  15. Identification of Terrestrial Reflectance From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Nolf, Scott R.; Stacy, Kathryn (Technical Monitor)

    2000-01-01

    Correcting for atmospheric effects is an essential part of surface-reflectance recovery from radiance measurements. Model-based atmospheric correction techniques enable an accurate identification and classification of terrestrial reflectances from multi-spectral imagery. Successful and efficient removal of atmospheric effects from remote-sensing data is a key factor in the success of Earth observation missions. This report assesses the performance, robustness and sensitivity of two atmospheric-correction and reflectance-recovery techniques as part of an end-to-end simulation of hyper-spectral acquisition, identification and classification.

  16. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  17. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  18. MODIS Solar Reflective Calibration Traceability

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, Jim

    2009-01-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify, measurement uncertainties, and to establish absolute scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bidirectional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser monitor (SDSM). This paper provides details of this calibration chain, from prelaunch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  19. Blogging for Reflection: The Use of Online Journals to Engage Students in Reflective Learning

    ERIC Educational Resources Information Center

    Muncy, James A.

    2014-01-01

    Reflective learning has long been studied in many disciplines. A primary way that reflective learning has been taught is through journaling. With the advent of e-learning, journaling has moved to the Web in the form of blogs. The current paper reviews the current state of journaling and blogging research with specific recommendations for marketing…

  20. DCP-collected absolute target reflectance signatures assist accurate interpretation of ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Weber, F. P.

    1973-01-01

    Data collection platforms (DCP's) are being used at a Black Hills, South Dakota, test site (MMC 226A) to record radiometric measurements needed to determine solar and atmospheric parameters that affect ERTS-1 multispectral scanner radiance measurements. A total of 72 channels of analog data transmitted from an unattended ground truth site via three DCP's at least six times a day. The system has operated with only minor problems since September, sending forth daily measurements of biophysical responses and atmospheric conditions. Comparisons of scene radiance data calculated from ERTS images with that measured on the ground show the image-measured values to be 35 percent higher for the green channel and 20 percent higher for the red channel for the same scene targets. Radiance values for channels 6 and 7 are nearly the same from the ground data and from the imagery.

  1. Does Passive Sampling Accurately Reflect the Bee (Apoidea: Anthophila) Communities Pollinating Apple and Sour Cherry Orchards?

    PubMed

    Gibbs, Jason; Joshi, Neelendra K; Wilson, Julianna K; Rothwell, Nikki L; Powers, Karen; Haas, Mike; Gut, Larry; Biddinger, David J; Isaacs, Rufus

    2017-03-31

    During bloom of spring orchard crops, bees are the primary providers of pollination service. Monitoring these insects for research projects is often done by timed observations or by direct aerial netting, but there has been increasing interest in blue vane traps as an efficient passive approach to collecting bees. Over multiple spring seasons in Michigan and Pennsylvania, orchards were monitored for wild bees using timed netting from crop flowers and blue vane traps. This revealed a distinctly different community of wild bees captured using the two methods, suggesting that blue vane traps can complement but cannot replace direct aerial netting. The bee community in blue vane traps was generally composed of nonpollinating species, which can be of interest for broader biodiversity studies. In particular, blue vane traps caught Eucera atriventris (Smith), Eucera hamata (Bradley), Bombus fervidus (F.), and Agapostemon virescens (F.) that were never collected from the orchard crop flowers during the study period. Captures of bee species in nets was generally stable across the 3 yr, whereas we observed significant declines in the abundance of Lasioglossum pilosum (Smith) and Eucera spp. trapped using blue vane traps during the project, suggesting local overtrapping of reproductive individuals. We conclude that blue vane traps are a useful tool for expanding insights into bee communities within orchard crop systems, but they should be used with great caution to avoid local extirpation of these important insects.

  2. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  3. Understanding reflective practice.

    PubMed

    Nicol, Jacqueline Sian; Dosser, Isabel

    2016-05-04

    The Nursing and Midwifery Council (NMC) requires that nurses and midwives use feedback as an opportunity for reflection and learning, to improve practice. The NMC revalidation process stipulates that practitioners provide examples of how they have achieved this. To reflect in a meaningful way, it is important to understand what is meant by reflection, the skills required, and how reflection can be undertaken successfully. Traditionally, reflection occurs after an event encountered in practice. The authors challenge this perception, suggesting that reflection should be undertaken before, during and after an event. This article provides practical guidance to help practitioners use reflective models to write reflective accounts. It also outlines how the reflective process can be used as a valuable learning tool in preparation for revalidation.

  4. Reflecting on reflection: a personal encounter.

    PubMed

    Glen, S; Clark, A; Nicol, M

    1995-02-01

    This paper reports a retrospective study of a Senior Lecturer in Nursing Studies experience of supervising a student teacher who, as part of her teaching placement experience, utilised 'Critically Reflective Analysis of an Educational Event' as a means to assess her teaching in the practice setting. The Senior Lecturer and student nurse teacher used an external 'advisor' to facilitate their meta-reflection on the theoretical perspectives that informed the process in which they were engaged. The paper raises the following questions for consideration--What is the link between ability to reflect and quality of practice? Is it possible to utilise reflective tutorials as a means of assessing professional competence whilst at the same time encouraging personal and professional development? Is the ability to reflect on practice dependent on the context? Should we assume that all practitioners have the necessary skills to supervise students in practice and what preparation and support is needed? The paper demonstrates that by introducing 'Critically Reflective Analysis of an Education Event' into the student teachers' curriculum the role of both supervisor and student teacher was challenged and changed. The paper also demonstrates that reflective tutorials are not wholly a retrospective business. They are creative, or recreative of a teaching experience, as well as to some extent representing it. Finally, even if one cannot speak in Kuhnian parlance, of a conceptual revolution, it would seem legitimate to say, in Schon's terms, that the contextual frame in which professional problems are addressed has undergone significant change.

  5. Reflections in art

    PubMed Central

    CAVANAGH, PATRICK; CHAO, JESSICA; WANG, DINA

    2009-01-01

    When artists depict a mirror in a painting, it necessarily lacks the most obvious property of a mirror: as we move around the painting of the mirror, the reflections we see in it do not change. And yet representations of mirrors and other reflecting surfaces can be quite convincing in paintings. Here, we will examine the rules of reflection, the many ways that painters can break those rules without losing the impression of reflection and the rules that cannot be broken. The rules that govern the perception of reflection are a small subset of the physical rules of reflection. PMID:18534102

  6. A robust and accurate formulation of molecular and colloidal electrostatics.

    PubMed

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y C

    2016-08-07

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.

  7. A robust and accurate formulation of molecular and colloidal electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2016-08-01

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.

  8. Building the Reflective Capacity of Practicing Principals

    ERIC Educational Resources Information Center

    Rich, Robert A.; Jackson, Sherion H.

    2006-01-01

    Reflection is often used as a professional development tool in coaching and mentoring leaders. Outside of education, research is underway to learn how managers can develop as learning facilitators in the workplace. However, the current focus on learning communities and learning organizations within education makes reflective thinking particularly…

  9. Differentiated Coaching: Fostering Reflection with Teachers

    ERIC Educational Resources Information Center

    Stover, Katie; Kissel, Brian; Haag, Karen; Shoniker, Rebecca

    2011-01-01

    Literacy coaches inspire teacher reflection and promote a culture of ongoing professional learning. This article illustrates the role of literacy coaches, describes how coaches differentiate support for a diverse group of teachers, and explains how teacher reflection can be a catalyst for change and professional growth. The authors, current and…

  10. A Reflective Conversation with James H. Borland

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.; Moore, Tammy-Lynne; Borland, James H.

    2014-01-01

    James H. Borland, Ph.D. is Professor of Education in the Department of Curriculum and Teaching at Teachers College, Columbia University in New York City. In this reflective conversation, he reflects on his experiences in an urban environment and the current challenges in gifted education. He argues for ongoing diagnosis of learners' needs without…

  11. RF current sensor

    DOEpatents

    Moore, James A.; Sparks, Dennis O.

    1998-11-10

    An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

  12. Quantitative Hyperspectral Reflectance Imaging

    PubMed Central

    Klein, Marvin E.; Aalderink, Bernard J.; Padoan, Roberto; de Bruin, Gerrit; Steemers, Ted A.G.

    2008-01-01

    Hyperspectral imaging is a non-destructive optical analysis technique that can for instance be used to obtain information from cultural heritage objects unavailable with conventional colour or multi-spectral photography. This technique can be used to distinguish and recognize materials, to enhance the visibility of faint or obscured features, to detect signs of degradation and study the effect of environmental conditions on the object. We describe the basic concept, working principles, construction and performance of a laboratory instrument specifically developed for the analysis of historical documents. The instrument measures calibrated spectral reflectance images at 70 wavelengths ranging from 365 to 1100 nm (near-ultraviolet, visible and near-infrared). By using a wavelength tunable narrow-bandwidth light-source, the light energy used to illuminate the measured object is minimal, so that any light-induced degradation can be excluded. Basic analysis of the hyperspectral data includes a qualitative comparison of the spectral images and the extraction of quantitative data such as mean spectral reflectance curves and statistical information from user-defined regions-of-interest. More sophisticated mathematical feature extraction and classification techniques can be used to map areas on the document, where different types of ink had been applied or where one ink shows various degrees of degradation. The developed quantitative hyperspectral imager is currently in use by the Nationaal Archief (National Archives of The Netherlands) to study degradation effects of artificial samples and original documents, exposed in their permanent exhibition area or stored in their deposit rooms. PMID:27873831

  13. [Spectroscopy technique and ruminant methane emissions accurate inspecting].

    PubMed

    Shang, Zhan-Huan; Guo, Xu-Sheng; Long, Rui-Jun

    2009-03-01

    The increase in atmospheric CH4 concentration, on the one hand through the radiation process, will directly cause climate change, and on the other hand, cause a lot of changes in atmospheric chemical processes, indirectly causing climate change. The rapid growth of atmospheric methane has gained attention of governments and scientists. All countries in the world now deal with global climate change as an important task of reducing emissions of greenhouse gases, but the need for monitoring the concentration of methane gas, in particular precision monitoring, can be scientifically formulated to provide a scientific basis for emission reduction measures. So far, CH4 gas emissions of different animal production systems have received extensive research. The methane emission by ruminant reported in the literature is only estimation. This is due to the various factors that affect the methane production in ruminant, there are various variables associated with the techniques for measuring methane production, the techniques currently developed to measure methane are unable to accurately determine the dynamics of methane emission by ruminant, and therefore there is an urgent need to develop an accurate method for this purpose. Currently, spectroscopy technique has been used and is relatively a more accurate and reliable method. Various spectroscopy techniques such as modified infrared spectroscopy methane measuring system, laser and near-infrared sensory system are able to achieve the objective of determining the dynamic methane emission by both domestic and grazing ruminant. Therefore spectroscopy technique is an important methane measuring technique, and contributes to proposing reduction methods of methane.

  14. Accurate and simple calibration of DLP projector systems

    NASA Astrophysics Data System (ADS)

    Wilm, Jakob; Olesen, Oline V.; Larsen, Rasmus

    2014-03-01

    Much work has been devoted to the calibration of optical cameras, and accurate and simple methods are now available which require only a small number of calibration targets. The problem of obtaining these parameters for light projectors has not been studied as extensively and most current methods require a camera and involve feature extraction from a known projected pattern. In this work we present a novel calibration technique for DLP Projector systems based on phase shifting profilometry projection onto a printed calibration target. In contrast to most current methods, the one presented here does not rely on an initial camera calibration, and so does not carry over the error into projector calibration. A radial interpolation scheme is used to convert features coordinates into projector space, thereby allowing for a very accurate procedure. This allows for highly accurate determination of parameters including lens distortion. Our implementation acquires printed planar calibration scenes in less than 1s. This makes our method both fast and convenient. We evaluate our method in terms of reprojection errors and structured light image reconstruction quality.

  15. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  16. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  17. Liberating Moral Reflection

    ERIC Educational Resources Information Center

    Horell, Harold D.

    2013-01-01

    The author argues that if we are to foster life-giving and liberating moral reflection, we must first liberate moral reflection from distortions; specifically, from the distorting effects of moral insensitivity, destructive moral relativism, and confusions resulting from a failure to understand the dynamics of moral reflection. The author proposes…

  18. Teaching Critical Reflection

    ERIC Educational Resources Information Center

    Smith, Elizabeth

    2011-01-01

    Despite long-standing commitment to the notion of critical reflection across the healthcare professions it is unusual for critical theory and practice to be taught as explicit subjects in healthcare higher education. There is evidence to show that reflective techniques such as critical portfolios and reflective diaries can help students to…

  19. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  20. The importance and attainment of accurate absolute radiometric calibration

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1984-01-01

    The importance of accurate absolute radiometric calibration is discussed by reference to the needs of those wishing to validate or use models describing the interaction of electromagnetic radiation with the atmosphere and earth surface features. The in-flight calibration methods used for the Landsat Thematic Mapper (TM) and the Systeme Probatoire d'Observation de la Terre, Haute Resolution visible (SPOT/HRV) systems are described and their limitations discussed. The questionable stability of in-flight absolute calibration methods suggests the use of a radiative transfer program to predict the apparent radiance, at the entrance pupil of the sensor, of a ground site of measured reflectance imaged through a well characterized atmosphere. The uncertainties of such a method are discussed.

  1. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  2. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  3. Accurate Guitar Tuning by Cochlear Implant Musicians

    PubMed Central

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  4. New model accurately predicts reformate composition

    SciTech Connect

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  5. Accurate colorimetric feedback for RGB LED clusters

    NASA Astrophysics Data System (ADS)

    Man, Kwong; Ashdown, Ian

    2006-08-01

    We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.

  6. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  7. Photovoltaic module with light reflecting backskin

    DOEpatents

    Gonsiorawski, Ronald C.

    2007-07-03

    A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

  8. An Accurate, Simplified Model Intrabeam Scattering

    SciTech Connect

    Bane, Karl LF

    2002-05-23

    Beginning with the general Bjorken-Mtingwa solution for intrabeam scattering (IBS) we derive an accurate, greatly simplified model of IBS, valid for high energy beams in normal storage ring lattices. In addition, we show that, under the same conditions, a modified version of Piwinski's IBS formulation (where {eta}{sub x,y}{sup 2}/{beta}{sub x,y} has been replaced by {Eta}{sub x,y}) asymptotically approaches the result of Bjorken-Mtingwa.

  9. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  10. On accurate determination of contact angle

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  11. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    SciTech Connect

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented.

  12. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations

    PubMed Central

    2015-01-01

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules. PMID:26146493

  13. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGES

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  14. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    SciTech Connect

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  15. Accurate colon residue detection algorithm with partial volume segmentation

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Liang, Zhengrong; Zhang, PengPeng; Kutcher, Gerald J.

    2004-05-01

    Colon cancer is the second leading cause of cancer-related death in the United States. Earlier detection and removal of polyps can dramatically reduce the chance of developing malignant tumor. Due to some limitations of optical colonoscopy used in clinic, many researchers have developed virtual colonoscopy as an alternative technique, in which accurate colon segmentation is crucial. However, partial volume effect and existence of residue make it very challenging. The electronic colon cleaning technique proposed by Chen et al is a very attractive method, which is also kind of hard segmentation method. As mentioned in their paper, some artifacts were produced, which might affect the accurate colon reconstruction. In our paper, instead of labeling each voxel with a unique label or tissue type, the percentage of different tissues within each voxel, which we call a mixture, was considered in establishing a maximum a posterior probability (MAP) image-segmentation framework. A Markov random field (MRF) model was developed to reflect the spatial information for the tissue mixtures. The spatial information based on hard segmentation was used to determine which tissue types are in the specific voxel. Parameters of each tissue class were estimated by the expectation-maximization (EM) algorithm during the MAP tissue-mixture segmentation. Real CT experimental results demonstrated that the partial volume effects between four tissue types have been precisely detected. Meanwhile, the residue has been electronically removed and very smooth and clean interface along the colon wall has been obtained.

  16. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations.

    PubMed

    Dral, Pavlo O; von Lilienfeld, O Anatole; Thiel, Walter

    2015-05-12

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  17. Tsunami currents in ports.

    PubMed

    Borrero, Jose C; Lynett, Patrick J; Kalligeris, Nikos

    2015-10-28

    Tsunami-induced currents present an obvious hazard to maritime activities and ports in particular. The historical record is replete with accounts from ship captains and harbour masters describing their fateful encounters with currents and surges caused by these destructive waves. Despite the well-known hazard, only since the trans-oceanic tsunamis of the early twenty-first century (2004, 2010 and 2011) have coastal and port engineering practitioners begun to develop port-specific warning and response products that accurately assess the effects of tsunami-induced currents in addition to overland flooding and inundation. The hazard from strong currents induced by far-field tsunami remains an underappreciated risk in the port and maritime community. In this paper, we will discuss the history of tsunami current observations in ports, look into the current state of the art in port tsunami hazard assessment and discuss future research trends.

  18. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  19. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2017-01-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  20. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  1. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  2. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J.; Wendt, Joel R.

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  3. Reflectance model for acetowhite epithelium

    NASA Astrophysics Data System (ADS)

    Zonios, George

    2012-08-01

    Application of low concentration acetic acid solution to various types of human epithelia, in vivo, is a well-established technique for the visual identification of neoplastic and potential precancerous lesions, especially in the cervix. An acetic acid application produces a transient whitening effect associated with the aforementioned lesions (acetowhite effect). In this article, a simple semi-empirical tissue reflectance model is presented, which describes the acetowhite effect in terms of the tissue's optical properties and layered structure. The model successfully describes data available in the literature, explains basic characteristics of the acetowhite effect, and can serve as the basis for the development of more accurate and reliable noninvasive diagnostic methodologies for precancerous epithelial lesions.

  4. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  5. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  6. More accurate phylogenies inferred from low-recombination regions in the presence of incomplete lineage sorting

    PubMed Central

    Pease, James B.; Hahn, Matthew W.

    2014-01-01

    When speciation events occur in rapid succession, incomplete lineage sorting (ILS) can cause disagreement among individual gene trees. The probability that ILS affects a given locus is directly related to its effective population size (Ne), which in turn is proportional to the recombination rate if there is strong selection across the genome. Based on these expectations, we hypothesized that low-recombination regions of the genome, as well as sex chromosomes and non-recombining chromosomes, should exhibit lower levels of ILS. We tested this hypothesis in phylogenomic datasets from primates, the Drosophila melanogaster clade, and the D. simulans clade. In all three cases, regions of the genome with low or no recombination showed significantly stronger support for the putative species tree, although results from the X chromosome differed among clades. Our results suggest that recurrent selection is acting in these low-recombination regions, such that current levels of diversity also reflect past decreases in the effective population size at these same loci. The results also demonstrate how considering the genomic context of a gene tree can assist in more accurate determination of the true species phylogeny, especially in cases where a whole-genome phylogeny appears to be an unresolvable polytomy. PMID:23888858

  7. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  8. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  9. Ultraviolet reflective coating

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.

    1974-01-01

    Composition consists of dispersion of barium sulphate in aqueous solution of water-soluble inorganic binder. Binder is selected from group consisting of alkali metal sulphates. Coating exhibits high reflectance of ultraviolet light to wavelengths of approximately 200.0 nm, which compares favorably with high reflectance of virgin barium sulphate power.

  10. Reflective Learning in Practice.

    ERIC Educational Resources Information Center

    Brockbank, Anne, Ed.; McGill, Ian, Ed.; Beech, Nic, Ed.

    This book contains 22 papers on reflective learning in practice. The following papers are included: "Our Purpose" (Ann Brockbank, Ian McGill, Nic Beech); "The Nature and Context of Learning" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning and Organizations" (Ann Brockbank, Ian McGill, Nic Beech);…

  11. Reflection in Medical Education

    ERIC Educational Resources Information Center

    Hargreaves, Ken

    2016-01-01

    This paper offers a medical-education perspective that I will hope complement other disciplinary perspectives in examining the value of reflection for learning in tertiary education. The paper outlines some of the theoretical strands of reflective practice facilitated in a unique course subject for professionalism and patient safety, within the…

  12. Transparencies and Reflections.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    1999-01-01

    Discusses the use of perspective, or showing things as the human eye sees them, when creating reflections and transparencies in works of art. Provides examples of artwork using transparency, reflection, and refraction by M. C. Escher, Richard Estes, and Janet Fish to give students an opportunity to learn about these three art techniques. (CMK)

  13. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  14. Rethinking Reflection: Teachers' Critiques

    ERIC Educational Resources Information Center

    Atkinson, Becky M.

    2012-01-01

    This article presents findings from a study conducted with a teacher focus group asked to read and discuss their responses to selected published teacher narratives of reflective practice. The teachers challenged features of practitioner reflection presented in several of the reading selections as not representative of how they experienced…

  15. Accurate taxonomic assignment of short pyrosequencing reads.

    PubMed

    Clemente, José C; Jansson, Jesper; Valiente, Gabriel

    2010-01-01

    Ambiguities in the taxonomy dependent assignment of pyrosequencing reads are usually resolved by mapping each read to the lowest common ancestor in a reference taxonomy of all those sequences that match the read. This conservative approach has the drawback of mapping a read to a possibly large clade that may also contain many sequences not matching the read. A more accurate taxonomic assignment of short reads can be made by mapping each read to the node in the reference taxonomy that provides the best precision and recall. We show that given a suffix array for the sequences in the reference taxonomy, a short read can be mapped to the node of the reference taxonomy with the best combined value of precision and recall in time linear in the size of the taxonomy subtree rooted at the lowest common ancestor of the matching sequences. An accurate taxonomic assignment of short reads can thus be made with about the same efficiency as when mapping each read to the lowest common ancestor of all matching sequences in a reference taxonomy. We demonstrate the effectiveness of our approach on several metagenomic datasets of marine and gut microbiota.

  16. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  17. Accurate pose estimation for forensic identification

    NASA Astrophysics Data System (ADS)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  18. Sparse and accurate high resolution SAR imaging

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Zhao, Kexin; Rowe, William; Li, Jian

    2012-05-01

    We investigate the usage of an adaptive method, the Iterative Adaptive Approach (IAA), in combination with a maximum a posteriori (MAP) estimate to reconstruct high resolution SAR images that are both sparse and accurate. IAA is a nonparametric weighted least squares algorithm that is robust and user parameter-free. IAA has been shown to reconstruct SAR images with excellent side lobes suppression and high resolution enhancement. We first reconstruct the SAR images using IAA, and then we enforce sparsity by using MAP with a sparsity inducing prior. By coupling these two methods, we can produce a sparse and accurate high resolution image that are conducive for feature extractions and target classification applications. In addition, we show how IAA can be made computationally efficient without sacrificing accuracies, a desirable property for SAR applications where the size of the problems is quite large. We demonstrate the success of our approach using the Air Force Research Lab's "Gotcha Volumetric SAR Data Set Version 1.0" challenge dataset. Via the widely used FFT, individual vehicles contained in the scene are barely recognizable due to the poor resolution and high side lobe nature of FFT. However with our approach clear edges, boundaries, and textures of the vehicles are obtained.

  19. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  20. Improved Algorithms for Accurate Retrieval of UV - Visible Diffuse Attenuation Coefficients in Optically Complex, Inshore Waters

    NASA Technical Reports Server (NTRS)

    Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.

    2014-01-01

    Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This

  1. Non-Destructive Characterization of Activated Ion-Implanted Doping Profiles Based on Photomodulated Optical Reflectance

    NASA Astrophysics Data System (ADS)

    Bogdanowicz, Janusz; Clarysse, Trudo; Moussa, Alain; Mody, Jay; Eyben, Pierre; Vandervorst, Wilfried; Rosseel, Erik

    2011-01-01

    The accurate characterization of free carrier profiles in ultra-shallow junctions, such as the source and drain extension regions, is one of the major challenges of metrology in modern silicon Complementary Metal-Oxide-Semiconductor technology. Currently, only destructive and time-consuming techniques, such as Scanning Spreading Resistance Microscopy, have shown the ability to solve this need. However, there is still a clear absence of an accurate, fast, non-destructive technique. For this purpose, we study the capabilities of the Photomodulated Optical Reflectance (PMOR) technique, such as implemented in the Therma-Probe® (TP) tool. PMOR is a pump-probe technique, wherein the probe laser measures, through reflection, the modulated pump-laser-induced change in refractive index. In this paper, we investigate PMOR measurements on sub-20 nm activated implantation profiles. By combining the PMOR signal with the simultaneously measured DC probe reflectance, we show that it is possible to reconstruct the underlying free carrier profile. Except for an overestimated depth (˜25%), the results are in good agreement with Secondary Ion Mass Spectrometry and Scanning Spreading Resistance Microscopy measurements.

  2. Dynamic Harris current sheet thickness from Cluster current density and plasma measurements

    NASA Technical Reports Server (NTRS)

    Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; McPherron, R. L.; Weygand, J. M.; Balogh, A.; Reme, H.; Kistler, L. M.

    2005-01-01

    We use the first accurate measurements of current densities in the plasma sheet to calculate the half-thickness and position of the current sheet as a function of time. Our technique assumes a Harris current sheet model, which is parameterized by lobe magnetic field B(o), current sheet half-thickness h, and current sheet position z(sub o). Cluster measurements of magnetic field, current density, and plasma pressure are used to infer the three parameters as a function of time. We find that most long timescale (6-12 hours) current sheet crossings observed by Cluster cannot be described by a static Harris current sheet with a single set of parameters B(sub o), h, and z(sub o). Noting the presence of high-frequency fluctuations that appear to be superimposed on lower frequency variations, we average over running 6-min intervals and use the smoothed data to infer the parameters h(t) and z(sub o)(t), constrained by the pressure balance lobe magnetic field B(sub o)(t). Whereas this approach has been used in previous studies, the spatial gnuhen& now provided by the Cluster magnetometers were unavailable or not well constrained in earlier studies. We place the calculated hdf&cknessa in a magnetospheric context by examining the change in thickness with substorm phase for three case study events and 21 events in a superposed epoch analysis. We find that the inferred half-thickness in many cases reflects the nominal changes experienced by the plasma sheet during substorms (i.e., thinning during growth phase, thickening following substorm onset). We conclude with an analysis of the relative contribution of (Delta)B(sub z)/(Delta)X to the cross-tail current density during substorms. We find that (Delta)B(sub z)/(Delta)X can contribute a significant portion of the cross-tail c m n t around substorm onset.

  3. Aging of reflective roofs: soot deposition.

    PubMed

    Berdahl, Paul; Akbari, Hashem; Rose, Leanna S

    2002-04-20

    Solar-reflective roofs remain cooler than absorptive roofs and thus conserve electricity otherwise needed for air conditioning. A currently controversial aspect of solar-reflective cool roofing is the extent to which an initially high solar reflectance decreases with time. We present experimental data on the spectral absorption of deposits that accumulate on roofs, and we attribute most of the absorption to carbon soot originally produced by combustion. The deposits absorb more at short wavelengths (e.g., in the blue) than in the red and infrared, imparting a slightly yellow tinge to formerly white surfaces. The initial rate of reflectance reduction by soot accumulation is consistent with known emission rates that are due to combustion. The long-term reflectance change appears to be determined by the ability of the soot to adhere to the roof, resisting washout by rain.

  4. Surface reflectance degradation by microbial communities

    DOE PAGES

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; ...

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  5. Surface reflectance degradation by microbial communities

    SciTech Connect

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophic microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.

  6. Approximating Reflectance and Transmittance of Vegetation Using Multiple Spectral Invariants

    NASA Astrophysics Data System (ADS)

    Mottus, M.

    2011-12-01

    Canopy spectral invariants, eigenvalues of the radiative transfer equation and photon recollision probability are some of the new theoretical tools that have been applied in remote sensing of vegetation and atmosphere. The theoretical approach based on spectral invariants, informally also referred to as the p-theory, owns its attractivity to several factors. Firstly, it provides a rapid and physically-based way of describing canopy scattering. Secondly, the p-theory aims at parameterizing canopy structure in reflectance models using a simple and intuitive concept which can be applied at various structural levels, from shoot to tree crown. The theory has already been applied at scales from the molecular level to forest stands. The most important shortcoming of the p-theory lies in its inability to predict the directionality of scattering. The theory is currently based on only one physical parameter, the photon recollision probability p. It is evident that one parameter cannot contain enough information to reasonably predict the observed complex reflectance patterns produced by natural vegetation canopies. Without estimating scattering directionality, however, the theory cannot be compared with even the most simple (and well-tested) two-stream vegetation reflectance models. In this study, we evaluate the possibility to use additional parameters to fit the measured reflectance and transmittance of a vegetation stand. As a first step, the parameters are applied to separate canopy scattering into reflectance and transmittance. New parameters are introduced following the general approach of eigenvector expansion. Thus, the new parameters are coined higher-order spectral invariants. Calculation of higher-order invariants is based on separating first-order scattering from total scattering. Thus, the method explicitly accounts for different view geometries with different fractions of visible sunlit canopy (e.g., hot-spot). It additionally allows to produce different

  7. Amplified total internal reflection.

    PubMed

    Fan, J; Dogariu, A; Wang, L J

    2003-02-24

    Totally internal reflected beams can be amplified if the lowerindex medium has gain. We analyze the reflection and refraction of light, and analytically derive the expression for the Goos-Hänchen shifts of a Gaussian beam incident on a lower-index medium, both active and absorptive. We examine the energy flow and the Goos-Hänchen shifts for various cases. The analytical results are consistent with the numerical results. For the TE mode, the Goos-Hänchen shift for the transmitted beam is exactly half of that of the reflected beam, resulting in a "1/2" rule.

  8. Positive Experiences as Input for Reflection by Student Teachers

    ERIC Educational Resources Information Center

    Janssen, Fred; de Hullu, Els; Tigelaar, Dineke

    2008-01-01

    In many teacher training courses, reflection upon practice plays a very important role in learning to teach. A number of strategies have been developed to help student teachers learn to reflect. Current reflection strategies often focus on problematic instead of on positive experiences. Ideas from positive psychology and solution-based therapy…

  9. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  10. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  11. LSM: perceptually accurate line segment merging

    NASA Astrophysics Data System (ADS)

    Hamid, Naila; Khan, Nazar

    2016-11-01

    Existing line segment detectors tend to break up perceptually distinct line segments into multiple segments. We propose an algorithm for merging such broken segments to recover the original perceptually accurate line segments. The algorithm proceeds by grouping line segments on the basis of angular and spatial proximity. Then those line segment pairs within each group that satisfy unique, adaptive mergeability criteria are successively merged to form a single line segment. This process is repeated until no more line segments can be merged. We also propose a method for quantitative comparison of line segment detection algorithms. Results on the York Urban dataset show that our merged line segments are closer to human-marked ground-truth line segments compared to state-of-the-art line segment detection algorithms.

  12. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  13. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  14. Accurate radio positions with the Tidbinbilla interferometer

    NASA Technical Reports Server (NTRS)

    Batty, M. J.; Gulkis, S.; Jauncey, D. L.; Rayner, P. T.

    1979-01-01

    The Tidbinbilla interferometer (Batty et al., 1977) is designed specifically to provide accurate radio position measurements of compact radio sources in the Southern Hemisphere with high sensitivity. The interferometer uses the 26-m and 64-m antennas of the Deep Space Network at Tidbinbilla, near Canberra. The two antennas are separated by 200 m on a north-south baseline. By utilizing the existing antennas and the low-noise traveling-wave masers at 2.29 GHz, it has been possible to produce a high-sensitivity instrument with a minimum of capital expenditure. The north-south baseline ensures that a good range of UV coverage is obtained, so that sources lying in the declination range between about -80 and +30 deg may be observed with nearly orthogonal projected baselines of no less than about 1000 lambda. The instrument also provides high-accuracy flux density measurements for compact radio sources.

  15. Magnetic ranging tool accurately guides replacement well

    SciTech Connect

    Lane, J.B.; Wesson, J.P. )

    1992-12-21

    This paper reports on magnetic ranging surveys and directional drilling technology which accurately guided a replacement well bore to intersect a leaking gas storage well with casing damage. The second well bore was then used to pump cement into the original leaking casing shoe. The repair well bore kicked off from the surface hole, bypassed casing damage in the middle of the well, and intersected the damaged well near the casing shoe. The repair well was subsequently completed in the gas storage zone near the original well bore, salvaging the valuable bottom hole location in the reservoir. This method would prevent the loss of storage gas, and it would prevent a potential underground blowout that could permanently damage the integrity of the storage field.

  16. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.

  17. Neutron Reflectivity and Grazing Angle Diffraction

    PubMed Central

    Ankner, J. F.; Majkrzak, C. F.; Satija, S. K.

    1993-01-01

    Over the last 10 years, neutron reflectivity has emerged as a powerful technique for the investigation of surface and interfacial phenomena in many different fields. In this paper, a short review of some of the work on neutron reflectivity and grazing-angle diffraction as well as a description of the current and planned neutron rcflectometers at NIST is presented. Specific examples of the characterization of magnetic, superconducting, and polymeric surfaces and interfaces are included. PMID:28053457

  18. Appraisal of broadband acoustic impedances from first principles and band-limited seismic reflection data

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Ghosh, S. K.

    2015-12-01

    Seismic derived acoustic impedance is an essential output for the quantitative interpretation of seismic data. However, the band limitation of seismic data leads to a nonunique estimate of the acoustic impedance profile. The prevalent methods counter the nonuniqueness either by stabilizing the answer with respect to an initial model or by resorting to an assumption of certain criterion such as sparsity of the reflection coefficients. Making a nominal assumption of a homogeneous layered earth model, we formulate a set of linear equations where the reflection coefficients are the unknowns and the recursively integrated seismic trace constitutes the data. The approach makes a frontal assault on the problem of reconstructing reflection coefficients from band-limited data and stems from first principles, i.e., Zöppritz's equation in this case. Nonuniqueness is countered in part by the layercake assumption, and in part by the adoption of the singular value decomposition (SVD) method of finding an optimal solution to the set of linear equations, provided the objective is to reconstruct a smoothed version of the impedance profile that includes only its coarser structures. The efficacy of the method has been tested with synthetic data added with significant noise and generated from rudimentary earth models as well as from measured logs of acoustic impedance. Emergence of consistent estimates of impedance from synthetic data generated for several frequency bands increases the confidence in the method. The study also proves the successfulness of the method for (a) an accurate estimate of the impedance mean, (b) an accurate reconstruction of the direct-current (dc) frequency of the reflectivity, and (c) an acceptable reconstruction of the broad trend of the original impedance profile. All these outputs can serve as significant constraints for either more refined inversions or geological interpretations. (Keywords: Reflection data, Acoustic impedance, Broadband, Linear

  19. Seasonal soybean crop reflectance

    NASA Technical Reports Server (NTRS)

    Lemaster, E. W. (Principal Investigator); Chance, J. E.

    1983-01-01

    Data are presented from field measurements of 1980 including 5 acquisitions of handheld radiometer reflectance measurements, 7 complete sets of parameters for implementing the Suits mode, and other biophysical parameters to characterize the soybean canopy. LANDSAT calculations on the simulated Brazilian soybean reflectance are included along with data collected during the summer and fall on 1981 on soybean single leaf optical parameters for three irrigation treatments. Tests of the Suits vegetative canopy reflectance model for the full hemisphere of observer directions as well as the nadir direction show moderate agreement for the visible channels of the MSS and poor agreement in the near infrared channel. Temporal changes in the spectral characteristics of the single leaves were seen to occur as a function of maturity which demonstrates that the absorptance of a soybean single leaf is more a function of thetransmittancee characteristics than the seasonally consistent single leaf reflectance.

  20. Motor equivalence during multi-finger accurate force production

    PubMed Central

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  1. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  2. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  3. Higher order accurate partial implicitization: An unconditionally stable fourth-order-accurate explicit numerical technique

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1975-01-01

    The previously obtained second-order-accurate partial implicitization numerical technique used in the solution of fluid dynamic problems was modified with little complication to achieve fourth-order accuracy. The Von Neumann stability analysis demonstrated the unconditional linear stability of the technique. The order of the truncation error was deduced from the Taylor series expansions of the linearized difference equations and was verified by numerical solutions to Burger's equation. For comparison, results were also obtained for Burger's equation using a second-order-accurate partial-implicitization scheme, as well as the fourth-order scheme of Kreiss.

  4. Fair & Accurate Grading for Exceptional Learners

    ERIC Educational Resources Information Center

    Jung, Lee Ann; Guskey, Thomas R.

    2011-01-01

    Despite the many changes in education over the past century, grading and reporting practices have essentially remained the same. In part, this is because few teacher preparation programs offer any guidance on sound grading practices. As a result, most current grading practices are grounded in tradition, rather than research on best practice. In an…

  5. Reflections on Contemporary Currents in Writing Center Work

    ERIC Educational Resources Information Center

    Lunsford, Andrea A.; Ede, Lisa

    2011-01-01

    This article presents the text of a speech presented at The International Writing Centers Association and the National Conference on Peer Tutoring (IWCA-NCPTW) joint conference in Baltimore, Maryland, in November 2010. It stemmed from a larger project--a collection of previously published and new essays titled "Writing Together: Collaboration in…

  6. Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.

  7. Reflective Practice in Healthcare Education: An Umbrella Review

    ERIC Educational Resources Information Center

    Fragkos, Konstantinos C.

    2016-01-01

    Reflection in healthcare education is an emerging topic with many recently published studies and reviews. This current systematic review of reviews (umbrella review) of this field explores the following aspects: which definitions and models are currently in use; how reflection impacts design, evaluation, and assessment; and what future challenges…

  8. An Accurate Temperature Correction Model for Thermocouple Hygrometers 1

    PubMed Central

    Savage, Michael J.; Cass, Alfred; de Jager, James M.

    1982-01-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241

  9. An accurate temperature correction model for thermocouple hygrometers.

    PubMed

    Savage, M J; Cass, A; de Jager, J M

    1982-02-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques.In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38 degrees C). The model based on calibration at two temperatures is superior to that based on only one calibration.The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25 degrees C, if the calibration slopes are corrected for temperature.

  10. Strategy for accurate liver intervention by an optical tracking system

    PubMed Central

    Lin, Qinyong; Yang, Rongqian; Cai, Ken; Guan, Peifeng; Xiao, Weihu; Wu, Xiaoming

    2015-01-01

    Image-guided navigation for radiofrequency ablation of liver tumors requires the accurate guidance of needle insertion into a tumor target. The main challenge of image-guided navigation for radiofrequency ablation of liver tumors is the occurrence of liver deformations caused by respiratory motion. This study reports a strategy of real-time automatic registration to track custom fiducial markers glued onto the surface of a patient’s abdomen to find the respiratory phase, in which the static preoperative CT is performed. Custom fiducial markers are designed. Real-time automatic registration method consists of the automatic localization of custom fiducial markers in the patient and image spaces. The fiducial registration error is calculated in real time and indicates if the current respiratory phase corresponds to the phase of the static preoperative CT. To demonstrate the feasibility of the proposed strategy, a liver simulator is constructed and two volunteers are involved in the preliminary experiments. An ex-vivo porcine liver model is employed to further verify the strategy for liver intervention. Experimental results demonstrate that real-time automatic registration method is rapid, accurate, and feasible for capturing the respiratory phase from which the static preoperative CT anatomical model is generated by tracking the movement of the skin-adhered custom fiducial markers. PMID:26417501

  11. Accurate vessel width measurement from fundus photographs: a new concept.

    PubMed Central

    Rassam, S M; Patel, V; Brinchmann-Hansen, O; Engvold, O; Kohner, E M

    1994-01-01

    Accurate determination of retinal vessel width measurement is important in the study of the haemodynamic changes that accompany various physiological and pathological states. Currently the width at the half height of the transmittance and densitometry profiles are used as a measure of retinal vessel width. A consistent phenomenon of two 'kick points' on the slopes of the transmittance and densitometry profiles near the base, has been observed. In this study, mathematical models have been formulated to describe the characteristic curves of the transmittance and the densitometry profiles. They demonstrate the kick points being coincident with the edges of the blood column. The horizontal distance across the kick points would therefore indicate the actual blood column width. To evaluate this hypothesis, blood was infused through two lengths of plastic tubing of known diameters, and photographed. In comparison with the known diameters, the half height underestimated the blood column width by 7.33% and 6.46%, while the kick point method slightly overestimated it by 1.40% and 0.34%. These techniques were applied to monochromatic fundus photographs. In comparison with the kick point method, the half height underestimated the blood column width in veins by 16.67% and in arteries by 15.86%. The characteristics of the kick points and their practicality have been discussed. The kick point method may provide the most accurate measurement of vessel width possible from these profiles. Images PMID:8110693

  12. Accurate phylogenetic classification of DNA fragments based onsequence composition

    SciTech Connect

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis; Hugenholtz, Philip; Rigoutsos, Isidore

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequence characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.

  13. Does a pneumotach accurately characterize voice function?

    NASA Astrophysics Data System (ADS)

    Walters, Gage; Krane, Michael

    2016-11-01

    A study is presented which addresses how a pneumotach might adversely affect clinical measurements of voice function. A pneumotach is a device, typically a mask, worn over the mouth, in order to measure time-varying glottal volume flow. By measuring the time-varying difference in pressure across a known aerodynamic resistance element in the mask, the glottal volume flow waveform is estimated. Because it adds aerodynamic resistance to the vocal system, there is some concern that using a pneumotach may not accurately portray the behavior of the voice. To test this hypothesis, experiments were performed in a simplified airway model with the principal dimensions of an adult human upper airway. A compliant constriction, fabricated from silicone rubber, modeled the vocal folds. Variations of transglottal pressure, time-averaged volume flow, model vocal fold vibration amplitude, and radiated sound with subglottal pressure were performed, with and without the pneumotach in place, and differences noted. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  14. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  15. Accurate methods for large molecular systems.

    PubMed

    Gordon, Mark S; Mullin, Jonathan M; Pruitt, Spencer R; Roskop, Luke B; Slipchenko, Lyudmila V; Boatz, Jerry A

    2009-07-23

    Three exciting new methods that address the accurate prediction of processes and properties of large molecular systems are discussed. The systematic fragmentation method (SFM) and the fragment molecular orbital (FMO) method both decompose a large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in very different ways that are designed to both retain the high accuracy of the chosen quantum mechanical level of theory while greatly reducing the demands on computational time and resources. Each of these methods is inherently scalable and is therefore eminently capable of taking advantage of massively parallel computer hardware while retaining the accuracy of the corresponding electronic structure method from which it is derived. The effective fragment potential (EFP) method is a sophisticated approach for the prediction of nonbonded and intermolecular interactions. Therefore, the EFP method provides a way to further reduce the computational effort while retaining accuracy by treating the far-field interactions in place of the full electronic structure method. The performance of the methods is demonstrated using applications to several systems, including benzene dimer, small organic species, pieces of the alpha helix, water, and ionic liquids.

  16. Accurate equilibrium structures for piperidine and cyclohexane.

    PubMed

    Demaison, Jean; Craig, Norman C; Groner, Peter; Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Rudolph, Heinz Dieter

    2015-03-05

    Extended and improved microwave (MW) measurements are reported for the isotopologues of piperidine. New ground state (GS) rotational constants are fitted to MW transitions with quartic centrifugal distortion constants taken from ab initio calculations. Predicate values for the geometric parameters of piperidine and cyclohexane are found from a high level of ab initio theory including adjustments for basis set dependence and for correlation of the core electrons. Equilibrium rotational constants are obtained from GS rotational constants corrected for vibration-rotation interactions and electronic contributions. Equilibrium structures for piperidine and cyclohexane are fitted by the mixed estimation method. In this method, structural parameters are fitted concurrently to predicate parameters (with appropriate uncertainties) and moments of inertia (with uncertainties). The new structures are regarded as being accurate to 0.001 Å and 0.2°. Comparisons are made between bond parameters in equatorial piperidine and cyclohexane. Another interesting result of this study is that a structure determination is an effective way to check the accuracy of the ground state experimental rotational constants.

  17. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  18. Accurate upper body rehabilitation system using kinect.

    PubMed

    Sinha, Sanjana; Bhowmick, Brojeshwar; Chakravarty, Kingshuk; Sinha, Aniruddha; Das, Abhijit

    2016-08-01

    The growing importance of Kinect as a tool for clinical assessment and rehabilitation is due to its portability, low cost and markerless system for human motion capture. However, the accuracy of Kinect in measuring three-dimensional body joint center locations often fails to meet clinical standards of accuracy when compared to marker-based motion capture systems such as Vicon. The length of the body segment connecting any two joints, measured as the distance between three-dimensional Kinect skeleton joint coordinates, has been observed to vary with time. The orientation of the line connecting adjoining Kinect skeletal coordinates has also been seen to differ from the actual orientation of the physical body segment. Hence we have proposed an optimization method that utilizes Kinect Depth and RGB information to search for the joint center location that satisfies constraints on body segment length and as well as orientation. An experimental study have been carried out on ten healthy participants performing upper body range of motion exercises. The results report 72% reduction in body segment length variance and 2° improvement in Range of Motion (ROM) angle hence enabling to more accurate measurements for upper limb exercises.

  19. Noninvasive hemoglobin monitoring: how accurate is enough?

    PubMed

    Rice, Mark J; Gravenstein, Nikolaus; Morey, Timothy E

    2013-10-01

    Evaluating the accuracy of medical devices has traditionally been a blend of statistical analyses, at times without contextualizing the clinical application. There have been a number of recent publications on the accuracy of a continuous noninvasive hemoglobin measurement device, the Masimo Radical-7 Pulse Co-oximeter, focusing on the traditional statistical metrics of bias and precision. In this review, which contains material presented at the Innovations and Applications of Monitoring Perfusion, Oxygenation, and Ventilation (IAMPOV) Symposium at Yale University in 2012, we critically investigated these metrics as applied to the new technology, exploring what is required of a noninvasive hemoglobin monitor and whether the conventional statistics adequately answer our questions about clinical accuracy. We discuss the glucose error grid, well known in the glucose monitoring literature, and describe an analogous version for hemoglobin monitoring. This hemoglobin error grid can be used to evaluate the required clinical accuracy (±g/dL) of a hemoglobin measurement device to provide more conclusive evidence on whether to transfuse an individual patient. The important decision to transfuse a patient usually requires both an accurate hemoglobin measurement and a physiologic reason to elect transfusion. It is our opinion that the published accuracy data of the Masimo Radical-7 is not good enough to make the transfusion decision.

  20. Accurate, reproducible measurement of blood pressure.

    PubMed Central

    Campbell, N R; Chockalingam, A; Fodor, J G; McKay, D W

    1990-01-01

    The diagnosis of mild hypertension and the treatment of hypertension require accurate measurement of blood pressure. Blood pressure readings are altered by various factors that influence the patient, the techniques used and the accuracy of the sphygmomanometer. The variability of readings can be reduced if informed patients prepare in advance by emptying their bladder and bowel, by avoiding over-the-counter vasoactive drugs the day of measurement and by avoiding exposure to cold, caffeine consumption, smoking and physical exertion within half an hour before measurement. The use of standardized techniques to measure blood pressure will help to avoid large systematic errors. Poor technique can account for differences in readings of more than 15 mm Hg and ultimately misdiagnosis. Most of the recommended procedures are simple and, when routinely incorporated into clinical practice, require little additional time. The equipment must be appropriate and in good condition. Physicians should have a suitable selection of cuff sizes readily available; the use of the correct cuff size is essential to minimize systematic errors in blood pressure measurement. Semiannual calibration of aneroid sphygmomanometers and annual inspection of mercury sphygmomanometers and blood pressure cuffs are recommended. We review the methods recommended for measuring blood pressure and discuss the factors known to produce large differences in blood pressure readings. PMID:2192791

  1. Fast and accurate exhaled breath ammonia measurement.

    PubMed

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H

    2014-06-11

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.

  2. Calculation of Accurate Hexagonal Discontinuity Factors for PARCS

    SciTech Connect

    Pounders. J., Bandini, B. R. , Xu, Y, and Downar, T. J.

    2007-11-01

    In this study we derive a methodology for calculating discontinuity factors consistent with the Triangle-based Polynomial Expansion Nodal (TPEN) method implemented in PARCS for hexagonal reactor geometries. The accuracy of coarse-mesh nodal methods is greatly enhanced by permitting flux discontinuities at node boundaries, but the practice of calculating discontinuity factors from infinite-medium (zero-current) single bundle calculations may not be sufficiently accurate for more challenging problems in which there is a large amount of internodal neutron streaming. The authors therefore derive a TPEN-based method for calculating discontinuity factors that are exact with respect to generalized equivalence theory. The method is validated by reproducing the reference solution for a small hexagonal core.

  3. A new accurate pill recognition system using imprint information

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Kamata, Sei-ichiro

    2013-12-01

    Great achievements in modern medicine benefit human beings. Also, it has brought about an explosive growth of pharmaceuticals that current in the market. In daily life, pharmaceuticals sometimes confuse people when they are found unlabeled. In this paper, we propose an automatic pill recognition technique to solve this problem. It functions mainly based on the imprint feature of the pills, which is extracted by proposed MSWT (modified stroke width transform) and described by WSC (weighted shape context). Experiments show that our proposed pill recognition method can reach an accurate rate up to 92.03% within top 5 ranks when trying to classify more than 10 thousand query pill images into around 2000 categories.

  4. Accurate derivative evaluation for any Grad–Shafranov solver

    SciTech Connect

    Ricketson, L.F.; Cerfon, A.J.; Rachh, M.; Freidberg, J.P.

    2016-01-15

    We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad–Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our scheme is an efficient and accurate computation of the Dirichlet to Neumann map through the evaluation of a singular volume integral and the solution to a Fredholm integral equation of the second kind. Our numerical method is particularly useful for magnetic confinement fusion simulations, since it allows the evaluation of quantities such as the magnetic field, the parallel current density and the magnetic curvature with much higher accuracy than has been previously feasible on the affordable coarse grids that are usually implemented.

  5. Current procedural terminology coding in electrophysiology: focus on 2009 updates.

    PubMed

    Undavia, Manish

    2009-05-01

    This article highlights the major changes in the current procedural terminology codes (CPT codes) that were announced by the American Medical Association in January 2009. These new CPT codes were developed to more accurately reflect current cardiac device monitoring capabilities, long-distance telemetry and remote interrogation as well as follow-up practices. Some of these new code sets are structured differently than the CPT codes that they replace. Specifically, the new codes for remote monitoring do not have separate professional (-26) and technical components (-TC) applied to an individual code. Instead, the new remote monitoring codes have separate CPT codes that represent the professional and technical components. The new device programming codes are generally defined by the number of leads, rather than the type of generator. Also, the period of time included in the specific type of service is indicated as per encounter, 30 or 90 days. Furthermore, two new periprocedural device evaluation and programming codes have been introduced.

  6. Signs of current suicidality in men: A systematic review

    PubMed Central

    Wilson, Coralie J.; Caputi, Peter; Woodward, Alan; Wilson, Ian

    2017-01-01

    Suicide signs have been identified by expert consensus and are relied on by service providers, community helpers’ and family members to identify suicidal men. Whether signs that are reported in suicide literature accurately describe male presentations of suicidality is unclear. A systematic review of the literature was conducted to identify male-specific signs of current suicidality and identify gaps in the literature for future research. Searches through Medline, CINAHL, PsychInfo and the Behavioral Sciences Collection, guided by the PRISMA-P statement, identified 12 studies that met the study eligibility criteria. Although the results generally reflected suicide signs identified by expert consensus, there is little research that has examined male-specific signs of the current suicidal state. This review highlights the need for scientific research to clarify male presentation of suicidality. Implications for future research to improve the prompt identification of suicidal men are discussed. PMID:28355268

  7. Toward accurate and fast iris segmentation for iris biometrics.

    PubMed

    He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao

    2009-09-01

    Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed.

  8. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  9. A Reflection on Belief

    ERIC Educational Resources Information Center

    Cuevas, Joshua A.

    2013-01-01

    This paper explores the phenomenon in which, for many people, subjective personal belief is viewed as a more accurate representation of reality than objective scientific knowledge developed over the course of human history and transmitted through secular education. The first half of the article is based on personal observations of the author…

  10. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  11. Accurate glucose detection in a small etalon

    NASA Astrophysics Data System (ADS)

    Martini, Joerg; Kuebler, Sebastian; Recht, Michael; Torres, Francisco; Roe, Jeffrey; Kiesel, Peter; Bruce, Richard

    2010-02-01

    We are developing a continuous glucose monitor for subcutaneous long-term implantation. This detector contains a double chamber Fabry-Perot-etalon that measures the differential refractive index (RI) between a reference and a measurement chamber at 850 nm. The etalon chambers have wavelength dependent transmission maxima which dependent linearly on the RI of their contents. An RI difference of ▵n=1.5.10-6 changes the spectral position of a transmission maximum by 1pm in our measurement. By sweeping the wavelength of a single-mode Vertical-Cavity-Surface-Emitting-Laser (VCSEL) linearly in time and detecting the maximum transmission peaks of the etalon we are able to measure the RI of a liquid. We have demonstrated accuracy of ▵n=+/-3.5.10-6 over a ▵n-range of 0 to 1.75.10-4 and an accuracy of 2% over a ▵nrange of 1.75.10-4 to 9.8.10-4. The accuracy is primarily limited by the reference measurement. The RI difference between the etalon chambers is made specific to glucose by the competitive, reversible release of Concanavalin A (ConA) from an immobilized dextran matrix. The matrix and ConA bound to it, is positioned outside the optical detection path. ConA is released from the matrix by reacting with glucose and diffuses into the optical path to change the RI in the etalon. Factors such as temperature affect the RI in measurement and detection chamber equally but do not affect the differential measurement. A typical standard deviation in RI is +/-1.4.10-6 over the range 32°C to 42°C. The detector enables an accurate glucose specific concentration measurement.

  12. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Astrophysics Data System (ADS)

    Wheeler, K.; Knuth, K.; Castle, P.

    2005-12-01

    and IKONOS imagery and the 3-D volume estimates. The combination of these then allow for a rapid and hopefully very accurate estimation of biomass.

  13. Towards Accurate Application Characterization for Exascale (APEX)

    SciTech Connect

    Hammond, Simon David

    2015-09-01

    Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.

  14. Simulation studies and the need for field reflectance studies

    NASA Technical Reports Server (NTRS)

    Duggin, M. J.

    1983-01-01

    There is a need to calibrate satellite data obtained at large polar (i.e., off-nadir) view angles for effects caused by scanner geometry and by the atmosphere. If such effects are not corrected for, then recorded radiance data will contain systematic and random errors which will make accurate target identification and quantification difficult. Adequate calibration of digital radiance data requires both an inductive analysis of digital satellite images and a deductive analysis based upon a priori simulation studies. The inputs to a simulation model (ground reflectance, atmospheric transmission and bandscatter) and their variability are dependent upon (for example) sun-target-sensor geometry. There is a major need to make accurate ground reflectance measurements to provide calibration information on the anisotropy of ground reflectance. There is also a need to assess atmospheric transmission and backscatter from the image itself. A potential simple, inexpensive method for making ground reflectance measurements in the above context is discussed.

  15. Simulation Studies And The Need For Field Reflectance Studies

    NASA Astrophysics Data System (ADS)

    Duggin, M. J.

    1983-06-01

    There is a need to calibrate satellite data obtained at large polar (i.e. off-nadir) view angles for effects caused by scanner geometry and by the atmosphere. If such effects are not corrected for, then recorded radiance data will contain systematic and random errors which will make accurate target identification and quantification difficult. Adequate calibration of digital radiance data requires both an inductive analysis of digital satellite images and a deductive analysis based upon a priori simulation studies. The inputs to a simulation model (ground reflectance, atmospheric transmission and bandscatter) and their variability are dependent upon (for example) sun-target-sensor geometry. There is a major need to make accurate ground reflectance measurements to provide calibration information on the anisotropy of ground reflectance. There is also a need to assess atmospheric transmission and backscatter from the image itself. A potential simple, inexpensive method for making ground reflectance measurements in the above context is discussed.

  16. Reflection-contrast limit of fiber-optic image guides

    PubMed Central

    Lane, Pierre M.; MacAulay, Calum E.

    2009-01-01

    Fiber-optic image guides in confocal reflectance endomicroscopes introduce background backscatter that limits the achievable contrast in these devices. We show the dominant source of backscatter from the image guide is due to Rayleigh scattering at short wavelengths and terminal reflections of the fibers at long wavelengths. The effective Rayleigh scattering coefficient and the wavelength-independent reflectivity due terminal reflections are measured experimentally in a commercial image guide. The Rayleigh scattering component of backscatter can be accurately predicted using the fractional refractive-index difference and length of the fibers in the image guide. We also presented a simple model that can be used to predict signal-to-background ratio in a fiber-optic confocal reflectance endomicroscope for biologically relevant tissues and contrast agents that cover a wide range of reflectivity. PMID:20059266

  17. Radar reflectivity of Titan

    NASA Astrophysics Data System (ADS)

    Muhleman, D. O.; Grossman, A. W.; Butler, B. J.; Slade, M. A.

    1990-05-01

    The low dielectric constant of the liquid hydrocarbon and ethane-methane surface mixture of Titan has as a direct consequence a set of unique microwave-reflection properties which were sought out at 3.5-cm wavelength, using a 70-m transmitting antenna in conjunction with the VLA as a receiving instrument. The statistically significant echoes obtained indicate that Titan is not covered with a deep global ocean of ethane. A global ocean as shallow as about 200 m would have exhibited reflectivities smaller by an order of magnitude, and below the experiment's detection limit.

  18. Focused crossed Andreev reflection

    NASA Astrophysics Data System (ADS)

    Haugen, H.; Brataas, A.; Waintal, X.; Bauer, G. E. W.

    2011-03-01

    We consider non-local transport mediated by Andreev reflection in a two-dimensional electron gas (2DEG) connected to one superconducting and two normal metal terminals. A robust scheme is presented for observing crossed Andreev reflection (CAR) between the normal metal terminals based on electron focusing by weak perpendicular magnetic fields. At slightly elevated temperatures the CAR signature can be easily distinguished from a background of quantum interference fluctuations. The CAR-induced entanglement between electrons can be switched on and off over large distances by the magnetic field.

  19. Improved Ecosystem Predictions of the California Current System via Accurate Light Calculations

    DTIC Science & Technology

    2010-01-01

    photosynthetically available radiation) in terms of the chlorophyll concentration and a few parameters such as the solar zenith angle. Such simple light models...and to account for all inherent optical property (IOP, namely the absorption , scatter, and backscatter coefficients) effects. However, once an...and upwelling radiance. The EcoLight-S code is also being incorporated into the final version of the spectrum -matching and look-up-table software

  20. Improved Ecosystem Predictions of the California Current System via Accurate Light Calculations

    DTIC Science & Technology

    2009-01-01

    P., J. J. Walsh, D.A. Dieterle, and K. L. Carder, 1999a. Carbon cycling in the upper waters of the Sargasso Sea : I. Numerical simulation of...cycling in the upper waters of the Sargasso Sea : II. Numerical simulation of apparent and inherent optical properties. Deep- Sea Res., 46: 271-317...differential carbon and nitrogen fluxes. Deep- Sea Res. 46: 205-269. Bissett, W. P., K. L. Carder, J. J. Walsh, and D.A. Dieterle, 1999b. Carbon

  1. What does reflection from cloud sides tell us about vertical distribution of cloud droplets?

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Kaufman, Yoram; Martins, V.; Zubko, Victor

    2006-01-01

    In order to accurately measure the interaction of clouds with aerosols, we have to resolve the vertical distribution of cloud droplet sizes and determine the temperature of glaciation for clean and polluted clouds. Knowledge of the droplet vertical profile is also essential for understanding precipitation. So far, all existing satellites either measure cloud microphysics only at cloud top (e.g., MODIS) or give a vertical profile of precipitation sized droplets (e.g., Cloudsat). What if one measures cloud microphysical properties in the vertical by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides? This was the idea behind CLAIM-3D (A 3D - cloud aerosol interaction mission) recently proposed by NASA GSFC. This presentation will focus on the interpretation of the radiation reflected from cloud sides. In contrast to plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer will be used for interpreting the observed reflectances. As a proof of concept, we will show a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with prescribed microphysics. Instead of fixed values of the retrieved effective radii, the probability density functions of droplet size distributions will serve as possible retrievals.

  2. Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications.

    PubMed

    Han, Katherine; Chang, Chih-Hung

    2014-01-29

    This paper reviews the current progress in mathematical modeling of anti-reflective subwavelength structures. Methods covered include effective medium theory (EMT), finite-difference time-domain (FDTD), transfer matrix method (TMM), the Fourier modal method (FMM)/rigorous coupled-wave analysis (RCWA) and the finite element method (FEM). Time-based solutions to Maxwell's equations, such as FDTD, have the benefits of calculating reflectance for multiple wavelengths of light per simulation, but are computationally intensive. Space-discretized methods such as FDTD and FEM output field strength results over the whole geometry and are capable of modeling arbitrary shapes. Frequency-based solutions such as RCWA/FMM and FEM model one wavelength per simulation and are thus able to handle dispersion for regular geometries. Analytical approaches such as TMM are appropriate for very simple thin films. Initial disadvantages such as neglect of dispersion (FDTD), inaccuracy in TM polarization (RCWA), inability to model aperiodic gratings (RCWA), and inaccuracy with metallic materials (FDTD) have been overcome by most modern software. All rigorous numerical methods have accurately predicted the broadband reflection of ideal, graded-index anti-reflective subwavelength structures; ideal structures are tapered nanostructures with periods smaller than the wavelengths of light of interest and lengths that are at least a large portion of the wavelengths considered.

  3. Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications

    PubMed Central

    Han, Katherine; Chang, Chih-Hung

    2014-01-01

    This paper reviews the current progress in mathematical modeling of anti-reflective subwavelength structures. Methods covered include effective medium theory (EMT), finite-difference time-domain (FDTD), transfer matrix method (TMM), the Fourier modal method (FMM)/rigorous coupled-wave analysis (RCWA) and the finite element method (FEM). Time-based solutions to Maxwell’s equations, such as FDTD, have the benefits of calculating reflectance for multiple wavelengths of light per simulation, but are computationally intensive. Space-discretized methods such as FDTD and FEM output field strength results over the whole geometry and are capable of modeling arbitrary shapes. Frequency-based solutions such as RCWA/FMM and FEM model one wavelength per simulation and are thus able to handle dispersion for regular geometries. Analytical approaches such as TMM are appropriate for very simple thin films. Initial disadvantages such as neglect of dispersion (FDTD), inaccuracy in TM polarization (RCWA), inability to model aperiodic gratings (RCWA), and inaccuracy with metallic materials (FDTD) have been overcome by most modern software. All rigorous numerical methods have accurately predicted the broadband reflection of ideal, graded-index anti-reflective subwavelength structures; ideal structures are tapered nanostructures with periods smaller than the wavelengths of light of interest and lengths that are at least a large portion of the wavelengths considered.

  4. Evaluation of Experimental Data from the Gains Balloon GPS Surface Reflection Instrument

    NASA Technical Reports Server (NTRS)

    Ganoe, George G.; Johnson, Thomas A.; Somero, John Ryan

    2002-01-01

    The GPS Surface Reflection Instrument was integrated as an experiment on the GAINS (Global Airocean IN-situ System) 48-hour balloon mission flown in June 2002. The data collected by similar instruments in the past has been used to measure sea state from which ocean surface winds can be accurately estimated. The GPS signal has also been shown to be reflected from wetland areas and even from subsurface moisture. The current version of the instrument has been redesigned to be more compact, use less power, and withstand a greater variation in environmental conditions than previous versions. This instrument has also incorporated a new data collection mode to track 5 direct satellites (providing a continuous navigation solution) and multiplex the remaining 7 channels to track the reflected signal of the satellite tracked in channel 0. The new software mode has been shown to increase the signal to noise ratio of the collected data and enhance the science return of the instrument. During the GAINS balloon flight over the Northwest US, the instrument measured surface reflections as they were detected over the balloon's ground track. Since ground surface elevations in this area vary widely from the WGS-84 ellipsoid altitude, the instrument software has been modified to incorporate a surface altitude correction based on USGS 30-minute Digital Elevation Models. Information presented will include facts about instrument design goals, data collection methodologies and algorithms, and will focus on results of the science data analyses for the mission.

  5. Evaluation of Experimental Data from the GAINS Balloon GPS Surface Reflection Instrument

    NASA Technical Reports Server (NTRS)

    Gance, George G.; Johnson, Thomas A.

    2004-01-01

    The GPS Surface Reflection Instrument was integrated as an experiment on the GAINS (Global Airocean IN-situ System) 48-hour balloon mission flown in September 2001. The data collected by similar instruments in the past has been used to measure sea state from which ocean surface winds can be accurately estimated. The GPS signal has also been shown to be reflected from wetland areas and even from subsurface moisture. The current version of the instrument has been redesigned to be more compact, use less power, and withstand a greater variation in environmental conditions than previous versions. This instrument has also incorporated a new data collection mode to track 5 direct satellites (providing a continuous navigation solution) and multiplex the remaining 7 channels to track the reflected signal of the satellite tracked in channel 0. The new software mode has been shown to increase the signal to noise ratio of the collected data and enhance the science return of the instrument. During the 48-hour flight over the Northwest US, the instrument will measure surface reflections that can be detected over the balloon's ground track. Since ground surface elevations in this area vary widely from the WGS-84 ellipsoid altitude, the instrument software has been modified to incorporate a surface altitude correction based on USGS 30-minute Digital Elevation Models. Information presented will include facts about instrument design goals, data collection methodologies and algorithms, and results of the science data analyses for the 48-hour mission.

  6. Modeling Spectralon's Bidirectional Reflectance for In-flight Calibration of Earth-Orbiting Sensors

    NASA Technical Reports Server (NTRS)

    Flasse, Stephane P.; Verstraete, Michel M.; Pinty, Bernard; Bruegge, Carol J.

    1993-01-01

    The in-flight calibration of the EOS Multi-angle Imaging SpectroRadiometer (MISR) will be achieved, in part, by observing deployable Spectralon panels. This material reflects light diffusely, and allows all cameras to view a near constant radiance field. This is particularly true when a panel is illuminated near the surface normal. To meet the challenging MISR calibration requirements, however, very accurate knowledge of the panel reflectance must be known for all utilized angles of illumination, and for all camera and monitoring photodiode view angles. It is believed that model predictions of the panels Bidirectional Reflectance Distribution Function (BRDF) can be used in conjunction with a measurements program to provide the required characterization. This paper describes the results of a model inversion which was conducted using measured Spectralon BRDF data at several illumination angles. Four physical parameters of the material were retrieved, and are available for use with the model to predict reflectance for any arbitrary illumination or view angle. With these data the root mean square difference between the model and the observations is currently of the order of the noise in the data, at about +/- l%. With this success the model will now be used in a variety of future studies, including the development of a measurements test plan, the validation of these data, and the prediction of a new BRDF profile, should the material degrade in space.

  7. Optical Reflectance Measurements for Commonly Used Reflectors

    SciTech Connect

    Janecek, Petr Martin; Moses, William

    2008-06-11

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2 pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3o, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 105:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirror(R), Melinex(R) and Tyvek(R). Instead, a more complicated light distribution was measured for these three materials.

  8. A gene expression biomarker accurately predicts estrogen ...

    EPA Pesticide Factsheets

    The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c

  9. SWIR calibration of Spectralon reflectance factor

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Butler, James J.; Cooksey, Catherine; Ding, Leibo; Thome, Kurtis J.

    2011-11-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Factor (BRF) of laboratory-based diffusers used in their pre-flight and on-orbit radiometric calibrations. BRF measurements are required throughout the reflected-solar spectrum from the ultraviolet through the shortwave infrared. Spectralon diffusers are commonly used as a reflectance standard for bidirectional and hemispherical geometries. The Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center is a secondary calibration facility with reflectance measurements traceable to those made by the Spectral Tri-function Automated Reference Reflectometer (STARR) facility at the National Institute of Standards and Technology (NIST). For more than two decades, the DCaL has provided numerous NASA projects with BRF data in the ultraviolet (UV), visible (VIS) and the Near InfraRed (NIR) spectral regions. Presented in this paper are measurements of BRF from 1475 nm to 1625 nm obtained using an indium gallium arsenide detector and a tunable coherent light source. The sample was a 50.8 mm (2 in) diameter, 99% white Spectralon target. The BRF results are discussed and compared to empirically generated data from a model based on NIST certified values of 6°directional-hemispherical spectral reflectance factors from 900 nm to 2500 nm. Employing a new NIST capability for measuring bidirectional reflectance using a cooled, extended InGaAs detector, BRF calibration measurements of the same sample were also made using NIST's STARR from 1475 nm to 1625 nm at an incident angle of 0° and at viewing angle of 45°. The total combined uncertainty for BRF in this ShortWave Infrared (SWIR) range is less than 1%. This measurement capability will evolve into a BRF calibration service in SWIR region in support of NASA remote sensing missions.

  10. Inaugural Reflections from an Institute. Technology in Higher Education: Current Reflections. First in a Series.

    ERIC Educational Resources Information Center

    Graves, William H.; And Others

    The Institute for Academic Technology is a university/industry collaboration designed to advance the educational value of affordable technologies. A broad spectrum overview of the program's goals from the point of view of the director, a faculty view of participation, and the industry participant's rationale for program support are presented in…

  11. Accurate radiometry from space: an essential tool for climate studies.

    PubMed

    Fox, Nigel; Kaiser-Weiss, Andrea; Schmutz, Werner; Thome, Kurtis; Young, Dave; Wielicki, Bruce; Winkler, Rainer; Woolliams, Emma

    2011-10-28

    The Earth's climate is undoubtedly changing; however, the time scale, consequences and causal attribution remain the subject of significant debate and uncertainty. Detection of subtle indicators from a background of natural variability requires measurements over a time base of decades. This places severe demands on the instrumentation used, requiring measurements of sufficient accuracy and sensitivity that can allow reliable judgements to be made decades apart. The International System of Units (SI) and the network of National Metrology Institutes were developed to address such requirements. However, ensuring and maintaining SI traceability of sufficient accuracy in instruments orbiting the Earth presents a significant new challenge to the metrology community. This paper highlights some key measurands and applications driving the uncertainty demand of the climate community in the solar reflective domain, e.g. solar irradiances and reflectances/radiances of the Earth. It discusses how meeting these uncertainties facilitate significant improvement in the forecasting abilities of climate models. After discussing the current state of the art, it describes a new satellite mission, called TRUTHS, which enables, for the first time, high-accuracy SI traceability to be established in orbit. The direct use of a 'primary standard' and replication of the terrestrial traceability chain extends the SI into space, in effect realizing a 'metrology laboratory in space'.

  12. Accurate Radiometry from Space: An Essential Tool for Climate Studies

    NASA Technical Reports Server (NTRS)

    Fox, Nigel; Kaiser-Weiss, Andrea; Schmutz, Werner; Thome, Kurtis; Young, Dave; Wielicki, Bruce; Winkler, Rainer; Woolliams, Emma

    2011-01-01

    The Earth s climate is undoubtedly changing; however, the time scale, consequences and causal attribution remain the subject of significant debate and uncertainty. Detection of subtle indicators from a background of natural variability requires measurements over a time base of decades. This places severe demands on the instrumentation used, requiring measurements of sufficient accuracy and sensitivity that can allow reliable judgements to be made decades apart. The International System of Units (SI) and the network of National Metrology Institutes were developed to address such requirements. However, ensuring and maintaining SI traceability of sufficient accuracy in instruments orbiting the Earth presents a significant new challenge to the metrology community. This paper highlights some key measurands and applications driving the uncertainty demand of the climate community in the solar reflective domain, e.g. solar irradiances and reflectances/radiances of the Earth. It discusses how meeting these uncertainties facilitate significant improvement in the forecasting abilities of climate models. After discussing the current state of the art, it describes a new satellite mission, called TRUTHS, which enables, for the first time, high-accuracy SI traceability to be established in orbit. The direct use of a primary standard and replication of the terrestrial traceability chain extends the SI into space, in effect realizing a metrology laboratory in space . Keywords: climate change; Earth observation; satellites; radiometry; solar irradiance

  13. Does the spectral format matter in diffuse reflection spectroscopy?

    PubMed

    Reeves, James B

    2009-06-01

    Near-infrared, and more recently, mid-infrared diffuse reflection spectroscopy (more commonly and erroneously called reflectance spectroscopy) have come to be extensively used to determine the composition of products ranging from forages and drugs to soils. In these methods, spectra are generally collected as reflectance or R and transformed to log (1/reflectance). However, some near-infrared researchers do not transform the data, but use the data directly as reflectance. As it is generally held that procedures such as partial least squares regression do not work well with nonlinear data and the log (1/reflectance) transformation is held to be a best effort at linearization for near-infrared diffuse reflection spectral data, the question arises as to why then does not everyone transform the data? The objective of this work was to investigate this question using near-infrared and mid-infrared spectra in various formats. Calibrations were developed using spectral data from forages in several formats: reflectance, log (1/reflectance), non-background corrected single beam spectra, interferograms, and Kubelka-Munk transformed data. Calibrations were developed using both non-pretreated spectra and using data pretreatments such as derivatives. Results showed that calibrations using partial least squares regression did not require any specific data format. Accurate calibrations were developed for fiber, digestibility, and protein measures in forages using any of the aforementioned spectral formats including non-background-corrected single beam spectra and even interferograms. While calibrations could be developed using any of the formats, results indicated that those using Kubelka-Munk and especially interferograms did not perform as well as the others, although they were still quite good. In conclusion, results using forage spectra indicated that accurate and equivalent calibrations can be developed using diffuse reflectance data, with (reflectance) or without background

  14. Reflections on "La Esperanza"

    ERIC Educational Resources Information Center

    Cortez, Anita

    2007-01-01

    The author was recently asked to reflect on her "educational journey." As far as she can remember she has been hungry to learn. A friend once described her as having "hambres atrasadas," which he described as a kind of "hunger nipping at her heels." It goes back, of course, to her parents: Her father's and her early…

  15. Reflecting on Data

    ERIC Educational Resources Information Center

    Kraus, Rudolf V.

    2014-01-01

    This article describes a two-day optics laboratory activity that investigates the scientific phenomenon of reflection, which students are generally familiar with but usually have not studied in depth. This investigation can be used on its own or as part of a larger unit on optics. This lesson encourages students to think critically and…

  16. Reflective Database Access Control

    ERIC Educational Resources Information Center

    Olson, Lars E.

    2009-01-01

    "Reflective Database Access Control" (RDBAC) is a model in which a database privilege is expressed as a database query itself, rather than as a static privilege contained in an access control list. RDBAC aids the management of database access controls by improving the expressiveness of policies. However, such policies introduce new interactions…

  17. Reflections on Expectations

    ERIC Educational Resources Information Center

    Santini, Joseph

    2014-01-01

    This article describes a teachers reflections on the matter of student expectations. Santini begins with a common understanding of the "Pygmalion effect" from research projects conducted in earlier years that intimated "people's expectations could influence other people in the world around them." In the world of deaf…

  18. Clinical Linguistics: Conversational Reflections

    ERIC Educational Resources Information Center

    Crystal, David

    2013-01-01

    This is a report of the main points I made in an informal "conversation" with Paul Fletcher and the audience at the 14th ICPLA conference in Cork. The observations arose randomly, as part of an unstructured 1-h Q&A, so they do not provide a systematic account of the subject, but simply reflect the issues which were raised by the conference…

  19. Reflections, 15 Years Later

    ERIC Educational Resources Information Center

    Knox, George

    2016-01-01

    George Knox reflects on his 15-year career as president of Labette Community College in Parsons, Kansas. Knox writes that, as a first-time president coming into a brand new system, he was very fortunate to have many seasoned presidents and mentors in Kansas and from the American Association of Community Colleges' (AACC) Presidents Academy. He says…

  20. Reflections on 1972

    ERIC Educational Resources Information Center

    Gutierrez, Ramon A.

    2007-01-01

    In this article, the author reflects on the events that took place in the year 1972. The author was a junior at the University of New Mexico back then, refusing to eat or buy grapes and lettuce, picketing grocers who did not carry United Farm Workers of America produce. He and his buddies cast their votes against granting Richard Nixon a second…

  1. Lights, Camera, Reflection!

    ERIC Educational Resources Information Center

    Mourlam, Daniel

    2013-01-01

    There are many ways to critique teaching, but few are more effective than video. Personal reflection through the use of video allows one to see what really happens in the classrooms--good and bad--and provides a visual path forward for improvement, whether it be in one's teaching, work with a particular student, or learning environment. This…

  2. Renew, Reflect, and Refresh

    ERIC Educational Resources Information Center

    Texley, Juliana

    2005-01-01

    Is that the sound of the last bus leaving the schoolyard? Or the staff's collective sigh of relief? School's out. Now it's time to nurture the lifelong learner deep inside with a summer reading list that will allow teachers to renew, reflect, and refresh. The National Science Education Standards reminds us, "Becoming an effective science teacher…

  3. Reflections: Children and Literature.

    ERIC Educational Resources Information Center

    And Others; Cianciolo, Patricia J.

    1980-01-01

    Six educational leaders--Patricia J. Cianciolo, Lee Bennett Hopkins, Nancy Larrick, Alan C. Purves, Morton Schindel, and James R. Squire--offer reflections on signficiant developments in children's literature during the 1970s, their hopes for the 1980s, and references that constitute required reading for elementary language arts teachers. (ET)

  4. Reflection by Porro Prisms

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2010-04-01

    Students all know that reflection from a plane mirror produces an image that is reversed right to left and so cannot be read by anyone but Leonardo da Vinci, who kept his notes in mirror writing. A useful counter-example is the Porro prism, which produces an image that is not reversed.

  5. Reflections/Selected Readings.

    ERIC Educational Resources Information Center

    Cook, Gillian; Gorman, Arlene; Junco, Carol; Martinez, Miriam; Perez, Bertha; Torres, Azucena; Tschoepe, Mary

    1998-01-01

    Offers reflections on lingering issues raised in this themed issue on the "Gardendale Family": maintaining the integrity of the family; issues of time; curriculum standards; and effects on the rest of the school. Offers a bibliography of works considering the global concerns which prompted the formation of the Gardendale Family. (SR)

  6. Interactive Reflective Logs

    ERIC Educational Resources Information Center

    Deaton, Cynthia Minchew; Deaton, Benjamin E.; Leland, Katina

    2010-01-01

    The authors created an interactive reflective log (IRL) to provide teachers with an opportunity to use a journal approach to record, evaluate, and communicate student understanding of science concepts. Unlike a traditional journal, the IRL incorporates prompts to encourage students to discuss their understanding of science content and science…

  7. Reflections on "Real-World" Community Psychology

    ERIC Educational Resources Information Center

    Wolff, Tom; Swift, Carolyn

    2008-01-01

    Reflections on the history of real-world (applied) community psychologists trace their participation in the field's official guild, the Society for Community Research and Action (SCRA), beginning with the Swampscott Conference in 1965 through the current date. Four benchmarks are examined. The issues these real-world psychologists bring to the…

  8. Reflection in Education: A Kantian Epistemology

    ERIC Educational Resources Information Center

    Procee, Henk

    2006-01-01

    As even its defenders admit, reflection in education suffers from a lack of conceptual clarity. In this essay, Henk Procee provides a philosophical analysis of the central concepts in this domain. In the current literature, these concepts are usually taken from the pragmatic school of John Dewey and from critical social theory associated with…

  9. Three "Moves" in Enactivist Research: A Reflection

    ERIC Educational Resources Information Center

    Simmt, Elaine; Kieren, Tom

    2015-01-01

    In this paper the authors reflect on the contents of this current issue of ZDM and ask why focus an entire issue on enactivism as a research methodology in mathematics education. In their synthesis of the papers they distinguish and explicate what they observe as three moves in the enactivist research discussed. The first move (and the one that…

  10. Accurate calculation of field and carrier distributions in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Yang, Wenji; Tang, Jianping; Yu, Hongchun; Wang, Yanguo

    2012-06-01

    We use the numerical squeezing algorithm(NSA) combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs) in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP) - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD) systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.

  11. Quantitative proteomic analysis by accurate mass retention time pairs.

    PubMed

    Silva, Jeffrey C; Denny, Richard; Dorschel, Craig A; Gorenstein, Marc; Kass, Ignatius J; Li, Guo-Zhong; McKenna, Therese; Nold, Michael J; Richardson, Keith; Young, Phillip; Geromanos, Scott

    2005-04-01

    Current methodologies for protein quantitation include 2-dimensional gel electrophoresis techniques, metabolic labeling, and stable isotope labeling methods to name only a few. The current literature illustrates both pros and cons for each of the previously mentioned methodologies. Keeping with the teachings of William of Ockham, "with all things being equal the simplest solution tends to be correct", a simple LC/MS based methodology is presented that allows relative changes in abundance of proteins in highly complex mixtures to be determined. Utilizing a reproducible chromatographic separations system along with the high mass resolution and mass accuracy of an orthogonal time-of-flight mass spectrometer, the quantitative comparison of tens of thousands of ions emanating from identically prepared control and experimental samples can be made. Using this configuration, we can determine the change in relative abundance of a small number of ions between the two conditions solely by accurate mass and retention time. Employing standard operating procedures for both sample preparation and ESI-mass spectrometry, one typically obtains under 5 ppm mass precision and quantitative variations between 10 and 15%. The principal focus of this paper will demonstrate the quantitative aspects of the methodology and continue with a discussion of the associated, complementary qualitative capabilities.

  12. Nanoparticle Counting: Towards Accurate Determination of the Molar Concentration

    PubMed Central

    Shang, Jing; Gao, Xiaohu

    2014-01-01

    Summary Innovations in nanotechnology have brought tremendous opportunities for the advancement of many research frontiers, ranging from electronics, photonics, energy, to medicine. To maximize the benefits of nano-scaled materials in different devices and systems, precise control of their concentration is a prerequisite. While concentrations of nanoparticles have been provided in other forms (e.g., mass), accurate determination of molar concentration, arguably the most useful one for chemical reactions and applications, has been a major challenge (especially for nanoparticles smaller than 30 nm). Towards this significant yet chronic problem, a variety of strategies are currently under development. Most of these strategies are applicable to a specialized group of nanoparticles due to their restrictions on the composition and size ranges of nanoparticles. As research and uses of nanomaterials being explored in an unprecedented speed, it is necessary to develop universal strategies that are easy to use, and compatible with nanoparticles of different sizes, compositions, and shapes. This review outlines the theories and applications of current strategies to measure nanoparticle molar concentration, discusses the advantages and limitations of these methods, and provides insights into future directions. PMID:25099190

  13. Extracting infrared absolute reflectance from relative reflectance measurements.

    PubMed

    Berets, Susan L; Milosevic, Milan

    2012-06-01

    Absolute reflectance measurements are valuable to the optics industry for development of new materials and optical coatings. Yet, absolute reflectance measurements are notoriously difficult to make. In this paper, we investigate the feasibility of extracting the absolute reflectance from a relative reflectance measurement using a reference material with known refractive index.

  14. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular

  15. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  16. Current limiters

    SciTech Connect

    Loescher, D.H.; Noren, K.

    1996-09-01

    The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.

  17. Caregiver's Country of Birth Is a Significant Determinant of Accurate Perception of Preschool-Age Children's Weight

    ERIC Educational Resources Information Center

    Natale, Ruby; Uhlhorn, Susan B.; Lopez-Mitnik, Gabriela; Camejo, Stephanie; Englebert, Nicole; Delamater, Alan M.; Messiah, Sarah E.

    2016-01-01

    Background: One in four preschool-age children in the United States are currently overweight or obese. Previous studies have shown that caregivers of this age group often have difficulty accurately recognizing their child's weight status. The purpose of this study was to examine factors associated with accurate/inaccurate perception of child body…

  18. Predicting Next Year's Resources--Short-Term Enrollment Forecasting for Accurate Budget Planning. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Salley, Charles D.

    Accurate enrollment forecasts are a prerequisite for reliable budget projections. This is because tuition payments make up a significant portion of a university's revenue, and anticipated revenue is the immediate constraint on current operating expenditures. Accurate forecasts are even more critical to revenue projections when a university's…

  19. Dual-arm multiple-reflection Michelson interferometer for large multiple reflections and increased sensitivity

    NASA Astrophysics Data System (ADS)

    Joenathan, Charles; Bernal, Ashley; Woonghee, Youn; Bunch, Robert M.; Hakoda, Christopher

    2016-02-01

    Michelson interferometer is one of the most popular optical interferometric systems used in optical metrology. Typically, Michelson interferometers are used to measure object displacement with wavefront shapes to one half of the laser wavelength. As testing components and device sizes reduce to micro and nano size, a sensitivity of half the wavelength of light cannot be used to measure several hundred picometer displacement. Multiple-reflection interferometers have been proposed and are used to increase the sensitivity in a Michelson interferometer; however, when altering the number of reflections, the system alignment becomes cumbersome. We describe some of the problems associated with the current multiple-reflection interferometer and introduce a setup for matching path lengths to increase the resolution and allow for the reduction of the stringent requirement on the coherence length of the lasers used. Theoretically, we show that more than 1000 reflections can be achieved. Experimental results of up to 100 reflections are presented in this paper.

  20. 77 FR 3800 - Accurate NDE & Inspection, LLC; Confirmatory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... COMMISSION Accurate NDE & Inspection, LLC; Confirmatory Order In the Matter of Accurate NDE & Docket: 150... request ADR with the NRC in an attempt to resolve issues associated with this matter. In response, on August 9, 2011, Accurate NDE requested ADR to resolve this matter with the NRC. On September 28,...

  1. Accurate simulation of optical properties in dyes.

    PubMed

    Jacquemin, Denis; Perpète, Eric A; Ciofini, Ilaria; Adamo, Carlo

    2009-02-17

    Since Antiquity, humans have produced and commercialized dyes. To this day, extraction of natural dyes often requires lengthy and costly procedures. In the 19th century, global markets and new industrial products drove a significant effort to synthesize artificial dyes, characterized by low production costs, huge quantities, and new optical properties (colors). Dyes that encompass classes of molecules absorbing in the UV-visible part of the electromagnetic spectrum now have a wider range of applications, including coloring (textiles, food, paintings), energy production (photovoltaic cells, OLEDs), or pharmaceuticals (diagnostics, drugs). Parallel to the growth in dye applications, researchers have increased their efforts to design and synthesize new dyes to customize absorption and emission properties. In particular, dyes containing one or more metallic centers allow for the construction of fairly sophisticated systems capable of selectively reacting to light of a given wavelength and behaving as molecular devices (photochemical molecular devices, PMDs).Theoretical tools able to predict and interpret the excited-state properties of organic and inorganic dyes allow for an efficient screening of photochemical centers. In this Account, we report recent developments defining a quantitative ab initio protocol (based on time-dependent density functional theory) for modeling dye spectral properties. In particular, we discuss the importance of several parameters, such as the methods used for electronic structure calculations, solvent effects, and statistical treatments. In addition, we illustrate the performance of such simulation tools through case studies. We also comment on current weak points of these methods and ways to improve them.

  2. Refraction and reflection of diffusion fronts.

    PubMed

    Remhof, A; Wijngaarden, R J; Griessen, R

    2003-04-11

    Diffusion waves form the basis of several measurement technologies in materials science as well as in biological systems. They are, however, so heavily damped that their observation is a real challenge to the experimentalist. We show that accurate information about the refraction-like and reflection-like behavior of diffusion waves can be obtained by studying diffusion fronts. For this we use hydrogen in a metal as a model system and visualize its 2D migration with an optical indicator. The similarities between classical optics and diffusion, in particular, the applicability of Snell's law to diffusive systems are discussed. Our measurements are in good agreement with numerical simulations.

  3. Automated geologic mapping using rock reflectances.

    NASA Technical Reports Server (NTRS)

    Watson, R. D.; Rowan, L. C.

    1971-01-01

    Investigation of the feasibility of preparing geologic maps automatically through computer processing of calibrated narrow-band visible and near IR reflectivity data collected with a 12-channel scanner. Five procedures were followed in the computer analysis of the radiances recorded as voltages on analog magnetic tape. Three recognition maps have been generated iteratively using a progressively more complex classification scheme. The overall accuracy of the first recognition map was 80%, but the discrimination of the limestone and dolomite was only 50-60%. All three maps are very accurate outcrop maps. The results demonstrate the feasibility of automated geologic mapping in this relatively simple setting.

  4. A new approach to compute accurate velocity of meteors

    NASA Astrophysics Data System (ADS)

    Egal, Auriane; Gural, Peter; Vaubaillon, Jeremie; Colas, Francois; Thuillot, William

    2016-10-01

    The CABERNET project was designed to push the limits of meteoroid orbit measurements by improving the determination of the meteors' velocities. Indeed, despite of the development of the cameras networks dedicated to the observation of meteors, there is still an important discrepancy between the measured orbits of meteoroids computed and the theoretical results. The gap between the observed and theoretic semi-major axis of the orbits is especially significant; an accurate determination of the orbits of meteoroids therefore largely depends on the computation of the pre-atmospheric velocities. It is then imperative to dig out how to increase the precision of the measurements of the velocity.In this work, we perform an analysis of different methods currently used to compute the velocities and trajectories of the meteors. They are based on the intersecting planes method developed by Ceplecha (1987), the least squares method of Borovicka (1990), and the multi-parameter fitting (MPF) method published by Gural (2012).In order to objectively compare the performances of these techniques, we have simulated realistic meteors ('fakeors') reproducing the different error measurements of many cameras networks. Some fakeors are built following the propagation models studied by Gural (2012), and others created by numerical integrations using the Borovicka et al. 2007 model. Different optimization techniques have also been investigated in order to pick the most suitable one to solve the MPF, and the influence of the geometry of the trajectory on the result is also presented.We will present here the results of an improved implementation of the multi-parameter fitting that allow an accurate orbit computation of meteors with CABERNET. The comparison of different velocities computation seems to show that if the MPF is by far the best method to solve the trajectory and the velocity of a meteor, the ill-conditioning of the costs functions used can lead to large estimate errors for noisy

  5. Reflection Revisited: The Class Collage

    ERIC Educational Resources Information Center

    Sommers, Jeff

    2011-01-01

    Through the regular use of what Donald Schon has termed reflection-in-action and reflection-on-action, students can learn to improve their "reflection-in-presentation," in Kathleen Blake Yancey's term. Students are often asked to do this type of reflection-in-presentation as a capstone to first-year or basic writing courses. However, a number of…

  6. Landsat surface reflectance data

    USGS Publications Warehouse

    ,

    2015-01-01

    Landsat satellite data have been produced, archived, and distributed by the U.S. Geological Survey since 1972. Users rely on these data for historical study of land surface change and require consistent radiometric data processed to the highest science standards. In support of the guidelines established through the Global Climate Observing System, the U.S. Geological Survey has embarked on production of higher-level Landsat data products to support land surface change studies. One such product is Landsat surface reflectance.

  7. Clinical linguistics: conversational reflections.

    PubMed

    Crystal, David

    2013-04-01

    This is a report of the main points I made in an informal "conversation" with Paul Fletcher and the audience at the 14th ICPLA conference in Cork. The observations arose randomly, as part of an unstructured 1-h Q&A, so they do not provide a systematic account of the subject, but simply reflect the issues which were raised by the conference participants during that time.

  8. Method and apparatus for characterizing reflected ultrasonic pulses

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1991-01-01

    The invention is a method of and apparatus for characterizing the amplitudes of a sequence of reflected pulses R1, R2, and R3 by converting them into corresponding electric signals E1, E2, and E3 to substantially the same value during each sequence thereby restoring the reflected pulses R1, R2, and R3 to their initial reflection values by timing means, an exponential generator, and a time gain compensator. Envelope and baseline reject circuits permit the display and accurate location of the time spaced sequence of electric signals having substantially the same amplitude on a measurement scale on a suitable video display or oscilloscope.

  9. Nano-oxidation and in situ faradaic current detection using dynamic carbon nanotube probes

    NASA Astrophysics Data System (ADS)

    Kuramochi, H.; Ando, K.; Shikakura, Y.; Yasutake, M.; Tokizaki, T.; Yokoyama, H.

    2004-09-01

    Carbon nanotube-attached atomic force microscope probes were successfully used without nanotube bending to make simultaneous precision nano-oxidation and faradaic current measurements in the dynamic mode. Probe oxidation on H-passivated Si(001) surfaces was carried out by two methods involving vector-scan and raster-scan with a much higher resolution and precision compared to the nanofabrication by standard cantilevers. Faradaic current of the order of a sub-picoampere was detected during nano-oxidation using a carbon nanotube probe, accurately reflecting the subtle difference in the oxidation reaction. The minute current detection through the AFM tip is sensitive enough for the detection of very thin oxides and small-sized features. The dimension of the meniscus during nano-oxidation, which is indispensable for establishing the mechanism model, was evaluated, based on the in situ faradaic current detection and edge broadening.

  10. 17 CFR 240.17Ad-10 - Prompt posting of certificate detail to master securityholder files, maintenance of accurate...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... between co-transfer agents and recordkeeping transfer agents, maintenance of current control book... master securityholder files, maintenance of accurate securityholder files, communications between co... certificate detail from transfer journals received by the recordkeeping transfer agent from a...

  11. Magnetic tape lightning current detectors

    NASA Technical Reports Server (NTRS)

    Crouch, K. E.; Jafferis, W.

    1980-01-01

    Development and application tests of a low cost, passive, peak lightning current detector (LCD) found it to provide measurements with accuracies of + or - 5 percent to + or - 10 percent depending on the readout method employed. The LCD uses magnetic audio recording tape to sense the magnitude of the peak magnetic field around a conductor carrying lightning currents. The test results showed that the length of audio tape erased was linearly related to the peak simulated lightning currents in a round conductor. Accuracies of + or - 10 percent were shown for measurements made using a stopwatch readout technique to determine the amount of tape erased by the lightning current. Where more accurate data are desired, the tape is played and the output recorded on a strip chart, oscilloscope, or some other means so that measurements can be made on that recording. Conductor dimensions, tape holder dimensions, and tape formulation must also be considered to obtain a more accurate result.

  12. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  13. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.

  14. Troubling Muddy Waters: Problematizing Reflective Practice in Global Medical Education.

    PubMed

    Naidu, Thirusha; Kumagai, Arno K

    2016-03-01

    The idea of exporting the concept of reflective practice for a global medical education audience is growing. However, the uncritical export and adoption of Western concepts of reflection may be inappropriate in non-Western societies. The emphasis in Western medical education on the use of reflection for a specific end--that is, the improvement of individual clinical practice--tends to ignore the range of reflective practice, concentrating on reflection alone while overlooking critical reflection and reflexivity. This Perspective places the concept of reflective practice under a critical lens to explore a broader view for its application in medical education outside the West. The authors suggest that ideas about reflection in medicine and medical education may not be as easily transferable from Western to non-Western contexts as concepts from biomedical science are. The authors pose the question, When "exporting" Western medical education strategies and principles, how often do Western-trained educators authentically open up to the possibility that there are alternative ways of seeing and knowing that may be valuable in educating Western physicians? One answer lies in the assertion that educators should aspire to turn exportation of educational theory into a truly bidirectional, collaborative exchange in which culturally conscious views of reflective practice contribute to humanistic, equitable patient care. This discussion engages in troubling the already-muddy waters of reflective practice by exploring the global applicability of reflective practice as it is currently applied in medical education. The globalization of medical education demands critical reflection on reflection itself.

  15. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  16. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  17. Plastic films for reflective surfaces reproduced from masters

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Accurate reproduction in plastic of the surface of the optical master to which a reflective finish may be applied is done by using backing from any suitable material to which cured plastic will adhere tightly. Plastics used for reflectors should be of the thermosetting or catalytically hardened type.

  18. The U.S. Department of Agriculture Automated Multiple-Pass Method accurately assesses sodium intakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate and practical methods to monitor sodium intake of the U.S. population are critical given current sodium reduction strategies. While the gold standard for estimating sodium intake is the 24 hour urine collection, few studies have used this biomarker to evaluate the accuracy of a dietary ins...

  19. Bi-fluorescence imaging for estimating accurately the nuclear condition of Rhizoctonia spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To simplify the determination of the nuclear condition of the pathogenic Rhizoctonia, which currently needs to be performed either using two fluorescent dyes, thus is more costly and time-consuming, or using only one fluorescent dye, and thus less accurate. Methods and Results: A red primary ...

  20. Detecting Children's Lies: Are Parents Accurate Judges of Their Own Children's Lies?

    ERIC Educational Resources Information Center

    Talwar, Victoria; Renaud, Sarah-Jane; Conway, Lauryn

    2015-01-01

    The current study investigated whether parents are accurate judges of their own children's lie-telling behavior. Participants included 250 mother-child dyads. Children were between three and 11 years of age. A temptation resistance paradigm was used to elicit a minor transgressive behavior from the children involving peeking at a forbidden toy and…

  1. A fiberoptic reflection oximeter.

    PubMed

    Landsman, M L; Knop, N; Kwant, G; Mook, G A; Zijlstra, W G

    1978-03-20

    A catheter tip oximeter is described consisting of a cardiac catheter containing optical fibers, and incandescent light source, a light detection unit and a processing unit. Half of the optical fibers guide the light to the blood at the tip of the catheter, the other half the backscattered (reflected) light to the detection unit. The detection unit contains a dichroic mirror, transmitting most of the light with lambda less than 800 nm and reflecting most of the light with lambda greater than 900 nm, thus splitting the light into two beams. These pass through interference filters with nominal wavelengths of 640 and 920 nm respectively, and are focused on silicium barrier layer photocells. The photocell signals are amplified and fed into a divider giving the ratio of measuring (R640) and compensating (R920) photocell output. The relationship between log R640/R920 and oxygen saturation is represented by a slightly curved line. The relation may be linearized by subtracting a constant voltage from the divided output before taking the logarithm. The slope of the calibration line is dependent on the total haemoglobin concentration. Nonetheless an average calibration line can be used between 70 and 100% oxygen saturation. For 78 measurements of pig blood samples in this range (haemoglobin concentration between 96 and 161 g.1(-1)), the standard deviation of the difference between the fiberoptic oximeter and a Radiometer OSM1 oxygen saturation meter was 1.9% saturation, for 152 samples over the entire saturation range the standard deviation of the difference was 3.1% saturation. The influence of the flow velocity of blood on the light reflection depends on wavelength as well as on oxygen saturation. Therefore, complete compensation for the flow effect is not possible by simple means.

  2. Reflections on Chemical Equations.

    ERIC Educational Resources Information Center

    Gorman, Mel

    1981-01-01

    The issue of how much emphasis balancing chemical equations should have in an introductory chemistry course is discussed. The current heavy emphasis on finishing such equations is viewed as misplaced. (MP)

  3. Canada's National Forest Inventory (responding to current information needs).

    PubMed

    Gillis, M D

    2001-01-01

    Canada's current National Forest Inventory is a periodic compilation of existing inventory material from across the country. While the current approach has many advantages, it lacks information on the nature and rate of changes to the resource, and does not permit projections or forecasts. Being a compilation of inventories of different dates, the current national forest inventory cannot reflect the current state of the forests and therefore cannot be used as a satisfactory baseline for monitoring change. The current format of Canada's National Forest Inventory has served its purpose by providing national statistical compilations and reporting. However, its useful life is coming to a conclusion. To meet new demands, Canada is considering a new National Forest Inventory design consisting of a plot-based system of permanent observational units located on a national grid. The objective of the new inventory design is to assess and monitor the extent, state and sustainability of Canada's forests in a timely and accurate manner. Details of the new inventory design are described. A strategy to respond to Canada's national and international forest reporting commitments through a National Forest Information System is also discussed.

  4. Current Titles

    SciTech Connect

    Various

    2006-06-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Jane Cavlina, Administrator, at 510/486-6036.

  5. Force reflection with compliance control

    NASA Technical Reports Server (NTRS)

    Kim, Won S. (Inventor)

    1993-01-01

    Two types of systems for force-reflecting control, which enables high force-reflection gain, are presented: position-error-based force reflection and low-pass-filtered force reflection. Both of the systems are combined with shared compliance control. In the position-error-based class, the position error between the commanded and the actual position of a compliantly controlled robot is used to provide force reflection. In the low-pass-filtered force reflection class, the low-pass-filtered output of the compliance control is used to provide force reflection. The increase in force reflection gain can be more than 10-fold as compared to a conventional high-bandwidth pure force reflection system, when high compliance values are used for the compliance control.

  6. Portable reflectance spectrometer

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Graham, R. A.; Ozawa, T. (Inventor)

    1977-01-01

    A portable reflectance spectrometer is disclosed. The spectrometer essentially includes an optical unit and an electronic recording unit. The optical unit includes a pair of thermoelectrically-cooled detectors, for detecting total radiance and selected radiance projected through a circular variable filter wheel, and is capable of operating to provide spectral data in the range 0.4 to 2.5 micrometers without requiring coventional substitution of filter elements. The electronic recording unit includes power supplies, amplifiers, and digital recording electronics designed to permit recordation of data on tape casettes. Both the optical unit and electronic recording unit are packaged to be manually portable.

  7. Reflections on Alzheimer's disease.

    PubMed

    Kushnir, S L

    1982-02-01

    As longevity increases, society will face a silent epidemic of idiopathic dementias. The concept, Alzheimer's disease, reflects a cumbersome and vaguely-defined cluster of signs, symptoms and other variables which might more appropriately be labelled as the idiopathic dementias, Alzheimer-type or IDAT. Diagnosis, which is made by exclusion and treatment, primarily custodial, demonstrates the complex nature and unfortunate prognosis of the problem. Dramatic progress, nevertheless, has been made in various scientific aspects of the issue, namely, in histology, genetics and neurochemistry. The resulting evidence warrants further speculation on the role of central cholinergic neurotransmission in cognitive functioning.

  8. Reflected Deck Plan, Reflected Roof Plan, Deck Plan Bridgeport ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Reflected Deck Plan, Reflected Roof Plan, Deck Plan - Bridgeport Covered Bridge, Spanning South Fork of Yuba River at bypassed section of Pleasant Valley Road (originally Virginia Turnpike) in South Yuba River State Park , Bridgeport, Nevada County, CA

  9. Accurate inference of local phased ancestry of modern admixed populations.

    PubMed

    Ma, Yamin; Zhao, Jian; Wong, Jian-Syuan; Ma, Li; Li, Wenzhi; Fu, Guoxing; Xu, Wei; Zhang, Kui; Kittles, Rick A; Li, Yun; Song, Qing

    2014-07-23

    Population stratification is a growing concern in genetic-association studies. Averaged ancestry at the genome level (global ancestry) is insufficient for detecting the population substructures and correcting population stratifications in association studies. Local and phase stratification are needed for human genetic studies, but current technologies cannot be applied on the entire genome data due to various technical caveats. Here we developed a novel approach (aMAP, ancestry of Modern Admixed Populations) for inferring local phased ancestry. It took about 3 seconds on a desktop computer to finish a local ancestry analysis for each human genome with 1.4-million SNPs. This method also exhibits the scalability to larger datasets with respect to the number of SNPs, the number of samples, and the size of reference panels. It can detect the lack of the proxy of reference panels. The accuracy was 99.4%. The aMAP software has a capacity for analyzing 6-way admixed individuals. As the biomedical community continues to expand its efforts to increase the representation of diverse populations, and as the number of large whole-genome sequence datasets continues to grow rapidly, there is an increasing demand on rapid and accurate local ancestry analysis in genetics, pharmacogenomics, population genetics, and clinical diagnosis.

  10. Accurate ab initio vibrational energies of methyl chloride

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  11. Accurate measurement of streamwise vortices in low speed aerodynamic flows

    NASA Astrophysics Data System (ADS)

    Waldman, Rye M.; Kudo, Jun; Breuer, Kenneth S.

    2010-11-01

    Low Reynolds number experiments with flapping animals (such as bats and small birds) are of current interest in understanding biological flight mechanics, and due to their application to Micro Air Vehicles (MAVs) which operate in a similar parameter space. Previous PIV wake measurements have described the structures left by bats and birds, and provided insight to the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions due to significant experimental challenges associated with the highly three-dimensional and unsteady nature of the flows, and the low wake velocities associated with lifting bodies that only weigh a few grams. This requires the high-speed resolution of small flow features in a large field of view using limited laser energy and finite camera resolution. Cross-stream measurements are further complicated by the high out-of-plane flow which requires thick laser sheets and short interframe times. To quantify and address these challenges we present data from a model study on the wake behind a fixed wing at conditions comparable to those found in biological flight. We present a detailed analysis of the PIV wake measurements, discuss the criteria necessary for accurate measurements, and present a new dual-plane PIV configuration to resolve these issues.

  12. Accurate multiple network alignment through context-sensitive random walk

    PubMed Central

    2015-01-01

    Background Comparative network analysis can provide an effective means of analyzing large-scale biological networks and gaining novel insights into their structure and organization. Global network alignment aims to predict the best overall mapping between a given set of biological networks, thereby identifying important similarities as well as differences among the networks. It has been shown that network alignment methods can be used to detect pathways or network modules that are conserved across different networks. Until now, a number of network alignment algorithms have been proposed based on different formulations and approaches, many of them focusing on pairwise alignment. Results In this work, we propose a novel multiple network alignment algorithm based on a context-sensitive random walk model. The random walker employed in the proposed algorithm switches between two different modes, namely, an individual walk on a single network and a simultaneous walk on two networks. The switching decision is made in a context-sensitive manner by examining the current neighborhood, which is effective for quantitatively estimating the degree of correspondence between nodes that belong to different networks, in a manner that sensibly integrates node similarity and topological similarity. The resulting node correspondence scores are then used to predict the maximum expected accuracy (MEA) alignment of the given networks. Conclusions Performance evaluation based on synthetic networks as well as real protein-protein interaction networks shows that the proposed algorithm can construct more accurate multiple network alignments compared to other leading methods. PMID:25707987

  13. Accurate calculations of bound rovibrational states for argon trimer

    SciTech Connect

    Brandon, Drew; Poirier, Bill

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  14. How Accurate Are Transition States from Simulations of Enzymatic Reactions?

    PubMed Central

    2015-01-01

    The rate expression of traditional transition state theory (TST) assumes no recrossing of the transition state (TS) and thermal quasi-equilibrium between the ground state and the TS. Currently, it is not well understood to what extent these assumptions influence the nature of the activated complex obtained in traditional TST-based simulations of processes in the condensed phase in general and in enzymes in particular. Here we scrutinize these assumptions by characterizing the TSs for hydride transfer catalyzed by the enzyme Escherichia coli dihydrofolate reductase obtained using various simulation approaches. Specifically, we compare the TSs obtained with common TST-based methods and a dynamics-based method. Using a recently developed accurate hybrid quantum mechanics/molecular mechanics potential, we find that the TST-based and dynamics-based methods give considerably different TS ensembles. This discrepancy, which could be due equilibrium solvation effects and the nature of the reaction coordinate employed and its motion, raises major questions about how to interpret the TSs determined by common simulation methods. We conclude that further investigation is needed to characterize the impact of various TST assumptions on the TS phase-space ensemble and on the reaction kinetics. PMID:24860275

  15. Accurate calculations of bound rovibrational states for argon trimer

    NASA Astrophysics Data System (ADS)

    Brandon, Drew; Poirier, Bill

    2014-07-01

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar3), using the ScalIT suite of parallel codes. The Ar3 rovibrational energy levels are computed to a very high level of accuracy (10-3 cm-1 or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar3 are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar3 is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar3 may be found in the current literature—and only for the lowest-lying rotational excitations.

  16. Accurate stereochemistry for two related 22,26-epiminocholestene derivatives

    SciTech Connect

    Vega-Baez, José Luis; Sandoval-Ramírez, Jesús; Meza-Reyes, Socorro; Montiel-Smith, Sara; Gómez-Calvario, Victor; Bernès, Sylvain

    2008-04-01

    Regioselective opening of ring E of solasodine under various conditions afforded (25R)-22,26-epimino@@cholesta-5,22(N)-di@@ene-3β,16β-diyl diacetate (previously known as 3,16-diacetyl pseudosolasodine B), C{sub 31}H{sub 47}NO{sub 4}, or (22S,25R)-16β-hydr@@oxy-22,26-epimino@@cholesta-5-en-3β-yl acetate (a derivative of the naturally occurring alkaloid oblonginine), C{sub 29}H{sub 47}NO{sub 3}. In both cases, the reactions are carried out with retention of chirality at the C16, C20 and C25 stereogenic centers, which are found to be S, S and R, respectively. Although pseudosolasodine was synthesized 50 years ago, these accurate assignments clarify some controversial points about the actual stereochemistry for these alkaloids. This is of particular importance in the case of oblonginine, since this compound is currently under consideration for the treatment of aphasia arising from apoplexy; the present study defines a diastereoisomerically pure compound for pharmacological studies.

  17. Reflection and Non-Reflection of Particle Wavepackets

    ERIC Educational Resources Information Center

    Cox, Timothy; Lekner, John

    2008-01-01

    Exact closed-form solutions of the time-dependent Schrodinger equation are obtained, describing the propagation of wavepackets in the neighbourhood of a potential. Examples given include zero reflection, total reflection and partial reflection of the wavepacket, for the sech[superscript 2]x/a, 1/x[superscript 2] and delta(x) potentials,…

  18. Reflection: Journals and Reflective Questions: A Strategy for Professional Learning

    ERIC Educational Resources Information Center

    Clarke, Maggie

    2004-01-01

    Reflective journals have been used widely in teacher education programs to promote reflective thinking (Freidus, 1998; Carter & Francis, 2000; Yost, Senter & Forlenzo-Bailey, 2000). Smyth (1992) advocated that posing a series of questions to be answered in written journals could enhance reflective thinking. It was for this reason that…

  19. Circuit theory for crossed Andreev reflection and nonlocal conductance

    NASA Astrophysics Data System (ADS)

    Morten, J. P.; Brataas, A.; Belzig, W.

    2007-11-01

    Nonlocal currents, in devices where two normal-metal terminals are contacted to a superconductor, are determined using the circuit theory of mesoscopic superconductivity. We calculate the conductance associated with crossed Andreev reflection and electron transfer between the two normal-metal terminals, in addition to the conductance from direct Andreev reflection and quasiparticle tunneling. Dephasing and proximity effect are taken into account.

  20. Measurement Development in Reflective Supervision: History, Methods, and Next Steps

    ERIC Educational Resources Information Center

    Tomlin, Angela M.; Heller, Sherryl Scott

    2016-01-01

    This issue of the "ZERO TO THREE" journal provides a snapshot of the current state of measurement of reflective supervision within the infant-family field. In this article, the authors introduce the issue by providing a brief history of the development of reflective supervision in the field of infant mental health, with a specific focus…

  1. Reflections on Investigating Emotion in Educational Activity Settings

    ERIC Educational Resources Information Center

    Schutz, Paul A.; Hong, Ji Y.; Cross, Dionne I.; Osbon, Jennifer N.

    2006-01-01

    This article represents our current reflections on our approach to inquiry on emotions in education. Our views reflect an eclectic blend of, educational, psychological, and social historical approaches to inquiry on emotion and emotional regulation. In an effort to explicate our approach, we address our working definitions of emotion and emotional…

  2. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    PubMed

    Price, Erin P; Sarovich, Derek S; Webb, Jessica R; Ginther, Jennifer L; Mayo, Mark; Cook, James M; Seymour, Meagan L; Kaestli, Mirjam; Theobald, Vanessa; Hall, Carina M; Busch, Joseph D; Foster, Jeffrey T; Keim, Paul; Wagner, David M; Tuanyok, Apichai; Pearson, Talima; Currie, Bart J

    2013-01-01

    Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  3. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  4. Evaluation of GLAMR-based calibration for SI-traceable field reflectance retrievals

    NASA Astrophysics Data System (ADS)

    Angal, Amit; McCorkel, Joel; Thome, Kurt

    2016-09-01

    The reflected solar instrument that is part of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is being formulated with a goal of providing SI-traceable measurement of radiance that is an order of magnitude more accurate than the current imaging sensors. The Goddard Laser for Absolute Measurement of Radiance (GLAMR) is a key element to reaching such accuracy along with transferring the laboratory calibration to on-orbit measurements. Results from field reflectance retrievals using three separate instruments all of which have been calibrated using GLAMR are shown. The instruments include a commercial field spectrometer and a portable version of CLARREO's calibration demonstration system. The third instrument is NASA Goddard's Lidar, Hyperspectral and Thermal Imager (G-LiHT) which is an airborne system. All three were operated during a March 2013 measurement campaign at Red Lake Playa, Arizona as part of the on-orbit commissioning phase of Landsat 8. Reflectance is derived from near-coincident measurements by the three sensors for a small area of the playa. The retrieved results are SI-traceable and demonstrate the ability to transfer the GLAMR calibration to the field. Use of the G-LiHT data in the calibration of Landsat-7 and -8 sensors permits them both to be placed on the GLAMR-scale as well.

  5. Computer programs for eddy-current defect studies

    SciTech Connect

    Pate, J. R.; Dodd, C. V.

    1990-06-01

    Several computer programs to aid in the design of eddy-current tests and probes have been written. The programs, written in Fortran, deal in various ways with the response to defects exhibited by four types of probes: the pancake probe, the reflection probe, the circumferential boreside probe, and the circumferential encircling probe. Programs are included which calculate the impedance or voltage change in a coil due to a defect, which calculate and plot the defect sensitivity factor of a coil, and which invert calculated or experimental readings to obtain the size of a defect. The theory upon which the programs are based is the Burrows point defect theory, and thus the calculations of the programs will be more accurate for small defects. 6 refs., 21 figs.

  6. Renewable liquid reflecting zone plate

    DOEpatents

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  7. Reflections on Measuring Thinking, while Listening to Mozart's "Jupiter" Symphony.

    ERIC Educational Resources Information Center

    Wasserman, Selma

    1989-01-01

    Reflects on educators' current preoccupation with assessment of higher order thinking skills. Easy-to-mark, forced-choice, pencil-and-paper tests with single numerical scores may trivialize the wonderful complexity of human capabilities. Includes 17 references. (MLH)

  8. Nongray gas analyses for reflecting walls utilizing a flux technique

    NASA Technical Reports Server (NTRS)

    Menart, J. A.; Lee, Haeok S.

    1993-01-01

    A flux formulation for a planar slab of molecular gas radiation bounded by diffuse reflecting walls is developed. While this formulation is limited to the planar geometry, it is useful for studying approximations necessary in modeling nongray radiative heat transfer. The governing equations are derived by considering the history of multiple reflections between the walls. Accurate solutions are obtained by explicitly accounting for a finite number of reflections and approximating the spectral effects of the remaining reflections. Four approximate methods are presented and compared using a single absorption band of H2O. All four methods reduce to an identical zeroth-order formulation, which accounts for all reflections approximately but does handle nonreflected radiation correctly. A single absorption band of CO2 is also considered using the best-behaved approximation for higher orders. A zeroth-order formulation is sufficient to predict the radiative transfer accurately for many cases considered. For highly reflecting walls, higher order solutions are necessary for better accuracy. Including all the important bands of H2O, the radiative source distributions are also obtained for two different temperature and concentration profiles.

  9. Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    PubMed Central

    Noecker, Cecilia; Schaefer, Krista; Zaccheo, Kelly; Yang, Yiding; Day, Judy; Ganusov, Vitaly V.

    2015-01-01

    Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results

  10. Reflection in Russian Educational Psychology.

    ERIC Educational Resources Information Center

    Nelissen, Jo M. C.; Tomic, Welko

    This paper discusses the cultural-historical school founded by Vygotsky, Luria, and Leontiev as the theoretical background of Russian educational psychologists who have been studying how children learn to reflect. Two approaches to reflection are examined within the cultural-historical tradition: first, reflection--like other higher psychological…

  11. Teacher Reflection: A Phenomenological Study

    ERIC Educational Resources Information Center

    Wilson, Rebecca E.

    2013-01-01

    This study is concerned with the reflective practices of middle school teachers. Based on Dewey's theory of reflective practice and Schon's types of reflection, this experience is one of student learning, relationships, curriculum planning, and lesson delivery. This is a qualitative study using the research method of phenomenology through…

  12. Reflections From a Fresnel Lens

    ERIC Educational Resources Information Center

    Keeports, David

    2005-01-01

    Reflection of light by a convex Fresnel lens gives rise to two distinct images. A highly convex inverted real reflective image forms on the object side of the lens, while an upright virtual reflective image forms on the opposite side of the lens. I describe here a set of laser experiments performed upon a Fresnel lens. These experiments provide…

  13. Structures for Facilitating Student Reflection

    ERIC Educational Resources Information Center

    Grossman, Robert

    2009-01-01

    The goal of this article is to describe a continuum of levels of reflection. It briefly focuses on Deanna Kuhn's research into the development of scientific thinking and Robert Kegan's Object-Subject Theory of Development applied to the problems of inspiring students to be able to reflect. Assignments for improving students' ability to reflect are…

  14. Reflective writing and nursing education.

    PubMed

    Craft, Melissa

    2005-02-01

    Reflective writing is a valued tool for teaching nursing students and for documentation, support, and generation of nursing knowledge among experienced nurses. Expressive or reflective writing is becoming widely accepted in both professional and lay publications as a mechanism for coping with critical incidents. This article explores reflective writing as a tool for nursing education.

  15. Reflecting on Lab Practices

    ERIC Educational Resources Information Center

    Hunter, Jeffrey C.

    2014-01-01

    The National Science Education Standards (NSES) and the Biological Science Curriculum Study (BSCS) address the need for teachers to move classrooms toward an inquiry approach to learning. Currently, there is movement toward a new structure for science standards, the Next Generation Science Standards (NGSS). In this article, I will take the five…

  16. Current titles

    SciTech Connect

    1995-07-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Gretchen Hermes at (510) 486-5006 or address below for a User`s Guide. Copies of available papers can be ordered from: Theda Crawford National Center for Electron Microscopy, Lawrence Berkeley Laboratory, One Cyclotron Rd., MS72, Berkeley, California, USA 94720.

  17. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  18. How utilities can achieve more accurate decommissioning cost estimates

    SciTech Connect

    Knight, R.

    1999-07-01

    The number of commercial nuclear power plants that are undergoing decommissioning coupled with the economic pressure of deregulation has increased the focus on adequate funding for decommissioning. The introduction of spent-fuel storage and disposal of low-level radioactive waste into the cost analysis places even greater concern as to the accuracy of the fund calculation basis. The size and adequacy of the decommissioning fund have also played a major part in the negotiations for transfer of plant ownership. For all of these reasons, it is important that the operating plant owner reduce the margin of error in the preparation of decommissioning cost estimates. To data, all of these estimates have been prepared via the building block method. That is, numerous individual calculations defining the planning, engineering, removal, and disposal of plant systems and structures are performed. These activity costs are supplemented by the period-dependent costs reflecting the administration, control, licensing, and permitting of the program. This method will continue to be used in the foreseeable future until adequate performance data are available. The accuracy of the activity cost calculation is directly related to the accuracy of the inventory of plant system component, piping and equipment, and plant structural composition. Typically, it is left up to the cost-estimating contractor to develop this plant inventory. The data are generated by searching and analyzing property asset records, plant databases, piping and instrumentation drawings, piping system isometric drawings, and component assembly drawings. However, experience has shown that these sources may not be up to date, discrepancies may exist, there may be missing data, and the level of detail may not be sufficient. Again, typically, the time constraints associated with the development of the cost estimate preclude perfect resolution of the inventory questions. Another problem area in achieving accurate cost

  19. Reflective Practice in Action: A Case Study of a Writing Teacher's Reflection on Practice

    ERIC Educational Resources Information Center

    Farrell, Thomas S. C.

    2006-01-01

    Reflective practice, a popular item in current second-language teacher education and development programs, can help bridge the gap between a teacher's beliefs and classroom practices. This article outlines a case study, highlighting how one teacher of academic writing initiated the exploration of her teaching and how she used classroom…

  20. Diffuse reflection imaging of sub-epidermal tissue haematocrit using a simple RGB camera

    NASA Astrophysics Data System (ADS)

    Leahy, Martin J.; O'Doherty, Jim; McNamara, Paul; Henricson, Joakim; Nilsson, Gert E.; Anderson, Chris; Sjoberg, Folke

    2007-05-01

    This paper describes the design and evaluation of a novel easy to use, tissue viability imaging system (TiVi). The system is based on the methods of diffuse reflectance spectroscopy and polarization spectroscopy. The technique has been developed as an alternative to current imaging technology in the area of microcirculation imaging, most notably optical coherence tomography (OCT) and laser Doppler perfusion imaging (LDPI). The system is based on standard digital camera technology, and is sensitive to red blood cells (RBCs) in the microcirculation. Lack of clinical acceptance of both OCT and LDPI fuels the need for an objective, simple, reproducible and portable imaging method that can provide accurate measurements related to stimulus vasoactivity in the microvasculature. The limitations of these technologies are discussed in this paper. Uses of the Tissue Viability system include skin care products, drug development, and assessment spatial and temporal aspects of vasodilation (erythema) and vasoconstriction (blanching).

  1. A predictable and accurate technique with elastomeric impression materials.

    PubMed

    Barghi, N; Ontiveros, J C

    1999-08-01

    A method for obtaining more predictable and accurate final impressions with polyvinylsiloxane impression materials in conjunction with stock trays is proposed and tested. Heavy impression material is used in advance for construction of a modified custom tray, while extra-light material is used for obtaining a more accurate final impression.

  2. Tube dimpling tool assures accurate dip-brazed joints

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.

    1968-01-01

    Portable, hand-held dimpling tool assures accurate brazed joints between tubes of different diameters. Prior to brazing, the tool performs precise dimpling and nipple forming and also provides control and accurate measuring of the height of nipples and depth of dimples so formed.

  3. Bidirectional reflectance of zinc oxide

    NASA Technical Reports Server (NTRS)

    Scott, R.

    1973-01-01

    This investigation was undertaken to determine original and useful information about the bidirection reflectance of zinc oxide. The bidirectional reflectance will be studied for the spectra between .25-2.5 microns and the hemisphere above the specimen. The following factors will be considered: (1) surface conditions; (2) specimen preparation; (3) specimen substrate, (4) polarization; (5) depolarization; (6) wavelength; and (7) angles of incident and reflection. The bidirectional reflectance will be checked by experimentally determined angular hemispherical measurements or hemispherical measurements will be used to obtain absolute bidirectional reflectance.

  4. Reference module selection criteria for accurate testing of photovoltaic (PV) panels

    SciTech Connect

    Roy, J.N.; Gariki, Govardhan Rao; Nagalakhsmi, V.

    2010-01-15

    It is shown that for accurate testing of PV panels the correct selection of reference modules is important. A detailed description of the test methodology is given. Three different types of reference modules, having different I{sub SC} (short circuit current) and power (in Wp) have been used for this study. These reference modules have been calibrated from NREL. It has been found that for accurate testing, both I{sub SC} and power of the reference module must be either similar or exceed to that of modules under test. In case corresponding values of the test modules are less than a particular limit, the measurements may not be accurate. The experimental results obtained have been modeled by using simple equivalent circuit model and associated I-V equations. (author)

  5. Appraisal of Artificial Screening Techniques of Tomato to Accurately Reflect Field Performance of the Late Blight Resistance

    PubMed Central

    Nowakowska, Marzena; Nowicki, Marcin; Kłosińska, Urszula; Maciorowski, Robert; Kozik, Elżbieta U.

    2014-01-01

    Late blight (LB) caused by the oomycete Phytophthora infestans continues to thwart global tomato production, while only few resistant cultivars have been introduced locally. In order to gain from the released tomato germplasm with LB resistance, we compared the 5-year field performance of LB resistance in several tomato cultigens, with the results of controlled conditions testing (i.e., detached leaflet/leaf, whole plant). In case of these artificial screening techniques, the effects of plant age and inoculum concentration were additionally considered. In the field trials, LA 1033, L 3707, L 3708 displayed the highest LB resistance, and could be used for cultivar development under Polish conditions. Of the three methods using controlled conditions, the detached leaf and the whole plant tests had the highest correlation with thefield experiments. The plant age effect on LB resistance in tomato reported here, irrespective of the cultigen tested or inoculum concentration used, makes it important to standardize the test parameters when screening for resistance. Our results help show why other reports disagree on LB resistance in tomato. PMID:25279467

  6. The effect of repeated physical disturbance on soft tissue decomposition--are taphonomic studies an accurate reflection of decomposition?

    PubMed

    Adlam, Rachel E; Simmons, Tal

    2007-09-01

    Although the relationship between decomposition and postmortem interval has been well studied, almost no studies examined the potential effects of physical disturbance occurring as a result of data collection procedures. This study compares physically disturbed rabbit carcasses with a series of undisturbed carcasses to assess the presence and magnitude of any effects resulting from repetitive disturbance. Decomposition was scored using visual assessment of soft tissue changes, and numerical data such as weight loss and carcass temperature were recorded. The effects of disturbance over time on weight loss, carcass temperature, soil pH and decomposition were studied. In addition, this study aimed to validate some of the anecdotal evidence regarding decomposition. Results indicate disturbance significantly inversely affects both weight loss and carcass temperature. No differences were apparent between groups for soil pH change or overall decomposition stage. An insect-mediated mechanism for the disturbance effect is suggested, along with indications as to why this effect may be cancelled when scoring overall decomposition.

  7. Item Construction Using Reflective, Formative, or Rasch Measurement Models: Implications for Group Work

    ERIC Educational Resources Information Center

    Peterson, Christina Hamme; Gischlar, Karen L.; Peterson, N. Andrew

    2017-01-01

    Measures that accurately capture the phenomenon are critical to research and practice in group work. The vast majority of group-related measures were developed using the reflective measurement model rooted in classical test theory (CTT). Depending on the construct definition and the measure's purpose, the reflective model may not always be the…

  8. High-frequency techniques for RCS prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.

    1994-01-01

    Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model.

  9. An empirical formula based on Monte Carlo simulation for diffuse reflectance from turbid media

    NASA Astrophysics Data System (ADS)

    Gnanatheepam, Einstein; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Diffuse reflectance spectroscopy has been widely used in diagnostic oncology and characterization of laser irradiated tissue. However, still accurate and simple analytical equation does not exist for estimation of diffuse reflectance from turbid media. In this work, a diffuse reflectance lookup table for a range of tissue optical properties was generated using Monte Carlo simulation. Based on the generated Monte Carlo lookup table, an empirical formula for diffuse reflectance was developed using surface fitting method. The variance between the Monte Carlo lookup table surface and the surface obtained from the proposed empirical formula is less than 1%. The proposed empirical formula may be used for modeling of diffuse reflectance from tissue.

  10. Measurement of temperature and emissivity of specularly reflecting glowing bodies

    NASA Technical Reports Server (NTRS)

    Hansen, G. P.; Hauge, R. H.; Margrave, J. L.; Krishnan, S.

    1988-01-01

    A new method of measuring the thermodynamic temperature of an object as well as the surface emissivity based on laser reflectivity has been developed. By using rotator analyzer ellipsometry, the light reflected from the sample at a specific angle of incidence can be analyzed for its ellipticity. The normal incidence reflectivity and emissivity are then extracted using standard relations. The thermodynamic temperature of the body is obtained simultaneously by measuring the intensity of emitted light at the same angle of incidence. Room temperature measurements are carried out on selected metals to test the system. Elevated temperature measurements on platinum foils show that this technique is reliable and accurate for monitoring and measuring the temperature and emissivity of specularly reflecting, glowing bodies.

  11. Venus Highland Anomalous Reflectivity

    NASA Astrophysics Data System (ADS)

    Simpson, Richard A.; Tyler, G. L.; Häusler, B.; Mattei, R.; Patzold, M.

    2009-09-01

    Maxwell Montes was one of several unusually bright areas identified from early Venus radar backscatter observations. Pioneer Venus' orbiting radar associated low emissivity with the bright areas and established a correlation between reflectivity and altitude. Magellan, using an oblique bistatic geometry, showed that the bright surface dielectric constant was not only large but also imaginary -- i.e., the material was conducting, at least near Cleopatra Patera (Pettengill et al., Science, 272, 1996). Venus Express (VEX) repeated Magellan's bistatic observations over Maxwell, using the more conventional circular polarization carried by most spacecraft. Although VEX signal-to-noise ratio was lower than Magellan's, echoes were sufficiently strong to verify the Magellan conclusions near Cleopatra (see J. Geophys. Res., 114, E00B41, doi:10.1029/2008JE003156). Only about 40% of the surface at Cleopatra scatters specularly, opening the Fresnel (specular) interpretation model to question. Elsewhere in Maxwell, the specular percentage may be even lower. Nonetheless, the echo polarization is reversed throughout Maxwell, a result that is consistent with large dielectric constants and difficult to explain without resorting qualitatively (if not quantitatively) to specular models. VEX was scheduled to explore other high altitude regions when its S-Band (13-cm wavelength) radio system failed in late 2006, so further probing of high altitude targets awaits arrival of a new spacecraft.

  12. Bidirectional Reflectance of Flat, Optically Thick Particulate Layers: An Efficient Radiative Transfer Solution and Applications to Snow and Soil Surfaces

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yanovitsku, Edgard G.; Zakharova, Nadia T.

    1999-01-01

    We describe a simple and highly efficient and accurate radiative transfer technique for computing bidirectional reflectance of a macroscopically flat scattering layer composed of nonabsorbing or weakly absorbing, arbitrarily shaped, randomly oriented and randomly distributed particles. The layer is assumed to be homogeneous and optically semi-infinite, and the bidirectional reflection function (BRF) is found by a simple iterative solution of the Ambartsumian's nonlinear integral equation. As an exact Solution of the radiative transfer equation, the reflection function thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. Since this technique bypasses the computation of the internal radiation field, it is by far the fastest numerical approach available and can be used as an ideal input for Monte Carlo procedures calculating BRFs of scattering layers with macroscopically rough surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web at http://ww,,v.giss.nasa.gov/-crmim/brf.html and can be applied to a wide range of remote sensing, engineering, and biophysical problems. We also examine the potential effect of ice crystal shape on the bidirectional reflectance of flat snow surfaces and the applicability of the Henyey-Greenstein phase function and the 6-Eddington approximation in calculations for soil surfaces.

  13. Contribution of Chlorophyll Fluorescence to the Apparent Reflectance of Vegetation

    NASA Technical Reports Server (NTRS)

    Campbell, P. K. Entcheva; Middleton, E. M.; Kim, M. S.

    2007-01-01

    Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance (R) measurements, whi ch provide estimates of relative vegetation vigor based primarily on chlorophyll content. Vegetation chlorophyll fluorescence (CF) offers a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, monitoring of vegetation vigor based on CF may allow earlier stress detection and more accurate carbon sequestra tion estimates, than is possible using R data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contrib utions from both the reflected and fluoresced radiation. The aim of t his study is to determine the relative R and CF fractions contributing to Ra from the vegetation in the red to near-infrared region of the spectrum. The practical objectives of the study are to: 1) evaluate t he relationship between CF and R at the foliar level for corn, soybean, maple; and 2) for corn, determine if the relationship established f or healthy (optimal N) vegetation changes under N defiiency. To obtai n generally applicable results, experimental measurements were conducted on unrelated crop and tree species (maple, soybean and corn), unde r controlled conditions and a gradient of inorganic N fertilization l evels. Optical R spectra and actively induced CF emissions were obtained on the same foliar samples, in conjunction with measurements of p hotosynthetic function, pigment levels, and C and N content. The comm on spectral trends or similarities were examined. On average, 10-20% of apparent R at 685 nm was actually due to CF. The spectral trends in steady and maximum F varied significantly, with Fs (especially red) showing higher ability for species and treatment separation. The relative contribution of ChF to R varied significantly among species, with maple emitting much higher F amounts, as

  14. POLARIZED LIGHT REFLECTED AND TRANSMITTED BY THICK RAYLEIGH SCATTERING ATMOSPHERES

    SciTech Connect

    Natraj, Vijay; Hovenier, J. W.

    2012-03-20

    Accurate values for the intensity and polarization of light reflected and transmitted by optically thick Rayleigh scattering atmospheres with a Lambert surface underneath are presented. A recently reported new method for solving integral equations describing Chandrasekhar's X- and Y-functions is used. The results have been validated using various tests and techniques, including the doubling-adding method, and are accurate to within one unit in the eighth decimal place. Tables are stored electronically and expected to be useful as benchmark results for the (exo)planetary science and astrophysics communities. Asymptotic expressions to obtain Stokes parameters for a thick layer from those of a semi-infinite atmosphere are also provided.

  15. Effect of reflective practice education on self-reflection, insight, and reflective thinking among experienced nurses: a pilot study.

    PubMed

    Asselin, Marilyn E; Fain, James A

    2013-01-01

    A mixed-method study was conducted to determine whether nurses' participation in a reflective practice continuing education program using a structured reflection model makes a difference in nurses' self-reflection, insight, and reflective thinking about clinical practice situations. Findings suggested that use of structured reflection using question cues, written narratives, and peer-facilitated reflection increased nurses' engagement in self-reflection and enhanced reflective thinking in practice. Including reflective practice education in novice orientation and preceptor training may be beneficial.

  16. Problems in publishing accurate color in IEEE journals.

    PubMed

    Vrhel, Michael J; Trussell, H J

    2002-01-01

    To demonstrate the performance of color image processing algorithms, it is desirable to be able to accurately display color images in archival publications. In poster presentations, the authors have substantial control of the printing process, although little control of the illumination. For journal publication, the authors must rely on professional intermediaries (printers) to accurately reproduce their results. Our previous work describes requirements for accurately rendering images using your own equipment. This paper discusses the problems of dealing with intermediaries and offers suggestions for improved communication and rendering.

  17. Fabricating an Accurate Implant Master Cast: A Technique Report.

    PubMed

    Balshi, Thomas J; Wolfinger, Glenn J; Alfano, Stephen G; Cacovean, Jeannine N; Balshi, Stephen F

    2015-12-01

    The technique for fabricating an accurate implant master cast following the 12-week healing period after Teeth in a Day® dental implant surgery is detailed. The clinical, functional, and esthetic details captured during the final master impression are vital to creating an accurate master cast. This technique uses the properties of the all-acrylic resin interim prosthesis to capture these details. This impression captures the relationship between the remodeled soft tissue and the interim prosthesis. This provides the laboratory technician with an accurate orientation of the implant replicas in the master cast with which a passive fitting restoration can be fabricated.

  18. On the distribution of seismic reflection coefficients and seismic amplitudes

    SciTech Connect

    Painter, S.; Paterson, L.; Beresford, G.

    1995-07-01

    Reflection coefficient sequences from 14 wells in Australia have a statistical character consistent with a non-Gaussian scaling noise model based on the Levy-stable family of probability distributions. Experimental histograms of reflection coefficients are accurately approximated by symmetric Levy-stable probability density functions with Levy index between 0.99 and 1.43. These distributions have the same canonical role in mathematical statistics as the Gaussian distribution, but they have slowly decaying tails and infinite moments. The distribution of reflection coefficients is independent of the spatial scale (statistically self-similar), and the reflection coefficient sequences have long-range dependence. These results suggest that the logarithm of seismic impedance can be modeled accurately using fractional Levy motion, which is a generalization of fractional Brownian motion. Synthetic seismograms produced from the authors` model for the reflection coefficients also have Levy-stable distributions. These isolations include transmission losses, the effects of reverberations, and the loss of resolution caused by band-limited wavelets, and suggest that actual seismic amplitudes with sufficient signal-to-noise ratio should also have a Levy-stable distribution. This prediction is verified using post-stack seismic data acquired in the Timor Sea and in the continental USA. However, prestack seismic amplitudes from the Timor Sea are nearly Gaussian. They attribute the difference between prestack and poststack data to the high level of measurement noise in the prestack data.

  19. Novel electromagnetic surface integral equations for highly accurate computations of dielectric bodies with arbitrarily low contrasts

    SciTech Connect

    Erguel, Ozguer; Guerel, Levent

    2008-12-01

    We present a novel stabilization procedure for accurate surface formulations of electromagnetic scattering problems involving three-dimensional dielectric objects with arbitrarily low contrasts. Conventional surface integral equations provide inaccurate results for the scattered fields when the contrast of the object is low, i.e., when the electromagnetic material parameters of the scatterer and the host medium are close to each other. We propose a stabilization procedure involving the extraction of nonradiating currents and rearrangement of the right-hand side of the equations using fictitious incident fields. Then, only the radiating currents are solved to calculate the scattered fields accurately. This technique can easily be applied to the existing implementations of conventional formulations, it requires negligible extra computational cost, and it is also appropriate for the solution of large problems with the multilevel fast multipole algorithm. We show that the stabilization leads to robust formulations that are valid even for the solutions of extremely low-contrast objects.

  20. Totally Implantable Wireless Ultrasonic Doppler Blood Flowmeters: Toward Accurate Miniaturized Chronic Monitors.

    PubMed

    Rothfuss, Michael A; Unadkat, Jignesh V; Gimbel, Michael L; Mickle, Marlin H; Sejdić, Ervin

    2017-03-01

    Totally implantable wireless ultrasonic blood flowmeters provide direct-access chronic vessel monitoring in hard-to-reach places without using wired bedside monitors or imaging equipment. Although wireless implantable Doppler devices are accurate for most applications, device size and implant lifetime remain vastly underdeveloped. We review past and current approaches to miniaturization and implant lifetime extension for wireless implantable Doppler devices and propose approaches to reduce device size and maximize implant lifetime for the next generation of devices. Additionally, we review current and past approaches to accurate blood flow measurements. This review points toward relying on increased levels of monolithic customization and integration to reduce size. Meanwhile, recommendations to maximize implant lifetime should include alternative sources of power, such as transcutaneous wireless power, that stand to extend lifetime indefinitely. Coupling together the results will pave the way for ultra-miniaturized totally implantable wireless blood flow monitors for truly chronic implantation.

  1. Near-Inertial and Tidal Currents Detected with a Vessel Mounted Acoustic Doppler Current Profiler in the Western Mediterranean Sea

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Candela, J.; Font, J.

    1998-01-01

    The Acoustic Doppler Current Profiler (ADCP) combined with accurate navigation provides absolute current velocities which include information from all the frequencies which have a dynamical presence in the ocean.

  2. Variable area light reflecting assembly

    DOEpatents

    Howard, T.C.

    1986-12-23

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  3. Variable area light reflecting assembly

    DOEpatents

    Howard, Thomas C.

    1986-01-01

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  4. Acoustic Immittance, Absorbance, and Reflectance in the Human Ear Canal

    PubMed Central

    Rosowski, John J.; Wilber, Laura Ann

    2015-01-01

    Ear canal measurements of acoustic immittance (a term that groups impedance and its inverse, admittance) and the related quantities of acoustic reflectance and power absorbance have been used to assess auditory function and aid in the differential diagnosis of conductive hearing loss for over 50 years. The change in such quantities after stimulation of the acoustic reflex also has been used in diagnosis. In this article, we define these quantities, describe how they are commonly measured, and discuss appropriate calibration procedures and standards necessary for accurate immittance/reflectance measurements. PMID:27516708

  5. Atlas of soil reflectance properties

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Biehl, L. L.; Robinson, B. F.

    1979-01-01

    A compendium of soil spectral reflectance curves together with soil test results and site information is presented in an abbreviated manner listing those soil properties most important in influencing soil reflectance. Results are presented for 251 soils from 39 states and Brazil. A narrative key describes relationships between soil parameters and reflectance curves. All soils are classified according to the U.S. soil taxonomy and soil series name for ease of identification.

  6. Controlling Hay Fever Symptoms with Accurate Pollen Counts

    MedlinePlus

    ... Library ▸ Hay fever and pollen counts Share | Controlling Hay Fever Symptoms with Accurate Pollen Counts This article has ... Pongdee, MD, FAAAAI Seasonal allergic rhinitis known as hay fever is caused by pollen carried in the air ...

  7. Digital system accurately controls velocity of electromechanical drive

    NASA Technical Reports Server (NTRS)

    Nichols, G. B.

    1965-01-01

    Digital circuit accurately regulates electromechanical drive mechanism velocity. The gain and phase characteristics of digital circuits are relatively unimportant. Control accuracy depends only on the stability of the input signal frequency.

  8. Weak-shock reflection factors

    SciTech Connect

    Reichenbach, H.; Kuhl, A.L.

    1993-09-07

    The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: square-wave planar shock reflection from wedges; square-wave planar shock reflection from cylinders; and spherical blast wave reflection from a planar surface. We restrict ourselves to weak shocks. Shocks with a Mach number of M{sub O} < 1.56 in air or with an overpressure of {Delta}{sub PI} < 25 psi (1.66 bar) under normal ambient conditions are called weak.

  9. Embodied Reflection and the Epistemology of Reflective Practice

    ERIC Educational Resources Information Center

    Kinsella, Elizabeth Anne

    2007-01-01

    Donald Schon's theory of reflective practice has been extensively referred to and has had enormous impact in education and related fields. Nonetheless, there continues to be tremendous conceptual and practical confusion surrounding interpretations of reflective practice and philosophical assumptions underlying the theory. In this paper, I argue…

  10. Studies of the Reflection, Refraction and Internal Reflection of Light

    ERIC Educational Resources Information Center

    Lanchester, P. C.

    2014-01-01

    An inexpensive apparatus and associated experiments are described for studying the basic laws of reflection and refraction of light at an air-glass interface, and multiple internal reflections within a glass block. In order to motivate students and encourage their active participation, a novel technique is described for determining the refractive…

  11. Specular Reflection and Diffuse Reflectance Spectroscopy of Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies on the occurrence and effects of specular reflection in mid-infrared spectra of soils have shown that distortions due to specular reflection occur for both organic (humic acid) and non-organic fractions (carbonates, silica, ashed fraction of soil). The results demonstrated explain why the s...

  12. Postgraduate Education to Support Organisation Change: A Reflection on Reflection

    ERIC Educational Resources Information Center

    Stewart, Jim; Keegan, Anne; Stevens, Pam

    2008-01-01

    Purpose: This paper aims to explore how teaching and assessing reflective learning skills can support postgraduate practitioners studying organisational change and explores the challenges for tutors in assessing these journals. Design/methodology/approach: Assessment criteria were developed from the literature on reflective practice and…

  13. Accurate tracking of high dynamic vehicles with translated GPS

    NASA Astrophysics Data System (ADS)

    Blankshain, Kenneth M.

    The GPS concept and the translator processing system (TPS) which were developed for accurate and cost-effective tracking of various types of high dynamic expendable vehicles are described. A technique used by the translator processing system (TPS) to accomplish very accurate high dynamic tracking is presented. Automatic frequency control and fast Fourier transform processes are combined to track 100 g acceleration and 100 g/s jerk with 1-sigma velocity measurement error less than 1 ft/sec.

  14. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  15. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    SciTech Connect

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, James E.; Johnson, Timothy J.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  16. a Bidirectional Reflectance Model for Non-Random Canopies.

    NASA Astrophysics Data System (ADS)

    Welles, Jonathan Mark

    The general array model (GAR) is extended to calculate bidirectional reflectance (reflectance as a function of angle of view and angle of illumination) of a plant stand. The new model (BIGAR) defines the plant canopy as one or more foliage-containing ellipsoids arranged in any desired pattern. Foliage is assumed randomly distributed within each ellipsoid, with a specified distribution of inclination angles and random azimuthal orientation distribution. A method of specifying sub-ellipsoids that contain foliage of varying properties is discussed. Foliage is assumed to scatter radiation in a Lambertian fashion. The soil bidirectional reflectance is modelled separately as a boundary condition. The reflectance of any given grid point within the plant stand is calculated from the incident radiation (direct beam, diffuse sky, and diffuse scattered from the soil and foliage) and a view weighting factor that is based upon how much of the view is occupied by that particular grid point. Integrating this over a large number of grid locations provides a prediction of the bidirectional reflectance. Model predictions are compared with measurements in corn and soybean canopies at three stages of growth. The model does quite well in predicting the general shape and dynamics of the measured bidirectional reflectance factors, and rms errors are typically 10% to 15% (relative) of the integrated reflectance value. The effect of rows is evident in both the measurements and the model in the early part of the growing season. The presence of tassles in the corn may be the cause of unpredicted row effects later in the season. Predicted nadir reflectances are accurate for soybean, but are low for full cover corn. The presence of specular reflection causes the model to slightly underpredict reflectances looking toward the sun at large solar zenith angles.

  17. A novel reflectometer for relative reflectance measurements of CCDs

    NASA Astrophysics Data System (ADS)

    Hart, Murdock; Barkhouser, Robert H.; Gunn, James E.; Smee, Stephen A.

    2016-07-01

    The high quantum efficiencies (QE) of backside illuminated charge coupled devices (CCD) has ushered in the age of the large scale astronomical survey. The QE of these devices can be greater than 90%, and is dependent upon the operating temperature, device thickness, backside charging mechanisms, and anti-reflection (AR) coatings. But at optical wavelengths the QE is well approximated as one minus the reflectance, thus the measurement of the backside reflectivity of these devices provides a second independent measure of their QE. We have designed and constructed a novel instrument to measure the relative specular reflectance of CCD detectors, with a significant portion of this device being constructed using a 3D fused deposition model (FDM) printer. This device implements both a monitor and measurement photodiode to simultaneously collect in- cident and reflected measurements reducing errors introduced by the relative reflectance calibration process. While most relative reflectometers are highly dependent upon a precisely repeatable target distance for accurate measurements, we have implemented a method of measurement which minimizes these errors. Using the reflectometer we have measured the reflectance of two types of Hamamatsu CCD detectors. The first device is a Hamamatsu 2k x 4k backside illuminated high resistivity p-type silicon detector which has been optimized to operate in the blue from 380 nm - 650 nm. The second detector being a 2k x 4k backside illuminated high resistivity p-type silicon detector optimized for use in the red from 640 nm - 960 nm. We have not only been able to measure the reflectance of these devices as a function of wavelength we have also sampled the reflectance as a function of position on the device, and found a reflection gradient across these devices.

  18. IRIS: Towards an Accurate and Fast Stage Weight Prediction Method

    NASA Astrophysics Data System (ADS)

    Taponier, V.; Balu, A.

    2002-01-01

    , validated on several technical and econometrical cases, has been used for this purpose. A database of several conventional stages, operated with either solid or liquid propellants, has been made up, in conjunction with an evolutionary set of geometrical, physical and functional parameters likely to contribute to the description of the mass fraction and presumably known at the early steps of the preliminary design. After several iterations aiming at selecting the most influential parameters, polynomial expressions of the mass fraction have been made up, associated to a confidence level. The outcome highlights the real possibility of a parametric formulation of the mass fraction for conventional stages on the basis of a limited number of descriptive parameters and with a high degree of accuracy, lower than 10%. The formulas have been later on tested on existing or preliminary stages not included in the initial database, for validation purposes. Their mass faction is assessed with a comparable accuracy. The polynomial generation method in use allows also for a search of the influence of each parameter. The devised method, suitable for the preliminary design phase, represents, compared to the classical empirical approach, a significant way of improvement of the mass fraction prediction. It enables a rapid dissemination of more accurate and consistent weight data estimates to support system studies. It makes also possible the upstream processing of the preliminary design tasks through a global system approach. This method, currently in the experimental phase, is already in use as a complementary means at the technical underdirectorate of CNES-DLA. * IRIS :Instrument de Recherche des Indices Structuraux

  19. Progress toward accurate high spatial resolution actinide analysis by EPMA

    NASA Astrophysics Data System (ADS)

    Jercinovic, M. J.; Allaz, J. M.; Williams, M. L.

    2010-12-01

    High precision, high spatial resolution EPMA of actinides is a significant issue for geochronology, resource geochemistry, and studies involving the nuclear fuel cycle. Particular interest focuses on understanding of the behavior of Th and U in the growth and breakdown reactions relevant to actinide-bearing phases (monazite, zircon, thorite, allanite, etc.), and geochemical fractionation processes involving Th and U in fluid interactions. Unfortunately, the measurement of minor and trace concentrations of U in the presence of major concentrations of Th and/or REEs is particularly problematic, especially in complexly zoned phases with large compositional variation on the micro or nanoscale - spatial resolutions now accessible with modern instruments. Sub-micron, high precision compositional analysis of minor components is feasible in very high Z phases where scattering is limited at lower kV (15kV or less) and where the beam diameter can be kept below 400nm at high current (e.g. 200-500nA). High collection efficiency spectrometers and high performance electron optics in EPMA now allow the use of lower overvoltage through an exceptional range in beam current, facilitating higher spatial resolution quantitative analysis. The U LIII edge at 17.2 kV precludes L-series analysis at low kV (high spatial resolution), requiring careful measurements of the actinide M series. Also, U-La detection (wavelength = 0.9A) requires the use of LiF (220) or (420), not generally available on most instruments. Strong peak overlaps of Th on U make highly accurate interference correction mandatory, with problems compounded by the ThMIV and ThMV absorption edges affecting peak, background, and interference calibration measurements (especially the interference of the Th M line family on UMb). Complex REE bearing phases such as monazite, zircon, and allanite have particularly complex interference issues due to multiple peak and background overlaps from elements present in the activation

  20. Virtual reflections in electronic acoustic architecture

    NASA Astrophysics Data System (ADS)

    van Munster, Bjorn

    2005-09-01

    In the era of the ancient Greeks and Byzantines, the first attempts for increasing reverberation time are noted. In the 1950s, the Ambiophonic system accomplished this by means of an electronic device, for the first time. The early systems only increased the reverberation time by delaying the picked-up reverberation. With the introduction of multichannel feedback-based systems, the reverberation level also could be increased. Later, it was understood that it was important to also fill in the missing reflections, address reflection density, frequency dependence, etc. This resulted in the development of the SIAP concept. Current DSP technology led to the development of a processor whereby density, length, level, and the frequency content can be controlled for different areas in the same room or different rooms, leading to the concept of the acoustic server. electronic acoustic architecture has become the current state-of-the-art approach for solving acoustic deficiencies in, among others, rehearsal rooms, theaters, churches, and multipurpose venues. Incorporation of complementary passive acoustic solutions provides an optimum solution for all room problems. This paper discusses the utilization of virtual reflections in the new approach of electronic acoustic architecture for different environments. Measurements performed in the Sejong Performing Arts Centre, Seoul, South Korea, show the power of this approach.

  1. The NCTM Research Presession: A Brief History and Reflection

    ERIC Educational Resources Information Center

    Journal for Research in Mathematics Education, 2014

    2014-01-01

    The NCTM Research Committee invited Richard Lesh, instrumental in the founding of the NCTM Research Presession, to join the members of the current Research Committee in reflecting on its formation, the hopes he and others had in mind when they started it, and the current state and future of research in the field.

  2. In Their Own Words: Teachers' Reflections on Adaptability

    ERIC Educational Resources Information Center

    Vaughn, Margaret; Parsons, Seth A.; Burrowbridge, Sarah Cohen; Weesner, Janice; Taylor, Laurel

    2016-01-01

    Current research explores adaptability by gathering teachers' reflections on their adaptations. However, the field knows little of what the term "adaptability" means to teachers who currently teach in today's educational context. In this article, adaptability is discussed from the perspectives of 3 practicing classroom educators,…

  3. Children's Literature-Some Reflections.

    ERIC Educational Resources Information Center

    Root, Shelton L., Jr.

    Ten reflections may be made regarding children's literature and its teaching. The reflections are as follows: (1) Teachers can make a profound difference in the lives of students and should attempt to do so. (2) Teachers of children's literature are a badly fragmented lot and need a common meeting ground where they can share their thinking. (3)…

  4. Reflections on Justice in Schooling

    ERIC Educational Resources Information Center

    First, Patricia F.

    2012-01-01

    This article is a reflection on the concept of justice as practiced in the public schools in the United States. Examples of justice denied or misconstrued are included. Cases, stories, and concepts invite educational leaders to reflect anew on delivering justice in education to all children. Underlying the article is the belief that understanding…

  5. Can Reflective Practice Be Taught?

    ERIC Educational Resources Information Center

    Edwards, Gail; Thomas, Gary

    2010-01-01

    Almost ubiquitous in discourses about the development of teachers, reflective practice describes the process that occurs when persons are apprenticed to any meaningful activity. But reflective practice is a descriptive term for that process: it does not imply that the process is itself open to dissection and instruction. We contend that mistaken…

  6. Why Reflection in Teacher Education?

    ERIC Educational Resources Information Center

    LaBoskey, Vicki Kubler

    1993-01-01

    Focuses on preservice teacher education by considering teacher reflectivity as an end rather than a means. The article provides a rationale for reflective teacher education in arguing the need to have teachers who are thoughtful, passionate, and principled educational decision makers. (GLR)

  7. Reflections on Becoming a Researcher

    ERIC Educational Resources Information Center

    Frankel, Katherine K.; Pearson, P. David

    2013-01-01

    In this joint reflection two of the contributors to this issue of the "Journal of Education" consider the processes and practices that led to the publication of their respective pieces. Since one of the authors, Katherine Frankel, was a doctoral advisee of the other, David Pearson, they also reflect on the mentoring practices they shared…

  8. Flexible Bistable Cholesteric Reflective Displays

    NASA Astrophysics Data System (ADS)

    Yang, Deng-Ke

    2006-03-01

    Cholesteric liquid crystals (ChLCs) exhibit two stable states at zero field condition-the reflecting planar state and the nonreflecting focal conic state. ChLCs are an excellent candidate for inexpensive and rugged electronic books and papers. This paper will review the display cell structure,materials and drive schemes for flexible bistable cholesteric (Ch) reflective displays.

  9. Ethical Reflections on Becoming Teachers

    ERIC Educational Resources Information Center

    Joseph, Pamela Bolotin

    2016-01-01

    This study analyzes narratives written in a culminating graduate seminar on reflective practice by 36 new secondary teachers who were asked to consider their moral beliefs, moral values and system of ethics as they reflected on their recent student teaching experiences. The findings explore how the participants depicted their constructed moral…

  10. Optimal Current Transfer in Dendrites

    PubMed Central

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  11. Reflection on fitness to practise.

    PubMed

    Brindley, J

    2016-10-21

    Aim The focus of this review was to identify the role of reflection in continuing dental education. By understanding the expectations that our statutory regulative authority has of their registrants there is an opportunity to help to shape the continued professional development activities undertaken by current registrants in the future.Objective Conduct a review of General Dental Council (GDC) Fitness to Practise cases which were given conditions (restrictions) between February 2012 and November 2015, identifying relevant emergent outcomes in relation the Fitness to Practise (FTP) process.Design A Framework Approach (FA) was used to interrogate the qualitative data generated from GDC cases, the data were reviewed by a secondary person to ensure inter-rater reliability. Ethical approval was not sought for this research project as the GDC cases are published and available for open access via the internet. However, this does not negate the need for consideration of those GDC registrants who have been reviewed by the FTP process, indeed information regarding their identities was removed during data collection, as individual identification as part of this research project may have impacted on these individuals (bearing in mind the principle of non-maleficence; do no harm) and disclosure of personal information would not have contributed to the findings of this review. Although FTP cases are in the public domain, the information is still sensitive to those registrants, therefore it was not possible to review those cases which were not available for public view. To ensure that individual identification of registrants did not occur for the available to view cases (n = 56), each case file was individually downloaded from the GDC website and immediately given an individual numerical identifier before the frame work analysis. For the purpose of this research only the data from the FTP cases which resulted in 'conditions' were subject to review, as these were cases where it

  12. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  13. [Concept analysis of reflective thinking].

    PubMed

    Van Vuuren, M; Botes, A

    1999-09-01

    The nursing practice is described as a scientific practice, but also as a practice where caring is important. The purpose of nursing education is to provide competent nursing practitioners. This implies that future practitioners must have both critical analytical thinking abilities, as well as empathy and moral values. Reflective thinking could probably accommodate these thinking skills. It seems that the facilitation of reflective thinking skills is essential in nursing education. The research question that is relevant in this context is: "What is reflective thinking?" The purpose of this article is to report on the concept analysis of reflective thinking and in particular on the connotative meaning (critical attributes) thereof. The method used to perform the concept analysis is based on the original method of Wilson (1987) as described by Walker & Avant (1995). As part of the concept analysis the connotations (critical attributes) are identified, reduced and organized into three categories, namely pre-requisites, processes and outcomes. A model case is described which confirms the essential critical attributes of reflective thinking. Finally a theoretical definition of reflective thinking is derived and reads as follows: Reflective thinking is a cyclic, hierarchical and interactive construction process. It is initiated, extended and continued because of personal cognitive-affective interaction (individual dimension) as well as interaction with the social environment (social dimension). to realize reflective thinking, a level of internalization on the cognitive and affective domain is required. The result of reflective thinking is a integrated framework of knowledge (meaningful learning) and a internalized value system providing a new perspective on and better understanding of a problem. Reflective thinking further leads to more effective decision making- and problem solving skills.

  14. Accurate determination of the complex refractive index of solid tissue-equivalent phantom

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ye, Qing; Deng, Zhichao; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo

    2012-06-01

    Tissue-equivalent phantom is becoming widespread as a substitute in the biological field to verify optical theories, test measuring systems and study the tissue performances for varying boundary conditions, sample size and shape at a quantitative level. Compared with phantoms made with Intralipid solution, ink and other liquid substances, phantom in solid state is stable over time, reproducible, easy to handle and has been testified to be a suitable optical simulator in the visible and near-infrared region. We present accurate determination of the complex refractive index (RI) of a solid tissueequivalent phantom using extended derivative total reflection method (EDTRM). Scattering phantoms in solid state were measured for p-polarized and s-polarized incident light respectively. The reflectance curves of the sample as a function of incident angle were recorded. The real part of RI is directly determined by derivative of the reflectance curve, and the imaginary part is obtained from nonlinear fitting based on the Fresnel equation and Nelder-Mead simplex method. The EDTRM method is applicable for RI measurement of high scattering media such as biotissue, solid tissue-equivalent phantom and bulk material. The obtained RI information can be used in the study of tissue optics and biomedical field.

  15. Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties.

    PubMed

    Chen, Yu-Wen; Tseng, Sheng-Hao

    2015-03-01

    In general, diffuse reflectance spectroscopy (DRS) systems work with photon diffusion models to determine the absorption coefficient μa and reduced scattering coefficient μs' of turbid samples. However, in some DRS measurement scenarios, such as using short source-detector separations to investigate superficial tissues with comparable μa and μs', photon diffusion models might be invalid or might not have analytical solutions. In this study, a systematic workflow of constructing a rapid, accurate photon transport model that is valid at short source-detector separations (SDSs) and at a wide range of sample albedo is revealed. To create such a model, we first employed a GPU (Graphic Processing Unit) based Monte Carlo model to calculate the reflectance at various sample optical property combinations and established a database at high speed. The database was then utilized to train an artificial neural network (ANN) for determining the sample absorption and reduced scattering coefficients from the reflectance measured at several SDSs without applying spectral constraints. The robustness of the produced ANN model was rigorously validated. We evaluated the performance of a successfully trained ANN using tissue simulating phantoms. We also determined the 500-1000 nm absorption and reduced scattering spectra of in-vivo skin using our ANN model and found that the values agree well with those reported in several independent studies.

  16. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  17. Synergies in Critical Reflective Practice and Science: Science as Reflection and Reflection as Science

    ERIC Educational Resources Information Center

    Mathieson, Luke

    2016-01-01

    The conceptions of reflective practice in education have their roots at least partly in the work of Dewey, who describes reflection as "the active, persistent, and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends" (Dewey 1933, p.9).…

  18. It's About Time: How Accurate Can Geochronology Become?

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Baldwin, S.; Caffee, M. W.; Gehrels, G. E.; Schoene, B.; Shuster, D. L.; Singer, B. S.

    2015-12-01

    As isotope ratio precisions have improved to as low as ±1 ppm, geochronologic precision has remained essentially unchanged. This largely reflects the nature of radioactivity whereby the parent decays into a different chemical species thus putting as much emphasis on the determining inter-element ratios as isotopic. Even the best current accuracy grows into errors of >0.6 m.y. during the Paleozoic - a span of time equal to ¼ of the Pleistocene. If we are to understand the nature of Paleozoic species variation and climate change at anything like the Cenozoic, we need a 10x improvement in accuracy. The good news is that there is no physical impediment to realizing this. There are enough Pb* atoms in the outer few μm's of a Paleozoic zircon grown moments before eruption to permit ±0.01% accuracy in the U-Pb system. What we need are the resources to synthesize the spikes, enhance ionization yields, exploit microscale sampling, and improve knowledge of λ correspondingly. Despite advances in geochronology over the past 40 years (multicollection, multi-isotope spikes, in situ dating), our ability to translate a daughter atom into a detected ion has remained at the level of 1% or so. This means that a ~102 increase in signal can be achieved before we approach a physical limit. Perhaps the most promising approach is use of broad spectrum lasers that can ionize all neutrals. Radical new approaches to providing mass separation of such signals are emerging, including trapped ion cyclotron resonance and multi-turn, sputtered neutral TOF spectrometers capable of mass resolutions in excess of 105. These innovations hold great promise in geochronology but are largely being developed for cosmochemistry. This may make sense at first glance as cosmochemists are classically atom-limited (IDPs, stardust) but can be a misperception as the outer few μm's of a zircon may represent no more mass than a stardust mote. To reach the fundamental limits of geochronologic signals we need to

  19. Inference of dense spectral reflectance images from sparse reflectance measurement using non-linear regression modeling

    NASA Astrophysics Data System (ADS)

    Deglint, Jason; Kazemzadeh, Farnoud; Wong, Alexander; Clausi, David A.

    2015-09-01

    One method to acquire multispectral images is to sequentially capture a series of images where each image contains information from a different bandwidth of light. Another method is to use a series of beamsplitters and dichroic filters to guide different bandwidths of light onto different cameras. However, these methods are very time consuming and expensive and perform poorly in dynamic scenes or when observing transient phenomena. An alternative strategy to capturing multispectral data is to infer this data using sparse spectral reflectance measurements captured using an imaging device with overlapping bandpass filters, such as a consumer digital camera using a Bayer filter pattern. Currently the only method of inferring dense reflectance spectra is the Wiener adaptive filter, which makes Gaussian assumptions about the data. However, these assumptions may not always hold true for all data. We propose a new technique to infer dense reflectance spectra from sparse spectral measurements through the use of a non-linear regression model. The non-linear regression model used in this technique is the random forest model, which is an ensemble of decision trees and trained via the spectral characterization of the optical imaging system and spectral data pair generation. This model is then evaluated by spectrally characterizing different patches on the Macbeth color chart, as well as by reconstructing inferred multispectral images. Results show that the proposed technique can produce inferred dense reflectance spectra that correlate well with the true dense reflectance spectra, which illustrates the merits of the technique.

  20. Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar.

    PubMed

    Nakajima, T Y; Imai, T; Uchino, O; Nagai, T

    1999-08-20

    The influence of daylight and noise current on cloud and aerosol observations by realistic spaceborne lidar was examined by computer simulations. The reflected solar radiations, which contaminate the daytime return signals of lidar operations, were strictly and explicitly estimated by accurate radiative transfer calculations. It was found that the model multilayer cirrus clouds and the boundary layer aerosols could be observed during the daytime and the nighttime with only a few laser shots. However, high background noise and noise current make it difficult to observe volcanic aerosols in middle and upper atmospheric layers. Optimal combinations of the laser power and receiver field of view are proposed to compensate for the negative influence that is due to these noises. For the computer simulations, we used a realistic set of lidar parameters similar to the Experimental Lidar in-Space Equipment of the National Space Development Agency of Japan.

  1. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  2. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  3. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  4. The Advantages of an Attenuated Total Internal Reflection Infrared Microspectroscopic Imaging Approach for Kidney Biopsy Analysis

    PubMed Central

    Gulley-Stahl, Heather J.; Bledsoe, Sharon B.; Evan, Andrew P.; Sommer, André J.

    2011-01-01

    The benefits of an ATR-FTIR imaging approach for kidney biopsy analysis are described. Biopsy sections collected from kidney stone formers are analyzed at the initial stages of stone development to provide insights into stone growth and formation. The majority of tissue analysis currently conducted with IR microspectroscopy is performed with a transflection method. The research presented in this manuscript demonstrates that ATR overcomes many of the disadvantages of transflection or transmission measurements for tissue analysis including an elimination of spectral artifacts. When kidney biopsies with small mineral inclusions are analyzed with a transflection approach, specular reflection, and the Christiansen effect (anomalous dispersion) can occur leading to spectral artifacts. Another effect specific to the analysis of mineral inclusions present in kidney biopsies is known as the reststrahlen effect where the inclusions become strong reflectors near an absorption band. ATR eliminates these effects by immersing the sample in a high index medium. Additionally, the focused beam size for ATR is decreased by a factor of four when a germanium internal reflection element is used, allowing the acquisition of spectra from small mineral inclusions several micrometers in diameter. If quantitative analysis of small mineral inclusions is ultimately desired, ATR provides the photometrically accurate spectra necessary for quantification. PMID:20132593

  5. Plant canopy specular reflectance model

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.

    1985-01-01

    A model is derived for the amount of light specularly reflected and polarized by a plant canopy. The model is based on the morphological and phenological characteristics of the canopy and upon the Fresnel equations of optics. The theory demonstrates that the specular reflectance of the plant canopy is a function of the angle of incidence and potentially contains information to help discriminate between species. The theory relates the specular reflectance to botanical condition of the canopy - to factors such as development stage, plant vigor, and leaf area index (LAI).

  6. A low cost, durable anti-reflective film for solar collectors

    NASA Technical Reports Server (NTRS)

    Pastirik, E. M.; Keeling, M. C.

    1978-01-01

    The physics of reflection reduction by thin films is briefly reviewed. Current techniques for the production of anti-reflective coatings are surveyed with respect to their applicabilities to solar panel covers. Techniques for the production of suitable anti-reflection coatings based on acid-hardened sodium silicate solutions are presented along with optical data for both acid-leached and silicate coatings

  7. Exploring Pre-Service Classroom Teachers' Reflections on Teaching Physical Education

    ERIC Educational Resources Information Center

    Tsangaridou, Niki; Polemitou, Irene

    2015-01-01

    The aim of the current study was to provide descriptions of the nature of pre-service primary teachers' reflection during their student teaching experience. The principal research question that guided the investigation was "what do these pre-service classroom teachers reflect on during their teaching and how is this reflection related to…

  8. Student Reflective Writing: Cognition and Affect before, during, and after Study Abroad

    ERIC Educational Resources Information Center

    Savicki, Victor; Price, Michele V.

    2015-01-01

    Reflective thinking is an important feature of study-abroad learning, yet research on reflection in this context is sparse. The current study examined student reflection on 3 content areas (Academic Expectations, Cultural Expectations, and Psychological Issues) at 3 times (before, during, and after study abroad). A content analysis approach with…

  9. Accurate stress resultants equations for laminated composite deep thick shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.

  10. Must Kohn-Sham oscillator strengths be accurate at threshold?

    SciTech Connect

    Yang Zenghui; Burke, Kieron; Faassen, Meta van

    2009-09-21

    The exact ground-state Kohn-Sham (KS) potential for the helium atom is known from accurate wave function calculations of the ground-state density. The threshold for photoabsorption from this potential matches the physical system exactly. By carefully studying its absorption spectrum, we show the answer to the title question is no. To address this problem in detail, we generate a highly accurate simple fit of a two-electron spectrum near the threshold, and apply the method to both the experimental spectrum and that of the exact ground-state Kohn-Sham potential.

  11. Accurate upwind-monotone (nonoscillatory) methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1992-01-01

    The well known MUSCL scheme of Van Leer is constructed using a piecewise linear approximation. The MUSCL scheme is second order accurate at the smooth part of the solution except at extrema where the accuracy degenerates to first order due to the monotonicity constraint. To construct accurate schemes which are free from oscillations, the author introduces the concept of upwind monotonicity. Several classes of schemes, which are upwind monotone and of uniform second or third order accuracy are then presented. Results for advection with constant speed are shown. It is also shown that the new scheme compares favorably with state of the art methods.

  12. Time-Accurate Numerical Simulations of Synthetic Jet Quiescent Air

    NASA Technical Reports Server (NTRS)

    Rupesh, K-A. B.; Ravi, B. R.; Mittal, R.; Raju, R.; Gallas, Q.; Cattafesta, L.

    2007-01-01

    The unsteady evolution of three-dimensional synthetic jet into quiescent air is studied by time-accurate numerical simulations using a second-order accurate mixed explicit-implicit fractional step scheme on Cartesian grids. Both two-dimensional and three-dimensional calculations of synthetic jet are carried out at a Reynolds number (based on average velocity during the discharge phase of the cycle V(sub j), and jet width d) of 750 and Stokes number of 17.02. The results obtained are assessed against PIV and hotwire measurements provided for the NASA LaRC workshop on CFD validation of synthetic jets.

  13. Accurate Time-Dependent Traveling-Wave Tube Model Developed for Computational Bit-Error-Rate Testing

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2001-01-01

    The phenomenal growth of the satellite communications industry has created a large demand for traveling-wave tubes (TWT's) operating with unprecedented specifications requiring the design and production of many novel devices in record time. To achieve this, the TWT industry heavily relies on computational modeling. However, the TWT industry's computational modeling capabilities need to be improved because there are often discrepancies between measured TWT data and that predicted by conventional two-dimensional helical TWT interaction codes. This limits the analysis and design of novel devices or TWT's with parameters differing from what is conventionally manufactured. In addition, the inaccuracy of current computational tools limits achievable TWT performance because optimized designs require highly accurate models. To address these concerns, a fully three-dimensional, time-dependent, helical TWT interaction model was developed using the electromagnetic particle-in-cell code MAFIA (Solution of MAxwell's equations by the Finite-Integration-Algorithm). The model includes a short section of helical slow-wave circuit with excitation fed by radiofrequency input/output couplers, and an electron beam contained by periodic permanent magnet focusing. A cutaway view of several turns of the three-dimensional helical slow-wave circuit with input/output couplers is shown. This has been shown to be more accurate than conventionally used two-dimensional models. The growth of the communications industry has also imposed a demand for increased data rates for the transmission of large volumes of data. To achieve increased data rates, complex modulation and multiple access techniques are employed requiring minimum distortion of the signal as it is passed through the TWT. Thus, intersymbol interference (ISI) becomes a major consideration, as well as suspected causes such as reflections within the TWT. To experimentally investigate effects of the physical TWT on ISI would be

  14. Differences in the Association between Segment and Language: Early Bilinguals Pattern with Monolinguals and Are Less Accurate than Late Bilinguals

    PubMed Central

    Blanco, Cynthia P.; Bannard, Colin; Smiljanic, Rajka

    2016-01-01

    Early bilinguals often show as much sensitivity to L2-specific contrasts as monolingual speakers of the L2, but most work on cross-language speech perception has focused on isolated segments, and typically only on neighboring vowels or stop contrasts. In tasks that include sounds in context, listeners’ success is more variable, so segment discrimination in isolation may not adequately represent the phonetic detail in stored representations. The current study explores the relationship between language experience and sensitivity to segmental cues in context by comparing the categorization patterns of monolingual English listeners and early and late Spanish–English bilinguals. Participants categorized nonce words containing different classes of English- and Spanish-specific sounds as being more English-like or more Spanish-like; target segments included phonemic cues, cues for which there is no analogous sound in the other language, or phonetic cues, cues for which English and Spanish share the category but for which each language varies in its phonetic implementation. Listeners’ language categorization accuracy and reaction times were analyzed. Our results reveal a largely uniform categorization pattern across listener groups: Spanish cues were categorized more accurately than English cues, and phonemic cues were easier for listeners to categorize than phonetic cues. There were no differences in the sensitivity of monolinguals and early bilinguals to language-specific cues, suggesting that the early bilinguals’ exposure to Spanish did not fundamentally change their representations of English phonology. However, neither did the early bilinguals show more sensitivity than the monolinguals to Spanish sounds. The late bilinguals however, were significantly more accurate than either of the other groups. These findings indicate that listeners with varying exposure to English and Spanish are able to use language-specific cues in a nonce-word language categorization

  15. The Constellation-X Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Allen, Jean C.

    2006-01-01

    The Reflection Grating Spectrometer on the Constellation-X mission will provide high sensitivity, high-resolution spectra in the soft x-ray band. The RGS performance requirements are specified as a resolving power of greater than 300 and an effective area of greater than 1000 sq cm across most of the 0.25 to 2.0 keV band. These requirements are driven by the science goals of the mission. We will describe the performance requirements and goals, the reference design of the spectrometer, and examples of science cases where we expect data from the RGS to significantly advance our current understanding of the universe.

  16. Implementation and evaluation of the Level Set method: Towards efficient and accurate simulation of wet etching for microengineering applications

    NASA Astrophysics Data System (ADS)

    Montoliu, C.; Ferrando, N.; Gosálvez, M. A.; Cerdá, J.; Colom, R. J.

    2013-10-01

    The use of atomistic methods, such as the Continuous Cellular Automaton (CCA), is currently regarded as a computationally efficient and experimentally accurate approach for the simulation of anisotropic etching of various substrates in the manufacture of Micro-electro-mechanical Systems (MEMS). However, when the features of the chemical process are modified, a time-consuming calibration process needs to be used to transform the new macroscopic etch rates into a corresponding set of atomistic rates. Furthermore, changing the substrate requires a labor-intensive effort to reclassify most atomistic neighborhoods. In this context, the Level Set (LS) method provides an alternative approach where the macroscopic forces affecting the front evolution are directly applied at the discrete level, thus avoiding the need for reclassification and/or calibration. Correspondingly, we present a fully-operational Sparse Field Method (SFM) implementation of the LS approach, discussing in detail the algorithm and providing a thorough characterization of the computational cost and simulation accuracy, including a comparison to the performance by the most recent CCA model. We conclude that the SFM implementation achieves similar accuracy as the CCA method with less fluctuations in the etch front and requiring roughly 4 times less memory. Although SFM can be up to 2 times slower than CCA for the simulation of anisotropic etchants, it can also be up to 10 times faster than CCA for isotropic etchants. In addition, we present a parallel, GPU-based implementation (gSFM) and compare it to an optimized, multicore CPU version (cSFM), demonstrating that the SFM algorithm can be successfully parallelized and the simulation times consequently reduced, while keeping the accuracy of the simulations. Although modern multicore CPUs provide an acceptable option, the massively parallel architecture of modern GPUs is more suitable, as reflected by computational times for gSFM up to 7.4 times faster than

  17. Kubelka-Munk reflectance theory applied to porcelain veneer systems using a colorimeter.

    PubMed

    Davis, B K; Johnston, W M; Saba, R F

    1994-01-01

    The purpose of this study was to demonstrate the ability of Kubelka-Munk reflectance theory to predict color parameters of veneer porcelain on various backings using colorimetric measurements. Tristimulus absorption and scattering coefficients were used to predict the respective tristimulus reflectance values of A1, D3, and translucent porcelain samples after they had been bonded to light and dark substrates using universal, opaque, and untinted shades of bonding resin. Observed and predicted reflectance values exhibited high correlation (r2 > or = 0.93 for each porcelain shade). Kubelka-Munk theory offers an accurate prediction for the resultant colorimetric reflectance parameters of veneer porcelain bonded to variously colored backings.

  18. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  19. Development of modified cable models to simulate accurate neuronal active behaviors

    PubMed Central

    2014-01-01

    In large network and single three-dimensional (3-D) neuron simulations, high computing speed dictates using reduced cable models to simulate neuronal firing behaviors. However, these models are unwarranted under active conditions and lack accurate representation of dendritic active conductances that greatly shape neuronal firing. Here, realistic 3-D (R3D) models (which contain full anatomical details of dendrites) of spinal motoneurons were systematically compared with their reduced single unbranched cable (SUC, which reduces the dendrites to a single electrically equivalent cable) counterpart under passive and active conditions. The SUC models matched the R3D model's passive properties but failed to match key active properties, especially active behaviors originating from dendrites. For instance, persistent inward currents (PIC) hysteresis, frequency-current (FI) relationship secondary range slope, firing hysteresis, plateau potential partial deactivation, staircase currents, synaptic current transfer ratio, and regional FI relationships were not accurately reproduced by the SUC models. The dendritic morphology oversimplification and lack of dendritic active conductances spatial segregation in the SUC models caused significant underestimation of those behaviors. Next, SUC models were modified by adding key branching features in an attempt to restore their active behaviors. The addition of primary dendritic branching only partially restored some active behaviors, whereas the addition of secondary dendritic branching restored most behaviors. Importantly, the proposed modified models successfully replicated the active properties without sacrificing model simplicity, making them attractive candidates for running R3D single neuron and network simulations with accurate firing behaviors. The present results indicate that using reduced models to examine PIC behaviors in spinal motoneurons is unwarranted. PMID:25277743

  20. Transmitted, reflected, quasi-reflected, and multiply reflected ions in low-Mach number shocks

    NASA Astrophysics Data System (ADS)

    Gedalin, M.

    2016-11-01

    The dependence of ion dynamics on the cross-shock potential and upstream βi in low-Mach number marginally critical shocks is studied using advanced test particle analysis,. The directly transmitted ions provide the main contribution to the downstream ion pressure. The fraction of reflected ions increases with the increase of the cross-shock potential and βi. This fraction is small and their contribution to the downstream ion pressure is negligible in marginally critical shocks. A population of quasi-reflected ions is identified. These ions make a loop inside the ramp and do not appear upstream. They acquire energies comparable to the energies of the true reflected ions, are observed as a halo in the downstream ion distribution, and contribute significantly to the downstream pressure. Thus, the transmitted and quasi-reflected ions shape the downstream magnetic profile. At higher cross-shock potentials and βi the reflected ions cause formation of a magnetic dip just ahead of the ramp. A small fraction of ions are multiply reflected at the shock front. All these ions escape into the upstream region and all escaping ions are mutliply reflected.

  1. Hyperspectral Fluorescence and Reflectance Imaging Instrument

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; O'Neal, S. Duane; Lanoue, Mark; Russell, Jeffrey

    2008-01-01

    The system is a single hyperspectral imaging instrument that has the unique capability to acquire both fluorescence and reflectance high-spatial-resolution data that is inherently spatially and spectrally registered. Potential uses of this instrument include plant stress monitoring, counterfeit document detection, biomedical imaging, forensic imaging, and general materials identification. Until now, reflectance and fluorescence spectral imaging have been performed by separate instruments. Neither a reflectance spectral image nor a fluorescence spectral image alone yields as much information about a target surface as does a combination of the two modalities. Before this system was developed, to benefit from this combination, analysts needed to perform time-consuming post-processing efforts to co-register the reflective and fluorescence information. With this instrument, the inherent spatial and spectral registration of the reflectance and fluorescence images minimizes the need for this post-processing step. The main challenge for this technology is to detect the fluorescence signal in the presence of a much stronger reflectance signal. To meet this challenge, the instrument modulates artificial light sources from ultraviolet through the visible to the near-infrared part of the spectrum; in this way, both the reflective and fluorescence signals can be measured through differencing processes to optimize fluorescence and reflectance spectra as needed. The main functional components of the instrument are a hyperspectral imager, an illumination system, and an image-plane scanner. The hyperspectral imager is a one-dimensional (line) imaging spectrometer that includes a spectrally dispersive element and a two-dimensional focal plane detector array. The spectral range of the current imaging spectrometer is between 400 to 1,000 nm, and the wavelength resolution is approximately 3 nm. The illumination system consists of narrowband blue, ultraviolet, and other discrete

  2. PRECISION INTEGRATOR FOR MINUTE ELECTRIC CURRENTS

    DOEpatents

    Hemmendinger, A.; Helmer, R.J.

    1961-10-24

    An integrator is described for measuring the value of integrated minute electrical currents. The device consists of a source capacitor connected in series with the source of such electrical currents, a second capacitor of accurately known capacitance and a source of accurately known and constant potential, means responsive to the potentials developed across the source capacitor for reversibly connecting the second capacitor in series with the source of known potential and with the source capacitor and at a rate proportional to the potential across the source capacitor to maintain the magnitude of the potential across the source capacitor at approximately zero. (AEC)

  3. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE BIOAVAILABILITY OF LEAD TO QUAIL

    EPA Science Inventory

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contami...

  4. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  5. Ultrasonic system for accurate distance measurement in the air.

    PubMed

    Licznerski, Tomasz J; Jaroński, Jarosław; Kosz, Dariusz

    2011-12-01

    This paper presents a system that accurately measures the distance travelled by ultrasound waves through the air. The simple design of the system and its obtained accuracy provide a tool for non-contact distance measurements required in the laser's optical system that investigates the surface of the eyeball.

  6. A Self-Instructional Device for Conditioning Accurate Prosody.

    ERIC Educational Resources Information Center

    Buiten, Roger; Lane, Harlan

    1965-01-01

    A self-instructional device for conditioning accurate prosody in second-language learning is described in this article. The Speech Auto-Instructional Device (SAID) is electro-mechanical and performs three functions: SAID (1) presents to the student tape-recorded pattern sentences that are considered standards in prosodic performance; (2) processes…

  7. Instrument accurately measures small temperature changes on test surface

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Miller, H. B.

    1966-01-01

    Calorimeter apparatus accurately measures very small temperature rises on a test surface subjected to aerodynamic heating. A continuous thin sheet of a sensing material is attached to a base support plate through which a series of holes of known diameter have been drilled for attaching thermocouples to the material.

  8. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  9. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb, we incorporated Pb-contaminated soils or Pb acetate into diets for Japanese quail (Coturnix japonica), fed the quail for 15 days, and ...

  10. Second-order accurate nonoscillatory schemes for scalar conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1989-01-01

    Explicit finite difference schemes for the computation of weak solutions of nonlinear scalar conservation laws is presented and analyzed. These schemes are uniformly second-order accurate and nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time.

  11. Foresight begins with FMEA. Delivering accurate risk assessments.

    PubMed

    Passey, R D

    1999-03-01

    If sufficient factors are taken into account and two- or three-stage analysis is employed, failure mode and effect analysis represents an excellent technique for delivering accurate risk assessments for products and processes, and for relating them to legal liability. This article describes a format that facilitates easy interpretation.

  12. How Accurate Are Judgments of Intelligence by Strangers?

    ERIC Educational Resources Information Center

    Borkenau, Peter

    Whether judgments made by complete strangers as to the intelligence of subjects are accurate or merely illusory was studied in Germany. Target subjects were 50 female and 50 male adults recruited through a newspaper article. Eighteen judges, who did not know the subjects, were recruited from a university community. Videorecordings of the subjects,…

  13. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  14. Preparing Rapid, Accurate Construction Cost Estimates with a Personal Computer.

    ERIC Educational Resources Information Center

    Gerstel, Sanford M.

    1986-01-01

    An inexpensive and rapid method for preparing accurate cost estimates of construction projects in a university setting, using a personal computer, purchased software, and one estimator, is described. The case against defined estimates, the rapid estimating system, and adjusting standard unit costs are discussed. (MLW)

  15. Accurately Detecting Students' Lies regarding Relational Aggression by Correctional Instructions

    ERIC Educational Resources Information Center

    Dickhauser, Oliver; Reinhard, Marc-Andre; Marksteiner, Tamara

    2012-01-01

    This study investigates the effect of correctional instructions when detecting lies about relational aggression. Based on models from the field of social psychology, we predict that correctional instruction will lead to a less pronounced lie bias and to more accurate lie detection. Seventy-five teachers received videotapes of students' true denial…

  16. Final Report for "Accurate Numerical Models of the Secondary Electron Yield from Grazing-incidence Collisions".

    SciTech Connect

    Seth A Veitzer

    2008-10-21

    Effects of stray electrons are a main factor limiting performance of many accelerators. Because heavy-ion fusion (HIF) accelerators will operate in regimes of higher current and with walls much closer to the beam than accelerators operating today, stray electrons might have a large, detrimental effect on the performance of an HIF accelerator. A primary source of stray electrons is electrons generated when halo ions strike the beam pipe walls. There is some research on these types of secondary electrons for the HIF community to draw upon, but this work is missing one crucial ingredient: the effect of grazing incidence. The overall goal of this project was to develop the numerical tools necessary to accurately model the effect of grazing incidence on the behavior of halo ions in a HIF accelerator, and further, to provide accurate models of heavy ion stopping powers with applications to ICF, WDM, and HEDP experiments.

  17. Use of an inertial navigation system for accurate track recovery and coastal oceanographic measurements

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.; Gower, J. F. R.

    1977-01-01

    A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather.

  18. CgWind: A high-order accurate simulation tool for wind turbines and wind farms

    SciTech Connect

    Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

    2010-02-22

    CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

  19. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance

    PubMed Central

    Zeng, Chen; Xu, Huiping; Fischer, Andrew M.

    2016-01-01

    Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO). However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP) on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution), simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS) water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy. PMID:27941596

  20. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance.

    PubMed

    Zeng, Chen; Xu, Huiping; Fischer, Andrew M

    2016-12-07

    Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO). However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP) on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution), simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS) water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy.

  1. Circuit theory of crossed Andreev reflection

    NASA Astrophysics Data System (ADS)

    Morten, Jan Petter; Brataas, Arne; Belzig, Wolfgang

    2006-12-01

    We consider transport in a three-terminal device attached to one superconducting and two normal-metal terminals, using the circuit theory of mesoscopic superconductivity. We compute the nonlocal conductance of the current out of the first normal-metal terminal in response to a bias voltage between the second normal-metal terminal and the superconducting terminal. The nonlocal conductance is given by competing contributions from crossed Andreev reflection and electron cotunneling, and we determine the contribution from each process. The nonlocal conductance vanishes when there is no resistance between the superconducting terminal and the device, in agreement with previous theoretical work. Electron cotunneling dominates when there is a finite resistance between the device and the superconducting reservoir. Dephasing is taken into account, and the characteristic time scale is the particle dwell time. This gives rise to an effective Thouless energy. Both the conductance due to crossed Andreev reflection and electron cotunneling depend strongly on the Thouless energy. We suggest experimental determination of the conductance due to crossed Andreev reflection and electron cotunneling in measurement of both energy and charge flow into one normal-metal terminal in response to a bias voltage between the other normal-metal terminal and the superconductor.

  2. 2010 CEOS Field Reflectance Intercomparisons Lessons Learned

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Fox, Nigel

    2011-01-01

    This paper summarizes lessons learned from the 2009 and 2010 joint field campaigns to Tuz Golu, Turkey. Emphasis is placed on the 2010 campaign related to understanding the equipment and measurement protocols, processing schemes, and traceability to SI quantities. Participants in both 2009 and 2010 used an array of measurement approaches to determine surface reflectance. One lesson learned is that even with all of the differences in collection between groups, the differences in reflectance are currently dominated by instrumental artifacts including knowledge of the white reference. Processing methodology plays a limited role once the bi-directional reflectance of the white reference is used rather than a hemispheric-directional value. The lack of a basic set of measurement protocols, or best practices, limits a group s ability to ensure SI traceability and the development of proper error budgets. Finally, rigorous attention to sampling methodology and its impact on instrument behavior is needed. The results of the 2009 and 2010 joint campaigns clearly demonstrate both the need and utility of such campaigns and such comparisons must continue in the future to ensure a coherent set of data that can span multiple sensor types and multiple decades.

  3. Implosion Source Development and Diego Garcia Reflections

    SciTech Connect

    Harben, P E; Boro, C

    2001-06-01

    with a back-azimuth from Diego Garcia between 100 and 140 degrees. The Diego Garcia records show a pronounced reflection that correlates in travel time and back-azimuth (calculated using the waveform cross-correlation of the tri-partite array elements to determine lag time across the array) with a reflector at the Saya de Malha Bank, on the Seychelles-Mauritius Plateau. We also show that to accurately predict blockage and reflection regions, it is essential to have detailed bathymetry in relatively small but critical areas.

  4. History and progress on accurate measurements of the Planck constant

    NASA Astrophysics Data System (ADS)

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10-34 J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, NA. As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 108 from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the improved

  5. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the

  6. New measures for new roles: defining and measuring the current practices of health sciences librarians

    PubMed Central

    Scherrer, Carol S.; Jacobson, Susan

    2002-01-01

    The roles of academic health sciences librarians are continually evolving as librarians initiate new programs and services in response to developments in computer technology and user demands. However, statistics currently collected by libraries do not accurately reflect or measure these new roles. It is essential for librarians to document, measure, and evaluate these new activities to continue to meet the needs of users and to ensure the viability of their professional role. To determine what new measures should be compiled, the authors examined current statistics, user demands, professional literature, and current activities of librarians as reported in abstracts of poster sessions at Medical Library Association annual meetings. Three new categories of services to be measured are proposed. The first, consultation, groups activities such as quality filtering and individual point-of-need instruction. The second, outreach, includes activities such as working as liaisons, participating in grand rounds or morning report, and providing continuing education. The third area, Web authoring, encompasses activities such as designing Web pages, creating online tutorials, and developing new products. Adding these three measures to those already being collected will provide a more accurate and complete depiction of the services offered by academic health sciences librarians. PMID:11999174

  7. Transparent film with inverted conical microholes array for reflection enhancement

    NASA Astrophysics Data System (ADS)

    Lei, Biao; Liu, Hongzhong; Jiang, Weitao; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Liu, Xiaokang

    2016-04-01

    PDMS has been widely utilized for microfluidic chips and microchannel detections, as its good optical properties are the prerequisite to achieve accurate and efficient detection. However, it is difficult to obtain effective information for opaque liquids. With the development of microchannel detection for wider fields, it is imperative to obtain more comprehensive information of the observed objects by integrating high transmission with enhanced reflection. This article investigates reflection enhancement by Polydimethylsiloxane (PDMS) film with inverted conical microholes array. PDMS film with inverted conical microholes array is fabricated by replication from the silicon mold with inverted microcones array which is prepared by Inductively Coupled Plasma (ICP) etch tool. The monolayer PDMS film with inverted conical microholes array shows a two-fold effectively increase in reflection, approximately up to 15%, at a broad wavelength range of 637-1131 nm and 1214-1350 nm, compared with bare PDMS film. In addition, the reflection can be further enhanced by multilayered lamination of PDMS film with inverted conical microholes array, and the enhancement is also dependent on the lamination way, i.e., for bilayer laminations, the maximum reflection enhancement occurs when with face-to-back lamination, and 32.79% larger than that with back-to-face lamination. From the experiments, the maximum reflectivity of 8-layered PDMS films can obtain 64.4% while the maximum reflectivity of monolayer PDMS film barely has 17.5%. The transparent film with inverted conical microholes array for reflection enhancement may find a variety of applications in optical devices, microchips, and energy conservation technologies etc.

  8. jasonSWIR Calibration of Spectralon Reflectance Factor

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.; Cooksey, Cahterine; Ding, Leibo; Thome, Kurtis J.

    2011-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Factor (BRF) of laboratory-based diffusers used in their pre-flight and on-orbit radiometric calibrations. BRF measurements are required throughout the reflected-solar spectrum from the ultraviolet through the shortwave infrared. Spectralon diffusers are commonly used as a reflectance standard for bidirectional and hemispherical geometries. The Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center is a secondary calibration facility with reflectance measurements traceable to those made by the Spectral Tri-function Automated Reference Reflectometer (STARR) facility at the National Institute of Standards and Technology (NIST). For more than two decades, the DCaL has provided numerous NASA projects with BRF data in the ultraviolet (UV), visible (VIS) and the Near infraRed (NIR) spectral regions. Presented in this paper are measurements of BRF from 1475nm to 1625nm obtained using an indium gallium arsenide detector and a tunable coherent light source. The sample was a 2 inch diameter, 99% white Spectralon target. The BRF results are discussed and compared to empirically generated data from a model based on NIST certified values of 6deg directional/hemispherical spectral reflectance factors from 900nm to 2500nm. Employing a new NIST capability for measuring bidirectional reflectance using a cooled, extended InGaAs detector, BRF calibration measurements of the same sample were also made using NIST's STARR from 1475nm to 1625nm at an incident angle of 0deg and at viewing angles of 40deg, 45deg, and 50deg. The total combined uncertainty for BRF in this ShortWave Infrared (SWIR) range is less than 1%. This measurement capability will evolve into a BRF calibration service in SWIR region in support of NASA remote sensing missions. Keywords: BRF, BRDF, Calibration, Spectralon, Reflectance, Remote Sensing.

  9. Intensity-Modulated Continuous-Wave Lidar Measurements of Surface Reflectance and Implications for CO2 Column Measurements: Results from 2013 ASCENDS Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Browell, E. V.; Harrison, F. W.; Dobler, J. T.; Lin, B.; Ismail, S.; Kooi, S. A.; Obland, M. D.

    2013-12-01

    Improved knowledge of the Earth's surface reflectance in the 1.57-micron spectral band is of particular importance for accurate Integrated Path Differential Absorption (IPDA) measurements and modeling of IPDA CO2 column measurements as required by the Active Sensing of CO2 Emission of Nights Days and Seasons (ASCENDS) Decadal Survey space mission. The Earth's surface albedo in the near-infrared portion of the spectrum is extremely low for snow and ice and for water under high wind conditions, and this can lead to degraded signal to noise ratios of surface reflectances and of IPDA CO2 column retrievals, requiring increased integration periods. This paper discusses the magnitude and variability of the surface reflectance and corresponding column CO2 measurements over snow measured using an intensity-modulated continuous-wave (IM-CW) laser absorption spectrometer (LAS), namely the Exelis Multi-function Fiber Laser Lidar (MFLL), during the winter 2013 ASCENDS airborne campaign. This LAS system is currently being evaluated by NASA Langley as the ASCENDS space mission prototype system. The surface reflectance measurements over snow and ice as well as over water collected during the 2013 winter DC-8 flight campaign were calibrated using surface reflectance data obtained over well-established satellite radiometric calibration sites such as Railroad Valley, Nevada and over other homogeneous desert sites in California and Arizona that have been used for similar calibrations on past ASCENDS airborne campaigns. Two separate flights targeting differences in surface reflectances between fresh and aged snow were conducted over the U.S. Central Plains and Colorado Rockies, respectively. From these measurements, the nominal surface reflectance of fresh snow (less than 1-2 days old; ~ 0.01/sr at 1.57 microns) was found to be approximately half that of aged snow (3-4 days old; ~ 0.02/sr) which is believed to be a result of increased absorption due to the snow water content. The

  10. Getting the current out

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1983-01-01

    Progress of a photovoltaic (PV) device from a research concept to a competitive power-generation source requires an increasing concern with current collection. The initial metallization focus is usually on contact resistance, since a good ohmic contact is desirable for accurate device characterization measurements. As the device grows in size, sheet resistance losses become important and a metal grid is usually added to reduce the effective sheet resistance. Later, as size and conversion efficiency continue to increase, grid-line resistance and cell shadowing must be considered simultaneously, because grid-line resistance is inversely related to total grid-line area and cell shadowing is directly related. A PV cell grid design must consider the five power-loss phenomena mentioned above: sheet resistance, contact resistance, grid resistance, bus-bar resistance and cell shadowing. Although cost, reliability and usage are important factors in deciding upon the best metallization system, this paper will focus only upon grid-line design and substrate material problems for flat-plate solar arrays.

  11. DNA barcode data accurately assign higher spider taxa.

    PubMed

    Coddington, Jonathan A; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina; Kuntner, Matjaž

    2016-01-01

    The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios "barcodes" (whether single or multiple, organelle or nuclear, loci) clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families-taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75-100%). Accurate assignment of higher taxa (PIdent above which errors totaled less than 5%) occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However, the quality of the

  12. DNA barcode data accurately assign higher spider taxa

    PubMed Central

    Coddington, Jonathan A.; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina

    2016-01-01

    The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios “barcodes” (whether single or multiple, organelle or nuclear, loci) clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families—taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75–100%). Accurate assignment of higher taxa (PIdent above which errors totaled less than 5%) occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However, the quality of

  13. 17 CFR 240.17Ad-10 - Prompt posting of certificate detail to master securityholder files, maintenance of accurate...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... between co-transfer agents and recordkeeping transfer agents, maintenance of current control book... securityholder files, maintenance of accurate securityholder files, communications between co-transfer agents and... certificate detail from transfer journals received by the recordkeeping transfer agent from a...

  14. 17 CFR 240.17Ad-10 - Prompt posting of certificate detail to master securityholder files, maintenance of accurate...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... between co-transfer agents and recordkeeping transfer agents, maintenance of current control book... securityholder files, maintenance of accurate securityholder files, communications between co-transfer agents and... certificate detail from transfer journals received by the recordkeeping transfer agent from a...

  15. 17 CFR 240.17Ad-10 - Prompt posting of certificate detail to master securityholder files, maintenance of accurate...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... between co-transfer agents and recordkeeping transfer agents, maintenance of current control book... securityholder files, maintenance of accurate securityholder files, communications between co-transfer agents and... certificate detail from transfer journals received by the recordkeeping transfer agent from a...

  16. 17 CFR 240.17Ad-10 - Prompt posting of certificate detail to master securityholder files, maintenance of accurate...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... between co-transfer agents and recordkeeping transfer agents, maintenance of current control book... securityholder files, maintenance of accurate securityholder files, communications between co-transfer agents and... certificate detail from transfer journals received by the recordkeeping transfer agent from a...

  17. Fluorescent labeling reliably identifies Chlamydia trachomatis in living human endometrial cells and rapidly and accurately quantifies chlamydial inclusion forming units.

    PubMed

    Vicetti Miguel, Rodolfo D; Henschel, Kevin J; Dueñas Lopez, Fiorela C; Quispe Calla, Nirk E; Cherpes, Thomas L

    2015-12-01

    Chlamydia replication requires host lipid acquisition, allowing flow cytometry to identify Chlamydia-infected cells that accumulated fluorescent Golgi-specific lipid. Herein, we describe modifications to currently available methods that allow precise differentiation between uninfected and Chlamydia trachomatis-infected human endometrial cells and rapidly and accurately quantify chlamydial inclusion forming units.

  18. Brief Report: Use of Superheroes Social Skills to Promote Accurate Social Skill Use in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Radley, Keith C.; Ford, W. Blake; McHugh, Melissa B.; Dadakhodjaeva, Komila; O'Handley, Roderick D.; Battaglia, Allison A.; Lum, John D.

    2015-01-01

    The current study evaluated the use of Superheroes Social Skills to promote accurate use of discrete social skills in training and generalization conditions in two children with autism spectrum disorder. Participants attended a twice weekly social skills training group over 5 weeks, with lessons targeting nonverbal, requesting, responding, and…

  19. Fluorescent labeling reliably identifies Chlamydia trachomatis in living human endometrial cells and rapidly and accurately quantifies chlamydial inclusion forming units

    PubMed Central

    Vicetti Miguel, Rodolfo D.; Henschel, Kevin J.; Dueñas Lopez, Fiorela C.; Quispe Calla, Nirk E.; Cherpes, Thomas L.

    2016-01-01

    Chlamydia replication requires host lipid acquisition, allowing flow cytometry to identify C. trachomatis-infected cells that accumulated fluorescent Golgi-specific lipid. Herein, we describe modifications to currently available methods that allow precise differentiation between uninfected and C. trachomatis-infected human endometrial cells and rapidly and accurately quantify chlamydial inclusion forming units. PMID:26453947

  20. [Reflections].

    PubMed

    Drygas, A

    2000-01-01

    The author remembers the time, when in the gloomy years of Stalin's regime after the II World War, the lectures of the history of medicine were eliminated in the Medical Academies in Poland. A similar thing happened to the history of pharmacy in pharmaceutical faculties, which is why the author is now asking if lectures on the history of pharmacy or medicine were really necessary? After all, many outstanding doctors and pharmacists graduated at that time? And his answer is that it was a great educational mistake. The history of medicine and the history of pharmacy carry humanitarian lessons of great importance to doctors and pharmacists. History demonstrates that they, off all professions should understand the suffering and pain of a sick patient. Knowledge of the history of medicine and the history of pharmacy can only help.