Science.gov

Sample records for accurately represent conditions

  1. A Self-Instructional Device for Conditioning Accurate Prosody.

    ERIC Educational Resources Information Center

    Buiten, Roger; Lane, Harlan

    1965-01-01

    A self-instructional device for conditioning accurate prosody in second-language learning is described in this article. The Speech Auto-Instructional Device (SAID) is electro-mechanical and performs three functions: SAID (1) presents to the student tape-recorded pattern sentences that are considered standards in prosodic performance; (2) processes…

  2. Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer

    USGS Publications Warehouse

    Claassen, Hans C.

    1982-01-01

    Obtaining ground-water samples that accurately represent the water chemistry of an aquifer is a complex task. Before a ground-water sampling program can be started, an understanding of the kind of chemical data needed and the potential changes in water chemistry resulting from various drilling, well-completion, and sampling techniques is needed. This report provides a basis for such an evaluation and permits a choice of techniques that will result in obtaining the best possible data for the time and money allocated.

  3. TECHNICAL BASIS FOR THE NUCLEAR CRITICALITY REPRESENTATIVE ACCIDENT & ASSOCIATED REPRESENTED HAZARDOUS CONDITIONS

    SciTech Connect

    GOETZ, T.G.

    2003-06-17

    This document was developed to support the documented safety analysis (DSA) and describes the process and basis for assigning risk bins for the nuclear criticality representative accident and associated hazardous conditions. Revision 1 incorporates ORP IRT comments to enhance the technical presentation and also makes editorial changes. This technical basis document was developed to support the documented safety analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for the nuclear criticality representative accident and associated hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the frequency and consequence.

  4. Sample representativeness: A must for reliable regional lake condition estimates

    SciTech Connect

    Peterson, S.A.; Urquhart, N.S.; Welch, E.B.

    1999-05-15

    Reliable environmental resource estimates are essential to informed regional scale decisions regarding protection, restoration, and enhancement of natural resources. Reliable estimates depend on objective and representative sampling. Probability-based sampling meets these requirements and provides accuracy estimates. Non-probability-based sampling often is biased, thus less reliable, and potentially misleading. The authors compare results from a probability- and a non-probability-based Secchi transparency sampling of lakes in the northeastern geographic region of the United States and its three primary ecoregions. Results from these samplings are compared on the basis of sample representativeness relative to the regional lake population and subsequent reliability of lake condition estimates. Statistically derived sampling indicates the northeast lake population median lake size to be about 9.5 ({+-}2.3) ha and the Secchi disk transparency (SDT) to be about 2.4 ({+-}0.4) m. On the basis of judgment sampling estimates, the median SDT for lakes in the same area would be 4.2 m. However, only about 15% of the regional lake population based on statistically designed sampling estimates has a SDT {ge} 4.2 m. Estimate unreliability of this magnitude can have profound effects on lake management decisions. Thus, regional extrapolation of non-probability-based sampling results should be avoided.

  5. Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sokhan, Vladimir P.; Nicholson, David; Quirke, Nicholas

    2002-11-01

    Steady-state Poiseuille flow of a simple fluid in carbon nanopores under a gravitylike force is simulated using a realistic empirical many-body potential model for carbon. Building on our previous study of slit carbon nanopores we show that fluid flow in a nanotube is also characterized by a large slip length. By analyzing temporal profiles of the velocity components of particles colliding with the wall we obtain values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall and, for the first time, propose slip boundary conditions for smooth continuum surfaces such that they are equivalent in adsorption, diffusion, and fluid flow properties to fully dynamic atomistic models.

  6. Bi-fluorescence imaging for estimating accurately the nuclear condition of Rhizoctonia spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To simplify the determination of the nuclear condition of the pathogenic Rhizoctonia, which currently needs to be performed either using two fluorescent dyes, thus is more costly and time-consuming, or using only one fluorescent dye, and thus less accurate. Methods and Results: A red primary ...

  7. Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models?

    NASA Astrophysics Data System (ADS)

    Sandu, Irina; Beljaars, Anton; Bechtold, Peter; Mauritsen, Thorsten; Balsamo, Gianpaolo

    2013-06-01

    In the 1990s, scientists at European Centre for Medium-Range Weather Forecasts (ECMWF) suggested that artificially enhancing turbulent diffusion in stable conditions improves the representation of two important aspects of weather forecasts, i.e., near-surface temperatures and synoptic cyclones. Since then, this practice has often been used for tuning the large-scale performance of operational numerical weather prediction (NWP) models, although it is widely recognized to be detrimental for an accurate representation of stable boundary layers. Here we investigate why, 20 years on, such a compromise is still needed in the ECMWF model. We find that reduced turbulent diffusion in stable conditions improves the representation of winds in stable boundary layers, but it deteriorates the large-scale flow and the near-surface temperatures. This suggests that enhanced diffusion is still needed to compensate for errors caused by other poorly represented processes. Among these, we identify the orographic drag, which influences the large-scale flow in a similar way to the turbulence closure for stable conditions, and the strength of the land-atmosphere coupling, which partially controls the near-surface temperatures. We also take a closer look at the relationship between the turbulence closure in stable conditions and the large-scale flow, which was not investigated in detail with a global NWP model. We demonstrate that the turbulent diffusion in stable conditions affects the large-scale flow by modulating not only the strength of synoptic cyclones and anticyclones, but also the amplitude of the planetary-scale standing waves.

  8. Breaking Snake Camouflage: Humans Detect Snakes More Accurately than Other Animals under Less Discernible Visual Conditions.

    PubMed

    Kawai, Nobuyuki; He, Hongshen

    2016-01-01

    Humans and non-human primates are extremely sensitive to snakes as exemplified by their ability to detect pictures of snakes more quickly than those of other animals. These findings are consistent with the Snake Detection Theory, which hypothesizes that as predators, snakes were a major source of evolutionary selection that favored expansion of the visual system of primates for rapid snake detection. Many snakes use camouflage to conceal themselves from both prey and their own predators, making it very challenging to detect them. If snakes have acted as a selective pressure on primate visual systems, they should be more easily detected than other animals under difficult visual conditions. Here we tested whether humans discerned images of snakes more accurately than those of non-threatening animals (e.g., birds, cats, or fish) under conditions of less perceptual information by presenting a series of degraded images with the Random Image Structure Evolution technique (interpolation of random noise). We find that participants recognize mosaic images of snakes, which were regarded as functionally equivalent to camouflage, more accurately than those of other animals under dissolved conditions. The present study supports the Snake Detection Theory by showing that humans have a visual system that accurately recognizes snakes under less discernible visual conditions.

  9. Breaking Snake Camouflage: Humans Detect Snakes More Accurately than Other Animals under Less Discernible Visual Conditions

    PubMed Central

    He, Hongshen

    2016-01-01

    Humans and non-human primates are extremely sensitive to snakes as exemplified by their ability to detect pictures of snakes more quickly than those of other animals. These findings are consistent with the Snake Detection Theory, which hypothesizes that as predators, snakes were a major source of evolutionary selection that favored expansion of the visual system of primates for rapid snake detection. Many snakes use camouflage to conceal themselves from both prey and their own predators, making it very challenging to detect them. If snakes have acted as a selective pressure on primate visual systems, they should be more easily detected than other animals under difficult visual conditions. Here we tested whether humans discerned images of snakes more accurately than those of non-threatening animals (e.g., birds, cats, or fish) under conditions of less perceptual information by presenting a series of degraded images with the Random Image Structure Evolution technique (interpolation of random noise). We find that participants recognize mosaic images of snakes, which were regarded as functionally equivalent to camouflage, more accurately than those of other animals under dissolved conditions. The present study supports the Snake Detection Theory by showing that humans have a visual system that accurately recognizes snakes under less discernible visual conditions. PMID:27783686

  10. How accurately are climatological characteristics and surface water and energy balances represented for the Colombian Caribbean Catchment Basin?

    NASA Astrophysics Data System (ADS)

    Hoyos, Isabel; Baquero-Bernal, Astrid; Hagemann, Stefan

    2013-09-01

    In Colombia, the access to climate related observational data is restricted and their quantity is limited. But information about the current climate is fundamental for studies on present and future climate changes and their impacts. In this respect, this information is especially important over the Colombian Caribbean Catchment Basin (CCCB) that comprises over 80 % of the population of Colombia and produces about 85 % of its GDP. Consequently, an ensemble of several datasets has been evaluated and compared with respect to their capability to represent the climate over the CCCB. The comparison includes observations, reconstructed data (CPC, Delaware), reanalyses (ERA-40, NCEP/NCAR), and simulated data produced with the regional climate model REMO. The capabilities to represent the average annual state, the seasonal cycle, and the interannual variability are investigated. The analyses focus on surface air temperature and precipitation as well as on surface water and energy balances. On one hand the CCCB characteristics poses some difficulties to the datasets as the CCCB includes a mountainous region with three mountain ranges, where the dynamical core of models and model parameterizations can fail. On the other hand, it has the most dense network of stations, with the longest records, in the country. The results can be summarised as follows: all of the datasets demonstrate a cold bias in the average temperature of CCCB. However, the variability of the average temperature of CCCB is most poorly represented by the NCEP/NCAR dataset. The average precipitation in CCCB is overestimated by all datasets. For the ERA-40, NCEP/NCAR, and REMO datasets, the amplitude of the annual cycle is extremely high. The variability of the average precipitation in CCCB is better represented by the reconstructed data of CPC and Delaware, as well as by NCEP/NCAR. Regarding the capability to represent the spatial behaviour of CCCB, temperature is better represented by Delaware and REMO, while

  11. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode

    PubMed Central

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    ABSTRACT Objectives To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. Materials and Methods We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recent pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered an inaccurate result. Results A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Conclusions Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH. PMID:27286119

  12. Generalizing Over Conditions by Combining the Multitrait Multimethod Matrix and the Representative Design of Experiments,

    DTIC Science & Technology

    1986-01-01

    MATRIX AND THE (0 REPRESENTATIVE DESIGN OF EXPERIMENTS .4 Kenneth R. Hammond, Robert M. Hamm and Janet Grassia ) 13 LA.’I.7 A GENERALIZING OVER...CONDITIONS BY COMBINING THE MULTITKAIT MULTIMETHOD MATRIX AND THE 46_6 REPRESENTATIVE DESIGN OF EXPERIMENTS Kenneth R. Hammond, Robert M. Hamm and Janet...and the Representative Design of Experiments 6. PERFORMINGOn. REPORT NUMER 7. AUTHOR(@) S. CONTRACT oR GRANT NUM6ER(s) Kenneth R. Hammond, Robert M

  13. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  14. 31 CFR 315.60 - Conditions for payment to representative of an estate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Incompetents, Aged Persons, Absentees, et al. § 315.60 Conditions for payment to representative of an estate..., absentee, et al., may receive upon request— (1) If the registration shows the name and capacity of...

  15. 31 CFR 315.60 - Conditions for payment to representative of an estate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Incompetents, Aged Persons, Absentees, et al. § 315.60 Conditions for payment to representative of an estate..., absentee, et al., may receive upon request— (1) If the registration shows the name and capacity of...

  16. 31 CFR 315.60 - Conditions for payment to representative of an estate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Incompetents, Aged Persons, Absentees, et al. § 315.60 Conditions for payment to representative of an estate..., absentee, et al., may receive upon request— (1) If the registration shows the name and capacity of...

  17. 31 CFR 315.60 - Conditions for payment to representative of an estate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Incompetents, Aged Persons, Absentees, et al. § 315.60 Conditions for payment to representative of an estate..., absentee, et al., may receive upon request— (1) If the registration shows the name and capacity of...

  18. 31 CFR 315.60 - Conditions for payment to representative of an estate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Incompetents, Aged Persons, Absentees, et al. § 315.60 Conditions for payment to representative of an estate..., absentee, et al., may receive upon request— (1) If the registration shows the name and capacity of...

  19. Fear conditioning enhances γ oscillations and their entrainment of neurons representing the conditioned stimulus.

    PubMed

    Headley, Drew B; Weinberger, Norman M

    2013-03-27

    Learning alters the responses of neurons in the neocortex, typically strengthening their encoding of behaviorally relevant stimuli. These enhancements are studied extensively in the auditory cortex by characterizing changes in firing rates and evoked potentials. However, synchronous activity is also important for the processing of stimuli, especially the relationship between gamma oscillations in the local field potential and spiking. We investigated whether tone/shock fear conditioning in rats, a task known to alter responses in auditory cortex, also modified the relationship between gamma and unit activity. A boost in gamma oscillations developed, especially at sites tuned near the tone, and strengthened across multiple conditioning sessions. Unit activity became increasingly phase-locked to gamma, with sites tuned near the tone developing enhanced phase-locking during the tone, whereas those tuned away maintained a tendency to decrease their phase-locking. Enhancements in the coordination of spiking between sites tuned near the tone developed within the first conditioning session and remained throughout the rest of training. Enhanced cross-covariances in unit activity were strongest for subjects that exhibited robust conditioned fear. These results illustrate that changes in sensory cortex during associative learning extend to the coordination of neurons encoding the relevant stimulus, with implications for how it is processed downstream.

  20. Can phenological models predict tree phenology accurately under climate change conditions?

    NASA Astrophysics Data System (ADS)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  1. Effect of selection and sequencing of representative wave conditions on process-based predictions of equilibrium embayed beach morphology

    NASA Astrophysics Data System (ADS)

    Daly, Christopher J.; Bryan, Karin R.; Gonzalez, Mauricio R.; Klein, Antonio H. F.; Winter, Christian

    2014-06-01

    In order to decrease the simulation time of morphodynamic models, often-complex wave climates are reduced to a few representative wave conditions (RWC). When applied to embayed beaches, a test of whether a reduced wave climate is representative or not is to see whether it can recreate the observed equilibrium (long-term averaged) bathymetry of the bay. In this study, the wave climate experienced at Milagro Beach, Tarragona, Spain was discretized into `average' and `extreme' RWCs. Process-based morphodynamic simulations were sequenced and merged based on `persistent' and `transient' forcing conditions, the results of which were used to estimate the equilibrium bathymetry of the bay. Results show that the effect of extreme wave events appeared to have less influence on the equilibrium of the bay compared to average conditions of longer overall duration. Additionally, the persistent seasonal variation of the wave climate produces pronounced beach rotation and tends to accumulate sediment at the extremities of the beach, rather than in the central sections. It is, therefore, important to account for directional variability and persistence in the selection and sequencing of representative wave conditions as is it essential for accurately balancing the effects beach rotation events.

  2. Necessary conditions for accurate computations of three-body partial decay widths

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Jensen, A. S.; Fedorov, D. V.

    2008-09-01

    The partial width for decay of a resonance into three fragments is largely determined at distances where the energy is smaller than the effective potential producing the corresponding wave function. At short distances the many-body properties are accounted for by preformation or spectroscopic factors. We use the adiabatic expansion method combined with the WKB approximation to obtain the indispensable cluster model wave functions at intermediate and larger distances. We test the concept by deriving conditions for the minimal basis expressed in terms of partial waves and radial nodes. We compare results for different effective interactions and methods. Agreement is found with experimental values for a sufficiently large basis. We illustrate the ideas with realistic examples from α emission of C12 and two-proton emission of Ne17. Basis requirements for accurate momentum distributions are briefly discussed.

  3. Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition

    USGS Publications Warehouse

    Belnap, Jayne; Wilcox, Bradford P.; Van Scoyoc, Matthew V.; Phillips, Susan L.

    2013-01-01

    Biological soil crusts are a key component of many dryland ecosystems. Following disturbance, biological soil crusts will recover in stages. Recently, a simple classification of these stages has been developed, largely on the basis of external features of the crusts, which reflects their level of development (LOD). The classification system has six LOD classes, from low (1) to high (6). To determine whether the LOD of a crust is related to its ecohydrological function, we used rainfall simulation to evaluate differences in infiltration, runoff, and erosion among crusts in the various LODs, across a range of soil depths and with different wetting pre-treatments. We found large differences between the lowest and highest LODs, with runoff and erosion being greatest from the lowest LOD. Under dry antecedent conditions, about 50% of the water applied ran off the lowest LOD plots, whereas less than 10% ran off the plots of the two highest LODs. Similarly, sediment loss was 400 g m-2 from the lowest LOD and almost zero from the higher LODs. We scaled up the results from these simulations using the Rangeland Hydrology and Erosion Model. Modelling results indicate that erosion increases dramatically as slope length and gradient increase, especially beyond the threshold values of 10 m for slope length and 10% for slope gradient. Our findings confirm that the LOD classification is a quick, easy, nondestructive, and accurate index of hydrological condition and should be incorporated in field and modelling assessments of ecosystem health.

  4. Initial conditions for accurate N-body simulations of massive neutrino cosmologies

    NASA Astrophysics Data System (ADS)

    Zennaro, M.; Bel, J.; Villaescusa-Navarro, F.; Carbone, C.; Sefusatti, E.; Guzzo, L.

    2017-04-01

    The set-up of the initial conditions in cosmological N-body simulations is usually implemented by rescaling the desired low-redshift linear power spectrum to the required starting redshift consistently with the Newtonian evolution of the simulation. The implementation of this practical solution requires more care in the context of massive neutrino cosmologies, mainly because of the non-trivial scale-dependence of the linear growth that characterizes these models. In this work, we consider a simple two-fluid, Newtonian approximation for cold dark matter and massive neutrinos perturbations that can reproduce the cold matter linear evolution predicted by Boltzmann codes such as CAMB or CLASS with a 0.1 per cent accuracy or below for all redshift relevant to non-linear structure formation. We use this description, in the first place, to quantify the systematic errors induced by several approximations often assumed in numerical simulations, including the typical set-up of the initial conditions for massive neutrino cosmologies adopted in previous works. We then take advantage of the flexibility of this approach to rescale the late-time linear power spectra to the simulation initial redshift, in order to be as consistent as possible with the dynamics of the N-body code and the approximations it assumes. We implement our method in a public code (REPS rescaled power spectra for initial conditions with massive neutrinos https://github.com/matteozennaro/reps) providing the initial displacements and velocities for cold dark matter and neutrino particles that will allow accurate, i.e. 1 per cent level, numerical simulations for this cosmological scenario.

  5. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  6. Exponential and power-law contact distributions represent different atmospheric conditions.

    PubMed

    Reynolds, A M

    2011-12-01

    It is well known that the dynamics of plant disease epidemics are very sensitive to the functional form of the contact distribution?the probability distribution function for the distance of viable fungal spore movement until deposition. Epidemics can take the form of a constant-velocity travelling wave when the contact distribution is exponentially bounded. Fat-tailed contact distributions, on the other hand, lead to epidemic spreads that accelerate over time. Some empirical data for contact distributions can be well represented by negative exponentials while other data are better represented by fat-tailed inverse power laws. Here we present data from numerical simulations that suggest that negative exponentials and inverse power laws are not competing candidate forms of the contact distribution but are instead representative of different atmospheric conditions. Contact distributions for atmospheric boundary-layers with stabilities ranging from strongly convective (a hot windless day time scenario) to stable stratification (a cold windy night time scenario) but without precipitation events are calculated using well-established state-of-the-art Lagrangian stochastic (particle tracking) dispersal models. Contact distributions are found to be well represented by exponentials for strongly convective conditions; a -3/2 inverse power law for convective boundary-layers with wind shear; and by a -2/3 inverse power law for stably stratified conditions.

  7. Accurate First-Principles Spectra Predictions for Planetological and Astrophysical Applications at Various T-Conditions

    NASA Astrophysics Data System (ADS)

    Rey, M.; Nikitin, A. V.; Tyuterev, V.

    2014-06-01

    Knowledge of near infrared intensities of rovibrational transitions of polyatomic molecules is essential for the modeling of various planetary atmospheres, brown dwarfs and for other astrophysical applications 1,2,3. For example, to analyze exoplanets, atmospheric models have been developed, thus making the need to provide accurate spectroscopic data. Consequently, the spectral characterization of such planetary objects relies on the necessity of having adequate and reliable molecular data in extreme conditions (temperature, optical path length, pressure). On the other hand, in the modeling of astrophysical opacities, millions of lines are generally involved and the line-by-line extraction is clearly not feasible in laboratory measurements. It is thus suggested that this large amount of data could be interpreted only by reliable theoretical predictions. There exists essentially two theoretical approaches for the computation and prediction of spectra. The first one is based on empirically-fitted effective spectroscopic models. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. They do not yet reach the spectroscopic accuracy stricto sensu but implicitly account for all intramolecular interactions including resonance couplings in a wide spectral range. The final aim of this work is to provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on three necessary ingredients which are (i) accurate intramolecular potential energy surface and dipole moment surface components well-defined in a large range of vibrational displacements and (ii) efficient computational methods combined with suitable choices of coordinates to account for molecular symmetry properties and to achieve a good numerical

  8. Measurement of acoustic dissipation in an experimental combustor under representative conditions

    NASA Astrophysics Data System (ADS)

    Webster, Samuel; Hardi, Justin; Oschwald, Michael

    2017-03-01

    The present paper is concerned with experimental estimation of acoustic dissipation under conditions representative of those in a rocket engine combustion chamber. Specifically, the influence of operating and injection conditions on acoustic dissipation is considered. Two experimental and analytical techniques are applied to measure and then compare dissipation rates of the first longitudinal and transverse acoustic modes in an experimental combustion chamber. Comparison between non-combustion and combustion tests showed that combustion chamber damping for the first transverse mode is far greater under combustion conditions. A lesser difference between non-combustion and combustion tests for the first longitudinal mode was found although the damping rates during combustion tests were still higher. A strong relationship between primary injection velocity and dissipation rate was observed, with lower injection velocities leading to decreased damping rates of the first transverse mode. Furthermore, increased film cooling injection rate decreased dissipation rate. The significant influence of representative conditions, specifically injection conditions, on dissipation rate has strong implications for both combustor design and experimental approaches aimed at quantifying dissipation in rocket combustion chambers.

  9. Fast and accurate techniques of treating the radiative transfer problem under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry; Doicu, Adrian; Trautmann, Thomas; Loyola, Diego

    As a massive amount of spectral information is expected from the new generation of European atmospheric sensors Sentinel 5 Precursor, Sentinel 4 and Sentinel 5, a fast processing of the data in the UV-VIS spectral domain, is required. Trace gas retrievals from nadir sounding instruments are hindered by the presence of clouds. Our research is focused on the developing of a robust and accurate algorithm for treating clouds in the radiative transfer models (RTM). For this reason we have implemented an acceleration technique based on dimensionality reduction algorithms. We obtained the speed improvement of about 8 times. For operational reasons clouds can be considered as an optically homogeneous layer. In the independent pixel approximation, radiative transfer computations involving cloudy scenes require two separate calls to the RTM, one call for a clear sky scenario, the other for an atmosphere containing clouds. We present two novel methods for RTM performance enhancement with particular application to trace gas retrievals under cloudy conditions. Both methods are based on reusing results from clear-sky RTM calculations to speed up corresponding calculations for the cloud-filled scenario. Also, for satellite instruments with a high spatial resolution, it is important to account for the sub-pixel cloud inhomogeneities, or at least, to assess their effect on the radiances at the top of the atmosphere, and in particular, on the retrieval results. This assessment is probabilistic since the detailed structure of the clouds is unknown and only a small number of statistical properties are given. In this regard, we have designed a stochastic model for the solar radiation problem and a molecular atmosphere with its underlying surface. The model allows the computation of the mean radiance at the top of the atmosphere as it is intended to be used for trace gas retrievals. The efficiency of the stochastic model is lower, because we have to solve a two-dimensional problem

  10. Novel approach to characterize and compare the performance of night vision systems in representative illumination conditions

    NASA Astrophysics Data System (ADS)

    Roy, Nathalie; Vallières, Alexandre; St-Germain, Daniel; Potvin, Simon; Dupuis, Michel; Bouchard, Jean-Claude; Villemaire, André; Bérubé, Martin; Breton, Mélanie; Gagné, Guillaume

    2016-05-01

    A novel approach is used to characterize and compare the performance of night vision systems in conditions more representative of night operation in terms of spectral content. Its main advantage compared to standard testing methodologies is that it provides a fast and efficient way for untrained observers to compare night vision system performances with realistic illumination spectra. The testing methodology relies on a custom tumbling-E target and on a new LED-based illumination source that better emulates night sky spectral irradiances from deep overcast starlight to quarter-moon conditions. In this paper, we describe the setup and we demonstrate that the novel approach can be an efficient method to characterize among others night vision goggles (NVG) performances with a small error on the photogenerated electrons compared to the STANAG 4351 procedure.

  11. Improvement of boundary conditions for non-planar boundaries represented by polygons with an initial particle arrangement technique

    NASA Astrophysics Data System (ADS)

    Zhang, Tiangang; Koshizuka, Seiichi; Murotani, Kohei; Shibata, Kazuya; Ishii, Eiji; Ishikawa, Masanori

    2016-02-01

    The boundary conditions represented by polygons in moving particle semi-implicit (MPS) method (Koshizuka and Oka, Nuclear Science and Engineering, 1996) have been widely used in the industry simulations since it can simply simulate complex geometry with high efficiency. However, the inaccurate particle number density near non-planar wall boundaries dramatically affects the accuracy of simulations. In this paper, we propose an initial boundary particle arrangement technique coupled with the wall weight function method (Zhang et al. Transaction of JSCES, 2015) to improve the particle number density near slopes and curved surfaces with boundary conditions represented by polygons in three dimensions. Two uniform grids are utilized in the proposed technique. The grid points in the first uniform grid are used to construct boundary particles, and the second uniform grid stores the same information as in the work by Zhang et al. The wall weight functions of the grid points in the second uniform grid are calculated by newly constructed boundary particles. The wall weight functions of the fluid particles are interpolated from the values stored on the grid points in the second uniform grid. Because boundary particles are located on the polygons, complex geometries can be accurately represented. The proposed method can dramatically improve the particle number density and maintain the high efficiency. The performance of the previously proposed wall weight function (Zhang et al.) with the boundary particle arrangement technique is verified in comparison with the wall weight function without boundary particle arrangement by investigating two example geometries. The simulations of a water tank with a wedge and a complex geometry show the general applicability of the boundary particle arrangement technique to complex geometries and demonstrate its improvement of the wall weight function near the slopes and curved surfaces.

  12. Single-walled carbon nanotube transport in representative municipal solid waste landfill conditions.

    PubMed

    Khan, Iftheker A; Berge, Nicole D; Sabo-Attwood, Tara; Ferguson, P Lee; Saleh, Navid B

    2013-08-06

    Single-walled carbon nanotubes (SWNTs) are being used in many consumer products and devices. It is likely that as some of these products reach the end of their useful life, they will be discarded in municipal solid waste landfills. However, there has been little work evaluating the fate of nanomaterials in solid waste environments. The purpose of this study is to systematically evaluate the influence of organic matter type and concentration in landfill-relevant conditions on SWNT transport through a packed-bed of mixed municipal solid waste collectors. The influence of individual waste materials on SWNT deposition is also evaluated. Transport experiments were conducted through saturated waste-containing columns over a range of simulated leachate conditions representing both mature and young leachates. Results indicate that SWNT transport may be significant in mature waste environments, with mobility decreasing with decreasing humic acid concentration. SWNT mobility in the presence of acetic acid was inhibited, suggesting their mobility in young waste environments may be small. SWNTs also exhibited collector media-dependent transport, with greatest transport in glass and least in paper. These results represent the first study evaluating how leachate age and changes in waste composition influence potential SWNT mobility in landfills.

  13. Can a Global Model Accurately Simulate Land-Atmosphere Interactions under Climate Change Conditions?

    NASA Astrophysics Data System (ADS)

    Zhou, C., VI; Wang, K.

    2015-12-01

    Surface air temperature (Ta) is largely determined by surface net radiation (Rn) and its partitioning into latent (LE) and sensible heat fluxes (H). Existing model evaluations of the absolute values of these fluxes are less helpful because the evaluation results are a blending of inconsistent spatial scales, inaccurate model forcing data and inaccurate parameterizations. This study further evaluates the relationship of LE and H with Rn and environmental parameters, including Ta, relative humidity (RH) and wind speed (WS), using ERA-interim reanalysis data at a grid of 0.125°×0.125° with measurements at AmeriFlux sites from 1998 to 2012. The results demonstrate that ERA-Interim can reproduce the absolute values of environmental parameters, radiation and turbulent fluxes rather accurately. The model performs well in simulating the correlation of LE and H to Rn, except for the notable correlation overestimation of H against Rn over high-density vegetation (e.g., deciduous broadleaf forest (DBF), grassland (GRA) and cropland (CRO)). The sensitivity of LE to Rn in the model is similar to the observations, but that of H to Rn is overestimated by 24.2%. In regions with high-density vegetation, the correlation coefficient between H and Ta is overestimated by more than 0.2, whereas that between H and WS is underestimated by more than 0.43. The sensitivity of H to Ta is overestimated by 0.72 Wm-2 °C-1, whereas that of H to WS in the model is underestimated by 16.15 Wm-2/(ms-1) over all of the sites. Considering both LE and H, the model cannot accurately capture the response of the evaporative fraction (EF=LE/(LE+H)) to Rn and the environmental parameters.

  14. Identification and Evaluation of Reference Genes for Accurate Transcription Normalization in Safflower under Different Experimental Conditions

    PubMed Central

    Li, Dandan; Hu, Bo; Wang, Qing; Liu, Hongchang; Pan, Feng; Wu, Wei

    2015-01-01

    Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant and oilseed crop. Gene expression studies provide a theoretical molecular biology foundation for improving new traits and developing new cultivars. Real-time quantitative PCR (RT-qPCR) has become a crucial approach for gene expression analysis. In addition, appropriate reference genes (RGs) are essential for accurate and rapid relative quantification analysis of gene expression. In this study, fifteen candidate RGs involved in multiple metabolic pathways of plants were finally selected and validated under different experimental treatments, at different seed development stages and in different cultivars and tissues for real-time PCR experiments. These genes were ABCS, 60SRPL10, RANBP1, UBCL, MFC, UBCE2, EIF5A, COA, EF1-β, EF1, GAPDH, ATPS, MBF1, GTPB and GST. The suitability evaluation was executed by the geNorm and NormFinder programs. Overall, EF1, UBCE2, EIF5A, ATPS and 60SRPL10 were the most stable genes, and MBF1, as well as MFC, were the most unstable genes by geNorm and NormFinder software in all experimental samples. To verify the validation of RGs selected by the two programs, the expression analysis of 7 CtFAD2 genes in safflower seeds at different developmental stages under cold stress was executed using different RGs in RT-qPCR experiments for normalization. The results showed similar expression patterns when the most stable RGs selected by geNorm or NormFinder software were used. However, the differences were detected using the most unstable reference genes. The most stable combination of genes selected in this study will help to achieve more accurate and reliable results in a wide variety of samples in safflower. PMID:26457898

  15. The accurate measurement of fear memory in Pavlovian conditioning: Resolving the baseline issue.

    PubMed

    Jacobs, Nathan S; Cushman, Jesse D; Fanselow, Michael S

    2010-07-15

    Fear conditioning has become an indispensable behavioral task in an increasingly vast array of research disciplines. Yet one unresolved issue is how conditional fear to an explicit cue interacts with and is potentially confounded by fear prior to tone presentation, referred to as baseline fear. After tone-shock pairings, we experimentally manipulated baseline fear by presenting unpaired shocks in the testing chamber and then analyzed the accuracy of common methods for reporting tone fear. Our findings indicate that baseline fear and tone fear tend to interact, where freezing to the tone increases as baseline fear increases. However, the form of interaction is not linear across all conditions and none of the commonly used reporting methods were consistently able to eliminate the confounding effects of baseline fear. We propose a methodological solution in which baseline fear is reduced to very low levels by first extinguishing fear to the training context and then pre-exposing to the testing context.

  16. Radiation Boundary Conditions for Maxwell’s Equations: A Review of Accurate Time-Domain Formulations

    DTIC Science & Technology

    2007-01-01

    lightcone belonging to the spacetime point (0, y, z, t). 2.2. Spherical boundary. 2.2.1. Vector spherical harmonics. We consider both pure–spin and pure...notation we write B(T − t, t) for the intersection of time level t < T and the past lightcone of the spacetime point (0, 0, 0, T ). The artificial boundary Γ...some foliation of R 3 into R2 planes. Let M represent the solid past null cone (or conoid) of the spacetime point (0, 0, 0, T ). For a generic time t < T

  17. Structural adjustment for accurate conditioning in large-scale subsurface systems

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman

    2017-03-01

    Most of the current subsurface simulation approaches consider a priority list for honoring the well and any other auxiliary data, and eventually adopt a middle ground between the quality of the model and conditioning it to hard data. However, as the number of datasets increases, such methods often produce undesirable features in the subsurface model. Due to their high flexibility, subsurface modeling based on training images (TIs) is becoming popular. Providing comprehensive TIs remains, however, an outstanding problem. In addition, identifying a pattern similar to those in the TI that honors the well and other conditioning data is often difficult. Moreover, the current subsurface modeling approaches do not account for small perturbations that may occur in a subsurface system. Such perturbations are active in most of the depositional systems. In this paper, a new methodology is presented that is based on an irregular gridding scheme that accounts for incomplete TIs and minor offsets. Use of the methodology enables one to use a small or incomplete TI and adaptively change the patterns in the simulation grid in order to simultaneously honor the well data and take into account the effect of the local offsets. Furthermore, the proposed method was used on various complex process-based models and their structures are deformed for matching with the conditioning point data. The accuracy and robustness of the proposed algorithm are successfully demonstrated by applying it to models of several complex examples.

  18. Testing of SMA-enabled Active Chevron Prototypes under Representative Flow Conditions

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Cabell,Randolph H.; Cano, Roberto J.; Silcox, Richard J.

    2008-01-01

    Control of jet noise continues to be an important research topic. Exhaust-nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from active chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and secondarily for technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). SMA actuators are embedded on one side of the neutral axis of the structure such that thermal excitation, via joule heating, generates a moment and deflects the structure. The performance of two active chevron concepts is demonstrated in the presence of representative flow conditions. One of the concepts is shown to possess significant advantages for the proposed application and is selected for further development. Fabrication and design changes are described and shown to produce a chevron prototype that meets the performance objectives.

  19. Ballistic Impact Response of Kevlar 49 and Zylon under Conditions Representing Jet Engine Fan Containment

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.

    2007-01-01

    A ballistic impact test program was conducted to provide validation data for the development of numerical models of blade out events in fabric containment systems. The impact response of two different fiber materials - Kevlar 49 (E.I. DuPont Nemours and Company) and Zylon AS (Toyobo Co., Ltd.) was studied by firing metal projectiles into dry woven fabric specimens using a gas gun. The shape, mass, orientation and velocity of the projectile were varied and recorded. In most cases the tests were designed such that the projectile would perforate the specimen, allowing measurement of the energy absorbed by the fabric. The results for both Zylon and Kevlar presented here represent a useful set of data for the purposes of establishing and validating numerical models for predicting the response of fabrics under conditions simulating those of a jet engine blade release situation. In addition some useful empirical observations were made regarding the effects of projectile orientation and the relative performance of the different materials.

  20. Conditions for accurate Karl Fischer coulometry using diaphragm-free cells.

    PubMed

    Nordmark, U; Cedergren, A

    2000-01-01

    Factors influencing the extent of formation of oxidizable reduction products in coulometric cells used for Karl Fischer (KF) determination of water were investigated. For methanolic KF reagents buffered with imidazole (Im) or diethanolamine (DEA) (separately or in combination), three parameters were found to be of outmost importance: the cathodic current density, the pH, and the concentration of protonated base (ImH+ or DEAH+). For reagents buffered with only Im, the relative formation of oxidizable reduction products varied in the range 2-40%; i.e., 51-70 micrograms of water was found for a 50 micrograms water sample, depending on the above-mentioned parameters. The lowest values were observed for reagents having a pH around 10 in combination with cathodic current densities in the range 2000-5000 mA cm-2. For all the Imbuffered reagents investigated, the addition of modifiers such as chloroform, hexanol, and carbon tetrachloride was found to decrease the formation of oxidizable reduction products significantly. For example, a reagent buffered at pH 10 containing 1 M hexanol gave less than 0.3% formation in the current density interval from 200 to 4000 mA cm-2. The best reagents based on the above-mentioned modifiers were tested in the continuous coulometric mode with errors typically in the interval 0-0.5% using optimum conditions. One prerequisite for obtaining such small errors with diaphragm-free continuous coulometry is to use a cathode area no larger than 0.002 cm2. For some of the reagents based on both Im and DEA, the formation of oxidizable reduction products was close to zero at certain current densities, although the analytical performance was not as good as for the reagents buffered solely by Im due to longer conditioning and titration times.

  1. On the accurate long-time solution of the wave equation in exterior domains: Asymptotic expansions and corrected boundary conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.; Maccamy, R. C.

    1993-01-01

    We consider the solution of scattering problems for the wave equation using approximate boundary conditions at artificial boundaries. These conditions are explicitly viewed as approximations to an exact boundary condition satisfied by the solution on the unbounded domain. We study the short and long term behavior of the error. It is provided that, in two space dimensions, no local in time, constant coefficient boundary operator can lead to accurate results uniformly in time for the class of problems we consider. A variable coefficient operator is developed which attains better accuracy (uniformly in time) than is possible with constant coefficient approximations. The theory is illustrated by numerical examples. We also analyze the proposed boundary conditions using energy methods, leading to asymptotically correct error bounds.

  2. Generation of Accurate Lateral Boundary Conditions for a Surface-Water Groundwater Interaction Model

    NASA Astrophysics Data System (ADS)

    Khambhammettu, P.; Tsou, M.; Panday, S. M.; Kool, J.; Wei, X.

    2010-12-01

    The 106 mile long Peace River in Florida flows south from Lakeland to Charlotte Harbor and has a drainage basin of approximately 2,350 square miles. A long-term decline in stream flows and groundwater potentiometric levels has been observed in the region. Long-term trends in rainfall, along with effects of land use changes on runoff, surface-water storage, recharge and evapotranspiration patterns, and increased groundwater and surface-water withdrawals have contributed to this decline. The South West Florida Water Management District (SWFWMD) has funded the development of the Peace River Integrated Model (PRIM) to assess the effects of land use, water use, and climatic changes on stream flows and to evaluate the effectiveness of various management alternatives for restoring stream flows. The PRIM was developed using MODHMS, a fully integrated surface-water groundwater flow and transport simulator developed by HydroGeoLogic, Inc. The development of the lateral boundary conditions (groundwater inflow and outflow) for the PRIM in both historical and predictive contexts is discussed in this presentation. Monthly-varying specified heads were used to define the lateral boundary conditions for the PRIM. These head values were derived from the coarser Southern District Groundwater Model (SDM). However, there were discrepancies between the simulated SDM heads and measured heads: the likely causes being spatial (use of a coarser grid) and temporal (monthly average pumping rates and recharge rates) approximations in the regional SDM. Finer re-calibration of the SDM was not feasible, therefore, an innovative approach was adopted to remove the discrepancies. In this approach, point discrepancies/residuals between the observed and simulated heads were kriged with an appropriate variogram to generate a residual surface. This surface was then added to the simulated head surface of the SDM to generate a corrected head surface. This approach preserves the trends associated with

  3. Accurate and representative decoding of the neural drive to muscles in humans with multi-channel intramuscular thin-film electrodes.

    PubMed

    Muceli, Silvia; Poppendieck, Wigand; Negro, Francesco; Yoshida, Ken; Hoffmann, Klaus P; Butler, Jane E; Gandevia, Simon C; Farina, Dario

    2015-09-01

    Intramuscular electrodes developed over the past 80 years can record the concurrent activity of only a few motor units active during a muscle contraction. We designed, produced and tested a novel multi-channel intramuscular wire electrode that allows in vivo concurrent recordings of a substantially greater number of motor units than with conventional methods. The electrode has been extensively tested in deep and superficial human muscles. The performed tests indicate the applicability of the proposed technology in a variety of conditions. The electrode represents an important novel technology that opens new avenues in the study of the neural control of muscles in humans. We describe the design, fabrication and testing of a novel multi-channel thin-film electrode for detection of the output of motoneurones in vivo and in humans, through muscle signals. The structure includes a linear array of 16 detection sites that can sample intramuscular electromyographic activity from the entire muscle cross-section. The structure was tested in two superficial muscles (the abductor digiti minimi (ADM) and the tibialis anterior (TA)) and a deep muscle (the genioglossus (GG)) during contractions at various forces. Moreover, surface electromyogram (EMG) signals were concurrently detected from the TA muscle with a grid of 64 electrodes. Surface and intramuscular signals were decomposed into the constituent motor unit (MU) action potential trains. With the intramuscular electrode, up to 31 MUs were identified from the ADM muscle during an isometric contraction at 15% of the maximal force (MVC) and 50 MUs were identified for a 30% MVC contraction of TA. The new electrode detects different sources from a surface EMG system, as only one MU spike train was found to be common in the decomposition of the intramuscular and surface signals acquired from the TA. The system also allowed access to the GG muscle, which cannot be analysed with surface EMG, with successful identification of MU

  4. Accurate Attitude Estimation Using ARS under Conditions of Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction

    PubMed Central

    Xing, Li; Hang, Yijun; Xiong, Zhi; Liu, Jianye; Wan, Zhong

    2016-01-01

    This paper describes a disturbance acceleration adaptive estimate and correction approach for an attitude reference system (ARS) so as to improve the attitude estimate precision under vehicle movement conditions. The proposed approach depends on a Kalman filter, where the attitude error, the gyroscope zero offset error and the disturbance acceleration error are estimated. By switching the filter decay coefficient of the disturbance acceleration model in different acceleration modes, the disturbance acceleration is adaptively estimated and corrected, and then the attitude estimate precision is improved. The filter was tested in three different disturbance acceleration modes (non-acceleration, vibration-acceleration and sustained-acceleration mode, respectively) by digital simulation. Moreover, the proposed approach was tested in a kinematic vehicle experiment as well. Using the designed simulations and kinematic vehicle experiments, it has been shown that the disturbance acceleration of each mode can be accurately estimated and corrected. Moreover, compared with the complementary filter, the experimental results have explicitly demonstrated the proposed approach further improves the attitude estimate precision under vehicle movement conditions. PMID:27754469

  5. ExpressionData - A public resource of high quality curated datasets representing gene expression across anatomy, development and experimental conditions

    PubMed Central

    2014-01-01

    Reference datasets are often used to compare, interpret or validate experimental data and analytical methods. In the field of gene expression, several reference datasets have been published. Typically, they consist of individual baseline or spike-in experiments carried out in a single laboratory and representing a particular set of conditions. Here, we describe a new type of standardized datasets representative for the spatial and temporal dimensions of gene expression. They result from integrating expression data from a large number of globally normalized and quality controlled public experiments. Expression data is aggregated by anatomical part or stage of development to yield a representative transcriptome for each category. For example, we created a genome-wide expression dataset representing the FDA tissue panel across 35 tissue types. The proposed datasets were created for human and several model organisms and are publicly available at http://www.expressiondata.org. PMID:25228922

  6. The assessment of the impact of aviation NOx on ozone and other radiative forcing responses - The importance of representing cruise altitudes accurately

    NASA Astrophysics Data System (ADS)

    Skowron, A.; Lee, D. S.; De León, R. R.

    2013-08-01

    is recommended that future formulations of aircraft NOx emissions focus efforts on the detailed and accurate placement of emissions at cruise altitudes to reduce the uncertainty in future assessments of aviation NOx impacts.

  7. Design of a proteus lattice representative of a burnt and fresh fuel interface at power conditions in light water reactors

    SciTech Connect

    Hursin, M.; Perret, G.

    2012-07-01

    The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handling and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)

  8. Out-of-Pocket Expenditures on Complementary Health Approaches Associated with Painful Health Conditions in a Nationally Representative Adult Sample

    PubMed Central

    Nahin, Richard L.; Stussman, Barbara J.; Herman, Patricia M.

    2015-01-01

    National surveys suggest that millions of adults in the United States use complementary health approaches such as acupuncture, chiropractic manipulation, and herbal medicines to manage painful conditions such as arthritis, back pain and fibromyalgia. Yet, national and per person out-of-pocket (OOP) costs attributable to this condition-specific use are unknown. In the 2007 National Health Interview Survey, use of complementary health approaches, reasons for this use, and associated OOP costs were captured in a nationally representative sample of 5,467 adults. Ordinary least square regression models that controlled for co-morbid conditions were used to estimate aggregate and per person OOP costs associated with 14 painful health conditions. Individuals using complementary approaches spent a total of $14.9 billion (S.E. $0.9 billion) OOP on these approaches to manage these painful conditions. Total OOP expenditures seen in those using complementary approaches for their back pain ($8.7 billion, S.E. $0.8 billion) far outstripped that of any other condition, with the majority of these costs ($4.7 billion, S.E. $0.4 billion) resulting from visits to complementary providers. Annual condition-specific per-person OOP costs varied from a low of $568 (SE $144) for regular headaches, to a high of $895 (SE $163) for fibromyalgia. PMID:26320946

  9. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    NASA Astrophysics Data System (ADS)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  10. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators.

    PubMed

    Guianvarc'h, Cécile; Gavioso, Roberto M; Benedetto, Giuliana; Pitre, Laurent; Bruneau, Michel

    2009-07-01

    Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.

  11. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators

    SciTech Connect

    Guianvarc'h, Cecile; Pitre, Laurent; Bruneau, Michel

    2009-07-15

    Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.

  12. Accurate coarse-grained models for mixtures of colloids and linear polymers under good-solvent conditions

    SciTech Connect

    D’Adamo, Giuseppe; Pelissetto, Andrea; Pierleoni, Carlo

    2014-12-28

    A coarse-graining strategy, previously developed for polymer solutions, is extended here to mixtures of linear polymers and hard-sphere colloids. In this approach, groups of monomers are mapped onto a single pseudoatom (a blob) and the effective blob-blob interactions are obtained by requiring the model to reproduce some large-scale structural properties in the zero-density limit. We show that an accurate parametrization of the polymer-colloid interactions is obtained by simply introducing pair potentials between blobs and colloids. For the coarse-grained (CG) model in which polymers are modelled as four-blob chains (tetramers), the pair potentials are determined by means of the iterative Boltzmann inversion scheme, taking full-monomer (FM) pair correlation functions at zero-density as targets. For a larger number n of blobs, pair potentials are determined by using a simple transferability assumption based on the polymer self-similarity. We validate the model by comparing its predictions with full-monomer results for the interfacial properties of polymer solutions in the presence of a single colloid and for thermodynamic and structural properties in the homogeneous phase at finite polymer and colloid density. The tetramer model is quite accurate for q ≲ 1 (q=R{sup ^}{sub g}/R{sub c}, where R{sup ^}{sub g} is the zero-density polymer radius of gyration and R{sub c} is the colloid radius) and reasonably good also for q = 2. For q = 2, an accurate coarse-grained description is obtained by using the n = 10 blob model. We also compare our results with those obtained by using single-blob models with state-dependent potentials.

  13. Use of an Accurate DNS Particulate Flow Method to Supply and Validate Boundary Conditions for the MFIX Code

    SciTech Connect

    Zhi-Gang Feng

    2012-05-31

    The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a

  14. Impact of different privacy conditions and incentives on survey response rate, participant representativeness, and disclosure of sensitive information: a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Anonymous survey methods appear to promote greater disclosure of sensitive or stigmatizing information compared to non-anonymous methods. Higher disclosure rates have traditionally been interpreted as being more accurate than lower rates. We examined the impact of 3 increasingly private mailed survey conditions—ranging from potentially identifiable to completely anonymous—on survey response and on respondents’ representativeness of the underlying sampling frame, completeness in answering sensitive survey items, and disclosure of sensitive information. We also examined the impact of 2 incentives ($10 versus $20) on these outcomes. Methods A 3X2 factorial, randomized controlled trial of 324 representatively selected, male Gulf War I era veterans who had applied for United States Department of Veterans Affairs (VA) disability benefits. Men were asked about past sexual assault experiences, childhood abuse, combat, other traumas, mental health symptoms, and sexual orientation. We used a novel technique, the pre-merged questionnaire, to link anonymous responses to administrative data. Results Response rates ranged from 56.0% to 63.3% across privacy conditions (p = 0.49) and from 52.8% to 68.1% across incentives (p = 0.007). Respondents’ characteristics differed by privacy and by incentive assignments, with completely anonymous respondents and $20 respondents appearing least different from their non-respondent counterparts. Survey completeness did not differ by privacy or by incentive. No clear pattern of disclosing sensitive information by privacy condition or by incentive emerged. For example, although all respondents came from the same sampling frame, estimates of sexual abuse ranged from 13.6% to 33.3% across privacy conditions, with the highest estimate coming from the intermediate privacy condition (p = 0.007). Conclusion Greater privacy and larger incentives do not necessarily result in higher disclosure rates of sensitive information

  15. Bench Evaluation of Four Portable Oxygen Concentrators Under Different Conditions Representing Altitudes of 2438, 4200, and 8000 m.

    PubMed

    Bunel, Vincent; Shoukri, Amr; Choin, Frederic; Roblin, Serge; Smith, Cindy; Similowski, Thomas; Morélot-Panzini, Capucine; Gonzalez, Jesus

    2016-12-01

    Bunel, Vincent, Amr Shoukri, Frederic Choin, Serge Roblin, Cindy Smith, Thomas Similowski, Capucine Morélot-Panzini, and Jésus Gonzalez. Bench evaluation of four portable oxygen concentrators under different conditions representing altitudes of 2438, 4200, and 8000 m. High Alt Med Biol. 17:370-374, 2016.-Air travel is responsible for a reduction of the partial pressure of oxygen (O2) as a result of the decreased barometric pressure. This hypobaric hypoxia can be dangerous for passengers with respiratory diseases, requiring initiation or intensification of oxygen therapy during the flight. In-flight oxygen therapy can be provided by portable oxygen concentrators, which are less expensive and more practical than oxygen cylinders, but no study has evaluated their capacity to concentrate oxygen under simulated flight conditions. We tested four portable oxygen concentrators during a bench test study. The O2 concentrations (FO2) produced were measured under three different conditions: in room air at sea level, under hypoxia due to a reduction of the partial pressure of O2 (normobaric hypoxia, which can be performed routinely), and under hypoxia due to a reduction of atmospheric pressure (hypobaric hypoxia, using a chamber manufactured by Airbus Defence and Space). The FO2 obtained under conditions of hypobaric hypoxia (chamber) was lower than that measured in room air (0.92 [0.89-0.92] vs. 0.93 [0.92-0.94], p = 0.029), but only one portable oxygen concentrator was unable to maintain an FO2 ≥ 0.90 (0.89 [0.89-0.89]). In contrast, under conditions of normobaric hypoxia (tent) simulating an altitude of 2438 m, none of the apparatuses tested was able to achieve an FO2 greater than 0.76. (0.75 [0.75-0.76] vs. 0.93 [0.92-0.94], p = 0.029). Almost all portable oxygen concentrators were able to generate a sufficient quantity of O2 at simulated altitudes of 2438 m and can therefore be used in the aircraft cabin. Unfortunately, verification of the reliability and

  16. Validation of mathematical models for Salmonella growth in raw ground beef under dynamic temperature conditions representing loss of refrigeration.

    PubMed

    McConnell, Jennifer A; Schaffner, Donald W

    2014-07-01

    Temperature is a primary factor in controlling the growth of microorganisms in food. The current U. S. Food and Drug Administration Model Food Code guidelines state that food can be kept out of temperature control for up to 4 h without qualifiers, or up to 6 h, if the food product starts at an initial 41 °F (5 °C) temperature and does not exceed 70 °F (21 °C) at 6 h. This project validates existing ComBase computer models for Salmonella growth under changing temperature conditions modeling scenarios using raw ground beef as a model system. A cocktail of Salmonella serovars isolated from different meat products ( Salmonella Copenhagen, Salmonella Montevideo, Salmonella Typhimurium, Salmonella Saintpaul, and Salmonella Heidelberg) was made rifampin resistant and used for all experiments. Inoculated samples were held in a programmable water bath at 4.4 °C (40 °F) and subjected to linear temperature changes to different final temperatures over various lengths of time and then returned to 4.4 °C (40 °F). Maximum temperatures reached were 15.6, 26.7, or 37.8 °C (60, 80, or 100 °F), and the temperature increases took place over 4, 6, and 8 h, with varying cooling times. Our experiments show that when maximum temperatures were lower (15.6 or 26.7 °C), there was generally good agreement between the ComBase models and experiments: when temperature increases of 15.6 or 26.7 °C occurred over 8 h, experimental data were within 0.13 log CFU of the model predictions. When maximum temperatures were 37 °C, predictive models were fail-safe. Overall bias of the models was 1.11. and accuracy was 2.11. Our experiments show the U.S. Food and Drug Administration Model Food Code guidelines for holding food out of temperature control are quite conservative. Our research also shows that the ComBase models for Salmonella growth are accurate or fail-safe for dynamic temperature conditions as might be observed due to power loss from natural disasters or during transport out of

  17. 3-D Time-Accurate CFD Simulations of a Multi-Megawatt Slender Bladed HAWT under Yawed Inflow Conditions

    NASA Astrophysics Data System (ADS)

    Sayed, M.; Lutz, Th.; Krämer, E.

    2016-09-01

    In the present study numerical investigations of a generic Multi-Megawatt slender bladed Horizontal-Axis Wind Turbine (HAWT) under yawed inflow conditions were conducted. A three-dimensional URANS flow solver based on structured overlapping meshes was used. The simulations were conducted at wind speeds of 7m/sec, 11 m/sec and 15 m/sec for different yaw angles ranging from +60° to -60°. It was concluded that, for below rated wind speeds, under small yaw angles (below ±15°) the magnitudes of the blade forces are slightly increased, while under high yaw angles (above ±15°) there is a significant decrease. Moreover, the load fluctuations, for the different yaw angles, have the same frequency but different amplitude and oscillation shape. It was concluded that at the above rated wind speed of 15 m/sec, the blade aerodynamic loads are significantly affected by the yaw inflow conditions and the magnitude values of the loads are decreased with increasing yaw angle. It can be concluded that the angle of attack and the tower interference are the utmost variables affecting the yawed turbines.

  18. ACCURATE TIME-DEPENDENT WAVE PACKET STUDY OF THE H{sup +}+LiH REACTION AT EARLY UNIVERSE CONDITIONS

    SciTech Connect

    Aslan, E.; Bulut, N.; Castillo, J. F.; Banares, L.; Aoiz, F. J.; Roncero, O.

    2012-11-01

    The dynamics and kinetics of the H{sup +} + LiH reaction have been studied using a quantum reactive time-dependent wave packet (TDWP) coupled-channel quantum mechanical method on an ab initio potential energy surface at conditions of the early universe. The total reaction probabilities for the H{sup +} + LiH(v = 0, j = 0) {yields} H{sup +} {sub 2} + Li process have been calculated from 5 Multiplication-Sign 10{sup -3} eV up to 1 eV for total angular momenta J from 0 to 110. Using a Langevin model, integral cross sections have been calculated in that range of collision energies and extrapolated for energies below 5 Multiplication-Sign 10{sup -3} eV. The calculated rate constants are found to be nearly independent of temperature in the 10-1000 K interval with a value of Almost-Equal-To 10{sup -9} cm{sup 3} s{sup -1}, which is in good agreement with estimates used in evolutionary models of the early universe lithium chemistry.

  19. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone

    NASA Technical Reports Server (NTRS)

    Jewett, M. E.; Duffy, J. F.; Czeisler, C. A.

    2000-01-01

    A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.

  20. Health Condition Impacts in a Nationally Representative Cross-Sectional Survey Vary Substantially by Preference-Based Health Index

    PubMed Central

    Hanmer, Janel; Cherepanov, Dasha; Palta, Mari; Kaplan, Robert M.; Feeny, David; Fryback, Dennis

    2015-01-01

    Importance Many cost-utility analyses rely on generic utility measures for estimates of disease impact. Commonly used generic preference-based indexes may generate different absolute estimates of disease burden despite sharing anchors of dead at 0 and full health at 1.0. Objective We compare the impact of 16 prevalent chronic health conditions using six utility-based indexes of health and a visual analog scale. Design Data were from the National Health Measurement Study (NHMS), a cross-sectional telephone survey of 3844 adults aged 35–89 in the United States. Main Outcome Measures The NHMS included the EuroQol-5D-3L, Health and Activities Limitation Index (HALex), Health Utilities Index Mark 2 (HUI2) and Mark 3 (HUI3), preference-based scoring for the SF-36 (SF-6D), Quality of Well-being Scale, and visual analog scale. Respondents self-reported 16 chronic conditions. Survey-weighted regression analyses for each index with all health conditions, age, and gender were used to estimate health condition impact estimates in terms of quality-adjusted life-years (QALYs) lost over 10 years. All analyses were stratified by ages 35–69 and 70–89. Results There were significant differences between the indexes for estimates of the absolute impact of most conditions. On average, condition impacts were the smallest with the SF-6D and EQ-5D and the largest with the HALex and HUI3. Likewise, the estimated loss of QALYs varied across indexes. Condition impact estimates for EQ-5D, HUI2, HUI3, and SF-6D generally had strong Spearman correlations across conditions (i.e., > 0.69). Limitations This analysis uses cross-sectional data and lacks health condition severity information. Conclusions Health condition impact estimates vary substantially across the indexes. These results imply that it is difficult to standardize results across cost-utility analyses which use different utility measures. PMID:26314728

  1. Long term out-of-pile thermocouple tests in conditions representative for nuclear gas-cooled high temperature reactors

    SciTech Connect

    Laurie, M.; Fourrez, S.; Fuetterer, M. A.; Lapetite, J. M.

    2011-07-01

    During irradiation tests at high temperature, failure of commercial Inconel 600 sheathed thermocouples is commonly encountered. To understand and remedy this problem, out-of-pile tests were performed with thermocouples in carburizing atmospheres which can be assumed to be at least locally representative for High Temperature Reactors. The objective was to screen those thermocouples which would consecutively be used under irradiation. Two such screening tests have been performed with a set of thermocouples embedded in graphite (mainly conventional Type N thermocouples and thermocouples with innovative sheaths) in a dedicated furnace with helium flushing. Performance indicators such as thermal drift, insulation and loop resistance were monitored and compared to those from conventional Type N thermocouples. Several parameters were investigated: niobium sleeves, bending, thickness, sheath composition, temperature as well as the chemical environment. After the tests, Scanning Electron Microscopy (SEM) examinations were performed to analyze possible local damage in wires and in the sheath. The present paper describes the two experiments, summarizes results and outlines further work, in particular to further analyze the findings and to select suitable thermocouples for qualification under irradiation. (authors)

  2. Representing Residence, Living Situation, and Living Conditions: An Evaluation of Terminologies, Standards, Guidelines, and Measures/Surveys

    PubMed Central

    Winden, Tamara J.; Chen, Elizabeth S.; Melton, Genevieve B.

    2016-01-01

    Social determinants of health play an important role in diagnosis, prevention, health outcomes, and quality of life. The objective of this study was to examine existing standards, vocabularies, and terminologies for items related to Residence, Living Situation, and Living Conditions and to synthesize them into model representations. Sources were identified through literature and keyword searches, and an examination of commonly used resources. Each source was systematically analyzed by two reviewers, mapped to topic area(s), and further mapped to a model representation. A total of 27 sources were identified and reviewed. Seven of the sources had no items, i.e. concepts, elements, or values, related to the three topic areas while SNOMED-CT had the most items at 436 followed by the US Census at 174. While none of the identified sources encompassed a complete representation for documenting the three topic areas, their synthesis together results overall in more comprehensive representations. PMID:28269967

  3. The use of FDTD in establishing in vitro experimentation conditions representative of lifelike cell phone radiation on the spermatozoa.

    PubMed

    Mouradi, Rand; Desai, Nisarg; Erdemir, Ahmet; Agarwal, Ashok

    2012-01-01

    Recent studies have shown that exposing human semen samples to cell phone radiation leads to a significant decline in sperm parameters. In daily living, a cell phone is usually kept in proximity to the groin, such as in a trouser pocket, separated from the testes by multiple layers of tissue. The aim of this study was to calculate the distance between cell phone and semen sample to set up an in vitro experiment that can mimic real life conditions (cell phone in trouser pocket separated by multiple tissue layers). For this reason, a computational model of scrotal tissues was designed by considering these separating layers, the results of which were used in a series of simulations using the Finite Difference Time Domain (FDTD) method. To provide an equivalent effect of multiple tissue layers, these results showed that the distance between a cell phone and semen sample should be 0.8 cm to 1.8 cm greater than the anticipated distance between a cell phone and the testes.

  4. Low- and high-order accurate boundary conditions: From Stokes to Darcy porous flow modeled with standard and improved Brinkman lattice Boltzmann schemes

    NASA Astrophysics Data System (ADS)

    Silva, Goncalo; Talon, Laurent; Ginzburg, Irina

    2017-04-01

    The present contribution focuses on the accuracy of reflection-type boundary conditions in the Stokes-Brinkman-Darcy modeling of porous flows solved with the lattice Boltzmann method (LBM), which we operate with the two-relaxation-time (TRT) collision and the Brinkman-force based scheme (BF), called BF-TRT scheme. In parallel, we compare it with the Stokes-Brinkman-Darcy linear finite element method (FEM) where the Dirichlet boundary conditions are enforced on grid vertices. In bulk, both BF-TRT and FEM share the same defect: in their discretization a correction to the modeled Brinkman equation appears, given by the discrete Laplacian of the velocity-proportional resistance force. This correction modifies the effective Brinkman viscosity, playing a crucial role in the triggering of spurious oscillations in the bulk solution. While the exact form of this defect is available in lattice-aligned, straight or diagonal, flows; in arbitrary flow/lattice orientations its approximation is constructed. At boundaries, we verify that such a Brinkman viscosity correction has an even more harmful impact. Already at the first order, it shifts the location of the no-slip wall condition supported by traditional LBM boundary schemes, such as the bounce-back rule. For that reason, this work develops a new class of boundary schemes to prescribe the Dirichlet velocity condition at an arbitrary wall/boundary-node distance and that supports a higher order accuracy in the accommodation of the TRT-Brinkman solutions. For their modeling, we consider the standard BF scheme and its improved version, called IBF; this latter is generalized in this work to suppress or to reduce the viscosity correction in arbitrarily oriented flows. Our framework extends the one- and two-point families of linear and parabolic link-wise boundary schemes, respectively called B-LI and B-MLI, which avoid the interference of the Brinkman viscosity correction in their closure relations. The performance of LBM and FEM

  5. Comparison of the radiation flux profiles and spectral detail from three detailed nongray radiation models at conditions representative of hypervelocity earth entry

    NASA Technical Reports Server (NTRS)

    Suttles, J. T.

    1972-01-01

    The radiation models were compared on the basis of the approaches used for the transport calculations and absorption coefficients and of results obtained for the radiation flux profiles and spectral distributions. The calculated results were for shock layer conditions representative of manned earth reentry from an interplanetary mission. The three models are RATRAP, RADICAL, and MDAC. The results show that significant differences exist in the radiation flux computed by the three models. The RADICAL model was found to depend on fewer approximations, to include more detail, and to require less computer time than the other models.

  6. Representing Curriculum

    ERIC Educational Resources Information Center

    Gaztambide-Fernandez, Ruben

    2009-01-01

    Handbooks denote representative authority, which gives their content normative value and through which editors and authors can emphasize certain views and orientations within a field. The representative authority of a handbook is reinforced in various ways, both obvious and subtle. The "SAGE Handbook of Curriculum and Instruction" is no exception…

  7. Representing dispositions

    PubMed Central

    2011-01-01

    Dispositions and tendencies feature significantly in the biomedical domain and therefore in representations of knowledge of that domain. They are not only important for specific applications like an infectious disease ontology, but also as part of a general strategy for modelling knowledge about molecular interactions. But the task of representing dispositions in some formal ontological systems is fraught with several problems, which are partly due to the fact that Description Logics can only deal well with binary relations. The paper will discuss some of the results of the philosophical debate about dispositions, in order to see whether the formal relations needed to represent dispositions can be broken down to binary relations. Finally, we will discuss problems arising from the possibility of the absence of realizations, of multi-track or multi-trigger dispositions and offer suggestions on how to deal with them. PMID:21995952

  8. Lipophilicity indices derived from the liquid chromatographic behavior observed under bimodal retention conditions (reversed phase/hydrophilic interaction): application to a representative set of pyridinium oximes.

    PubMed

    Voicu, Victor; Sârbu, Costel; Tache, Florentin; Micăle, Florina; Rădulescu, Ştefan Flavian; Sakurada, Koichi; Ohta, Hikoto; Medvedovici, Andrei

    2014-05-01

    The liquid chromatographic behavior observed under bimodal retention conditions (reversed phase and hydrophilic interaction) offers a new basis for the determination of some derived lipophilicity indices. The experiments were carried out on a representative group (30 compounds) of pyridinium oximes, therapeutically tested in acetylcholinesterase reactivation, covering a large range of lipophilic character. The chromatographic behavior was observed on a mixed mode acting stationary phase, resulting from covalent functionalization of high purity spherical silica with long chain alkyl groups terminated by a polar environment created through the vicinal diol substitution at the lasting carbon atoms (Acclaim Mixed Mode HILIC 1 column). Elution was achieved by combining different proportions of 5 mM ammonium formiate solutions in water and acetonitrile. The derived lipophilicity indices were compared with logP values resulting from different computational algorithms. The correlations between experimental and computed data sets are significant. To obtain a better insight on the transition from reversed phase to hydrophilic interaction retention mechanisms, the variation of the thermodynamic parameters determined through the van׳t Hoff approach was also discussed.

  9. Differential label-free quantitative proteomic analysis of Shewanella oneidensis cultured under aerobic and suboxic conditions by accurate mass and time tag approach.

    PubMed

    Fang, Ruihua; Elias, Dwayne A; Monroe, Matthew E; Shen, Yufeng; McIntosh, Martin; Wang, Pei; Goddard, Carrie D; Callister, Stephen J; Moore, Ronald J; Gorby, Yuri A; Adkins, Joshua N; Fredrickson, Jim K; Lipton, Mary S; Smith, Richard D

    2006-04-01

    We describe the application of LC-MS without the use of stable isotope labeling for differential quantitative proteomic analysis of whole cell lysates of Shewanella oneidensis MR-1 cultured under aerobic and suboxic conditions. LC-MS/MS was used to initially identify peptide sequences, and LC-FTICR was used to confirm these identifications as well as measure relative peptide abundances. 2343 peptides covering 668 proteins were identified with high confidence and quantified. Among these proteins, a subset of 56 changed significantly using statistical approaches such as statistical analysis of microarrays, whereas another subset of 56 that were annotated as performing housekeeping functions remained essentially unchanged in relative abundance. Numerous proteins involved in anaerobic energy metabolism exhibited up to a 10-fold increase in relative abundance when S. oneidensis was transitioned from aerobic to suboxic conditions.

  10. Differential Label-free Quantitative Proteomic Analysis of Shewanella oneidensis Cultured under Aerobic and Suboxic Conditions by Accurate Mass and Time Tag Approach

    SciTech Connect

    Fang, Ruihua; Elias, Dwayne A.; Monroe, Matthew E.; Shen, Yufeng; McIntosh, Martin; Wang, Pei; Goddard, Carrie D.; Callister, Stephen J.; Moore, Ronald J.; Gorby, Yuri A.; Adkins, Joshua N.; Fredrickson, Jim K.; Lipton, Mary S.; Smith, Richard D.

    2006-04-01

    We describe the application of liquid chromatography coupled to mass spectrometry (LC/MS) without the use of stable isotope labeling for differential quantitative proteomics analysis of whole cell lysates of Shewanella oneidensis MR-1 cultured under aerobic and sub-oxic conditions. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to initially identify peptide sequences, and LC coupled to Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR) was used to confirm these identifications, as well as measure relative peptide abundances. 2343 peptides, covering 668 proteins were identified with high confidence and quantified. Among these proteins, a subset of 56 changed significantly using statistical approaches such as SAM, while another subset of 56 that were annotated as performing housekeeping functions remained essentially unchanged in relative abundance. Numerous proteins involved in anaerobic energy metabolism exhibited up to a 10-fold increase in relative abundance when S. oneidensis is transitioned from aerobic to sub-oxic conditions.

  11. A highly accurate spectral method for the Navier-Stokes equations in a semi-infinite domain with flexible boundary conditions

    NASA Astrophysics Data System (ADS)

    Matsushima, Toshiki; Ishioka, Keiichi

    2017-04-01

    This paper presents a spectral method for numerically solving the Navier-Stokes equations in a semi-infinite domain bounded by a flat plane: the aim is to obtain high accuracy with flexible boundary conditions. The proposed use is for numerical simulations of small-scale atmospheric phenomena near the ground. We introduce basis functions that fit the semi-infinite domain, and an integral condition for vorticity is used to reduce the computational cost when solving the partial differential equations that appear when the viscosity term is treated implicitly. Furthermore, in order to ensure high accuracy, two iteration techniques are applied when solving the system of linear equations and in determining boundary values. This significantly reduces numerical errors, and the proposed method enables high-resolution numerical experiments. This is demonstrated by numerical experiments showing the collision of a vortex ring into a wall; these were performed using numerical models based on the proposed method. It is shown that the time evolution of the flow field is successfully obtained not only near the boundary, but also in a region far from the boundary. The applicability of the proposed method and the integral condition is discussed.

  12. A Robust and Accurate Two-Step Auto-Labeling Conditional Iterative Closest Points (TACICP) Algorithm for Three-Dimensional Multi-Modal Carotid Image Registration

    PubMed Central

    Guo, Hengkai; Wang, Guijin; Huang, Lingyun; Hu, Yuxin; Yuan, Chun; Li, Rui; Zhao, Xihai

    2016-01-01

    Atherosclerosis is among the leading causes of death and disability. Combining information from multi-modal vascular images is an effective and efficient way to diagnose and monitor atherosclerosis, in which image registration is a key technique. In this paper a feature-based registration algorithm, Two-step Auto-labeling Conditional Iterative Closed Points (TACICP) algorithm, is proposed to align three-dimensional carotid image datasets from ultrasound (US) and magnetic resonance (MR). Based on 2D segmented contours, a coarse-to-fine strategy is employed with two steps: rigid initialization step and non-rigid refinement step. Conditional Iterative Closest Points (CICP) algorithm is given in rigid initialization step to obtain the robust rigid transformation and label configurations. Then the labels and CICP algorithm with non-rigid thin-plate-spline (TPS) transformation model is introduced to solve non-rigid carotid deformation between different body positions. The results demonstrate that proposed TACICP algorithm has achieved an average registration error of less than 0.2mm with no failure case, which is superior to the state-of-the-art feature-based methods. PMID:26881433

  13. A Robust and Accurate Two-Step Auto-Labeling Conditional Iterative Closest Points (TACICP) Algorithm for Three-Dimensional Multi-Modal Carotid Image Registration.

    PubMed

    Guo, Hengkai; Wang, Guijin; Huang, Lingyun; Hu, Yuxin; Yuan, Chun; Li, Rui; Zhao, Xihai

    2016-01-01

    Atherosclerosis is among the leading causes of death and disability. Combining information from multi-modal vascular images is an effective and efficient way to diagnose and monitor atherosclerosis, in which image registration is a key technique. In this paper a feature-based registration algorithm, Two-step Auto-labeling Conditional Iterative Closed Points (TACICP) algorithm, is proposed to align three-dimensional carotid image datasets from ultrasound (US) and magnetic resonance (MR). Based on 2D segmented contours, a coarse-to-fine strategy is employed with two steps: rigid initialization step and non-rigid refinement step. Conditional Iterative Closest Points (CICP) algorithm is given in rigid initialization step to obtain the robust rigid transformation and label configurations. Then the labels and CICP algorithm with non-rigid thin-plate-spline (TPS) transformation model is introduced to solve non-rigid carotid deformation between different body positions. The results demonstrate that proposed TACICP algorithm has achieved an average registration error of less than 0.2mm with no failure case, which is superior to the state-of-the-art feature-based methods.

  14. A plot tree structure to represent surface flow connectivity in rural catchments: definition and application for mining critical source areas and temporal conditions

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, Chantal; Cordier, Marie-Odile; Grimaldi, Catherine; Salmon-Monviola, Jordy; Masson, Veronique; Squividant, Herve; Trepos, Ronan

    2013-04-01

    Agricultural landscapes are structured by a mosaic of farmers'fields whose boundaries and land use change over time, and by linear elements such as hedgerows, ditches and roads, which are more or less connected to each other. Such man-made features are now well known to have an effect on catchment hydrology, erosion and water quality. In such agricultural landscapes, it is crucial to have an adequate functional representation of the flow pathways and define relevant indicators of surface flow connectivity over the catchment towards the stream, as a necessary step for improving landscape design and water protection. A new conceptual object oriented approach has been proposed by building the drainage network on the identification of the inlets and outlets for surface water flow on each farmers' field and surrounding landscape elements (Aurousseau et al., 2009 ; Gascuel-Odoux et al., 2011), then on delineating a set of elementary plot outlet trees labelled by attributes which feed the stream. This drainage network is therefore represented as a global plot outlet tree which conceptualizes the connectivity of the surface flow patterns over the catchment. This approach has been applied to different catchment areas, integrated in modelling (Gascuel-Odoux et al., 2009) and decision support tools. It provides a functional display of data for decision support which can highlight the plots of potential risk regarding the surface runoff, areas which are often shortly extended over catchments (suspended sediment application). Integrated in modelling and mining tools, it allows to catch typologies of the most spatial pattern involved in water quality degradation (herbicides transport model) (Trepos et al., 2012) and test their permanency in time regarding the variations of climate conditions and agricultural practices (Salmon-Monviola et al., 2011). This set of works joins skills in hydrology, agronomy and computer sciences. Aurousseau P., Gascuel-Odoux C., Squividant H

  15. America's Families: Conditions, Trends, Hopes and Fears. Hearing before the Select Committee on Children, Youth, and Families. House of Representatives, One Hundred Second Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Select Committee on Children, Youth, and Families.

    The text of a hearing on American families is presented in this document. Comments by Representatives Patricia Schroeder, Bob McEwen, Michael Bilirakis, Frank Wolf, and Jim Bacchus, as well as Senator John D. Rockefeller, IV, are presented. Testimony and/or prepared statements and materials are included from these persons: (1) Gary L. Bauer,…

  16. Under What Conditions Does Caseworker-Caregiver Racial/Ethnic Similarity Matter for Housing Service Provision? An Application of Representative Bureaucracy Theory.

    PubMed

    McBeath, Bowen; Chuang, Emmeline; Bunger, Alicia; Blakeslee, Jennifer

    2014-03-01

    In this article, we examine child welfare caseworkers' housing-related service strategies when they serve culturally similar versus culturally dissimilar clients. Testing hypotheses drawn from representative bureaucracy theory and using data from the second cohort of the National Survey of Child and Adolescent Well-Being, we find that when non-Caucasian caseworkers share the same racial/ethnic background as caregivers, caseworkers use more active strategies to connect caregivers to needed housing services. The relationship between racial/ethnic matching and frontline workers' repertoire of service strategies is most pronounced when the need for housing has been registered formally via referrals and case plans and thus legitimated institutionally. These results reinforce basic tenets of representative bureaucracy theory and provide evidence of the benefits of racial and ethnic diversity in the human service workforce. Our findings also highlight the need for research identifying institutional and frontline organizational factors that enhance the quality of service provision.

  17. Nativity differences in chronic health conditions between nationally representative samples of Asian American, Latino American, and Afro-Caribbean American respondents.

    PubMed

    Carlisle, Shauna K

    2012-12-01

    Immigrants on average have better health than native-born residents. However, no clear understanding of prevalence of chronic conditions across foreign-born groups exists, and few studies include Afro-Caribbean populations. This study utilizes the National Latino and Asian American Study and the National Survey of American Life to investigate nativity differences in reports of chronic cardiovascular, respiratory, and pain conditions between foreign-born (n = 3,579) and native-born (n = 1,409) respondents. Native-born respondents were significantly more likely than foreign-born counterparts to report chronic respiratory [c2(1, n = 4,958) 30.78, P ≤ .05] and pain [c2(1, n = 4,958) 3.77, P ≤ .05] conditions. Logistic regression models reveal significant associations between chronic conditions and other demographic factors known to influence immigrant health. Afro-Caribbean populations were less likely than other foreign-born respondents to report respiratory and pain conditions. Findings illustrate the importance of comparing health profiles across native-born and foreign-born counterparts with the inclusion of Afro-Caribbean Americans.

  18. Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health.

    PubMed

    Briggs, Andrew M; Cross, Marita J; Hoy, Damian G; Sànchez-Riera, Lídia; Blyth, Fiona M; Woolf, Anthony D; March, Lyn

    2016-04-01

    Persistent pain, impaired mobility and function, and reduced quality of life and mental well-being are the most common experiences associated with musculoskeletal conditions, of which there are more than 150 types. The prevalence and impact of musculoskeletal conditions increase with aging. A profound burden of musculoskeletal disease exists in developed and developing nations. Notably, this burden far exceeds service capacity. Population growth, aging, and sedentary lifestyles, particularly in developing countries, will create a crisis for population health that requires a multisystem response with musculoskeletal health services as a critical component. Globally, there is an emphasis on maintaining an active lifestyle to reduce the impacts of obesity, cardiovascular conditions, cancer, osteoporosis, and diabetes in older people. Painful musculoskeletal conditions, however, profoundly limit the ability of people to make these lifestyle changes. A strong relationship exists between painful musculoskeletal conditions and a reduced capacity to engage in physical activity resulting in functional decline, frailty, reduced well-being, and loss of independence. Multilevel strategies and approaches to care that adopt a whole person approach are needed to address the impact of impaired musculoskeletal health and its sequelae. Effective strategies are available to address the impact of musculoskeletal conditions; some are of low cost (e.g., primary care-based interventions) but others are expensive and, as such, are usually only feasible for developed nations. In developing nations, it is crucial that any reform or development initiatives, including research, must adhere to the principles of development effectiveness to avoid doing harm to the health systems in these settings.

  19. Changes in the Cytoplasmic Composition of Amino Acids and Proteins Observed in Staphylococcus aureus during Growth under Variable Growth Conditions Representative of the Human Wound Site

    PubMed Central

    Alreshidi, Mousa M.; Dunstan, R. Hugh; Gottfries, Johan; Macdonald, Margaret M.; Crompton, Marcus J.; Ang, Ching-Seng; Williamson, Nicholas A.; Roberts, Tim K.

    2016-01-01

    Staphylococcus aureus is an opportunistic pathogen responsible for a high proportion of nosocomial infections. This study was conducted to assess the bacterial responses in the cytoplasmic composition of amino acids and ribosomal proteins under various environmental conditions designed to mimic those on the human skin or within a wound site: pH6-8, temperature 35–37°C, and additional 0–5% NaCl. It was found that each set of environmental conditions elicited substantial adjustments in cytoplasmic levels of glutamic acid, aspartic acid, proline, alanine and glycine (P< 0.05). These alterations generated characteristic amino acid profiles assessed by principle component analysis (PCA). Substantial alterations in cytoplasmic amino acid and protein composition occurred during growth under conditions of higher salinity stress implemented via additional levels of NaCl in the growth medium. The cells responded to additional NaCl at pH 6 by reducing levels of ribosomal proteins, whereas at pH 8 there was an upregulation of ribosomal proteins compared with the reference control. The levels of two ribosomal proteins, L32 and S19, remained constant across all experimental conditions. The data supported the hypothesis that the bacterium was continually responding to the dynamic environment by modifying the proteome and optimising metabolic homeostasis. PMID:27442022

  20. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  1. Ethanol, glycogen and glucosylglycerol represent competing carbon pools in ethanol-producing cells of Synechocystis sp. PCC 6803 under high-salt conditions.

    PubMed

    Pade, Nadin; Mikkat, Stefan; Hagemann, Martin

    2017-03-01

    Cyanobacteria are photoautotrophic micro-organisms, which are increasingly being used as microbial cell factories to produce, for example, ethanol directly from solar energy and CO2. Here, we analysed the effects of different salt concentrations on an ethanol-producing strain of Synechocystis sp. PCC 6803 that overexpresses the pyruvate decarboxylase (pdc) from Zymomonas mobilis and the native alcohol dehydrogenase (adhA). Moderate salinities of 2 % NaCl had no negative impact on ethanol production, whereas the addition of 4 % NaCl resulted in significantly decreased ethanol yields compared to low-salt conditions. Proteomic analysis identified a defined set of proteins with increased abundances in ethanol-producing cells. Among them, we found strong up-regulation of α-1,4 glucan phosphorylase (GlgP, Slr1367) in the producer strain, which consistently resulted in a massive depletion of glycogen pools in these cells regardless of the salinity. The salt-induced accumulation of the compatible solute glucosylglycerol was not affected by the ethanol production. Glycogen and probably compatible solutes could present competing pools with respect to organic carbon, explaining the decreased ethanol production at the highest salinity.

  2. OSMOSE experiment representativity studies.

    SciTech Connect

    Aliberti, G.; Klann, R.; Nuclear Engineering Division

    2007-10-10

    The OSMOSE program aims at improving the neutronic predictions of advanced nuclear fuels through measurements in the MINERVE facility at the CEA-Cadarache (France) on samples containing the following separated actinides: Th-232, U-233, U-234, U-235, U-236, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Am-241, Am-243, Cm-244 and Cm-245. The goal of the experimental measurements is to produce a database of reactivity-worth measurements in different neutron spectra for the separated heavy nuclides. This database can then be used as a benchmark for integral reactivity-worth measurements to verify and validate reactor analysis codes and integral cross-section values for the isotopes tested. In particular, the OSMOSE experimental program will produce very accurate sample reactivity-worth measurements for a series of actinides in various spectra, from very thermalized to very fast. The objective of the analytical program is to make use of the experimental data to establish deficiencies in the basic nuclear data libraries, identify their origins, and provide guidelines for nuclear data improvements in coordination with international programs. To achieve the proposed goals, seven different neutron spectra can be created in the MINERVE facility: UO2 dissolved in water (representative of over-moderated LWR systems), UO2 matrix in water (representative of LWRs), a mixed oxide fuel matrix, two thermal spectra containing large epithermal components (representative of under-moderated reactors), a moderated fast spectrum (representative of fast reactors which have some slowing down in moderators such as lead-bismuth or sodium), and a very hard spectrum (representative of fast reactors with little moderation from reactor coolant). The different spectra are achieved by changing the experimental lattice within the MINERVE reactor. The experimental lattice is the replaceable central part of MINERVE, which establishes the spectrum at the sample location. This configuration

  3. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  4. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  5. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  6. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  7. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  8. Microarrays for global expression constructed with a low redundancy set of 27,500 sequenced cDNAs representing an array of developmental stages and physiological conditions of the soybean plant

    PubMed Central

    Vodkin, Lila O; Khanna, Anupama; Shealy, Robin; Clough, Steven J; Gonzalez, Delkin Orlando; Philip, Reena; Zabala, Gracia; Thibaud-Nissen, Françoise; Sidarous, Mark; Strömvik, Martina V; Shoop, Elizabeth; Schmidt, Christina; Retzel, Ernest; Erpelding, John; Shoemaker, Randy C; Rodriguez-Huete, Alicia M; Polacco, Joseph C; Coryell, Virginia; Keim, Paul; Gong, George; Liu, Lei; Pardinas, Jose; Schweitzer, Peter

    2004-01-01

    Background Microarrays are an important tool with which to examine coordinated gene expression. Soybean (Glycine max) is one of the most economically valuable crop species in the world food supply. In order to accelerate both gene discovery as well as hypothesis-driven research in soybean, global expression resources needed to be developed. The applications of microarray for determining patterns of expression in different tissues or during conditional treatments by dual labeling of the mRNAs are unlimited. In addition, discovery of the molecular basis of traits through examination of naturally occurring variation in hundreds of mutant lines could be enhanced by the construction and use of soybean cDNA microarrays. Results We report the construction and analysis of a low redundancy 'unigene' set of 27,513 clones that represent a variety of soybean cDNA libraries made from a wide array of source tissue and organ systems, developmental stages, and stress or pathogen-challenged plants. The set was assembled from the 5' sequence data of the cDNA clones using cluster analysis programs. The selected clones were then physically reracked and sequenced at the 3' end. In order to increase gene discovery from immature cotyledon libraries that contain abundant mRNAs representing storage protein gene families, we utilized a high density filter normalization approach to preferentially select more weakly expressed cDNAs. All 27,513 cDNA inserts were amplified by polymerase chain reaction. The amplified products, along with some repetitively spotted control or 'choice' clones, were used to produce three 9,728-element microarrays that have been used to examine tissue specific gene expression and global expression in mutant isolines. Conclusions Global expression studies will be greatly aided by the availability of the sequence-validated and low redundancy cDNA sets described in this report. These cDNAs and ESTs represent a wide array of developmental stages and physiological

  9. How accurate are sphygmomanometers?

    PubMed

    Mion, D; Pierin, A M

    1998-04-01

    The objective of this study was to assess the accuracy and reliability of mercury and aneroid sphygmomanometers. Measurement of accuracy of calibration and evaluation of physical conditions were carried out in 524 sphygmomanometers, 351 from a hospital setting, and 173 from private medical offices. Mercury sphygmomanometers were considered inaccurate if the meniscus was not '0' at rest. Aneroid sphygmomanometers were tested against a properly calibrated mercury manometer, and were considered calibrated when the error was < or =3 mm Hg. Both types of sphygmomanometers were evaluated for conditions of cuff/bladder, bulb, pump and valve. Of the mercury sphygmomanometers tested 21 % were found to be inaccurate. Of this group, unreliability was noted due to: excessive bouncing (14%), illegibility of the gauge (7%), blockage of the filter (6%), and lack of mercury in the reservoir (3%). Bladder damage was noted in 10% of the hospital devices and in 6% of private medical practices. Rubber aging occurred in 34% and 25%, leaks/holes in 19% and 18%, and leaks in the pump bulb in 16% and 30% of hospital devices and private practice devices, respectively. Of the aneroid sphygmomanometers tested, 44% in the hospital setting and 61% in private medical practices were found to be inaccurate. Of these, the magnitude of inaccuracy was 4-6 mm Hg in 32%, 7-12 mm Hg in 19% and > 13 mm Hg in 7%. In summary, most of the mercury and aneroid sphygmomanometers showed inaccuracy (21% vs 58%) and unreliability (64% vs 70%).

  10. Representing Substantive Structures.

    ERIC Educational Resources Information Center

    Finley, Fred N.; Stewart, James

    1982-01-01

    Discusses the meaning of Schwab's "substantive structures" of a discipline in terms of science philosophy. Presents three techniques for representing substantive structures and discusses some of their uses in science education research. (SK)

  11. Representing properties locally.

    PubMed

    Solomon, K O; Barsalou, L W

    2001-09-01

    Theories of knowledge such as feature lists, semantic networks, and localist neural nets typically use a single global symbol to represent a property that occurs in multiple concepts. Thus, a global symbol represents mane across HORSE, PONY, and LION. Alternatively, perceptual theories of knowledge, as well as distributed representational systems, assume that properties take different local forms in different concepts. Thus, different local forms of mane exist for HORSE, PONY, and LION, each capturing the specific form that mane takes in its respective concept. Three experiments used the property verification task to assess whether properties are represented globally or locally (e.g., Does a PONY have mane?). If a single global form represents a property, then verifying it in any concept should increase its accessibility and speed its verification later in any other concept. Verifying mane for PONY should benefit as much from having verified mane for LION earlier as from verifying mane for HORSE. If properties are represented locally, however, verifying a property should only benefit from verifying a similar form earlier. Verifying mane for PONY should only benefit from verifying mane for HORSE, not from verifying mane for LION. Findings from three experiments strongly supported local property representation and ruled out the interpretation that object similarity was responsible (e.g., the greater overall similarity between HORSE and PONY than between LION and PONY). The findings further suggest that property representation and verification are complicated phenomena, grounded in sensory-motor simulations.

  12. New model accurately predicts reformate composition

    SciTech Connect

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  13. Environmental representative program

    SciTech Connect

    McLeod, B.P.

    1984-05-01

    As new pollution regulations are created and existing regulations are made more complex, it is becoming more important for plant personnel to have a knowlege of the environment. The Environmental Representative Program is designed to train plant personnel and is aimed at preventing fines, citations, and negative publicity. The goal of the program is on-going daily compliance assurance, and is divided into two segments: 1) program initiation (general considerations, representative selection, and authorization by management); and 2) program implementation (requirements training, responsibilities development, incorporation into annual goals, and program maintenance). A discussion of how each part of the program is accomplished is presented.

  14. 14 CFR § 1274.906 - Designation of New Technology Representative and Patent Representative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Designation of New Technology... Conditions § 1274.906 Designation of New Technology Representative and Patent Representative. Designation of New Technology Representative and Patent Representative July 2002 (a) For purposes of...

  15. 14 CFR 1274.906 - Designation of New Technology Representative and Patent Representative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Designation of New Technology... Conditions § 1274.906 Designation of New Technology Representative and Patent Representative. Designation of New Technology Representative and Patent Representative July 2002 (a) For purposes of...

  16. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  17. An Accurate, Simplified Model Intrabeam Scattering

    SciTech Connect

    Bane, Karl LF

    2002-05-23

    Beginning with the general Bjorken-Mtingwa solution for intrabeam scattering (IBS) we derive an accurate, greatly simplified model of IBS, valid for high energy beams in normal storage ring lattices. In addition, we show that, under the same conditions, a modified version of Piwinski's IBS formulation (where {eta}{sub x,y}{sup 2}/{beta}{sub x,y} has been replaced by {Eta}{sub x,y}) asymptotically approaches the result of Bjorken-Mtingwa.

  18. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  19. DICOM organ dose does not accurately represent calculated dose in mammography

    NASA Astrophysics Data System (ADS)

    Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.

    2016-03-01

    This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 centers were included in the study, mean calculated dose and mean organ dose (+/- standard deviation) were 1.47 (+/-0.66) and 1.38 (+/-0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal agents for differences between organ and calculated doses and to generate a correction factor for organ dose.

  20. Accurate Guitar Tuning by Cochlear Implant Musicians

    PubMed Central

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  1. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  2. How to measure the wind accurately in icing conditions

    SciTech Connect

    Kenyon, P.R.; Blittersdorf, D.C.

    1995-12-31

    Atmospheric icing occurs frequently in the northwestern, Midwestern and northeastern United States from early October through April at locations with high average wind speeds. It has caused wind data recovery problems at sites as far south as Texas. Icing slows anemometers used to assess the wind resource. Data recovered from sites prone to icing will show lower average wind speeds than actual, undervaluing them. The assessment of a wind site must present the actual wind potential. Anemometers used at these sites must remain free of ice. This report presents a description of icing types and the data distortion they cause based on NRG field experience. A brief history of anti-icing anemometers available today for remote site and turbine site monitoring follows. Comparative data of NRG`s IceFree anemometers and the industry standard unheated anemometer is included.

  3. Precipitation monitoring to accurately depict drought conditions on your allotment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Great Basin Rangelands Research Unit of the U.S. Department of Agriculture, Agricultural Research Service has been reading numerous precipitation gauges throughout the Great Basin for more than three decades. State climatologists, land owners and researchers have obtained data from this long-ter...

  4. ACQUISITION OF REPRESENTATIVE GROUND WATER QUALITY SAMPLES FOR METALS

    EPA Science Inventory

    R.S. Kerr Environmental Research Laboratory (RSKERL) personnel have evaluated sampling procedures for the collection of representative, accurate, and reproducible ground water quality samples for metals for the past four years. Intensive sampling research at three different field...

  5. Do rats learn conditional independence?

    PubMed Central

    Timberlake, William

    2017-01-01

    If acquired associations are to accurately represent real relevance relations, there is motivation for the hypothesis that learning will, in some circumstances, be more appropriately modelled, not as direct dependence, but as conditional independence. In a serial compound conditioning experiment, two groups of rats were presented with a conditioned stimulus (CS1) that imperfectly (50%) predicted food, and was itself imperfectly predicted by a CS2. Groups differed in the proportion of CS2 presentations that were ultimately followed by food (25% versus 75%). Thus, the information presented regarding the relevance of CS2 to food was ambiguous between direct dependence and conditional independence (given CS1). If rats learnt that food was conditionally independent of CS2, given CS1, subjects of both groups should thereafter respond similarly to CS2 alone. Contrary to the conditionality hypothesis, subjects attended to the direct food predictability of CS2, suggesting that rats treat even distal stimuli in a CS sequence as immediately relevant to food, not conditional on an intermediate stimulus. These results urge caution in representing indirect associations as conditional associations, accentuate the theoretical weight of the Markov condition in graphical models, and challenge theories to articulate the conditions under which animals are expected to learn conditional associations, if ever. PMID:28386451

  6. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  7. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  8. Foresight begins with FMEA. Delivering accurate risk assessments.

    PubMed

    Passey, R D

    1999-03-01

    If sufficient factors are taken into account and two- or three-stage analysis is employed, failure mode and effect analysis represents an excellent technique for delivering accurate risk assessments for products and processes, and for relating them to legal liability. This article describes a format that facilitates easy interpretation.

  9. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  10. Accurate ab Initio Spin Densities.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Legeza, Ors; Reiher, Markus

    2012-06-12

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].

  11. Accurate pose estimation for forensic identification

    NASA Astrophysics Data System (ADS)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  12. Representative Atmospheric Plume Development for Elevated Releases

    SciTech Connect

    Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Prichard, Andrew W.

    2014-02-01

    An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption that an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law expression

  13. ANAEROBIC BIODEGRADATION OF ALKYLBENZENES IN LABORATORY MICROCOSMS REPRESENTING AMBIENT CONDITIONS

    EPA Science Inventory

    A microcosm study was performed to document the anaerobic biodegradation of benzene, toluene, ethylbenzene, m- xylene, and/or o-xylene in petroleum-contaminated aquifer sediment from sites in Michigan (MI) and North Carolina (NC) and relate the results to previous field investiga...

  14. Explicitly represented polygon wall boundary model for the explicit MPS method

    NASA Astrophysics Data System (ADS)

    Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori

    2015-05-01

    This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.

  15. Probabilistic techniques for obtaining accurate patient counts in Clinical Data Warehouses.

    PubMed

    Myers, Risa B; Herskovic, Jorge R

    2011-12-01

    Proposal and execution of clinical trials, computation of quality measures and discovery of correlation between medical phenomena are all applications where an accurate count of patients is needed. However, existing sources of this type of patient information, including Clinical Data Warehouses (CDWs) may be incomplete or inaccurate. This research explores applying probabilistic techniques, supported by the MayBMS probabilistic database, to obtain accurate patient counts from a Clinical Data Warehouse containing synthetic patient data. We present a synthetic Clinical Data Warehouse, and populate it with simulated data using a custom patient data generation engine. We then implement, evaluate and compare different techniques for obtaining patients counts. We model billing as a test for the presence of a condition. We compute billing's sensitivity and specificity both by conducting a "Simulated Expert Review" where a representative sample of records are reviewed and labeled by experts, and by obtaining the ground truth for every record. We compute the posterior probability of a patient having a condition through a "Bayesian Chain", using Bayes' Theorem to calculate the probability of a patient having a condition after each visit. The second method is a "one-shot" approach that computes the probability of a patient having a condition based on whether the patient is ever billed for the condition. Our results demonstrate the utility of probabilistic approaches, which improve on the accuracy of raw counts. In particular, the simulated review paired with a single application of Bayes' Theorem produces the best results, with an average error rate of 2.1% compared to 43.7% for the straightforward billing counts. Overall, this research demonstrates that Bayesian probabilistic approaches improve patient counts on simulated patient populations. We believe that total patient counts based on billing data are one of the many possible applications of our Bayesian framework. Use of

  16. Representing Tactical Land Navigation Expertise

    DTIC Science & Technology

    2000-09-01

    they adjust and recalibrate tools dynamically; and (4) they visualize spatial information. Finally, a multi - agent system computationally represents the route planning portion of the performance model.

  17. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  18. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  19. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  20. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  1. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  2. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  3. Fast and accurate exhaled breath ammonia measurement.

    PubMed

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H

    2014-06-11

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.

  4. Representativeness Uncertainty in Chemical Data Assimilation Highlight Mixing Barriers

    NASA Technical Reports Server (NTRS)

    Lary, David John

    2003-01-01

    When performing chemical data assimilation the observational, representativeness, and theoretical uncertainties have very different characteristics. In this study we have accurately characterized the representativeness uncertainty by studying the probability distribution function (PDF) of the observations. The average deviation has been used as a measure of the width of the PDF and of the variability (representativeness uncertainty) for the grid cell. It turns out that for long-lived tracers such as N2O and CH4 the representativeness uncertainty is markedly different from the observational uncertainty and clearly delineates mixing barriers such as the polar vortex edge, the tropical pipe and the tropopause.

  5. Representing Learning With Graphical Models

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Probabilistic graphical models are being used widely in artificial intelligence, for instance, in diagnosis and expert systems, as a unified qualitative and quantitative framework for representing and reasoning with probabilities and independencies. Their development and use spans several fields including artificial intelligence, decision theory and statistics, and provides an important bridge between these communities. This paper shows by way of example that these models can be extended to machine learning, neural networks and knowledge discovery by representing the notion of a sample on the graphical model. Not only does this allow a flexible variety of learning problems to be represented, it also provides the means for representing the goal of learning and opens the way for the automatic development of learning algorithms from specifications.

  6. Ellipsoidal-mirror reflectometer accurately measures infrared reflectance of materials

    NASA Technical Reports Server (NTRS)

    Dunn, S. T.; Richmond, J. C.

    1967-01-01

    Reflectometer accurately measures the reflectance of specimens in the infrared beyond 2.5 microns and under geometric conditions approximating normal irradiation and hemispherical viewing. It includes an ellipsoidal mirror, a specially coated averaging sphere associated with a detector for minimizing spatial and angular sensitivity, and an incident flux chopper.

  7. Selecting MODFLOW cell sizes for accurate flow fields.

    PubMed

    Haitjema, H; Kelson, V; de Lange, W

    2001-01-01

    Contaminant transport models often use a velocity field derived from a MODFLOW flow field. Consequently, the accuracy of MODFLOW in representing a ground water flow field determines in part the accuracy of the transport predictions, particularly when advective transport is dominant. We compared MODFLOW ground water flow rates and MODPATH particle traces (advective transport) for a variety of conceptual models and different grid spacings to exact or approximate analytic solutions. All of our numerical experiments concerned flow in a single confined or semiconfined aquifer. While MODFLOW appeared robust in terms of both local and global water balance, we found that ground water flow rates, particle traces, and associated ground water travel times are accurate only when sufficiently small cells are used. For instance, a minimum of four or five cells are required to accurately model total ground water inflow in tributaries or other narrow surface water bodies that end inside the model domain. Also, about 50 cells are needed to represent zones of differing transmissivities or an incorrect flow field and (locally) inaccurate ground water travel times may result. Finally, to adequately represent leakage through aquitards or through the bottom of surface water bodies it was found that the maximum allowable cell dimensions should not exceed a characteristic leakage length lambda, which is defined as the square root of the aquifer transmissivity times the resistance of the aquitard or stream bottom. In some cases a cell size of one-tenth of lambda is necessary to obtain accurate results.

  8. Representing Hurricanes with a Nested Global Forecast Model

    NASA Astrophysics Data System (ADS)

    Otte, M. J.; Walko, R. L.; Avissar, R.

    2007-12-01

    A global forecast model is essential for predicting hurricane tracks beyond a period of ~2 days since global processes that may influence the longer-term storm tracks can be represented explicitly and there are no errors from the lateral boundary conditions that can propagate into the model domain and diminish the accuracy of the track forecasts. However, global models usually do not have enough horizontal and vertical resolution to produce meaningful hurricane intensity forecasts. Most current operational global forecast models represent the atmosphere horizontally using spherical harmonic basis functions with an equivalent resolution of ~40-50 km. The NOAA Science Advisory Board Hurricane Intensity Research Working Group recommends approximately 1-km-resolution hurricane forecasts in order to represent the important physical processes in the core region of hurricanes that are important to accurately predict hurricane intensity. Even with state-of-the-art computers, it will be many years before global forecasts with 1-km horizontal resolution are practical. To predict both hurricane tracks and intensity well, a nested global model is necessary. Large-scale processes are represented on a coarser, computationally-efficient grid while features such as hurricanes are represented on a high-resolution nest. The global model used in this study is the Ocean-Land-Atmosphere Model (OLAM) being developed at Duke University. OLAM is the global successor to the Regional Atmospheric Modeling System (RAMS), which originated at Colorado State University in 1986. OLAM uses the same physics parameterizations as RAMS, but it solves the governing equations by discretizing the atmosphere on an unstructured triangular finite-volume grid. The triangular grid uses the Arakawa-C staggering and is fully mass conservative. Since the triangular mesh is unstructured, the mesh can be refined to produce much higher horizontal resolution in areas of interest such as near hurricanes. Here, we

  9. Accurate orbit propagation with planetary close encounters

    NASA Astrophysics Data System (ADS)

    Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca

    2015-08-01

    We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).

  10. Accurate, reproducible measurement of blood pressure.

    PubMed Central

    Campbell, N R; Chockalingam, A; Fodor, J G; McKay, D W

    1990-01-01

    The diagnosis of mild hypertension and the treatment of hypertension require accurate measurement of blood pressure. Blood pressure readings are altered by various factors that influence the patient, the techniques used and the accuracy of the sphygmomanometer. The variability of readings can be reduced if informed patients prepare in advance by emptying their bladder and bowel, by avoiding over-the-counter vasoactive drugs the day of measurement and by avoiding exposure to cold, caffeine consumption, smoking and physical exertion within half an hour before measurement. The use of standardized techniques to measure blood pressure will help to avoid large systematic errors. Poor technique can account for differences in readings of more than 15 mm Hg and ultimately misdiagnosis. Most of the recommended procedures are simple and, when routinely incorporated into clinical practice, require little additional time. The equipment must be appropriate and in good condition. Physicians should have a suitable selection of cuff sizes readily available; the use of the correct cuff size is essential to minimize systematic errors in blood pressure measurement. Semiannual calibration of aneroid sphygmomanometers and annual inspection of mercury sphygmomanometers and blood pressure cuffs are recommended. We review the methods recommended for measuring blood pressure and discuss the factors known to produce large differences in blood pressure readings. PMID:2192791

  11. Representing higher-order dependencies in networks

    PubMed Central

    Xu, Jian; Wickramarathne, Thanuka L.; Chawla, Nitesh V.

    2016-01-01

    To ensure the correctness of network analysis methods, the network (as the input) has to be a sufficiently accurate representation of the underlying data. However, when representing sequential data from complex systems, such as global shipping traffic or Web clickstream traffic as networks, conventional network representations that implicitly assume the Markov property (first-order dependency) can quickly become limiting. This assumption holds that, when movements are simulated on the network, the next movement depends only on the current node, discounting the fact that the movement may depend on several previous steps. However, we show that data derived from many complex systems can show up to fifth-order dependencies. In these cases, the oversimplifying assumption of the first-order network representation can lead to inaccurate network analysis results. To address this problem, we propose the higher-order network (HON) representation that can discover and embed variable orders of dependencies in a network representation. Through a comprehensive empirical evaluation and analysis, we establish several desirable characteristics of HON, including accuracy, scalability, and direct compatibility with the existing suite of network analysis methods. We illustrate how HON can be applied to a broad variety of tasks, such as random walking, clustering, and ranking, and we demonstrate that, by using it as input, HON yields more accurate results without any modification to these tasks. PMID:27386539

  12. 7 CFR 1.610 - Who may represent a party, and what requirements apply to a representative?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Who may represent a party, and what requirements apply to a representative? 1.610 Section 1.610 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Conditions in FERC Hydropower Licenses Hearing Process § 1.610 Who may represent...

  13. 7 CFR 1.610 - Who may represent a party, and what requirements apply to a representative?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Who may represent a party, and what requirements apply to a representative? 1.610 Section 1.610 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Conditions in FERC Hydropower Licenses Hearing Process § 1.610 Who may represent...

  14. 7 CFR 1.610 - Who may represent a party, and what requirements apply to a representative?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Who may represent a party, and what requirements apply to a representative? 1.610 Section 1.610 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Conditions in FERC Hydropower Licenses Hearing Process § 1.610 Who may represent...

  15. 7 CFR 1.610 - Who may represent a party, and what requirements apply to a representative?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Who may represent a party, and what requirements apply to a representative? 1.610 Section 1.610 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Conditions in FERC Hydropower Licenses Hearing Process § 1.610 Who may represent...

  16. 7 CFR 1.610 - Who may represent a party, and what requirements apply to a representative?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Who may represent a party, and what requirements apply to a representative? 1.610 Section 1.610 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Conditions in FERC Hydropower Licenses Hearing Process § 1.610 Who may represent...

  17. Representing and acquiring geographic knowledge

    SciTech Connect

    Davis, E.

    1986-01-01

    Intended for researchers and students in AI, cognitive psychology, and computational geometry, this work presents an original theory of how knowledge of a large-scale neighborhood can be represented symbolically in a computer program, accessed for use, and increased by experience. The discussion analyzes related work in the field, presents an actual computer implementation, and suggests areas for further research.

  18. Representing and acquiring geographic knowledge

    SciTech Connect

    Davis, E.

    1986-01-01

    This book presents a theory of how knowledge of a large-scale neighborhood can be represented symbolically in a computer program, accessed for use, and increased by experience. The discussion analyzes related work in the field, presents an actual computer implementation, and suggests areas for further research.

  19. In-line sensor for accurate rf power measurements

    NASA Astrophysics Data System (ADS)

    Gahan, D.; Hopkins, M. B.

    2005-10-01

    An in-line sensor has been constructed with 50Ω characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  20. In-line sensor for accurate rf power measurements

    SciTech Connect

    Gahan, D.; Hopkins, M.B.

    2005-10-15

    An in-line sensor has been constructed with 50 {omega} characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  1. Do regional climate models represent regional climate?

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin

    2014-05-01

    When using climate change scenarios - either from global climate models or further downscaled - to assess localised real world impacts, one has to ensure that the local simulation indeed correctly represents the real world local climate. Representativeness has so far mainly been discussed as a scale issue: simulated meteorological variables in general represent grid box averages, whereas real weather is often expressed by means of point values. As a result, in particular simulated extreme values are not directly comparable with observed local extreme values. Here we argue that the issue of representativeness is more general. To illustrate this point, assume the following situations: first, the (GCM or RCM) simulated large scale weather, e.g., the mid-latitude storm track, might be systematically distorted compared to observed weather. If such a distortion at the synoptic scale is strong, the simulated local climate might be completely different from the observed. Second, the orography even of high resolution RCMs is only a coarse model of true orography. In particular in mountain ranges the simulated mesoscale flow might therefore considerably deviate from the observed flow, leading to systematically displaced local weather. In both cases, the simulated local climate does not represent observed local climate. Thus, representativeness also encompasses representing a particular location. We propose to measure this aspect of representativeness for RCMs driven with perfect boundary conditions as the correlation between observations and simulations at the inter-annual scale. In doing so, random variability generated by the RCMs is largely averaged out. As an example, we assess how well KNMIs RACMO2 RCM at 25km horizontal resolution represents winter precipitation in the gridded E-OBS data set over the European domain. At a chosen grid box, RCM precipitation might not be representative of observed precipitation, in particular in the rain shadow of major moutain ranges

  2. Validation of Large-Scale Geophysical Estimates Using In Situ Measurements with Representativeness Error

    NASA Astrophysics Data System (ADS)

    Konings, A. G.; Gruber, A.; Mccoll, K. A.; Alemohammad, S. H.; Entekhabi, D.

    2015-12-01

    Validating large-scale estimates of geophysical variables by comparing them to in situ measurements neglects the fact that these in situ measurements are not generally representative of the larger area. That is, in situ measurements contain some `representativeness error'. They also have their own sensor errors. The naïve approach of characterizing the errors of a remote sensing or modeling dataset by comparison to in situ measurements thus leads to error estimates that are spuriously inflated by the representativeness and other errors in the in situ measurements. Nevertheless, this naïve approach is still very common in the literature. In this work, we introduce an alternative estimator of the large-scale dataset error that explicitly takes into account the fact that the in situ measurements have some unknown error. The performance of the two estimators is then compared in the context of soil moisture datasets under different conditions for the true soil moisture climatology and dataset biases. The new estimator is shown to lead to a more accurate characterization of the dataset errors under the most common conditions. If a third dataset is available, the principles of the triple collocation method can be used to determine the errors of both the large-scale estimates and in situ measurements. However, triple collocation requires that the errors in all datasets are uncorrelated with each other and with the truth. We show that even when the assumptions of triple collocation are violated, a triple collocation-based validation approach may still be more accurate than a naïve comparison to in situ measurements that neglects representativeness errors.

  3. Flight representative positive isolation disconnect

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Jonkoniec, T. G.

    1977-01-01

    Resolutions were developed for each problem encountered and a tradeoff analysis was performed to select a final configuration for a flight representative PID (Positive Isolation Disconnect) that is reduced in size and comparable in weight and pressure drop to the developmental PID. A 6.35 mm (1/4-inch) line size PID was fabricated and tested. The flight representative PID consists of two coupled disconnect halves, each capable of fluid isolation with essentially zero clearance between them for zero leakage upon disconnect half disengagement. An interlocking foolproofing technique prevents uncoupling of disconnect halves prior to fluid isolation. Future development efforts for the Space Shuttle subsystems that would benefit from the use of the positive isolation disconnect are also recommended. Customary units were utilized for principal measurements and calculations with conversion factors being inserted in equations to convert the results to the international system of units.

  4. Representing videos in tangible products

    NASA Astrophysics Data System (ADS)

    Fageth, Reiner; Weiting, Ralf

    2014-03-01

    Videos can be taken with nearly every camera, digital point and shoot cameras, DSLRs as well as smartphones and more and more with so-called action cameras mounted on sports devices. The implementation of videos while generating QR codes and relevant pictures out of the video stream via a software implementation was contents in last years' paper. This year we present first data about what contents is displayed and how the users represent their videos in printed products, e.g. CEWE PHOTOBOOKS and greeting cards. We report the share of the different video formats used, the number of images extracted out of the video in order to represent the video, the positions in the book and different design strategies compared to regular books.

  5. Representative shuttle evaporative heat sink

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

  6. Hydralab+: Representing timescales of biological change in flume experiments

    NASA Astrophysics Data System (ADS)

    Baynes, Edwin; McLelland, Stuart; Parsons, Daniel

    2016-04-01

    Fluvial environments are vulnerable to future climate change due to non-linear responses to shifts in boundary conditions such as a migration to a hydrological regime characterised by more frequent extreme events. The biological component of these systems is critical for understanding the morphodynamic responses since organisms are often at the interface between water and sediment transport systems. Under a changing climate, the growth or decline of a particular species may change the flow dynamics and/or sediment transport. Hence, flume experiments that seek to accurately model the impact of climate change on the morphodynamics of sedimentary systems should consider the interaction between organisms and climate-induced changes in hydrodynamic forcing. This requires the ability to control and/or mimic biological components within flume experiments on timescales that are compatible with climate change forcing. Here, we present a review of existing research covering morphodynamics-biological interactions in flume experiments. We consider the approaches implemented to scale organisms (e.g. small-scale or chemical surrogates) and how these can be used to represent variations in the biological component over different timescales. Disparities in the scaling of hydrodynamics, morphodynamics and biota using these existing approaches are identified. During Hydralab+, this review will form the basis to develop innovative experimental protocols to represent total system response to climate change within a laboratory setting (e.g. developing new surrogates that can capture biological responses to climate forcing and enable modelling of longer time periods and longer-term trends). This will allow an improved understanding of the impact of climate change to be developed and potentially guide future adaptation strategies.

  7. PWR representative behavior during a LOCA

    SciTech Connect

    Allison, C.M.

    1981-01-01

    To date, there has been substantial analytical and experimental effort to define the margins between design basis loss-of-coolant accident (LOCA) behavior and regulatory limits on maximum fuel rod cladding temperature and deformation. As a result, there is extensive documentation on the modeling of fuel rod behavior in test reactors and design basis LOCA's. However, modeling of that behavior using representative, non-conservative, operating histories is not nearly as well documented in the public literature. Therefore, the objective of this paper is (a) to present calculations of LOCA induced behavior for Pressurized Water Reactor (PWR) core representative fuel rods, and (b) to discuss the variability in those calculations given the variability in fuel rod condition at the initiation of the LOCA. This analysis was limited to the study of changes in fuel rod behavior due to different power operating histories. The other two important parameters which affect that behavior, initial fuel rod design and LOCA coolant conditions were held invarient for all of the representative rods analyzed.

  8. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Astrophysics Data System (ADS)

    Wheeler, K.; Knuth, K.; Castle, P.

    2005-12-01

    Typical estimates of standing wood derived from remote sensing sources take advantage of aggregate measurements of canopy heights (e.g. LIDAR) and canopy diameters (segmentation of IKONOS imagery) to obtain a wood volume estimate by assuming homogeneous species and a fixed function that returns volume. The validation of such techniques use manually measured diameter at breast height records (DBH). Our goal is to improve the accuracy and applicability of biomass estimation methods to heterogeneous forests and transitional areas. We are developing estimates with quantifiable uncertainty using a new form of estimation function, active sampling, and volumetric reconstruction image rendering for species specific mass truth. Initially we are developing a Bayesian adaptive sampling method for BRDF associated with the MISR Rahman model with respect to categorical biomes. This involves characterizing the probability distributions of the 3 free parameters of the Rahman model for the 6 categories of biomes used by MISR. Subsequently, these distributions can be used to determine the optimal sampling methodology to distinguish biomes during acquisition. We have a remotely controlled semi-autonomous helicopter that has stereo imaging, lidar, differential GPS, and spectrometers covering wavelengths from visible to NIR. We intend to automatically vary the way points of the flight path via the Bayesian adaptive sampling method. The second critical part of this work is in automating the validation of biomass estimates via using machine vision techniques. This involves taking 2-D pictures of trees of known species, and then via Bayesian techniques, reconstructing 3-D models of the trees to estimate the distribution moments associated with wood volume. Similar techniques have been developed by the medical imaging community. This then provides probability distributions conditional upon species. The final part of this work is in relating the BRDF actively sampled measurements to species

  9. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  10. Can Monkeys (Macaca mulatta) Represent Invisible Displacement?

    NASA Technical Reports Server (NTRS)

    Filion, Christine M.; Washburn, David A.; Gulledge, Jonathan P.

    1996-01-01

    Four experiments were conducted to assess whether or not rhesus macaques (Macaca mulatta) could represent the unperceived movements of a stimulus. Subjects were tested on 2 computerized tasks, HOLE (monkeys) and LASER (humans and monkeys), in which subjects needed to chase or shoot at, respectively, a moving target that either remained visible or became invisible for a portion of its path of movement. Response patterns were analyzed and compared between target-visible and target-invisible conditions. Results of Experiments 1, 2, and 3 demonstrated that the monkeys are capable of extrapolating movement. That this extrapolation involved internal representation of the target's invisible movement was suggested but not confirmed. Experiment 4, however, demonstrated that the monkeys are capable of representing the invisible displacements of a stimulus.

  11. Representing culture in interstellar messages

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    2008-09-01

    As scholars involved with the Search for Extraterrestrial Intelligence (SETI) have contemplated how we might portray humankind in any messages sent to civilizations beyond Earth, one of the challenges they face is adequately representing the diversity of human cultures. For example, in a 2003 workshop in Paris sponsored by the SETI Institute, the International Academy of Astronautics (IAA) SETI Permanent Study Group, the International Society for the Arts, Sciences and Technology (ISAST), and the John Templeton Foundation, a varied group of artists, scientists, and scholars from the humanities considered how to encode notions of altruism in interstellar messages . Though the group represented 10 countries, most were from Europe and North America, leading to the group's recommendation that subsequent discussions on the topic should include more globally representative perspectives. As a result, the IAA Study Group on Interstellar Message Construction and the SETI Institute sponsored a follow-up workshop in Santa Fe, New Mexico, USA in February 2005. The Santa Fe workshop brought together scholars from a range of disciplines including anthropology, archaeology, chemistry, communication science, philosophy, and psychology. Participants included scholars familiar with interstellar message design as well as specialists in cross-cultural research who had participated in the Symposium on Altruism in Cross-cultural Perspective, held just prior to the workshop during the annual conference of the Society for Cross-cultural Research . The workshop included discussion of how cultural understandings of altruism can complement and critique the more biologically based models of altruism proposed for interstellar messages at the 2003 Paris workshop. This paper, written by the chair of both the Paris and Santa Fe workshops, will explore the challenges of communicating concepts of altruism that draw on both biological

  12. Judgments of and by Representativeness

    DTIC Science & Technology

    1981-05-15

    Keprt 0 Judgments Of and By Representativeness,,I Jan. , *80agoAprO &1 i, 7. A. COPATaNRA ___ N00014-79-C-0077 Am;os /ftversky - ail hea S . PERFORMING...value and a variable; ..4 an instance and a category; I& a sample and a population; 4(1 an effect and a cause. The principles of representativenes...reduces it probability. Several studies of judgment are reported in which naive and sophi- DD I FjA017 1473 ITorION OF I Nov S IIS isoSOLETE Unclassified S

  13. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  14. A robust and accurate formulation of molecular and colloidal electrostatics.

    PubMed

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y C

    2016-08-07

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.

  15. A robust and accurate formulation of molecular and colloidal electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2016-08-01

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.

  16. Accurate thermoelastic tensor and acoustic velocities of NaCl

    NASA Astrophysics Data System (ADS)

    Marcondes, Michel L.; Shukla, Gaurav; da Silveira, Pedro; Wentzcovitch, Renata M.

    2015-12-01

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.

  17. Accurate thermoelastic tensor and acoustic velocities of NaCl

    SciTech Connect

    Marcondes, Michel L.; Shukla, Gaurav; Silveira, Pedro da; Wentzcovitch, Renata M.

    2015-12-15

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.

  18. Representing the heavens: Galileo and visual astronomy.

    NASA Astrophysics Data System (ADS)

    Winkler, M. G.; van Helden, A.

    1992-06-01

    The authors present the following conclusion. Galileo was not alone in his ambivalent attitude toward visual communication in astronomy. His attitude was shared by his contemporaries. In fact, the use of visual evidence is surprisingly rare until after 1640. And when astronomers finally began using pictorial evidence, they did so with an explicit commitment to representing the heavens faithfully and accurately. Although Francesco Fontana was the first to publish an astronomical book in which pictorial information was central, it is in the work of Johannes Hevelius (1611 - 1687), a university trained brewer in the Polish city of Gdansk, that we see the new visual dimension of telescopic astronomy best exemplified. Hevelius's Selenographia sive lunae descriptio of 1647 contained figures of forty different lunar phases, four views of the full moon, eighty-three diagrams, and several illustrations of his equipment and the appearances of other heavenly bodies. What is even more interesting, Hevelius made his own telescopes and, he himself engraved virtually every illustration - diagram or picture - in the book, thus combining the roles of the natural philosopher and the lowly artisan. Hevelius's approach to representing the heavens was so different from Galileo's that he utterly misunderstood the purpose behind the views of the moon shown in Sidereus nuncius. Such a completely wrongheaded judgment of Galileo's instruments and his ability as an observer and draftsman shows just how different the worlds of these two men were. When, within the range of media available to them, Hevelius and others chose to make the visual component central in communicating their observations, astronomy became a visual science.

  19. Representing Model Inadequacy in Combustion Kinetics

    NASA Astrophysics Data System (ADS)

    Morrison, Rebecca E.; Moser, Robert D.

    2014-11-01

    An accurate description of the chemical processes involved in the oxidation of hydrocarbons may include hundreds of reactions and thirty or more chemical species. Kinetics models of these chemical mechanisms are often embedded in a fluid dynamics solver to represent combustion. Because the computational cost of such detailed mechanisms is so high, it is common practice to use drastically reduced mechanisms. But, this introduces modeling errors which may render the model inadequate. In this talk, we present a formulation of the model inadequacy in reduced models of hydrogen-methane combustion. Our goal is to account for the discrepancy between the high-fidelity model and its reduced version by incorporating an additive, linear, probabilistic inadequacy model. In effect, it is a random matrix, whose entries are characterized by probability distributions and which displays interesting properties due to conservation constraints. The distributions are calibrated via Bayesian inference using a hierarchical modeling scheme and high-dimensional MCMC. We apply this technique to a stand-alone reaction and also incorporate it within a one-dimensional laminar flame problem.

  20. Representing Chronic Disorders of Consciousness:

    PubMed Central

    Hall, Alice

    2014-01-01

    This article explores problems of voicelessness in Isabel Allende’s Paula (1995) through a focus on the story of Paula’s illness and subsequent death from porphyria in 1992. I argue that the language, categories and stories through which disorders of consciousness are constructed are central to ethical decision-making and shifting cultural understandings of these conditions. In Paula, Allende uses an experimental, hybrid narrative form that draws on illness narrative, magical realist novel, national history, letters, and memoir to challenge traditional depictions of “coma” and to create a new public space through which these issues of voicelessness can be addressed. PMID:25055709

  1. Want change? Call your representative

    NASA Astrophysics Data System (ADS)

    Fischhoff, Ilya R.

    2011-07-01

    During my tenure as an AGU Congressional Science Fellow, which began in September 2010 and continues until November 2011, my time has been shared between working with the U.S. House of Representatives Natural Resource Committee Democratic staff and in the office of Rep. Ed Markey (D-Mass., ranking Democrat on the committee). I appreciate getting to work with staff, fellows, and interns who inspire me, make me laugh, and know their issues cold. Much of my work on the committee is related to fish, wildlife, oceans, lands, and water issues and is directly related to my background in ecology and evolutionary biology (I studied zebra ecology and behavior in Kenya). My assignments have included asking the Environmental Protection Agency (EPA) about why it has not changed the allowed usage of certain pesticides that the National Marine Fisheries Service has found to jeopardize the recovery of endangered Pacific salmon; helping to identify research needs and management options to combat the swiftly spreading and catastrophic white nose syndrome in North American bats; and inquiring as to whether a captive-ape welfare bill, if passed without amendment, could thwart development of a vaccine to stop the Ebola virus from continuing to cause mass mortality in endangered wild apes.

  2. 43 CFR 45.10 - Who may represent a party, and what requirements apply to a representative?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Who may represent a party, and what requirements apply to a representative? 45.10 Section 45.10 Public Lands: Interior Office of the Secretary of the Interior CONDITIONS AND PRESCRIPTIONS IN FERC HYDROPOWER LICENSES Hearing Process...

  3. 43 CFR 45.10 - Who may represent a party, and what requirements apply to a representative?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Who may represent a party, and what requirements apply to a representative? 45.10 Section 45.10 Public Lands: Interior Office of the Secretary of the Interior CONDITIONS AND PRESCRIPTIONS IN FERC HYDROPOWER LICENSES Hearing Process...

  4. 43 CFR 45.10 - Who may represent a party, and what requirements apply to a representative?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Who may represent a party, and what requirements apply to a representative? 45.10 Section 45.10 Public Lands: Interior Office of the Secretary of the Interior CONDITIONS AND PRESCRIPTIONS IN FERC HYDROPOWER LICENSES Hearing Process...

  5. 43 CFR 45.10 - Who may represent a party, and what requirements apply to a representative?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Who may represent a party, and what requirements apply to a representative? 45.10 Section 45.10 Public Lands: Interior Office of the Secretary of the Interior CONDITIONS AND PRESCRIPTIONS IN FERC HYDROPOWER LICENSES Hearing Process...

  6. 43 CFR 45.10 - Who may represent a party, and what requirements apply to a representative?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Who may represent a party, and what requirements apply to a representative? 45.10 Section 45.10 Public Lands: Interior Office of the Secretary of the Interior CONDITIONS AND PRESCRIPTIONS IN FERC HYDROPOWER LICENSES Hearing Process...

  7. Accurately measuring volcanic plume velocity with multiple UV spectrometers

    USGS Publications Warehouse

    Williams-Jones, Glyn; Horton, Keith A.; Elias, Tamar; Garbeil, Harold; Mouginis-Mark, Peter J; Sutton, A. Jeff; Harris, Andrew J. L.

    2006-01-01

    A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Kīlauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s−1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements.

  8. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  9. More-Accurate Model of Flows in Rocket Injectors

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Chenoweth, James; Brinckman, Kevin; Dash, Sanford

    2011-01-01

    An improved computational model for simulating flows in liquid-propellant injectors in rocket engines has been developed. Models like this one are needed for predicting fluxes of heat in, and performances of, the engines. An important part of predicting performance is predicting fluctuations of temperature, fluctuations of concentrations of chemical species, and effects of turbulence on diffusion of heat and chemical species. Customarily, diffusion effects are represented by parameters known in the art as the Prandtl and Schmidt numbers. Prior formulations include ad hoc assumptions of constant values of these parameters, but these assumptions and, hence, the formulations, are inaccurate for complex flows. In the improved model, these parameters are neither constant nor specified in advance: instead, they are variables obtained as part of the solution. Consequently, this model represents the effects of turbulence on diffusion of heat and chemical species more accurately than prior formulations do, and may enable more-accurate prediction of mixing and flows of heat in rocket-engine combustion chambers. The model has been implemented within CRUNCH CFD, a proprietary computational fluid dynamics (CFD) computer program, and has been tested within that program. The model could also be implemented within other CFD programs.

  10. An Accurate and Dynamic Computer Graphics Muscle Model

    NASA Technical Reports Server (NTRS)

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  11. PSCAD Modules Representing PV Generator

    SciTech Connect

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  12. Accurate determination of the sedimentation flux of concentrated suspensions

    NASA Astrophysics Data System (ADS)

    Martin, J.; Rakotomalala, N.; Salin, D.

    1995-10-01

    Flow rate jumps are used to generate propagating concentration variations in a counterflow stabilized suspension (a liquid fluidized bed). An acoustic technique is used to measure accurately the resulting concentration profiles through the bed. Depending on the experimental conditions, we have observed self-sharpening, or/and self-spreading concentration fronts. Our data are analyzed in the framework of Kynch's theory, providing an accurate determination of the sedimentation flux [CU(C); U(C) is the hindered sedimentation velocity of the suspension] and its derivatives in the concentration range 30%-60%. In the vicinity of the packing concentration, controlling the flow rate has allowed us to increase the maximum packing up to 60%.

  13. Rapid and Accurate Identification of Candida albicans Isolates by Use of PNA FISHFlow▿

    PubMed Central

    Trnovsky, Jan; Merz, William; Della-Latta, Phyllis; Wu, Fann; Arendrup, Maiken Cavling; Stender, Henrik

    2008-01-01

    We developed the simple, rapid (1 h), and accurate PNA FISHFlow method for the identification of Candida albicans. The method exploits unique in solution in situ hybridization conditions under which the cells are simultaneously fixed and hybridized. This method facilitates the accurate identification of clinical yeast isolates using two scoring techniques: flow cytometry and fluorescence microscopy. PMID:18287325

  14. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  15. Accurate colorimetric feedback for RGB LED clusters

    NASA Astrophysics Data System (ADS)

    Man, Kwong; Ashdown, Ian

    2006-08-01

    We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.

  16. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  17. On accurate determination of contact angle

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  18. Utilizing typical color appearance models to represent perceptual brightness and colorfulness for digital images

    NASA Astrophysics Data System (ADS)

    Gong, Rui; Wang, Qing; Shao, Xiaopeng; Zhou, Conghao

    2016-12-01

    This study aims to expand the applications of color appearance models to representing the perceptual attributes for digital images, which supplies more accurate methods for predicting image brightness and image colorfulness. Two typical models, i.e., the CIELAB model and the CIECAM02, were involved in developing algorithms to predict brightness and colorfulness for various images, in which three methods were designed to handle pixels of different color contents. Moreover, massive visual data were collected from psychophysical experiments on two mobile displays under three lighting conditions to analyze the characteristics of visual perception on these two attributes and to test the prediction accuracy of each algorithm. Afterward, detailed analyses revealed that image brightness and image colorfulness were predicted well by calculating the CIECAM02 parameters of lightness and chroma; thus, the suitable methods for dealing with different color pixels were determined for image brightness and image colorfulness, respectively. This study supplies an example of enlarging color appearance models to describe image perception.

  19. Joint accurate time and stable frequency distribution infrastructure sharing fiber footprint with research network

    NASA Astrophysics Data System (ADS)

    Vojtech, Josef; Slapak, Martin; Skoda, Pavel; Radil, Jan; Havlis, Ondrej; Altmann, Michal; Munster, Petr; Smotlacha, Vladimir; Kundrat, Jan; Velc, Radek; Altmannova, Lada; Hula, Miloslav

    2016-09-01

    In this paper, we present infrastructure for accurate time and stable frequency distribution. It is based on sharing of fibers of research and educational network carrying data traffic. Accurate time and stable frequency transmission uses mainly created dark channels amplified by special bidirectional amplifiers with the same propagation path for both directions. Paper also targets challenges joined with bidirectional transmission, which represents directional non-reciprocities and interaction with parallel data transmissions.

  20. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  1. 42 CFR 405.910 - Appointed representatives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the party and the appointed representative. (2) To initiate an appeal within the 1-year time frame... representative. (j) Effect of notice or request to an appointed representative. A notice or request sent to the appointed representative has the same force and effect as if was sent to the party. (k)...

  2. BTeam, a Novel BRET-based Biosensor for the Accurate Quantification of ATP Concentration within Living Cells

    PubMed Central

    Yoshida, Tomoki; Kakizuka, Akira; Imamura, Hiromi

    2016-01-01

    ATP levels may represent fundamental health conditions of cells. However, precise measurement of intracellular ATP levels in living cells is hindered by the lack of suitable methodologies. Here, we developed a novel ATP biosensor termed “BTeam”. BTeam comprises a yellow fluorescent protein (YFP), the ATP binding domain of the ε subunit of the bacterial ATP synthase, and an ATP-nonconsuming luciferase (NLuc). To attain emission, BTeam simply required NLuc substrate. BTeam showed elevated bioluminescence resonance energy transfer efficiency upon ATP binding, resulted in the emission spectra changes correlating with ATP concentrations. By using values of YFP/NLuc emission ratio to represent ATP levels, BTeam achieved steady signal outputs even though emission intensities were altered. With this biosensor, we succeeded in the accurate quantification of intracellular ATP concentrations of a population of living cells, as demonstrated by detecting the slight distribution in the cytosol (3.7–4.1 mM) and mitochondrial matrix (2.4–2.7 mM) within some cultured cell lines. Furthermore, BTeam allowed continuous tracing of cytosolic ATP levels of the same cells, as well as bioluminescent imaging of cytosolic ATP dynamics within individual cells. This simple and accurate technique should be an effective method for quantitative measurement of intracellular ATP concentrations. PMID:28000761

  3. Dynamical correction of control laws for marine ships' accurate steering

    NASA Astrophysics Data System (ADS)

    Veremey, Evgeny I.

    2014-06-01

    The objective of this work is the analytical synthesis problem for marine vehicles autopilots design. Despite numerous known methods for a solution, the mentioned problem is very complicated due to the presence of an extensive population of certain dynamical conditions, requirements and restrictions, which must be satisfied by the appropriate choice of a steering control law. The aim of this paper is to simplify the procedure of the synthesis, providing accurate steering with desirable dynamics of the control system. The approach proposed here is based on the usage of a special unified multipurpose control law structure that allows decoupling a synthesis into simpler particular optimization problems. In particular, this structure includes a dynamical corrector to support the desirable features for the vehicle's motion under the action of sea wave disturbances. As a result, a specialized new method for the corrector design is proposed to provide an accurate steering or a trade-off between accurate steering and economical steering of the ship. This method guaranties a certain flexibility of the control law with respect to an actual environment of the sailing; its corresponding turning can be realized in real time onboard.

  4. Accurate modelling of unsteady flows in collapsible tubes.

    PubMed

    Marchandise, Emilie; Flaud, Patrice

    2010-01-01

    The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.

  5. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  6. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  7. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a

  8. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material.

  9. Ultrasonic corrosion condition monitoring - A systematised approach

    SciTech Connect

    Yates, A.

    1985-01-01

    The technique of taking ultrasonic thickness readings as a basis for assessing corrosion and erosion damage on structures and pipework systems is an established means of obtaining condition data. To ensure that surveys carried out in this way are relevant and useful, several conditions must be met: 1. Individual readings must be accurate and the measuring system must be capable of ignoring paints and coatings at the test point; 2. Test points must be appropriately positioned; 3. Sufficient points must be taken to give a representative sample; 4. Reporting must be in a format which is readable, flexible and capable of highlighting anomalies. Following extensive experience in onshore and offshore corrosion condition surveys, systems have been evolved which have improved the efficiency of this approach in all the above areas.

  10. Accurate taxonomic assignment of short pyrosequencing reads.

    PubMed

    Clemente, José C; Jansson, Jesper; Valiente, Gabriel

    2010-01-01

    Ambiguities in the taxonomy dependent assignment of pyrosequencing reads are usually resolved by mapping each read to the lowest common ancestor in a reference taxonomy of all those sequences that match the read. This conservative approach has the drawback of mapping a read to a possibly large clade that may also contain many sequences not matching the read. A more accurate taxonomic assignment of short reads can be made by mapping each read to the node in the reference taxonomy that provides the best precision and recall. We show that given a suffix array for the sequences in the reference taxonomy, a short read can be mapped to the node of the reference taxonomy with the best combined value of precision and recall in time linear in the size of the taxonomy subtree rooted at the lowest common ancestor of the matching sequences. An accurate taxonomic assignment of short reads can thus be made with about the same efficiency as when mapping each read to the lowest common ancestor of all matching sequences in a reference taxonomy. We demonstrate the effectiveness of our approach on several metagenomic datasets of marine and gut microbiota.

  11. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  12. Sparse and accurate high resolution SAR imaging

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Zhao, Kexin; Rowe, William; Li, Jian

    2012-05-01

    We investigate the usage of an adaptive method, the Iterative Adaptive Approach (IAA), in combination with a maximum a posteriori (MAP) estimate to reconstruct high resolution SAR images that are both sparse and accurate. IAA is a nonparametric weighted least squares algorithm that is robust and user parameter-free. IAA has been shown to reconstruct SAR images with excellent side lobes suppression and high resolution enhancement. We first reconstruct the SAR images using IAA, and then we enforce sparsity by using MAP with a sparsity inducing prior. By coupling these two methods, we can produce a sparse and accurate high resolution image that are conducive for feature extractions and target classification applications. In addition, we show how IAA can be made computationally efficient without sacrificing accuracies, a desirable property for SAR applications where the size of the problems is quite large. We demonstrate the success of our approach using the Air Force Research Lab's "Gotcha Volumetric SAR Data Set Version 1.0" challenge dataset. Via the widely used FFT, individual vehicles contained in the scene are barely recognizable due to the poor resolution and high side lobe nature of FFT. However with our approach clear edges, boundaries, and textures of the vehicles are obtained.

  13. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  14. Accurate oscillator strengths for interstellar ultraviolet lines of Cl I

    NASA Technical Reports Server (NTRS)

    Schectman, R. M.; Federman, S. R.; Beideck, D. J.; Ellis, D. J.

    1993-01-01

    Analyses on the abundance of interstellar chlorine rely on accurate oscillator strengths for ultraviolet transitions. Beam-foil spectroscopy was used to obtain f-values for the astrophysically important lines of Cl I at 1088, 1097, and 1347 A. In addition, the line at 1363 A was studied. Our f-values for 1088, 1097 A represent the first laboratory measurements for these lines; the values are f(1088)=0.081 +/- 0.007 (1 sigma) and f(1097) = 0.0088 +/- 0.0013 (1 sigma). These results resolve the issue regarding the relative strengths for 1088, 1097 A in favor of those suggested by astronomical measurements. For the other lines, our results of f(1347) = 0.153 +/- 0.011 (1 sigma) and f(1363) = 0.055 +/- 0.004 (1 sigma) are the most precisely measured values available. The f-values are somewhat greater than previous experimental and theoretical determinations.

  15. Accurate measure by weight of liquids in industry

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research's focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  16. Accurate measure by weight of liquids in industry. Final report

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research`s focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  17. Wave propagation in equivalent continuums representing truss lattice materials

    SciTech Connect

    Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; Barton, Nathan R.

    2015-07-29

    Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures consisting of these lattice materials, but the design of such structures will require accurate, efficient simulation techniques. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss is complicated by microinertial effects. This paper derives a dynamic equivalent continuum model for periodic truss structures and verifies it against detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long-wavelength characteristics of the response such as anisotropic elastic soundspeeds. The formulation presented here also improves upon previous work by preserving equilibrium at truss joints for affine lattice deformation and by improving numerical stability by eliminating vertices in the effective yield surface.

  18. D-BRAIN: Anatomically Accurate Simulated Diffusion MRI Brain Data.

    PubMed

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT algorithms have been developed. However, it is not clear how accurately these methods reproduce the WM bundle characteristics in real-world conditions, such as in the presence of noise, partial volume effect, and a limited spatial and angular resolution. The difficulty lies in the lack of a realistic brain phantom on the one hand, and a sufficiently accurate way of modeling the acquisition-related degradation on the other. This paper proposes a software phantom that approximates a human brain to a high degree of realism and that can incorporate complex brain-like structural features. We refer to it as a Diffusion BRAIN (D-BRAIN) phantom. Also, we propose an accurate model of a (DW) MRI acquisition protocol to allow for validation of methods in realistic conditions with data imperfections. The phantom model simulates anatomical and diffusion properties for multiple brain tissue components, and can serve as a ground-truth to evaluate FT algorithms, among others. The simulation of the acquisition process allows one to include noise, partial volume effects, and limited spatial and angular resolution in the images. In this way, the effect of image artifacts on, for instance, fiber tractography can be investigated with great detail. The proposed framework enables reliable and quantitative evaluation of DW-MR image processing and FT algorithms at the level of large-scale WM structures. The effect of noise levels and other data characteristics on cortico-cortical connectivity and tractography-based grey matter parcellation can be investigated as well.

  19. An accurate elasto-plastic frictional tangential force displacement model for granular-flow simulations: Displacement-driven formulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Vu-Quoc, Loc

    2007-07-01

    We present in this paper the displacement-driven version of a tangential force-displacement (TFD) model that accounts for both elastic and plastic deformations together with interfacial friction occurring in collisions of spherical particles. This elasto-plastic frictional TFD model, with its force-driven version presented in [L. Vu-Quoc, L. Lesburg, X. Zhang. An accurate tangential force-displacement model for granular-flow simulations: contacting spheres with plastic deformation, force-driven formulation, Journal of Computational Physics 196(1) (2004) 298-326], is consistent with the elasto-plastic frictional normal force-displacement (NFD) model presented in [L. Vu-Quoc, X. Zhang. An elasto-plastic contact force-displacement model in the normal direction: displacement-driven version, Proceedings of the Royal Society of London, Series A 455 (1991) 4013-4044]. Both the NFD model and the present TFD model are based on the concept of additive decomposition of the radius of contact area into an elastic part and a plastic part. The effect of permanent indentation after impact is represented by a correction to the radius of curvature. The effect of material softening due to plastic flow is represented by a correction to the elastic moduli. The proposed TFD model is accurate, and is validated against nonlinear finite element analyses involving plastic flows in both the loading and unloading conditions. The proposed consistent displacement-driven, elasto-plastic NFD and TFD models are designed for implementation in computer codes using the discrete-element method (DEM) for granular-flow simulations. The model is shown to be accurate and is validated against nonlinear elasto-plastic finite-element analysis.

  20. Fuel options from microalgae with representative chemical compositions

    SciTech Connect

    Feinberg, D. A.

    1984-07-01

    Representative species of microalgae are examined with respect to their reported chemical compositions. Each species is analyzed under a variety of culture conditions, with the objective being to characterize an optimum mixture of fuel products (e.g., methane, ethanol, methylester) which should be produced by the particular species. Historically the emphasis has been on the entire algal cell mass. Using the reported chemical composition for the representative species under specific sets of growth conditions, some conclusions can be drawn about the preferred fuel product conversion routes that could be employed. 10 references, 7 figures, 12 tables.

  1. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  2. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  3. LSM: perceptually accurate line segment merging

    NASA Astrophysics Data System (ADS)

    Hamid, Naila; Khan, Nazar

    2016-11-01

    Existing line segment detectors tend to break up perceptually distinct line segments into multiple segments. We propose an algorithm for merging such broken segments to recover the original perceptually accurate line segments. The algorithm proceeds by grouping line segments on the basis of angular and spatial proximity. Then those line segment pairs within each group that satisfy unique, adaptive mergeability criteria are successively merged to form a single line segment. This process is repeated until no more line segments can be merged. We also propose a method for quantitative comparison of line segment detection algorithms. Results on the York Urban dataset show that our merged line segments are closer to human-marked ground-truth line segments compared to state-of-the-art line segment detection algorithms.

  4. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  5. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  6. Obtaining accurate translations from expressed sequence tags.

    PubMed

    Wasmuth, James; Blaxter, Mark

    2009-01-01

    The genomes of an increasing number of species are being investigated through the generation of expressed sequence tags (ESTs). However, ESTs are prone to sequencing errors and typically define incomplete transcripts, making downstream annotation difficult. Annotation would be greatly improved with robust polypeptide translations. Many current solutions for EST translation require a large number of full-length gene sequences for training purposes, a resource that is not available for the majority of EST projects. As part of our ongoing EST programs investigating these "neglected" genomes, we have developed a polypeptide prediction pipeline, prot4EST. It incorporates freely available software to produce final translations that are more accurate than those derived from any single method. We describe how this integrated approach goes a long way to overcoming the deficit in training data.

  7. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  8. Accurate radio positions with the Tidbinbilla interferometer

    NASA Technical Reports Server (NTRS)

    Batty, M. J.; Gulkis, S.; Jauncey, D. L.; Rayner, P. T.

    1979-01-01

    The Tidbinbilla interferometer (Batty et al., 1977) is designed specifically to provide accurate radio position measurements of compact radio sources in the Southern Hemisphere with high sensitivity. The interferometer uses the 26-m and 64-m antennas of the Deep Space Network at Tidbinbilla, near Canberra. The two antennas are separated by 200 m on a north-south baseline. By utilizing the existing antennas and the low-noise traveling-wave masers at 2.29 GHz, it has been possible to produce a high-sensitivity instrument with a minimum of capital expenditure. The north-south baseline ensures that a good range of UV coverage is obtained, so that sources lying in the declination range between about -80 and +30 deg may be observed with nearly orthogonal projected baselines of no less than about 1000 lambda. The instrument also provides high-accuracy flux density measurements for compact radio sources.

  9. Magnetic ranging tool accurately guides replacement well

    SciTech Connect

    Lane, J.B.; Wesson, J.P. )

    1992-12-21

    This paper reports on magnetic ranging surveys and directional drilling technology which accurately guided a replacement well bore to intersect a leaking gas storage well with casing damage. The second well bore was then used to pump cement into the original leaking casing shoe. The repair well bore kicked off from the surface hole, bypassed casing damage in the middle of the well, and intersected the damaged well near the casing shoe. The repair well was subsequently completed in the gas storage zone near the original well bore, salvaging the valuable bottom hole location in the reservoir. This method would prevent the loss of storage gas, and it would prevent a potential underground blowout that could permanently damage the integrity of the storage field.

  10. 50 CFR 1.2 - Authorized representative.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR GENERAL PROVISIONS DEFINITIONS § 1.2 Authorized representative. Authorized representative means the subordinate... matters. The Director, U.S. Fish and Wildlife Service is frequently the authorized representative of...

  11. 29 CFR 1201.6 - Representatives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Representatives. 1201.6 Section 1201.6 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.6 Representatives. The term representative means any person or persons, labor union, organization, or corporation designated either by...

  12. 29 CFR 1201.6 - Representatives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Representatives. 1201.6 Section 1201.6 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.6 Representatives. The term representative means any person or persons, labor union, organization, or corporation designated either by...

  13. 29 CFR 1201.6 - Representatives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Representatives. 1201.6 Section 1201.6 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.6 Representatives. The term representative means any person or persons, labor union, organization, or corporation designated either by...

  14. 29 CFR 1201.6 - Representatives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false Representatives. 1201.6 Section 1201.6 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.6 Representatives. The term representative means any person or persons, labor union, organization, or corporation designated either by...

  15. 29 CFR 1201.6 - Representatives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Representatives. 1201.6 Section 1201.6 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.6 Representatives. The term representative means any person or persons, labor union, organization, or corporation designated either by...

  16. 45 CFR 2400.11 - Faculty representatives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Faculty representatives. 2400.11 Section 2400.11... FOUNDATION FELLOWSHIP PROGRAM REQUIREMENTS Application § 2400.11 Faculty representatives. Each college and university that chooses to do so may annually appoint or reappoint a faculty representative who will be...

  17. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.

  18. Simulating a Nationally Representative Housing Sample Using EnergyPlus

    SciTech Connect

    Hopkins, Asa S.; Lekov, Alex; Lutz, James; Rosenquist, Gregory; Gu, Lixing

    2011-03-04

    This report presents a new simulation tool under development at Lawrence Berkeley National Laboratory (LBNL). This tool uses EnergyPlus to simulate each single-family home in the Residential Energy Consumption Survey (RECS), and generates a calibrated, nationally representative set of simulated homes whose energy use is statistically indistinguishable from the energy use of the single-family homes in the RECS sample. This research builds upon earlier work by Ritchard et al. for the Gas Research Institute and Huang et al. for LBNL. A representative national sample allows us to evaluate the variance in energy use between individual homes, regions, or other subsamples; using this tool, we can also evaluate how that variance affects the impacts of potential policies. The RECS contains information regarding the construction and location of each sampled home, as well as its appliances and other energy-using equipment. We combined this data with the home simulation prototypes developed by Huang et al. to simulate homes that match the RECS sample wherever possible. Where data was not available, we used distributions, calibrated using the RECS energy use data. Each home was assigned a best-fit location for the purposes of weather and some construction characteristics. RECS provides some detail on the type and age of heating, ventilation, and air-conditioning (HVAC) equipment in each home; we developed EnergyPlus models capable of reproducing the variety of technologies and efficiencies represented in the national sample. This includes electric, gas, and oil furnaces, central and window air conditioners, central heat pumps, and baseboard heaters. We also developed a model of duct system performance, based on in-home measurements, and integrated this with fan performance to capture the energy use of single- and variable-speed furnace fans, as well as the interaction of duct and fan performance with the efficiency of heating and cooling equipment. Comparison with RECS revealed

  19. Higher order accurate partial implicitization: An unconditionally stable fourth-order-accurate explicit numerical technique

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1975-01-01

    The previously obtained second-order-accurate partial implicitization numerical technique used in the solution of fluid dynamic problems was modified with little complication to achieve fourth-order accuracy. The Von Neumann stability analysis demonstrated the unconditional linear stability of the technique. The order of the truncation error was deduced from the Taylor series expansions of the linearized difference equations and was verified by numerical solutions to Burger's equation. For comparison, results were also obtained for Burger's equation using a second-order-accurate partial-implicitization scheme, as well as the fourth-order scheme of Kreiss.

  20. High order accurate solutions of viscous problems

    NASA Technical Reports Server (NTRS)

    Hayder, M. E.; Turkel, Eli

    1993-01-01

    We consider a fourth order extension to MacCormack's scheme. The original extension was fourth order only for the inviscid terms but was second order for the viscous terms. We show how to modify the viscous terms so that the scheme is uniformly fourth order in the spatial derivatives. Applications are given to some boundary layer flows. In addition, for applications to shear flows the effect of the outflow boundary conditions are very important. We compare the accuracy of several of these different boundary conditions for both boundary layer and shear flows. Stretching at the outflow usually increases the oscillations in the numerical solution but the addition of a filtered sponge layer (with or without stretching) reduces such oscillations. The oscillations are generated by insufficient resolution of the shear layer. When the shear layer is sufficiently resolved then oscillations are not generated and there is less of a need for a nonreflecting boundary condition.

  1. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay

    2005-01-01

    The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.

  2. Does a pneumotach accurately characterize voice function?

    NASA Astrophysics Data System (ADS)

    Walters, Gage; Krane, Michael

    2016-11-01

    A study is presented which addresses how a pneumotach might adversely affect clinical measurements of voice function. A pneumotach is a device, typically a mask, worn over the mouth, in order to measure time-varying glottal volume flow. By measuring the time-varying difference in pressure across a known aerodynamic resistance element in the mask, the glottal volume flow waveform is estimated. Because it adds aerodynamic resistance to the vocal system, there is some concern that using a pneumotach may not accurately portray the behavior of the voice. To test this hypothesis, experiments were performed in a simplified airway model with the principal dimensions of an adult human upper airway. A compliant constriction, fabricated from silicone rubber, modeled the vocal folds. Variations of transglottal pressure, time-averaged volume flow, model vocal fold vibration amplitude, and radiated sound with subglottal pressure were performed, with and without the pneumotach in place, and differences noted. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  3. Accurate thermoplasmonic simulation of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Da-Miao; Liu, Yan-Nan; Tian, Fa-Lin; Pan, Xiao-Min; Sheng, Xin-Qing

    2017-01-01

    Thermoplasmonics leads to enhanced heat generation due to the localized surface plasmon resonances. The measurement of heat generation is fundamentally a complicated task, which necessitates the development of theoretical simulation techniques. In this paper, an efficient and accurate numerical scheme is proposed for applications with complex metallic nanostructures. Light absorption and temperature increase are, respectively, obtained by solving the volume integral equation (VIE) and the steady-state heat diffusion equation through the method of moments (MoM). Previously, methods based on surface integral equations (SIEs) were utilized to obtain light absorption. However, computing light absorption from the equivalent current is as expensive as O(NsNv), where Ns and Nv, respectively, denote the number of surface and volumetric unknowns. Our approach reduces the cost to O(Nv) by using VIE. The accuracy, efficiency and capability of the proposed scheme are validated by multiple simulations. The simulations show that our proposed method is more efficient than the approach based on SIEs under comparable accuracy, especially for the case where many incidents are of interest. The simulations also indicate that the temperature profile can be tuned by several factors, such as the geometry configuration of array, beam direction, and light wavelength.

  4. Accurate method for computing correlated color temperature.

    PubMed

    Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier

    2016-06-27

    For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 106 K.

  5. Accurate Theoretical Thermochemistry for Fluoroethyl Radicals.

    PubMed

    Ganyecz, Ádám; Kállay, Mihály; Csontos, József

    2017-02-09

    An accurate coupled-cluster (CC) based model chemistry was applied to calculate reliable thermochemical quantities for hydrofluorocarbon derivatives including radicals 1-fluoroethyl (CH3-CHF), 1,1-difluoroethyl (CH3-CF2), 2-fluoroethyl (CH2F-CH2), 1,2-difluoroethyl (CH2F-CHF), 2,2-difluoroethyl (CHF2-CH2), 2,2,2-trifluoroethyl (CF3-CH2), 1,2,2,2-tetrafluoroethyl (CF3-CHF), and pentafluoroethyl (CF3-CF2). The model chemistry used contains iterative triple and perturbative quadruple excitations in CC theory, as well as scalar relativistic and diagonal Born-Oppenheimer corrections. To obtain heat of formation values with better than chemical accuracy perturbative quadruple excitations and scalar relativistic corrections were inevitable. Their contributions to the heats of formation steadily increase with the number of fluorine atoms in the radical reaching 10 kJ/mol for CF3-CF2. When discrepancies were found between the experimental and our values it was always possible to resolve the issue by recalculating the experimental result with currently recommended auxiliary data. For each radical studied here this study delivers the best heat of formation as well as entropy data.

  6. Accurate methods for large molecular systems.

    PubMed

    Gordon, Mark S; Mullin, Jonathan M; Pruitt, Spencer R; Roskop, Luke B; Slipchenko, Lyudmila V; Boatz, Jerry A

    2009-07-23

    Three exciting new methods that address the accurate prediction of processes and properties of large molecular systems are discussed. The systematic fragmentation method (SFM) and the fragment molecular orbital (FMO) method both decompose a large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in very different ways that are designed to both retain the high accuracy of the chosen quantum mechanical level of theory while greatly reducing the demands on computational time and resources. Each of these methods is inherently scalable and is therefore eminently capable of taking advantage of massively parallel computer hardware while retaining the accuracy of the corresponding electronic structure method from which it is derived. The effective fragment potential (EFP) method is a sophisticated approach for the prediction of nonbonded and intermolecular interactions. Therefore, the EFP method provides a way to further reduce the computational effort while retaining accuracy by treating the far-field interactions in place of the full electronic structure method. The performance of the methods is demonstrated using applications to several systems, including benzene dimer, small organic species, pieces of the alpha helix, water, and ionic liquids.

  7. Accurate equilibrium structures for piperidine and cyclohexane.

    PubMed

    Demaison, Jean; Craig, Norman C; Groner, Peter; Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Rudolph, Heinz Dieter

    2015-03-05

    Extended and improved microwave (MW) measurements are reported for the isotopologues of piperidine. New ground state (GS) rotational constants are fitted to MW transitions with quartic centrifugal distortion constants taken from ab initio calculations. Predicate values for the geometric parameters of piperidine and cyclohexane are found from a high level of ab initio theory including adjustments for basis set dependence and for correlation of the core electrons. Equilibrium rotational constants are obtained from GS rotational constants corrected for vibration-rotation interactions and electronic contributions. Equilibrium structures for piperidine and cyclohexane are fitted by the mixed estimation method. In this method, structural parameters are fitted concurrently to predicate parameters (with appropriate uncertainties) and moments of inertia (with uncertainties). The new structures are regarded as being accurate to 0.001 Å and 0.2°. Comparisons are made between bond parameters in equatorial piperidine and cyclohexane. Another interesting result of this study is that a structure determination is an effective way to check the accuracy of the ground state experimental rotational constants.

  8. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  9. Accurate upper body rehabilitation system using kinect.

    PubMed

    Sinha, Sanjana; Bhowmick, Brojeshwar; Chakravarty, Kingshuk; Sinha, Aniruddha; Das, Abhijit

    2016-08-01

    The growing importance of Kinect as a tool for clinical assessment and rehabilitation is due to its portability, low cost and markerless system for human motion capture. However, the accuracy of Kinect in measuring three-dimensional body joint center locations often fails to meet clinical standards of accuracy when compared to marker-based motion capture systems such as Vicon. The length of the body segment connecting any two joints, measured as the distance between three-dimensional Kinect skeleton joint coordinates, has been observed to vary with time. The orientation of the line connecting adjoining Kinect skeletal coordinates has also been seen to differ from the actual orientation of the physical body segment. Hence we have proposed an optimization method that utilizes Kinect Depth and RGB information to search for the joint center location that satisfies constraints on body segment length and as well as orientation. An experimental study have been carried out on ten healthy participants performing upper body range of motion exercises. The results report 72% reduction in body segment length variance and 2° improvement in Range of Motion (ROM) angle hence enabling to more accurate measurements for upper limb exercises.

  10. Noninvasive hemoglobin monitoring: how accurate is enough?

    PubMed

    Rice, Mark J; Gravenstein, Nikolaus; Morey, Timothy E

    2013-10-01

    Evaluating the accuracy of medical devices has traditionally been a blend of statistical analyses, at times without contextualizing the clinical application. There have been a number of recent publications on the accuracy of a continuous noninvasive hemoglobin measurement device, the Masimo Radical-7 Pulse Co-oximeter, focusing on the traditional statistical metrics of bias and precision. In this review, which contains material presented at the Innovations and Applications of Monitoring Perfusion, Oxygenation, and Ventilation (IAMPOV) Symposium at Yale University in 2012, we critically investigated these metrics as applied to the new technology, exploring what is required of a noninvasive hemoglobin monitor and whether the conventional statistics adequately answer our questions about clinical accuracy. We discuss the glucose error grid, well known in the glucose monitoring literature, and describe an analogous version for hemoglobin monitoring. This hemoglobin error grid can be used to evaluate the required clinical accuracy (±g/dL) of a hemoglobin measurement device to provide more conclusive evidence on whether to transfuse an individual patient. The important decision to transfuse a patient usually requires both an accurate hemoglobin measurement and a physiologic reason to elect transfusion. It is our opinion that the published accuracy data of the Masimo Radical-7 is not good enough to make the transfusion decision.

  11. Accurate Fission Data for Nuclear Safety

    NASA Astrophysics Data System (ADS)

    Solders, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Lantz, M.; Mattera, A.; Penttilä, H.; Pomp, S.; Rakopoulos, V.; Rinta-Antila, S.

    2014-05-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyväskylä. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (1012 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.

  12. A nested rediscretization method to improve pathline resolution by eliminating weak sinks representing wells.

    PubMed

    Spitz, F J; Nicholson, R S; Pope, D A

    2001-01-01

    This paper discusses a method for overcoming the problem of weak sinks representing wells that result from spatial discretization effects when using MODPATH, the particle-tracking postprocessor for the ground water flow model MODFLOW. Weak sink cells are model cells that represent a well that does not discharge at a sufficiently large rate to capture all of the flow entering the cell; therefore, flowpaths within these cells cannot be uniquely defined because it is impossible to know whether a given water particle discharges to the well or passes through the cell. Creating a submodel of the well cell by using the nested rediscretization method can eliminate this ambiguity by converting the weak sink cell into a strong sink cell. The method is designed to be run manually for each well and for steady-state conditions. Other advantages, disadvantages, technical considerations, and limitations of the method are presented. Software created for the method consists of five Fortran programs that are operated using a set of instructions. A practical application of the method is presented by using an example wellhead-protection problem that demonstrates that nested rediscretization can provide more accurate particle-tracking results than those obtained by using a coarsely discretized model alone.

  13. Accurate and precise zinc isotope ratio measurements in urban aerosols.

    PubMed

    Gioia, Simone; Weiss, Dominik; Coles, Barry; Arnold, Tim; Babinski, Marly

    2008-12-15

    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of delta(66)Zn determinations in aerosols is around 0.05 per thousand per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in delta(66)Zn(Imperial) ranging between -0.96 and -0.37 per thousand in coarse and between -1.04 and 0.02 per thousand in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source. We present further delta(66)Zn(Imperial) data for the standard reference material NIST SRM 2783 (delta(66)Zn(Imperial) = 0.26 +/- 0.10 per thousand).

  14. Representativeness of air quality monitoring networks

    NASA Astrophysics Data System (ADS)

    Duyzer, Jan; van den Hout, Dick; Zandveld, Peter; van Ratingen, Sjoerd

    2015-03-01

    pollution between the cities. In Stuttgart the stations are, in line with the EU directive, placed in the most polluted streets, while in other cities there are no stations in the streets with the highest pollution levels. - The concentrations measured at street stations - particularly where buildings inhibit ventilation - are very sensitive to the exact location within the street. Different siting choices may have an effect that for NO2 could reach up to 10 μg/m3 in realistic conditions. Street stations, representing only a small urban area, are not suitable for characterising the exposure of the general population. It is important to note that epidemiological studies whether investigating short term-effects or those studying long-term effects are potentially affected by the issues raised in the paper. Long-term cumulative exposure estimates that are based rather uncritically on monitoring data may be biased if the stations are not representative. It is recommended to use models to support the interpretation and spatial extrapolation of the results of measurements in existing networks. The use of models also relaxes the need for station relocation in inadequate networks, which often would compromise trend analysis. It also relaxes the importance of exact or detailed, comprehensive, station classifications since all stations can be used in exposure assessments.

  15. Accurately Diagnosing and Treating Borderline Personality Disorder

    PubMed Central

    Gentile, Julie P.; Correll, Terry L.

    2010-01-01

    The high prevalence of comorbid bipolar and borderline personality disorders and some diagnostic criteria similar to both conditions present both diagnostic and therapeutic challenges. This article delineates certain symptoms which, by careful history taking, may be attributed more closely to one of these two disorders. Making the correct primary diagnosis along with comorbid psychiatric conditions and choosing the appropriate type of psychotherapy and pharmacotherapy are critical steps to a patient's recovery. In this article, we will use a case example to illustrate some of the challenges the psychiatrist may face in diagnosing and treating borderline personality disorder. In addition, we will explore treatment strategies, including various types of therapy modalities and medication classes, which may prove effective in stabilizing or reducing a broad range of symptomotology associated with borderline personality disorder. PMID:20508805

  16. Seismic Waves, 4th order accurate

    SciTech Connect

    2013-08-16

    SW4 is a program for simulating seismic wave propagation on parallel computers. SW4 colves the seismic wave equations in Cartesian corrdinates. It is therefore appropriate for regional simulations, where the curvature of the earth can be neglected. SW4 implements a free surface boundary condition on a realistic topography, absorbing super-grid conditions on the far-field boundaries, and a kinematic source model consisting of point force and/or point moment tensor source terms. SW4 supports a fully 3-D heterogeneous material model that can be specified in several formats. SW4 can output synthetic seismograms in an ASCII test format, or in the SAC finary format. It can also present simulation information as GMT scripts, whixh can be used to create annotated maps. Furthermore, SW4 can output the solution as well as the material model along 2-D grid planes.

  17. Towards more accurate vegetation mortality predictions

    DOE PAGES

    Sevanto, Sanna Annika; Xu, Chonggang

    2016-09-26

    Predicting the fate of vegetation under changing climate is one of the major challenges of the climate modeling community. Here, terrestrial vegetation dominates the carbon and water cycles over land areas, and dramatic changes in vegetation cover resulting from stressful environmental conditions such as drought feed directly back to local and regional climate, potentially leading to a vicious cycle where vegetation recovery after a disturbance is delayed or impossible.

  18. Moss δ(13) C: an accurate proxy for past water environments in polar regions.

    PubMed

    Bramley-Alves, Jessica; Wanek, Wolfgang; French, Kristine; Robinson, Sharon A

    2015-06-01

    Increased aridity is of global concern. Polar regions provide an opportunity to monitor changes in bioavailable water free of local anthropogenic influences. However, sophisticated proxy measures are needed. We explored the possibility of using stable carbon isotopes in segments of moss as a fine-scale proxy for past bioavailable water. Variation in δ(13) C with water availability was measured in three species across three peninsulas in the Windmill Islands, East Antarctica and verified using controlled chamber experiments. The δ(13) C from Antarctic mosses accurately recorded long-term variations in water availability in the field, regardless of location, but significant disparities in δ(13) C between species indicated some make more sensitive proxies. δ(13) CSUGAR derived from living tissues can change significantly within the span of an Antarctic season (5 weeks) in chambers, but under field conditions, slow growth means that this technique likely represents multiple seasons. δ(13) CCELLULOSE provides a precise and direct proxy for bioavailable water, allowing reconstructions for coastal Antarctica and potentially other cold regions over past centuries.

  19. Accurate computation of surface stresses and forces with immersed boundary methods

    NASA Astrophysics Data System (ADS)

    Goza, Andres; Liska, Sebastian; Morley, Benjamin; Colonius, Tim

    2016-09-01

    Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is applied as a post-processing procedure, so that the convergence of the velocity field is unaffected. We demonstrate the efficacy of the method by computing stresses and forces that converge to the physical stresses and forces for several test problems.

  20. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  1. Accurate glucose detection in a small etalon

    NASA Astrophysics Data System (ADS)

    Martini, Joerg; Kuebler, Sebastian; Recht, Michael; Torres, Francisco; Roe, Jeffrey; Kiesel, Peter; Bruce, Richard

    2010-02-01

    We are developing a continuous glucose monitor for subcutaneous long-term implantation. This detector contains a double chamber Fabry-Perot-etalon that measures the differential refractive index (RI) between a reference and a measurement chamber at 850 nm. The etalon chambers have wavelength dependent transmission maxima which dependent linearly on the RI of their contents. An RI difference of ▵n=1.5.10-6 changes the spectral position of a transmission maximum by 1pm in our measurement. By sweeping the wavelength of a single-mode Vertical-Cavity-Surface-Emitting-Laser (VCSEL) linearly in time and detecting the maximum transmission peaks of the etalon we are able to measure the RI of a liquid. We have demonstrated accuracy of ▵n=+/-3.5.10-6 over a ▵n-range of 0 to 1.75.10-4 and an accuracy of 2% over a ▵nrange of 1.75.10-4 to 9.8.10-4. The accuracy is primarily limited by the reference measurement. The RI difference between the etalon chambers is made specific to glucose by the competitive, reversible release of Concanavalin A (ConA) from an immobilized dextran matrix. The matrix and ConA bound to it, is positioned outside the optical detection path. ConA is released from the matrix by reacting with glucose and diffuses into the optical path to change the RI in the etalon. Factors such as temperature affect the RI in measurement and detection chamber equally but do not affect the differential measurement. A typical standard deviation in RI is +/-1.4.10-6 over the range 32°C to 42°C. The detector enables an accurate glucose specific concentration measurement.

  2. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  3. Towards Accurate Application Characterization for Exascale (APEX)

    SciTech Connect

    Hammond, Simon David

    2015-09-01

    Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.

  4. Acquisition of accurate data from intramolecular quenched fluorescence protease assays.

    PubMed

    Arachea, Buenafe T; Wiener, Michael C

    2017-04-01

    The Intramolecular Quenched Fluorescence (IQF) protease assay utilizes peptide substrates containing donor-quencher pairs that flank the scissile bond. Following protease cleavage, the dequenched donor emission of the product is subsequently measured. Inspection of the IQF literature indicates that rigorous treatment of systematic errors in observed fluorescence arising from inner-filter absorbance (IF) and non-specific intermolecular quenching (NSQ) is incompletely performed. As substrate and product concentrations vary during the time-course of enzyme activity, iterative solution of the kinetic rate equations is, generally, required to obtain the proper time-dependent correction to the initial velocity fluorescence data. Here, we demonstrate that, if the IQF assay is performed under conditions where IF and NSQ are approximately constant during the measurement of initial velocity for a given initial substrate concentration, then a simple correction as a function of initial substrate concentration can be derived and utilized to obtain accurate initial velocity data for analysis.

  5. Inverter Modeling For Accurate Energy Predictions Of Tracking HCPV Installations

    NASA Astrophysics Data System (ADS)

    Bowman, J.; Jensen, S.; McDonald, Mark

    2010-10-01

    High efficiency high concentration photovoltaic (HCPV) solar plants of megawatt scale are now operational, and opportunities for expanded adoption are plentiful. However, effective bidding for sites requires reliable prediction of energy production. HCPV module nameplate power is rated for specific test conditions; however, instantaneous HCPV power varies due to site specific irradiance and operating temperature, and is degraded by soiling, protective stowing, shading, and electrical connectivity. These factors interact with the selection of equipment typically supplied by third parties, e.g., wire gauge and inverters. We describe a time sequence model accurately accounting for these effects that predicts annual energy production, with specific reference to the impact of the inverter on energy output and interactions between system-level design decisions and the inverter. We will also show two examples, based on an actual field design, of inverter efficiency calculations and the interaction between string arrangements and inverter selection.

  6. Using Scaling for accurate stochastic macroweather forecasts (including the "pause")

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun; del Rio Amador, Lenin

    2015-04-01

    At scales corresponding to the lifetimes of structures of planetary extent (about 5 - 10 days), atmospheric processes undergo a drastic "dimensional transition" from high frequency weather to lower frequency macroweather processes. While conventional GCM's generally well reproduce both the transition and the corresponding (scaling) statistics, due to their sensitive dependence on initial conditions, the role of the weather scale processes is to provide random perturbations to the macroweather processes. The main problem with GCM's is thus that their long term (control run, unforced) statistics converge to the GCM climate and this is somewhat different from the real climate. This is the motivation for using a stochastic model and exploiting the empirical scaling properties and past data to make a stochastic model. It turns out that macroweather intermittency is typically low (the multifractal corrections are small) so that they can be approximated by fractional Gaussian Noise (fGN) processes whose memory can be enormous. For example for annual forecasts, and using the observed global temperature exponent, even 50 years of global temperature data would only allow us to exploit 90% of the available memory (for ocean regions, the figure increases to 600 years). The only complication is that anthropogenic effects dominate the global statistics at time scales beyond about 20 years. However, these are easy to remove using the CO2 forcing as a linear surrogate for all the anthropogenic effects. Using this theoretical framework, we show how to make accurate stochastic macroweather forecasts. We illustrate this on monthly and annual scale series of global and northern hemisphere surface temperatures (including nearly perfect hindcasts of the "pause" in the warming since 1998). We obtain forecast skill nearly as high as the theoretical (scaling) predictability limits allow. These scaling hindcasts - using a single effective climate sensitivity and single scaling exponent are

  7. Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite

    NASA Astrophysics Data System (ADS)

    Goldoff, B. A.; Webster, J. D.; Harlov, D. E.

    2010-12-01

    Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.

  8. Accurate Sizing of Nanoparticles Using Confocal Correlation Spectroscopy

    PubMed Central

    Kuyper, Christopher L.; Fujimoto, Bryant S.; Zhao, Yiqiong; Schiro, Perry G.; Chiu, Daniel T.

    2008-01-01

    The ability to size accurately low concentrations of nanoscale particles in small volumes is useful for a broad range of disciplines. Here, we characterize confocal correlation spectroscopy (CCS), which is capable of measuring sizes of both fluorescent and non-fluorescent particles, such as quantum dots, gold colloids, latex spheres, and fluorescent beads. We measured accurately particles ranging in diameter from 11 nm to 300 nm, a size range that had been difficult to probe, owing to a phenomenon coined biased diffusion that causes diffusion times, or particle size, to deviate as a function of laser power. At low powers, artifacts mimicking biased diffusion are caused by saturation of the detector, which is especially problematic when probing highly fluorescent or highly scattering nanoparticles. At higher powers (>1 mW), however, autocorrelation curves in both resonant and non-resonant conditions show a structure indicative of an increased contribution from longer correlation times coupled with a decrease in shorter correlation times. We propose this change in the autocorrelation curve is due to partial trapping of the particles as they transit the probe volume. Furthermore, we found only a slight difference in the effect of biased diffusion when comparing resonant and non-resonant conditions. Simulations suggest the depth of trapping potential necessary for biased diffusion is >1 kBT. Overcoming artifacts from detector saturation and biased diffusion, confocal correlation spectroscopy is particularly advantageous due to its ability to size particles in small volumes characteristic of microfluidic channels and aqueous microdroplets. We believe the method will find increasing use in a wide range of applications in measuring nanoparticles and macromolecular systems. PMID:17134198

  9. 22 CFR 223.5 - Agency representative.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Agency representative. 223.5 Section 223.5 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATIVE ENFORCEMENT PROCEDURES OF POST-EMPLOYMENT RESTRICTIONS § 223.5 Agency representative. The General Counsel shall appoint an...

  10. 22 CFR 223.5 - Agency representative.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Agency representative. 223.5 Section 223.5 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATIVE ENFORCEMENT PROCEDURES OF POST-EMPLOYMENT RESTRICTIONS § 223.5 Agency representative. The General Counsel shall appoint an...

  11. 22 CFR 223.5 - Agency representative.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Agency representative. 223.5 Section 223.5 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATIVE ENFORCEMENT PROCEDURES OF POST-EMPLOYMENT RESTRICTIONS § 223.5 Agency representative. The General Counsel shall appoint an...

  12. 22 CFR 223.5 - Agency representative.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Agency representative. 223.5 Section 223.5 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATIVE ENFORCEMENT PROCEDURES OF POST-EMPLOYMENT RESTRICTIONS § 223.5 Agency representative. The General Counsel shall appoint an...

  13. 22 CFR 223.5 - Agency representative.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Agency representative. 223.5 Section 223.5 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATIVE ENFORCEMENT PROCEDURES OF POST-EMPLOYMENT RESTRICTIONS § 223.5 Agency representative. The General Counsel shall appoint an...

  14. 45 CFR 1801.14 - Faculty Representative.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) HARRY S. TRUMAN SCHOLARSHIP FOUNDATION HARRY S. TRUMAN SCHOLARSHIP PROGRAM Nominations § 1801.14 Faculty Representative. (a) Each institution... Representative to establish a process to publicize the scholarship, recruit candidates, select nominees,...

  15. 45 CFR 1801.14 - Faculty Representative.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) HARRY S. TRUMAN SCHOLARSHIP FOUNDATION HARRY S. TRUMAN SCHOLARSHIP PROGRAM Nominations § 1801.14 Faculty Representative. (a) Each institution... Representative to establish a process to publicize the scholarship, recruit candidates, select nominees,...

  16. 45 CFR 1801.14 - Faculty Representative.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) HARRY S. TRUMAN SCHOLARSHIP FOUNDATION HARRY S. TRUMAN SCHOLARSHIP PROGRAM Nominations § 1801.14 Faculty Representative. (a) Each institution... Representative to establish a process to publicize the scholarship, recruit candidates, select nominees,...

  17. 45 CFR 1801.14 - Faculty Representative.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) HARRY S. TRUMAN SCHOLARSHIP FOUNDATION HARRY S. TRUMAN SCHOLARSHIP PROGRAM Nominations § 1801.14 Faculty Representative. (a) Each institution... Representative to establish a process to publicize the scholarship, recruit candidates, select nominees,...

  18. 45 CFR 1801.14 - Faculty Representative.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) HARRY S. TRUMAN SCHOLARSHIP FOUNDATION HARRY S. TRUMAN SCHOLARSHIP PROGRAM Nominations § 1801.14 Faculty Representative. (a) Each institution... Representative to establish a process to publicize the scholarship, recruit candidates, select nominees,...

  19. 45 CFR 2400.11 - Faculty representatives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Faculty representatives. 2400.11 Section 2400.11 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION FELLOWSHIP PROGRAM REQUIREMENTS Application § 2400.11 Faculty representatives. Each college...

  20. 28 CFR 104.4 - Personal Representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Personal Representative. 104.4 Section 104.4 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) SEPTEMBER 11TH VICTIM COMPENSATION FUND OF 2001 General; Eligibility § 104.4 Personal Representative. (a) In general. The...

  1. 28 CFR 104.4 - Personal Representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Personal Representative. 104.4 Section 104.4 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) SEPTEMBER 11TH VICTIM COMPENSATION FUND OF 2001 General; Eligibility § 104.4 Personal Representative. (a) In general. The...

  2. Representing Animal-Others in Educational Research

    ERIC Educational Resources Information Center

    Kuhl, Gail J.

    2011-01-01

    This paper encourages environmental and humane education scholars to consider the ethical implications of how nonhuman animals are represented in research. I argue that research representations of animals can work to either break down processes of "othering," or reinforce them. I explore various options for representing other animals, including…

  3. Time accurate simulations of compressible shear flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Steinberger, Craig J.; Vidoni, Thomas J.; Madnia, Cyrus K.

    1993-01-01

    The objectives of this research are to employ direct numerical simulation (DNS) to study the phenomenon of mixing (or lack thereof) in compressible free shear flows and to suggest new means of enhancing mixing in such flows. The shear flow configurations under investigation are those of parallel mixing layers and planar jets under both non-reacting and reacting nonpremixed conditions. During the three-years of this research program, several important issues regarding mixing and chemical reactions in compressible shear flows were investigated.

  4. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems - An introduction

    USGS Publications Warehouse

    Franke, O. Lehn; Reilly, Thomas E.; Bennett, Gordon D.

    1987-01-01

    Accurate definition of boundary and initial conditions is an essential part of conceptualizing and modeling ground-water flow systems. This report describes the properties of the seven most common boundary conditions encountered in ground-water systems and discusses major aspects of their application. It also discusses the significance and specification of initial conditions and evaluates some common errors in applying this concept to ground-water-system models. An appendix is included that discusses what the solution of a differential equation represents and how the solution relates to the boundary conditions defining the specific problem. This report considers only boundary conditions that apply to saturated ground-water systems.

  5. A unique, accurate LWIR optics measurement system

    NASA Astrophysics Data System (ADS)

    Fantone, Stephen D.; Orband, Daniel G.

    2011-05-01

    A compact low-cost LWIR test station has been developed that provides real time MTF testing of IR optical systems and EO imaging systems. The test station is intended to be operated by a technician and can be used to measure the focal length, blur spot size, distortion, and other metrics of system performance. The challenges and tradeoffs incorporated into this instrumentation will be presented. The test station performs the measurement of an IR lens or optical system's first order quantities (focal length, back focal length) including on and off-axis imaging performance (e.g., MTF, resolution, spot size) under actual test conditions to enable the simulation of their actual use. Also described is the method of attaining the needed accuracies so that derived calculations like focal length (EFL = image shift/tan(theta)) can be performed to the requisite accuracy. The station incorporates a patented video capture technology and measures MTF and blur characteristics using newly available lowcost LWIR cameras. This allows real time determination of the optical system performance enabling faster measurements, higher throughput and lower cost results than scanning systems. Multiple spectral filters are also accommodated within the test stations which facilitate performance evaluation under various spectral conditions.

  6. 14 CFR 1260.58 - Designation of new technology representative and patent representative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Designation of new technology representative... of new technology representative and patent representative. Designation of New Technology... of this grant entitled “New Technology,” the following named representatives are hereby designated...

  7. Establishing and maintaining a facility representative program at DOE nuclear facilities

    SciTech Connect

    Not Available

    1993-08-01

    The purpose of this DOE standard, (Establishing and Maintaining a Facility Representative Program at DOE Nuclear Facilities), is to help ensure that DOE Facility Representatives are selected based on consistently high standards and from the best qualified candidates available, that they receive the training required for them to function effectively, and that their expected duties, responsibilities, and authorities are well understood and accurately documented. To this end, this guidance provides the following practical information: (1) An approach for use in determining the required facility coverage; (2) The duties, responsibilities and authorities expected of a Facility Representative; and (3) The training and qualification expected of a Facility Representative.

  8. FragBag, an accurate representation of protein structure, retrieves structural neighbors from the entire PDB quickly and accurately.

    PubMed

    Budowski-Tal, Inbal; Nov, Yuval; Kolodny, Rachel

    2010-02-23

    Fast identification of protein structures that are similar to a specified query structure in the entire Protein Data Bank (PDB) is fundamental in structure and function prediction. We present FragBag: An ultrafast and accurate method for comparing protein structures. We describe a protein structure by the collection of its overlapping short contiguous backbone segments, and discretize this set using a library of fragments. Then, we succinctly represent the protein as a "bags-of-fragments"-a vector that counts the number of occurrences of each fragment-and measure the similarity between two structures by the similarity between their vectors. Our representation has two additional benefits: (i) it can be used to construct an inverted index, for implementing a fast structural search engine of the entire PDB, and (ii) one can specify a structure as a collection of substructures, without combining them into a single structure; this is valuable for structure prediction, when there are reliable predictions only of parts of the protein. We use receiver operating characteristic curve analysis to quantify the success of FragBag in identifying neighbor candidate sets in a dataset of over 2,900 structures. The gold standard is the set of neighbors found by six state of the art structural aligners. Our best FragBag library finds more accurate candidate sets than the three other filter methods: The SGM, PRIDE, and a method by Zotenko et al. More interestingly, FragBag performs on a par with the computationally expensive, yet highly trusted structural aligners STRUCTAL and CE.

  9. Accurate state estimation from uncertain data and models: an application of data assimilation to mathematical models of human brain tumors

    PubMed Central

    2011-01-01

    Background Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor. Results We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles) in the presence of a moderate degree of systematic model error and measurement noise. Conclusions The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling. Reviewers This article was reviewed by Anthony Almudevar, Tomas Radivoyevitch, and Kristin Swanson (nominated by Georg Luebeck). PMID:22185645

  10. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.

  11. Quantum Monte Carlo: Faster, More Reliable, And More Accurate

    NASA Astrophysics Data System (ADS)

    Anderson, Amos Gerald

    2010-06-01

    The Schrodinger Equation has been available for about 83 years, but today, we still strain to apply it accurately to molecules of interest. The difficulty is not theoretical in nature, but practical, since we're held back by lack of sufficient computing power. Consequently, effort is applied to find acceptable approximations to facilitate real time solutions. In the meantime, computer technology has begun rapidly advancing and changing the way we think about efficient algorithms. For those who can reorganize their formulas to take advantage of these changes and thereby lift some approximations, incredible new opportunities await. Over the last decade, we've seen the emergence of a new kind of computer processor, the graphics card. Designed to accelerate computer games by optimizing quantity instead of quality in processor, they have become of sufficient quality to be useful to some scientists. In this thesis, we explore the first known use of a graphics card to computational chemistry by rewriting our Quantum Monte Carlo software into the requisite "data parallel" formalism. We find that notwithstanding precision considerations, we are able to speed up our software by about a factor of 6. The success of a Quantum Monte Carlo calculation depends on more than just processing power. It also requires the scientist to carefully design the trial wavefunction used to guide simulated electrons. We have studied the use of Generalized Valence Bond wavefunctions to simply, and yet effectively, captured the essential static correlation in atoms and molecules. Furthermore, we have developed significantly improved two particle correlation functions, designed with both flexibility and simplicity considerations, representing an effective and reliable way to add the necessary dynamic correlation. Lastly, we present our method for stabilizing the statistical nature of the calculation, by manipulating configuration weights, thus facilitating efficient and robust calculations. Our

  12. Robust Accurate Non-Invasive Analyte Monitor

    SciTech Connect

    Robinson, Mark R.

    1998-11-03

    An improved method and apparatus for determining noninvasively and in vivo one or more unknown values of a known characteristic, particularly the concentration of an analyte in human tissue. The method includes: (1) irradiating the tissue with infrared energy (400 nm-2400 nm) having at least several wavelengths in a given range of wavelengths so that there is differential absorption of at least some of the wavelengths by the tissue as a function of the wavelengths and the known characteristic, the differential absorption causeing intensity variations of the wavelengths incident from the tissue; (2) providing a first path through the tissue; (3) optimizing the first path for a first sub-region of the range of wavelengths to maximize the differential absorption by at least some of the wavelengths in the first sub-region; (4) providing a second path through the tissue; and (5) optimizing the second path for a second sub-region of the range, to maximize the differential absorption by at least some of the wavelengths in the second sub-region. In the preferred embodiment a third path through the tissue is provided for, which path is optimized for a third sub-region of the range. With this arrangement, spectral variations which are the result of tissue differences (e.g., melanin and temperature) can be reduced. At least one of the paths represents a partial transmission path through the tissue. This partial transmission path may pass through the nail of a finger once and, preferably, twice. Also included are apparatus for: (1) reducing the arterial pulsations within the tissue; and (2) maximizing the blood content i the tissue.

  13. Extrapulmonary tuberculosis: are statistical reports accurate?

    PubMed

    Kulchavenya, Ekaterina

    2014-04-01

    Before discussing the epidemiology of extrapulmonary tuberculosis (EPTB) and particularly urogenital tuberculosis (UGTB), unification of the terminology is necessary. The term 'urogenital tuberculosis' is preferable to 'genitourinary tuberculosis', as renal and urinary tract tuberculosis is more common than genital tuberculosis. Some understand the term 'extrapulmonary tuberculosis' as a specific tuberculosis (TB) lesion of all organs excluding the bronchus, lungs, pleura and intrathoracic bronchopulmonary lymph nodes, but others consider pleural TB as one form of EPTB - and it is a reason for very different proportions in the spectrum of EPTB. Enigmatic tendencies have also been revealed in patients' distribution - in neighbouring regions the incidence rate may differ significantly. Although there is no clear explanation for these tendencies, careful study of the epidemiology of EPTB in different conditions will improve early diagnosis.

  14. 77 FR 3800 - Accurate NDE & Inspection, LLC; Confirmatory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... COMMISSION Accurate NDE & Inspection, LLC; Confirmatory Order In the Matter of Accurate NDE & Docket: 150... request ADR with the NRC in an attempt to resolve issues associated with this matter. In response, on August 9, 2011, Accurate NDE requested ADR to resolve this matter with the NRC. On September 28,...

  15. A highly accurate ab initio potential energy surface for methane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  16. Accurate Completion of Medical Report on Diagnosing Death.

    PubMed

    Savić, Slobodan; Alempijević, Djordje; Andjelić, Sladjana

    2015-01-01

    Diagnosing death and issuing a Death Diagnosing Form (DDF) represents an activity that carries a great deal of public responsibility for medical professionals of the Emergency Medical Services (EMS) and is perpetually exposed to the control of the general public. Diagnosing death is necessary so as to confirm true, to exclude apparent death and consequentially to avoid burying a person alive, i.e. apparently dead. These expert-methodological guidelines based on the most up-to-date and medically based evidence have the goal of helping the physicians of the EMS in accurately filling out a medical report on diagnosing death. If the outcome of applied cardiopulmonary resuscitation measures is negative or when the person is found dead, the physician is under obligation to diagnose death and correctly fill out the DDF. It is also recommended to perform electrocardiography (EKG) and record asystole in at least two leads. In the process of diagnostics and treatment, it is a moral obligation of each Belgrade EMS physician to apply all available achievements and knowledge of modern medicine acquired from extensive international studies, which have been indeed the major theoretical basis for the creation of these expert-methodological guidelines. Those acting differently do so in accordance with their conscience and risk professional, and even criminal sanctions.

  17. 76 FR 27020 - Representative and Address Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE United States Patent and Trademark Office Representative and Address Provisions ACTION: Proposed collection; comment request. SUMMARY: The United States Patent and Trademark Office (USPTO), as part of...

  18. REFractions: The Representing Equivalent Fractions Game

    ERIC Educational Resources Information Center

    Tucker, Stephen I.

    2014-01-01

    Stephen Tucker presents a fractions game that addresses a range of fraction concepts including equivalence and computation. The REFractions game also improves students' fluency with representing, comparing and adding fractions.

  19. On the accurate simulation of tsunami wave propagation

    NASA Astrophysics Data System (ADS)

    Castro, C. E.; Käser, M.; Toro, E. F.

    2009-04-01

    A very important part of any tsunami early warning system is the numerical simulation of the wave propagation in the open sea and close to geometrically complex coastlines respecting bathymetric variations. Here we are interested in improving the numerical tools available to accurately simulate tsunami wave propagation on a Mediterranean basin scale. To this end, we need to accomplish some targets, such as: high-order numerical simulation in space and time, preserve steady state conditions to avoid spurious oscillations and describe complex geometries due to bathymetry and coastlines. We use the Arbitrary accuracy DERivatives Riemann problem method together with Finite Volume method (ADER-FV) over non-structured triangular meshes. The novelty of this method is the improvement of the ADER-FV scheme, introducing the well-balanced property when geometrical sources are considered for unstructured meshes and arbitrary high-order accuracy. In a previous work from Castro and Toro [1], the authors mention that ADER-FV schemes approach asymptotically the well-balanced condition, which was true for the test case mentioned in [1]. However, new evidence[2] shows that for real scale problems as the Mediterranean basin, and considering realistic bathymetry as ETOPO-2[3], this asymptotic behavior is not enough. Under these realistic conditions the standard ADER-FV scheme fails to accurately describe the propagation of gravity waves without being contaminated with spurious oscillations, also known as numerical waves. The main problem here is that at discrete level, i.e. from a numerical point of view, the numerical scheme does not correctly balance the influence of the fluxes and the sources. Numerical schemes that retain this balance are said to satisfy the well-balanced property or the exact C-property. This unbalance reduces, as we refine the spatial discretization or increase the order of the numerical method. However, the computational cost increases considerably this way

  20. Representing nursing assessment documentation with ICNP.

    PubMed

    Goldsmith, Denise M; Kim, Hyeon-eui; Choi, Jeeyae; Goldberg, Howard S; Dykes, Patricia C

    2008-11-06

    The purpose of this study was to identify key concepts and semantic relations necessary to represent standardized and local patient assessment items in an electronic documentation system and to evaluate the degree to which coverage of both are represented by ICNP. A total of 805 unique assessment concepts were identified. Forty-three percent had exact matches in ICNP, and an additional 20% had matches in the ICNP classified as narrower, broader or other.

  1. Motor equivalence during multi-finger accurate force production

    PubMed Central

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  2. A new approach to compute accurate velocity of meteors

    NASA Astrophysics Data System (ADS)

    Egal, Auriane; Gural, Peter; Vaubaillon, Jeremie; Colas, Francois; Thuillot, William

    2016-10-01

    The CABERNET project was designed to push the limits of meteoroid orbit measurements by improving the determination of the meteors' velocities. Indeed, despite of the development of the cameras networks dedicated to the observation of meteors, there is still an important discrepancy between the measured orbits of meteoroids computed and the theoretical results. The gap between the observed and theoretic semi-major axis of the orbits is especially significant; an accurate determination of the orbits of meteoroids therefore largely depends on the computation of the pre-atmospheric velocities. It is then imperative to dig out how to increase the precision of the measurements of the velocity.In this work, we perform an analysis of different methods currently used to compute the velocities and trajectories of the meteors. They are based on the intersecting planes method developed by Ceplecha (1987), the least squares method of Borovicka (1990), and the multi-parameter fitting (MPF) method published by Gural (2012).In order to objectively compare the performances of these techniques, we have simulated realistic meteors ('fakeors') reproducing the different error measurements of many cameras networks. Some fakeors are built following the propagation models studied by Gural (2012), and others created by numerical integrations using the Borovicka et al. 2007 model. Different optimization techniques have also been investigated in order to pick the most suitable one to solve the MPF, and the influence of the geometry of the trajectory on the result is also presented.We will present here the results of an improved implementation of the multi-parameter fitting that allow an accurate orbit computation of meteors with CABERNET. The comparison of different velocities computation seems to show that if the MPF is by far the best method to solve the trajectory and the velocity of a meteor, the ill-conditioning of the costs functions used can lead to large estimate errors for noisy

  3. Accurate spectral numerical schemes for kinetic equations with energy diffusion

    NASA Astrophysics Data System (ADS)

    Wilkening, Jon; Cerfon, Antoine J.; Landreman, Matt

    2015-08-01

    We examine the merits of using a family of polynomials that are orthogonal with respect to a non-classical weight function to discretize the speed variable in continuum kinetic calculations. We consider a model one-dimensional partial differential equation describing energy diffusion in velocity space due to Fokker-Planck collisions. This relatively simple case allows us to compare the results of the projected dynamics with an expensive but highly accurate spectral transform approach. It also allows us to integrate in time exactly, and to focus entirely on the effectiveness of the discretization of the speed variable. We show that for a fixed number of modes or grid points, the non-classical polynomials can be many orders of magnitude more accurate than classical Hermite polynomials or finite-difference solvers for kinetic equations in plasma physics. We provide a detailed analysis of the difference in behavior and accuracy of the two families of polynomials. For the non-classical polynomials, if the initial condition is not smooth at the origin when interpreted as a three-dimensional radial function, the exact solution leaves the polynomial subspace for a time, but returns (up to roundoff accuracy) to the same point evolved to by the projected dynamics in that time. By contrast, using classical polynomials, the exact solution differs significantly from the projected dynamics solution when it returns to the subspace. We also explore the connection between eigenfunctions of the projected evolution operator and (non-normalizable) eigenfunctions of the full evolution operator, as well as the effect of truncating the computational domain.

  4. Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage

    SciTech Connect

    Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William

    2014-08-01

    Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.

  5. Tactical expertise assessment in youth football using representative tasks.

    PubMed

    Serra-Olivares, Jaime; Clemente, Filipe Manuel; González-Víllora, Sixto

    2016-01-01

    Specific football drills improve the development of technical/tactical and physical variables in players. Based on this principle, in recent years it has been possible to observe in daily training a growing volume of small-sided and conditioned games. These games are smaller and modified forms of formal games that augment players' perception of specific tactics. Despite this approach, the assessment of players' knowledge and tactical execution has not been well documented, due mainly to the difficulty in measuring tactical behavior. For that reason, this study aims to provide a narrative review about the tactical assessment of football training by using representative tasks to measure the tactical expertise of youth football players during small-sided and conditioned games. This study gives an overview of the ecological approach to training and the principles used for representative task design, providing relevant contribution and direction for future research into the assessment of tactical expertise in youth football.

  6. Representing Model Inadequacy in Combustion Mechanisms of Laminar Flames

    NASA Astrophysics Data System (ADS)

    Morrison, Rebecca; Moser, Robert; Oliver, Todd

    2015-11-01

    An accurate description of the chemical processes involved in the oxidation of hydrocarbons may include hundreds of reactions and thirty or more chemical species. Kinetics models of these chemical mechanisms are often embedded in a fluid dynamics solver to represent combustion. Because the computational cost of such detailed mechanisms is so high, it is common practice to use drastically reduced mechanisms. But, this introduces modeling errors which may render the model inadequate. In this talk, we present a formulation of the model inadequacy in reduced models of combustion mechanisms. Our goal is to account for the discrepancy between the detailed model and its reduced version by incorporating an additive, linear, probabilistic inadequacy model. In effect, it is a random matrix, whose entries are characterized by probability distributions and which displays interesting properties due to conservation constraints. In particular, we investigate how the inclusion of the random matrix affects the prediction of flame speed in a one-dimensional hydrogen laminar flame.

  7. 14 CFR § 1260.58 - Designation of new technology representative and patent representative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Designation of new technology... Designation of new technology representative and patent representative. Designation of New Technology... of this grant entitled “New Technology,” the following named representatives are hereby designated...

  8. 40 CFR 96.312 - Changing CAIR designated representative and alternate CAIR designated representative; changes in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Designated Representative for CAIR NOX Ozone Season Sources § 96.312 Changing CAIR designated representative... CAIR NOX Ozone Season source and the CAIR NOX Ozone Season units at the source. (b) Changing alternate... representative and the owners and operators of the CAIR NOX Ozone Season source and the CAIR NOX Ozone...

  9. 40 CFR 96.312 - Changing CAIR designated representative and alternate CAIR designated representative; changes in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Designated Representative for CAIR NOX Ozone Season Sources § 96.312 Changing CAIR designated representative... CAIR NOX Ozone Season source and the CAIR NOX Ozone Season units at the source. (b) Changing alternate... representative and the owners and operators of the CAIR NOX Ozone Season source and the CAIR NOX Ozone...

  10. 40 CFR 96.312 - Changing CAIR designated representative and alternate CAIR designated representative; changes in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Designated Representative for CAIR NOX Ozone Season Sources § 96.312 Changing CAIR designated representative... CAIR NOX Ozone Season source and the CAIR NOX Ozone Season units at the source. (b) Changing alternate... representative and the owners and operators of the CAIR NOX Ozone Season source and the CAIR NOX Ozone...

  11. 40 CFR 96.312 - Changing CAIR designated representative and alternate CAIR designated representative; changes in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Designated Representative for CAIR NOX Ozone Season Sources § 96.312 Changing CAIR designated representative... CAIR NOX Ozone Season source and the CAIR NOX Ozone Season units at the source. (b) Changing alternate... representative and the owners and operators of the CAIR NOX Ozone Season source and the CAIR NOX Ozone...

  12. 40 CFR 96.312 - Changing CAIR designated representative and alternate CAIR designated representative; changes in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Designated Representative for CAIR NOX Ozone Season Sources § 96.312 Changing CAIR designated representative... CAIR NOX Ozone Season source and the CAIR NOX Ozone Season units at the source. (b) Changing alternate... representative and the owners and operators of the CAIR NOX Ozone Season source and the CAIR NOX Ozone...

  13. 14 CFR 1260.58 - Designation of new technology representative and patent representative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Designation of new technology... of new technology representative and patent representative. Designation of New Technology... of this grant entitled “New Technology,” the following named representatives are hereby designated...

  14. Recommended design for more accurate duplication of natural conditions in salt marsh creation.

    PubMed

    Darnell, T M; Smith, E H

    2002-06-01

    Construction of 653 ha of salt marsh habitat from dredged material near the Aransas National Wildlife Refuge, Texas, has been proposed, with the goal of increasing the area of habitat available to endangered whooping cranes ( Grus americana). We assessed prototype created wetlands, and their similarity to natural reference sites, in terms of topography, vegetation, and hydrology. The created sites were steeply sloped relative to natural sites and were dominated by monotypic stands of Spartina alterniflora. Natural sites were dominated by vegetation more tolerant of desiccation and hypersalinity and by unvegetated salt pans. Differences in vegetation communities and distributions of habitat types resulted from efforts to enhance habitat diversity in created marsh cells through manipulation of marsh topography. However, the scale at which this diversity occurred in natural marsh of the study area was not considered. When constructing wetlands in cellular configurations, we recommend creation of large complexes of adjoining, hydrologically linked, cells wherein the desired habitat diversity is created at the scale of the entire complex, rather than within a single cell. Suggested design modifications would increase the similarity of created marshes to natural reference sites, potentially improving habitat function.

  15. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli

    PubMed Central

    Kim, Minseung; Rai, Navneet; Zorraquino, Violeta; Tagkopoulos, Ilias

    2016-01-01

    A significant obstacle in training predictive cell models is the lack of integrated data sources. We develop semi-supervised normalization pipelines and perform experimental characterization (growth, transcriptional, proteome) to create Ecomics, a consistent, quality-controlled multi-omics compendium for Escherichia coli with cohesive meta-data information. We then use this resource to train a multi-scale model that integrates four omics layers to predict genome-wide concentrations and growth dynamics. The genetic and environmental ontology reconstructed from the omics data is substantially different and complementary to the genetic and chemical ontologies. The integration of different layers confers an incremental increase in the prediction performance, as does the information about the known gene regulatory and protein-protein interactions. The predictive performance of the model ranges from 0.54 to 0.87 for the various omics layers, which far exceeds various baselines. This work provides an integrative framework of omics-driven predictive modelling that is broadly applicable to guide biological discovery. PMID:27713404

  16. Bi-fluorescence imaging for estimating accurately the nuclear condition of Rhizoctonia spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the absence of perfect state, the number of nuclei in their vegetative hyphae is one of the anamorphic features that separate Rhizoctonia solani from other Rhizoctonia-like fungi. Anamorphs of Rhizoctonia solani are typically multinucleate while the other Rhizoctonia species are binucleate. Howev...

  17. What do the solar activity indices represent?

    NASA Astrophysics Data System (ADS)

    Li , K. J.; Kong, D. F.; Liang, H. F.; Feng, W.

    Sunspot number, sunspot area, and radio flux at 10.7 cm are the indices which are most frequently used to describe the long-term solar activity. The data of the daily solar full-disk magnetograms measured at Mount Wilson Observatory from 19 January 1970 to 31 December 2012 are utilized together with the daily observations of the three indices to probe the relationship of the full-disk magnetic activity respectively with the indices. Cross correlation analyses of the daily magnetic field measurements at Mount Wilson observatory are taken with the daily observations of the three indices, and the statistical significance of the difference of the obtained correlation coefficients is investigated. The following results are obtained: (1) The sunspot number should be preferred to represent/reflect the full-disk magnetic activity of the Sun to which the weak magnetic fields (outside of sunspots) mainly contribute, the sunspot area should be recommended to represent the strong magnetic activity of the Sun (in sunspots), and the 10.7 cm radio flux should be preferred to represent the full-disk magnetic activity of the Sun (both the weak and strong magnetic fields) to which the weak magnetic fields mainly contribute. (2) On the other hand, the most recommendable index that could be used to represent/reflect the weak magnetic activity is the 10.7 cm radio flux, the most recommendable index that could be used to represent the strong magnetic activity is the sunspot area, and the most recommendable index that could be used to represent the full-disk magnetic activity of the Sun is the 10.7 cm radio flux. Additionally, the cycle characteristics of the magnetic field strengths on the solar disk are given.

  18. Mean Flow Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Nallasamy, M.; Sawyer, S.; Dyson, R.

    2003-01-01

    In this work, a new type of boundary condition for time-accurate Computational Aeroacoustics solvers is described. This boundary condition is designed to complement the existing nonreflective boundary conditions while ensuring that the correct mean flow conditions are maintained throughout the flow calculation. Results are shown for a loaded 2D cascade, started with various initial conditions.

  19. More Accurate Size Contrast Judgments in the Ebbinghaus Illusion by a Remote Culture

    ERIC Educational Resources Information Center

    de Fockert, Jan; Davidoff, Jules; Fagot, Joel; Parron, Carole; Goldstein, Julie

    2007-01-01

    The Ebbinghaus (Titchener) illusion was examined in a remote culture (Himba) with no words for geometric shapes. The illusion was experienced less strongly by Himba compared with English participants, leading to more accurate size contrast judgments in the Himba. The study included two conditions of inducing stimuli. The illusion was weaker when…

  20. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stem rust resistance gene Sr2 has provided broad-spectrum protection against stem rust (Puccinia graminis) since its wide spread deployment in wheat from the 1940s. Because Sr2 confers partial resistance which is difficult to select under field conditions, a DNA marker is desirable that accurate...

  1. Bicluster Sampled Coherence Metric (BSCM) provides an accurate environmental context for phenotype predictions

    PubMed Central

    2015-01-01

    Background Biclustering is a popular method for identifying under which experimental conditions biological signatures are co-expressed. However, the general biclustering problem is NP-hard, offering room to focus algorithms on specific biological tasks. We hypothesize that conditional co-regulation of genes is a key factor in determining cell phenotype and that accurately segregating conditions in biclusters will improve such predictions. Thus, we developed a bicluster sampled coherence metric (BSCM) for determining which conditions and signals should be included in a bicluster. Results Our BSCM calculates condition and cluster size specific p-values, and we incorporated these into the popular integrated biclustering algorithm cMonkey. We demonstrate that incorporation of our new algorithm significantly improves bicluster co-regulation scores (p-value = 0.009) and GO annotation scores (p-value = 0.004). Additionally, we used a bicluster based signal to predict whether a given experimental condition will result in yeast peroxisome induction. Using the new algorithm, the classifier accuracy improves from 41.9% to 76.1% correct. Conclusions We demonstrate that the proposed BSCM helps determine which signals ought to be co-clustered, resulting in more accurately assigned bicluster membership. Furthermore, we show that BSCM can be extended to more accurately detect under which experimental conditions the genes are co-clustered. Features derived from this more accurate analysis of conditional regulation results in a dramatic improvement in the ability to predict a cellular phenotype in yeast. The latest cMonkey is available for download at https://github.com/baliga-lab/cmonkey2. The experimental data and source code featured in this paper is available http://AitchisonLab.com/BSCM. BSCM has been incorporated in the official cMonkey release. PMID:25881257

  2. 7 CFR 1221.210 - Representative period.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Representative period. 1221.210 Section 1221.210 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH,...

  3. 7 CFR 1221.210 - Representative period.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Representative period. 1221.210 Section 1221.210 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH,...

  4. 7 CFR 1221.210 - Representative period.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Representative period. 1221.210 Section 1221.210 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH,...

  5. 7 CFR 1221.210 - Representative period.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Representative period. 1221.210 Section 1221.210 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH,...

  6. The Evolving Role of Union Learning Representatives

    ERIC Educational Resources Information Center

    Moore, Sian; Ross, Cilla

    2008-01-01

    This article suggests that the union learning representative (ULR) is increasingly situated at the heart of trade union activity. The paper draws upon recent research based on interviews with national trade union officers and case studies of union learning activity to explore the competing demands being made upon ULRs and the implications for…

  7. Developing Creativity and Abstraction in Representing Data

    ERIC Educational Resources Information Center

    South, Andy

    2012-01-01

    Creating charts and graphs is all about visual abstraction: the process of representing aspects of data with imagery that can be interpreted by the reader. Children may need help making the link between the "real" and the image. This abstraction can be achieved using symbols, size, colour and position. Where the representation is close to what…

  8. 10 CFR 63.332 - Representative volume.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... water that would be withdrawn annually from an aquifer containing less than 10,000 milligrams of total... accessible environment; (2) Its position and dimensions in the aquifer are determined using average hydrologic characteristics which have cautious, but reasonable, values representative of the aquifers...

  9. 10 CFR 63.332 - Representative volume.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... water that would be withdrawn annually from an aquifer containing less than 10,000 milligrams of total... accessible environment; (2) Its position and dimensions in the aquifer are determined using average hydrologic characteristics which have cautious, but reasonable, values representative of the aquifers...

  10. 10 CFR 63.332 - Representative volume.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... water that would be withdrawn annually from an aquifer containing less than 10,000 milligrams of total... accessible environment; (2) Its position and dimensions in the aquifer are determined using average hydrologic characteristics which have cautious, but reasonable, values representative of the aquifers...

  11. 10 CFR 63.332 - Representative volume.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... water that would be withdrawn annually from an aquifer containing less than 10,000 milligrams of total... accessible environment; (2) Its position and dimensions in the aquifer are determined using average hydrologic characteristics which have cautious, but reasonable, values representative of the aquifers...

  12. 10 CFR 63.332 - Representative volume.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... water that would be withdrawn annually from an aquifer containing less than 10,000 milligrams of total... accessible environment; (2) Its position and dimensions in the aquifer are determined using average hydrologic characteristics which have cautious, but reasonable, values representative of the aquifers...

  13. 29 CFR 548.405 - Representative period.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... representative period, the employee's total overtime earnings calculated at the basic rate in accordance with the applicable overtime provisions are approximately equal to the employee's total overtime earnings computed on... seasons the period used for comparison of overtime earnings would have to include both a slow and a...

  14. 29 CFR 548.405 - Representative period.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... representative period, the employee's total overtime earnings calculated at the basic rate in accordance with the applicable overtime provisions are approximately equal to the employee's total overtime earnings computed on... seasons the period used for comparison of overtime earnings would have to include both a slow and a...

  15. 29 CFR 548.405 - Representative period.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representative period, the employee's total overtime earnings calculated at the basic rate in accordance with the applicable overtime provisions are approximately equal to the employee's total overtime earnings computed on... seasons the period used for comparison of overtime earnings would have to include both a slow and a...

  16. Identifying Representative Textbooks in U. S. History.

    ERIC Educational Resources Information Center

    Woodward, Arthur

    1982-01-01

    The selection of textbooks used in content analysis to determine values taught to students is important. Only widely used texts must be analyzed. The samples of U.S. history texts used by Fitzgerald (1979) and Barth and Shermis (1980) in their studies were not representative of textbooks used in schools. (RM)

  17. 26 CFR 601.502 - Recognized representative.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 20 2010-04-01 2010-04-01 false Recognized representative. 601.502 Section 601.502 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INTERNAL REVENUE... before the Internal Revenue Service and is in active status pursuant to the requirements of Circular...

  18. 7 CFR 1220.612 - Representative period.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Representative period. 1220.612 Section 1220.612 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH,...

  19. 7 CFR 1220.612 - Representative period.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Representative period. 1220.612 Section 1220.612 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH,...

  20. 7 CFR 1220.612 - Representative period.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Representative period. 1220.612 Section 1220.612 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH,...

  1. 7 CFR 1220.612 - Representative period.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Representative period. 1220.612 Section 1220.612 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH,...

  2. 7 CFR 1220.612 - Representative period.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Representative period. 1220.612 Section 1220.612 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH,...

  3. 29 CFR 452.43 - Representative categories.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT STANDARDS GENERAL STATEMENT CONCERNING THE ELECTION PROVISIONS OF THE LABOR-MANAGEMENT REPORTING AND... for holding office to members of the represented unit. For example, a national or international...

  4. Attributes Heeded When Representing an Osmosis Problem.

    ERIC Educational Resources Information Center

    Zuckerman, June Trop

    Eighteen high school science students were involved in a study to determine what attributes in the problem statement they need when representing a typical osmosis problem. In order to realize this goal students were asked to solve problems aloud and to explain their answers. Included as a part of the results are the attributes that the students…

  5. Identifying representative drug resistant mutants of HIV

    PubMed Central

    2015-01-01

    Background Drug resistance is one of the most important causes for failure of anti-AIDS treatment. During therapy, multiple mutations accumulate in the HIV genome, eventually rendering the drugs ineffective in blocking replication of the mutant virus. The huge number of possible mutants precludes experimental analysis to explore the molecular mechanisms of resistance and develop improved antiviral drugs. Results In order to solve this problem, we have developed a new algorithm to reveal the most representative mutants from the whole drug resistant mutant database based on our newly proposed unified protein sequence and 3D structure encoding method. Mean shift clustering and multiple regression analysis were applied on genotype-resistance data for mutants of HIV protease and reverse transcriptase. This approach successfully chooses less than 100 mutants with the highest resistance to each drug out of about 10K in the whole database. When considering high level resistance to multiple drugs, the numbers reduce to one or two representative mutants. Conclusion This approach for predicting the most representative mutants for each drug has major importance for experimental verification since the results provide a small number of representative sequences, which will be amenable for in vitro testing and characterization of the expressed mutant proteins. PMID:26678327

  6. Towards an accurate understanding of UHMWPE visco-dynamic behaviour for numerical modelling of implants.

    PubMed

    Quinci, Federico; Dressler, Matthew; Strickland, Anthony M; Limbert, Georges

    2014-04-01

    Considerable progress has been made in understanding implant wear and developing numerical models to predict wear for new orthopaedic devices. However any model of wear could be improved through a more accurate representation of the biomaterial mechanics, including time-varying dynamic and inelastic behaviour such as viscosity and plastic deformation. In particular, most computational models of wear of UHMWPE implement a time-invariant version of Archard's law that links the volume of worn material to the contact pressure between the metal implant and the polymeric tibial insert. During in-vivo conditions, however, the contact area is a time-varying quantity and is therefore dependent upon the dynamic deformation response of the material. From this observation one can conclude that creep deformations of UHMWPE may be very important to consider when conducting computational wear analyses, in stark contrast to what can be found in the literature. In this study, different numerical modelling techniques are compared with experimental creep testing on a unicondylar knee replacement system in a physiologically representative context. Linear elastic, plastic and time-varying visco-dynamic models are benchmarked using literature data to predict contact deformations, pressures and areas. The aim of this study is to elucidate the contributions of viscoelastic and plastic effects on these surface quantities. It is concluded that creep deformations have a significant effect on the contact pressure measured (experiment) and calculated (computational models) at the surface of the UHMWPE unicondylar insert. The use of a purely elastoplastic constitutive model for UHMWPE lead to compressive deformations of the insert which are much smaller than those predicted by a creep-capturing viscoelastic model (and those measured experimentally). This shows again the importance of including creep behaviour into a constitutive model in order to predict the right level of surface deformation

  7. Accurate free and forced rotational motions of rigid Venus

    NASA Astrophysics Data System (ADS)

    Cottereau, L.; Souchay, J.; Aljbaae, S.

    2010-06-01

    Context. The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more interesting because it can be compared with that of Earth for which such a modelling has already been achieved at the milli-arcsecond level. Aims: We aim to complete a previous study, by determining the polhody at the milli-arcsecond level, i.e. the torque-free motion of the angular momentum axis of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is fundamental from an observational point of view. Methods: We use the same theoretical framework as Kinoshita (1977, Celest. Mech., 15, 277) did to determine the precession-nutation motion of a rigid Earth. It is based on a representation of the rotation of a rigid Venus, with the help of Andoyer variables and a set of canonical equations in Hamiltonian formalism. Results: In a first part we computed the polhody, we showed that this motion is highly elliptical, with a very long period of 525 cy compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In a second part we precisely computed the Oppolzer terms, which allow us to represent the motion in space of the third Venus figure axis with respect to the Venus angular momentum axis under the influence of the solar gravitational torque. We determined the corresponding tables of the nutation coefficients of the third figure axis both in longitude and in obliquity due to the Sun, which are of the same order of amplitude as for the Earth. We showed that the nutation coefficients for the third figure axis are significantly different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a numerical integration, which revealed the indirect planetary effects.

  8. Imaging tests for accurate diagnosis of acute biliary pancreatitis.

    PubMed

    Şurlin, Valeriu; Săftoiu, Adrian; Dumitrescu, Daniela

    2014-11-28

    Gallstones represent the most frequent aetiology of acute pancreatitis in many statistics all over the world, estimated between 40%-60%. Accurate diagnosis of acute biliary pancreatitis (ABP) is of outmost importance because clearance of lithiasis [gallbladder and common bile duct (CBD)] rules out recurrences. Confirmation of biliary lithiasis is done by imaging. The sensitivity of the ultrasonography (US) in the detection of gallstones is over 95% in uncomplicated cases, but in ABP, sensitivity for gallstone detection is lower, being less than 80% due to the ileus and bowel distension. Sensitivity of transabdominal ultrasonography (TUS) for choledocolithiasis varies between 50%-80%, but the specificity is high, reaching 95%. Diameter of the bile duct may be orientative for diagnosis. Endoscopic ultrasonography (EUS) seems to be a more effective tool to diagnose ABP rather than endoscopic retrograde cholangiopancreatography (ERCP), which should be performed only for therapeutic purposes. As the sensitivity and specificity of computerized tomography are lower as compared to state-of-the-art magnetic resonance cholangiopancreatography (MRCP) or EUS, especially for small stones and small diameter of CBD, the later techniques are nowadays preferred for the evaluation of ABP patients. ERCP has the highest accuracy for the diagnosis of choledocholithiasis and is used as a reference standard in many studies, especially after sphincterotomy and balloon extraction of CBD stones. Laparoscopic ultrasonography is a useful tool for the intraoperative diagnosis of choledocholithiasis. Routine exploration of the CBD in cases of patients scheduled for cholecystectomy after an attack of ABP was not proven useful. A significant rate of the so-called idiopathic pancreatitis is actually caused by microlithiasis and/or biliary sludge. In conclusion, the general algorithm for CBD stone detection starts with anamnesis, serum biochemistry and then TUS, followed by EUS or MRCP. In the end

  9. Accurate calculation of field and carrier distributions in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Yang, Wenji; Tang, Jianping; Yu, Hongchun; Wang, Yanguo

    2012-06-01

    We use the numerical squeezing algorithm(NSA) combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs) in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP) - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD) systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.

  10. Accurate measurement of streamwise vortices in low speed aerodynamic flows

    NASA Astrophysics Data System (ADS)

    Waldman, Rye M.; Kudo, Jun; Breuer, Kenneth S.

    2010-11-01

    Low Reynolds number experiments with flapping animals (such as bats and small birds) are of current interest in understanding biological flight mechanics, and due to their application to Micro Air Vehicles (MAVs) which operate in a similar parameter space. Previous PIV wake measurements have described the structures left by bats and birds, and provided insight to the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions due to significant experimental challenges associated with the highly three-dimensional and unsteady nature of the flows, and the low wake velocities associated with lifting bodies that only weigh a few grams. This requires the high-speed resolution of small flow features in a large field of view using limited laser energy and finite camera resolution. Cross-stream measurements are further complicated by the high out-of-plane flow which requires thick laser sheets and short interframe times. To quantify and address these challenges we present data from a model study on the wake behind a fixed wing at conditions comparable to those found in biological flight. We present a detailed analysis of the PIV wake measurements, discuss the criteria necessary for accurate measurements, and present a new dual-plane PIV configuration to resolve these issues.

  11. Accurate and efficient linear scaling DFT calculations with universal applicability.

    PubMed

    Mohr, Stephan; Ratcliff, Laura E; Genovese, Luigi; Caliste, Damien; Boulanger, Paul; Goedecker, Stefan; Deutsch, Thierry

    2015-12-21

    Density functional theory calculations are computationally extremely expensive for systems containing many atoms due to their intrinsic cubic scaling. This fact has led to the development of so-called linear scaling algorithms during the last few decades. In this way it becomes possible to perform ab initio calculations for several tens of thousands of atoms within reasonable walltimes. However, even though the use of linear scaling algorithms is physically well justified, their implementation often introduces some small errors. Consequently most implementations offering such a linear complexity either yield only a limited accuracy or, if one wants to go beyond this restriction, require a tedious fine tuning of many parameters. In our linear scaling approach within the BigDFT package, we were able to overcome this restriction. Using an ansatz based on localized support functions expressed in an underlying Daubechies wavelet basis - which offers ideal properties for accurate linear scaling calculations - we obtain an amazingly high accuracy and a universal applicability while still keeping the possibility of simulating large system with linear scaling walltimes requiring only a moderate demand of computing resources. We prove the effectiveness of our method on a wide variety of systems with different boundary conditions, for single-point calculations as well as for geometry optimizations and molecular dynamics.

  12. Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim

    2014-11-01

    Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).

  13. Quantitative proteomic analysis by accurate mass retention time pairs.

    PubMed

    Silva, Jeffrey C; Denny, Richard; Dorschel, Craig A; Gorenstein, Marc; Kass, Ignatius J; Li, Guo-Zhong; McKenna, Therese; Nold, Michael J; Richardson, Keith; Young, Phillip; Geromanos, Scott

    2005-04-01

    Current methodologies for protein quantitation include 2-dimensional gel electrophoresis techniques, metabolic labeling, and stable isotope labeling methods to name only a few. The current literature illustrates both pros and cons for each of the previously mentioned methodologies. Keeping with the teachings of William of Ockham, "with all things being equal the simplest solution tends to be correct", a simple LC/MS based methodology is presented that allows relative changes in abundance of proteins in highly complex mixtures to be determined. Utilizing a reproducible chromatographic separations system along with the high mass resolution and mass accuracy of an orthogonal time-of-flight mass spectrometer, the quantitative comparison of tens of thousands of ions emanating from identically prepared control and experimental samples can be made. Using this configuration, we can determine the change in relative abundance of a small number of ions between the two conditions solely by accurate mass and retention time. Employing standard operating procedures for both sample preparation and ESI-mass spectrometry, one typically obtains under 5 ppm mass precision and quantitative variations between 10 and 15%. The principal focus of this paper will demonstrate the quantitative aspects of the methodology and continue with a discussion of the associated, complementary qualitative capabilities.

  14. Accurate quantification of supercoiled DNA by digital PCR.

    PubMed

    Dong, Lianhua; Yoo, Hee-Bong; Wang, Jing; Park, Sang-Ryoul

    2016-04-11

    Digital PCR (dPCR) as an enumeration-based quantification method is capable of quantifying the DNA copy number without the help of standards. However, it can generate false results when the PCR conditions are not optimized. A recent international comparison (CCQM P154) showed that most laboratories significantly underestimated the concentration of supercoiled plasmid DNA by dPCR. Mostly, supercoiled DNAs are linearized before dPCR to avoid such underestimations. The present study was conducted to overcome this problem. In the bilateral comparison, the National Institute of Metrology, China (NIM) optimized and applied dPCR for supercoiled DNA determination, whereas Korea Research Institute of Standards and Science (KRISS) prepared the unknown samples and quantified them by flow cytometry. In this study, several factors like selection of the PCR master mix, the fluorescent label, and the position of the primers were evaluated for quantifying supercoiled DNA by dPCR. This work confirmed that a 16S PCR master mix avoided poor amplification of the supercoiled DNA, whereas HEX labels on dPCR probe resulted in robust amplification curves. Optimizing the dPCR assay based on these two observations resulted in accurate quantification of supercoiled DNA without preanalytical linearization. This result was validated in close agreement (101~113%) with the result from flow cytometry.

  15. Accurate quantification of supercoiled DNA by digital PCR

    PubMed Central

    Dong, Lianhua; Yoo, Hee-Bong; Wang, Jing; Park, Sang-Ryoul

    2016-01-01

    Digital PCR (dPCR) as an enumeration-based quantification method is capable of quantifying the DNA copy number without the help of standards. However, it can generate false results when the PCR conditions are not optimized. A recent international comparison (CCQM P154) showed that most laboratories significantly underestimated the concentration of supercoiled plasmid DNA by dPCR. Mostly, supercoiled DNAs are linearized before dPCR to avoid such underestimations. The present study was conducted to overcome this problem. In the bilateral comparison, the National Institute of Metrology, China (NIM) optimized and applied dPCR for supercoiled DNA determination, whereas Korea Research Institute of Standards and Science (KRISS) prepared the unknown samples and quantified them by flow cytometry. In this study, several factors like selection of the PCR master mix, the fluorescent label, and the position of the primers were evaluated for quantifying supercoiled DNA by dPCR. This work confirmed that a 16S PCR master mix avoided poor amplification of the supercoiled DNA, whereas HEX labels on dPCR probe resulted in robust amplification curves. Optimizing the dPCR assay based on these two observations resulted in accurate quantification of supercoiled DNA without preanalytical linearization. This result was validated in close agreement (101~113%) with the result from flow cytometry. PMID:27063649

  16. Towards Accurate Molecular Modeling of Plastic Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Chantawansri, T. L.; Andzelm, J.; Taylor, D.; Byrd, E.; Rice, B.

    2010-03-01

    There is substantial interest in identifying the controlling factors that influence the susceptibility of polymer bonded explosives (PBXs) to accidental initiation. Numerous Molecular Dynamics (MD) simulations of PBXs using the COMPASS force field have been reported in recent years, where the validity of the force field in modeling the solid EM fill has been judged solely on its ability to reproduce lattice parameters, which is an insufficient metric. Performance of the COMPASS force field in modeling EMs and the polymeric binder has been assessed by calculating structural, thermal, and mechanical properties, where only fair agreement with experimental data is obtained. We performed MD simulations using the COMPASS force field for the polymer binder hydroxyl-terminated polybutadiene and five EMs: cyclotrimethylenetrinitramine, 1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane, 2,4,6,8,10,12-hexantirohexaazazisowurzitane, 2,4,6-trinitro-1,3,5-benzenetriamine, and pentaerythritol tetranitate. Predicted EM crystallographic and molecular structural parameters, as well as calculated properties for the binder will be compared with experimental results for different simulation conditions. We also present novel simulation protocols, which improve agreement between experimental and computation results thus leading to the accurate modeling of PBXs.

  17. Accurate Reading with Sequential Presentation of Single Letters

    PubMed Central

    Price, Nicholas S. C.; Edwards, Gemma L.

    2012-01-01

    Rapid, accurate reading is possible when isolated, single words from a sentence are sequentially presented at a fixed spatial location. We investigated if reading of words and sentences is possible when single letters are rapidly presented at the fovea under user-controlled or automatically controlled rates. When tested with complete sentences, trained participants achieved reading rates of over 60 wpm and accuracies of over 90% with the single letter reading (SLR) method and naive participants achieved average reading rates over 30 wpm with greater than 90% accuracy. Accuracy declined as individual letters were presented for shorter periods of time, even when the overall reading rate was maintained by increasing the duration of spaces between words. Words in the lexicon that occur more frequently were identified with higher accuracy and more quickly, demonstrating that trained participants have lexical access. In combination, our data strongly suggest that comprehension is possible and that SLR is a practicable form of reading under conditions in which normal scanning of text is not possible, or for scenarios with limited spatial and temporal resolution such as patients with low vision or prostheses. PMID:23115548

  18. Accurate reading with sequential presentation of single letters.

    PubMed

    Price, Nicholas S C; Edwards, Gemma L

    2012-01-01

    Rapid, accurate reading is possible when isolated, single words from a sentence are sequentially presented at a fixed spatial location. We investigated if reading of words and sentences is possible when single letters are rapidly presented at the fovea under user-controlled or automatically controlled rates. When tested with complete sentences, trained participants achieved reading rates of over 60 wpm and accuracies of over 90% with the single letter reading (SLR) method and naive participants achieved average reading rates over 30 wpm with greater than 90% accuracy. Accuracy declined as individual letters were presented for shorter periods of time, even when the overall reading rate was maintained by increasing the duration of spaces between words. Words in the lexicon that occur more frequently were identified with higher accuracy and more quickly, demonstrating that trained participants have lexical access. In combination, our data strongly suggest that comprehension is possible and that SLR is a practicable form of reading under conditions in which normal scanning of text is not possible, or for scenarios with limited spatial and temporal resolution such as patients with low vision or prostheses.

  19. Accurate stereochemistry for two related 22,26-epiminocholestene derivatives

    SciTech Connect

    Vega-Baez, José Luis; Sandoval-Ramírez, Jesús; Meza-Reyes, Socorro; Montiel-Smith, Sara; Gómez-Calvario, Victor; Bernès, Sylvain

    2008-04-01

    Regioselective opening of ring E of solasodine under various conditions afforded (25R)-22,26-epimino@@cholesta-5,22(N)-di@@ene-3β,16β-diyl diacetate (previously known as 3,16-diacetyl pseudosolasodine B), C{sub 31}H{sub 47}NO{sub 4}, or (22S,25R)-16β-hydr@@oxy-22,26-epimino@@cholesta-5-en-3β-yl acetate (a derivative of the naturally occurring alkaloid oblonginine), C{sub 29}H{sub 47}NO{sub 3}. In both cases, the reactions are carried out with retention of chirality at the C16, C20 and C25 stereogenic centers, which are found to be S, S and R, respectively. Although pseudosolasodine was synthesized 50 years ago, these accurate assignments clarify some controversial points about the actual stereochemistry for these alkaloids. This is of particular importance in the case of oblonginine, since this compound is currently under consideration for the treatment of aphasia arising from apoplexy; the present study defines a diastereoisomerically pure compound for pharmacological studies.

  20. Development and Validation of a Multidisciplinary Tool for Accurate and Efficient Rotorcraft Noise Prediction (MUTE)

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris

    2011-01-01

    A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.

  1. Accurate, multi-kb reads resolve complex populations and detect rare microorganisms

    PubMed Central

    Sharon, Itai; Kertesz, Michael; Hug, Laura A.; Pushkarev, Dmitry; Blauwkamp, Timothy A.; Castelle, Cindy J.; Amirebrahimi, Mojgan; Thomas, Brian C.; Burstein, David; Tringe, Susannah G.; Williams, Kenneth H.

    2015-01-01

    Accurate evaluation of microbial communities is essential for understanding global biogeochemical processes and can guide bioremediation and medical treatments. Metagenomics is most commonly used to analyze microbial diversity and metabolic potential, but assemblies of the short reads generated by current sequencing platforms may fail to recover heterogeneous strain populations and rare organisms. Here we used short (150-bp) and long (multi-kb) synthetic reads to evaluate strain heterogeneity and study microorganisms at low abundance in complex microbial communities from terrestrial sediments. The long-read data revealed multiple (probably dozens of) closely related species and strains from previously undescribed Deltaproteobacteria and Aminicenantes (candidate phylum OP8). Notably, these are the most abundant organisms in the communities, yet short-read assemblies achieved only partial genome coverage, mostly in the form of short scaffolds (N50 = ∼2200 bp). Genome architecture and metabolic potential for these lineages were reconstructed using a new synteny-based method. Analysis of long-read data also revealed thousands of species whose abundances were <0.1% in all samples. Most of the organisms in this “long tail” of rare organisms belong to phyla that are also represented by abundant organisms. Genes encoding glycosyl hydrolases are significantly more abundant than expected in rare genomes, suggesting that rare species may augment the capability for carbon turnover and confer resilience to changing environmental conditions. Overall, the study showed that a diversity of closely related strains and rare organisms account for a major portion of the communities. These are probably common features of many microbial communities and can be effectively studied using a combination of long and short reads. PMID:25665577

  2. Chromosomal Conditions

    MedlinePlus

    ... 150 babies is born with a chromosomal condition. Down syndrome is an example of a chromosomal condition. Because ... all pregnant women be offered prenatal tests for Down syndrome and other chromosomal conditions. A screening test is ...

  3. Spatio-temporal representativeness of aerosol remote sensing observations

    NASA Astrophysics Data System (ADS)

    Schutgens, Nick; Gryspeerdt, Edward; Tsyro, Svetlana; Goto, Daisuke; Watson-Parris, Duncan; Weigum, Natalie; Schulz, Michael; Stier, Philip

    2016-04-01

    One characteristic of remote sensing observations is the strong intermittency with which they observe the same scene. Due to unfavourable conditions (due to e.g. low visible light, cloudiness or high surface albedo), sampling constraints (due to e.g. polar orbits) or instrument malfunction or maintenance, gaps in the observing record of hours to months exist. At the same time, satellite L3 products often are spatial aggregates over considerable distances (e.g. 1 by 1 degree). We study the impact of spatio-temporal sampling of observations on their representativeness: i.e. how well can satellite products represent the large scale (~ 100 by 100 km) aerosol field over periods of days, months, or years. This study was conducted by using diverse global and regional aerosol models as a truth and sub-sample them according to actual observations. In this way, we have been able to study the representativeness of different observing systems like MODIS, CALIOP and AERONET. Monthly and yearly averages allow serious sampling errors, that may still be present in multi-year climatologies due to recurring observing patterns. Even daily averages are affected as diurnal cycles can often not be observed. We discuss the implications these representativeness errors have for e.g. model evaluation or the construction of climatologies. We also assess similar representativeness issues in ground site in-situ observations from e.g. EMEP or IMPROVE and show that satellite datasets have distinct advantages due to their better spatial coverage provided temporal sampling is dealt with properly (i.e. through collocation of datasets). Finally, we briefly introduce a software tool (the Community Intercomparison Suite or CIS) that is designed to improve representativeness of datasets in intercomparion studies through aggregation and collocation of data.

  4. A representative survey of the dynamics and energetics of FRII radio galaxies

    NASA Astrophysics Data System (ADS)

    Ineson, J.; Croston, J. H.; Hardcastle, M. J.; Mingo, B.

    2017-01-01

    We report the first large, systematic study of the dynamics and energetics of a representative sample of FRII radio galaxies with well-characterized group/cluster environments. We used X-ray inverse-Compton and radio synchrotron measurements to determine the internal radio-lobe conditions, and these were compared with external pressures acting on the lobes, determined from measurements of the thermal X-ray emission of the group/cluster. Consistent with previous work, we found that FRII radio lobes are typically electron-dominated by a small factor relative to equipartition, and are over-pressured relative to the external medium in their outer parts. These results suggest that there is typically no energetically significant proton population in the lobes of FRII radio galaxies (unlike for FRIs), and so for this population, inverse-Compton modelling provides an accurate way of measuring total energy content and estimating jet power. We estimated the distribution of Mach numbers for the population of expanding radio lobes, finding that at least half of the radio galaxies are currently driving strong shocks into their group/cluster environments. Finally, we determined a jet power-radio luminosity relation for FRII radio galaxies based on our estimates of lobe internal energy and Mach number. The slope and normalisation of this relation are consistent with theoretical expectations, given the departure from equipartition and environmental distribution for our sample.

  5. Hook Region Represented in a Cochlear Model

    NASA Astrophysics Data System (ADS)

    Steele, Charles R.; Kim, Namkeun; Puria, Sunil

    2009-02-01

    The present interest is in discontinuities. Particularly the geometry of the hook region, with the flexible round window nearly parallel with the basilar membrane, is not represented by a standard box model, in which both stapes and round window are placed at the end. A better model represents the round window by a soft membrane in the wall of scala tympani, with the end closed. This complicates the analysis considerably. Features are that the significant compression wave, i.e., the fast wave, is of negligible magnitude in this region, and that significant evanescent waves occur because of the discontinuities at the beginning and end of the simulated round window. The effect of this on both high frequency, with maximum basilar membrane response in the hook region, and lower frequencies are determined.

  6. Data structures and apparatuses for representing knowledge

    SciTech Connect

    Hohimer, Ryan E; Thomson, Judi R; Harvey, William J; Paulson, Patrick R; Whiting, Mark A; Tratz, Stephen C; Chappell, Alan R; Butner, Robert S

    2014-02-18

    Data structures and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.

  7. The Representative Shuttle Environmental Control System

    NASA Technical Reports Server (NTRS)

    Brose, H. F.; Greenwood, F. H.; Thompson, C. D.; Willis, N. C.

    1974-01-01

    The Representative Shuttle Environmental Control System (RSECS) program was conceived to provide NASA with a prototype system representative of the Shuttle Environmental Control System (ECS). Discussed are the RSECS program objectives, predicated on updating and adding to the early system as required to retain its usefulness during the Shuttle ECS development and qualification effort. Ultimately, RSECS will be replaced with a flight-designed system using either refurbished development or qualification equipment to provide NASA with a flight simulation capability during the Shuttle missions. The RSECS air revitalization subsystem and the waste management support subsystem are being tested. A water coolant subsystem and a freon coolant subsystem are in the development and planning phases.

  8. Representing operations procedures using temporal dependency networks

    NASA Technical Reports Server (NTRS)

    Fayyad, Kristina E.; Cooper, Lynne P.

    1993-01-01

    DSN Link Monitor & Control (LMC) operations consist primarily of executing procedures to configure, calibrate, test, and operate a communications link between an interplanetary spacecraft and its mission control center. Currently the LMC operators are responsible for integrating procedures into an end-to-end series of steps. The research presented in this paper is investigating new ways of specifying operations procedures that incorporate the insight of operations, engineering, and science personnel to improve mission operations. The paper describes the rationale for using Temporal Dependency Networks (TDN's) to represent the procedures, a description of how the data is acquired, and the knowledge engineering effort required to represent operations procedures. Results of operational tests of this concept, as implemented in the LMC Operator Assistant Prototype (LMCOA), are also presented.

  9. Physalis method for heterogeneous mixtures of dielectrics and conductors: Accurately simulating one million particles using a PC

    NASA Astrophysics Data System (ADS)

    Liu, Qianlong

    2011-09-01

    Prosperetti's seminal Physalis method, an Immersed Boundary/spectral method, had been used extensively to investigate fluid flows with suspended solid particles. Its underlying idea of creating a cage and using a spectral general analytical solution around a discontinuity in a surrounding field as a computational mechanism to enable the accommodation of physical and geometric discontinuities is a general concept, and can be applied to other problems of importance to physics, mechanics, and chemistry. In this paper we provide a foundation for the application of this approach to the determination of the distribution of electric charge in heterogeneous mixtures of dielectrics and conductors. The proposed Physalis method is remarkably accurate and efficient. In the method, a spectral analytical solution is used to tackle the discontinuity and thus the discontinuous boundary conditions at the interface of two media are satisfied exactly. Owing to the hybrid finite difference and spectral schemes, the method is spectrally accurate if the modes are not sufficiently resolved, while higher than second-order accurate if the modes are sufficiently resolved, for the solved potential field. Because of the features of the analytical solutions, the derivative quantities of importance, such as electric field, charge distribution, and force, have the same order of accuracy as the solved potential field during postprocessing. This is an important advantage of the Physalis method over other numerical methods involving interpolation, differentiation, and integration during postprocessing, which may significantly degrade the accuracy of the derivative quantities of importance. The analytical solutions enable the user to use relatively few mesh points to accurately represent the regions of discontinuity. In addition, the spectral convergence and a linear relationship between the cost of computer memory/computation and particle numbers results in a very efficient method. In the present

  10. Picturing and modeling catchments by representative hillslopes

    NASA Astrophysics Data System (ADS)

    Loritz, Ralf; Hassler, Sibylle K.; Jackisch, Conrad; Allroggen, Niklas; van Schaik, Loes; Wienhöfer, Jan; Zehe, Erwin

    2017-03-01

    This study explores the suitability of a single hillslope as a parsimonious representation of a catchment in a physically based model. We test this hypothesis by picturing two distinctly different catchments in perceptual models and translating these pictures into parametric setups of 2-D physically based hillslope models. The model parametrizations are based on a comprehensive field data set, expert knowledge and process-based reasoning. Evaluation against streamflow data highlights that both models predicted the annual pattern of streamflow generation as well as the hydrographs acceptably. However, a look beyond performance measures revealed deficiencies in streamflow simulations during the summer season and during individual rainfall-runoff events as well as a mismatch between observed and simulated soil water dynamics. Some of these shortcomings can be related to our perception of the systems and to the chosen hydrological model, while others point to limitations of the representative hillslope concept itself. Nevertheless, our results confirm that representative hillslope models are a suitable tool to assess the importance of different data sources as well as to challenge our perception of the dominant hydrological processes we want to represent therein. Consequently, these models are a promising step forward in the search for the optimal representation of catchments in physically based models.

  11. Numerical Tension Adjustment of X-Ray Membrane to Represent Goat Skin Kompang

    NASA Astrophysics Data System (ADS)

    Syiddiq, M.; Siswanto, W. A.

    2017-01-01

    This paper presents a numerical membrane model of traditional musical instrument kompang that will be used to find the parameter of membrane tension of x-ray membrane representing the classical goat-skin membrane of kompang. In this study, the experiment towards the kompang is first conducted in an acoustical anechoic enclosure and in parallel a mathematical model of the kompang membrane is developed to simulate the vibration of the kompang membrane in polar coordinate by implementing Fourier-Bessel wave function. The wave equation in polar direction in mode 0,1 is applied to provide the corresponding natural frequencies of the circular membrane. The value of initial and boundary conditions in the function is determined from experiment to allow the correct development of numerical equation. The numerical mathematical model is coded in SMath for the accurate numerical analysis as well as the plotting tool. Two kompang membrane cases with different membrane materials, i.e. goat skin and x-ray film membranes with fixed radius of 0.1 m are used in the experiment. An alternative of kompang’s membrane made of x-ray film with the appropriate tension setting can be used to represent the sound of traditional goat-skin kompang. The tension setting of the membrane to resemble the goat-skin is 24N. An effective numerical tool has been used to help kompang maker to set the tension of x-ray membrane. In the future application, any traditional kompang with different size can be replaced by another membrane material if the tension is set to the correct tension value. The numerical tool used is useful and handy to calculate the tension of the alternative membrane material.

  12. 40 CFR 96.115 - Delegation by CAIR designated representative and alternate CAIR designated representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR Designated Representative for CAIR...

  13. 40 CFR 96.115 - Delegation by CAIR designated representative and alternate CAIR designated representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR Designated Representative for CAIR...

  14. An efficient and accurate model of the coax cable feeding structure for FEM simulations

    NASA Technical Reports Server (NTRS)

    Gong, Jian; Volakis, John L.

    1995-01-01

    An efficient and accurate coax cable feed model is proposed for microstrip or cavity-backed patch antennas in the context of a hybrid finite element method (FEM). A TEM mode at the cavity-cable junction is assumed for the FEM truncation and system excitation. Of importance in this implementation is that the cavity unknowns are related to the model fields by enforcing an equipotential condition rather than field continuity. This scheme proved quite accurate and may be applied to other decomposed systems as a connectivity constraint. Comparisons of our predictions with input impedance measurements are presented and demonstrate the substantially improved accuracy of the proposed model.

  15. An accurate predictor-corrector HOC solver for the two dimensional Riemann problem of gas dynamics

    NASA Astrophysics Data System (ADS)

    Gogoi, Bidyut B.

    2016-10-01

    The work in the present manuscript is concerned with the simulation of twodimensional (2D) Riemann problem of gas dynamics. We extend our recently developed higher order compact (HOC) method from one-dimensional (1D) to 2D solver and simulate the problem on a square geometry with different initial conditions. The method is fourth order accurate in space and second order accurate in time. We then compare our results with the available benchmark results. The comparison shows an excellent agreement of our results with the existing ones in the literature. Being a finite difference solver, it is quite straight-forward and simple.

  16. A predictable and accurate technique with elastomeric impression materials.

    PubMed

    Barghi, N; Ontiveros, J C

    1999-08-01

    A method for obtaining more predictable and accurate final impressions with polyvinylsiloxane impression materials in conjunction with stock trays is proposed and tested. Heavy impression material is used in advance for construction of a modified custom tray, while extra-light material is used for obtaining a more accurate final impression.

  17. Tube dimpling tool assures accurate dip-brazed joints

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.

    1968-01-01

    Portable, hand-held dimpling tool assures accurate brazed joints between tubes of different diameters. Prior to brazing, the tool performs precise dimpling and nipple forming and also provides control and accurate measuring of the height of nipples and depth of dimples so formed.

  18. The legality of designating a union representative as the miners` walkaround representative at a non-unionized mine

    SciTech Connect

    1996-10-01

    Reflecting the need for miner participation in maintaining safe conditions in the nation`s mines, current federal law gives miners at each mining operation the right to appoint a representative to accompany federal inspectors on periodic mine inspections. The Federal Mine Safety and Health Act (Mine Act) grants the miners the right to choose this {open_quotes}walkaround{close_quotes} representative, and provides that the walkaround representative shall be given an opportunity to accompany a federal agent during an inspection of a mine for the purposes of aiding the inspection. The issue of the propriety of a non-employee union walkaround representative at a non-union mine was recently addressed in Kerr-McGee Coal Corp. v. Federal Mine Safety & Health Review Commission (Kerr-McGee) and Thunder Basin Coal Co. v. Federal Mine Safety & Health Review Commission (Thunder Basin). This Note is devoted to a discussion of Kerr-McGee and Thunder Basin. However, it is important to first briefly review the provision of the federal statutes that give rise to the controversy. The Note then explains how the statutes were interpreted by the Kerr-McGee and Thunder Basin courts. A reading of the two decisions makes it apparent that any group of employees of a non-unionized mine are free to select a non-employee union agent as their walkaround representative. Finally, the Note discusses the ramifications of the conclusions reached in Kerr-McGee and Thunder Basin on the future duties and behavior of mine operators, organized labor, and those designated as walkaround representatives.

  19. Numerical simulation of hyperbolic heat conduction with convection boundary conditions and pulse heating effects

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.

  20. A Representative Shuttle Environmental Control System

    NASA Technical Reports Server (NTRS)

    Brose, H. F.; Stanley, M. D.; Leblanc, J. C.

    1977-01-01

    The Representative Shuttle Environmental Control System (RSECS) provides a ground test bed to be used in the early accumulation of component and system operating data, the evaluation of potential system improvements, and possibly the analysis of Shuttle Orbiter test and flight anomalies. Selected components are being subjected to long term tests to determine endurance and corrosion resistance capability prior to Orbiter vehicle experience. Component and system level tests in several cases are being used to support flight certification of Orbiter hardware. These activities are conducted as a development program to allow for timeliness, flexibility, and cost effectiveness not possible in a program burdened by flight documentation and monitoring constraints.

  1. A Hydro-Economic Approach to Representing Water Resources Impacts in Integrated Assessment Models

    SciTech Connect

    Kirshen, Paul H.; Strzepek, Kenneth, M.

    2004-01-14

    Grant Number DE-FG02-98ER62665 Office of Energy Research of the U.S. Department of Energy Abstract Many Integrated Assessment Models (IAM) divide the world into a small number of highly aggregated regions. Non-OECD countries are aggregated geographically into continental and multiple-continental regions or economically by development level. Current research suggests that these large scale aggregations cannot accurately represent potential water resources-related climate change impacts. In addition, IAMs do not explicitly model the flow regulation impacts of reservoir and ground water systems, the economics of water supply, or the demand for water in economic activities. Using the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) model of the International Food Policy Research Institute (IFPRI) as a case study, this research implemented a set of methodologies to provide accurate representation of water resource climate change impacts in Integrated Assessment Models. There were also detailed examinations of key issues related to aggregated modeling including: modeling water consumption versus water withdrawals; ground and surface water interactions; development of reservoir cost curves; modeling of surface areas of aggregated reservoirs for estimating evaporation losses; and evaluating the importance of spatial scale in river basin modeling. The major findings include: - Continental or national or even large scale river basin aggregation of water supplies and demands do not accurately capture the impacts of climate change in the water and agricultural sector in IAMs. - Fortunately, there now exist gridden approaches (0.5 X 0.5 degrees) to model streamflows in a global analysis. The gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with national boundaries. This combined with GIS tools, high speed computers, and the growing availability of socio-economic gridded data bases allows assignment of

  2. Representing Extreme Temperature Events and Resolving Their Implications for Yield

    NASA Astrophysics Data System (ADS)

    Huybers, P. J.; Mueller, N. D.; Butler, E. E.; Tingley, M.; McKinnon, K. A.; Rhines, A. N.

    2014-12-01

    Although it is well recognized that extreme temperatures occurring at particular growth stages are destructive to yield, there appears substantial scope for improved empirical assessment and simulation of the relationship between temperature and yield. Several anecdotes are discussed. First, a statistical analysis of historical U.S. extreme temperatures is provided. It is demonstrated that both reanalysis and model simulations significantly differ from near-surface temperature observations in the frequency and magnitude of extremes. This finding supports empirical assessment using near-surface instrumental records and underscores present difficulties in simulating past and predicting future changes. Second, an analysis of the implications of extreme temperatures on U.S. maize yield is provided where the response is resolved regionally and according to growth stage. Sensitivity to extreme temperatures during silking is found to be uniformly high across the U.S., but the response during grain filling varies spatially, with higher sensitivity in the North. This regional and growth-stage dependent sensitivity implies the importance of representing cultivar, planting times, and development rates, and is also indicative of the potential for future changes according to the combined effects of climate and technology. Finally, interaction between extreme temperatures and agriculture is indicated by analysis showing that historical extreme temperatures in the U.S. Midwest have cooled in relation to changes in regional productivity, possibly because of greater potential for cooling through evapotranspiration. This interpretation is consistent with changes in crop physiology and management, though also noteworthy is that the moderating influence of increased evapotranspiration on extreme temperatures appears to be lost during severe drought. Together, these findings indicate that a more accurate assessment of the historical relationship between extreme temperatures and yield

  3. IRIS: Towards an Accurate and Fast Stage Weight Prediction Method

    NASA Astrophysics Data System (ADS)

    Taponier, V.; Balu, A.

    2002-01-01

    , validated on several technical and econometrical cases, has been used for this purpose. A database of several conventional stages, operated with either solid or liquid propellants, has been made up, in conjunction with an evolutionary set of geometrical, physical and functional parameters likely to contribute to the description of the mass fraction and presumably known at the early steps of the preliminary design. After several iterations aiming at selecting the most influential parameters, polynomial expressions of the mass fraction have been made up, associated to a confidence level. The outcome highlights the real possibility of a parametric formulation of the mass fraction for conventional stages on the basis of a limited number of descriptive parameters and with a high degree of accuracy, lower than 10%. The formulas have been later on tested on existing or preliminary stages not included in the initial database, for validation purposes. Their mass faction is assessed with a comparable accuracy. The polynomial generation method in use allows also for a search of the influence of each parameter. The devised method, suitable for the preliminary design phase, represents, compared to the classical empirical approach, a significant way of improvement of the mass fraction prediction. It enables a rapid dissemination of more accurate and consistent weight data estimates to support system studies. It makes also possible the upstream processing of the preliminary design tasks through a global system approach. This method, currently in the experimental phase, is already in use as a complementary means at the technical underdirectorate of CNES-DLA. * IRIS :Instrument de Recherche des Indices Structuraux

  4. Obtaining optical properties using Representative Layer Theory

    NASA Astrophysics Data System (ADS)

    Razavi, Neema; Yust, Brain; Sardar, Dhiraj

    2011-03-01

    Reliable and minimally invasive methods for diagnosis of toxicity and onset of disease are important for advances in clinical practices. This is commonly achieved through the optical properties, such as a change in the absorption or scattering strength of the diseased tissue. Thus, being able to quantitatively characterize these changes is important to advancements in medical diagnostic methods. By adapting the Representative Layer Theory to the integrating sphere technique, very thin biological samples may be optically characterized, yielding a quick and easy method for monitoring optical changes as a function of disease progression. Samples, consisting of cells, dyes, and nanoparticles of known concentrations were optically characterized at multiple wavelengths. Optical properties obtained by the Representative Layer Theory are compared to those obtained through other methods, such as Kubelka-Munk and Inverse Adding Doubling which are known to have sample thickness limitations. This work is also supported in part by National Science Foundation PREM Grant No. DMR - 0934218 and UTSA Collaborative Research Seed Grant Program (CRSGP).

  5. Representing Documents via Latent Keyphrase Inference

    PubMed Central

    Liu, Jialu; Ren, Xiang; Shang, Jingbo; Cassidy, Taylor; Voss, Clare R.; Han, Jiawei

    2017-01-01

    Many text mining approaches adopt bag-of-words or n-grams models to represent documents. Looking beyond just the words, i.e., the explicit surface forms, in a document can improve a computer’s understanding of text. Being aware of this, researchers have proposed concept-based models that rely on a human-curated knowledge base to incorporate other related concepts in the document representation. But these methods are not desirable when applied to vertical domains (e.g., literature, enterprise, etc.) due to low coverage of in-domain concepts in the general knowledge base and interference from out-of-domain concepts. In this paper, we propose a data-driven model named Latent Keyphrase Inference (LAKI) that represents documents with a vector of closely related domain keyphrases instead of single words or existing concepts in the knowledge base. We show that given a corpus of in-domain documents, topical content units can be learned for each domain keyphrase, which enables a computer to do smart inference to discover latent document keyphrases, going beyond just explicit mentions. Compared with the state-of-art document representation approaches, LAKI fills the gap between bag-of-words and concept-based models by using domain keyphrases as the basic representation unit. It removes dependency on a knowledge base while providing, with keyphrases, readily interpretable representations. When evaluated against 8 other methods on two text mining tasks over two corpora, LAKI outperformed all. PMID:28229132

  6. alpha-Amylase: an ideal representative of thermostable enzymes.

    PubMed

    Prakash, Om; Jaiswal, Nivedita

    2010-04-01

    The conditions prevailing in the industrial applications in which enzymes are used are rather extreme, especially with respect to temperature and pH. Therefore, there is a continuing demand to improve the stability of enzymes and to meet the requirements set by specific applications. In this respect, thermostable enzymes have been proposed to be industrially relevant. In this review, alpha-amylase, a well-established representative of thermostable enzymes, providing an attractive model for the investigation of the structural basis of thermostability of proteins, has been discussed.

  7. Drop Testing Representative Multi-Canister Overpacks

    SciTech Connect

    Snow, Spencer D.; Morton, Dana K.

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  8. Problems in publishing accurate color in IEEE journals.

    PubMed

    Vrhel, Michael J; Trussell, H J

    2002-01-01

    To demonstrate the performance of color image processing algorithms, it is desirable to be able to accurately display color images in archival publications. In poster presentations, the authors have substantial control of the printing process, although little control of the illumination. For journal publication, the authors must rely on professional intermediaries (printers) to accurately reproduce their results. Our previous work describes requirements for accurately rendering images using your own equipment. This paper discusses the problems of dealing with intermediaries and offers suggestions for improved communication and rendering.

  9. Fabricating an Accurate Implant Master Cast: A Technique Report.

    PubMed

    Balshi, Thomas J; Wolfinger, Glenn J; Alfano, Stephen G; Cacovean, Jeannine N; Balshi, Stephen F

    2015-12-01

    The technique for fabricating an accurate implant master cast following the 12-week healing period after Teeth in a Day® dental implant surgery is detailed. The clinical, functional, and esthetic details captured during the final master impression are vital to creating an accurate master cast. This technique uses the properties of the all-acrylic resin interim prosthesis to capture these details. This impression captures the relationship between the remodeled soft tissue and the interim prosthesis. This provides the laboratory technician with an accurate orientation of the implant replicas in the master cast with which a passive fitting restoration can be fabricated.

  10. Rolling mill optimization using an accurate and rapid new model for mill deflection and strip thickness profile

    NASA Astrophysics Data System (ADS)

    Malik, Arif Sultan

    This work presents improved technology for attaining high-quality rolled metal strip. The new technology is based on an innovative method to model both the static and dynamic characteristics of rolling mill deflection, and it applies equally to both cluster-type and non cluster-type rolling mill configurations. By effectively combining numerical Finite Element Analysis (FEA) with analytical solid mechanics, the devised approach delivers a rapid, accurate, flexible, high-fidelity model useful for optimizing many important rolling parameters. The associated static deflection model enables computation of the thickness profile and corresponding flatness of the rolled strip. Accurate methods of predicting the strip thickness profile and strip flatness are important in rolling mill design, rolling schedule set-up, control of mill flatness actuators, and optimization of ground roll profiles. The corresponding dynamic deflection model enables solution of the standard eigenvalue problem to determine natural frequencies and modes of vibration. The presented method for solving the roll-stack deflection problem offers several important advantages over traditional methods. In particular, it includes continuity of elastic foundations, non-iterative solution when using pre-determined elastic foundation moduli, continuous third-order displacement fields, simple stress-field determination, the ability to calculate dynamic characteristics, and a comparatively faster solution time. Consistent with the most advanced existing methods, the presented method accommodates loading conditions that represent roll crowning, roll bending, roll shifting, and roll crossing mechanisms. Validation of the static model is provided by comparing results and solution time with large-scale, commercial finite element simulations. In addition to examples with the common 4-high vertical stand rolling mill, application of the presented method to the most complex of rolling mill configurations is demonstrated

  11. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach

    PubMed Central

    Wang, Zhiheng; Yang, Qianqian; Li, Tonghua; Cong, Peisheng

    2015-01-01

    The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS) obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction) tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database. Availability The DisoMCS is available at http://cal.tongji.edu.cn/disorder/. PMID:26090958

  12. Picturing and modelling catchments by representative hillslopes

    NASA Astrophysics Data System (ADS)

    Loritz, Ralf; Hassler, Sibylle; Jackisch, Conrad; Zehe, Erwin

    2016-04-01

    Hydrological modelling studies often start with a qualitative sketch of the hydrological processes of a catchment. These so-called perceptual models are often pictured as hillslopes and are generalizations displaying only the dominant and relevant processes of a catchment or hillslope. The problem with these models is that they are prone to become too much predetermined by the designer's background and experience. Moreover it is difficult to know if that picture is correct and contains enough complexity to represent the system under study. Nevertheless, because of their qualitative form, perceptual models are easy to understand and can be an excellent tool for multidisciplinary exchange between researchers with different backgrounds, helping to identify the dominant structures and processes in a catchment. In our study we explore whether a perceptual model built upon an intensive field campaign may serve as a blueprint for setting up representative hillslopes in a hydrological model to reproduce the functioning of two distinctly different catchments. We use a physically-based 2D hillslope model which has proven capable to be driven by measured soil-hydrological parameters. A key asset of our approach is that the model structure itself remains a picture of the perceptual model, which is benchmarked against a) geo-physical images of the subsurface and b) observed dynamics of discharge, distributed state variables and fluxes (soil moisture, matric potential and sap flow). Within this approach we are able to set up two behavioral model structures which allow the simulation of the most important hydrological fluxes and state variables in good accordance with available observations within the 19.4 km2 large Colpach catchment and the 4.5 km2 large Wollefsbach catchment in Luxembourg without the necessity of calibration. This corroborates, contrary to the widespread opinion, that a) lower mesoscale catchments may be modelled by representative hillslopes and b) physically

  13. On the accurate estimation of gap fraction during daytime with digital cover photography

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2015-12-01

    Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.

  14. Post-identification feedback to eyewitnesses impairs evaluators' abilities to discriminate between accurate and mistaken testimony.

    PubMed

    Smalarz, Laura; Wells, Gary L

    2014-04-01

    Giving confirming feedback to mistaken eyewitnesses has robust distorting effects on their retrospective judgments (e.g., how certain they were, their view, etc.). Does feedback harm evaluators' abilities to discriminate between accurate and mistaken identification testimony? Participant-witnesses to a simulated crime made accurate or mistaken identifications from a lineup and then received confirming feedback or no feedback. Each then gave videotaped testimony about their identification, and a new sample of participant-evaluators judged the accuracy and credibility of the testimonies. Among witnesses who were not given feedback, evaluators were significantly more likely to believe the testimony of accurate eyewitnesses than they were to believe the testimony of mistaken eyewitnesses, indicating significant discrimination. Among witnesses who were given confirming feedback, however, evaluators believed accurate and mistaken witnesses at nearly identical rates, indicating no ability to discriminate. Moreover, there was no evidence of overbelief in the absence of feedback whereas there was significant overbelief in the confirming feedback conditions. Results demonstrate that a simple comment following a witness' identification decision ("Good job, you got the suspect") can undermine fact-finders' abilities to discern whether the witness made an accurate or a mistaken identification.

  15. The French method (of representing noise annoyance)

    NASA Technical Reports Server (NTRS)

    Collet, F.; Delol, J.

    1980-01-01

    The psophic index used in France for noise exposure from aircraft globally represents the annoyance with the following hypotheses: (1) the global annoyance is a function of the number of aircraft overflights of each type but does not depend on the overflight time; (2) an aircraft flying at night is considered to be just as annoying as 10 aircraft of the same type passing overhead during the day; and (3) and annoyance is only a function of the peak noise levels. Overall, the psophic index appears statistically as good a representation of the average annoyance as methods used in other countries; however, it does seem to reflect poorly the annoyance caused by light aircraft. Noise maps produced for Orly, Roissy, and the area around Paris are described. The range of applications and limitations of the psophic index are discussed.

  16. [Eating disorders in males: a representative survey].

    PubMed

    Kinzl, J F; Traweger, C; Trefalt, E; Mangweth, B; Biebl, W

    1998-12-01

    The present study examined the prevalence of eating disorders in a male representative random sample in Tyrol. The data were collected by telephone. Of the 1000 men, 8 (0.8%) met the DSM-IV diagnostic criteria for binge eating disorder. An additional 42 subjects (4.2%) exhibited a partial binge eating syndrome. These two otherwise widely identical groups of binge eaters were separated only by the DSM-IV frequency criterion. Five subjects (0.5%) met the DSM-IV criteria for the diagnosis of bulimia nervosa, and 94 men (9.4%) reported recurrent overeating. Men with any eating disorder were mostly overweight or obese. The findings show that there is a significant difference in eating disorders between men and women, but certain eating disorders are frequent not only in women but also in men.

  17. Controlling Hay Fever Symptoms with Accurate Pollen Counts

    MedlinePlus

    ... Library ▸ Hay fever and pollen counts Share | Controlling Hay Fever Symptoms with Accurate Pollen Counts This article has ... Pongdee, MD, FAAAAI Seasonal allergic rhinitis known as hay fever is caused by pollen carried in the air ...

  18. Digital system accurately controls velocity of electromechanical drive

    NASA Technical Reports Server (NTRS)

    Nichols, G. B.

    1965-01-01

    Digital circuit accurately regulates electromechanical drive mechanism velocity. The gain and phase characteristics of digital circuits are relatively unimportant. Control accuracy depends only on the stability of the input signal frequency.

  19. Accurate tracking of high dynamic vehicles with translated GPS

    NASA Astrophysics Data System (ADS)

    Blankshain, Kenneth M.

    The GPS concept and the translator processing system (TPS) which were developed for accurate and cost-effective tracking of various types of high dynamic expendable vehicles are described. A technique used by the translator processing system (TPS) to accomplish very accurate high dynamic tracking is presented. Automatic frequency control and fast Fourier transform processes are combined to track 100 g acceleration and 100 g/s jerk with 1-sigma velocity measurement error less than 1 ft/sec.

  20. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  1. Evaluation of color categorization for representing vehicle colors

    NASA Astrophysics Data System (ADS)

    Zeng, Nan; Crisman, Jill D.

    1997-02-01

    This paper evaluates the accuracy of three color categorization techniques in describing vehicles colors for a system, AutoColor, which we are developing for Intelligent Transportation Systems. Color categorization is used to efficiently represent 24-bit color images with up to 8 bits of color information. Our inspiration for color categorization is based on the fact that humans typically use only a few color names to describe the numerous colors they perceive. Our Crayon color categorization technique uses a naming scheme for digitized colors which is roughly based on human names for colors. The fastest and most straight forward method for compacting a 24-bit representation into an 8-bit representation is to use the most significant bits (MSB) to represent the colors. In addition, we have developed an Adaptive color categorization technique which can derive a set of color categories for the current imaging conditions. In this paper, we detail the three color categorization techniques, Crayon, MSB, and Adaptive, and we evaluate their performance on representing vehicle colors in our AutoColor system.

  2. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    NASA Astrophysics Data System (ADS)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  3. Representing the Margins: Multimodal Performance as a Tool for Critical Reflection and Pedagogy

    ERIC Educational Resources Information Center

    Darvin, Ron

    2015-01-01

    This article discusses how drama as a multimodal performance can be a powerful means to represent marginalized identities and to stimulate critical thought among teachers and learners about material conditions of existence and social inequalities.

  4. Recent activities of the Seismology Division Early Career Representative(s)

    NASA Astrophysics Data System (ADS)

    Agius, Matthew; Van Noten, Koen; Ermert, Laura; Mai, P. Martin; Krawczyk, CharLotte

    2016-04-01

    The European Geosciences Union is a bottom-up-organisation, in which its members are represented by their respective scientific divisions, committees and council. In recent years, EGU has embarked on a mission to reach out for its numerous 'younger' members by giving awards to outstanding young scientists and the setting up of Early Career Scientists (ECS) representatives. The division representative's role is to engage in discussions that concern students and early career scientists. Several meetings between all the division representatives are held throughout the year to discuss ideas and Union-wide issues. One important impact ECS representatives have had on EGU is the increased number of short courses and workshops run by ECS during the annual General Assembly. Another important contribution of ECS representatives was redefining 'Young Scientist' to 'Early Career Scientist', which avoids discrimination due to age. Since 2014, the Seismology Division has its own ECS representative. In an effort to more effectively reach out for young seismologists, a blog and a social media page dedicated to seismology have been set up online. With this dedicated blog, we'd like to give more depth to the average browsing experience by enabling young researchers to explore various seismology topics in one place while making the field more exciting and accessible to the broader community. These pages are used to promote the latest research especially of young seismologists and to share interesting seismo-news. Over the months the pages proved to be popular, with hundreds of views every week and an increased number of followers. An online survey was conducted to learn more about the activities and needs of early career seismologists. We present the results from this survey, and the work that has been carried out over the last two years, including detail of what has been achieved so far, and what we would like the ECS representation for Seismology to achieve. Young seismologists are

  5. Robust incremental condition estimation

    SciTech Connect

    Bischof, C.H.; Tang, P.T.P.

    1991-03-29

    This paper presents an improved version of incremental condition estimation, a technique for tracking the extremal singular values of a triangular matrix as it is being constructed one column at a time. We present a new motivation for this estimation technique using orthogonal projections. The paper focuses on an implementation of this estimation scheme in an accurate and consistent fashion. In particular, we address the subtle numerical issues arising in the computation of the eigensystem of a symmetric rank-one perturbed diagonal 2 {times} 2 matrix. Experimental results show that the resulting scheme does a good job in estimating the extremal singular values of triangular matrices, independent of matrix size and matrix condition number, and that it performs qualitatively in the same fashion as some of the commonly used nonincremental condition estimation schemes.

  6. Achieving Generality over Conditions: Combining the Multitrait Multimethod Matrix and the Representative Design of Experiments.

    DTIC Science & Technology

    1984-08-02

    Information Division Group 8 Code 2627 Orlando, FL 32813 Washington, D. C. 20375 CDR Norman E. Lane Dr. Michael Melich Code N-7A Communications Sciences...Mugu, CA 93042 Department of the Navy Foreign Addressees Dr. Edgar M. Johnson Dr. Kenneth Gardner Technical Director Applied Psychology Unit U. S. Army

  7. Drawing sounds: representing tones and chords spatially.

    PubMed

    Salgado-Montejo, Alejandro; Marmolejo-Ramos, Fernando; Alvarado, Jorge A; Arboleda, Juan Camilo; Suarez, Daniel R; Spence, Charles

    2016-12-01

    Research on the crossmodal correspondences has revealed that seemingly unrelated perceptual information can be matched across the senses in a manner that is consistent across individuals. An interesting extension of this line of research is to study how sensory information biases action. In the present study, we investigated whether different sounds (i.e. tones and piano chords) would bias participants' hand movements in a free movement task. Right-handed participants were instructed to move a computer mouse in order to represent three tones and two chords. They also had to rate each sound in terms of three visual analogue scales (slow-fast, unpleasant-pleasant, and weak-strong). The results demonstrate that tones and chords influence hand movements, with higher-(lower-)pitched sounds giving rise to a significant bias towards upper (lower) locations in space. These results are discussed in terms of the literature on forward models, embodied cognition, crossmodal correspondences, and mental imagery. Potential applications sports and rehabilitation are discussed briefly.

  8. The underground electromagnetic pulse: Four representative models

    SciTech Connect

    Wouters, L.F.

    1989-06-01

    I describe four phenomenological models by which an underground nuclear explosion may generate electromagnetic pulses: Compton current asymmetry (or ''Compton dipole''); Uphole conductor currents (or ''casing currents''); Diamagnetic cavity plasma (or ''magnetic bubble''); and Large-scale ground motion (or ''magneto-acoustic wave''). I outline the corresponding analytic exercises and summarize the principal results of the computations. I used a 10-kt contained explosion as the fiducial case. Each analytic sequence developed an equivalent source dipole and calculated signal waveforms at representative ground-surface locations. As a comparative summary, the Compton dipole generates a peak source current moment of about 12,000 A/center dot/m in the submicrosecond time domain. The casing-current source model obtains an equivalent peak moment of about 2 /times/ 10/sup 5/ A/center dot/m in the 10- to 30-/mu/s domain. The magnetic bubble produces a magnetic dipole moment of about 7 /times/ 10/sup 6/ A/center dot/m/sup 2/, characterized by a 30-ms time structure. Finally, the magneto-acoustic wave corresponds to a magnetic dipole moment of about 600 A/center dot/m/sup 2/, with a waveform showing 0.5-s periodicities. 8 refs., 35 figs., 7 tabs.

  9. The Representative Concentration Pathways: An Overview

    SciTech Connect

    Van Vuuren, Detlef; Edmonds, James A.; Kainuma, M.; Riahi, Keywan; Thomson, Allison M.; Hibbard, Kathleen A.; Hurtt, George; Kram, Tom; Krey, Volker; Lamarque, Jean-Francois; Masui, Toshihiko; Meinhausen, Malte; Nakicenovic, Nebojsa; Smith, Steven J.; Rose, Steven K.

    2011-08-05

    This paper summarizes the development process and main characteristics of the Representative Concentration Pathways (RCPs), a set of four new scenarios developed for the climate modeling community as a basis for long-term and near-term modeling experiments. The four RCPs together span the range of year 2100 radiative forcing values found in the open literature, i.e. from 2.6 to 8.5 W/m2. The RCPs are the product of an innovative collaboration between integrated assessment modelers, climate modelers, terrestrial ecosystem modelers and emission inventory experts. The resulting product forms a comprehensive data set with high spatial and sectoral resolutions for the period extending to 2100. Land use and emissions of air pollutants and greenhouse gases are reported mostly at a 0.5 x 0.5 degree spatial resolution, with air pollutants also provided per sector (for well-mixed gases, a coarser resolution is used). The underlying integrated assessment model outputs for land use, atmospheric emissions and concentration data were harmonized across models and scenarios to ensure consistency with historical observations while preserving individual scenario trends. For most variables, the RCPs cover a wide range of the existing literature. The RCPs are supplemented with extensions (Extended Concentration Pathways, ECPs), which allow climate modeling experiments through the year 2300. The RCPs are an important development in climate research and provide a potential foundation for further research and assessment, including emissions mitigation and impact analysis.

  10. Representing the effects of stratosphere–troposphere ...

    EPA Pesticide Factsheets

    Downward transport of ozone (O3) from the stratosphere can be a significant contributor to tropospheric O3 background levels. However, this process often is not well represented in current regional models. In this study, we develop a seasonally and spatially varying potential vorticity (PV)-based function to parameterize upper tropospheric and/or lower stratospheric (UTLS) O3 in a chemistry transport model. This dynamic O3–PV function is developed based on 21-year ozonesonde records from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) with corresponding PV values from a 21-year Weather Research and Forecasting (WRF) simulation across the Northern Hemisphere from 1990 to 2010. The result suggests strong spatial and seasonal variations of O3 ∕ PV ratios which exhibits large values in the upper layers and in high-latitude regions, with highest values in spring and the lowest values in autumn over an annual cycle. The newly developed O3 ∕ PV function was then applied in the Community Multiscale Air Quality (CMAQ) model for an annual simulation of the year 2006. The simulated UTLS O3 agrees much better with observations in both magnitude and seasonality after the implementation of the new parameterization. Considerable impacts on surface O3 model performance were found in the comparison with observations from three observational networks, i.e., EMEP, CASTNET and WDCGG. With the new parameterization, the negative bias in spring is reduced from

  11. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.

    PubMed

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J; Brewster, Aaron S; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; White, William E; Schafer, Donald W; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Glatzel, Pieter; Zwart, Petrus H; Grosse-Kunstleve, Ralf W; Bogan, Michael J; Messerschmidt, Marc; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K; Adams, Paul D; Sauter, Nicholas K

    2014-05-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.

  12. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    NASA Astrophysics Data System (ADS)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  13. Public directory data sources do not accurately characterize the food environment in two predominantly rural states.

    PubMed

    Longacre, Meghan R; Primack, Brian A; Owens, Peter M; Gibson, Lucinda; Beauregard, Sandy; Mackenzie, Todd A; Dalton, Madeline A

    2011-04-01

    Communities are being encouraged to develop locally based interventions to address environmental risk factors for obesity. Online public directories represent an affordable and easily accessible mechanism for mapping community food environments, but may have limited utility in rural areas. The primary aim of this study was to evaluate the efficacy of public directories vs rigorous onsite field verification to characterize the community food environment in 32 geographically dispersed towns from two rural states covering 1,237.6 square miles. Eight types of food outlets were assessed in 2007, including food markets and eating establishments, first using two publically available online directories followed by onsite field verification by trained coders. χ(2) and univariate binomial regression were used to determine whether the proportion of outlets accurately listed varied by food outlet type or town population. Among 1,340 identified outlets, only 36.9% were accurately listed through public directories; 29.6% were not listed but were located during field observation. Accuracy varied by outlet type, being most accurate for big box stores and least accurate for farm/produce stands. Overall, public directories accurately identified fewer than half of the food outlets. Accuracy was significantly lower for rural and small towns compared to mid-size and urban towns (P<0.001). In this geographic sample, public directories seriously misrepresented the actual distribution of food outlets, particularly for rural and small towns. To inform local obesity-prevention efforts, communities should strongly consider using field verification to characterize the food environment in low-population areas.

  14. Special purpose hybrid transfinite elements and unified computational methodology for accurately predicting thermoelastic stress waves

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.

  15. ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented.

    PubMed

    Saraswathi, Saras; Sundaram, Suresh; Sundararajan, Narasimhan; Zimmermann, Michael; Nilsen-Hamilton, Marit

    2011-01-01

    A combination of Integer-Coded Genetic Algorithm (ICGA) and Particle Swarm Optimization (PSO), coupled with the neural-network-based Extreme Learning Machine (ELM), is used for gene selection and cancer classification. ICGA is used with PSO-ELM to select an optimal set of genes, which is then used to build a classifier to develop an algorithm (ICGA_PSO_ELM) that can handle sparse data and sample imbalance. We evaluate the performance of ICGA-PSO-ELM and compare our results with existing methods in the literature. An investigation into the functions of the selected genes, using a systems biology approach, revealed that many of the identified genes are involved in cell signaling and proliferation. An analysis of these gene sets shows a larger representation of genes that encode secreted proteins than found in randomly selected gene sets. Secreted proteins constitute a major means by which cells interact with their surroundings. Mounting biological evidence has identified the tumor microenvironment as a critical factor that determines tumor survival and growth. Thus, the genes identified by this study that encode secreted proteins might provide important insights to the nature of the critical biological features in the microenvironment of each tumor type that allow these cells to thrive and proliferate.

  16. Representing Watersheds with Physics Based Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Downer, C. W.; Ogden, F. L.

    2011-12-01

    Hydrologic models are useful tools for representing watershed response, helping to understand the dominant hydrologic processes in the watershed, and for estimating system response under different forcing, climatic, or physical conditions in the watershed. Model skill in predicting system response is most often demonstrated by history matching. Useful models for predicting system response under varying conditions must include the dominant processes controlling the system response. While many types of hydrologic models are capable of simulating watershed response, physics- based models are capable of simulating the actual physical conditions and responses within the watershed. There are a variety of physics-based hydrologic models available to the practicing community. Like simpler models, these models vary in formulation and complexity. Many of these models, such as the US Army of Corps of Engineers Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model, allow flexibility in terms of both processes simulated and the formulation used to approximate the process. This flexibility allows the user to build the model according to his or her understanding or conceptualization, of the system, including processes that are thought to be important to system response. This also allows the user to use more rigorous methods of simulating critical processes and less rigorous methods of simulating non-critical processes or when data limitations preclude the use of more rigorous methods. In this presentation we will discuss how physics based models can, and have, been used to describe various hydrologic systems to both represent the physical processes in the system and the system response. Using examples from a variety of applications we will demonstrate and discuss the utility of utilizing a flexible physics-based model design for realizing watershed conceptualizations for hydrologic analysis.

  17. LDEF materials data analysis: Representative examples

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Crutcher, Russ

    1993-01-01

    Part of the philosophy which guided the examination of hardware from the Long Duration Exposure Facility (LDEF) was that materials present at multiple locations should have fairly high priority for investigation. Properties of such materials were characterized as a function of exposure conditions to obtain as much data as possible for predicting performance lifetimes. Results from examination of several materials from interior locations of LDEF, selected measurements on silverized teflon blanket specimens, and detailed measurements on the copper grounding strap from tray D11 are summarized. Visual observations of interior locations of LDEF made during deintegration at KSC showed apparent changes in particular specimens. This inspection lead to testing of selected nylon clamps, fiberglass shims, and heat shrink tubing from wire harness clamps, and visually discolored silver coated hex nuts.

  18. How utilities can achieve more accurate decommissioning cost estimates

    SciTech Connect

    Knight, R.

    1999-07-01

    The number of commercial nuclear power plants that are undergoing decommissioning coupled with the economic pressure of deregulation has increased the focus on adequate funding for decommissioning. The introduction of spent-fuel storage and disposal of low-level radioactive waste into the cost analysis places even greater concern as to the accuracy of the fund calculation basis. The size and adequacy of the decommissioning fund have also played a major part in the negotiations for transfer of plant ownership. For all of these reasons, it is important that the operating plant owner reduce the margin of error in the preparation of decommissioning cost estimates. To data, all of these estimates have been prepared via the building block method. That is, numerous individual calculations defining the planning, engineering, removal, and disposal of plant systems and structures are performed. These activity costs are supplemented by the period-dependent costs reflecting the administration, control, licensing, and permitting of the program. This method will continue to be used in the foreseeable future until adequate performance data are available. The accuracy of the activity cost calculation is directly related to the accuracy of the inventory of plant system component, piping and equipment, and plant structural composition. Typically, it is left up to the cost-estimating contractor to develop this plant inventory. The data are generated by searching and analyzing property asset records, plant databases, piping and instrumentation drawings, piping system isometric drawings, and component assembly drawings. However, experience has shown that these sources may not be up to date, discrepancies may exist, there may be missing data, and the level of detail may not be sufficient. Again, typically, the time constraints associated with the development of the cost estimate preclude perfect resolution of the inventory questions. Another problem area in achieving accurate cost

  19. Nonexposure Accurate Location K-Anonymity Algorithm in LBS

    PubMed Central

    2014-01-01

    This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR. PMID:24605060

  20. Nonexposure accurate location K-anonymity algorithm in LBS.

    PubMed

    Jia, Jinying; Zhang, Fengli

    2014-01-01

    This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR.

  1. Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup

    NASA Astrophysics Data System (ADS)

    Natividad, Eva; Castro, Miguel; Mediano, Arturo

    2008-03-01

    Accurate measurements of the specific absorption rate (SAR) of solids and fluids were obtained by a calorimetric method, using a special-purpose setup working under adiabatic conditions. Unlike in current nonadiabatic setups, the weak heat exchange with the surroundings allowed a straightforward determination of temperature increments, avoiding the usual initial-time approximations. The measurements performed on a commercial magnetite aqueous ferrofluid revealed a good reproducibility (4%). Also, the measurements on a copper sample allowed comparison between experimental and theoretical values: adiabatic conditions gave SAR values only 3% higher than the theoretical ones, while the typical nonadiabatic method underestimated SAR by 21%.

  2. Nonparametric conditional estimation

    SciTech Connect

    Owen, A.B.

    1987-01-01

    Many nonparametric regression techniques (such as kernels, nearest neighbors, and smoothing splines) estimate the conditional mean of Y given X = chi by a weighted sum of observed Y values, where observations with X values near chi tend to have larger weights. In this report the weights are taken to represent a finite signed measure on the space of Y values. This measure is studied as an estimate of the conditional distribution of Y given X = chi. From estimates of the conditional distribution, estimates of conditional means, standard deviations, quantiles and other statistical functionals may be computed. Chapter 1 illustrates the computation of conditional quantiles and conditional survival probabilities on the Stanford Heart Transplant data. Chapter 2 contains a survey of nonparametric regression methods and introduces statistical metrics and von Mises' method for later use. Chapter 3 proves some consistency results. Chapter 4 provides conditions under which the suitably normalized errors in estimating the conditional distribution of Y have a Brownian limit. Using von Mises' method, asymptotic normality is obtained for nonparametric conditional estimates of compactly differentiable statistical functionals.

  3. Representing Identity and Equivalence for Scientific Data

    NASA Astrophysics Data System (ADS)

    Wickett, K. M.; Sacchi, S.; Dubin, D.; Renear, A. H.

    2012-12-01

    Matters of equivalence and identity are central to the stewardship of scientific data. In order to properly prepare for and manage the curation, preservation and sharing of digitally-encoded data, data stewards must be able to characterize and assess the relationships holding between data-carrying digital resources. However, identity-related questions about resources and their information content may not be straightforward to answer: for example, what exactly does it mean to say that two files contain the same data, but in different formats? Information content is frequently distinguished from particular representations, but there is no adequately developed shared understanding of what this really means and how the relationship between content and its representations hold. The Data Concepts group at the Center for Informatics Research in Science and Scholarship (CIRSS), University of Illinois at Urbana Champaign, is developing a logic-based framework of fundamental concepts related to scientific data to support curation and integration. One project goal is to develop precise accounts of information resources carrying the same data. We present two complementary conceptual models for information representation: the Basic Representation Model (BRM) and the Systematic Assertion Model (SAM). We show how these models provide an analytical account of digitally-encoded scientific data and a precise understanding of identity and equivalence. The Basic Representation Model identifies the core entities and relationships involved in representing information carried by digital objects. In BRM, digital objects are symbol structures that express propositional content, and stand in layered encoding relationships. For example, an RDF description may be serialized as either XML or N3, and those expressions in turn may be encoded as either UTF-8 or UTF-16 sequences. Defining this encoding stack reveals distinctions necessary for a precise account of identity and equivalence

  4. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  5. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  6. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  7. 48 CFR 1852.227-72 - Designation of new technology representative and patent representative.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND... Contractor (Short Form),” whichever is included, the following named representatives are hereby designated by... well as any correspondence with respect to such matters, should be directed to the New...

  8. 48 CFR 1852.227-72 - Designation of new technology representative and patent representative.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND... Contractor (Short Form),” whichever is included, the following named representatives are hereby designated by... well as any correspondence with respect to such matters, should be directed to the New...

  9. 48 CFR 1852.227-72 - Designation of new technology representative and patent representative.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND... Contractor (Short Form),” whichever is included, the following named representatives are hereby designated by... well as any correspondence with respect to such matters, should be directed to the New...

  10. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  11. Linking Microbial Community Structure to Function in Representative Simulated Systems

    PubMed Central

    Marcus, Ian M.; Wilder, Hailey A.; Quazi, Shanin J.

    2013-01-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present. PMID:23396331

  12. Accurate stress resultants equations for laminated composite deep thick shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.

  13. Must Kohn-Sham oscillator strengths be accurate at threshold?

    SciTech Connect

    Yang Zenghui; Burke, Kieron; Faassen, Meta van

    2009-09-21

    The exact ground-state Kohn-Sham (KS) potential for the helium atom is known from accurate wave function calculations of the ground-state density. The threshold for photoabsorption from this potential matches the physical system exactly. By carefully studying its absorption spectrum, we show the answer to the title question is no. To address this problem in detail, we generate a highly accurate simple fit of a two-electron spectrum near the threshold, and apply the method to both the experimental spectrum and that of the exact ground-state Kohn-Sham potential.

  14. Accurate torque-speed performance prediction for brushless dc motors

    NASA Astrophysics Data System (ADS)

    Gipper, Patrick D.

    Desirable characteristics of the brushless dc motor (BLDCM) have resulted in their application for electrohydrostatic (EH) and electromechanical (EM) actuation systems. But to effectively apply the BLDCM requires accurate prediction of performance. The minimum necessary performance characteristics are motor torque versus speed, peak and average supply current and efficiency. BLDCM nonlinear simulation software specifically adapted for torque-speed prediction is presented. The capability of the software to quickly and accurately predict performance has been verified on fractional to integral HP motor sizes, and is presented. Additionally, the capability of torque-speed prediction with commutation angle advance is demonstrated.

  15. Accurate upwind-monotone (nonoscillatory) methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1992-01-01

    The well known MUSCL scheme of Van Leer is constructed using a piecewise linear approximation. The MUSCL scheme is second order accurate at the smooth part of the solution except at extrema where the accuracy degenerates to first order due to the monotonicity constraint. To construct accurate schemes which are free from oscillations, the author introduces the concept of upwind monotonicity. Several classes of schemes, which are upwind monotone and of uniform second or third order accuracy are then presented. Results for advection with constant speed are shown. It is also shown that the new scheme compares favorably with state of the art methods.

  16. Time-Accurate Numerical Simulations of Synthetic Jet Quiescent Air

    NASA Technical Reports Server (NTRS)

    Rupesh, K-A. B.; Ravi, B. R.; Mittal, R.; Raju, R.; Gallas, Q.; Cattafesta, L.

    2007-01-01

    The unsteady evolution of three-dimensional synthetic jet into quiescent air is studied by time-accurate numerical simulations using a second-order accurate mixed explicit-implicit fractional step scheme on Cartesian grids. Both two-dimensional and three-dimensional calculations of synthetic jet are carried out at a Reynolds number (based on average velocity during the discharge phase of the cycle V(sub j), and jet width d) of 750 and Stokes number of 17.02. The results obtained are assessed against PIV and hotwire measurements provided for the NASA LaRC workshop on CFD validation of synthetic jets.

  17. A mechanistic approach for accurate simulation of village scale malaria transmission

    PubMed Central

    Bomblies, Arne; Duchemin, Jean-Bernard; Eltahir, Elfatih AB

    2009-01-01

    Background Malaria transmission models commonly incorporate spatial environmental and climate variability for making regional predictions of disease risk. However, a mismatch of these models' typical spatial resolutions and the characteristic scale of malaria vector population dynamics may confound disease risk predictions in areas of high spatial hydrological variability such as the Sahel region of Africa. Methods Field observations spanning two years from two Niger villages are compared. The two villages are separated by only 30 km but exhibit a ten-fold difference in anopheles mosquito density. These two villages would be covered by a single grid cell in many malaria models, yet their entomological activity differs greatly. Environmental conditions and associated entomological activity are simulated at high spatial- and temporal resolution using a mechanistic approach that couples a distributed hydrology scheme and an entomological model. Model results are compared to regular field observations of Anopheles gambiae sensu lato mosquito populations and local hydrology. The model resolves the formation and persistence of individual pools that facilitate mosquito breeding and predicts spatio-temporal mosquito population variability at high resolution using an agent-based modeling approach. Results Observations of soil moisture, pool size, and pool persistence are reproduced by the model. The resulting breeding of mosquitoes in the simulated pools yields time-integrated seasonal mosquito population dynamics that closely follow observations from captured mosquito abundance. Interannual difference in mosquito abundance is simulated, and the inter-village difference in mosquito population is reproduced for two years of observations. These modeling results emulate the known focal nature of malaria in Niger Sahel villages. Conclusion Hydrological variability must be represented at high spatial and temporal resolution to achieve accurate predictive ability of malaria risk

  18. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Hsu, Andrew T.

    1989-01-01

    A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions.

  19. Are Normally Sighted, Visually Impaired, and Blind Pedestrians Accurate and Reliable at Making Street Crossing Decisions?

    PubMed Central

    Hassan, Shirin E.

    2012-01-01

    Purpose. The purpose of this study is to measure the accuracy and reliability of normally sighted, visually impaired, and blind pedestrians at making street crossing decisions using visual and/or auditory information. Methods. Using a 5-point rating scale, safety ratings for vehicular gaps of different durations were measured along a two-lane street of one-way traffic without a traffic signal. Safety ratings were collected from 12 normally sighted, 10 visually impaired, and 10 blind subjects for eight different gap times under three sensory conditions: (1) visual plus auditory information, (2) visual information only, and (3) auditory information only. Accuracy and reliability in street crossing decision-making were calculated for each subject under each sensory condition. Results. We found that normally sighted and visually impaired pedestrians were accurate and reliable in their street crossing decision-making ability when using either vision plus hearing or vision only (P > 0.05). Under the hearing only condition, all subjects were reliable (P > 0.05) but inaccurate with their street crossing decisions (P < 0.05). Compared to either the normally sighted (P = 0.018) or visually impaired subjects (P = 0.019), blind subjects were the least accurate with their street crossing decisions under the hearing only condition. Conclusions. Our data suggested that visually impaired pedestrians can make accurate and reliable street crossing decisions like those of normally sighted pedestrians. When using auditory information only, all subjects significantly overestimated the vehicular gap time. Our finding that blind pedestrians performed significantly worse than either the normally sighted or visually impaired subjects under the hearing only condition suggested that they may benefit from training to improve their detection ability and/or interpretation of vehicular gap times. PMID:22427593

  20. GORRAM: Introducing accurate operational-speed radiative transfer Monte Carlo solvers

    NASA Astrophysics Data System (ADS)

    Buras-Schnell, Robert; Schnell, Franziska; Buras, Allan

    2016-06-01

    We present a new approach for solving the radiative transfer equation in horizontally homogeneous atmospheres. The motivation was to develop a fast yet accurate radiative transfer solver to be used in operational retrieval algorithms for next generation meteorological satellites. The core component is the program GORRAM (Generator Of Really Rapid Accurate Monte-Carlo) which generates solvers individually optimized for the intended task. These solvers consist of a Monte Carlo model capable of path recycling and a representative set of photon paths. Latter is generated using the simulated annealing technique. GORRAM automatically takes advantage of limitations on the variability of the atmosphere. Due to this optimization the number of photon paths necessary for accurate results can be reduced by several orders of magnitude. For the shown example of a forward model intended for an aerosol satellite retrieval, comparison with an exact yet slow solver shows that a precision of better than 1% can be achieved with only 36 photons. The computational time is at least an order of magnitude faster than any other type of radiative transfer solver. Merely the lookup table approach often used in satellite retrieval is faster, but on the other hand suffers from limited accuracy. This makes GORRAM-generated solvers an eligible candidate as forward model in operational-speed retrieval algorithms and data assimilation applications. GORRAM also has the potential to create fast solvers of other integrable equations.

  1. The utility of accurate mass and LC elution time information in the analysis of complex proteomes

    SciTech Connect

    Norbeck, Angela D.; Monroe, Matthew E.; Adkins, Joshua N.; Anderson, Kevin K.; Daly, Don S.; Smith, Richard D.

    2005-08-01

    Theoretical tryptic digests of all predicted proteins from the genomes of three organisms of varying complexity were evaluated for specificity and possible utility of combined peptide accurate mass and predicted LC normalized elution time (NET) information. The uniqueness of each peptide was evaluated using its combined mass (+/- 5 ppm and 1 ppm) and NET value (no constraint, +/- 0.05 and 0.01 on a 0-1 NET scale). The set of peptides both underestimates actual biological complexity due to the lack of specific modifications, and overestimates the expected complexity since many proteins will not be present in the sample or observable on the mass spectrometer because of dynamic range limitations. Once a peptide is identified from an LCMS/MS experiment, its mass and elution time is representative of a unique fingerprint for that peptide. The uniqueness of that fingerprint in comparison to that for the other peptides present is indicative of the ability to confidently identify that peptide based on accurate mass and NET measurements. These measurements can be made using HPLC coupled with high resolution MS in a high-throughput manner. Results show that for organisms with comparatively small proteomes, such as Deinococcus radiodurans, modest mass and elution time accuracies are generally adequate for peptide identifications. For more complex proteomes, increasingly accurate easurements are required. However, the majority of proteins should be uniquely identifiable by using LC-MS with mass accuracies within +/- 1 ppm and elution time easurements within +/- 0.01 NET.

  2. Toward long-term and accurate augmented-reality for monocular endoscopic videos.

    PubMed

    Puerto-Souza, Gustavo A; Cadeddu, Jeffrey A; Mariottini, Gian-Luca

    2014-10-01

    By overlaying preoperative radiological 3-D models onto the intraoperative laparoscopic video, augmented-reality (AR) displays promise to increase surgeons' visual awareness of high-risk surgical targets (e.g., the location of a tumor). Existing AR surgical systems lack in robustness and accuracy because of the many challenges in endoscopic imagery, such as frequent changes in illumination, rapid camera motions, prolonged organ occlusions, and tissue deformations. The frequent occurrence of these events can cause the loss of image (anchor) points, and thus, the loss of the AR display after a few frames. In this paper, we present the design of a new AR system that represents a first step toward long term and accurate augmented surgical display for monocular (calibrated and uncalibrated) endoscopic videos. Our system uses correspondence-search methods, and a new weighted sliding-window registration approach, to automatically and accurately recover the overlay by predicting the image locations of a high number of anchor points that were lost after a sudden image change. The effectiveness of the proposed system in maintaining a long term (over 2 min) and accurate (less than 1 mm) augmentation has been documented over a set of real partial-nephrectomy laparascopic videos.

  3. Laplacian matrices of weighted digraphs represented as quantum states

    NASA Astrophysics Data System (ADS)

    Adhikari, Bibhas; Banerjee, Subhashish; Adhikari, Satyabrata; Kumar, Atul

    2017-03-01

    Representing graphs as quantum states is becoming an increasingly important approach to study entanglement of mixed states, alternate to the standard linear algebraic density matrix-based approach of study. In this paper, we propose a general weighted directed graph framework for investigating properties of a large class of quantum states which are defined by three types of Laplacian matrices associated with such graphs. We generalize the standard framework of defining density matrices from simple connected graphs to density matrices using both combinatorial and signless Laplacian matrices associated with weighted directed graphs with complex edge weights and with/without self-loops. We also introduce a new notion of Laplacian matrix, which we call signed Laplacian matrix associated with such graphs. We produce necessary and/or sufficient conditions for such graphs to correspond to pure and mixed quantum states. Using these criteria, we finally determine the graphs whose corresponding density matrices represent entangled pure states which are well known and important for quantum computation applications. We observe that all these entangled pure states share a common combinatorial structure.

  4. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE BIOAVAILABILITY OF LEAD TO QUAIL

    EPA Science Inventory

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contami...

  5. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  6. Ultrasonic system for accurate distance measurement in the air.

    PubMed

    Licznerski, Tomasz J; Jaroński, Jarosław; Kosz, Dariusz

    2011-12-01

    This paper presents a system that accurately measures the distance travelled by ultrasound waves through the air. The simple design of the system and its obtained accuracy provide a tool for non-contact distance measurements required in the laser's optical system that investigates the surface of the eyeball.

  7. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  8. Instrument accurately measures small temperature changes on test surface

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Miller, H. B.

    1966-01-01

    Calorimeter apparatus accurately measures very small temperature rises on a test surface subjected to aerodynamic heating. A continuous thin sheet of a sensing material is attached to a base support plate through which a series of holes of known diameter have been drilled for attaching thermocouples to the material.

  9. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  10. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb, we incorporated Pb-contaminated soils or Pb acetate into diets for Japanese quail (Coturnix japonica), fed the quail for 15 days, and ...

  11. Second-order accurate nonoscillatory schemes for scalar conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1989-01-01

    Explicit finite difference schemes for the computation of weak solutions of nonlinear scalar conservation laws is presented and analyzed. These schemes are uniformly second-order accurate and nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time.

  12. How Accurate Are Judgments of Intelligence by Strangers?

    ERIC Educational Resources Information Center

    Borkenau, Peter

    Whether judgments made by complete strangers as to the intelligence of subjects are accurate or merely illusory was studied in Germany. Target subjects were 50 female and 50 male adults recruited through a newspaper article. Eighteen judges, who did not know the subjects, were recruited from a university community. Videorecordings of the subjects,…

  13. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  14. Preparing Rapid, Accurate Construction Cost Estimates with a Personal Computer.

    ERIC Educational Resources Information Center

    Gerstel, Sanford M.

    1986-01-01

    An inexpensive and rapid method for preparing accurate cost estimates of construction projects in a university setting, using a personal computer, purchased software, and one estimator, is described. The case against defined estimates, the rapid estimating system, and adjusting standard unit costs are discussed. (MLW)

  15. Accurately Detecting Students' Lies regarding Relational Aggression by Correctional Instructions

    ERIC Educational Resources Information Center

    Dickhauser, Oliver; Reinhard, Marc-Andre; Marksteiner, Tamara

    2012-01-01

    This study investigates the effect of correctional instructions when detecting lies about relational aggression. Based on models from the field of social psychology, we predict that correctional instruction will lead to a less pronounced lie bias and to more accurate lie detection. Seventy-five teachers received videotapes of students' true denial…

  16. Robust air refractometer for accurate compensation of the refractive index of air in everyday use.

    PubMed

    Kruger, O; Chetty, N

    2016-11-10

    The definition of the meter is based on the speed of light in a vacuum; however, most dimensional measurements, when performed using laser interferometry, are performed in air. A velocity of light compensation needs to be applied to the velocity of the laser light for accurate measurements of the speed of light to be approximated in a vacuum. Most practices use a weather-station method, whereby the ambient conditions are measured. Thereafter, the modified Edlén's equation is used, and corrections are calculated for the wavelength of the laser. The theoretical calculation is, however, only accurate to 3*10-8 without taking into account the accuracy of the sensors. Thus, this work focuses on investigations into the velocity of light compensations, both to improve upon the accuracy of the Edlén equation method in everyday use, and to verify the accuracy of the current weather-station systems in use through comparison with the refractometer. A refractometer that allows for velocity of light compensation measurements was developed, tested, and verified. The system was designed to be simple and cost-effective for use in everyday dimensional measurements, but with high accuracy. Achieved results show that although simple in design, the refractometer is accurate to at least 1*10-8, which meets our initial condition for design.

  17. Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George E

    2009-01-01

    We present a coarse-grained red blood cell (RBC) model with accurate and realistic mechanical properties, rheology and dynamics. The modeled membrane is represented by a triangular mesh which incorporates shear inplane energy, bending energy, and area and volume conservation constraints. The macroscopic membrane elastic properties are imposed through semi-analytic theory, and are matched with those obtained in optical tweezers stretching experiments. Rheological measurements characterized by time-dependent complex modulus are extracted from the membrane thermal fluctuations, and compared with those obtained from the optical magnetic twisting cytometry results. The results allow us to define a meaningful characteristic time of the membrane. The dynamics of RBCs observed in shear flow suggests that a purely elastic model for the RBC membrane is not appropriate, and therefore a viscoelastic model is required. The set of proposed analyses and numerical tests can be used as a complete model testbed in order to calibrate the modeled viscoelastic membranes to accurately represent RBCs in health and disease.

  18. Representing Cloud Processing of Aerosol in Numerical Models

    SciTech Connect

    Mechem, D.B.; Kogan, Y.L.

    2005-03-18

    The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

  19. Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials

    PubMed Central

    Kim, Sangwoo; Choi, Seongdae; Oh, Eunho; Byun, Junghwan; Kim, Hyunjong; Lee, Byeongmoon; Lee, Seunghwan; Hong, Yongtaek

    2016-01-01

    A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties. PMID:27694856

  20. Time-Accurate Solutions of Incompressible Navier-Stokes Equations for Potential Turbopump Applications

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan

    2001-01-01

    Two numerical procedures, one based on artificial compressibility method and the other pressure projection method, are outlined for obtaining time-accurate solutions of the incompressible Navier-Stokes equations. The performance of the two method are compared by obtaining unsteady solutions for the evolution of twin vortices behind a at plate. Calculated results are compared with experimental and other numerical results. For an un- steady ow which requires small physical time step, pressure projection method was found to be computationally efficient since it does not require any subiterations procedure. It was observed that the artificial compressibility method requires a fast convergence scheme at each physical time step in order to satisfy incompressibility condition. This was obtained by using a GMRES-ILU(0) solver in our computations. When a line-relaxation scheme was used, the time accuracy was degraded and time-accurate computations became very expensive.

  1. Accurate Hartree-Fock energy of extended systems using large Gaussian basis sets

    NASA Astrophysics Data System (ADS)

    Paier, Joachim; Diaconu, Cristian V.; Scuseria, Gustavo E.; Guidon, Manuel; Vandevondele, Joost; Hutter, Jürg

    2009-11-01

    Calculating highly accurate thermochemical properties of condensed matter via wave-function-based approaches (such as, e.g., Hartree-Fock or hybrid functionals) has recently attracted much interest. We here present two strategies providing accurate Hartree-Fock energies for solid LiH in a large Gaussian basis set and applying periodic boundary conditions. The total energies were obtained using two different approaches, namely, a supercell evaluation of Hartree-Fock exchange using a truncated Coulomb operator and an extrapolation toward the full-range Hartree-Fock limit of a Padé fit to a series of short-range screened Hartree-Fock calculations. These two techniques agreed to significant precision. We also present the Hartree-Fock cohesive energy of LiH (converged to within sub-millielectron volt) at the experimental equilibrium volume as well as the Hartree-Fock equilibrium lattice constant and bulk modulus.

  2. Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials

    NASA Astrophysics Data System (ADS)

    Kim, Sangwoo; Choi, Seongdae; Oh, Eunho; Byun, Junghwan; Kim, Hyunjong; Lee, Byeongmoon; Lee, Seunghwan; Hong, Yongtaek

    2016-10-01

    A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties.

  3. 48 CFR 1830.7002-3 - Representative investment calculations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Representative investment... Representative investment calculations. (a) The calculation of the representative investment requires... accounting period, the contractor shall either: (1) Determine a representative investment for the...

  4. 48 CFR 1830.7002-3 - Representative investment calculations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Representative investment... Representative investment calculations. (a) The calculation of the representative investment requires... accounting period, the contractor shall either: (1) Determine a representative investment for the...

  5. DNA barcode data accurately assign higher spider taxa.

    PubMed

    Coddington, Jonathan A; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina; Kuntner, Matjaž

    2016-01-01

    The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios "barcodes" (whether single or multiple, organelle or nuclear, loci) clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families-taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75-100%). Accurate assignment of higher taxa (PIdent above which errors totaled less than 5%) occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However, the quality of the

  6. DNA barcode data accurately assign higher spider taxa

    PubMed Central

    Coddington, Jonathan A.; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina

    2016-01-01

    The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios “barcodes” (whether single or multiple, organelle or nuclear, loci) clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families—taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75–100%). Accurate assignment of higher taxa (PIdent above which errors totaled less than 5%) occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However, the quality of

  7. Lab measurements to support modeling terahertz propagation in brownout conditions

    NASA Astrophysics Data System (ADS)

    Fiorino, Steven T.; Grice, Phillip M.; Krizo, Matthew J.; Bartell, Richard J.; Haiducek, John D.; Cusumano, Salvatore J.

    2010-04-01

    Brownout, the loss of visibility caused by dust and debris introduced into the atmosphere by the downwash of a helicopter, currently represents a serious challenge to U.S. military operations in Iraq and Afghanistan, where it has been cited as a factor in the majority of helicopter accidents. Brownout not only reduces visibility, but can create visual illusions for the pilot and difficult conditions for crew beneath the aircraft. Terahertz imaging may provide one solution to this problem. Terahertz frequency radiation readily propagates through the dirt aerosols present in brownout, and therefore can provide an imaging capability to improve effective visibility for pilots, helping prevent the associated accidents. To properly model the success of such systems, it is necessary to determine the optical properties of such obscurants in the terahertz regime. This research attempts to empirically determine, and measure in the laboratory, the full complex index of refraction optical properties of dirt aerosols representative of brownout conditions. These properties are incorporated into the AFIT/CDE Laser Environmental Effects Definition and Reference (LEEDR) software, allowing this program to more accurately assess the propagation of terahertz radiation under brownout conditions than was done in the past with estimated optical properties.

  8. Local Debonding and Fiber Breakage in Composite Materials Modeled Accurately

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2001-01-01

    A prerequisite for full utilization of composite materials in aerospace components is accurate design and life prediction tools that enable the assessment of component performance and reliability. Such tools assist both structural analysts, who design and optimize structures composed of composite materials, and materials scientists who design and optimize the composite materials themselves. NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package (http://www.grc.nasa.gov/WWW/LPB/mac) addresses this need for composite design and life prediction tools by providing a widely applicable and accurate approach to modeling composite materials. Furthermore, MAC/GMC serves as a platform for incorporating new local models and capabilities that are under development at NASA, thus enabling these new capabilities to progress rapidly to a stage in which they can be employed by the code's end users.

  9. Accurate adjoint design sensitivities for nano metal optics.

    PubMed

    Hansen, Paul; Hesselink, Lambertus

    2015-09-07

    We present a method for obtaining accurate numerical design sensitivities for metal-optical nanostructures. Adjoint design sensitivity analysis, long used in fluid mechanics and mechanical engineering for both optimization and structural analysis, is beginning to be used for nano-optics design, but it fails for sharp-cornered metal structures because the numerical error in electromagnetic simulations of metal structures is highest at sharp corners. These locations feature strong field enhancement and contribute strongly to design sensitivities. By using high-accuracy FEM calculations and rounding sharp features to a finite radius of curvature we obtain highly-accurate design sensitivities for 3D metal devices. To provide a bridge to the existing literature on adjoint methods in other fields, we derive the sensitivity equations for Maxwell's equations in the PDE framework widely used in fluid mechanics.

  10. An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance

    PubMed Central

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-01-01

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314

  11. Multimodal spatial calibration for accurately registering EEG sensor positions.

    PubMed

    Zhang, Jianhua; Chen, Jian; Chen, Shengyong; Xiao, Gang; Li, Xiaoli

    2014-01-01

    This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain.

  12. Accurate measurement of the helical twisting power of chiral dopants

    NASA Astrophysics Data System (ADS)

    Kosa, Tamas; Bodnar, Volodymyr; Taheri, Bahman; Palffy-Muhoray, Peter

    2002-03-01

    We propose a method for the accurate determination of the helical twisting power (HTP) of chiral dopants. In the usual Cano-wedge method, the wedge angle is determined from the far-field separation of laser beams reflected from the windows of the test cell. Here we propose to use an optical fiber based spectrometer to accurately measure the cell thickness. Knowing the cell thickness at the positions of the disclination lines allows determination of the HTP. We show that this extension of the Cano-wedge method greatly increases the accuracy with which the HTP is determined. We show the usefulness of this method by determining the HTP of ZLI811 in a variety of hosts with negative dielectric anisotropy.

  13. Accurate van der Waals coefficients from density functional theory

    PubMed Central

    Tao, Jianmin; Perdew, John P.; Ruzsinszky, Adrienn

    2012-01-01

    The van der Waals interaction is a weak, long-range correlation, arising from quantum electronic charge fluctuations. This interaction affects many properties of materials. A simple and yet accurate estimate of this effect will facilitate computer simulation of complex molecular materials and drug design. Here we develop a fast approach for accurate evaluation of dynamic multipole polarizabilities and van der Waals (vdW) coefficients of all orders from the electron density and static multipole polarizabilities of each atom or other spherical object, without empirical fitting. Our dynamic polarizabilities (dipole, quadrupole, octupole, etc.) are exact in the zero- and high-frequency limits, and exact at all frequencies for a metallic sphere of uniform density. Our theory predicts dynamic multipole polarizabilities in excellent agreement with more expensive many-body methods, and yields therefrom vdW coefficients C6, C8, C10 for atom pairs with a mean absolute relative error of only 3%. PMID:22205765

  14. Light Field Imaging Based Accurate Image Specular Highlight Removal

    PubMed Central

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into “unsaturated” and “saturated” category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  15. Accurate Development of Thermal Neutron Scattering Cross Section Libraries

    SciTech Connect

    Hawari, Ayman; Dunn, Michael

    2014-06-10

    The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.

  16. Library preparation for highly accurate population sequencing of RNA viruses

    PubMed Central

    Acevedo, Ashley; Andino, Raul

    2015-01-01

    Circular resequencing (CirSeq) is a novel technique for efficient and highly accurate next-generation sequencing (NGS) of RNA virus populations. The foundation of this approach is the circularization of fragmented viral RNAs, which are then redundantly encoded into tandem repeats by ‘rolling-circle’ reverse transcription. When sequenced, the redundant copies within each read are aligned to derive a consensus sequence of their initial RNA template. This process yields sequencing data with error rates far below the variant frequencies observed for RNA viruses, facilitating ultra-rare variant detection and accurate measurement of low-frequency variants. Although library preparation takes ~5 d, the high-quality data generated by CirSeq simplifies downstream data analysis, making this approach substantially more tractable for experimentalists. PMID:24967624

  17. Accurate nuclear radii and binding energies from a chiral interaction

    DOE PAGES

    Ekstrom, Jan A.; Jansen, G. R.; Wendt, Kyle A.; ...

    2015-05-01

    With the goal of developing predictive ab initio capability for light and medium-mass nuclei, two-nucleon and three-nucleon forces from chiral effective field theory are optimized simultaneously to low-energy nucleon-nucleon scattering data, as well as binding energies and radii of few-nucleon systems and selected isotopes of carbon and oxygen. Coupled-cluster calculations based on this interaction, named NNLOsat, yield accurate binding energies and radii of nuclei up to 40Ca, and are consistent with the empirical saturation point of symmetric nuclear matter. In addition, the low-lying collective Jπ=3- states in 16O and 40Ca are described accurately, while spectra for selected p- and sd-shellmore » nuclei are in reasonable agreement with experiment.« less

  18. Fixed-Wing Micro Aerial Vehicle for Accurate Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2015-08-01

    In this study we present a Micro Aerial Vehicle (MAV) equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm) mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.

  19. Uniformly high order accurate essentially non-oscillatory schemes 3

    NASA Technical Reports Server (NTRS)

    Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R.

    1986-01-01

    In this paper (a third in a series) the construction and the analysis of essentially non-oscillatory shock capturing methods for the approximation of hyperbolic conservation laws are presented. Also presented is a hierarchy of high order accurate schemes which generalizes Godunov's scheme and its second order accurate MUSCL extension to arbitrary order of accuracy. The design involves an essentially non-oscillatory piecewise polynomial reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell. The reconstruction algorithm is derived from a new interpolation technique that when applied to piecewise smooth data gives high-order accuracy whenever the function is smooth but avoids a Gibbs phenomenon at discontinuities. Unlike standard finite difference methods this procedure uses an adaptive stencil of grid points and consequently the resulting schemes are highly nonlinear.

  20. Groundtruth approach to accurate quantitation of fluorescence microarrays

    SciTech Connect

    Mascio-Kegelmeyer, L; Tomascik-Cheeseman, L; Burnett, M S; van Hummelen, P; Wyrobek, A J

    2000-12-01

    To more accurately measure fluorescent signals from microarrays, we calibrated our acquisition and analysis systems by using groundtruth samples comprised of known quantities of red and green gene-specific DNA probes hybridized to cDNA targets. We imaged the slides with a full-field, white light CCD imager and analyzed them with our custom analysis software. Here we compare, for multiple genes, results obtained with and without preprocessing (alignment, color crosstalk compensation, dark field subtraction, and integration time). We also evaluate the accuracy of various image processing and analysis techniques (background subtraction, segmentation, quantitation and normalization). This methodology calibrates and validates our system for accurate quantitative measurement of microarrays. Specifically, we show that preprocessing the images produces results significantly closer to the known ground-truth for these samples.

  1. Accurate nuclear radii and binding energies from a chiral interaction

    SciTech Connect

    Ekstrom, Jan A.; Jansen, G. R.; Wendt, Kyle A.; Hagen, Gaute; Papenbrock, Thomas F.; Carlsson, Boris; Forssen, Christian; Hjorth-Jensen, M.; Navratil, Petr; Nazarewicz, Witold

    2015-05-01

    With the goal of developing predictive ab initio capability for light and medium-mass nuclei, two-nucleon and three-nucleon forces from chiral effective field theory are optimized simultaneously to low-energy nucleon-nucleon scattering data, as well as binding energies and radii of few-nucleon systems and selected isotopes of carbon and oxygen. Coupled-cluster calculations based on this interaction, named NNLOsat, yield accurate binding energies and radii of nuclei up to 40Ca, and are consistent with the empirical saturation point of symmetric nuclear matter. In addition, the low-lying collective Jπ=3- states in 16O and 40Ca are described accurately, while spectra for selected p- and sd-shell nuclei are in reasonable agreement with experiment.

  2. Efficient and accurate computation of the incomplete Airy functions

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1993-01-01

    The incomplete Airy integrals serve as canonical functions for the uniform ray optical solutions to several high-frequency scattering and diffraction problems that involve a class of integrals characterized by two stationary points that are arbitrarily close to one another or to an integration endpoint. Integrals with such analytical properties describe transition region phenomena associated with composite shadow boundaries. An efficient and accurate method for computing the incomplete Airy functions would make the solutions to such problems useful for engineering purposes. In this paper a convergent series solution for the incomplete Airy functions is derived. Asymptotic expansions involving several terms are also developed and serve as large argument approximations. The combination of the series solution with the asymptotic formulae provides for an efficient and accurate computation of the incomplete Airy functions. Validation of accuracy is accomplished using direct numerical integration data.

  3. Strategy Guideline. Accurate Heating and Cooling Load Calculations

    SciTech Connect

    Burdick, Arlan

    2011-06-01

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  4. Optical Fiber Geometry: Accurate Measurement of Cladding Diameter

    PubMed Central

    Young, Matt; Hale, Paul D.; Mechels, Steven E.

    1993-01-01

    We have developed three instruments for accurate measurement of optieal fiber cladding diameter: a contact micrometer, a scanning confocal microscope, and a white-light interference microscope. Each instrument has an estimated uncertainty (3 standard deviations) of 50 nm or less, but the confocal microscope may display a 20 nm systematic error as well. The micrometer is used to generate Standard Reference Materials that are commercially available. PMID:28053467

  5. Accurate Insertion Loss Measurements of the Juno Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Chen, Jacqueline; Hodges, Richard; Demas, John

    2010-01-01

    This paper describes two independent methods for estimating the insertion loss of patch array antennas that were developed for the Juno Microwave Radiometer instrument. One method is based principally on pattern measurements while the other method is based solely on network analyzer measurements. The methods are accurate to within 0.1 dB for the measured antennas and show good agreement (to within 0.1dB) of separate radiometric measurements.

  6. Note: Fast, small, accurate 90° rotator for a polarizer.

    PubMed

    Shelton, David P; O'Donnell, William M; Norton, James L

    2011-03-01

    A permanent magnet stepper motor is modified to hold a dichroic polarizer inside the motor. Rotation of the polarizer by 90° ± 0.04° is accomplished within 80 ms. This device is used for measurements of the intensity ratio for two orthogonal linear polarized components of a light beam. The two selected polarizations can be rapidly alternated to allow for signal drift compensation, and the two selected polarizations are accurately orthogonal.

  7. An All-Fragments Grammar for Simple and Accurate Parsing

    DTIC Science & Technology

    2012-03-21

    present a simple but accurate parser which exploits both large tree fragments and symbol refinement. We parse with all fragments of the training set...in contrast to much recent work on tree selection in data-oriented parsing and tree -substitution grammar learning. We require only simple...which exploits both large tree fragments and sym- bol refinement. We parse with all fragments of the training set, in contrast to much recent work on

  8. Accurate Scientific Visualization in Research and Physics Teaching

    NASA Astrophysics Data System (ADS)

    Wendler, Tim

    2011-10-01

    Accurate visualization is key in the expression and comprehension of physical principles. Many 3D animation software packages come with built-in numerical methods for a variety of fundamental classical systems. Scripting languages give access to low-level computational functionality, thereby revealing a virtual physics laboratory for teaching and research. Specific examples will be presented: Galilean relativistic hair, energy conservation in complex systems, scattering from a central force, and energy transfer in bi-molecular reactions.

  9. Strategy Guideline: Accurate Heating and Cooling Load Calculations

    SciTech Connect

    Burdick, A.

    2011-06-01

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  10. Multigrid time-accurate integration of Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.

    1993-01-01

    Efficient acceleration techniques typical of explicit steady-state solvers are extended to time-accurate calculations. Stability restrictions are greatly reduced by means of a fully implicit time discretization. A four-stage Runge-Kutta scheme with local time stepping, residual smoothing, and multigridding is used instead of traditional time-expensive factorizations. Some applications to natural and forced unsteady viscous flows show the capability of the procedure.

  11. Accurate Method for Determining Adhesion of Cantilever Beams

    SciTech Connect

    Michalske, T.A.; de Boer, M.P.

    1999-01-08

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying.

  12. Accurate vessel segmentation with constrained B-snake.

    PubMed

    Yuanzhi Cheng; Xin Hu; Ji Wang; Yadong Wang; Tamura, Shinichi

    2015-08-01

    We describe an active contour framework with accurate shape and size constraints on the vessel cross-sectional planes to produce the vessel segmentation. It starts with a multiscale vessel axis tracing in a 3D computed tomography (CT) data, followed by vessel boundary delineation on the cross-sectional planes derived from the extracted axis. The vessel boundary surface is deformed under constrained movements on the cross sections and is voxelized to produce the final vascular segmentation. The novelty of this paper lies in the accurate contour point detection of thin vessels based on the CT scanning model, in the efficient implementation of missing contour points in the problematic regions and in the active contour model with accurate shape and size constraints. The main advantage of our framework is that it avoids disconnected and incomplete segmentation of the vessels in the problematic regions that contain touching vessels (vessels in close proximity to each other), diseased portions (pathologic structure attached to a vessel), and thin vessels. It is particularly suitable for accurate segmentation of thin and low contrast vessels. Our method is evaluated and demonstrated on CT data sets from our partner site, and its results are compared with three related methods. Our method is also tested on two publicly available databases and its results are compared with the recently published method. The applicability of the proposed method to some challenging clinical problems, the segmentation of the vessels in the problematic regions, is demonstrated with good results on both quantitative and qualitative experimentations; our segmentation algorithm can delineate vessel boundaries that have level of variability similar to those obtained manually.

  13. Computational Time-Accurate Body Movement: Methodology, Validation, and Application

    DTIC Science & Technology

    1995-10-01

    used that had a leading-edge sweep angle of 45 deg and a NACA 64A010 symmetrical airfoil section. A cross section of the pylon is a symmetrical...25 2. Information Flow for the Time-Accurate Store Trajectory Prediction Process . . . . . . . . . 26 3. Pitch Rates for NACA -0012 Airfoil...section are comparisons of the computational results to data for a NACA -0012 airfoil following a predefined pitching motion. Validation of the

  14. Discrete sensors distribution for accurate plantar pressure analyses.

    PubMed

    Claverie, Laetitia; Ille, Anne; Moretto, Pierre

    2016-12-01

    The aim of this study was to determine the distribution of discrete sensors under the footprint for accurate plantar pressure analyses. For this purpose, two different sensor layouts have been tested and compared, to determine which was the most accurate to monitor plantar pressure with wireless devices in research and/or clinical practice. Ten healthy volunteers participated in the study (age range: 23-58 years). The barycenter of pressures (BoP) determined from the plantar pressure system (W-inshoe®) was compared to the center of pressures (CoP) determined from a force platform (AMTI) in the medial-lateral (ML) and anterior-posterior (AP) directions. Then, the vertical ground reaction force (vGRF) obtained from both W-inshoe® and force platform was compared for both layouts for each subject. The BoP and vGRF determined from the plantar pressure system data showed good correlation (SCC) with those determined from the force platform data, notably for the second sensor organization (ML SCC= 0.95; AP SCC=0.99; vGRF SCC=0.91). The study demonstrates that an adjusted placement of removable sensors is key to accurate plantar pressure analyses. These results are promising for a plantar pressure recording outside clinical or laboratory settings, for long time monitoring, real time feedback or for whatever activity requiring a low-cost system.

  15. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, Bahram A.; Maestre, Marcos F.; Fish, Richard H.; Johnston, William E.

    1997-01-01

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations add reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage.

  16. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, B.A.; Maestre, M.F.; Fish, R.H.; Johnston, W.E.

    1997-09-23

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations and reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage. 11 figs.

  17. Interacting with image hierarchies for fast and accurate object segmentation

    NASA Astrophysics Data System (ADS)

    Beard, David V.; Eberly, David H.; Hemminger, Bradley M.; Pizer, Stephen M.; Faith, R. E.; Kurak, Charles; Livingston, Mark

    1994-05-01

    Object definition is an increasingly important area of medical image research. Accurate and fairly rapid object definition is essential for measuring the size and, perhaps more importantly, the change in size of anatomical objects such as kidneys and tumors. Rapid and fairly accurate object definition is essential for 3D real-time visualization including both surgery planning and Radiation oncology treatment planning. One approach to object definition involves the use of 3D image hierarchies, such as Eberly's Ridge Flow. However, the image hierarchy segmentation approach requires user interaction in selecting regions and subtrees. Further, visualizing and comprehending the anatomy and the selected portions of the hierarchy can be problematic. In this paper we will describe the Magic Crayon tool which allows a user to define rapidly and accurately various anatomical objects by interacting with image hierarchies such as those generated with Eberly's Ridge Flow algorithm as well as other 3D image hierarchies. Preliminary results suggest that fairly complex anatomical objects can be segmented in under a minute with sufficient accuracy for 3D surgery planning, 3D radiation oncology treatment planning, and similar applications. Potential modifications to the approach for improved accuracy are summarized.

  18. On the Accurate Prediction of CME Arrival At the Earth

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Hess, Phillip

    2016-07-01

    We will discuss relevant issues regarding the accurate prediction of CME arrival at the Earth, from both observational and theoretical points of view. In particular, we clarify the importance of separating the study of CME ejecta from the ejecta-driven shock in interplanetary CMEs (ICMEs). For a number of CME-ICME events well observed by SOHO/LASCO, STEREO-A and STEREO-B, we carry out the 3-D measurements by superimposing geometries onto both the ejecta and sheath separately. These measurements are then used to constrain a Drag-Based Model, which is improved through a modification of including height dependence of the drag coefficient into the model. Combining all these factors allows us to create predictions for both fronts at 1 AU and compare with actual in-situ observations. We show an ability to predict the sheath arrival with an average error of under 4 hours, with an RMS error of about 1.5 hours. For the CME ejecta, the error is less than two hours with an RMS error within an hour. Through using the best observations of CMEs, we show the power of our method in accurately predicting CME arrival times. The limitation and implications of our accurate prediction method will be discussed.

  19. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  20. [Spectroscopy technique and ruminant methane emissions accurate inspecting].

    PubMed

    Shang, Zhan-Huan; Guo, Xu-Sheng; Long, Rui-Jun

    2009-03-01

    The increase in atmospheric CH4 concentration, on the one hand through the radiation process, will directly cause climate change, and on the other hand, cause a lot of changes in atmospheric chemical processes, indirectly causing climate change. The rapid growth of atmospheric methane has gained attention of governments and scientists. All countries in the world now deal with global climate change as an important task of reducing emissions of greenhouse gases, but the need for monitoring the concentration of methane gas, in particular precision monitoring, can be scientifically formulated to provide a scientific basis for emission reduction measures. So far, CH4 gas emissions of different animal production systems have received extensive research. The methane emission by ruminant reported in the literature is only estimation. This is due to the various factors that affect the methane production in ruminant, there are various variables associated with the techniques for measuring methane production, the techniques currently developed to measure methane are unable to accurately determine the dynamics of methane emission by ruminant, and therefore there is an urgent need to develop an accurate method for this purpose. Currently, spectroscopy technique has been used and is relatively a more accurate and reliable method. Various spectroscopy techniques such as modified infrared spectroscopy methane measuring system, laser and near-infrared sensory system are able to achieve the objective of determining the dynamic methane emission by both domestic and grazing ruminant. Therefore spectroscopy technique is an important methane measuring technique, and contributes to proposing reduction methods of methane.

  1. Accurate and simple calibration of DLP projector systems

    NASA Astrophysics Data System (ADS)

    Wilm, Jakob; Olesen, Oline V.; Larsen, Rasmus

    2014-03-01

    Much work has been devoted to the calibration of optical cameras, and accurate and simple methods are now available which require only a small number of calibration targets. The problem of obtaining these parameters for light projectors has not been studied as extensively and most current methods require a camera and involve feature extraction from a known projected pattern. In this work we present a novel calibration technique for DLP Projector systems based on phase shifting profilometry projection onto a printed calibration target. In contrast to most current methods, the one presented here does not rely on an initial camera calibration, and so does not carry over the error into projector calibration. A radial interpolation scheme is used to convert features coordinates into projector space, thereby allowing for a very accurate procedure. This allows for highly accurate determination of parameters including lens distortion. Our implementation acquires printed planar calibration scenes in less than 1s. This makes our method both fast and convenient. We evaluate our method in terms of reprojection errors and structured light image reconstruction quality.

  2. Accurate genome relative abundance estimation based on shotgun metagenomic reads.

    PubMed

    Xia, Li C; Cram, Jacob A; Chen, Ting; Fuhrman, Jed A; Sun, Fengzhu

    2011-01-01

    Accurate estimation of microbial community composition based on metagenomic sequencing data is fundamental for subsequent metagenomics analysis. Prevalent estimation methods are mainly based on directly summarizing alignment results or its variants; often result in biased and/or unstable estimates. We have developed a unified probabilistic framework (named GRAMMy) by explicitly modeling read assignment ambiguities, genome size biases and read distributions along the genomes. Maximum likelihood method is employed to compute Genome Relative Abundance of microbial communities using the Mixture Model theory (GRAMMy). GRAMMy has been demonstrated to give estimates that are accurate and robust across both simulated and real read benchmark datasets. We applied GRAMMy to a collection of 34 metagenomic read sets from four metagenomics projects and identified 99 frequent species (minimally 0.5% abundant in at least 50% of the data-sets) in the human gut samples. Our results show substantial improvements over previous studies, such as adjusting the over-estimated abundance for Bacteroides species for human gut samples, by providing a new reference-based strategy for metagenomic sample comparisons. GRAMMy can be used flexibly with many read assignment tools (mapping, alignment or composition-based) even with low-sensitivity mapping results from huge short-read datasets. It will be increasingly useful as an accurate and robust tool for abundance estimation with the growing size of read sets and the expanding database of reference genomes.

  3. Field Demonstration of Condition Assessment Technologies for Wastewater Collection Systems

    EPA Science Inventory

    Reliable information on pipe condition is needed to accurately estimate the remaining service life of wastewater collection system assets. Although inspections with conventional closed-circuit television (CCTV) have been the mainstay of pipeline condition assessment for decades,...

  4. Marketing norm perception among medical representatives in Indian pharmaceutical industry.

    PubMed

    Nagashekhara, Molugulu; Agil, Syed Omar Syed; Ramasamy, Ravindran

    2012-03-01

    Study of marketing norm perception among medical representatives is an under-portrayed component that deserves further perusal in the pharmaceutical industry. The purpose of this study is to find out the perception of marketing norms among medical representatives. The research design is quantitative and cross sectional study with medical representatives as unit of analysis. Data is collected from medical representatives (n=300) using a simple random and cluster sampling using a structured questionnaire. Results indicate that there is no difference in the perception of marketing norms among male and female medical representatives. But there is a difference in opinion among domestic and multinational company's medical representatives. Educational back ground of medical representatives also shows the difference in opinion among medical representatives. Degree holders and multinational company medical representatives have high perception of marketing norms compare to their counterparts. The researchers strongly believe that mandatory training on marketing norms is beneficial in decision making process during the dilemmas in the sales field.

  5. Brief Report: Use of Superheroes Social Skills to Promote Accurate Social Skill Use in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Radley, Keith C.; Ford, W. Blake; McHugh, Melissa B.; Dadakhodjaeva, Komila; O'Handley, Roderick D.; Battaglia, Allison A.; Lum, John D.

    2015-01-01

    The current study evaluated the use of Superheroes Social Skills to promote accurate use of discrete social skills in training and generalization conditions in two children with autism spectrum disorder. Participants attended a twice weekly social skills training group over 5 weeks, with lessons targeting nonverbal, requesting, responding, and…

  6. A high-order accurate embedded boundary method for first order hyperbolic equations

    NASA Astrophysics Data System (ADS)

    Mattsson, Ken; Almquist, Martin

    2017-04-01

    A stable and high-order accurate embedded boundary method for first order hyperbolic equations is derived. Where the grid-boundaries and the physical boundaries do not coincide, high order interpolation is used. The boundary stencils are based on a summation-by-parts framework, and the boundary conditions are imposed by the SAT penalty method, which guarantees linear stability for one-dimensional problems. Second-, fourth-, and sixth-order finite difference schemes are considered. The resulting schemes are fully explicit. Accuracy and numerical stability of the proposed schemes are demonstrated for both linear and nonlinear hyperbolic systems in one and two spatial dimensions.

  7. Accurate analysis of planar optical waveguide devices using higher-order FDTD scheme.

    PubMed

    Kong, Fanmin; Li, Kang; Liu, Xin

    2006-11-27

    A higher-order finite-difference time-domain (HO-FDTD) numerical method is proposed for the time-domain analysis of planar optical waveguide devices. The anisotropic perfectly matched layer (APML) absorbing boundary condition for the HO-FDTD scheme is implemented and the numerical dispersion of this scheme is studied. The numerical simulations for the parallel-slab directional coupler are presented and the computing results using this scheme are in highly accordance with analytical solutions. Compared with conventional FDTD method, this scheme can save considerable computational resource without sacrificing solution accuracy and especially could be applied in the accurate analysis of optical devices.

  8. Fast and accurate focusing analysis of large photon sieve using pinhole ring diffraction model.

    PubMed

    Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng

    2015-06-10

    In this paper, we developed a pinhole ring diffraction model for the focusing analysis of a large photon sieve. Instead of analyzing individual pinholes, we discuss the focusing of all of the pinholes in a single ring. An explicit equation for the diffracted field of individual pinhole ring has been proposed. We investigated the validity range of this generalized model and analytically describe the sufficient conditions for the validity of this pinhole ring diffraction model. A practical example and investigation reveals the high accuracy of the pinhole ring diffraction model. This simulation method could be used for fast and accurate focusing analysis of a large photon sieve.

  9. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  10. Defining allowable physical property variations for high accurate measurements on polymer parts

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Sonne, M. R.; Madruga, D. G.; De Chiffre, L.; Hattel, J. H.

    2016-06-01

    Measurement conditions and material properties have a significant impact on the dimensions of a part, especially for polymers parts. Temperature variation causes part deformations that increase the uncertainty of the measurement process. Current industrial tolerances of a few micrometres demand high accurate measurements in non-controlled ambient. Most of polymer parts are manufactured by injection moulding and their inspection is carried out after stabilization, around 200 hours. The overall goal of this work is to reach ±5μm in uncertainty measurements a polymer products which is a challenge in today`s production and metrology environments. The residual deformations in polymer products at room temperature after injection molding are important when micrometer accuracy needs to be achieved. Numerical modelling can give a valuable insight to what is happening in the polymer during cooling down after injection molding. In order to obtain accurate simulations, accurate inputs to the model are crucial. In reality however, the material and physical properties will have some variations. Although these variations may be small, they can act as a source of uncertainty for the measurement. In this paper, we investigated how big the variation in material and physical properties are allowed in order to reach the 5 μm target on the uncertainty.

  11. Time accurate application of the MacCormack 2-4 scheme on massively parallel computers

    NASA Technical Reports Server (NTRS)

    Hudson, Dale A.; Long, Lyle N.

    1995-01-01

    Many recent computational efforts in turbulence and acoustics research have used higher order numerical algorithms. One popular method has been the explicit MacCormack 2-4 scheme. The MacCormack 2-4 scheme is second order accurate in time and fourth order accurate in space, and is stable for CFL's below 2/3. Current research has shown that the method can give accurate results but does exhibit significant Gibbs phenomena at sharp discontinuities. The impact of adding Jameson type second, third, and fourth order artificial viscosity was examined here. Category 2 problems, the nonlinear traveling wave and the Riemann problem, were computed using a CFL number of 0.25. This research has found that dispersion errors can be significantly reduced or nearly eliminated by using a combination of second and third order terms in the damping. Use of second and fourth order terms reduced the magnitude of dispersion errors but not as effectively as the second and third order combination. The program was coded using Thinking Machine's CM Fortran, a variant of Fortran 90/High Performance Fortran, and was executed on a 2K CM-200. Simple extrapolation boundary conditions were used for both problems.

  12. Accurate and efficient halo-based galaxy clustering modelling with simulations

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Guo, Hong

    2016-06-01

    Small- and intermediate-scale galaxy clustering can be used to establish the galaxy-halo connection to study galaxy formation and evolution and to tighten constraints on cosmological parameters. With the increasing precision of galaxy clustering measurements from ongoing and forthcoming large galaxy surveys, accurate models are required to interpret the data and extract relevant information. We introduce a method based on high-resolution N-body simulations to accurately and efficiently model the galaxy two-point correlation functions (2PCFs) in projected and redshift spaces. The basic idea is to tabulate all information of haloes in the simulations necessary for computing the galaxy 2PCFs within the framework of halo occupation distribution or conditional luminosity function. It is equivalent to populating galaxies to dark matter haloes and using the mock 2PCF measurements as the model predictions. Besides the accurate 2PCF calculations, the method is also fast and therefore enables an efficient exploration of the parameter space. As an example of the method, we decompose the redshift-space galaxy 2PCF into different components based on the type of galaxy pairs and show the redshift-space distortion effect in each component. The generalizations and limitations of the method are discussed.

  13. Atypical biological motion kinematics are represented by complementary lower-level and top-down processes during imitation learning.

    PubMed

    Hayes, Spencer J; Dutoy, Chris A; Elliott, Digby; Gowen, Emma; Bennett, Simon J

    2016-01-01

    Learning a novel movement requires a new set of kinematics to be represented by the sensorimotor system. This is often accomplished through imitation learning where lower-level sensorimotor processes are suggested to represent the biological motion kinematics associated with an observed movement. Top-down factors have the potential to influence this process based on the social context, attention and salience, and the goal of the movement. In order to further examine the potential interaction between lower-level and top-down processes in imitation learning, the aim of this study was to systematically control the mediating effects during an imitation of biological motion protocol. In this protocol, we used non-human agent models that displayed different novel atypical biological motion kinematics, as well as a control model that displayed constant velocity. Importantly the three models had the same movement amplitude and movement time. Also, the motion kinematics were displayed in the presence, or absence, of end-state-targets. Kinematic analyses showed atypical biological motion kinematics were imitated, and that this performance was different from the constant velocity control condition. Although the imitation of atypical biological motion kinematics was not modulated by the end-state-targets, movement time was more accurate in the absence, compared to the presence, of an end-state-target. The fact that end-state targets modulated movement time accuracy, but not biological motion kinematics, indicates imitation learning involves top-down attentional, and lower-level sensorimotor systems, which operate as complementary processes mediated by the environmental context.

  14. (Welding under extreme conditions)

    SciTech Connect

    Davis, S.A.

    1989-09-29

    The traveler was an invited member of the United States delegation and representative of the Basic Energy Science Welding Science program at the 42nd Annual International Institute of Welding (IIW) Assembly and Conference held in Helsinki, Finland. The conference and the assembly was attended by about 600 delegates representing 40 countries. The theme of the conference was welding under extreme conditions. The conference program contained several topics related to welding in nuclear, arctic petrochemical, underwater, hyperbaric and space environments. At the annual assembly the traveler was a delegate (US) to two working groups of the IIW, namely Commission IX and welding research study group 212. Following the conference the traveler visited the Danish Welding Institute in Copenhagen and the Risoe National Laboratory in Roskilde. Prior to the conference the traveler visited Lappeenranta University of Technology and presented an invited seminar entitled Recent Advances in Welding Science and Technology.''

  15. Experiments using new initial soil moisture conditions and soil map in the Eta model over La Plata Basin

    NASA Astrophysics Data System (ADS)

    Doyle, Moira E.; Tomasella, Javier; Rodriguez, Daniel A.; Chou, Sin Chan

    2013-08-01

    An effort towards a more accurate representation of soil moisture and its impact on the modeling of weather systems is presented. Sensitivity tests of precipitation to soil type and soil moisture changes are carried out using the atmospheric Eta model for the numerical simulation of the development of a mesoscale convective system over northern Argentina. Modified initial soil moisture conditions were obtained from a hydrological balance model developed and running operationally at INPE. A new soil map was elaborated using the available soil profile information from Brazil, Paraguay, Uruguay, and Argentina and depicts 18 different soil types. Results indicate that more accurate initial soil moisture conditions and incorporating a new soil map with hydraulic parameters, more representative of South American soils, improve daily total precipitation forecasts both in quantitative and spatial representations.

  16. An accurate metric for the spacetime around rotating neutron stars.

    NASA Astrophysics Data System (ADS)

    Pappas, George

    2017-01-01

    The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parameterised metric, i.e., a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parameterised by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parameterisation of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a 3-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.

  17. Fast and accurate estimation for astrophysical problems in large databases

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.

    2010-10-01

    A recent flood of astronomical data has created much demand for sophisticated statistical and machine learning tools that can rapidly draw accurate inferences from large databases of high-dimensional data. In this Ph.D. thesis, methods for statistical inference in such databases will be proposed, studied, and applied to real data. I use methods for low-dimensional parametrization of complex, high-dimensional data that are based on the notion of preserving the connectivity of data points in the context of a Markov random walk over the data set. I show how this simple parameterization of data can be exploited to: define appropriate prototypes for use in complex mixture models, determine data-driven eigenfunctions for accurate nonparametric regression, and find a set of suitable features to use in a statistical classifier. In this thesis, methods for each of these tasks are built up from simple principles, compared to existing methods in the literature, and applied to data from astronomical all-sky surveys. I examine several important problems in astrophysics, such as estimation of star formation history parameters for galaxies, prediction of redshifts of galaxies using photometric data, and classification of different types of supernovae based on their photometric light curves. Fast methods for high-dimensional data analysis are crucial in each of these problems because they all involve the analysis of complicated high-dimensional data in large, all-sky surveys. Specifically, I estimate the star formation history parameters for the nearly 800,000 galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog, determine redshifts for over 300,000 galaxies in the SDSS photometric catalog, and estimate the types of 20,000 supernovae as part of the Supernova Photometric Classification Challenge. Accurate predictions and classifications are imperative in each of these examples because these estimates are utilized in broader inference problems

  18. The FLUKA Code: An Accurate Simulation Tool for Particle Therapy

    PubMed Central

    Battistoni, Giuseppe; Bauer, Julia; Boehlen, Till T.; Cerutti, Francesco; Chin, Mary P. W.; Dos Santos Augusto, Ricardo; Ferrari, Alfredo; Ortega, Pablo G.; Kozłowska, Wioletta; Magro, Giuseppe; Mairani, Andrea; Parodi, Katia; Sala, Paola R.; Schoofs, Philippe; Tessonnier, Thomas; Vlachoudis, Vasilis

    2016-01-01

    Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with both 4He and 12C ion beams. Accurate description of ionization energy losses and of particle scattering and interactions lead to the excellent agreement of calculated depth–dose profiles with those measured at leading European hadron therapy centers, both with proton and ion beams. In order to support the application of FLUKA in hospital-based environments, Flair, the FLUKA graphical interface, has been enhanced with the capability of translating CT DICOM images into voxel-based computational phantoms in a fast and well-structured way. The interface is capable of importing also radiotherapy treatment data described in DICOM RT standard. In addition, the interface is equipped with an intuitive PET scanner geometry generator and automatic recording of coincidence events. Clinically, similar cases will be presented both in terms of absorbed dose and biological dose calculations describing the various available features. PMID:27242956

  19. ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS

    PubMed Central

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-01-01

    The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the Accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multi-finite buffers for reducing the state space by O(n!), exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes, and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be pre-computed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multi-scale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks. PMID:27761104

  20. The FLUKA Code: An Accurate Simulation Tool for Particle Therapy.

    PubMed

    Battistoni, Giuseppe; Bauer, Julia; Boehlen, Till T; Cerutti, Francesco; Chin, Mary P W; Dos Santos Augusto, Ricardo; Ferrari, Alfredo; Ortega, Pablo G; Kozłowska, Wioletta; Magro, Giuseppe; Mairani, Andrea; Parodi, Katia; Sala, Paola R; Schoofs, Philippe; Tessonnier, Thomas; Vlachoudis, Vasilis

    2016-01-01

    Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with both (4)He and (12)C ion beams. Accurate description of ionization energy losses and of particle scattering and interactions lead to the excellent agreement of calculated depth-dose profiles with those measured at leading European hadron therapy centers, both with proton and ion beams. In order to support the application of FLUKA in hospital-based environments, Flair, the FLUKA graphical interface, has been enhanced with the capability of translating CT DICOM images into voxel-based computational phantoms in a fast and well-structured way. The interface is capable of importing also radiotherapy treatment data described in DICOM RT standard. In addition, the interface is equipped with an intuitive PET scanner geometry generator and automatic recording of coincidence events. Clinically, similar cases will be presented both in terms of absorbed dose and biological dose calculations describing the various available features.