Science.gov

Sample records for ace inhibitors angiotensin

  1. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span.

    PubMed

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-02-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  2. Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry

    PubMed Central

    Wijesekara, Isuru; Kim, Se-Kwon

    2010-01-01

    Hypertension or high blood pressure is one of the major independent risk factors for cardiovascular diseases. Angiotensin-I-converting enzyme (EC 3.4.15.1; ACE) plays an important physiological role in regulation of blood pressure by converting angiotensin I to angiotensin II, a potent vasoconstrictor. Therefore, the inhibition of ACE activity is a major target in the prevention of hypertension. Recently, the search for natural ACE inhibitors as alternatives to synthetic drugs is of great interest to prevent several side effects and a number of novel compounds such as bioactive peptides, chitooligosaccharide derivatives (COS) and phlorotannins have been derived from marine organisms as potential ACE inhibitors. These inhibitory derivatives can be developed as nutraceuticals and pharmaceuticals with potential to prevent hypertension. Hence, the aim of this review is to discuss the marine-derived ACE inhibitors and their future prospects as novel therapeutic drug candidates for treat hypertension. PMID:20479968

  3. Angiotensin-converting enzyme (ACE) dimerization is the initial step in the ACE inhibitor-induced ACE signaling cascade in endothelial cells.

    PubMed

    Kohlstedt, Karin; Gershome, Cynthia; Friedrich, Matthias; Müller-Esterl, Werner; Alhenc-Gelas, François; Busse, Rudi; Fleming, Ingrid

    2006-05-01

    The binding of angiotensin-converting enzyme (ACE) inhibitors to ACE initiates a signaling cascade that involves the phosphorylation of the enzyme on Ser1270 as well as activation of the c-Jun NH2-terminal kinase (JNK) and leads to alterations in gene expression. To clarify how ACE inhibitors activate this pathway, we determined their effect on the ability of the enzyme to dimerize and the role of ACE dimerization in the initiation of the ACE signaling cascade. In endothelial cells, ACE was detected as a monomer as well as a dimer in native gel electrophoresis and dimerization/oligomerization was confirmed using the split-ubiquitin assay in yeast. ACE inhibitors elicited a rapid, concentration-dependent increase in the dimer/monomer ratio that correlated with that of the ACE inhibitorinduced phosphorylation of ACE. Cell treatment with galactose and glucose to prevent the putative lectin-mediated self-association of ACE or with specific antibodies shielding the N terminus of ACE failed to affect either the basal or the ACE inhibitor-induced dimerization of the enzyme. In ACE-expressing Chinese hamster ovary cells, ACE inhibitors elicited ACE dimerization and phosphorylation as well as the activation of JNK with similar kinetics to those observed in endothelial cells. However, these effects were prevented by the mutation of the essential Zn2+-complexing histidines in the C-terminal active site of the enzyme. Mutation of the N-terminal active site of ACE was without effect. Together, our data suggest that ACE inhibitors can initiate the ACE signaling pathway by inducing ACE dimerization, most probably via the C-terminal active site of the enzyme.

  4. Combination ACE inhibitor and angiotensin receptor blocker therapy - future considerations.

    PubMed

    Sica, Domenic A

    2007-01-01

    Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are regularly prescribed for the management of hypertension. Each of these drug classes has also been shown to provide survival benefits for patients with heart failure, proteinuric chronic kidney disease, and/or a high cardiac risk profile. The individual gains seen with each of these drug classes have led to speculation that their combination might offer additive if not synergistic outcome benefits. The foundation of this hypothesis, although biologically possible, has thus far not been sufficiently well proven to support the everyday use of these 2 drug classes in combination. Additional outcomes trials, which are currently proceeding to their conclusion, may provide the necessary proof to support an expanded use of these 2 drug classes in combination.

  5. A novel aggregation-induced emission based fluorescent probe for an angiotensin converting enzyme (ACE) assay and inhibitor screening.

    PubMed

    Wang, Haibo; Huang, Yi; Zhao, Xiaoping; Gong, Wan; Wang, Yi; Cheng, Yiyu

    2014-12-11

    A 'turn-on' fluorescent probe based on aggregation-induced emission (AIE) has been developed. It exhibits excellent selectivity and sensitivity for monitoring angiotensin converting enzyme (ACE) activity both in solutions and in living cells as well as for screening ACE inhibitors in vitro.

  6. Angiotensin-converting enzyme (ACE) inhibitors modulate cellular retinol-binding protein 1 and adiponectin expression in adipocytes via the ACE-dependent signaling cascade.

    PubMed

    Kohlstedt, Karin; Gershome, Cynthia; Trouvain, Caroline; Hofmann, Wolf-Karsten; Fichtlscherer, Stephan; Fleming, Ingrid

    2009-03-01

    Inhibitors of the angiotensin-converting enzyme (ACE) decrease angiotensin II production and activate an intracellular signaling cascade that affects gene expression in endothelial cells. Because ACE inhibitors have been reported to delay the onset of type 2 diabetes, we determined ACE signaling-modulated gene expression in endothelial cells and adipocytes. Using differential gene expression analysis, several genes were identified that were 3-fold up- or down-regulated by ramiprilat in cells expressing wild-type ACE versus cells expressing a signaling-dead ACE mutant. One up-regulated gene was the cellular retinol-binding protein 1 (CRBP1). In adipocytes, the overexpression of CRBP1 enhanced (4- to 5-fold) the activity of promoters containing response elements for retinol-dependent nuclear receptors [retinoic acid receptor (RAR) and retinoid X receptor (RXR)] or peroxisome proliferator-activated receptors (PPAR). CRBP1 overexpression also enhanced the promoter activity (by 470 +/- 40%) and expression/release of the anti-inflammatory and antiatherogenic adipokine adiponectin (cellular adiponectin by 196 +/- 24%, soluble adiponectin by 228 +/- 74%). Significantly increased adiponectin secretion was also observed after ACE inhibitor treatment of human preadipocytes, an effect prevented by small interfering RNA against CRBP1. Furthermore, in ob/ob mice, ramipril markedly potentiated both the basal (approximately 2-fold) and rosiglitazonestimulated circulating levels of adiponectin. In patients with coronary artery disease or type 2 diabetes, ACE inhibition also significantly increased plasma adiponectin levels (1.6- or 2.1-fold, respectively). In summary, ACE inhibitors affect adipocyte homeostasis via CRBP1 through the activation of RAR/RXR-PPAR signaling and up-regulation of adiponectin. The latter may contribute to the beneficial effects of ACE inhibitors on the development of type 2 diabetes in patients with an activated renin-angiotensin system.

  7. A novel design of combining the angiotensin converting enzyme (ACE) inhibitor captopril with the angiotensin receptor blocker (ARB) losartan using homo coupling via PEG diacid linker.

    PubMed

    Hashemzadeh, Mehrnoosh; Park, Shery; Ju, Hee; Movahed, Mohammad R

    2013-12-01

    Cardiovascular disease is the leading cause of death in American adults. Furthermore, the incidence of congestive heart failure is on the rise as a major cause of hospitalization and mortality in this population. Angiotensin Converting Enzyme (ACE) inhibitors prevent the production of angiotensin II, which has been shown to reduce mortality in patients with congestive heart failure. Angiotensin II receptor blockers (ARB) were developed as a direct inhibitor of angiotensin II. ARBs have been shown to be effective in the treatment of patients with systolic heart failure but do not cause chronic coughing which is a common side effect of ACE inhibitors. In theory, a compound that has the combined effect of an ACE inhibitor and an ARB should be more effective in treating heart failure patients than either agents alone. Therefore, the purpose of this manuscript is to design and discuss the benefits of a new molecule, which combines captopril, an ACE inhibitor, with losartan, an ARB. In this experiment Captopril and Losartan were modified and synthesized separately and combined by homo or mono coupling. This was achieved by taking advantage of PEG (Polyethylene glycol) as a linker. It is expected that this molecule will have the combined modes of action of both ACEs and ARBs. Benefits from combination therapy include; increased efficacy, reduced adverse effects, convenience, compliance, and prolonged duration. Consequently, this combined molecule is expected to block the production of angiotensin II more efficiently and effectively. Although captopril and losartan work in the same system by blocking the effect of angiotensin II they have different action sites and mechanisms some patents are also discussed. Losartan blocks the AT1 receptor which is expressed on the cell surface, while captopril inhibits ACE, preventing production of angiotensin II, which is present in both the plasma and on the cell surface, especially on endothelial and smooth muscle cells.

  8. Radiation damage to the lung: mitigation by angiotensin converting enzyme (ACE) inhibitors

    PubMed Central

    Medhora, Meetha; Gao, Feng; Jacobs, Elizabeth R.; Moulder, John E.

    2011-01-01

    Concern regarding accidental overexposure to radiation has been raised after the devastating Tohuku earthquake and tsunami which initiated the Fukushima Daiichi nuclear disaster in Japan, in March 2011. Radiation exposure is toxic and can be fatal depending on the dose received. Injury to the lung is often reported as part of multi-organ failure in victims of accidental exposures. Doses of radiation >8 Gray to the chest can induce pneumonitis with right ventricular hypertrophy starting after ~2 months. Higher doses may be followed by pulmonary fibrosis that presents months to years after exposure. Though the exact mechanisms of radiation lung damage are not known, experimental animal models have been widely used to study this injury. Rodent models for pneumonitis and fibrosis exhibit vascular, parenchymal and pleural injuries to the lung. Inflammation is a part of the injuries suggesting involvement of the immune system. Researchers world-wide have tested a number of interventions to prevent or mitigate radiation lung injury. One of the first and most successful class of mitigators are inhibitors of angiotensin converting enzyme (ACE), an enzyme that is abundant in the lung. These results offer hope that lung injury from radiation accidents may be mitigated, since the ACE inhibitor captopril was effective when started up to one week after irradiation. PMID:22023053

  9. Synthesis and evaluation of novel triazoles and mannich bases functionalized 1,4-dihydropyridine as angiotensin converting enzyme (ACE) inhibitors.

    PubMed

    Kumbhare, Ravindra M; Kosurkar, Umesh B; Bagul, Pankaj K; Kanwal, Abhinav; Appalanaidu, K; Dadmal, Tulshiram L; Banerjee, Sanjay Kumar

    2014-11-01

    A series of novel diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate embedded triazole and mannich bases were synthesized, and evaluated for their angiotensin converting enzyme (ACE) inhibitory activity. Screening of above synthesized compounds for ACE inhibition showed that triazoles functionalized compounds have better ACE inhibitory activity compared to that of mannich bases analogues. Among all triazoles we found 6 h, 6 i and 6 j to have good ACE inhibition activity with IC50 values 0.713 μM, 0.409 μM and 0.653 μM, respectively. Among mannich bases series compounds, only 7c resulted as most active ACE inhibitor with IC50 value of 0.928 μM.

  10. Angiotensin converting enzyme (ACE) inhibitors from Jasminum azoricum and Jasminum grandiflorum.

    PubMed

    Somanadhan, B; Smitt, U W; George, V; Pushpangadan, P; Rajasekharan, S; Duus, J O; Nyman, U; Olsen, C E; Jaroszewski, J W

    1998-04-01

    Bioactivity-guided fractionation of extracts of the aerial parts of Jasminum azoricum var. travancorense, using an in vitro ACE inhibition assay, led to isolation of three oligomeric, iridoid-type compounds, which were named sambacein I-III. Their structures are based on spectroscopic and chemical evidence. Similarly, fractionation of extracts of aerial parts of J. grandiflorum resulted in the isolation of the previously reported ACE inhibitor, oleacein. The IC50 values of purified ACE inhibitors were 26-36 microM. Moreover, 2-(3,4-dihydroxyphenyl)-ethanol, isoquercitrin and ursolic acid were isolated from J. grandiflorum. Sambaceins and oleacein are formed from genuine iridoid glucosides during processing of the plant material. NMR spectroscopy was used to measure the level of the ACE inhibitors in the traditional medicines prepared in Kerala from these Jasminum species.

  11. Screening of inhibitors of angiotensin-converting enzyme (ACE) employing high performance liquid chromatography-electrospray ionization triple quadrupole mass spectrometry (HPLC-ESI-QqQ-MS).

    PubMed

    Musharraf, Syed Ghulam; Bhatti, Muhammad Salman; Choudhary, Muhammad Iqbal; Rahman, Atta-Ur

    2017-04-01

    Angiotensin-converting enzyme (ACE) plays a key role in regulating blood pressure in the body by converting the angiotensin I (AI) into angiotensin II (AII). Angiotensin II is a potent vaso-active peptide that causes arterioles to constrict, resulting in increased blood pressure. A rapid and sensitive method for the identification of inhibitors of ACE was developed, and optimized employing HPLC-ESI-QqQ-MS. In this assay, angiotensin I substrate was converted into the product angiotensin II with the catalytic action of ACE. A calibration curve for depleting concentration of angiotensin I was developed and linearity of R(2)=0.999 with a remarkably low concentration of substrate range 20-200nM. The limit of detection and quantification of angiotensin I was found to be 1.93 and 5.84nM, respectively. The enzymatic reaction was optimized for incubation time, concentration, and volume of enzyme and substrate. All reactions were performed at 37°C at pH7.5 with standard incubation time of 20min. Two standard inhibitors, Captopril and Lisinopril, were checked through the newly developed method for their inhibitory potential, and their IC50 values were found to be 3.969 and 0.852μM, respectively. Reproducibility and precision analysis of different experiments showed <9.9% RSD. The developed method can be used for the identification of new ACE inhibitors.

  12. Discovery of new angiotensin converting enzyme (ACE) inhibitors from medicinal plants to treat hypertension using an in vitro assay

    PubMed Central

    2013-01-01

    Background and purpose of the study Angiotensin converting enzyme (ACE) inhibitors plays a critical role in treating hypertension. The purpose of the present investigation was to evaluate ACE inhibition activity of 50 Iranian medicinal plants using an in vitro assay. Methods The ACE activity was evaluated by determining the hydrolysis rate of substrate, hippuryl-L-histidyl-L-leucine (HHL), using reverse phase high performance liquid chromatography (RP-HPLC). Total phenolic content and antioxidant activity were determined by Folin-Ciocalteu colorimetric method and DPPH radical scavenging assay respectively. Results Six extracts revealed > 50% ACE inhibition activity at 330 μg/ml concentration. They were Berberis integerrima Bunge. (Berberidaceae) (88.2 ± 1.7%), Crataegus microphylla C. Koch (Rosaceae) (80.9 ± 1.3%), Nymphaea alba L. (Nymphaeaceae) (66.3 ± 1.2%), Onopordon acanthium L. (Asteraceae) (80.2 ± 2.0%), Quercus infectoria G. Olivier. (Fagaceae) (93.9 ± 2.5%) and Rubus sp. (Rosaceae) (51.3 ± 1.0%). Q. infectoria possessed the highest total phenolic content with 7410 ± 101 mg gallic acid/100 g dry plant. Antioxidant activity of Q. infectoria (IC50 value 1.7 ± 0.03 μg/ml) was more than that of BHT (IC50 value of 10.3 ± 0.15 μg/ml) and Trolox (IC50 value of 3.2 ± 0.06 μg/ml) as the positive controls. Conclusions In this study, we introduced six medicinal plants with ACE inhibition activity. Despite the high ACE inhibition and antioxidant activity of Q. infectoria, due to its tannin content (tannins interfere in ACE activity), another plant, O. acanthium, which also had high ACE inhibition and antioxidant activity, but contained no tannin, could be utilized in further studies for isolation of active compounds. PMID:24359711

  13. ACE Inhibitor and Angiotensin Receptor Blocker Use and Mortality in Patients with Chronic Kidney Disease

    PubMed Central

    Molnar, Miklos Z; Kalantar-Zadeh, Kamyar; Lott, Evan H; Lu, Jun Ling; Malakauskas, Sandra M; Ma, Jennie Z; Quarles, Darryl L; Kovesdy, Csaba P

    2014-01-01

    Objective To assess the association between ACEI/ARB use and mortality in CKD patients. Background There is insufficient evidence about the association of angiotensin converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARBs) with mortality in chronic kidney disease (CKD) patients. Methods A logistic regression analysis was used to calculate the propensity of ACEI/ARB initiation in 141,413 US veterans with non-dialysis CKD previously unexposed to ACEI/ARB treatment. We examined the association of ACEI/ARB administration with all-cause mortality in patients matched by propensity scores, using the Kaplan-Meier method and Cox models in “intention-to-treat” analyses, and in generalized linear models with binary outcomes and inverse probability treatment weighing (IPTW) in “as-treated” analyses. Results The mean±SD age of the patients at baseline was 75±10 years, 8% of patients were black, and 22% were diabetic. ACEI/ARB administration was associated with significantly lower risk of mortality both in the intention-to-treat analysis (HR=0.81; 95%CI: 0.78-0.84, p<0.001) and in the as-treated analysis with IPTW (OR=0.37; 95%CI: 0.34-0.41, p<0.001). The association of ACEI/ARB treatment with lower risk of mortality was present in all examined subgroups. Conclusions In this large contemporary cohort of non-dialysis dependent CKD patients, ACEI/ARB administration was associated with greater survival. PMID:24269363

  14. Screening of Zulu medicinal plants for angiotensin converting enzyme (ACE) inhibitors.

    PubMed

    Duncan, A C; Jäger, A K; van Staden, J

    1999-12-15

    Twenty plants used by traditional healers in South Africa for the treatment of high blood pressure were investigated for their anti-hypertensive properties, utilizing the angiotensin converting enzyme assay. A hit rate of 65% was achieved, with the highest inhibition (97%) obtained by Adenopodia spicata leaves. A further seven plants exhibited an inhibition greater than 70% and five more over 50%. The leaves of the plants showed the greatest levels of inhibition. There was little difference in the overall hit rate between ethanolic and aqueous extracts, although in most cases there was a marked difference in activity between aqueous and ethanolic extracts from the same species. Plants exhibiting inhibition levels greater than 50% were further tested for the presence of tannins in order to eliminate possible false positives. Active plants that did not contain tannins were Agapanthus africanus, Agave americana, Clausena anisata, Dietes iridioides, Mesembruanthemum spp., Stangeria eriopus and Tulbaghia violacea.

  15. ACE inhibitors and angiotensin II receptor blockers in IgA nephropathy with mild proteinuria: the ACEARB study.

    PubMed

    Pozzi, Claudio; Del Vecchio, Lucia; Casartelli, Donatella; Pozzoni, Pietro; Andrulli, Simeone; Amore, Alessandro; Peruzzi, Licia; Coppo, Rosanna; Locatelli, Francesco

    2006-01-01

    Few studies have investigated IgA nephropathy patients presenting with 'favorable' clinical features at onset, such as normal renal function, proteinuria<1 g/24 hours and the absence of hypertension, and no controlled clinical trials have tested the effects of treatment in such patients who may nevertheless develop end-stage renal disease. It is therefore important to find a well-tolerated and economic therapy capable of decreasing their risk of high proteinuria and blood pressure levels. The aim of this multicenter open-label randomized clinical trial is to test whether blocking the renin-angiotensin system (RAS) decreases the risk of progression in patients aged 3-60 years with biopsy-proven benign IgA glomerulonephritis, proteinuria levels of 0.3-0.9 g/24 hours, and normal renal function and blood pressure. The RAS is blocked by first using a single drug class (angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker), and then combining the 2 classes as soon as the 1-drug blockade has become ineffective. We plan to enroll 378 patients over the next 3 years and randomize them to receive ramipril 5 mg/day (3 mg/m2 in children) (group A), irbesartan 300 mg/day (175 mg/m 2 in children) (group B) or supportive therapy (group C); if an increase in proteinuria of at least 50% from baseline is detected after 6 months of treatment, the other RAS inhibitor will be added. The observation period will be at least 5 years (except in the case of the development of the primary end point).

  16. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain.

    PubMed

    Lambert, Daniel W; Clarke, Nicola E; Hooper, Nigel M; Turner, Anthony J

    2008-01-23

    Angiotensin-converting enzyme-2 (ACE2) is a regulatory protein of the renin-angiotensin system (RAS) and a receptor for the causative agent of severe-acute respiratory syndrome (SARS), the SARS-coronavirus. We have previously shown that ACE2 can be shed from the cell surface in response to phorbol esters by a process involving TNF-alpha converting enzyme (TACE; ADAM17). In this study, we demonstrate that inhibitors of calmodulin also stimulate shedding of the ACE2 ectodomain, a process at least partially mediated by a metalloproteinase. We also show that calmodulin associates with ACE2 and that this interaction is decreased by calmodulin inhibitors.

  17. New Perspectives in the Renin-Angiotensin-Aldosterone System (RAAS) II: Albumin Suppresses Angiotensin Converting Enzyme (ACE) Activity in Human

    PubMed Central

    Fagyas, Miklós; Úri, Katalin; Siket, Ivetta M.; Fülöp, Gábor Á.; Csató, Viktória; Daragó, Andrea; Boczán, Judit; Bányai, Emese; Szentkirályi, István Elek; Maros, Tamás Miklós; Szerafin, Tamás; Édes, István; Papp, Zoltán; Tóth, Attila

    2014-01-01

    About 8% of the adult population is taking angiotensin-converting enzyme (ACE) inhibitors to treat cardiovascular disease including hypertension, myocardial infarction and heart failure. These drugs decrease mortality by up to one-fifth in these patients. We and others have reported previously that endogenous inhibitory substances suppress serum ACE activity, in vivo, similarly to the ACE inhibitor drugs. Here we have made an effort to identify this endogenous ACE inhibitor substance. ACE was crosslinked with interacting proteins in human sera. The crosslinked products were immunoprecipitated and subjected to Western blot. One of the crosslinked products was recognized by both anti-ACE and anti-HSA (human serum albumin) antibodies. Direct ACE-HSA interaction was confirmed by binding assays using purified ACE and HSA. HSA inhibited human purified (circulating) and human recombinant ACE with potencies (IC50) of 5.7±0.7 and 9.5±1.1 mg/mL, respectively. Effects of HSA on the tissue bound native ACE were tested on human saphenous vein samples. Angiotensin I evoked vasoconstriction was inhibited by HSA in this vascular tissue (maximal force with HSA: 6.14±1.34 mN, without HSA: 13.54±2.63 mN), while HSA was without effects on angiotensin II mediated constrictions (maximal force with HSA: 18.73±2.17 mN, without HSA: 19.22±3.50 mN). The main finding of this study is that HSA was identified as a potent physiological inhibitor of the ACE. The enzymatic activity of ACE appears to be almost completely suppressed by HSA when it is present in its physiological concentration. These data suggest that angiotensin I conversion is limited by low physiological ACE activities, in vivo. PMID:24691203

  18. [ACE inhibitors and the kidney].

    PubMed

    Hörl, W H

    1996-01-01

    Treatment with ACE inhibitors results in kidney protection due to reduction of systemic blood pressure, intraglomerular pressure, an antiproliferative effect, reduction of proteinuria and a lipid-lowering effect in proteinuric patients (secondary due to reduction of protein excretion). Elderly patients with diabetes melitus, coronary heart disease or peripheral vascular occlusion are at risk for deterioration of kidney function due to a high frequency of renal artery stenosis in these patients. In patients with renal insufficiency dose reduction of ACE inhibitors is necessary (exception: fosinopril) but more important is the risk for development of hyperkalemia. Patients at risk for renal artery stenosis and patients pretreated with diuretics should receive a low ACE inhibitor dosage initially ("start low - go slow"). For compliance reasons once daily ACE inhibitor dosage is recommended.

  19. Renin-angiotensin-aldosterone system inhibition: overview of the therapeutic use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, and direct renin inhibitors.

    PubMed

    Mercier, Kelly; Smith, Holly; Biederman, Jason

    2014-12-01

    Angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) therapy in hypertensive diabetic patients with macroalbuminuria, microalbuminuria, or normoalbuminuria has been repeatedly shown to improve cardiovascular mortality and reduce the decline in glomerular filtration rate. Renin-angiotensin-aldosterone system (RAAS) blockade in normotensive diabetic patients with normoalbuminuria or microalbuminuria cannot be advocated at present. Dual RAAS inhibition with ACE inhibitors plus ARBs or ACE inhibitors plus direct renin inhibitors has failed to improve cardiovascular or renal outcomes but has predisposed patients to serious adverse events.

  20. Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence.

    PubMed

    Guy, Jodie L; Jackson, Richard M; Acharya, K Ravi; Sturrock, Edward D; Hooper, Nigel M; Turner, Anthony J

    2003-11-18

    Angiotensin-converting enzyme 2 (ACE2), a homologue of ACE, represents a new and potentially important target in cardio-renal disease. A model of the active site of ACE2, based on the crystal structure of testicular ACE, has been developed and indicates that the catalytic mechanism of ACE2 resembles that of ACE. Structural differences exist between the active site of ACE (dipeptidyl carboxypeptidase) and ACE2 (carboxypeptidase) that are responsible for the differences in specificity. The main differences occur in the ligand-binding pockets, particularly at the S2' subsite and in the binding of the peptide carboxy-terminus. The model explains why the classical ACE inhibitor lisinopril is unable to bind to ACE2. On the basis of the ability of ACE2 to cleave a variety of biologically active peptides, a consensus sequence of Pro-X-Pro-hydrophobic/basic for the protease specificity of ACE2 has been defined that is supported by the ACE2 model. The dipeptide, Pro-Phe, completely inhibits ACE2 activity at 180 microM with angiotensin II as the substrate. As with ACE, the chloride dependence of ACE2 is substrate-specific such that the hydrolysis of angiotensin I and the synthetic peptide substrate, Mca-APK(Dnp), are activated in the presence of chloride ions, whereas the cleavage of angiotensin II is inhibited. The ACE2 model is also suggestive of a possible mechanism for chloride activation. The structural insights provided by these analyses for the differences in inhibition pattern and substrate specificity among ACE and its homologue ACE2 and for the chloride dependence of ACE/ACE2 activity are valuable in understanding the function and regulation of ACE2.

  1. Angiotensin-II mediates ACE2 Internalization and Degradation through an Angiotensin-II type I receptor-dependent mechanism

    PubMed Central

    Lazartigues, Eric; Filipeanu, Catalin M.

    2014-01-01

    Angiotensin Converting Enzyme type 2 (ACE2) is a pivotal component of the renin-angiotensin system, promoting the conversion of Angiotensin (Ang)-II to Ang-(1-7). We previously reported that decreased ACE2 expression and activity contribute to the development of Ang-II-mediated hypertension in mice. The present study aimed to investigate the mechanisms involved in ACE2 down-regulation during neurogenic hypertension. In ACE2-transfected Neuro-2A cells, Ang-II treatment resulted in a significant attenuation of ACE2 enzymatic activity. Examination of the subcellular localization of ACE2 revealed that Ang-II treatment leads to ACE2 internalization and degradation into lysosomes. These effects were prevented by both the Ang-II type 1 receptor (AT1R) blocker losartan and the lysosomal inhibitor leupeptin. In contrast, in HEK293T cells, which lack endogenous AT1R, Ang-II failed to promote ACE2 internalization. Moreover, this effect could be induced after AT1R transfection. Further, co-immunoprecipitation experiments demonstrated that AT1R and ACE2 form complexes and these interactions were decreased by Ang-II treatment, which also enhanced ACE2 ubiquitination. In contrast, ACE2 activity was not changed by transfection of AT2 or Mas receptors. In vivo, Ang-II-mediated hypertension was blunted by chronic infusion of leupeptin in wildtype C57Bl/6, but not in ACE2 knockout mice. Overall, this is the first demonstration that elevated Ang-II levels reduce ACE2 expression and activity by stimulation of lysosomal degradation through an AT1R-dependent mechanism. PMID:25225202

  2. ACE2: Angiotensin II/Angiotensin-(1-7) balance in cardiorenal injury

    PubMed Central

    Varagic, Jasmina; Ahmad, Sarfaraz; Nagata, Sayaka; Ferrario, Carlos M.

    2014-01-01

    Our current recognition of the renin-angiotensin system is more convoluted than originally thought due to the discovery of multiple novel enzymes, peptides, and receptors inherent to this interactive biochemical cascade. Over the last decade angiotensin converting enzyme 2 (ACE2) has emerged as a key player in the pathophysiology of hypertension and cardiovascular and renal disease due to its pivotal role in metabolizing vasoconstrictive/hypertrophic/proliferative angiotensin II into favorable angiotensin-(1-7). This review addresses a considerable advancement in research on the role of tissue ACE2 in development and progression of hypertension and cardiorenal injury. We also summarize the results from recent clinical and experimental studies suggesting that serum or urine soluble ACE2 may serve as a novel biomarker or independent risk factor relevant for diagnosis and prognosis of cardiorenal disease. Recent proceedings on novel therapeutic approaches to enhance ACE2/angiotensin-(1-7) axis are also reviewed. PMID:24510672

  3. Small Bowel Angioedema Secondary to Angiotensin-Converting Enzyme Inhibitors

    PubMed Central

    Hurairah, Abu

    2016-01-01

    Small bowel angioedema induced by angiotensin-converting enzyme (ACE) inhibitors is a rare clinicopathologic entity. It frequently poses a diagnostic challenge and is often not recognized before surgical exploration. The present study illustrates that clinical awareness for this condition and adequate use of radiologic investigations can help make the correct diagnosis of ACE inhibitor-associated angioedema, thus avoiding the cost and morbidity associated with unnecessary interventions. PMID:28133581

  4. Structure of human ACE gives new insights into inhibitor binding and design.

    PubMed

    Brew, Keith

    2003-08-01

    Angiotensin-converting enzyme (ACE) is a primary target of drugs used for controlling hypertension. A new X-ray crystallographic structure of the key catalytic domain of ACE provides detailed information about the structure of its active site, located in a deep channel, and its interactions with an inhibitor. Such information might facilitate the rational design of ACE inhibitors that are more potent and more selective and therefore of clinical use.

  5. Role of angiotensin-converting enzyme 2 (ACE2) in diabetic cardiovascular complications.

    PubMed

    Patel, Vaibhav B; Parajuli, Nirmal; Oudit, Gavin Y

    2014-04-01

    Diabetes mellitus results in severe cardiovascular complications, and heart disease and failure remain the major causes of death in patients with diabetes. Given the increasing global tide of obesity and diabetes, the clinical burden of diabetes-induced cardiovascular disease is reaching epidemic proportions. Therefore urgent actions are needed to stem the tide of diabetes which entails new prevention and treatment tools. Clinical and pharmacological studies have demonstrated that AngII (angiotensin II), the major effector peptide of the RAS (renin-angiotensin system), is a critical promoter of insulin resistance and diabetes mellitus. The role of RAS and AngII has been implicated in the progression of diabetic cardiovascular complications and AT1R (AngII type 1 receptor) blockers and ACE (angiotensin-converting enzyme) inhibitors have shown clinical benefits. ACE2, the recently discovered homologue of ACE, is a monocarboxypeptidase which converts AngII into Ang-(1-7) [angiotensin-(1-7)] which, by virtue of its actions on the MasR (Mas receptor), opposes the effects of AngII. In animal models of diabetes, an early increase in ACE2 expression and activity occurs, whereas ACE2 mRNA and protein levels have been found to decrease in older STZ (streptozotocin)-induced diabetic rats. Using the Akita mouse model of Type 1 diabetes, we have recently shown that loss of ACE2 disrupts the balance of the RAS in a diabetic state and leads to AngII/AT1R-dependent systolic dysfunction and impaired vascular function. In the present review, we will discuss the role of the RAS in the pathophysiology and treatment of diabetes and its complications with particular emphasis on potential benefits of the ACE2/Ang-(1-7)/MasR axis activation.

  6. [ACE inhibitors from the viewpoint of the clinical pharmacologist].

    PubMed

    Hitzenberger, G

    1996-01-01

    For treatment of hypertension drugs are desirable which exert a 24 hours lasting blood pressure control. Among the ACE-inhibitors some drugs exist which have this action. The elimination pathway plays a minor role in this respect. Not only the inhibition of Angiotensin II generation but also the decreased inhibition of bradykinin-degeneration plays a crucial role with regard to several endothelial functions controlling the so called remodeling of the cardiovascular system.

  7. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors.

    PubMed

    Vuille-dit-Bille, Raphael N; Camargo, Simone M; Emmenegger, Luca; Sasse, Tom; Kummer, Eva; Jando, Julia; Hamie, Qeumars M; Meier, Chantal F; Hunziker, Schirin; Forras-Kaufmann, Zsofia; Kuyumcu, Sena; Fox, Mark; Schwizer, Werner; Fried, Michael; Lindenmeyer, Maja; Götze, Oliver; Verrey, François

    2015-04-01

    Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

  8. Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity

    PubMed Central

    Wijesinghe, W.A.J.P.; Ko, Seok-Chun

    2011-01-01

    Inhibition of angiotensin I-converting enzyme (ACE) activity is the most common mechanism underlying the lowering of blood pressure. In the present study, five organic extracts of a marine brown seaweed Ecklonia cava were prepared by using ethanol, ethyl acetate, chloroform, hexane, and diethyl ether as solvents, which were then tested for their potential ACE inhibitory activities. Ethanol extract showed the strongest ACE inhibitory activity with an IC50 value of 0.96 mg/ml. Five kinds of phlorotannins, phloroglucinol, triphlorethol-A, eckol, dieckol, and eckstolonol, were isolated from ethanol extract of E. cava, which exhibited potential ACE inhibition. Dieckol was the most potent ACE inhibitor and was found to be a non-competitive inhibitor against ACE according to Lineweaver-Burk plots. Dieckol had an inducible effect on the production of NO in EAhy926 cells without having cytotoxic effect. The results of this study indicate that E. cava could be a potential source of phlorotannins with ACE inhibitory activity for utilization in production of functional foods. PMID:21556221

  9. Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity.

    PubMed

    Wijesinghe, W A J P; Ko, Seok-Chun; Jeon, You-Jin

    2011-04-01

    Inhibition of angiotensin I-converting enzyme (ACE) activity is the most common mechanism underlying the lowering of blood pressure. In the present study, five organic extracts of a marine brown seaweed Ecklonia cava were prepared by using ethanol, ethyl acetate, chloroform, hexane, and diethyl ether as solvents, which were then tested for their potential ACE inhibitory activities. Ethanol extract showed the strongest ACE inhibitory activity with an IC(50) value of 0.96 mg/ml. Five kinds of phlorotannins, phloroglucinol, triphlorethol-A, eckol, dieckol, and eckstolonol, were isolated from ethanol extract of E. cava, which exhibited potential ACE inhibition. Dieckol was the most potent ACE inhibitor and was found to be a non-competitive inhibitor against ACE according to Lineweaver-Burk plots. Dieckol had an inducible effect on the production of NO in EAhy926 cells without having cytotoxic effect. The results of this study indicate that E. cava could be a potential source of phlorotannins with ACE inhibitory activity for utilization in production of functional foods.

  10. The history of inhibitors of angiotensin converting enzyme.

    PubMed

    Vane, J R

    1999-12-01

    This review paper by Sir John Vane, The Nobel Prize Laureate for the first time reveals the insides of discovery of inhibitors of angiotensin converting enzyme (ACE-1), presently known as important drugs for the treatment of hypertension, congestive heart failure and coronary artery disease.

  11. Adverse cardiac effects of exogenous angiotensin 1-7 in rats with subtotal nephrectomy are prevented by ACE inhibition

    PubMed Central

    Griggs, Karen; Patel, Sheila K.

    2017-01-01

    We previously reported that exogenous angiotensin (Ang) 1–7 has adverse cardiac effects in experimental kidney failure due to its action to increase cardiac angiotensin converting enzyme (ACE) activity. This study investigated if the addition of an ACE inhibitor (ACEi) to Ang 1–7 infusion would unmask any beneficial effects of Ang 1–7 on the heart in experimental kidney failure. Male Sprague–Dawley rats underwent subtotal nephrectomy (STNx) and were treated with vehicle, the ACEi ramipril (oral 1mg/kg/day), Ang 1–7 (subcutaneous 24 μg/kg/h) or dual therapy (all groups, n = 12). A control group (n = 10) of sham-operated rats were also studied. STNx led to hypertension, renal impairment, cardiac hypertrophy and fibrosis, and increased both left ventricular ACE2 activity and ACE binding. STNx was not associated with changes in plasma levels of ACE, ACE2 or angiotensin peptides. Ramipril reduced blood pressure, improved cardiac hypertrophy and fibrosis and inhibited cardiac ACE. Ang 1–7 infusion increased blood pressure, cardiac interstitial fibrosis and cardiac ACE binding compared to untreated STNx rats. Although in STNx rats, the addition of ACEi to Ang 1–7 prevented any deleterious cardiac effects of Ang 1–7, a limitation of the study is that the large increase in plasma Ang 1–7 with ramipril may have masked any effect of infused Ang 1–7. PMID:28192475

  12. Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles

    SciTech Connect

    Matsuura-Hachiya, Yuko; Arai, Koji Y.; Ozeki, Rieko; Kikuta, Ayako; Nishiyama, Toshio

    2013-12-06

    Highlights: •Angiotensin converting enzyme (ACE) increases in UVB-irradiated skin. •Administration of an ACE inhibitor improved UVB-induced skin wrinkle. •ACE inhibitor improved UVB-induced epidermal hypertrophy. •ACE inhibitor improved transepidermal water loss in the UVB-irradiated skin. -- Abstract: Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recovery of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin.

  13. A retrospective study of the effects of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in diabetic nephropathy

    PubMed Central

    Pathak, Jahnavi V.; Dass, Ervilla E.

    2015-01-01

    Objective: Till date, several studies have compared angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) in terms of delaying the progression of diabetic nephropathy. But the superiority of one drug class over the other remains unsettled. This study has retrospectively compared the effects of ACE inhibitors and ARBs in diabetic nephropathy. The study aims to compare ACE inhibitors and ARBs in terms of delaying or preventing the progression of diabetic nephropathy, association between blood pressure (B.P) and urinary albumin and also B.P and serum creatinine with ACE inhibitor and ARB, know the percentage of hyperkalemia in patients of diabetic nephropathy receiving ACE inhibitor or ARB. Settings and Design: A total of 134 patients diagnosed with diabetic nephropathy during the years 2001–2010 and having a complete follow-up were studied, out of which 99 were on ARB (63 patients of Losartan and 36 of Telmisartan) and 35 on ACE inhibitor (Ramipril). Subjects and Methods: There was at least 1-month of interval between each observation made and also between the date of treatment started and the first reading that is, the observation of the 1st month. In total, three readings were taken that is, of the 1st, 2nd and 3rd month after the treatment started. Comparison of the 1st and 3rd month after the treatment started was done. Mean ± standard deviation, Paired t-test, and Chi-square were used for the analysis of the data. Results: The results reflect that ARBs (Losartan and Telmisartan) when compared to ACE inhibitor (Ramipril) are more effective in terms of delaying the progression of diabetic nephropathy and also in providing renoprotection. Also, ARBs have the property of simultaneously decreasing the systolic B.P and albuminuria when compared to ACE inhibitor (Ramipril). Conclusions: Angiotensin receptor blockers are more renoprotective than ACE inhibitors and also provide better cardioprotection. PMID:25878372

  14. Racial differences in blood pressure response to angiotensin-converting enzyme inhibitors in children: a meta-analysis.

    PubMed

    Li, J S; Baker-Smith, C M; Smith, P B; Hasselblad, V; Murphy, M D; Califf, R M; Benjamin, D K

    2008-09-01

    Angiotensin-converting enzyme (ACE) inhibitors are frequently used to treat hypertension in children.(1) ACE inhibitors alter the balance between the vasoconstrictive, salt-retentive, and cardiac hypertrophic properties of angiotensin II and the vasodilatory and natriuretic properties of bradykinin; they also alter the metabolism of other vasoactive substances.(2) Through these mechanisms, ACE inhibitors decrease systemic vascular resistance and promote natriuresis without increasing heart rate. This study evaluated the results of six trials of ACE inhibitors in children, using meta-analytic techniques to estimate the effect of race on blood pressure response.

  15. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean.

    PubMed

    Takahashi, Saori; Yoshiya, Taku; Yoshizawa-Kumagaye, Kumiko; Sugiyama, Toshihiro

    2015-01-01

    Angiotensin-converting enzyme 2 (ACE2) is a carboxypeptidase which is highly homologous to angiotensin-converting enzyme (ACE). ACE2 produces vasodilator peptides angiotensin 1-7 from angiotensin II. In the present study, we synthesized various internally quenched fluorogenic (IQF) substrates (fluorophore-Xaa-Pro-quencher) based on the cleavage site of angiotensin II introducing N-terminal fluorophore N-methylanthranilic acid (Nma) and C-terminal quencher N(ε)-2,4- dinitrophenyl-lysine [Lys(Dnp)]. The synthesized mixed substrates "Nma-Xaa-Pro-Lys(Dnp)" were hydrolyzed by recombinant human (rh) ACE2. The amount of each product was determined by liquid chromatography mass spectrometry (LC-MS) with fluorescence detection and it was found that Nma-His-Pro-Lys(Dnp) is the most suitable substrate for rhACE2. The K(m), k(cat), and k(cat)/K(m) values of Nma-His-Pro-Lys(Dnp) on rhACE2 were determined to be 23.3 μM, 167 s(-1), and 7.17 μM(-1) s(-1), respectively. Using the rhACE2 and the newly developed IQF substrate, we found rhACE2 inhibitory activity in soybean and isolated the active compound soybean ACE2 inhibitor (ACE2iSB). The physicochemical data on the isolated ACE2iSB were identical to those of nicotianamine. ACE2iSB strongly inhibited rhACE2 activity with an IC50 value of 84 nM. This is the first demonstration of an ACE2 inhibitor from foodstuffs.

  16. Rediscovering ACE: Novel insights into the many roles of the angiotensin-converting enzyme

    PubMed Central

    Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Bernstein, Ellen A.; Janjulia, Tea; Taylor, Brian; Giani, Jorge F.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Shi, Peng D.; Fuchs, Sebastien; Bernstein, Kenneth E.

    2013-01-01

    Angiotensin converting enzyme (ACE) is best known for the catalytic conversion of angiotensin I to angiotensin II. However, the use of gene-targeting techniques has led to mouse models highlighting many other biochemical properties and actions of this enzyme. This review discusses recent studies examining the functional significance of ACE tissue-specific expression and the presence in ACE of two independent catalytic sites with distinct substrates and biological effects. It is these features which explain why ACE makes important contributions to many different physiological processes including renal development, blood pressure control, inflammation and immunity. PMID:23686164

  17. Interaction of angiotensin-converting enzyme (ACE) with membrane-bound carboxypeptidase M (CPM) - a new function of ACE.

    PubMed

    Sun, Xiaoou; Wiesner, Burkhard; Lorenz, Dorothea; Papsdorf, Gisela; Pankow, Kristin; Wang, Po; Dietrich, Nils; Siems, Wolf-Eberhard; Maul, Björn

    2008-12-01

    Angiotensin-converting enzyme (ACE) demonstrates, besides its typical dipeptidyl-carboxypeptidase activity, several unusual functions. Here, we demonstrate with molecular, biochemical, and cellular techniques that the somatic wild-type murine ACE (mACE), stably transfected in Chinese Hamster Ovary (CHO) or Madin-Darby Canine Kidney (MDCK) cells, interacts with endogenous membranal co-localized carboxypeptidase M (CPM). CPM belongs to the group of glycosylphosphatidylinositol (GPI)-anchored proteins. Here we report that ACE, completely independent of its known dipeptidase activities, has GPI-targeted properties. Our results indicate that the spatial proximity between mACE and the endogenous CPM enables an ACE-evoked release of CPM. These results are discussed with respect to the recently proposed GPI-ase activity and function of sperm-bound ACE.

  18. Angiotensin I-converting enzyme (ACE) activity and expression in rat central nervous system after sleep deprivation.

    PubMed

    Visniauskas, Bruna; Oliveira, Vitor; Carmona, Adriana K; D'Almeida, Vânia; de Melo, Robson L; Tufik, Sérgio; Chagas, Jair R

    2011-04-01

    Proteases are essential either for the release of neuropeptides from active or inactive proteins or for their inactivation. Neuropeptides have a fundamental role in sleep-wake cycle regulation and their actions are also likely to be regulated by proteolytic processing. Using fluorescence resonance energy transfer substrates, specific protease inhibitors and real-time PCR we demonstrate changes in angiotensin I-converting enzyme (ACE) expression and proteolytic activity in the central nervous system in an animal model of paradoxical sleep deprivation during 96 h (PSD). Male rats were distributed into five groups (PSD, 24 h, 48 h and 96 h of sleep recovery after PSD and control). ACE activity and mRNA levels were measured in hypothalamus, hippocampus, brainstem, cerebral cortex and striatum tissue extracts. In the hypothalamus, the significant decrease in activity and mRNA levels, after PSD, was only totally reversed after 96 h of sleep recovery. In the brainstem and hippocampus, although significant, changes in mRNA do not parallel changes in ACE specific activity. Changes in ACE activity could affect angiotensin II generation, angiotensin 1-7, bradykinin and opioid peptides metabolism. ACE expression and activity modifications are likely related to some of the physiological changes (cardiovascular, stress, cognition, metabolism function, water and energy balance) observed during and after sleep deprivation.

  19. Angiotensin II receptor antagonists and heart failure: angiotensin-converting-enzyme inhibitors remain the first-line option.

    PubMed

    2005-10-01

    (1) Some angiotensin-converting-enzyme inhibitors (ACE inhibitors) reduce mortality in patients with heart failure (captopril, enalapril, ramipril and trandolapril), and in patients with recent myocardial infarction and heart failure or marked left ventricular dysfunction (captopril, ramipril and trandolapril). (2) Angiotensin II receptor antagonists, otherwise known as angiotensin receptor blockers, have haemodynamic effects similar to ACE inhibitors, but differ in their mechanism of action and certain adverse effects. (3) Five clinical trials have evaluated angiotensin II receptor antagonists (candesartan, losartan and valsartan) in terms of their effect on mortality and on the risk of clinical deterioration in patients with symptomatic heart failure, but without severe renal failure, hyperkalemia or hypotension. In these trials, candesartan and valsartan were used at much higher doses than those recommended for the treatment of arterial hypertension. (4) In patients with heart failure who were not taking an angiotensin II receptor antagonist or an ACE inhibitor at enrollment, no significant difference was found between losartan and captopril in terms of mortality or the risk of clinical deterioration. (5) In patients with heart failure who had stopped taking an ACE inhibitor because of adverse effects, candesartan had no effect on mortality as compared with placebo, but it did reduce the risk of clinical deterioration (3 fewer hospitalisations per year per 100 patients). However, candesartan was associated with adverse effects such as renal failure and hyperkalemia, especially in patients who had experienced these same adverse effects while taking an ACE inhibitor. (6) In patients with heart failure who were already taking an ACE inhibitor, adjunctive candesartan or valsartan treatment did not influence mortality in comparison to the addition of a placebo. Adding candesartan or valsartan reduced the risk of hospitalisation (between 1 and 3 fewer hospitalisations

  20. ACE Inhibitor-Induced Angioedema following Cervical Spine Surgery

    PubMed Central

    Sabbagh, Hussam

    2017-01-01

    Angioedema is a well-known side effect of angiotensin converting enzyme inhibitors (ACEi). However, ACE inhibitors induced angioedema after cervical surgery is a rare condition. They result in increased levels of circulating bradykinins. Rare cases of angioedema following local trauma in patients using ACE inhibitors have been published. We present such a case. A 54-year-old Caucasian female with a history significant for hypertension, controlled with lisinopril, was admitted for routine cervical spine surgery. She has severe degenerative cervical disc disease and was admitted to the hospital for an elective cervical diskectomy. The patient failed weaning off the ventilator on multiple attempts postoperatively. There were no observed symptoms of an allergic reaction. A CT scan of the neck showed extensive soft tissue edema at the level of the arytenoids. Dexamethasone was given to reduce the edema without successful resolution. On review of her medications, it was found that the patient was resumed on lisinopril following the procedure. It was subsequently discontinued. By the following day the patient had a positive leak around the ET tube cuff and patient was successfully extubated. PMID:28348897

  1. Differences in the clinical effects of angiotensin-converting enzyme inhibitors and Angiotensin receptor blockers: a critical review of the evidence.

    PubMed

    Dézsi, Csaba András

    2014-06-01

    The renin-angiotensin-aldosterone system plays a major role in the pathophysiology of hypertension and closely related cardio- and cerebrovascular events. Although both angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor antagonists (angiotensin receptor blockers; ARBs) are equally important in the treatment of hypertension, according to the results of recent years, there might be substantial differences in their cardiovascular protective effects, and these differences might be explained by our increasing knowledge of their non-overlapping mechanisms of action. The number of studies investigating how ACE inhibitors and ARB agents differ will certainly be increasing in the future. ACE inhibitors are the safe therapeutic opportunity for hypertensive patients at high risk, with a cardiological comorbidity.

  2. Structure based drug design of angiotensin-I converting enzyme inhibitors.

    PubMed

    Anthony, C S; Masuyer, G; Sturrock, E D; Acharya, K R

    2012-01-01

    Cardiovascular disease (CVD) is responsible for ∼27% of deaths worldwide, with 80% of these occuring in developing countries. Hypertension is one of the most important treatable factors in the prevention of CVD. Angiotensin-I converting enzyme (ACE) is a two-domain dipeptidylcarboxypeptidase that is a key regulator of blood pressure as a result of its critical role in the reninangiotensin- aldosterone and kallikrien-kinin systems. Consequently, ACE is an important drug target in the treatment of CVD. ACE is primarily known for its ability to cleave angiotensin-I to the vasoactive octapeptide angiotensin-II, but is also able to cleave a number of other substrates including the vasodilator bradykinin and N-acetyl-seryl-aspartyl-lysyl-proline (acetyl-SDKP), a physiological modulator of hematopoiesis. Numerous ACE inhibiors are available clinically, and these are generally effective in treating hypertension. However some adverse effects are associated with ACE inhibition, such as the persistent dry cough and the potentially fatal angioedema. The solution of ACE crystal structures over the last decade has facilitated rational drug design which has contributed to the development of domain-selective ACE inhibitors, the most notable of which include RXP407 (N-domain) and RXPA380 (C-domain), which in principle may herald new therapeutic approaches for ACE inhibition. Additionally, dual inhibitors to ACE and other targets such as neprilysin, endothelin converting enzyme and chymase have been developed. The success of ACE inhibitors has also led to the search for novel inhibitors in food and natural products and the structure guided screening of such libraries may well reveal a number of new ACE inhibitors.

  3. A prospective study of frequency and characteristics of cough during ACE inhibitor treatment.

    PubMed

    Sato, Atsuhisa; Fukuda, Seiichi

    2015-01-01

    Angiotensin converting enzyme (ACE) inhibitors are reportedly effective, and positively indicated in patients with chronic heart failure with decreased contractility, after myocardial infarction, after cerebrovascular disorders, and in those with chronic kidney disease. However, the biggest challenge to continuous use of ACE inhibitors is the adverse reaction of cough. Accordingly, in the present study, we investigated the present state and characteristics of ACE inhibitor-induced cough in patients with essential hypertension currently being treated with an ACE inhibitor for an average of 18 months, who could be regularly checked for cough. Subjects in this study were 176 patients overall (mean age 67 ± 11 years old), 90 men and 86 women. The adverse reaction of cough was observed in 20% of patients, and more frequently in women than in men. However, in 26 of the patients with cough, the cough either resolved naturally or completely disappeared while the treatment continued, after which patients could continue taking the medication. Specifically, ACE inhibitor treatment was eventually discontinued due to cough in 5.1% of patients. Cough occurred less frequently with concomitant calcium antagonists or diuretics than with ACE inhibitor monotherapy. Cough as an adverse reaction occurred at a low frequency when medication was taken at bedtime. We considered a number of measures to counteract cough, then in addition to starting the ACE inhibitor treatment as early as possible, it is important to devise ways for the ACE inhibitor treatment to be continued for as long as possible, through the adept use of these measures.

  4. Synthesis and biological studies of highly concentrated lisinopril-capped gold nanoparticles for CT tracking of angiotensin converting enzyme (ACE)

    NASA Astrophysics Data System (ADS)

    Ghann, William E.; Aras, Omer; Fleiter, Thorsten; Daniel, Marie-Christine

    2011-05-01

    For patients with a history of heart attack or stroke, the prevention of another cardiovascular or cerebrovascular event is crucial. The development of cardiac and pulmonary fibrosis has been associated with overexpression of tissue angiotensin-converting enzyme (ACE). Recently, gold nanoparticles (GNPs) have shown great potential as X-ray computed tomography (CT) contrast agents. Since lisinopril is an ACE inhibitor, it has been used as coating on GNPs for targeted imaging of tissue ACE in prevention of fibrosis. Herein, lisinopril-capped gold nanoparticles (LIS-GNPs) were synthesized up to a concentration of 55 mgAu/mL. Their contrast was measured using CT and the results were compared to Omnipaque, a commonly used iodine-based contrast agent. The targeting ability of these LIS-GNPs was also assessed.

  5. Occurrence and fate of ACE-inhibitor peptides in cheeses and in their digestates following in vitro static gastrointestinal digestion.

    PubMed

    Stuknytė, Milda; Cattaneo, Stefano; Masotti, Fabio; De Noni, Ivano

    2015-02-01

    The occurrence of the casein-derived angiotensin converting enzyme-inhibitor (ACE-I) peptides VPP, IPP, RYLGY, RYLG, AYFYPEL, AYFYPE, LHLPLP and HLPLP were investigated in 12 different cheese samples by Ultra Performance Liquid Chromatography/High-Resolution Mass Spectrometry. The total amount of ACE-I peptides was in the range 0.87-331mgkg(-1). VPP and IPP largely prevailed in almost all cheeses. Following in vitro static gastrointestinal digestion of Cheddar, Gorgonzola, Maasdam and Grana Padano cheeses, type and amount of ACE-I peptides changed, and only VPP, IPP, HLPLP and LHLPLP were detected in the intestinal digestates. The results evidenced that the degree of proteolysis itself cannot be regarded as a promoting or hindering factor for ACE-I peptide release during cheese digestion. Moreover, the data indicated that the ACE-I potential of cheeses cannot be inferred based on the type and amount of ACE-I peptides present in undigested samples.

  6. Structural determinants for binding to angiotensin converting enzyme 2 (ACE2) and angiotensin receptors 1 and 2

    PubMed Central

    Clayton, Daniel; Hanchapola, Iresha; Thomas, Walter G.; Widdop, Robert E.; Smith, Alexander I.; Perlmutter, Patrick; Aguilar, Marie-Isabel

    2015-01-01

    Angiotensin converting enzyme 2 (ACE2) is a zinc carboxypeptidase involved in the renin–angiotensin system (RAS) and inactivates the potent vasopressive peptide angiotensin II (Ang II) by removing the C-terminal phenylalanine residue to yield Ang1–7. This conversion inactivates the vasoconstrictive action of Ang II and yields a peptide that acts as a vasodilatory molecule at the Mas receptor and potentially other receptors. Given the growing complexity of RAS and level of cross-talk between ligands and their corresponding enzymes and receptors, the design of molecules with selectivity for the major RAS binding partners to control cardiovascular tone is an on-going challenge. In previous studies we used single β-amino acid substitutions to modulate the structure of Ang II and its selectivity for ACE2, AT1R, and angiotensin type 2 (AT2R) receptor. We showed that modification at the C-terminus of Ang II generally resulted in more pronounced changes to secondary structure and ligand binding, and here, we further explore this region for the potential to modulate ligand specificity. In this study, (1) a library of 47 peptides derived from the C-terminal tetrapeptide sequence (-IHPF) of Ang II was synthesized and assessed for ACE2 binding, (2) the terminal group requirements for high affinity ACE2 binding were explored by and N- and C-terminal modification, (3) high affinity ACE2 binding chimeric AngII analogs were then synthesized and assessed, (4) the structure of the full-length Ang II analogs were assessed by circular dichroism, and (5) the Ang II analogs were assessed for AT1R/AT2R selectivity by cell-based assays. Studies on the C-terminus of Ang II demonstrated varied specificity at different residue positions for ACE2 binding and four Ang II chimeric peptides were identified as selective ligands for the AT2 receptor. Overall, these results provide insight into the residue and structural requirements for ACE2 binding and angiotensin receptor selectivity. PMID

  7. Role of angiotensin converting enzyme and angiotensinogen gene polymorphisms in angiotensin converting enzyme inhibitor-mediated antiproteinuric action in type 2 diabetic nephropathy patients

    PubMed Central

    Aggarwal, Neerja; Kare, Pawan Kumar; Varshney, Parul; Kalra, Om Prakash; Madhu, Sri Venkata; Banerjee, Basu Dev; Yadav, Anil; Raizada, Alpana; Tripathi, Ashok Kumar

    2017-01-01

    AIM To investigate the role of genetic variants of angiotensin converting enzyme (ACE) and angiotensinogen (AGT) genes in the antiproteinuric efficacy of ACE inhibitor therapy in diabetic nephropathy (DN) patients. METHODS In the present study, 270 type 2 diabetes mellitus patients with nephropathy were enrolled and treated with ACE inhibitor (ramipril) and followed at 6 mo for renal function and albumin excretion by estimating serum creatinine, end stage renal disease, and albumin/creatinine ratio (ACR) in urine. Genotyping of ACE I/D and AGT M235T polymorphisms were performed by using primer specific polymerase chain reaction (PCR) and PCR-RFLP techniques, respectively. RESULTS Forty-eight percent of DN patients (responders) benefited with respect to proteinuria from ACE inhibitor therapy at 6 mo follow-up. A significant reduction in ACR was observed after 6 mo treatment with ACE inhibitor irrespective of whether DN patients were micro-albuminuric (≥ 30 and < 300 mg/g creatinine) or macro-albuminuric (≥ 300 mg/g creatinine) at the time of enrollment. However, macro-albuminuric patients (55%) showed better response to therapy. A reduction in urinary ACR was found independent of genotypes of ACE I/D and AGT M235T polymorphisms although macro-albuminuric patients having TT genotype showed statistically insignificant increased response (72%). CONCLUSION ACE inhibitor therapy reduced urinary ACR by ≥ 30% in 50% of DN patients and the response is independent of ACE I/D and AGT M235T polymorphisms. PMID:28344754

  8. Antagonism of angiotensin 1–7 prevents the therapeutic effects of recombinant human ACE2

    PubMed Central

    Patel, Vaibhav B.; Takawale, Abhijit; Ramprasath, Tharmarajan; Das, Subhash K.; Basu, Ratnadeep; Grant, Maria B.; Hall, David A.; Kassiri, Zamaneh

    2015-01-01

    Activation of the angiotensin 1–7/Mas receptor (MasR) axis counteracts angiotensin II (Ang II)-mediated cardiovascular disease. Recombinant human angiotensin-converting enzyme 2 (rhACE2) generates Ang 1–7 from Ang II. We hypothesized that the therapeutic effects of rhACE2 are dependent on Ang 1–7 action. Wild type male C57BL/6 mice (10–12 weeks old) were infused with Ang II (1.5 mg/kg/d) and treated with rhACE2 (2 mg/kg/d). The Ang 1–7 antagonist, A779 (200 ng/kg/min), was administered to a parallel group of mice. rhACE2 prevented Ang II-induced hypertrophy and diastolic dysfunction while A779 prevented these beneficial effects and precipitated systolic dysfunction. rhACE2 effectively antagonized Ang II-mediated myocardial fibrosis which was dependent on the action of Ang 1–7. Myocardial oxidative stress and matrix metalloproteinase 2 activity was further increased by Ang 1–7 inhibition even in the presence of rhACE2. Activation of Akt and endothelial nitric oxide synthase (eNOS) by rhACE2 were suppressed by the antagonism of Ang 1–7 while the activation of pathological signaling pathways was maintained. Blocking Ang 1–7 action prevents the therapeutic effects of rhACE2 in the setting of elevated Ang II culminating in systolic dysfunction. These results highlight a key cardioprotective role of Ang 1–7, and increased Ang 1–7 action represents a potential therapeutic strategy for cardiovascular diseases. PMID:25874965

  9. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  10. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  11. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  12. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  13. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  14. Effects of Angiotensin Converting Enzyme Inhibitors on Liver Fibrosis in HIV and Hepatitis C Coinfection.

    PubMed

    Reese, Lindsey J; Tider, Diane S; Stivala, Alicia C; Fishbein, Dawn A

    2012-01-01

    Background. Liver fibrosis is accelerated in HIV and hepatitis C coinfection, mediated by profibrotic effects of angiotensin. The objective of this study was to determine if angiotensin converting enzyme inhibitors (ACE-Is) attenuate liver fibrosis in coinfection. Methods. A retrospective review of 156 coinfected subjects was conducted to analyze the association between exposure to ACE-Is and liver fibrosis. Noninvasive indices of liver fibrosis (APRI, FIB-4, Forns indices) were compared between subjects who had taken ACE-Is and controls who had not taken them. Linear regression was used to evaluate ACE-I use as an independent predictor of fibrosis. Results. Subjects taking ACE-Is for three years were no different than controls on the APRI and the FIB-4 but had significantly higher scores than controls on the Forns index, indicating more advanced fibrosis. The use of ACE-Is for three years remained independently associated with an elevated Forns score when adjusted for age, race, and HIV viral load (P < 0.001). There were significant associations between all of the indices and significant fibrosis, as determined clinically and radiologically. Conclusions. There was not a protective association between angiotensin inhibition and liver fibrosis in coinfection. These noninvasive indices may be useful for ruling out significant fibrosis in coinfection.

  15. Angiotensin-converting enzyme (ACE and ACE2) imbalance correlates with the severity of cerulein-induced acute pancreatitis in mice.

    PubMed

    Liu, Ruixia; Qi, Haiyu; Wang, Jing; Wang, Yan; Cui, Lijian; Wen, Yan; Yin, Chenghong

    2014-04-01

    Angiotensin-converting enzyme (ACE) and its effector peptide angiotensin II (Ang II) have been implicated in the pathogenesis of pancreatitis. Angiotensin-converting enzyme 2 (ACE2) degrades Ang II to angiotensin-(1-7) [Ang-(1-7)] and has recently been described to have an antagonistic effect on ACE signalling. However, the specific underlying role of ACE2 in the pathogenesis of severe acute pancreatitis (SAP) is unclear. In the present study, the local imbalance of ACE and ACE2, as well as Ang II and Ang-(1-7) expression, was compared in wild-type (WT) and ACE2 knock-out (KO) or ACE2 transgenic (TG) mice subjected to cerulein-induced SAP. Serum amylase, tumour necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-10 levels and histological morphometry were used to determine the severity of pancreatitis. In WT mice, pancreatic ACE and Ang II and serum Ang II expression increased (P < 0.05), while pancreatic ACE2 and Ang-(1-7) and serum Ang-(1-7) levels were also significantly elevated (P < 0.05) from 2 to 72 h after the onset of SAP. However, the ratio of pancreatic ACE2 to ACE expression was significantly reduced (from 1.46 ± 0.09 to 0.27 ± 0.05, P < 0.001) and paralleled the severity of pancreatitis. The Ace2 KO mice exhibited increased levels of tumour necrosis factor-α, IL-1β, IL-6, multifocal coagulative necrosis and inflammatory infiltrate, and lower levels of serum IL-10 and pancreatic Ang-(1-7) (4.70 ± 2.13 versus 10.87 ± 2.51, P < 0.001) compared with cerulein-treated WT mice at the same time point. Conversely, Ace2 TG mice with normal ACE expression were more resistant to SAP challenge as evidenced by a decreased inflammatory response, attenuated pathological changes and increased survival rates. These data suggest that the ACE2-ACE imbalance plays an important role in the pathogenesis of SAP and that pancreatic ACE2 is an important factor in determining the severity of SAP.

  16. Comparative effects of a novel angiotensin-converting enzyme inhibitor versus captopril on plasma angiotensins after myocardial infarction.

    PubMed

    Flores-Monroy, Jazmín; Ferrario, Carlos M; Valencia-Hernández, Ignacio; Hernández-Campos, Maria Elena; Martínez-Aguilar, Luisa

    2014-01-01

    The compound 4-tert-butyl-2,6-bis(thiomorpholin-4-ylmethyl)phenol (TBTIF) has molecular characteristics similar to angiotensin-converting enzyme (ACE) inhibitors of the sulfhydryl subclass. To assess its value as a new therapeutic agent, we performed a comparative analysis of the effect of TBTIF versus captopril on the circulating levels of angiotensin (Ang) peptides and bradykinin as well as ACE and ACE2 expression after myocardial infarction. Male Wistar rats were divided into four groups: (1) sham-operated rats; (2) rats subjected to 48 h of coronary artery ligation; (3) rats administered captopril (1 mg/kg, i.m.), and (4) a similar group of rats given TBTIF (1 mg/kg, i.m.). Both drugs were administered 30 min before coronary artery ligation and again 24 h later. Acute myocardial infarction lowered both systolic and left ventricular systolic blood pressures compared to the sham group and increased plasma levels of Ang I, Ang II, Ang(1-7) and Ang(1-12). Administration of either captopril or TBTIF reversed the increases in plasma angiotensins. Interestingly, the levels of plasma Ang(1-7) achieved by administration of TBTIF reached values higher than those recorded with captopril. Both agents reversed the decreases in plasma concentrations of bradykinin; in addition, TBTIF upregulated ACE expression, while both agents suppressed the ACE2 upregulation induced by myocardial infarction. These results demonstrate a beneficial effect of the novel compound TBTIF in suppressing the acute surge in the circulating renin-angiotensin system activity induced by myocardial infarction. The greater effects of this compound in augmenting plasma Ang(1-7) concentrations may be highly significant as drugs which augment the concentration of this heptapeptide will exert cardioprotective actions in part by suppressing the hypertrophic and profibrotic actions of Ang II.

  17. Debate: angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers--a gap in evidence-based medicine.

    PubMed

    Ball, Stephen G; White, William B

    2003-05-22

    In this article, 2 leading physicians debate the strength of outcome data on the efficacy of angiotensin-converting enzyme (ACE) inhibitors versus angiotensin II receptor blockers (ARBs) for reducing the incidence of cardiovascular, cerebrovascular, and renovascular events. Dr. Stephen G. Ball notes that the efficacy of ACE inhibitors for reducing the risk for myocardial infarction independent of their effects on blood pressure is controversial. In the Heart Outcomes Prevention Evaluation (HOPE) study, ramipril treatment in high-risk patients was associated with a 20% reduction in the risk for myocardial infarction; mean reduction in blood pressure was 3 mm Hg for systolic blood pressure and 1 mm Hg for diastolic blood pressure. The HOPE investigators propose that the 20% reduction was much greater than would be expected based on the observed blood pressure reduction. However, a meta-regression analysis of blood pressure reduction in >20 antihypertensive therapy outcome trials found that the reduction in myocardial infarction risk with ramipril observed in HOPE was consistent with the modest blood pressure reduction seen with that agent. Nevertheless, there are convincing data for prevention of myocardial infarction with ACE inhibitors in patients with heart failure, including those with heart failure after myocardial infarction, as well as supportive evidence from studies in patients with diabetes mellitus and concomitant hypertension. On the other hand, Dr. William B. White takes the position that ARBs are well-tolerated antihypertensive agents that specifically antagonize the angiotensin II type 1 (AT(1)) receptor and provide a more complete block of the pathologic effects of angiotensin II-which are mediated via the AT(1) receptor-than ACE inhibitors. The Evaluation of Losartan in the Elderly (ELITE) II study and the Valsartan Heart Failure Trial (ValHeFT) suggest that ARBs reduce the risk for mortality in patients with congestive heart failure. The Losartan

  18. Inhibitors of angiotensin-converting enzyme modulate mitosis and gene expression in pancreatic cancer cells

    SciTech Connect

    Reddy, M.K.; Baskaran, K.; Molteni, A.

    1995-12-01

    The angiotensin-converting enzyme (ACE) inhibitor captopril inhibits mitosis in several cell types that contain ACE and renin activity. In the present study, we evaluated the effect of the ACE inhibitors captopril and CGS 13945 (10{sup {minus}8} to 10{sup {minus}2}M) on proliferation and gene expression in hamster pancreatic duct carcinoma cells in culture. These cells lack renin and ACE activity. Both ACE inhibitors produced a dose-dependent reduction in tumor cell proliferation within 24 hr. Captopril at a concentration of 0.36 mM and CGS 13945 at 150 {mu}M decreased cellular growth rate to approximately half that of the control. Neither drug influenced the viability or the cell cycle distribution of the tumor cells. Slot blot analysis of mRNA for four genes, proliferation associated cell nuclear antigen (PCNA), K-ras, protein kinase C-{Beta} (PKC-{Beta}) and carbonic anhydrase II (CA II) was performed. Both ACE inhibitors increased K-ras expression by a factor of 2, and had no effect on CA II mRNA levels. Captopril also lowered PCNA by 40% and CGS 13945 lowered PKC-{Beta} gene expression to 30% of the control level. The data demonstrate that ACE inhibitors exhibit antimitotic activity and differential gene modulation in hamster pancreatic duct carcinoma cells. The absence of renin and ACE activity in these cells suggests that the antimitotic action of captopril and CGS 13945 is independent of renin-angiotensin regulation. The growth inhibition may occur through downregulation of growth-related gene expression. 27 refs., 5 figs.

  19. Preconception and pregnancy management of women with diabetic nephropathy on angiotensin converting enzyme inhibitors.

    PubMed

    Podymow, Tiina; Joseph, Geena

    2015-02-01

    Angiotensin converting enzyme (ACE) inhibitors are the mainstay of treatment for diabetic nephropathy to slow progression of disease. Diabetic women of childbearing age with nephropathy should be treated with ACE inhibitors as per guidelines in the pre-pregnancy period. ACE inhibitor use and exposure in the first trimester is controversial and requires counselling pre-pregnancy regarding the risks and benefits of use up to the first trimester, as well as the need to stop ACE inhibitors prior to the second trimester. Current evidence does not suggest that ACE inhibitors in the first trimester are associated with a greater risk of fetal malformations when compared to other antihypertensives. This topic is reviewed in depth, along with blood pressure targets in pregnant women with diabetic proteinuric disease, evidence for prevention of pre-eclampsia, self-monitoring of blood pressures at home in the latter half of pregnancy and the signs and symptoms of pre-eclampsia, proteinuria evolution in pregnancy, renal function prognosis, and restarting ACE inhibitors when breast feeding in the post-partum period.

  20. Ace inhibitor therapy for heart failure in patients with impaired renal function: a review of the literature.

    PubMed

    Valika, Ali A; Gheorghiade, Mihai

    2013-03-01

    Heart failure syndromes are often associated with multi-organ dysfunction, and concomitant liver, renal, and neurologic involvement is very common. Neuro-hormonal antagonism plays a key role in the management of this syndrome, and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are one of the cornerstones of therapy. Cardiorenal physiology is becoming more recognized in these patients with advanced heart failure, and the role of neuro-hormonal blockade in this setting is vaguely defined in the literature. Often, angiotensin-converting enzyme inhibitors are decreased or even withheld in these circumstances. The purpose of this article is to review the role and pathophysiology of ace inhibition and angiotensin receptor blockade in patients with acute and chronic heart failure syndromes and concomitant cardiorenal physiology.

  1. Cromolyn sodium for ACE inhibitor-induced cough.

    PubMed

    Allen, T L; Gora-Harper, M L

    1997-06-01

    There are several theories on the cause of ACE inhibitor-induced cough, but the exact mechanism is not known. In many patients, if cough develops, the ACE inhibitor can be discontinued and a drug in another therapeutic class used in its place. However, in patients with CHF, diabetic nephropathy, and patients who have experienced a myocardial infarction, discontinuing the ACE inhibitor may not be in the best interest of the patient. In this patient population it would be reasonable to try cromolyn sodium to treat cough, while continuing the ACE inhibitor. Data are not available to support the efficacy of cromolyn sodium to treat cough in patients with diabetic nephropathy, but these patients clearly benefit from the use of an ACE inhibitor. Other factors not addressed in the case reports and the clinical trial such as patient adherence, cost, and quality of life should also play a role in the decision to use cromolyn sodium. Cromolyn sodium has been effective for the treatment of ACE inhibitor-induced cough in many case reports and has had mild success in one small clinical trial. Although none of the reports adequately assessed adverse effects, studies examining cromolyn for other indications have demonstrated a relatively benign adverse effect profile. It is difficult to recommend an exact dose to use because of the dosing variability in the case reports. The majority of the case reports and the one clinical trial used dosages similar to recommendations for bronchial asthma (i.e., 2 puffs [1.6 mg] 4 times daily via MDI or 20-mg capsules 4 times daily via breath-activated inhalation). At this time, the use of cromolyn sodium is a viable option, but more controlled studies are needed to fully elucidate its role in the treatment of ACE inhibitor-induced cough.

  2. Molecular and Thermodynamic Mechanisms of the Chloride-dependent Human Angiotensin-I-converting Enzyme (ACE)*

    PubMed Central

    Yates, Christopher J.; Masuyer, Geoffrey; Schwager, Sylva L. U.; Akif, Mohd; Sturrock, Edward D.; Acharya, K. Ravi

    2014-01-01

    Somatic angiotensin-converting enzyme (sACE), a key regulator of blood pressure and electrolyte fluid homeostasis, cleaves the vasoactive angiotensin-I, bradykinin, and a number of other physiologically relevant peptides. sACE consists of two homologous and catalytically active N- and C-domains, which display marked differences in substrate specificities and chloride activation. A series of single substitution mutants were generated and evaluated under varying chloride concentrations using isothermal titration calorimetry. The x-ray crystal structures of the mutants provided details on the chloride-dependent interactions with ACE. Chloride binding in the chloride 1 pocket of C-domain ACE was found to affect positioning of residues from the active site. Analysis of the chloride 2 pocket R522Q and R522K mutations revealed the key interactions with the catalytic site that are stabilized via chloride coordination of Arg522. Substrate interactions in the S2 subsite were shown to affect chloride affinity in the chloride 2 pocket. The Glu403-Lys118 salt bridge in C-domain ACE was shown to stabilize the hinge-bending region and reduce chloride affinity by constraining the chloride 2 pocket. This work demonstrated that substrate composition to the C-terminal side of the scissile bond as well as interactions of larger substrates in the S2 subsite moderate chloride affinity in the chloride 2 pocket of the ACE C-domain, providing a rationale for the substrate-selective nature of chloride dependence in ACE and how this varies between the N- and C-domains. PMID:24297181

  3. Evolution of diuretics and ACE inhibitors, their renal and antihypertensive actions—parallels and contrasts

    PubMed Central

    Lant, Ariel F.

    1987-01-01

    1 The emergence of diuretic drugs and angiotensin converting enzyme (ACE) inhibitors ranks amongst the major therapeutic advances of modern medicine. The discovery of these drug groups arose largely by chance, yet each has dramatically influenced the treatment of congestive cardiac failure and arterial hypertension. 2 The central role which diuretics have had in the management of both oedema and hypertension hinges on their ability to induce a net renal excretion of solute and water by selective interference with either active or passive ion transport processes in different segments of the nephron. Irrespective of sites of action, the continued antihypertensive action of diuretics is characterized by a reduction in plasma volume and extracellular fluid (ECF) volume that lasts for as long as the diuretic is given. The mechanism of this effect remains unclear but may involve autoregulatory reactions that leave cardiac output unaltered but maintain a sustained reduction in total peripheral resistance. 3 ACE inhibitors also lower blood pressure by decreasing total peripheral resistance, leaving cardiac output, plasma volume and ECF volume unchanged. The detailed way these haemodynamic changes are achieved remains unknown but inhibition of converting enzyme present not only in the kidney but also in many extrarenal tissue sites, appears important. In both hypertension and cardiac failure, however, the kidney acts as a key target organ for ACE inhibitors. The increased renal vascular resistance and inappropriate renal salt excretion are reversed with enhanced renal blood flow and saluresis. Both angiotensin II (AII) and vasopressin-mediated contraction of glomerular mesangial cells is inhibited, making glomerular filtration more efficient. Reduced aldosterone secondary to blockade of AII formation contributes to saluresis whilst encouraging positive potassium balance. ACE inhibition also impairs breakdown of kinins which may contribute to intrarenal and peripheral

  4. Patients With Newly Diagnosed Hypertension Treated With the Renin Angiotensin Receptor Blocker Azilsartan Medoxomil vs Angiotensin-Converting Enzyme Inhibitors: The Prospective EARLY Registry.

    PubMed

    Schmieder, Roland E; Potthoff, Sebastian A; Bramlage, Peter; Baumgart, Peter; Mahfoud, Felix; Buhck, Hartmut; Ouarrak, Taoufik; Ehmen, Martina; Senges, Jochen; Gitt, Anselm K

    2015-12-01

    For patients with newly diagnosed hypertension, angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs) are usually the first-line therapies. There is, however, no real-life data regarding the relative clinical effectiveness and tolerability of either drug class. The prospective registry, Treatment With Azilsartan Compared to ACE Inhibitors in Antihypertensive Therapy (EARLY), was conducted to evaluate the effectiveness of the ARB azilsartan medoxomil (AZL-M) vs ACE inhibitors in real-world patients. Of the 1153 patients with newly diagnosed hypertension who were included in the registry, 789 were prescribed AZL-M and 364 were prescribed an ACE inhibitor. After multivariate adjustment, AZL-M was found to provide superior blood pressure reduction and better target blood pressure (<140/90 mm Hg) achievement. The proportion of patients with adverse events was not statistically different between groups. The authors conclude that in newly diagnosed hypertensive patients, AZL-M provides superior blood pressure control with a similar safety profile compared with ACE inhibitors.

  5. Binding of ACE-inhibitors to in vitro and patient-derived amyloid-β fibril models

    NASA Astrophysics Data System (ADS)

    Bhavaraju, Manikanthan; Phillips, Malachi; Bowman, Deborah; Aceves-Hernandez, Juan M.; Hansmann, Ulrich H. E.

    2016-01-01

    Currently, no drugs exist that can prevent or reverse Alzheimer's disease, a neurodegenerative disease associated with the presence, in the brain, of plaques that are composed of β-amyloid (Aβ) peptides. Recent studies suggest that angiotensin-converting enzyme (ACE) inhibitors, a set of drugs used to treat hypertension, may inhibit amyloid formation in vitro. In the present study, we investigate through computer simulations the binding of ACE inhibitors to patient-derived Aβ fibrils and contrast it with that of ACE inhibitors binding to in vitro generated fibrils. The binding affinities of the ACE inhibitors are compared with that of Congo red, a dye that is used to identify amyloid structures and that is known to be a weak inhibitor of Aβ aggregation. We find that ACE inhibitors have a lower binding affinity to the patient-derived fibrils than to in vitro generated ones. For patient-derived fibrils, their binding affinities are even lower than that of Congo red. Our observations raise doubts on the hypothesis that these drugs inhibit fibril formation in Alzheimer patients by interacting directly with the amyloids.

  6. The evolution of renin-angiotensin blockade: angiotensin-converting enzyme inhibitors as the starting point.

    PubMed

    Sica, Domenic A

    2010-04-01

    The renin-angiotensin system has been a target in the treatment of hypertension for close to three decades. Several medication classes that block specific aspects of this system have emerged as useful therapies, including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and, most recently, direct renin inhibitors. There has been a natural history to the development of each of these three drug classes, starting with their use as antihypertensive agents; thereafter, in each case they have been employed as end-organ protective agents. To date, there has been scant evidence to favor angiotensin receptor blockers or direct renin inhibitors over angiotensin-converting enzyme inhibitors in treating hypertension or in affording end-organ protection; thus, angiotensin-converting enzyme inhibitors remain the standard of care when renin-angiotensin system blockade is warranted.

  7. A review of the preclinical cardiovascular pharmacology of cilazapril, a new angiotensin converting enzyme inhibitor

    PubMed Central

    Waterfall, J. F.

    1989-01-01

    1 Cilazapril is the monoethyl ester prodrug form of the di-acid cilazaprilat, a new angiotensin converting enzyme (ACE) inhibitor. Cilazaprilat has an IC50 of 1.9 nM as an inhibitor of rabbit lung ACE in vitro making it one of the most potent ACE inhibitors currently available. Studies on a wide range of other enzymes show that the inhibition is highly specific. 2 An oral dose of 0.1 mg kg-1 cilazapril evoked the same maximum degree of plasma ACE inhibition (∼76%) in the rat as 0.25 mg kg-1 enalapril. Cilazapril (0.25 mg kg-1 p.o.) inhibited plasma ACE by > 95%. The rate of recovery of ACE activity was slower with cilazapril (5-6% h-1) than with enalapril (10% h-1). 3 In anaesthetised rats cilazaprilat was equipotent with ramiprilat and slightly more potent (1.5×) than enalaprilat as an inhibitor of the angiotensin I pressor response. 4 Following oral administration to conscious rats and intravenous administration to anaesthetised dogs, cilazapril was 2-4.5× more potent than enalapril as an ACE inhibitor. 5 In cats cilazapril (0.1 and 0.3 mg kg-1 p.o.) dose dependently decreased plasma ACE activity and the angiotensin pressor response. Peak effects occurred at 2 h after dosing and plasma ACE inhibition was maintained at ≥ 50% for up to 18 h. Mean arterial pressure was also decreased dose dependently with a peak effect at 3-4 h. 6 Daily oral dosing of cilazapril (30 mg kg-1 p.o.) to spontaneously hypertensive rats evoked a progressive and prolonged (24 h) antihypertensive response with a maximum decrease in systolic blood pressure of 110 mm Hg. 7 Cilazapril (10 mg kg-1 p.o. twice daily for 3.5 days) progressively decreased blood pressure in volume depleted renal hypertensive dogs. The maximum fall in systolic pressure was 39 ± 6 mm Hg. 8 Haemodynamic studies in open chest anaesthetised dogs showed that the hypotensive response to intravenous cilazapril was accompanied by a reduction in total peripheral resistance. Small decreases in cardiac output and

  8. Investigation of the biochemical effects of renin inhibition in normal volunteers treated by an ACE inhibitor.

    PubMed Central

    Chauveau, D; Guyenne, T T; Cumin, F; Chatellier, G; Corvol, P; Ménard, J

    1992-01-01

    1. In order to investigate accurately the biochemical effects of renin inhibition in man, we have developed a sensitive assay to measure angiotensin I (1-10) decapeptide. 2. Angiotensins were extracted from plasma by adsorption to phenylsilylsilica, and angiotensin I (Ang I) was quantified by radioimmunoassay. The detection limit was 0.77 fmol ml-1, and the extraction recovery of [125I]-Ang I added to albumin buffer was 83% at the inflection point (10 fmol ml-1) of the standard curve. The overall recovery was 98.5 +/- 3.5%. The intra- and inter-assay reproducibility was 10.4% and 9.7% respectively. Cross-reactivity of the antiserum used was low (less than 0.3%) with all angiotensin peptides tested except Ang (2-10) nonapeptide. 3. A human pharmacological model was subsequently used to assess in vivo the biochemical effects of the renin inhibitor CGP 38560A. Six healthy volunteers received 20 mg lisinopril, a long-acting ACE-inhibitor. During the following 24 h, the renin-angiotensin system was reset with typically elevated active plasma renin and Ang I, at respectively 275 and 429% of basal values. 4. In a randomized three-way cross-over protocol, the six volunteers received a 30 min infusion of the renin inhibitor CGP 38560A (125 or 250 micrograms kg-1) or 5% glucose. The fall in plasma Ang I was 92% and 97.5% after the lowest and highest dose of the renin inhibitor, respectively. A concomitant increase in active plasma renin was observed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1315560

  9. Angiotensin(1-7) and ACE2, “The Hot Spots” of Renin-Angiotensin System, Detected in the Human Aqueous Humor

    PubMed Central

    Holappa, Mervi; Valjakka, Jarkko; Vaajanen, Anu

    2015-01-01

    Background: The main purpose of the study was to establish whether essential components of the renin-angiotensin system (RAS) exist in the human aqueous humor. Methods: Forty-five patients ≥ 60 (74±7) years of age undergoing cataract surgery at Tampere University Hospital were randomly selected for the prospective study. The exclusion criterion was the use of oral antihypertensive medicine acting via renin-angiotensin system. Aqueous humor samples were taken at the beginning of normal cataract extraction. The samples were frozen and stored at -80 °C. The concentrations of intraocular endogenous RAS components Ang(1-7), ACE2, and ACE1 were measured using ELISA. Results: Concentration medians of Ang(1-7), ACE2, and ACE1 in the aqueous humor were: Ang(1-7) 4.08 ng/ml, ACE2 2.32 ng/ml and ACE1 0.35 ng/ml. The concentrations were significantly higher in glaucomatous than in non-glaucomatous eyes, ACE1 (p=0.014) and Ang(1-7) (p=0.026) vs non-glaucomatous eyes. Conclusions: Ang(1-7), ACE2 and ACE1 are found in the human aqueous humor. The observations are consistent with the conception that local tissue-RAS exists in the human eye and it might have a role in the control of intraocular pressure. PMID:25926900

  10. The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae

    PubMed Central

    Abu Hasan, Zatul-’Iffah; Williams, Helen; Ismail, Nur M.; Othman, Hidayatulfathi; Cozier, Gyles E.; Acharya, K. Ravi; Isaac, R. Elwyn

    2017-01-01

    The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3rd instars showing greater resistance. Mortality was also high within 24 h of exposure of 1st, 2nd and 3rd instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1st instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides. PMID:28345667

  11. The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae.

    PubMed

    Abu Hasan, Zatul-'Iffah; Williams, Helen; Ismail, Nur M; Othman, Hidayatulfathi; Cozier, Gyles E; Acharya, K Ravi; Isaac, R Elwyn

    2017-03-27

    The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3(rd) instars showing greater resistance. Mortality was also high within 24 h of exposure of 1(st), 2(nd) and 3(rd) instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1(st) instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides.

  12. Mixed inhibitors of angiotensin-converting enzyme and enkephalinase: Rational design, properties, and potential cardiovascular applications of glycopril and alatriopril

    SciTech Connect

    Gros, C.; Noel, N.; Souque, A.; Schwartz, J.C. ); Danvy, D.; Plaquevent, J.C.; Duhamel, L.; Duhamel, P. ); Lecomte, J.M. ); Bralet, J. )

    1991-05-15

    Angiotensin-converting enzyme (ACE) and enkephalinase, two cell surface metallopeptidases, are responsible for angiotensin II formation and atrial natriuretic factor (ANF) degradation, respectively, and thereby play a critical role in the metabolism of hormonal peptides exerting essentially opposite actions in cardiovascular regulations. To affect simultaneously both hormonal systems by a single molecular structure, the authors designed glycoprilat and alatrioprilat {l brace}(S)-N-(3-(3,4-methylenedioxyphenyl)-2-(mercaptomethyl)-1-oxopropyl)glycine and -alanine, respectively{r brace}. In vitro the two compounds inhibit both ACE and enkephalinase activities with similar, nanomolar potencies, and in vivo, glycopril and alatriopril, the corresponding diester prodrugs, occupy the two enzyme molecules in lung at similar low dosages. The high potency of these compounds is attributable to interaction of the methylenedioxy group with the S{sub 1} subsite of ACE and of the aromatic ring with the S{prime}{sub 1} subsite of enkephalinase. In rodents, low doses of these mixed inhibitors exert typical actions of ACE inhibitors--i.e., prevention of angiotensin I-induced hypertension-as well as of enkephalinase inhibitors--i.e., protection from {sup 125}I-ANF degradation or enhancement of diuresis and natriuresis following acute extracellular volume expansion. In view of the known counterbalanced physiological actions of the two hormonal peptides, whose metabolism is controlled by ACE and enkephalinase, mixed inhibitors of the two peptidases show promise for the treatment of various cardiovascular and salt-retention disorders.

  13. Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from spinach Rubisco.

    PubMed

    Yang, Yanjun; Marczak, Ewa D; Yokoo, Megumi; Usui, Hachiro; Yoshikawa, Masaaki

    2003-08-13

    Four new inhibitory peptides for angiotensin I-converting enzyme (ACE), that is, MRWRD, MRW, LRIPVA, and IAYKPAG, were isolated from the pepsin-pancreatin digest of spinach Rubisco with the use of HPLC. IC(50) values of individual peptides were 2.1, 0.6, 0.38, and 4.2 microM, respectively. MRW and MRWRD had an antihypertensive effect after oral administration to spontaneously hypertensive rats. Maximal reduction occurred 2 h after oral administration of MRW, whereas MRWRD showed maximal decrease 4 h after oral administration at doses of 20 and 30 mg/kg, respectively. IAYKPAG also exerted antihypertensive activity after oral administration at the dose of 100 mg/kg, giving a maximum decrease 4 h after oral administration. IAYKP, IAY, and KP, the fragment peptides of IAYKPAG, also exerted antihypertensive activity. LRIPVA [corrected] did not show any antihypertensive effect at a dose of 100 mg/kg despite its potent ACE-inhibitory activity.

  14. Role of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and aldosterone antagonists in the prevention of atrial and ventricular arrhythmias.

    PubMed

    Makkar, Kathy M; Sanoski, Cynthia A; Spinler, Sarah A

    2009-01-01

    Atrial arrhythmias, ventricular arrhythmias, and sudden cardiac death (SCD) are significant health problems and an economic burden to society. The renin-angiotensin-aldosterone system (RAAS) may play a key role in the occurrence of structural and electrical remodeling, potentially explaining the development of atrial and ventricular arrhythmias. Angiotensin II has been shown to regulate cardiac cell proliferation and to modulate cardiac myocyte ion channels. Results of post hoc analyses from prospective clinical trials appear to show that angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) are most effective in the prevention of new-onset atrial fibrillation in patients with heart failure. It is difficult to determine if these agents are useful in the prevention of new-onset atrial fibrillation after myocardial infarction, and available evidence suggests that the benefit of ACE inhibitors and ARBs for prevention of new-onset atrial fibrillation in patients with hypertension appears limited to those with left ventricular hypertrophy. Patients with structural changes in cardiac muscle, such as those with heart failure and left ventricular hypertrophy, appear to benefit the most from RAAS blockade, possibly due to the theory of reversal of cardiac remodeling. There is no evidence, to our knowledge, that either ACE inhibitors or ARBs facilitate direct electrical current cardioversion in patients with atrial fibrillation; however, it appears that RAAS blockade may be useful in the prevention of recurrent atrial fibrillation after direct electrical current cardioversion. Whether ACE inhibitors may prevent life-threatening ventricular arrhythmias or SCD is unclear. Aldosterone antagonists appear to be useful for the prevention of SCD in patients with left ventricular systolic dysfunction. Results from ongoing clinical trials are anticipated to provide further insight on the potential roles of RAAS inhibitors for the prevention of

  15. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis

    PubMed Central

    Simões e Silva, AC; Silveira, KD; Ferreira, AJ; Teixeira, MM

    2013-01-01

    Recent advances have improved our understanding of the renin-angiotensin system (RAS). These have included the recognition that angiotensin (Ang)-(1-7) is a biologically active product of the RAS cascade. The identification of the ACE homologue ACE2, which forms Ang-(1-7) from Ang II, and the GPCR Mas as an Ang-(1-7) receptor have provided the necessary biochemical and molecular background and tools to study the biological significance of Ang-(1-7). Most available evidence supports a counter-regulatory role for Ang-(1-7) by opposing many actions of Ang II on AT1 receptors, especially vasoconstriction and proliferation. Many studies have now shown that Ang-(1-7) by acting via Mas receptor exerts inhibitory effects on inflammation and on vascular and cellular growth mechanisms. Ang-(1-7) has also been shown to reduce key signalling pathways and molecules thought to be relevant for fibrogenesis. Here, we review recent findings related to the function of the ACE2/Ang-(1-7)/Mas axis and focus on the role of this axis in modifying processes associated with acute and chronic inflammation, including leukocyte influx, fibrogenesis and proliferation of certain cell types. More attention will be given to the involvement of the ACE2/Ang-(1-7)/Mas axis in the context of renal disease because of the known relevance of the RAS for the function of this organ and for the regulation of kidney inflammation and fibrosis. Taken together, this knowledge may help in paving the way for the development of novel treatments for chronic inflammatory and renal diseases. PMID:23488800

  16. Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid beta-protein metabolism in mouse models of Alzheimer disease.

    PubMed

    Hemming, Matthew L; Selkoe, Dennis J; Farris, Wesley

    2007-04-01

    Genetic and pathologic studies have associated angiotensin-converting enzyme (ACE) with Alzheimer disease. Previously, we and others have reported that ACE degrades in vitro the amyloid beta-protein (Abeta), a putative upstream initiator of Alzheimer disease. These studies support the hypothesis that deficiency in ACE-mediated Abeta proteolysis could increase Alzheimer disease risk and raise the question of whether ACE inhibitors, a commonly prescribed class of anti-hypertensive medications, can elevate Abeta levels in vivo. To test this hypothesis, we administered the ACE inhibitor captopril to two lines of APP transgenic mice harboring either low levels of Abeta or high levels of Abeta with associated plaque deposition. In both models, we show that captopril does not affect cerebral Abeta levels in either soluble or insoluble pools. Furthermore, we find no change in plaque deposition or in peripheral Abeta levels. Data from these Alzheimer models suggest that captopril and similar ACE inhibitors do not cause Abeta accumulation in vivo.

  17. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2).

    PubMed

    Lambert, Daniel W; Yarski, Mike; Warner, Fiona J; Thornhill, Paul; Parkin, Edward T; Smith, A Ian; Hooper, Nigel M; Turner, Anthony J

    2005-08-26

    Angiotensin-converting enzyme-2 (ACE2) is a critical regulator of heart function and a cellular receptor for the causative agent of severe-acute respiratory syndrome (SARS), SARS-CoV (coronavirus). ACE2 is a type I transmembrane protein, with an extracellular N-terminal domain containing the active site and a short intracellular C-terminal tail. A soluble form of ACE2, lacking its cytosolic and transmembrane domains, has been shown to block binding of the SARS-CoV spike protein to its receptor. In this study, we examined the ability of ACE2 to undergo proteolytic shedding and investigated the mechanisms responsible for this shedding event. We demonstrated that ACE2, heterologously expressed in HEK293 cells and endogenously expressed in Huh7 cells, undergoes metalloproteinase-mediated, phorbol ester-inducible ectodomain shedding. By using inhibitors with differing potency toward different members of the ADAM (a disintegrin and metalloproteinase) family of proteases, we identified ADAM17 as a candidate mediator of stimulated ACE2 shedding. Furthermore, ablation of ADAM17 expression using specific small interfering RNA duplexes reduced regulated ACE2 shedding, whereas overexpression of ADAM17 significantly increased shedding. Taken together, these data provided direct evidence for the involvement of ADAM17 in the regulated ectodomain shedding of ACE2. The identification of ADAM17 as the protease responsible for ACE2 shedding may provide new insight into the physiological roles of ACE2.

  18. Is there any difference between angiotensin converting enzyme inhibitors and angiotensin receptor blockers for heart failure?

    PubMed

    Rain, Carmen; Rada, Gabriel

    2015-07-06

    Angiotensin receptor blockers are usually considered as equivalent to angiotensin converting enzyme inhibitors for patients with heart failure and low-ejection fraction. Some guidelines even recommend the former as first line treatment given their better adverse effects profile. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified four systematic reviews including eight pertinent randomized controlled trials. We combined the evidence using meta-analysis and generated a summary of findings following the GRADE approach. We concluded angiotensin receptor blockers and angiotensin converting enzyme inhibitors probably have a similar effect on mortality, and they might be equivalent in reducing hospitalization risk too. Treatment withdrawal due to adverse effects is probably lower with angiotensin receptor blockers than with angiotensin converting enzyme inhibitors.

  19. ACE

    NASA Technical Reports Server (NTRS)

    Lumia, R.

    1999-01-01

    This document describes the progress made during the fourth year of the Center for Autonomous Control Engineering (ACE). We currently support 30 graduate students, 52 undergraduate students, 9 faculty members, and 4 staff members. Progress will be divided into two categories. The first category explores progress for ACE in general. The second describes the results of each specific project supported within ACE.

  20. The angiotensin-converting enzyme (ACE) gene family of Bombyx mori.

    PubMed

    Yan, Hai-Yan; Mita, Kazuei; Zhao, Xia; Tanaka, Yoshikazu; Moriyama, Minoru; Wang, Huabin; Iwanaga, Masashi; Kawasaki, Hideki

    2017-04-15

    We previously reported regarding an ecdysone-inducible angiotensin-converting enzyme (ACE) gene. We found another four ACE genes in the Bombyx genome. The present study was undertaken to clarify the evolutionally changed function of the ACE of Bombyx mori. Core regions of deduced amino acid sequences of ACE genes were compared with those of other insect ACE genes. Five Bombyx genes have the conserved Zn(2+)-binding-site motif (HEXXH); however, BmAcer4 has only one and BmAcer3 has no catalytic ligand. BmAcer1 and BmAcer2 were expressed in several organs. BmAcer3 was expressed in testes, and BmAcer4 and BmAcer5 were expressed in compound eyes; however, the transcription levels of these three genes were very low. Quantitative RT-PCR and Western analysis were conducted to determine the tissue distribution and developmental expression of BmAcer1and BmAcer2. Transcripts of BmAcer1 and BmAcer2 were found in the reproductive organs during the larval and pupal stages. BmAcer1 was dominant in fat bodies during the feeding stage and showed high expression in the epidermis, wing discs, and pupal wing tissues after the wandering stage. Its expression patterns in epidermis, wing discs, and wing tissues resembled the hemolymph ecdysteroid titer in the larval and pupal stages. Acer1 was observed in the hemolymph at all stages, appearing to be the source of it are fat bodies, wings, and epidermis, and functioning after being secreted into the hemolymph. BmAcer2 was abundant in the midgut during the feeding stage and after the wandering stage and in silk glands after the pupal stage. We conclude that the evolution of BmAcer occurred through duplication, and, thereafter, functional diversification developed.

  1. Dual ACE and neutral endopeptidase inhibitors: novel therapy for patients with cardiovascular disorders.

    PubMed

    Tabrizchi, Reza

    2003-01-01

    Elevated blood pressure is a risk factor for a variety of cardiovascular disorders, including coronary heart disease, peripheral vascular disease, cardiac failure and cerebrovascular disease. The prevailing view is that an elevated systolic rather than diastolic blood pressure is the major contributor in mortality and morbidity attributed to cardiovascular disorders. Isolated high systolic blood pressure, especially in the elderly, is a major risk factor and should undoubtedly be a target for drug treatment. In the general population, systolic and diastolic blood pressure are highly correlated, and thus it is difficult to dissociate the effects of these two components of the blood pressure and specifically ascribe cardiovascular risk factors to just elevated systolic blood pressure. Therefore, the goal in therapy of an individual with hypertension must be to reduce elevated systolic and diastolic blood pressure in order to reduce mortality and morbidity. ACE and neutral peptidase inhibitors are a new class of drugs that may be beneficial in the treatment of patients with hypertension and heart failure. They may also be useful in the treatment of diabetic patients with hypertension and/or heart failure. Drugs of this class are dual inhibitors of ACE and neutral endopeptidase, and are capable of affecting vascular tone and fluid balance. They are capable of producing vasodilatation by virtue of inhibiting the production of angiotensin II, degradation of natriuretic peptides and bradykinin. They also appear to promote natriuresis and diuresis by amplifying the actions of natriuretic peptidase and reducing aldosterone effects. In addition, they should also attenuate trophogenic actions of the renin angiotensin system and the sympathetic nervous system. Omapatrilat is one drug that appears to be at the advanced stages of clinical development. This drug has been shown to be quite effective in the treatment of hypertension. Evidence also seems to indicate that treatment

  2. Determining the Enzymatic Activity of Angiotensin-Converting Enzyme 2 (ACE2) in Brain Tissue and Cerebrospinal Fluid Using a Quenched Fluorescent Substrate.

    PubMed

    Sriramula, Srinivas; Pedersen, Kim Brint; Xia, Huijing; Lazartigues, Eric

    2017-01-01

    Angiotensin-converting enzyme 2 (ACE2) is a component of the renin-angiotensin system (RAS) which plays an important role in the regulation of blood pressure and volume homeostasis. Accumulating evidence shows alterations in ACE2 expression and activity in several hypertensive animal models, as well as in patients with hypertension. In order to assess the role of brain ACE2 in hypertension, a specific ACE2 assay is required. Based on a quenched fluorescent substrate, we describe an easy-to-use method for determining ACE2 activity in brain tissue and cerebrospinal fluid. The method can further be adapted for other tissues, plasma, cell extracts, and cell culture supernatants.

  3. Production of Angiotensin I Converting Enzyme Inhibitory (ACE-I) Peptides during Milk Fermentation and Their Role in Reducing Hypertension.

    PubMed

    Rai, Amit Kumar; Sanjukta, Samurailatpam; Jeyaram, Kumaraswamy

    2015-10-13

    Fermented milk is a potential source of various biologically active peptides with specific health benefits. Angiotensin converting enzyme inhibitory (ACE-I) peptides are one of the most studied bioactive peptides produced during milk fermentation. The presence of these peptides is reported in various fermented milk products such as yoghurt, cheese, sour milk, etc, which are also available as commercial products. Many of the ACE-I peptides formed during milk fermentation are resistant to gastrointestinal digestion and inhibit angiotensin converting enzyme (ACE) in the rennin angiotension system (RAS). There are various factors, which affect the formation ACE-I peptides and their ability to reach the target tissue in active form, which includes type of starters (lactic acid bacteria, yeast, etc), substrate composition (casein type, whey protein, etc), composition of ACE-I peptide, pre and post fermentation treatments, and its stability during gastrointestinal digestion. The antihypertensive effect of fermented milk products has also been proved by various in-vitro and in-vivo (animal and human trials) experiments. This article reviews the literature on fermented milk products as a source of ACE-I peptides and various factors affecting the production and activity of ACE-I peptides.

  4. Outcomes of preoperative angiotensin-converting enzyme inhibitor therapy in patients undergoing isolated coronary artery bypass grafting.

    PubMed

    Bandeali, Salman J; Kayani, Waleed T; Lee, Vei-Vei; Pan, Wei; Elayda, Mac Arthur A; Nambi, Vijay; Jneid, Hani M; Alam, Mahboob; Wilson, James M; Birnbaum, Yochai; Ballantyne, Christie M; Virani, Salim S

    2012-10-01

    The association between preoperative use of angiotensin-converting enzyme (ACE) inhibitors and outcomes after coronary artery bypass grafting (CABG) remain controversial. Our aim was to study in-hospital outcomes after isolated CABG in patients on preoperative ACE inhibitors. A retrospective analysis of 8,889 patients who underwent isolated CABG from 2000 through 2011 was conducted. The primary outcome of interest was the incidence of major adverse events (MAEs) defined as a composite of mortality, postoperative renal dysfunction, myocardial infarction, stroke, and atrial fibrillation during index hospitalization. The secondary outcome was the incidence of individual outcomes included in MAEs. Logistic regression analyses were performed. Of 8,889 patients, 3,983 (45%) were on preoperative ACE inhibitors and 4,906 (55%) were not. Overall incidence of MAEs was 38.1% (n = 1,518) in the ACE inhibitor group compared to 33.6% (n = 1,649) in the no-ACE inhibitor group. Preoperative use of ACE inhibitors was independently associated with MAEs (odds ratio 1.13, 95% confidence interval 1.03 to 1.24), most of which was driven by a statistically significant increase in postoperative renal dysfunction (odds ratio 1.18, 95% confidence interval 1.03 to 1.36) and atrial fibrillation (odds ratio 1.15, 95% confidence interval 1.05 to 1.27). In-hospital mortality, postoperative myocardial infarction, and stroke were not significantly associated with preoperative ACE inhibitor use. Analyses performed after excluding patients with low ejection fractions yielded similar results. In conclusion, preoperative ACE inhibitor use was associated with an increased risk of MAEs after CABG, in particular postoperative renal dysfunction and atrial fibrillation.

  5. A role for the extracellular matrix component hyaluronan in kidney dysfunction during ACE-inhibitor fetopathy.

    PubMed

    Hansell, P; Palm, F

    2015-04-01

    Despite data showing that inhibitors of the renin-angiotensin system increase the risks of fetal morbidity and dysfunctionality later in life, their use during pregnancy has increased. The fetopathy induced by angiotensin converting enzyme (ACE) inhibitors is characterized by anuria, hypotension and growth restriction, but can also be associated with pulmonary hypoplasia. In the kidney, this fetopathy includes atrophy of the medulla, reduced number of glomeruli, developmental lesions of tubules and vessels, tubulointerstitial inflammation and extracellular matrix accumulation. Although angiotensin II (Ang II) inhibition during nephrogenesis interferes with normal growth and development, this review will focus on effects of the heavily accumulated matrix component hyaluronan (HA). An important mechanism of HA accumulation during nephrogenesis is disruption of its normal reduction as a consequence of lack of Ang II activation of hyaluronidase. Hyaluronan has very large water-attracting properties and is pro-inflammatory when fragmented. The ensuing inflammation and interstitial oedema affect kidney function. Hyaluronan is colocalized with CD44 overexpression and infiltrating immune cells. These properties make HA a plausible contributor to the observed structural and functional kidney defects associated with the fetopathy. Available data support an involvement of HA in kidney dysfunction of the foetus and during adulthood due to the physico-chemical characteristics of HA. No clinical treatment for HA accumulation exists. Treatment with the HA-degrading enzyme hyaluronidase and an HA synthesis inhibitor has been tested successfully in experimental models in the kidney, heart and pancreas. Reduced HA accumulation to reduce interstitial oedema and inflammation may improve organ function, but this concept needs to be tested in a controlled study before causal relationships can be established.

  6. [The new drug is much more effective than ACE inhibitors in chronic heart failure].

    PubMed

    Sr, Jiří Widimský

    2015-02-01

    PARADIGM-HF study observed clinical outcomes after treatment by new drug LCZ696 or enalapril in patients with systolic chronic heart failure. It was randomized double-blind trial with LCZ696 (200 mg twice a day) and enalapril (10 mg twice a day). 8442 patients were enrolled with NYHA class II or III and left ventricular ejection fiction of 40% or less. Study drugs were added to other recommended medication. The trial was prematurely terminated after median follow-up of 27 months. The primary endpoint of the study was a combination of cardiovascular mortality and the first hospitalization for heart failure. LCZ696 drug, an inhibitor of angiotensin receptor and neprilysin (Arnie), has led to a reduction in the primary composite target by 20% (p <0.001). The treatment has decreased cardiovascular mortality by 20%, p <0.001 and hospitalization for worsening heart failure by 21%, p <0.001. LCZ696 has also decreased total mortality by 16%, p <0.001. The use of LCZ696 has been accompanied by frequent symptomatic hypotension and hypotension with a decrease in systolic blood pressure below 90 mm Hg, however, LCZ696 was less often associated with an increase in serum creatinine and serum potassium than enalapril. In addition, cough has occurred less frequently after LCZ696 than after enalapril. Discontinuation of therapy occurred in 746 patients (17.8%) treated with LCZ696 and in 833 patients (19.8%) treated with enalapril (19.8%) (p = 0.02). PARADIGM-HF study has also shown superiority of LCZ696 compared to ACE inhibitors in stable outpatients with chronic systolic heart failure NYHA stages II and III. Therefore, LCZ696 is more effective than ACE inhibitors (and angiotensin receptor blockers). Moreover, it is well tolerated. LCZ696 seems to replace the ACE inhibitors in mentioned patients. The authors also discuss the results of the first randomized study PARAMOUNT investigating LCZ696 efficacy in patients with chronic heart failure and good left ventricular ejection

  7. Angiotensin I-converting enzyme (ACE) inhibitory activity and ACE inhibitory peptides of salmon (Salmo salar) protein hydrolysates obtained by human and porcine gastrointestinal enzymes.

    PubMed

    Darewicz, Małgorzata; Borawska, Justyna; Vegarud, Gerd E; Minkiewicz, Piotr; Iwaniak, Anna

    2014-08-13

    The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE) inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes) and ex vivo digestion (with human gastrointestinal enzymes). Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50%) of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  8. How should we manage heart failure developing in patients already treated with angiotensin-converting enzyme inhibitors and beta-blockers for hypertension, diabetes or coronary disease?

    PubMed

    Gustafsson, Finn; Segura, Julian; Ruilope, Luis M

    2010-08-01

    An increasing number of patients in the community are being treated with angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs) and beta-blockers for hypertension, coronary disease or diabetic renal and vascular complications. Some of these patients will develop heart failure despite such treatment. Based on data from hypertension trials it can be estimated that approximately 5% of treated patients will develop heart failure over 5 years. It is unclear whether patients developing heart failure on and off ACE-inhibitors or beta-blockers, respectively, at the time of heart failure diagnosis have similar prognosis.Treatment options for patients developing heart failure while already treated with ACE inhibitors/ARBs and beta-blockers are very limited if current heart failure guidelines are followed. In this review possible strategies are outlined and important areas for research are identified. It is suggested that trials are designed specifically to address prognosis and treatment in this growing population.

  9. Fixed-Dose Combinations of Renin-Angiotensin System Inhibitors and Calcium Channel Blockers in the Treatment of Hypertension: A Comparison of Angiotensin Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors.

    PubMed

    Hsiao, Fu-Chih; Tung, Ying-Chang; Chou, Shing-Hsien; Wu, Lung-Sheng; Lin, Chia-Pin; Wang, Chun-Li; Lin, Yu-Sheng; Chang, Chee-Jen; Chu, Pao-Hsien

    2015-12-01

    Fixed-dose combinations (FDCs) of different regimens are recommended in guidelines for the treatment of hypertension. However, clinical studies comparing FDCs of angiotensin receptor blocker (ARB)/calcium channel blocker (CCB) and angiotensin-converting enzyme inhibitor (ACE inhibitor)/CCB in hypertensive patients are lacking.Using a propensity score matching of 4:1 ratio, this retrospective claims database study compared 2 FDC regimens, ARB/CCB and ACE inhibitor/CCB, in treating hypertensive patients with no known atherosclerotic cardiovascular disease. All patients were followed for at least 3 years or until the development of major adverse cardiovascular events (MACEs) during the study period. In addition, the effect of medication adherence on clinical outcomes was evaluated in subgroup analysis based on different portions of days covered.There was no significant difference in MACE-free survival (hazard ratio [HR]: 1.21; 95% confidence interval [CI]: 0.98-1.50; P = 0.08) and survival free from hospitalization for heart failure (HR: 1.15; 95% CI: 082-1.61; P = 0.431), new diagnosis of chronic kidney disease (HR: 0.98; 95% CI: 071-1.36; P = 0.906), and initiation of dialysis (HR: 0.99; 95% CI: 050-1.92; P = 0.965) between the 2 study groups. The results remained the same within each subgroup of patients with different adherence statuses.ARBs in FDC regimens with CCBs in the present study were shown to be as effective as ACE inhibitors at reducing the risks of MACEs, hospitalization for heart failure, new diagnosis of chronic kidney disease, and new initiation of dialysis in hypertensive patients, regardless of the medication adherence status.

  10. The ACE inhibitors enalapril and captopril modulate cytokine responses in Balb/c and C57Bl/6 normal mice and increase CD4(+)CD103(+)CD25(negative) splenic T cell numbers.

    PubMed

    Albuquerque, Deijanira; Nihei, Jorge; Cardillo, Fabíola; Singh, Ram

    2010-01-01

    Increasing evidence implies beneficial effects of angiotensin-converting enzyme (ACE) inhibitors beyond those of their original indications to control hypertension. One of the most attractive non-hemodynamic properties of ACE inhibitors is their ability to regulate cytokine production. The mechanism(s) underlying the role of ACE inhibitors on cytokine synthesis are not well understood but they have traditionally been attributed to the inhibition of angiotensin (Ang) II formation. In fact, it has been extensively demonstrated that ACE inhibitors decrease Ang II-induced production of proinflammatory cytokines and chemokines. However, it is not well described if inhibition of endogenous Ang II generation by ACE inhibitors modulates systemic cytokine production in mice. To verify that, in this work, we investigated the effects of treatment with the ACE inhibitors enalapril and captopril on cytokine synthesis in C57Bl/6 and Balb/c mice. Our results show that enalapril up regulates IL-10 produced by splenocytes from Balb/c and C57Bl/6 mice and captopril increased it only in Balb/c mice. Furthermore, CD4(+)CD103(+) presented increased IL-10 production after enalapril treatment. Enalapril as well as captopril short-term treatment enhanced IL-2 synthesis in Balb/c mice. Besides, enhanced IL-2 and IL-10 levels correlates with increased CD4(+)CD103(+)CD25(negative) T cells numbers in spleens from enalapril-treated mice.

  11. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora) Hydrolysates

    PubMed Central

    Ghanbari, Raheleh; Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2015-01-01

    In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions. PMID:26690117

  12. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides

    PubMed Central

    Muhammad, Syed Aun; Fatima, Nighat

    2015-01-01

    The purpose of this study was to analyze the inhibitory action of quercetin glycosides by computational docking studies. For this, natural metabolite quercetin glycosides isolated from buckwheat and onions were used as ligand for molecular interaction. The crystallographic structure of molecular target angiotensin-converting enzyme (ACE) (peptidyl-dipeptidase A) was obtained from PDB database (PDB ID: 1O86). Enalapril, a well-known brand of ACE inhibitor was taken as the standard for comparative analysis. Computational docking analysis was performed using PyRx, AutoDock Vina option based on scoring functions. The quercetin showed optimum binding affinity with a molecular target (angiotensin-converting-enzyme) with the binding energy of −8.5 kcal/mol as compared to the standard (−7.0 kcal/mol). These results indicated that quercetin glycosides could be one of the potential ligands to treat hypertension, myocardial infarction, and congestive heart failure. PMID:26109757

  13. Cleavage of arginyl-arginine and lysyl-arginine from the C-terminus of pro-hormone peptides by human germinal angiotensin I-converting enzyme (ACE) and the C-domain of human somatic ACE.

    PubMed Central

    Isaac, R E; Williams, T A; Sajid, M; Corvol, P; Coates, D

    1997-01-01

    Mammalian germinal angiotensin I-converting enzyme (gACE) is a single-domain dipeptidyl carboxypeptidase found exclusively in male germ cells, which has almost identical sequence and enzymic properties with the C-domain of the two-domain somatic ACE. Mutant mice that do not express gACE are infertile, suggesting a role for the enzyme in the processing of undefined peptides involved in fertilization. A number of spermatid peptides [e.g. cholecystokinin (CCK) and gastrin] are processed from pro-hormones by endo- and exo-proteolytic cleavages which might generate substrates for gACE. We have shown that peptide hormone intermediates with Lys/Arg-Arg at the C-terminus are high-affinity substrates for human gACE. gACE from human sperm cleaved Arg-Arg from the C-terminus of the CCK5-GRR (GWMDFGRR), a peptide corresponding to the C-terminus of a CCK-gastrin prohormone intermediate. Hydrolysis of CCK5-GRR by recombinant human C-domain ACE was Cl- dependent, with maximal activity achieved in 5-10 mM NaCl at pH 6.4. C-Domain ACE cleaved Lys/Arg-Arg from the C-terminus of dynorphin-(1-7), a pro-TRH peptide KRQHPGKR, and two insect peptides FSPRLGKR and FSPRLGRR. C-Domain ACE displayed high affinity towards all these substrates with Vmax/Km values between 14 and 113 times greater than the Vmax/Km for the conversion of the best known ACE substrate, angiotensin I, into angiotensin II. In conclusion, we have identified a new class of substrates for human gACE, and we suggest that gACE might be an alternative to carboxypeptidase E for the trimming of basic dipeptides from the C-terminus of intermediates generated from pro-hormones by subtilisin-like convertases in human male germ cells. PMID:9371719

  14. Targeting ACE and ECE with dual acting inhibitors.

    PubMed

    Hanessian, Stephen; Guesné, Sébastien; Riber, Ludivine; Marin, Julien; Benoist, Alain; Mennecier, Philippe; Rupin, Alain; Verbeuren, Tony J; De Nanteuil, Guillaume

    2008-02-01

    A series of urea analogues related to SA6817 and a GSK phosphonic acid with reported ACE inhibitory activity were prepared and tested for dual ACE and ECE activities. Although excellent ACE and NEP inhibition was achieved, only modest ECE inhibition was observed with one analogue.

  15. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats

    PubMed Central

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Garner, Ron E; McKallip, Robert J; Zhao, Zhi-Qing

    2015-01-01

    Curcumin is known to improve cardiac function by balancing degradation and synthesis of collagens after myocardial infarction. This study tested the hypothesis that inhibition of myocardial fibrosis by curcumin is associated with modulating expression of angiotensin II (Ang II) receptors and angiotensin-converting enzyme 2 (ACE2). Male Sprague Dawley rats were subjected to Ang II infusion (500 ng/kg/min) using osmotic minipumps for 2 and 4 weeks, respectively, and curcumin (150 mg/kg/day) was fed by gastric gavage during Ang II infusion. Compared to the animals with Ang II infusion, curcumin significantly decreased the mean arterial blood pressure during the course of the observation. The protein level of the Ang II type 1 (AT1) receptor was reduced, and the Ang II type 2 (AT2) receptor was up-regulated, evidenced by an increased ratio of the AT2 receptor over the AT1 receptor in the curcumin group (1.2±0.02%) vs in the Ang II group (0.7±0.03%, P<0.05). These changes were coincident with less locally expressed AT1 receptor and enhanced AT2 receptor in the intracardiac vessels and intermyocardium. Along with these modulations, curcumin significantly decreased the populations of macrophages and alpha smooth muscle actin-expressing myofibroblasts, which were accompanied by reduced expression of transforming growth factor beta 1 and phosphorylated-Smad2/3. Collagen I synthesis was inhibited, and tissue fibrosis was attenuated, as demonstrated by less extensive collagen-rich fibrosis. Furthermore, curcumin increased protein level of ACE2 and enhanced its expression in the intermyocardium relative to the Ang II group. These results suggest that curcumin could be considered as an add-on therapeutic agent in the treatment of fibrosis-derived heart failure patient who is intolerant of ACE inhibitor therapy. PMID:26648693

  16. Role of angiotensin converting enzyme in the vascular effects of an endopeptidase 24.15 inhibitor.

    PubMed Central

    Telford, S E; Smith, A I; Lew, R A; Perich, R B; Madden, A C; Evans, R G

    1995-01-01

    1. We investigated the role of angiotensin converting enzyme (ACE) in the cardiovascular effects of N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP), a peptidase inhibitor selective for metalloendopeptidase (EP) E.C. 3.4.24.15. 2. In conscious rabbits, cFP (5 mg kg-1, i.v.) markedly slowed the degradation of [3H]-bradykinin, potentiated the depressor response to right atrial administration of bradykinin (10-1000 ng kg-1), and inhibited the pressor response to right atrial angiotensin I (10-100 ng kg-1). In each of these respects, the effects of cFP were indistinguishable from those of the ACE inhibitor, captopril (0.5 mg plus 10 mg kg-1h-1 i.v.). Furthermore, the effects of combined administration of cFP and captopril were indistinguishable from those of captopril alone. 3. In experimentally naive anaesthetized rats, cFP administration (9.3 mg kg-1, i.v.) was followed by a moderate but sustained fall in arterial pressure of 13 mmHg. However, in rats pretreated with bradykinin (50 micrograms kg-1) a more pronounced fall of 30 mmHg was observed. Captopril (5 mg kg-1) had similar hypotensive effects to those of cFP, and cFP had no effect when it was administered after captopril. 4. CFP displaced the binding of [125I]-351A (the p-hydroxybenzamidine derivative of lisinopril) from preparations of rat plasma ACE and solubilized lung membrane ACE (KD = 1.2 and 0.14 microM respectively), and inhibited rat plasma ACE activity (KI = 2.4 microM). Addition of phosphoramidon (10 microM), an inhibitor of a range of metalloendopeptidases, including neutral endopeptidase (E.C.3.4.24.11), markedly reduced the potency of cFP in these systems.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7620708

  17. Angiotensin Converting-Enzyme Inhibitors, Angiotensin Receptor Blockers, and Calcium Channel Blockers Are Associated with Prolonged Vascular Access Patency in Uremic Patients Undergoing Hemodialysis

    PubMed Central

    Chen, Yu-Wei; Wu, Yu-Te; Lin, Chih-Ching

    2016-01-01

    Background Vascular access failure is a huge burden for patients undergoing hemodialysis. Many efforts have been made to maintain vascular access patency, including pharmacotherapy. Angiotensin converting enzyme inhibitor (ACE-I), angiotensin receptor blocker (ARB), and calcium channel blocker (CCB) are known for their antihypertensive and cardio-protective effects, however, their effects on long-term vascular access patency are still inconclusive. Design, setting, participants and measurements We retrospectively enrolled patients commencing maintenance hemodialysis between January 1, 2000, and December 31, 2006 by using National Health Insurance Research Database in Taiwan. Primary patency was defined as the date of first arteriovenous fistula (AVF) or arteriovenous graft (AVG) creation to the time of access thrombosis or any intervention aimed to maintain or re-establish vascular access patency. Cox proportional hazards models were used to adjust the influences of patient characteristics, co-morbidities and medications. Results Total 42244 patients were enrolled in this study, 37771 (89.4%) used AVF, 4473 (10.6%) used AVG as their first long term dialysis access. ACE-I, ARB, and CCB use were all associated with prolonged primary patency of AVF [hazard ratio (HR) 0.586, 95% confidence interval (CI) 0.557–0.616 for ACE-I use; HR 0.532, CI 0.508–0.556 for ARB use; HR 0.485, CI 0.470–0.501 for CCB use] and AVG (HR 0.557, CI 0.482–0.643 for ACE-I use, HR 0.536, CI 0.467–0.614 for ARB use, HR 0.482, CI 0.442–0.526 for CCB use). Conclusions In our analysis, ACE-I, ARB, and CCB were strongly associated with prolonged primary patency of both AVF and AVG. Further prospective randomized studies are still warranted to prove the causality. PMID:27832203

  18. Angiotensin converting enzyme inhibitors and angiotensin receptor blockers in the treatment of hypertension: should they be used together?

    PubMed

    Verdecchia, Paolo; Angeli, Fabio; Mazzotta, Giovanni; Ambrosio, Giuseppe; Reboldi, Gianpaolo

    2010-11-01

    The combined use of angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) poses a dilemma to clinicians. On the one hand, indirect evidence from compelling, but still surrogate outcome measures such as blood pressure and proteinuria suggest some merits of this combination. On the other hand, the outcome benefits of the ACEIs+ARBs combination in morbidity/mortality trials remain confined to patients with severe congestive heart failure (CHF) and reduced ejection fraction. Incidentally, most of the benefit offered by the ACEIs+ARBs combination in these patients was not driven by mortality, but by fewer rehospitalizations for CHF. Even in patients with renal disease and proteinuria, the combined use of ACEIs and ARBs, although highly effective in reducing urinary protein excretion, has not yet been proven to significantly delay end-stage renal disease and the need for dialysis. In the Ongoing Telmisartan Alone and In Combination With Ramipril Global Endpoint Trial (ONTARGET), the dual blockade of the renin angiotensin system did not produce additional outcome benefit over that afforded by ACE inhibition alone. Notably, however, patients with BP >160/100 mmHg at entry were excluded from ONTARGET, thus limiting the applicability of these results to the treatment of hypertension. The European Society of Hypertension guidelines do not suggest large-scale use of the ACEIs+ARBs combination in patients with hypertension. However, patients with resistant hypertension, particularly if proteinuria coexists, could benefit from this combination, which however requires close monitoring for adverse events, including hyperkalemia and worsening renal function.

  19. Genetic polymorphism of ACE and the angiotensin II type1 receptor genes in children with chronic kidney disease

    PubMed Central

    2011-01-01

    Aim and Methods We investigated the association between polymorphisms of the angiotensin converting enzyme-1 (ACE-1) and angiotensin II type one receptor (AT1RA1166C) genes and the causation of renal disease in 76 advanced chronic kidney disease (CKD) pediatric patients undergoing maintenance hemodialysis (MHD) or conservative treatment (CT). Serum ACE activity and creatine kinase-MB fraction (CK-MB) were measured in all groups. Left ventricular mass index (LVMI) was calculated according to echocardiographic measurements. Seventy healthy controls were also genotyped. Results The differences of D allele and DI genotype of ACE were found significant between MHD group and the controls (p = 0.0001). ACE-activity and LVMI were higher in MHD, while CK-MB was higher in CT patients than in all other groups. The combined genotype DD v/s ID+II comparison validated that DD genotype was a high risk genotype for hypertension .~89% of the DD CKD patients were found hypertensive in comparison to ~ 61% of patients of non DD genotype(p = 0.02). The MHD group showed an increased frequency of the C allele and CC genotype of the AT1RA1166C polymorphism (P = 0.0001). On multiple linear regression analysis, C-allele was independently associated with hypertension (P = 0.04). Conclusion ACE DD and AT1R A/C genotypes implicated possible roles in the hypertensive state and in renal damage among children with ESRD. This result might be useful in planning therapeutic strategies for individual patients. PMID:21859496

  20. Potential advantages of cell administration on the inflammatory response compared to standard ACE inhibitor treatment in experimental myocardial infarction

    PubMed Central

    Ciulla, Michele M; Montelatici, Elisa; Ferrero, Stefano; Braidotti, Paola; Paliotti, Roberta; Annoni, Giuseppe; De Camilli, Elisa; Busca, Giuseppe; Chiappa, Luisa; Rebulla, Paolo; Magrini, Fabio; Lazzari, Lorenza

    2008-01-01

    Background Bone Marrow (BM) progenitor cells can target the site of myocardial injury, contributing to tissue repair by neovascolarization and/or by a possible direct paracrine effect on the inflammatory cascade. Angiotensin Converting Enzyme inhibitors (ACE-I) are effective in reducing mortality and preventing left ventricular (LV) function deterioration after myocardial infarction. Methods We investigated the short term effects of BM mononuclear cells (BMMNCs) therapy on the pro-inflammatory cytokines (pro-CKs) and on LV remodelling and compared these effects over a standard ACE-I therapy in a rat model of myocardial cryodamage. Forty two adult inbread Fisher-F344 rats were randomized into three groups: untreated (UT; n = 12), pharmacological therapy (ACE-I; n = 14, receiving quinapril), and cellular therapy (BMMNCs; n = 16, receiving BMMNCs infusion). Rats underwent to a standard echocardiogram in the acute setting and 14 days after the damage, before the sacrifice. Pro-CKs analysis (interleukin (IL)1β, IL-6, tumor necrosis factor (TNF)α was performed (multiplex proteome arrays) on blood samples obtained by direct aorta puncture before the sacrifice; a control group of 6 rats was considered as reference. Results Concerning the extension of the infarcted area as well as the LV dimensions, no differences were observed among the animal groups; treated rats had lower left atrial diameters and higher indexes of LV function. Pro-Cks were increased in infarcted-UT rats if compared with controls, and significantly reduced by BMMNCs and ACE-I ; TNFα inversely correlated with LV fractional shortening. Conclusion After myocardial infarction, both BMMNCs and ACE-I reduce the pattern of pro-Ck response, probably contributing to prevent the deterioration of LV function observed in UT rats. PMID:18549470

  1. Angiotensin Converting Enzyme Inhibitors and Cognitive Decline in Older Adults with Hypertension: Results from the Cardiovascular Health Study

    PubMed Central

    Sink, Kaycee M.; Leng, Xiaoyan; Williamson, Jeff; Kritchevsky, Stephen B.; Yaffe, Kristine; Kuller, Lewis; Yasar, Sevil; Atkinson, Hal; Robbins, Mike; Psaty, Bruce; Goff, David C.

    2010-01-01

    Background Hypertension (HTN) is a risk factor for dementia and animal studies suggest that centrally active (cross the blood brain barrier) angiotensin converting enzyme (ACE) inhibitors may protect against dementia beyond HTN control. Methods Participants in the Cardiovascular Health Study cognition substudy (mean age 75 yrs) with treated HTN and no diagnosis of heart failure (n= 1054) were followed for a median of 6 years to determine whether cumulative exposure to ACE inhibitors (as a class and by central activity), compared to other antihypertensive agents, was associated with lower risk of incident dementia, cognitive decline (by the modified mini mental state exam, 3MSE), or incident disability in instrumental activities of daily living (IADL). Results Among 414 participants exposed to ACE inhibitors and 640 not, there were 158 cases of incident dementia. Compared to other anti-HTN drugs, there was no association between exposure to all ACE inhibitors and risk of dementia (HR 1.01, 95% CI 0.88–1.15), difference in 3MSE scores (−0.32 points/yr, p=0.15), or odds of IADL disability (OR (95% CI) 1.06 (0.99–1.14). Adjusted results were similar. However, centrally active ACE inhibitors were associated with 65% less decline in 3MSE scores per year of exposure (p= 0.01) and non-centrally active ACE inhibitors were associated with greater risk of incident dementia (adjusted HR 1.20 (1.00–1.43) per year of exposure) and greater odds of IADL disability (adjusted OR 1.16 (1.03–1.30) per year of exposure) compared to other anti-HTN drugs. Conclusions While ACE inhibitors as a class do not appear to be independently associated with dementia risk or cognitive decline in older hypertensive adults, there may be within class differences in regards to these outcomes. These results should be confirmed with an RCT of a centrally active ACE inhibitor in the prevention of cognitive decline and dementia. PMID:19597068

  2. ACE inhibitors could be therapeutic for antisocial personality disorder.

    PubMed

    Hobgood, Donna K

    2013-11-01

    Antisocial personality traits are an important topic for research. The societal cost of these behaviors encourages efforts at a better understanding of central nervous system causes. Catecholamine genes are being studied to facilitate this understanding, and some tentative findings are being reached about several of these genes. It seems that many genes play a role to produce antisocial behaviors so complexity of elucidating each gene is obvious. One conclusion that could be drawn from the current research findings is that DA2 like receptors (DRD2, DRD3, DRD4) with alleles that decrease neurotransmission are facilitatory of antisocial behaviors. DA2 like receptors cause neuronal firing to inhibit many peripheral functions through adenylyl cyclase inhibition. When these receptors are less active by genetically decreased density, lower affinity, or by low dopamine levels as final common pathways then inhibition is released and a state of disinhibition can be said to describe this state. Peripheral metabolism is increased and behavioral activation is noted. Renin is disinhibited in this setting thus allowing sympathetic nervous system activation. The fight or flight behaviors thus produced, in the extreme, would be the setting of antisocial behavior. Research validates this hypothesis. Understanding this final common pathway toward antisocial behavior should lead to better treatment for individuals with this pattern of behavior before they have caused harm to themselves and others. ACE inhibitors are well tolerated drugs used in the treatment of hypertension and heart failure and would also treat antisocial behavior disorders.

  3. High association of angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism with recurrent aphthous stomatitis.

    PubMed

    Karakus, Nevin; Yigit, Serbulent; Kalkan, Goknur; Sezer, Saime

    2013-08-01

    Recurrent aphthous stomatitis (RAS) is a common ulcerative disease of the oral mucosa. Oral ulcers are also the most common feature of Behçet's disease (BD). Association of angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism with BD has been reported in Turkish population. The aim of the present study was to investigate the possible association between ACE gene I/D polymorphism and RAS, and evaluate if there was an association with clinical features in a relatively large cohort of Turkish patients. The study included 198 patients affected by RAS and 214 healthy controls. ACE gene I/D polymorphism genotypes were determined using polymerase chain reaction with I and D allele-specific primers. The genotype and allele frequencies of I/D polymorphism showed statistically significant differences between RAS patients and controls (p < 0.0001 and p < 0.0001, respectively). After stratifying RAS patients according to clinical and demographical characteristics, no significant association was observed. In conclusion, the results of this study suggest that I/D polymorphism of the ACE gene was positively associated with predisposition to develop RAS in Turkish population. Further studies with larger populations are recommended.

  4. Refill Adherence in Relation to Substitution and the Use of Multiple Medications: A Nationwide Population Based Study on New ACE-Inhibitor Users

    PubMed Central

    Jönsson, Anna K.; Lesén, Eva; Mårdby, Ann-Charlotte; Sundell, Karolina Andersson

    2016-01-01

    Objective Generic substitution has contributed to economic savings but switching products may affect patient adherence, particularly among those using multiple medications. The aim was to analyse if use of multiple medications influenced the association between switching products and refill adherence to angiotensin-converting-enzyme (ACE) inhibitors in Sweden. Study Design and Setting New users of ACE-inhibitors, starting between 1 July 2006 and 30 June 2007, were identified in the Swedish Prescribed Drug Register. Refill adherence was assessed using the continuous measure of medication acquisition (CMA) and analysed with linear regression and analysis of covariance. Results The study population included 42735 individuals whereof 51.2% were exposed to switching ACE-inhibitor and 39.6% used multiple medications. Refill adherence was higher among those exposed to switching products than those not, but did not vary depending on the use of multiple medications or among those not. Refill adherence varied with age, educational level, household income, country of birth, previous hospitalisation and previous cardiovascular diagnosis. Conclusion The results indicate a positive association between refill adherence and switching products, mainly due to generic substitution, among new users of ACE-inhibitors in Sweden. This association was independent of use of multiple medications. PMID:27192203

  5. Pioglitazone, a PPARγ agonist, provides comparable protection to angiotensin converting enzyme inhibitor ramipril against adriamycin nephropathy in rat.

    PubMed

    Ochodnicky, Peter; Mesarosova, Lucia; Cernecka, Hana; Klimas, Jan; Krenek, Peter; Goris, Maaike; van Dokkum, Richard P E; Henning, Robert H; Kyselovic, Jan

    2014-05-05

    Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been shown to ameliorate diabetic nephropathy, but much less are known about their effects in non-diabetic nephropathies. In the present study, metabolic parameters, blood pressure, aortic endothelial function along with molecular and structural markers of glomerular and tubulointerstitial renal damage, were studied in a rat model of normotensive nephropathy induced by adriamycin and treated with PPARγ agonist pioglitazone (12mg/kg, po), angiotensin converting enzyme (ACE) inhibitor ramipril (1mg/kg, po) or their combination. Pioglitazone had no effect on systolic blood pressure, marginally reduced glycemia and improved aortic endothelium-dependent relaxation. In the kidney, pioglitazone prevented the development of proteinuria and focal glomerulosclerosis to the similar extent as blood-pressure lowering ramipril. Renoprotection provided by either treatment was associated with a reduction in the cortical expression of profibrotic plasminogen activator inhibitor-1 and microvascular damage-inducing endothelin-1, and a limitation of interstitial macrophage influx. Treatment with PPARγ agonist, as well as ACE inhibitor comparably affected renal expression of the renin-angiotensin system (RAS) components, normalizing increased renal expression of ACE and enhancing the expression of Mas receptor. Interestingly, combined pioglitazone and ramipril treatment did not provide any additional renoprotection. These results demonstrate that in a nondiabetic renal disease, such as adriamycin-induced nephropathy, PPARγ agonist pioglitazone provides renoprotection to a similar extent as an ACE inhibitor by interfering with the expression of local RAS components and attenuating related profibrotic and inflammatory mechanisms. The combination of the both agents, however, does not lead to any additional renal benefit.

  6. Apricot and other seed stones: amygdalin content and the potential to obtain antioxidant, angiotensin I converting enzyme inhibitor and hypocholesterolemic peptides.

    PubMed

    García, M C; González-García, E; Vásquez-Villanueva, R; Marina, M L

    2016-11-09

    Stones from olives and Prunus genus fruits are cheap and sustainable sources of proteins and could be potential sources of bioactive peptides. The main limitation to the use of these seeds is the presence of amygdalin. This work proposes to determine amygdalin in olive and Prunus seeds and in protein isolates obtained from them. Moreover, antioxidant, angiotensin I converting enzyme (ACE) inhibitor, and hypocholesterolemic properties will be evaluated in hydrolysates obtained from these seeds. Despite some seeds contained amygdalin, all protein isolates were free of this substance. Two different procedures to obtain bioactive peptides from protein isolates were examined: gastrointestinal digestion and processing with Alcalase, Flavourzyme or Thermolysin. Higher antioxidant, ACE inhibitor and hypocholesterolemic activities were observed when proteins were processed with Alcalase, Flavourzyme or Thermolysin. The highest antioxidant and ACE inhibitor capacities were observed for the Prunus genus seed hydrolysates while the highest capacity to reduce micellar cholesterol solubility was observed for the apricot and olive seed hydrolysates.

  7. Decreased Risk of Radiation Pneumonitis With Incidental Concurrent Use of Angiotensin-Converting Enzyme Inhibitors and Thoracic Radiation Therapy

    SciTech Connect

    Kharofa, Jordan; Cohen, Eric P.; Tomic, Rade; Xiang Qun; Gore, Elizabeth

    2012-09-01

    Purpose: Angiotensin-converting enzyme (ACE) inhibitors have been shown to mitigate radiation-induced lung injury in preclinical models. The aim of this study was to evaluate whether ACE inhibitors decrease the risk of radiation pneumonitis in lung cancer patients receiving thoracic irradiation. Methods and Materials: Patients with Stage I through III small-cell and non-small-cell lung cancer treated definitively with radiation from 2004-2009 at the Clement J. Zablocki Veterans Affairs Medical Center were retrospectively reviewed. Acute pulmonary toxicity was quantified within 6 months of completion of treatment according to the Common Terminology Criteria for Adverse Events version 4. The use of ACE inhibitors, nonsteroidal anti-inflammatory drugs, inhaled glucocorticosteroids, statins, and angiotensin receptor blockers; dose-volume histogram parameters; and patient factors were assessed for association with Grade 2 or higher pneumonitis. Results: A total of 162 patients met the criteria for inclusion. The majority of patients had Stage III disease (64%) and received concurrent chemotherapy (61%). Sixty-two patients were identified as ACE inhibitor users (38%). All patients had acceptable radiation plans based on dose-volume histogram constraints (V20 [volume of lung receiving at least 20 Gy] {<=}37% and mean lung dose {<=}20 Gy) with the exception of 2 patients who did not meet both criteria. Grade 2 or higher pulmonary toxicity occurred in 12 patients (7.4%). The rate of Grade 2 or higher pneumonitis was lower in ACE inhibitor users vs. nonusers (2% vs. 11%, p = 0.032). Rates of Grade 2 or higher pneumonitis were significantly increased in patients aged greater than 70 years (16% vs. 2%, p = 0.005) or in whom V5 (volume of lung receiving at least 5 Gy) was 50% or greater (13% vs. 4%, p = 0.04). V10 (volume of lung receiving at least 10 Gy), V20, V30 (volume of lung receiving at least 30 Gy), and mean lung dose were not independently associated with Grade 2 or

  8. ACE and platelet aggregation inhibitors from Tamarix hohenackeri Bunge (host plant of Herba Cistanches) growing in Xinjiang

    PubMed Central

    Xing, Yachao; Liao, Jing; Tang, Yingzhan; Zhang, Peng; Tan, Chengyu; Ni, Hui; Wu, Xueqin; Li, Ning; Jia, Xiaoguang

    2014-01-01

    Background: Tamarix hohenackeri Bunge is a salt cedar that grows widespread in the desert mountains in Xinjiang. T. hohenackeri has not been investigated earlier, although there are many reports of phytochemical work on other Tamarix species. Materials and Methods: To find out natural angiotensin-converting enzyme (ACE) inhibitor and platelet aggregation inhibitors, the bioactive extract (ethyl acetate [EtOAc] fraction) from the dried aerial parts of T. hohenackeri were investigated. The active fraction was purified by repeated column chromatography, including silica gel, Sephadex LH-20 column, medium-pressure liquid chromatography (MPLC) (polyamide column) and high-performance liquid chromatography (HPLC). The isolated major constituents were tested for their anti-platelet aggregation activity. Results: Bioassay-directed separation of the EtOAc fraction of the 70% ethanol extract from the air-dried aerial parts of T. hohenackeri led to the isolation of a new triterpenoid lactone (1), together with 13 known compounds (2-14). It was the first time to focus on screening bioactive constituents for this plant. The chemical structures were established on the basis of spectral data (ESI-MS and NMR). The results showed that the flavonoid compounds (7 and 8) and phenolic compounds (9, 10, 11, and 14) were potential ACE inhibitors. And the flavonoid compounds (5 and 7) showed significant anti-platelet aggregation activities. Conclusion: On the basis of the chemical and biological data, the material basis of ACE inhibitory activity for the active part was the phenolic constituents. However, the flavonoid compounds were responsible for the anti-platelet aggregation. The primary structure and activity relationship were also discussed respectively. PMID:24914275

  9. Angiotensin-converting enzyme inhibitor-induced angioedema and hereditary angioedema: a comparison study of attack severity.

    PubMed

    Javaud, Nicolas; Charpentier, Stéphane; Lapostolle, Frédéric; Lekouara, Hakim; Boubaya, Marouane; Lenoir, Gilles; Mekinian, Arsène; Adnet, Frédéric; Fain, Olivier

    2015-01-01

    Objective There appears to be differences in the clinical presentation of hereditary angioedema (HAE) and angiotensin-converting enzyme inhibitor-induced (ACE-I) angioedema (AE). The aim of this study was to compare the clinical characteristics of these two AE forms. Methods We conducted a retrospective study of consecutive patients with HAE or ACE-I AE. The attack characteristics experienced by the patients were compared by a logistic regression analysis using generalized estimating equations. Results A total of 56 patients were included in this study (ACE-I AE, n=25; HAE, n=31). A total of 534 attacks were documented. Severe attacks were more common in the patients who had an acute episode of ACE-I AE than HAE. Swelling of the tongue, lips and larynx were significantly associated with ACE-I AE [OR: 8.70 (95% CI, 1.04-73.70), OR: 20.4 (95% CI, 4.9-84.2) and OR: 7.50 (95% CI, 1.20-48.30), respectively]. Conclusion Swelling of the tongue, lips and larynx are significantly more frequent in drug-induced AE than HAE.

  10. Prostacyclin: its pathogenic role in essential hypertension and the class effect of ACE inhibitors on prostaglandin metabolism.

    PubMed

    Rodríguez-García, J L; Villa, E; Serrano, M; Gallardo, J; García-Robles, R

    1999-01-01

    Angiotensin-converting enzyme inhibitors (ACEI) block degradation of bradykinin, and bradykinin stimulates prostacyclin synthesis. Therefore, we set out to determine whether the effects of ACE inhibitors on prostaglandin production in essential hypertensive patients are class effects or are dependent on ACE inhibitor structure. In addition, we studied whether hypertensives show an impaired capacity to synthesize vasodilator prostaglandins. To address these questions, we compared the effects of captopril (sulfhydryl-containing inhibitor), enalapril and ramipril (carboxyl-containing inhibitors) and fosinopril (phosphoryl-containing inhibitor) on blood pressure and urinary excretion of 6-keto-prostaglandin (PG) F1-alpha (the breakdown product of prostacyclin) in 44 mild-to-moderate essential hypertensive subjects before and 8 weeks after administration of an ACEI. We also studied prostacyclin excretion in 15 normotensive healthy controls. Levels of urinary 6-keto-PGF1-alpha (pg/ml) were measured by specific radioimmunoassay. Hypertensive subjects showed a lower excretion of 6-keto-PGF1-alpha than normotensive controls (212+/-147 vs 353+/-98 pg/ml, p < 0.001). All ACEI induced a significant decrease in MAP and increased the rate of excretion of the prostacyclin metabolite: C, 211+/-200 to 338+/-250 pg/ml, p < 0.05; E, 202+/-133 to 296+/-207 pg/ml, p < 0.05; R, 205+/-127 to 342+/-211 pg/ml, p < 0.05; F, 235+/-128 to 347+/-241 pg/ml, p < 0.05. In hypertensives (n = 44) the decrease in blood pressure correlated negatively with the rise in 6-keto-PGF1-alpha excretion (r = -0.51, p < 0.001). These data suggest that impaired prostacyclin biosynthesis in hypertensive patients could account for haemodynamic changes leading to the hypertensive state. Moreover, the hypotensive mechanisms of ACEI may be mediated by an increase in prostacyclin production; this effect seems to be class-dependent.

  11. The ACE inhibitor ( sup 3 H)SQ29,852 identifies a high affinity recognition site located in the human temporal cortex

    SciTech Connect

    Barnes, N.M.; Costall, B.; Egli, P.; Horovitz, Z.P.; Ironside, J.W.; Naylor, R.J.; Williams, T.J. )

    1990-07-01

    The angiotensin converting enzyme (ACE) inhibitor ({sup 3}H)SQ29,852 identified a single high affinity recognition site (defined by 10.0 microM captopril) in the human temporal cortex (pKD 8.62 +/- 0.03; Bmax 248 +/- 24 fmol mg-1 protein, mean +/- S.E.M., n = 4). ACE inhibitors and thiorphan competed to a similar level for the ({sup 3}H)SQ29,852 binding site in the human temporal cortex with a rank order of affinity (pKi values mean +/- S.E.M., n = 3), lisinopril (9.49 +/- 0.02), captopril (9.16 +/- 0.08), SQ29,852 (8.58 +/- 0.04), epicaptopril (7.09 +/- 0.08), fosinopril (7.08 +/- 0.05) and thiorphan (6.40 +/- 0.04). Since this rank order of affinity is similar to the affinity of these compounds to inhibit brain ACE activity it is concluded that ({sup 3}H)SQ29,852 selectively labels the inhibitor recognition site of ACE in the human temporal cortex.

  12. Isolation of angiotensin converting enzyme (ACE) inhibiting triterpenes from Schinus molle.

    PubMed

    Olafsson, K; Jaroszewski, J W; Smitt, U W; Nyman, U

    1997-08-01

    Bioactivity-guided fractionation of extracts of Schinus molle leaves, using an in vitro assay, led to the isolation of ACE-inhibitory steroidal triterpenes of the euphane type, identified by means of NMR spectroscopic methods. One of the triterpenes was isolated as an equilibrium mixture of epimeric aldehydes. The triterpenes showed moderate ACE-inhibitory activity (IC(50) about 250 microM).

  13. Functional and molecular evidence for expression of the renin angiotensin system and ADAM17-mediated ACE2 shedding in COS7 cells

    PubMed Central

    Grobe, Nadja; Di Fulvio, Mauricio; Kashkari, Nada; Chodavarapu, Harshita; Somineni, Hari K.; Singh, Richa

    2015-01-01

    The renin angiotensin system (RAS) plays a vital role in the regulation of the cardiovascular and renal functions. COS7 is a robust and easily transfectable cell line derived from the kidney of the African green monkey, Cercopithecus aethiops. The aims of this study were to 1) demonstrate the presence of an endogenous and functional RAS in COS7, and 2) investigate the role of a disintegrin and metalloproteinase-17 (ADAM17) in the ectodomain shedding of angiotensin converting enzyme-2 (ACE2). Reverse transcription coupled to gene-specific polymerase chain reaction demonstrated expression of ACE, ACE2, angiotensin II type 1 receptor (AT1R), and renin at the transcript levels in total RNA cell extracts. Western blot and immunohistochemistry identified ACE (60 kDa), ACE2 (75 kDa), AT1R (43 kDa), renin (41 kDa), and ADAM17 (130 kDa) in COS7. At the functional level, a sensitive and selective mass spectrometric approach detected endogenous renin, ACE, and ACE2 activities. ANG-(1–7) formation (m/z 899) from the natural substrate ANG II (m/z 1,046) was detected in lysates and media. COS7 cells stably expressing shRNA constructs directed against endogenous ADAM17 showed reduced ACE2 shedding into the media. This is the first study demonstrating endogenous expression of the RAS and ADAM17 in the widely used COS7 cell line and its utility to study ectodomain shedding of ACE2 mediated by ADAM17 in vitro. The transfectable nature of this cell line makes it an attractive cell model for studying the molecular, functional, and pharmacological properties of the renal RAS. PMID:25740155

  14. ACE2 Inhibits Angiotensin II-Induced Abdominal Aortic Aneurysm in Mice.

    PubMed

    Hao, QingQing; Dong, XueFei; Chen, Xu; Yan, Feng; Wang, Xiaoyu; Shi, Haishui; Dong, Bo

    2017-01-31

    Recent study have demonstrated that ACE2 plays an important role in the pathogenesis of abdominal Aortic Aneurysm (AAA). But, little study was reported about the direct effect of ACE2 overexpression on the aneurysm. In this study, we hypothesize that overexpression of ACE2 may prevent the pathogenesis of aneurysm by decreasing RAS activation. Thirty-nine Mice were assigned to 3 groups randomly (n=13 in each group), ACE2 group, Ad.EGFP group and Control group. After 8-week treatment, abdominal aortas with AAA were obtained for HE staining, VVG, immunohistochemistry and Western blotting. The incidence and severity of AAA, macrophage infiltration and MMP protein expression were all detected. The results showed that ACE2 gene transfer significantly decreased the occurrence of AAA and inhibited AAA formation in ApoE-/- mice by inhibiting inflammatory response and MMP activation, the mechanisms may involve decreased ERK and AngII-NF-kB signaling pathways.

  15. Cost-Effectiveness of Angiotensin-Converting Enzyme Inhibitors for the Prevention of Diabetic Nephropathy in The Netherlands – A Markov Model

    PubMed Central

    Adarkwah, Charles Christian; Gandjour, Afschin; Akkerman, Maren; Evers, Silvia M.

    2011-01-01

    Objective Type 2 diabetes is the main cause of end-stage renal disease (ESRD) in Europe and the USA. Angiotensin-converting enzyme (ACE) inhibitors have a potential to slow down the progression of renal disease and therefore provide a renal-protective effect. The aim of our study was to assess the most cost-effective time to start an ACE inhibitor (or an angiotensin II receptor blocker [ARB] if coughing as a side effect occurs) in patients with newly diagnosed type 2 diabetes in The Netherlands. Methods A lifetime Markov decision model with simulated 50-year-old patients with newly diagnosed diabetes mellitus was developed using published data on costs and health outcomes and simulating the progression of renal disease. A health insurance perspective was adopted. Three strategies were compared: treating all patients at the time of diagnosing type 2 diabetes, screening for microalbuminuria, and screening for macroalbuminuria. Results In the base-case analysis, the treat-all strategy is associated with the lowest costs and highest benefit and therefore dominates screening both for macroalbuminuria and microalbuminuria. A multivariate sensitivity analysis shows that the probability of savings is 70%. Conclusions In The Netherlands for patients with type 2 diabetes prescription of an ACE inhibitor immediately after diagnosis should be considered if they do not have contraindications. An ARB should be considered for those patients developing a dry cough under ACE inhibitor therapy. The potential for cost savings would be even larger if the prevention of cardiovascular events were considered. PMID:22022539

  16. Identification of new polymorphisms of the angiotensin I-converting enzyme (ACE) gene, and study of their relationship to plasma ACE levels by two-QTL segregation-linkage analysis.

    PubMed Central

    Villard, E.; Tiret, L.; Visvikis, S.; Rakotovao, R.; Cambien, F.; Soubrier, F.

    1996-01-01

    Plasma angiotensin I-converting enzyme (ACE) levels are highly genetically determined. A previous segregation-linkage analysis suggested the existence of a functional mutation located within or close to the ACE locus, in almost complete linkage desequilibrium (LD) with the ACE insertion/deletion (I/D) polymorphism and accounting for half the ACE variance. In order to identify the functional variant at the molecular level, we compared ACE gene sequences between four subjects selected for having contrasted ACE levels and I/D genotypes. We identified 10 new polymorphisms, among which 8 were genotyped in 95 healthy nuclear families, in addition to the I/D polymorphism. These polymorphisms could be divided into two groups: five polymorphisms in the 5' region and three in the coding sequence and the 3' UTR. Within each group, polymorphisms were in nearly complete association, whereas polymorphisms from the two groups were in strong negative LD. After adjustment for the I/D polymorphism, all polymorphisms of the 5' group remained significantly associated with ACE levels, which suggests the existence of two quantitative trait loci (QTL) acting additively on ACE levels. Segregation-linkage analyses including one or two ACE-linked QTLs in LD with two ACE markers were performed to test this hypothesis. The two QTLs and the two markers were assumed to be in complete LD. Results supported the existence of two ACE-linked QTLs, which would explain 38% and 49% of the ACE variance in parents and offspring, respectively. One of these QTLs might be the I/D polymorphism itself or the newly characterized 4656(CT)2/3 polymorphism. The second QTL would have a frequency of approximately .20, which is incompatible with any of the yet-identified polymorphisms. More extensive sequencing and extended analyses in larger samples and in other populations will be necessary to characterize definitely the functional variants. PMID:8651305

  17. The effect of enalapril (MK421), an angiotensin converting enzyme inhibitor, on the conscious pregnant ewe and her foetus.

    PubMed

    Broughton Pipkin, F; Wallace, C P

    1986-03-01

    The effects of enalapril, an angiotensin converting enzyme (ACE) inhibitor, on maternal and foetal blood pressure, heart rate and components of the renin-angiotensin-aldosterone system were studied in 9 chronically-cannulated pregnant ewes and their foetuses. Six ewes received 1 mg kg-1 enalapril i.v. while 3 were given 2 mg kg-1. Although the initial fall in blood pressure was slightly greater in the higher dose group, there was substantial overlap of data. The pressor response to angiotensin I, assessing ACE activity, was abolished within 10 min of administration, and did not recover during 3 h of observation. Maternal systolic and diastolic pressures reached a nadir 90 min after administration (P less than 0.001, P less than 0.002 respectively). The maximum tachycardia was seen at 60 min (P less than 0.05). The foetuses of the ewes given 1 mg kg-1 enalapril showed no change in systolic or diastolic blood pressure or heart rate. Those of the ewes given the higher dose showed late-onset hypotension, coincident with the lowest maternal blood pressures. Maternal plasma renin concentration (PRC) had risen significantly by 30 min (P less than 0.02), reaching a maximum at approximately 90 min. Maternal plasma angiotensin II and aldosterone concentrations both fell initially (P less than 0.05) but were almost at basal levels by the end of the experiment. Foetal plasma renin, angiotensin II and aldosterone concentrations were unchanged throughout the experiment. Peak values of enaprilic acid, the active principle, were recorded in maternal plasma 65-90 min after administration of 1 mg kg-1, and 25-30 min after the administration of 2 mg kg-1. A trace amount of the active principle was recorded in the foetal plasma of one lamb, whose mother had been given the higher dose. None was recorded in the plasma from three other lambs. Maternal plasma ACE concentrations fell by an average of 84%; in 4 of the 6 ewes in which concentrations were measured they were undetectable after

  18. Are ACE-inhibitors or ARB's still needed for cardiovascular prevention in high risk patients? Insights from profess and transcend.

    PubMed

    Van Mieghem, W; Billiouw, J M; Brohet, C; Dupont, A G; Gazagnes, M D; Heller, F; Krzesinski, J M; Missault, L; Persu, A; Piérard, L; Rottiers, R; Vanhooren, G; Vervaet, P; Herman, A G

    2010-01-01

    The HOPE and EUROPA clinical studies have shown that treatment with the angiotensin-converting enzyme (ACE) inhibitors, ramipril and perindopril, may reduce the occurrence of major cardiovascular events in patients with proven atherosclerotic disease. The recently published results of the PRoFESS and TRANSCEND trials completed the much needed information concerning the use of an angiotensin receptor blocker for patients at high risk of cardiovascular events. PROFESS compared a therapy of telmisartan 80 mg daily with placebo in patients with a recent ischemic stroke. The difference in the primary outcome of first recurrent stroke was not statistically significant between telmisartan and placebo. The secondary outcome of major cardiovascular events showed a relative risk reduction (RRR) of 7% in favour of telmisartan. This tended to be significant (p = 0.06) despite a rather short follow-up period of only 28 months. In TRANSCEND 5926 patients at high risk for cardiovascular events were randomized to a treatment with telmisartan 80 mg daily or placebo for a mean duration of follow-up of 56 months. The primary composite outcome of cardiovascular death, myocardial infarction, stroke or hospitalization for heart failure showed a non-significant 8% RRR in favour of the telmisartan treated patients. The main secondary outcome of cardiovascular death and myocardial infarction or stroke as used in the HOPE trial showed a non-significant RRR of 13% in favour of telmisartan treated patients (p = 0.068 adjusted for multiplicity of comparisons). In comparing the Kaplan-Meier curves for the endpoint of major cardiovascular events used in HOPE, EUROPA, TRANSCEND and PRoFESS, the trends are similar. Results of most of the recently published trials have been neutral.This could partly be explained by major improvements in the optimal background therapy of the patients included. Nevertheless, the results of PRoFESS and TRANSCEND do not contradict the results from previous studies with

  19. The transcription factor HNF1α induces expression of angiotensin-converting enzyme 2 (ACE2) in pancreatic islets from evolutionarily conserved promoter motifs.

    PubMed

    Pedersen, Kim Brint; Chhabra, Kavaljit H; Nguyen, Van K; Xia, Huijing; Lazartigues, Eric

    2013-11-01

    Pancreatic angiotensin-converting enzyme 2 (ACE2) has previously been shown to be critical for maintaining glycemia and β-cell function. Efforts to maintain or increase ACE2 expression in pancreatic β-cells might therefore have therapeutic potential for treating diabetes. In our study, we investigated the transcriptional role of hepatocyte nuclear factor 1α (HNF1α) and hepatocyte nuclear factor 1β (HNF1β) in induction of ACE2 expression in insulin-secreting cells. A deficient allele of HNF1α or HNF1β causes maturity-onset diabetes of the young (MODY) types 3 and 5, respectively, in humans. We found that ACE2 is primarily transcribed from the proximal part of the ACE2 promoter in the pancreas. In the proximal part of the human ACE2 promoter, we further identified three functional HNF1 binding sites, as they have binding affinity for HNF1α and HNF1β and are required for induction of promoter activity by HNF1β in insulinoma cells. These three sites are well-conserved among mammalian species. Both HNF1α and HNF1β induce expression of ACE2 mRNA and lead to elevated levels of ACE2 protein and ACE2 enzymatic activity in insulinoma cells. Furthermore, HNF1α dose-dependently increases ACE2 expression in primary pancreatic islet cells. We conclude that HNF1α can induce the expression of ACE2 in pancreatic islet cells via evolutionarily conserved HNF1 binding sites in the ACE2 promoter. Potential therapeutics aimed at counteracting functional HNF1α depletion in diabetes and MODY3 will thus have ACE2 induction in pancreatic islets as a likely beneficial effect.

  20. Angiotensin-converting enzyme (ACE) gene insertion/deletion polymorphism is not a risk factor for hypertension in SLE nephritis.

    PubMed

    Negi, Vir S; Devaraju, Panneer; Gulati, Reena

    2015-09-01

    SLE is a systemic autoimmune disease with high prevalence of hypertension. Around 40-75 % of SLE patients develop nephritis, a major cause of hypertension and mortality. Angiotensin-converting enzyme (ACE) maintains the blood pressure and blood volume homeostasis. An insertion/deletion (I/D) polymorphism in intron 16 of ACE gene was reported to influence the development of hypertension, nephritis, and cardiovascular diseases in different ethnic populations. Despite compelling evidence for the high prevalence of hypertension in individuals with SLE, underlying factors for its development are not well studied. With this background, we analyzed the influence of ACE insertion/deletion polymorphism on susceptibility to SLE, development of nephritis and hypertension, other clinical features and autoantibody phenotype in South Indian SLE patients. Three hundred patients with SLE and 460 age and sex similar ethnicity matched individuals were included as patients and healthy controls, respectively. The ACE gene insertion/deletion polymorphism was analyzed by PCR. Insertion (I) and deletion (D) alleles were observed to be equally distributed among patients (57 and 43 %) and controls (59 and 41 %), respectively. The mutant (D) allele did not confer significant risk for SLE (II vs. ID: p = 0.4, OR 1.15, 95 % CI 0.8-1.6; II vs. DD: p = 0.34, OR 1.22, 95 % CI 0.8-1.85). There was no association of the ACE genotype or the allele with development of lupus nephritis (II vs. ID: p = 0.19, OR 1.41, 95 % CI 0.84-2.36; II vs. DD: p = 0.41, OR 0.74, 95 % CI 0.38-1.41) or hypertension (II vs. ID: p = 0.85, OR 0.9, 95 % CI 0.43-1.8; II vs. DD: p = 0.66, OR 1.217, 95 % CI 0.5-2.8). The presence of mutant allele (D) was not found to influence any clinical features or autoantibody phenotype. The insertion/deletion polymorphism of the ACE gene is not a genetic risk factor for SLE and does not influence development of hypertension or lupus nephritis in South Indian

  1. Effect of Angiotensin-Converting Enzyme Inhibitor, Lisinopril on Morphological and Biochemical Aspects of Fibrotic Liver Regeneration

    PubMed Central

    Ambreen, Aysha; Jahan, Sarwat; Malik, Satwat

    2016-01-01

    Background/Aims: Hepatic fibrosis results in defective liver regeneration following partial hepatectomy. Angiotensin converting enzyme (ACE) inhibitors can enhance liver regeneration and are also involved in the reduction of hepatic fibrosis. The present study has been conducted to evaluate the potential effect of an ACE inhibitor, lisinopril, on the morphological and biochemical aspects of fibrotic liver regeneration. Materials and Methods: Eight-week old female Sprague Dawley rats were made fibrotic by intragastric carbon tetrachloride treatment. Rats were given saline or lisinopril (1 mg/kg) orally for 1 week and were subjected to sham surgery or two-third partial hepatectomy. Liver regenerative and functional capacities were determined 48 hours post surgery. Results: Lisinopril administration did not affect the regeneration rate, proliferation cell nuclear antigen count, and hepatocellular area of fibrotic livers following partial hepatectomy. No statistically significant difference between treated and control rats regarding mitotic count, hepatocyte nuclear area, and binuclear hepatocyte frequency was observed. Serum biochemical analysis showed that lisinopril non-significantly decreased the partial hepatectomy induced elevated levels of alanine aminotransferase, aspartate transaminase, and alkaline phosphatase whereas lactate dehydrogenase and total bilirubin levels were significantly reduced. No marked reduction in hepatic collagen content and alpha smooth actin positive cells was observed by lisinopril treatment. Conclusion: ACE inhibitor lisinopril did not produce major histomorphological alterations in regenerating fibrotic liver following partial hepatectomy, however, it may improve its functional capability. PMID:27976638

  2. Inequity of access to ACE inhibitors in Swedish heart failure patients: a register-based study

    PubMed Central

    Lindahl, Bertil; Hanning, Marianne; Westerling, Ragnar

    2016-01-01

    Background Several international studies suggest inequity in access to evidence-based heart failure (HF) care. Specifically, studies of ACE inhibitors (ACEIs) point to reduced ACEI access related to female sex, old age and socioeconomic position. Thus far, most studies have either been rather small, lacking diagnostic data, or lacking the possibility to account for several individual-based sociodemographic factors. Our aim was to investigate differences, which could reflect inequity in access to ACEIs based on sex, age, socioeconomic status or immigration status in Swedish patients with HF. Methods Individually linked register data for all Swedish adults hospitalised for HF in 2005–2010 (n=93 258) were analysed by multivariate regression models to assess the independent risk of female sex, high age, low employment status, low income level, low educational level or foreign country of birth, associated with lack of an ACEI dispensation within 1 year of hospitalisation. Adjustment for possible confounding was made for age, comorbidity, Angiotensin receptor blocker therapy, period and follow-up time. Results Analysis revealed an adjusted OR for no ACEI dispensation for women of 1.31 (95% CI 1.27 to 1.35); for the oldest patients of 2.71 (95% CI 2.53 to 2.91); and for unemployed patients of 1.59 (95% CI 1.46 to 1.73). Conclusions Access to ACEI treatment was reduced in women, older patients and unemployed patients. We conclude that access to ACEIs is inequitable among Swedish patients with HF. Future studies should include clinical data, as well as mortality outcomes in different groups. PMID:26261264

  3. Influence of angiotensin converting enzyme (ACE) gene rs4362 polymorphism on the progression of kidney failure in patients with autosomal dominant polycystic kidney disease (ADPKD)

    PubMed Central

    Ramanathan, Gnanasambandan; Ghosh, Santu; Elumalai, Ramprasad; Periyasamy, Soundararajan; Lakkakula, Bhaskar V.K.S.

    2016-01-01

    Background & objectives: Autosomal dominant polycystic kidney disease (ADPKD) is an inherited systemic disorder, characterized by the fluid filled cysts in the kidneys leading to end stage renal failure in later years of life. Hypertension is one of the major factors independently contributing to the chronic kidney disease (CKD) progression. The renin-angiotensin aldosterone system (RAAS) genes have been extensively studied as hypertension candidate genes. The aim of the present study was to investigate the role of angiotensin converting enzyme tagging - single nucleotide polymorphisms (ACE tag-SNPs) in progression of CKD in patients with ADPKD. Methods: In the present study six ACE tagSNPs (angiotensin converting enzyme tag single nucleotide polymorphisms) and insertion/deletion (I/D) in 102 ADPKD patients and 106 control subjects were investigated. The tagSNPs were genotyped using FRET-based KASPar method and ACE ID by polymerase chain reaction (PCR) and electrophoresis. Genotypes and haplotypes were compared between ADPKD patients and controls. Univariate and multivariate logistic regression analyses were performed to assess the effect of genotypes and hypertension on CKD advancement. Mantel-Haenszel (M-H) stratified analysis was performed to study the relationship between different CKD stages and hypertension and their interaction. Results: All loci were polymorphic and except rs4293 SNP the remaining loci followed Hardy-Weinberg equilibrium. Distribution of ACE genotypes and haplotypes in controls and ADPKD patients was not significant. A significant linkage disequilibrium (LD) was observed between SNPs forming two LD blocks. The univariate analysis revealed that the age, hypertension, family history of diabetes and ACE rs4362 contributed to the advancement of CKD. Interpretation & conclusions: The results suggest that the ACE genotypes are effect modifiers of the relationship between hypertension and CKD advancement among the ADPKD patients. PMID:27748299

  4. Effects of the angiotensin converting enzyme inhibitor enalapril compared with diuretic therapy in elderly hypertensive patients.

    PubMed

    Verza, M; Cacciapuoti, F; Spiezia, R; D'Avino, M; Arpino, G; D'Errico, S; Sepe, J; Varricchio, M

    1988-11-01

    The aim of this study was to evaluate the usefulness of the angiotensin converting enzyme (ACE) inhibitor enalapril in a group of 30 patients (mean age 73.3 years) with moderate hypertension and normal haematological and chemical parameters (170 +/- 8.1 mmHg systolic and 104 +/- 5.8 mmHg diastolic blood pressure), who were receiving diuretic therapy with chlorthalidone (12.5 mg/day). This therapy caused a significant decrease in systolic and diastolic blood pressure (to 165 +/- 6.7 and 98 +/- 4.7 mmHg, respectively; P less than 0.001) but it also induced hypokalaemia (3.04 +/- 0.7 mmol/l; P less than 0.001) and multiple (greater than 10/h) and complex premature ventricular depolarizations (2nd, 3rd and 4th Lown grade). Enalapril treatment (5 mg/day for 5 days and 10 mg thereafter) was added to the diuretic therapy and after 2 months a further decrease in blood pressure was observed (to 158 +/- 5.6 mmHg systolic, P less than 0.001; 87.2 +/- 5.0 mmHg diastolic, P less than 0.001). Moreover, there was a significant reduction in the mean heart rate (from 79 to 72 beats/min, P less than 0.005) and an increase in serum potassium (to 4.19 +/- 0.2 mmol/l; P less than 0.001). In 80% of patients a 24-h dynamic electrocardiogram showed a significant reduction in both the number and complexity of premature ventricular depolarizations. Our findings suggest that ACE inhibitors can be useful in patients developing hypokalaemia during therapy. However, we are not yet able to explain the beneficial effects of enalapril in decreasing the frequency of premature ventricular depolarizations.

  5. Is angiotensin-converting enzyme inhibitors/angiotensin receptor blockers therapy protective against prostate cancer?

    PubMed Central

    Mao, Yeqing; Xu, Xin; Wang, Xiao; Zheng, Xiangyi; Xie, Liping

    2016-01-01

    Emerging evidence suggests that renin-angiotensin system (RAS) may act as a molecular and therapeutic target for treating site-specific cancers, including prostate cancer. However, previous observational studies regarding the association between RAS inhibitors and prostate cancer risk have reported inconsistent results. We examined this association by performing a systematic review and meta-analysis. A total of 20,267 patients from nine cohort studies were enrolled. Compared with non-users of RAS inhibitors, individuals using RAS inhibitors had a reduced risk of prostate cancer (RR 0.92, 95 % CI 0.87-0.98), without statistically significant heterogeneity among studies (P = 0.118 for heterogeneity, I2 = 37.6 %). In addition, when subgroup analyses by study quality and number of cases, more statistically significant associations were observed in studies of high quality (RR 0.93, 95 % CI 0.88-0.97) and large sample size (RR 0.94, 95 % CI 0.91-0.98). There was no evidence of significant publication bias with Begg's test (P = 0.602) or with Egger's test (P = 0.350). Overall, this study indicates that use of RAS inhibitors may be associated with a decreased risk of prostate cancer. Large-scale well designed studies are needed to further explore this association. PMID:26760503

  6. The Angiotensin-converting enzyme inhibitor captopril inhibits poly(adp-ribose) polymerase activation and exerts beneficial effects in an ovine model of burn and smoke injury.

    PubMed

    Asmussen, Sven; Bartha, Eva; Olah, Gabor; Sbrana, Elena; Rehberg, Sebastian W; Yamamoto, Yusuke; Enkhbaatar, Perenlei; Hawkins, Hal K; Ito, Hiroshi; Cox, Robert A; Traber, Lillian D; Traber, Daniel L; Szabo, Csaba

    2011-10-01

    We investigated the effect of the angiotensin-converting enzyme (ACE) inhibitor captopril in a clinically relevant ovine model of smoke and burn injury, with special reference to oxidative stress and activation of poly(ADP-ribose) polymerase, in the lung and in circulating leukocytes. Female, adult sheep (28-40 kg) were divided into three groups. After tracheostomy and under deep anesthesia, both vehicle-control-treated (n = 5) and captopril-treated (20 mg/kg per day, i.v., starting 0.5 h before the injury) (n = 5) groups were subjected to 2 × 20%, third-degree burn injury and were insufflated with 48 breaths of cotton smoke. A sham group not receiving burn/smoke was also studied (n = 5). Animals were mechanically ventilated and fluid resuscitated for 24 h in the awake state. Burn and smoke injury resulted in an upregulation of ACE in the lung, evidenced by immunohistochemical determination and Western blotting. Burn and smoke injury resulted in pulmonary dysfunction, as well as systemic hemodynamic alterations. Captopril treatment of burn and smoke animals improved PaO2/FiO2 ratio and pulmonary shunt fraction and reduced the degree of lung edema. There was a marked increase in PAR levels in circulating leukocytes after burn/smoke injury, which was significantly decreased by captopril. The pulmonary level of ACE and the elevated pulmonary levels of transforming growth factor β in response to burn and smoke injury were significantly decreased by captopril treatment. Our results suggest that the ACE inhibitor captopril exerts beneficial effects on the pulmonary function in burn/smoke injury. The effects of the ACE inhibitor may be related to the prevention of reactive oxygen species-induced poly(ADP-ribose)polymerase overactivation. Angiotensin-converting enzyme inhibition may also exert additional beneficial effects by inhibiting the expression of the profibrotic mediator transforming growth factor β.

  7. Separation and Characterization of Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Saurida elongata Proteins Hydrolysate by IMAC-Ni2+

    PubMed Central

    Sun, Lixia; Wu, Shanguang; Zhou, Liqin; Wang, Feng; Lan, Xiongdiao; Sun, Jianhua; Tong, Zhangfa; Liao, Dankui

    2017-01-01

    Lizard fish protein hydrolysates (LFPH) were prepared from Lizard fish (Saurida elongata) proteins possessing powerful angiotensin I converting enzyme (ACE) inhibitory activity and the fraction (LFPH-I) with high ACE inhibitory activity was obtained through ultrafiltration. The active Fraction (F2) was isolated from LFPH-I using immobilized metal affinity chromatography (IMAC-Ni2+). Analysis of amino acid levels revealed that F2 eluted from IMAC was enriched in Met, His, Tyr, Pro, Ile, and Leu compared to the crude peptide LFPH-I. F2 with the high ACE inhibitory activity (IC50 of 0.116 mg·mL−1) was further separated by a reverse-phase column to yield a novel ACE inhibitory peptide with IC50 value of 52 μM. The ACE inhibitory peptide was identified as Arg-Tyr-Arg-Pro, RYRP. The present study demonstrated that IMAC may be a useful tool for the separation of ACE inhibitory peptides from protein hydrolysate. PMID:28212269

  8. Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding

    PubMed Central

    Danilov, Sergei M.; Lünsdorf, Heinrich; Akinbi, Henry T.; Nesterovitch, Andrew B.; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V.; Piegeler, Tobias; Golukhova, Elena Z.; Schwartz, David E.; Dull, Randal O.; Minshall, Richard D.; Kost, Olga A.; Garcia, Joe G. N.

    2016-01-01

    Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients. PMID:27734897

  9. ACE Inhibitor and ARB Medication Use among Medicaid Enrollees with Diabetes

    PubMed Central

    Lora, Claudia M.; Sokolovsky, Alexander W.; Touchette, Daniel R.; Jin, Jing; Xiaojing, Hu; Gao, Weihua; Gerber, Ben S.

    2013-01-01

    Objective To examine Ace-Inhibitor (ACEI)and Angiotensin Receptor Blockers (ARB) prescription and adherence patterns by race in diabetic Public Aid recipients. Design, Subjects, and Measures We analyzed prescription records of 27,529 adults age 18–64 with diabetes enrolled in the State of Illinois Public Aid program during 2007 who had at least one clinical indication for receiving an ACEI/ARB prescription. We calculated Proportion of Days Covered (PDC) to assess adherence. Multivariate models adjusted for age, gender, ACEI/ARB indication, and any significant interaction terms. Results Only 47.4% of individuals with at least one indication for ACEI/ARB had filled an ACEI/ARB prescription. African American men were more likely than Caucasian men to ever fill an ACEI/ARB prescription [Adjusted Odds Ratio, AOR (95% CI) 1.69 (1.55–1.83)]. Hispanic English and Spanish speaking men were also more likely than Caucasian men to ever fill an ACEI/ARB prescription [AOR (95% CI) 1.37 (1.16–1.62) and 1.27 (1.05–1.53), respectively]. Similarly, African American and Hispanic English and Spanish speaking women were more likely than Caucasian women to ever fill an ACEI/ARB prescription [AOR (95% CI) 1.70 (1.59–1.81)], 1.55 (1.36–1.76), and 1.98 (1.73–2.28), respectively]. However, African-Americans and Hispanics were less likely than Caucasians to achieve a PDC ≥ 80%. Compared to Caucasians, Hispanic Spanish speakers were the least likely to be adherent [AOR (95% CI) 0.49 (0.41–0.58)]. Furthermore, older individuals were more likely to achieve a PDC ≥ 80% than younger individuals. Conclusion African Americans and Hispanics with diabetes receiving public aid in Illinois were more likely than Caucasians to have filled at least one ACEI/ARB prescription. However, they were less adherent with these medications. Future studies should assess barriers to medication adherence in this population. PMID:23530300

  10. Efficacy and Safety of Complete RAAS Blockade with ALISKIREN in Patients with Refractory Proteinuria Who were already on Combined ACE Inhibitor, ARB, and Aldosterone Antagonist

    PubMed Central

    Sreelatha, M

    2016-01-01

    Introduction Proteinuria is always associated with intrinsic kidney disese and is a strong predictor of later development of End Stage Renal Disease (ESRD). As Renin Angiotensin Aldosterone System (RAAS) has a role in mediating proteinuria, inhibitors of this system are renoprotective and patients with refractory proteinuria are put on a combination of these agents. The routinely employed triple blockade of RAAS with Angiotensin Converting Enzyme (ACE) inhibitor, ARB and Aldosterone antagonist has many limitations. Addition of Aliskiren to this combination suppresses the RAAS at the earliest stage and can offset many of these limitations. Aim This study was conducted to assess the safety and efficacy of complete RAAS blockade by the addition of Aliskiren in those patients with refractory proteinuria who were already on triple blockade with ACE inhibitor, ARB and Aldosterone antagonist. Settings This study was conducted in Nephrology Department, Calicut Medical College. Materials and Methods A total of 36 patients with refractory proteinuria who were already on ACE inhibitor, ARB and Aldosterone antagonist were divided in to two groups A and B. Group A received Aliskiren in addition to the above combination whereas group B continued the same treatment for 12 weeks. Efficacy of the treatment was assessed by recording 24hr urine protein and safety by S.Creatinine, S.Potassium every 2 weeks of the treatment period. Statistical Analysis Statistical analysis of the lab values was done using SPSS software. Unpaired t-test, Paired t-test and Chi-square test were done for data analysis. Results Statistical analysis revealed that addition of Aliskiren to the combination therapy with ACE inhibitor+ ARB+ Aldosterone antagonist offers no advantage. But mean reduction in proteinuria was more with Group A than Group B. There is no statistically significant change in S.Creatinine and S.Potassium at the end of treatment. Conclusion As proteinuria is a strong risk factor for

  11. Angiotensin II receptor blockade or deletion of vascular endothelial ACE does not prevent vascular dysfunction and remodeling in 20-HETE-dependent hypertension.

    PubMed

    Garcia, Victor; Joseph, Gregory; Shkolnik, Brian; Ding, Yan; Zhang, Frank Fan; Gotlinger, Katherine; Falck, John R; Dakarapu, Rambabu; Capdevila, Jorge H; Bernstein, Kenneth E; Schwartzman, Michal Laniado

    2015-07-01

    Increased vascular 20-HETE is associated with hypertension and activation of the renin-angiotensin system (RAS) through induction of vascular angiotensin-converting enzyme (ACE) expression. Cyp4a12tg mice, whose Cyp4a12-20-HETE synthase expression is under the control of a tetracycline (doxycycline, DOX) promoter, were used to assess the contribution of ACE/RAS to microvascular remodeling in 20-HETE-dependent hypertension. Treatment of Cyp4a12tg mice with DOX increased systolic blood pressure (SBP; 136 ± 2 vs. 102 ± 1 mmHg; P < 0.05), and this increase was prevented by administration of 20-HEDGE, lisinopril, or losartan. DOX-induced hypertension was associated with microvascular dysfunction and remodeling of preglomerular microvessels, which was prevented by 20-HEDGE, a 20-HETE antagonist, yet only lessened, but not prevented, by lisinopril or losartan. In ACE 3/3 mice, which lack vascular endothelial ACE, administration of 5α-dihydrotestosterone (DHT), a known inducer of 20-HETE production, increased SBP; however, the increase was about 50% of that in wild-type (WT) mice (151 ± 1 vs. 126 ± 1 mmHg). Losartan and 20-HEDGE prevented the DHT-induced increase in SBP in WT and ACE 3/3 mice. DHT treatment increased 20-HETE production and microvascular remodeling in WT and ACE 3/3 mice; however, remodeling was attenuated in the ACE 3/3 mice as opposed to WT mice (15.83 ± 1.11 vs. 22.17 ± 0.92 μm; P < 0.05). 20-HEDGE prevented microvascular remodeling in WT and ACE 3/3 mice, while losartan had no effect on microvascular remodeling in ACE 3/3. Taken together, these results suggest that RAS contributes to 20-HETE-mediated microvascular remodeling in hypertension and that 20-HETE-driven microvascular remodeling independent of blood pressure elevation does not fully rely on ACE activity in the vascular endothelium.

  12. The path to an angiotensin receptor antagonist-neprilysin inhibitor in the treatment of heart failure.

    PubMed

    Braunwald, Eugene

    2015-03-17

    The PARADIGM-HF (Prospective comparison of ARNi with ACEi to Determine Impact on Global Mortality and Morbidity in Heart Failure) trial demonstrated that a new angiotensin receptor antagonist-neprilysin inhibitor was superior to an angiotensin-converting enzyme inhibitor in reducing mortality in patients with heart failure and reduced ejection fraction. This paper traces the research path that culminated in the development of this drug. The first phase, elucidation of the renin-angiotensin-aldosterone system, began with Tigerstedt's discovery of renin, followed by isolation of angiotensin, isolation of angiotensin-converting enzyme, and synthesis of its inhibitors and of angiotensin receptor blockers. Phase 2 began with de Bold's discovery of atrial natriuretic peptide, followed by isolation of the enzyme that degrades it (neprilysin) and its inhibitors. Phase 3 consists of blocking both the renin-angiotensin-aldosterone and atrial natriuretic peptide-degrading systems simultaneously. A molecular complex, LCZ696, developed by scientists at Novartis, combines an angiotensin receptor blocker with a neprilysin inhibitor, is well tolerated, and represents an important step in the management of heart failure and reduced ejection fraction.

  13. Renal Expression of FGF23 in Progressive Renal Disease of Diabetes and the Effect of Ace Inhibitor

    PubMed Central

    Benigni, Ariela; Corna, Daniela; Tomasoni, Susanna; Rottoli, Daniela; Gaspari, Flavio; Remuzzi, Giuseppe; Zoja, Carlamaria

    2013-01-01

    Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone mainly produced by bone that acts in the kidney through FGF receptors and Klotho. Here we investigated whether the kidney was an additional source of FGF23 during renal disease using a model of type 2 diabetic nephropathy. Renal expression of FGF23 and Klotho was assessed in Zucker diabetic fatty (ZDF) and control lean rats at 2, 4, 6, 8 months of age. To evaluate whether the renoprotective effect of angiotensin converting enzyme (ACE) inhibitor in this model was associated with changes in FGF23 and Klotho, ZDF rats received ramipril from 4, when proteinuric, to 8 months of age. FGF23 mRNA was not detectable in the kidney of lean rats, nor of ZDF rats at 2 months of age. FGF23 became measurable in the kidney of diabetic rats at 4 months and significantly increased thereafter. FGF23 protein localized in proximal and distal tubules. Renal Klotho mRNA and protein decreased during time in ZDF rats. As renal disease progressed, serum phosphate levels increased in parallel with decline of fractional phosphorus excretion. Ramipril limited proteinuria and renal injury, attenuated renal FGF23 upregulation and ameliorated Klotho expression. Ramipril normalized serum phosphate levels and tended to increase fractional phosphorus excretion. These data indicate that during progressive renal disease the kidney is a site of FGF23 production which is limited by ACE inhibition. Interfering pharmacologically with the delicate balance of FGF23 and phosphorus in diabetes may have implications in clinics. PMID:23967103

  14. High Na intake increases renal angiotensin II levels and reduces expression of the ACE2-AT2R-MasR axis in obese Zucker rats

    PubMed Central

    Samuel, Preethi; Ali, Quaisar; Sabuhi, Rifat; Wu, Yonnie

    2012-01-01

    High sodium intake is known to regulate the renal renin-angiotensin system (RAS) and is a risk factor for the pathogenesis of obesity-related hypertension. The complex nature of the RAS reveals that its various components may have opposing effects on natriuresis and blood pressure regulation. We hypothesized that high sodium intake differentially regulates and shifts a balance between opposing components of the renal RAS, namely, angiotensin-converting enzyme (ACE)-ANG II-type 1 ANG II receptor (AT1R) vs. AT2-ACE2-angiotensinogen (Ang) (1–7)-Mas receptor (MasR), in obesity. In the present study, we evaluated protein and/or mRNA expression of angiotensinogen, renin, AT1A/BR, ACE, AT2R, ACE2, and MasR in the kidney cortex following 2 wk of a 8% high-sodium (HS) diet in lean and obese Zucker rats. The expression data showed that the relative expression pattern of ACE and AT1BR increased, renin decreased, and ACE2, AT2R, and MasR remained unaltered in HS-fed lean rats. On the other hand, HS intake in obese rats caused an increase in the cortical expression of ACE, a decrease in ACE2, AT2R, and MasR, and no changes in renin and AT1R. The cortical levels of ANG II increased by threefold in obese rats on HS compared with obese rats on normal salt (NS), which was not different than in lean rats. The HS intake elevated mean arterial pressure in obese rats (27 mmHg) more than in lean rats (16 mmHg). This study suggests that HS intake causes a pronounced increase in ANG II levels and a reduction in the expression of the ACE2-AT2R-MasR axis in the kidney cortex of obese rats. We conclude that such changes may lead to the potentially unopposed function of AT1R, with its various cellular and physiological roles, including the contribution to the pathogenesis of obesity-related hypertension. PMID:22592638

  15. High Na intake increases renal angiotensin II levels and reduces expression of the ACE2-AT(2)R-MasR axis in obese Zucker rats.

    PubMed

    Samuel, Preethi; Ali, Quaisar; Sabuhi, Rifat; Wu, Yonnie; Hussain, Tahir

    2012-08-01

    High sodium intake is known to regulate the renal renin-angiotensin system (RAS) and is a risk factor for the pathogenesis of obesity-related hypertension. The complex nature of the RAS reveals that its various components may have opposing effects on natriuresis and blood pressure regulation. We hypothesized that high sodium intake differentially regulates and shifts a balance between opposing components of the renal RAS, namely, angiotensin-converting enzyme (ACE)-ANG II-type 1 ANG II receptor (AT(1)R) vs. AT(2)-ACE2-angiotensinogen (Ang) (1-7)-Mas receptor (MasR), in obesity. In the present study, we evaluated protein and/or mRNA expression of angiotensinogen, renin, AT(1A/B)R, ACE, AT(2)R, ACE2, and MasR in the kidney cortex following 2 wk of a 8% high-sodium (HS) diet in lean and obese Zucker rats. The expression data showed that the relative expression pattern of ACE and AT(1B)R increased, renin decreased, and ACE2, AT(2)R, and MasR remained unaltered in HS-fed lean rats. On the other hand, HS intake in obese rats caused an increase in the cortical expression of ACE, a decrease in ACE2, AT(2)R, and MasR, and no changes in renin and AT(1)R. The cortical levels of ANG II increased by threefold in obese rats on HS compared with obese rats on normal salt (NS), which was not different than in lean rats. The HS intake elevated mean arterial pressure in obese rats (27 mmHg) more than in lean rats (16 mmHg). This study suggests that HS intake causes a pronounced increase in ANG II levels and a reduction in the expression of the ACE2-AT(2)R-MasR axis in the kidney cortex of obese rats. We conclude that such changes may lead to the potentially unopposed function of AT(1)R, with its various cellular and physiological roles, including the contribution to the pathogenesis of obesity-related hypertension.

  16. Attenuation of angiotensin converting enzyme inhibitor induced cough by iron supplementation: role of nitric oxide.

    PubMed

    Bhalla, Payal; Singh, Narinder Pal; Ravi, Krishnan

    2011-12-01

    The present study examined whether (1) the cough associated with angiotensin converting enzyme inhibitor therapy is attenuated by oral intake of iron and anti-oxidants, and (2) nitric oxide (NO) has any role in this attenuation. Of the 100 patients under investigation, cough occurred in 28 of them with preponderance in females. All the 28 patients were followed up for six weeks: the first two weeks were the observation period and the remaining four weeks the experimentation period. After the observation period, 11 patients received a single oral dose of ferrous sulphate (200 mg), eight received vitamin E (200 mg, o.d.) and vitamin C (150 mg, o.d.) and nine were given placebo during the experimentation period. Cough scoring, serum NO and malondialdehyde (MDA) levels were determined during both the periods. While there were significant decreases in cough scores, NO and MDA levels between these two periods in the iron group, cough scores and MDA level decreased significantly in the anti-oxidant group. None of these parameters changed in the control group. NO level was found to be increased significantly in patients who developed cough (n = 28) compared with those who did not cough (n = 72). These results suggest that iron supplementation suppresses cough in patients on ACE-I therapy through its effect on NO generation.

  17. Effects of ACE Inhibitors on Insulin Resistance and Lipid Profile in Children with Metabolic Syndrome

    PubMed Central

    Çelebi Bitkin, Eda; Boyraz, Mehmet; Taşkın, Necati; Akçay, Arzu; Ulucan, Korkut; Akyol, Mehmet Bedir; Akçay, Teoman

    2013-01-01

    Objective: The aim of this study was to evaluate the effects of using ACE inhibitors on insulin resistance, glucose metabolism, body fat composition, and lipid profile in children over 10 years of age with obesity-associated metabolic syndrome (MS). Methods: A total of 53 children with MS, who had been followed for at least one year were included in the study. The sample was divided into two groups: Group 1-30 obese children (13 female, 17 male) who were not using an ACE inhibitor and Group 2-23 obese children (13 female, 10 male) who were using an ACE inhibitor. Anthropometric and laboratory dataobtained at baseline and at the 3rd, 6th, and 12th months of follow-up were compared in the two groups. Results: Comparison of the data in the two groups at 3rd, 6th, and 12th months revealed no statistically significant differences in terms of weight standard deviation score (SDS), body mass index SDS, weight for height percentile, body fat percentage, and very low-density lipoprotein (VLDL)values. However, there were statistically significant differences in mean glucose and insulin levels, homeostasis model assessment for insulin resistance, LDL and high-density lipoprotein values, and highly significant differences in mean triglyceride values. Conclusions: The positive effects of ACE inhibitor drugs, particularly on hypertriglyceridemia and insulin resistance, might bring them forth as first-line drugs in the treatment of obese and hypertensive children. Randomized, controlled, double-blind, and long-term studies are needed for a definitive conclusion. Conflict of interest:None declared. PMID:24072084

  18. Investigation of interaction studies of cefpirome with ACE-inhibitors in various buffers

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad; Arayne, Muhammad Saeed; Sultana, Najma; Abbas, Hira Fatima

    2015-02-01

    This work describes a RP-HPLC method for the determination and interaction studies of cefpirome with ACE-inhibitors (captopril, enalapril and lisinopril) in various buffers. The separation and interaction of cefpirome with ACE-inhibitors was achieved on a Purospher Star, C18 (5 μm, 250 × 4.6 mm) column. Mobile phase consisted of methanol: water (80:20, v/v, pH 3.3); however, for the separation of lisinopril, it was modified to methanol-water (40:60, v/v, pH 3.3) and pumped at a flow rate of 1 mL min-1. In all cases, UV detection was performed at 225 nm. Interactions were carried out in physiological pH i.e., pH 1 (simulated gastric juice), 4 (simulated full stomach), 7.4 (blood pH) and 9 (simulated GI), drug contents were analyzed by reverse phase high performance liquid chromatography. Method was found linear in the concentration range of 1.0-50.0 μg mL-1 with correlation coefficient (r2) of 0.999. Precision (RSD%) was less than 2.0%, indicating good precision of the method and accuracy was 98.0-100.0%. Furthermore, cefpirome-ACE-inhibitors' complexes were also synthesized and results were elucidated on the basis of FT-IR, and 1H NMR. The interaction results show that these interactions are pH dependent and for the co-administration of cefpirome and ACE-inhibitors, a proper interval should be given.

  19. Angiotensin-Receptor Blocker, Angiotensin-Converting Enzyme Inhibitor, and Risks of Atrial Fibrillation

    PubMed Central

    Hsieh, Yu-Cheng; Hung, Chen-Ying; Li, Cheng-Hung; Liao, Ying-Chieh; Huang, Jin-Long; Lin, Ching-Heng; Wu, Tsu-Juey

    2016-01-01

    Abstract Both angiotensin-receptor blockers (ARB) and angiotensin-converting enzyme inhibitors (ACEI) have protective effects against atrial fibrillation (AF). The differences between ARB and ACEI in their effects on the primary prevention of AF remain unclear. This study compared ARB and ACEI in combined antihypertensive medications for reducing the risk of AF in patients with hypertension, and determined which was better for AF prevention in a nationwide cohort study. Patients aged ≥55 years and with a history of hypertension were identified from Taiwan National Health Insurance Research Database. Medical records of 25,075 patients were obtained, and included 6205 who used ARB, 8034 who used ACEI, and 10,836 nonusers (no ARB or ACEI) in their antihypertensive regimen. Cox regression models were applied to estimate the hazard ratio (HR) for new-onset AF. During an average of 7.7 years’ follow-up, 1619 patients developed new-onset AF. Both ARB (adjusted HR: 0.51, 95% CI 0.44–0.58, P < 0.001) and ACEI (adjusted HR: 0.53, 95% CI 0.47–0.59, P < 0.001) reduced the risk of AF compared to nonusers. Subgroup analysis showed that ARB and ACEI were equally effective in preventing new-onset AF regardless of age, gender, the presence of heart failure, diabetes, and vascular disease, except for those with prior stroke or transient ischemic attack (TIA). ARB prevents new-onset AF better than ACEI in patients with a history of stroke or TIA (log-rank P = 0.012). Both ARB and ACEI reduce new-onset AF in patients with hypertension. ARB prevents AF better than ACEI in patients with a history of prior stroke or TIA. PMID:27196491

  20. Reduction of microalbuminuria in type-2 diabetes mellitus with angiotensin-converting enzyme inhibitor alone and with cilnidipine.

    PubMed

    Singh, V K; Mishra, A; Gupta, K K; Misra, R; Patel, M L; Shilpa

    2015-01-01

    The aim of our study was to find out the antiproteinuric effect of enalapril angiotensin-converting enzyme (ACE inhibitor) alone or in combination with cilnidipine in patients with type-2 diabetes mellitus. The study was conducted on 71 patients with type-2 diabetes mellitus patients with hypertension and microalbuminuria. They were divided into two groups randomly as follows: Group I (enalaprilalone, n = 36) and Group II (enalapril with cilnidipine, n = 35). In both the groups, baseline 24 h urinary albumin was estimated and was repeated every 3 months upto 1-year. After 1-year follow-up, reduction in microalbuminuria was found to be greater in Group II. In Group I microalbuminuria came down by 25.68 ± 21.40 while in Group II it reduced by 54.88 ± 13.84 (P < 0.001). We conclude that in diabetic population, cilnidipine has an additive effect in microalbuminuria reduction over and above the well-proven effect of ACE inhibitors.

  1. Angioedema Related to Angiotensin-Converting Enzyme Inhibitors

    PubMed Central

    Javaud, Nicolas; Achamlal, Jallal; Reuter, Paul-George; Lapostolle, Frédéric; Lekouara, Akim; Youssef, Mustapha; Hamza, Lilia; Karami, Ahmed; Adnet, Frédéric; Fain, Olivier

    2015-01-01

    Abstract The number of cases of acquired angioedema related to angiotensin converting enzyme inhibitors induced (ACEI-AAE) is on the increase, with a potential concomitant increase in life-threatening attacks of laryngeal edema. Our objective was to determine the main characteristics of ACEI-AAE attacks and, in doing so, the factors associated with likelihood of hospital admission from the emergency department (ED) after a visit for an attack. A prospective, multicenter, observational study (April 2012–December 2014) was conducted in EDs of 4 French hospitals in collaboration with emergency services (SAMU 93) and a reference center for bradykinin-mediated angioedema. For each patient presenting with an attack, emergency physicians collected demographic and clinical presentation data, treatments, and clinical course. They recorded time intervals from symptom onset to ED arrival and to treatment decision, from ED arrival to specific treatment with plasma-derived C1-inhibitor (C1-INH) or icatibant, and from specific treatment to onset of symptom relief. Attacks requiring hospital admission were compared with those not requiring admission. Sixty-two eligible patients with ACEI-AAE (56% men, median age 63 years) were included. Symptom relief occurred significantly earlier in patients receiving specific treatment than in untreated patients (0.5 [0.5–1.0] versus 3.9 [2.5–7.0] hours; P < 0.0001). Even though icatibant was injected more promptly than plasma-derived C1-INH, there, however, was no significant difference in median time to onset of symptom relief between the 2 drugs (0.5 [0.5–1.3] versus 0.5 [0.4–1.0] hours for C1-INH and icatibant, respectively, P = 0.49). Of the 62 patients, 27 (44%) were admitted to hospital from the ED. In multivariate analysis, laryngeal involvement and progressive swelling at ED arrival were independently associated with admission (Odds ratio [95% confidence interval] = 6.2 [1.3–28.2] and 5.9 [1.3–26

  2. [Analysis of the Cochrane Review: Angiotensin Converging Enzyme Inhibitors Versus Angiotensin Receptor Blockers for Primary Hypertension. Cochrane Database Syst Rev. 2014,8: CD009096].

    PubMed

    Nogueira-Silva, Luís; Fonseca, João A

    2015-01-01

    Angiotensin converting enzyme inhibitors and angiotensin receptor blockers are first line drugs in the treatment of hypertension. The aim of this review was to assess if there are differences between these drug classes regarding the prevention of total mortality, occurrence of cardiovascular events and of adverse effects. A systematic review and metanalysis was performed, searching for studies that compare angiotensin converting enzyme inhibitors and angiotensin receptor blockers face-to-face, in several databases until July 2014. The study selection and data extraction were performed by 2 independent researchers. Nine studies were included, with a total of 10 963 participants, 9 398 of which participated in the same study and had high cardiovascular risk. No differences were observed regarding total mortality, cardiovascular mortality or total cardiovascular events. A slightly smaller risk was observed with angiotensin receptor blockers regarding withdrawal due to adverse effects (55 people were needed to be treated with angiotensin receptor blockers for 4.1 years to avoid one withdrawal due to adverse effect), mainly due to the occurrence of dry cough with angiotensin converting enzyme inhibitors. Thus, no differences were observed between angiotensin converting enzyme inhibitors and angiotensin receptor blockers in the prevention of total mortality and cardiovascular events, and angiotensin receptor blockers were better tolerated. Given the large proportion of participants with a high cardiovascular risk, the generalization of these results to other populations is limited.

  3. Is there a place for combining angiotensin-converting enzyme inhibitors and angiotensin-receptor antagonists in the treatment of hypertension, renal disease or congestive heart failure?

    PubMed

    Taylor, A A

    2001-09-01

    Angiotensin-converting enzyme inhibitors and angiotensin II receptor subtype 1 antagonists have proven to be effective and well tolerated antihypertensive agents. They also exhibit unique cardioprotective and renoprotective properties in patients with comorbid conditions such as congestive heart failure and proteinuria or renal insufficiency. This benefit is observed most dramatically in diabetic persons. Although inconclusive, the results of a limited number of clinical trials support the notion that additive antihypertensive, cardioprotective, and renoprotective effects may be obtained with combined used of angiotensin-converting enzyme inhibitors and angiotensin II receptor subtype 1 antagonists in some patients. More studies are needed to confirm the findings of these preliminary studies, and to define more clearly those subsets of patients who might derive the greatest benefit from angiotensin-converting enzyme inhibitor-angiotensin II receptor subtype 1 antagonist combination therapy.

  4. ACE and ACE2 in kidney disease

    PubMed Central

    Mizuiri, Sonoo; Ohashi, Yasushi

    2015-01-01

    Renin angiotensin system (RAS) activation has a significant influence on renal disease progression. The classical angiotensin-converting enzyme (ACE)-angiotensin II (Ang II)-Ang II type 1 (AT1) axis is considered to control the effects of RAS activation on renal disease. However, since its discovery in 2000 ACE2 has also been demonstrated to have a significant impact on the RAS. The synthesis and catabolism of Ang II are regulated via a complex series of interactions, which involve ACE and ACE2. In the kidneys, ACE2 is expressed in the proximal tubules and less strongly in the glomeruli. The synthesis of inactive Ang 1-9 from Ang I and the catabolism of Ang II to produce Ang 1-7 are the main functions of ACE2. Ang 1-7 reduces vasoconstriction, water retention, salt intake, cell proliferation, and reactive oxygen stress, and also has a renoprotective effect. Thus, in the non-classical RAS the ACE2-Ang 1-7-Mas axis counteracts the ACE-Ang II-AT1 axis. This review examines recent human and animal studies about renal ACE and ACE2. PMID:25664248

  5. A Modern Understanding of the Traditional and Nontraditional Biological Functions of Angiotensin-Converting Enzyme

    PubMed Central

    Ong, Frank S.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Giani, Jorge F.; Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Fuchs, Sebastien

    2013-01-01

    Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors. PMID:23257181

  6. Antifibrotic medication using a combination of N-acetyl-L-cystein (NAC) and ACE inhibitors can prevent the recurrence of Dupuytren's disease.

    PubMed

    Knobloch, Karsten; Redeker, Joern; Vogt, Peter M

    2009-11-01

    Dupuytren's disease is a progress fibromatosis of unknown origin first described in 1831. Nonoperative treatment options have been suggested involving radiation therapy, vitamin E, local injection therapy suing calcium channel blockers, interferon, corticosteroids or collagenase. Transforming growth factor-beta1 (TGF-beta1) and its downstream Smad signalling system is well established as a key player during fibrogenesis. A number of in vitro experiments have been assessed the blockade of TGF-beta1 and TGF-beta 2. Clinically, a number of antifibrotic agents are available such as N-acetyl-L-cysteins (NAC) as well as angiotensin-converting enzyme (ACE) inhibitors or AT II antagonists. However, to date none of the well known substances has been tested clinically in fibromatosis such as Dupuytren's disease especially to prevent recurrences after surgical release. Antifibrotic medication using a combination of N-acetyl-L-cystein (NAC) and ACE inhibitor can prevent the recurrence of Dupyutren's disease. Given the fact that recurrence rate in Dupuytren's disease is high and unpredictable after surgical release, an antifibrotic intervention might be worthwhile to consider in the clinical setting. Antifibrotic agents inhibit TGF-beta1, which play a key role in fibromatosis. Thus, antifibrotic medication might reduce the recurrence rate in fibromatosis such as Dupuytren's disease in a clinical significant way.

  7. Left ventricular hypertrophy among black hypertensive patients: focusing on the efficacy of angiotensin converting enzyme inhibitors

    PubMed Central

    2014-01-01

    Background Left ventricular hypertrophy (LVH) is an independent cardiovascular risk factor in patients with essential hypertension. The main objective of this study was to assess the echocardiographic prevalence of left ventricular hypertrophy in patients with hypertension, its risk factors and effect of antihypertensive drugs on its prevalence. Methods A hospital based cross sectional study was conducted on 200 hypertensive patients on treatment in southwest Ethiopia. A pretested structured questionnaire was used to collect data from participants and their clinical records. Blood pressure and anthropometric measurements were taken according to recommended standards. Left ventricular mass was measured by transthoracic echocardiography. Associations between categorical variables were assessed using chi-square test and odds ratio with 95% confidence interval. Logistic regression model was done to identify risks factors of LVH. P values of < 0.05 were considered as statistically significant. Results The mean age, systolic blood pressure, diastolic blood pressure and body mass index were 55.7 ± 11.3 years, 139.2 ± 7.7 mmHg, 89.2 ± 5.7 mmHg and 24.2 ± 3.4 Kg/m2 respectively. The overall prevalence of LVH among these study subjects was 52%. Age ≥50 years (OR: 3.49, 95% CI 1.33-9.14, P = 0.011), female gender (OR: 7.69, 95% CI 3.23-20.0, P < 0.001), systolic blood pressure ≥140 mmHg (OR: 2.85, 95% CI 1.27-6.41, P = 0.011), and duration of hypertension (OR: 3.59, 95% CI 1.47-8.76, P = 0.005) were independent predictors of left ventricular hypertrophy. Angiotensin converting enzyme (ACE) inhibitors were the only antihypertensive drugs associated with lower risk of left ventricular hypertrophy (OR: 0.08, 95% CI 0.03-0.19, p < 0.001). Conclusions Left ventricular hypertrophy was found to be highly prevalent in hypertensive patients in Ethiopia. ACE inhibitors were the only antihypertensive drugs associated with reduced risk

  8. Scleroderma renal crisis during intravenous cyclophosphamide pulse therapy for complicated interstitial lung disease was successfully treated with angiotensin converting enzyme inhibitor and plasma exchange

    PubMed Central

    Nagamura, Norihiro; Kin, Seikon

    2016-01-01

    ABSTRACT Systemic sclerosis (SSc) is a multiorgan disorder involving the skin, heart, lungs, kidneys, and intestines. Progressive interstitial lung disease (ILD) is a serious complication in SSc patients, and cyclophosphamide (CYC) is the only recommended therapy for this condition;1) however, its clinical effectiveness is not sufficient. Scleroderma renal crisis (SRC) is a rare complication, characterized by acute renal failure and progressive hypertension. Angiotensin-converting-enzyme inhibitor (ACE-i) is a widely accepted therapy for SRC. We report an SSc patient with SRC and progressive ILD who underwent treatment with CYC and successful treatment with ACE-i and plasma exchange (PE). SRC and ILD are significant contributors to morbidity and mortality among SSc patients, and the therapy for these disorders is of great interest to rheumatologists. This study presents the possibility of favorable effects of PE for SSc-associated ILD and SRC. PMID:27578917

  9. Do ACE Inhibitors Improve the Response to Exercise Training in Functionally Impaired Older Adults? A Randomized Controlled Trial

    PubMed Central

    Band, Margaret; Miller, Suzanne; Cvoro, Vera; Witham, Miles; Struthers, Allan; McConnachie, Alex; Lloyd, Suzanne M.; McMurdo, Marion

    2014-01-01

    Background. Loss of muscle mass and strength with ageing is a major cause for falls, disability, and morbidity in older people. Previous studies have found that angiotensin-converting enzyme inhibitors (ACEi) may improve physical function in older people. It is unclear whether ACEi provide additional benefit when added to a standard exercise training program. We examined the effects of ACEi therapy on physical function in older people undergoing exercise training. Methods. Community-dwelling people aged ≥65 years with functional impairment were recruited through general (family) practices. All participants received progressive exercise training. Participants were randomized to receive either 4 mg perindopril or matching placebo daily for 20 weeks. The primary outcome was between-group change in 6-minute walk distance from baseline to 20 weeks. Secondary outcomes included changes in Short Physical Performance Battery, handgrip and quadriceps strength, self-reported quality of life using the EQ-5D, and functional impairment measured using the Functional Limitations Profile. Results. A total of 170 participants (n = 86 perindopril, n = 84 placebo) were randomized. Mean age was 75.7 (standard deviation [SD] 6.8) years. Baseline 6-minute walk distance was 306 m (SD 99). Both groups increased their walk distance (by 29.6 m perindopril, 36.4 m placebo group) at 20 weeks, but there was no statistically significant treatment effect between groups (−8.6m [95% confidence interval: −30.1, 12.9], p = .43). No statistically significant treatment effects were observed between groups for the secondary outcomes. Adverse events leading to withdrawal were few (n = 0 perindopril, n = 4 placebo). Interpretation. ACE inhibitors did not enhance the effect of exercise training on physical function in functionally impaired older people. PMID:24201696

  10. The angiotensin converting enzyme inhibitor, captopril, prevents the hyperactivity and impulsivity of neurokinin-1 receptor gene 'knockout' mice: sex differences and implications for the treatment of attention deficit hyperactivity disorder.

    PubMed

    Porter, Ashley J; Pillidge, Katharine; Grabowska, Ewelina M; Stanford, S Clare

    2015-04-01

    Mice lacking functional neurokinin-1 receptors (NK1R-/-) display behavioural abnormalities resembling attention deficit hyperactivity disorder (ADHD): locomotor hyperactivity, impulsivity and inattentiveness. The preferred ligand for NK1R, substance P, is metabolised by angiotensin converting enzyme (ACE), which forms part of the brain renin angiotensin system (BRAS). In view of evidence that the BRAS modulates locomotor activity and cognitive performance, we tested the effects of drugs that target the BRAS on these behaviours in NK1R-/- and wildtype mice. We first tested the effects of the ACE inhibitor, captopril, on locomotor activity. Because there are well-established sex differences in both ADHD and ACE activity, we compared the effects of captopril in both male and female mice. Locomotor hyperactivity was evident in male NK1R-/- mice, only, and this was abolished by treatment with captopril. By contrast, male wildtypes and females of both genotypes were unaffected by ACE inhibition. We then investigated the effects of angiotensin AT1 (losartan) and AT2 (PD 123319) receptor antagonists on the locomotor activity of male NK1R-/- and wildtype mice. Both antagonists increased the locomotor activity of NK1R-/- mice, but neither affected the wildtypes. Finally, we tested the effects of captopril on the performance of male NK1R-/- and wildtype mice in the 5-choice serial reaction-time task (5-CSRTT) and found that ACE inhibition prevented the impulsivity of NK1R-/- mice. These results indicate that certain behaviours, disrupted in ADHD, are influenced by an interaction between the BRAS and NK1R, and suggest that ACE inhibitors could provide a novel treatment for this disorder.

  11. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Hypertensive Effect of Protein Hydrolysate from Actinopyga lecanora (Sea Cucumber) in Rats

    PubMed Central

    Sadegh Vishkaei, Mahdokht; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2016-01-01

    Food protein hydrolysates are known to exhibit angiotensin converting enzyme (ACE) inhibitory properties and can be used as a novel functional food for prevention of hypertension. This study evaluated the ACE inhibitory potentials of Actinopyga lecanora proteolysate (ALP) in vivo. The pre-fed rats with ALP at various doses (200, 400, 800 mg/kg body weight) exhibited a significant (p ≤ 0.05) suppression effect after inducing hypertension. To determine the optimum effective dose that will produce maximal reduction in blood pressure, ALP at three doses was fed to the rats after inducing hypertension. The results showed that the 800 mg/kg body weight dose significantly reduced blood pressure without noticeable negative physiological effect. In addition, there were no observable changes in the rats’ heart rate after oral administration of the ALP. It was concluded that Actinopyga lecanora proteolysate could potentially be used for the development of functional foods and nutraceuticals for prevention and treatment of hypertension. PMID:27706040

  12. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Hypertensive Effect of Protein Hydrolysate from Actinopyga lecanora (Sea Cucumber) in Rats.

    PubMed

    Sadegh Vishkaei, Mahdokht; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2016-09-30

    Food protein hydrolysates are known to exhibit angiotensin converting enzyme (ACE) inhibitory properties and can be used as a novel functional food for prevention of hypertension. This study evaluated the ACE inhibitory potentials of Actinopyga lecanora proteolysate (ALP) in vivo. The pre-fed rats with ALP at various doses (200, 400, 800 mg/kg body weight) exhibited a significant (p ≤ 0.05) suppression effect after inducing hypertension. To determine the optimum effective dose that will produce maximal reduction in blood pressure, ALP at three doses was fed to the rats after inducing hypertension. The results showed that the 800 mg/kg body weight dose significantly reduced blood pressure without noticeable negative physiological effect. In addition, there were no observable changes in the rats' heart rate after oral administration of the ALP. It was concluded that Actinopyga lecanora proteolysate could potentially be used for the development of functional foods and nutraceuticals for prevention and treatment of hypertension.

  13. Purification and characterisation of a novel angiotensin-I converting enzyme (ACE)-inhibitory peptide derived from the enzymatic hydrolysate of Enteromorpha clathrata protein.

    PubMed

    Pan, Saikun; Wang, Shujun; Jing, Lingling; Yao, Dongrui

    2016-11-15

    Hydrolysates containing angiotensin-I converting enzyme (ACE)-inhibitory peptide were prepared from Enteromorpha clathrata protein using alcalase. The hydrolysates were fractionated into two molecular-weight ranges (below and above 10kDa) by ultrafiltration. The below-10kDa fraction showed higher ACE-inhibitory activity and was subsequently purified by Sephadex G-15 gel filtration chromatography. The structure of active peptide was identified as Pro-Ala-Phe-Gly by HPLC-Q-TOF-MS and its IC50 value was 35.9μM. The yield of this peptide from E. clathrata protein was 0.82%. Lineweaver-Burk plots demonstrated that the inhibitory kinetic mechanism of this peptide was non-competitive. Stability study revealed that the purified peptide showed resistance against gastrointestinal proteases. Thus, E. clathrata protein hydrolysate treated with alcalase is a beneficial ingredient of nutraceuticals and pharmaceuticals against hypertension and related diseases.

  14. Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven- and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala).

    PubMed

    Elavarasan, K; Shamasundar, B A; Badii, Faraha; Howell, Nazlin

    2016-09-01

    The angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven-dried (OD-FPH) and freeze-dried (FD-FPH) protein hydrolysates derived from fresh water fish (Cirrhinus mrigala) muscle, using papain, were investigated. Amino acid profiles indicated a higher proportion of hydrophobic residues in OD-FPH and hydrophilic residues in FD-FPH samples. Fourier transform infrared (FT-IR) spectra revealed random coil structure in OD-FPH and β-sheet in FD-FPH samples. The approximate molecular weight of peptides in OD-FPH and FD-FPH was in the range of 7030-339Da. The IC50 values for ACE inhibition by OD-FPH and FD-FPH samples were found to be 1.15 and 1.53mg of proteinml(-1), respectively. The ACE-inhibitory activity of OD-FPH was more stable (during sequential digestion, using pepsin and pancreatin) than that of FD-FPH sample. The study suggested that the ACE inhibitory activity of protein hydrolysate was not affected by oven-drying.

  15. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice.

    PubMed

    Salem, Esam S B; Grobe, Nadja; Elased, Khalid M

    2014-03-15

    Angiotensin-converting enzyme 2 (ACE2) is located in several tissues and is highly expressed in renal proximal tubules, where it degrades the vasoconstrictor angiotensin II (ANG II) to ANG-(1-7). Accumulating evidence supports protective roles of ACE2 in several disease states, including diabetic nephropathy. A disintegrin and metalloprotease (ADAM) 17 is involved in the shedding of several transmembrane proteins, including ACE2. Our previous studies showed increased renal ACE2, ADAM17 expression, and urinary ACE2 in type 2 diabetic mice (Chodavarapu H, Grobe N, Somineni HK, Salem ES, Madhu M, Elased KM. PLoS One 8: e62833, 2013). The aim of the present study was to determine the effect of insulin on ACE2 shedding and ADAM17 in type 1 diabetic Akita mice. Results demonstrate increased renal ACE2 and ADAM17 expression and increased urinary ACE2 fragments (≈70 kDa) and albumin excretion in diabetic Akita mice. Immunostaining revealed colocalization of ACE2 with ADAM17 in renal tubules. Renal proximal tubular cells treated with ADAM17 inhibitor showed reduced ACE2 shedding into the media, confirming ADAM17-mediated shedding of ACE2. Treatment of Akita mice with insulin implants for 20 wk normalized hyperglycemia and decreased urinary ACE2 and albumin excretion. Insulin also normalized renal ACE2 and ADAM17 but had no effect on tissue inhibitor of metalloproteinase 3 (TIMP3) protein expression. There was a positive linear correlation between urinary ACE2 and albuminuria, blood glucose, plasma creatinine, glucagon, and triglycerides. This is the first report showing an association between hyperglycemia, cardiovascular risk factors, and increased shedding of urinary ACE2 in diabetic Akita mice. Urinary ACE2 could be used as a biomarker for diabetic nephropathy and as an index of intrarenal ACE2 status.

  16. ACE inhibitors

    MedlinePlus

    ... In: Mann DL, Zipes DP, Libby P, Bonow RO, Braunwald E, eds. Braunwald's Heart Disease: A Textbook ... In: Mann DL, Zipes DP, Libby P, Bonow RO, Braunwald E, eds. Braunwald's Heart Disease: A Textbook ...

  17. The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia).

    PubMed

    Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska

    2014-01-01

    In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin (Cucurbita ficifolia). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 <0.64 mg/mL and DPP-IV IC50 <0.55 mg/mL. This study suggests that peptides generated from whey proteins may support postprandial glycemia regulation and blood pressure maintenance, and could be used as functional food ingredients in the diet of patients with type 2 diabetes.

  18. Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration

    PubMed Central

    Carvalho, Clarissa Coelho; Florentino, Rodrigo Machado; França, Andressa; Matias, Eveline; Guimarães, Paola Bianchi; Batista, Carolina; Freire, Valder; Carmona, Adriana Karaoglanovic; Pesquero, João Bosco; de Paula, Ana Maria; Foureaux, Giselle; Leite, Maria de Fatima

    2016-01-01

    Background The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet. Aim Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration. Results We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein. Conclusion ACE activation regulates melanoma cell proliferation and migration. PMID:27992423

  19. Hypertension and Angiotensin System Inhibitors in Patients with Metastatic Renal Cell Carcinoma

    PubMed Central

    Derosa, Lisa; Izzedine, Hassane; Albiges, Laurence; Escudier, Bernard

    2016-01-01

    Arterial hypertension (HTN) is a class effect of anti-vascular endothelial growth factor (VEGF) therapies, including the monoclonal antibody bevacizumab. Data are conflicting regarding the role of the renin-angiotensin system on angiogenesis and recent data suggest that the use of angiotensin system inhibitors (ASIs; angiotensin receptor blockers or angiotensin-converting enzyme inhibitors) is associated with improved survival in metastatic renal cell carcinoma (mRCC), particularly when used with VEGF targeted therapies. The aim of this review is to discuss the available treatment options for mRCC and associated incidence of hypertension as well as summarize the known data about ASIs use and mRCC. Additionally, given that the optimal management of HTN remains unclear, we will focus on prevention strategies and propose potential therapeutic approaches. PMID:27994768

  20. Validated ligand mapping of ACE active site

    NASA Astrophysics Data System (ADS)

    Kuster, Daniel J.; Marshall, Garland R.

    2005-08-01

    Crystal structures of angiotensin-converting enzyme (ACE) complexed with three inhibitors (lisinopril, captopril, enalapril) provided experimental data for testing the validity of a prior active site model predicting the bound conformation of the inhibitors. The ACE active site model - predicted over 18 years ago using a series of potent ACE inhibitors of diverse chemical structure - was recreated using published data and commercial software. Comparison between the predicted structures of the three inhibitors bound to the active site of ACE and those determined experimentally yielded root mean square deviation (RMSD) values of 0.43-0.81 Å, among the distances defining the active site map. The bound conformations of the chemically relevant atoms were accurately deduced from the geometry of ligands, applying the assumption that the geometry of the active site groups responsible for binding and catalysis of amide hydrolysis was constrained. The mapping of bound inhibitors at the ACE active site was validated for known experimental compounds, so that the constrained conformational search methodology may be applied with confidence when no experimentally determined structure of the enzyme yet exists, but potent, diverse inhibitors are available.

  1. Role of angiotensin-converting enzyme inhibitor, lisinopril, on spermatozoal functions in rats.

    PubMed

    Saha, L; Garg, S K; Bhargava, V K; Mazumdar, S

    2000-04-01

    Angiotensin-converting enzyme is present in the male reproductive system but its role in the physiology of reproduction is not known. To see the effect of angiotensin-converting enzyme on spermatozoal functions, lisinopril, an angiotensin-converting enzyme inhibitor, was administered orally using two different doses (10 and 20 mg/kg/day) to rats. Both short-term (2 weeks) and long-term (6 weeks) effects of the drug were observed. Lisinopril treatment resulted in a marked decrease in sperm density, sperm motility and zona pellucida penetration. Acrosome reaction by spermatozoa obtained from drug-treated animals was significantly lower when compared with spermatozoa from normal animals.

  2. Involvement of Renin-Angiotensin System in Damage of Angiotensin-Converting Enzyme Inhibitor Captopril on Bone of Normal Mice.

    PubMed

    Liu, Jin-Xin; Wang, Liang; Zhang, Yan

    2015-01-01

    This study was performed to investigate the effect of angiotensin-converting enzyme inhibitor, captopril, on bone metabolism and histology, and the action of captopril on the components of the skeletal renin-angiotensin system (RAS) and bradykinin receptor in normal male mice. The mice were orally administered captopril (10 mg/kg) for 4 weeks with vehicle-treated mice as normal control. The histology of trabecular bone at the distal femoral end was determined by hematoxylin & eosin, Safranin O and Masson-Trichrome staining. The captopril-treated mice showed a decreased level of testosterone (p<0.05) and procollagen type I N-terminal propeptide (p<0.05) in serum as compared to those in the control group. Captopril has detrimental effects on trabecular bone as demonstrated by the loss of cancellous bone mass and network connections as well as changes to the chondrocytes zone. The expression of angiotensin-converting enzyme (p<0.05), renin receptor (p<0.01), angiotensin II (p<0.05) and bradykinin receptor 2 (p<0.05) was significantly up-regulated following the captopril treatment. Thus, the potential underlying mechanism of the damage of captopril on bone can be attributed the increased activity of local bone RAS and the activation of bradykinin receptor.

  3. Angiotensin converting enzyme immobilized on magnetic beads as a tool for ligand fishing.

    PubMed

    de Almeida, Fernando G; Vanzolini, Kenia L; Cass, Quezia B

    2017-01-05

    Angiotensin converting enzyme (ACE) presents an important role in blood pressure regulation, since that converts angiotensin I to the vasoconstrictor angiotensin II. Some commercially available ACE inhibitors are captopril, lisinopril and enalapril; due to their side effects, naturally occurring inhibitors have been prospected. In order to endorse this research field we have developed a new tool for ACE ligand screening. To this end, ACE was extracted from bovine lung, purified and chemically immobilized in modified ferrite magnetic beads (ACE-MBs). The ACE-MBs have shown a Michaelian kinetic behavior towards hippuryl-histidyl-leucine. Moreover, as proof of concept, the ACE-MBs was inhibited by lisinopril with a half maximal inhibitory concentration (IC50) of 10nM. At the fishing assay, ACE-MBs were able not only to fish out the reference inhibitor, but also one peptide from a pool of tryptic digested BSA. In conclusion, ACE-MBs emerge as new straightforward tool for ACE kinetics determination, inhibition and binder screening.

  4. T-lymphocyte induction of human monocyte angiotensin converting enzyme (ACE) is not dependent upon T-lymphocyte proliferation

    SciTech Connect

    Vuk-Pavlovic, Z.; Rohrbach, M.S.

    1986-03-05

    Human peripheral blood monocytes cultured in serum free media for seven days show a basal activity of the ectoenzyme ACE which is augmented 2-3 times by the presence of autologous peripheral blood T-lymphocytes. Since these two cell types are also involved in autologous mixed lymphocyte reaction if serum is present, the authors compared the ability of T-cells to stimulate ACE activity in the presence or absence of proliferation (measured by /sup 3/H-thymidine incorporation). By the seventh day, cultures with 5% AB/sup +/ serum showed significant increase in proliferation but no increase in ACE activity compared to the serum free cultures. Even higher proliferation rate achieved by co-culturing T-lymphocytes with allogeneic monocytes did not increase ACE production; on the contrary, ACE activity remained at the basal level. Monocyte-T-cell co-cultures stimulated with increasing concentrations of ConA or PHA showed dose dependent increases in proliferation but parallel decreases in ACE activity. Addition of soluble antigen (Candida albicans) also enhanced proliferation but not ACE synthesis. They conclude that T-lymphocyte induction of monocyte ACE is a result of cooperation between autologous cells which is not dependent upon T-cell proliferation.

  5. Effects of angiotensin-converting enzyme inhibitor, captopril, on bone of mice with streptozotocin-induced type 1 diabetes.

    PubMed

    Diao, Teng-Yue; Pan, Hai; Gu, Sa-Sa; Chen, Xi; Zhang, Fang-Yi; Wong, Man-Sau; Zhang, Yan

    2014-05-01

    There are contradictory results about the effect of angiotensin-converting enzyme inhibitors (ACEIs) on bone. This study was performed to address the skeletal renin-angiotensin system (RAS) activity and the effects of the ACEI, captopril, on the bone of streptozotocin-induced type 1 diabetic mice. Histochemical assessment on bone paraffin sections was conducted by Safranin O staining and tartrate-resistant acid phosphatase staining. Micro-computed tomography was performed to analyze bone biological parameters. Gene and protein expression were determined by real-time polymerase chain reaction and immunoblotting, respectively. Type 1 diabetic mice displayed osteopenia phenotype and captopril treatment showed no osteoprotective effects in diabetic mice as shown by the reduction of bone mineral density, trabecular thickness and bone volume/total volume. The mRNA expression of ACE and renin receptor, and the protein expression of renin and angiotensin II were markedly up-regulated in the bone of vehicle-treated diabetic mice compared to those of non-diabetic mice, and these molecular changes of skeletal RAS components were effectively inhibited by treatment with captopril. However, treatment with captopril significantly elevated serum tartrate-resistant acid phosphatase 5b levels, reduced the ratio of osteoprotegerin/receptor activator of nuclear factor-κB ligand expression, increased carbonic anhydrase II mRNA expression and the number of matured osteoclasts and decreased transforming growth factor-β and osteocalcin mRNA expression in the tibia compared to those of diabetic mice. The present study demonstrated that the use of the ACEI, captopril, has no beneficial effect on the skeletal biological properties of diabetic mice. However, this could be attributed, at least partially, to its suppression of osteogenesis and stimulation of osteoclastogenesis, even though it could effectively inhibit high activity of local RAS in the bone of diabetic mice.

  6. [Angiotensin II inhibitors for the diagnosis and treatment of hypertension].

    PubMed

    Brunner, H R; Gavras, H

    1976-12-11

    Specific antagonists of the renin angiotensin system have been used to investigate the role of this hormonal system in blood pressure homeostasis and in different types of experimental and clinical hypertension. Using this approach it was possible to show that renin via angiotensin participates actively in blood pressure maintenace, particularly following sodium depletion. Such antagonists, if available for oral administration and taken together with a diuretic, would be useful therapeutically.

  7. A novel angiotensin-І converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study.

    PubMed

    Wu, Qiongying; Jia, Junqiang; Yan, Hui; Du, Jinjuan; Gui, Zhongzheng

    2015-06-01

    Silkworm pupa (Bombyx mori) protein was hydrolyzed using gastrointestinal endopeptidases (pepsin, trypsin and α-chymotrypsin). Then, the hydrolysate was purified sequentially by ultrafiltration, gel filtration chromatography and RP-HPLC. A novel ACE inhibitory peptide, Ala-Ser-Leu, with the IC50 value of 102.15μM, was identified by IT-MS/MS. This is the first report of Ala-Ser-Leu from natural protein. Lineweaver-Burk plots suggest that the peptide is a competitive inhibitor against ACE. The molecular docking studies revealed that the ACE inhibition of Ala-Ser-Leu is mainly attributed to forming very strong hydrogen bonds with the S1 pocket (Ala354) and the S2 pocket (Gln281 and His353). The results indicate that silkworm pupa (B. mori) protein or its gastrointestinal protease hydrolysate could be used as a functional ingredient in auxiliary therapeutic foods against hypertension.

  8. Characterization of angiotensin I-converting enzyme from anterior gills of the mangrove crab Ucides cordatus.

    PubMed

    Bersanetti, Patrícia A; Nogueira, Regina F; Marcondes, Marcelo F; Paiva, Paulo B; Juliano, Maria A; Juliano, Luiz; Carmona, Adriana K; Zanotto, Flavia P

    2015-03-01

    Angiotensin I-converting enzyme (ACE) is a well-known metallopeptidase that is found in vertebrates, invertebrates and bacteria. We isolated from the anterior gill of the crab Ucides cordatus an isoform of ACE, here named crab-ACE, which presented catalytic properties closely resembling to those of mammalian ACE. The enzyme was purified on Sepharose-lisinopril affinity chromatography to apparent homogeneity and a band of about 72 kDa could be visualized after silver staining and Western blotting. Assays performed with fluorescence resonance energy transfer (FRET) selective ACE substrates Abz-FRK(Dnp)P-OH, Abz-SDK(Dnp)P-OH and Abz-LFK(Dnp)-OH, allowed us to verify that crab-ACE has hydrolytic profile very similar to that of the ACE C-domain. In addition, we observed that crab-ACE can hydrolyze the ACE substrates, angiotensin I and bradykinin. The enzyme was strongly inhibited by the specific ACE inhibitor lisinopril (Ki of 1.26 nM). However, in contrast to other ACE isoforms, crab-ACE presented a very particular optimum pH, being the substrate Abz-FRK(Dnp)-P-OH hydrolyzed efficiently at pH 9.5. Other interesting characteristic of crab-ACE was that the maximum hydrolytic activity was reached at around 45°C. The description of an ACE isoform in Ucides cordatus is challenging and may contribute to a better understanding of the biochemical function of this enzyme in invertebrates.

  9. Diagnostic use of angiotensin converting enzyme (ACE)-inhibited renal scintigraphy in the identification of selective renal artery stenosis in the presence of multiple renal arteries: A case report

    SciTech Connect

    Morton, K.A.; Rose, S.C.; Haakenstad, A.O.; Handy, J.E.; Scuderi, A.J.; Datz, F.L. )

    1990-11-01

    In patients with renovascular hypertension, it is unknown whether the angiotensin converting enzyme-(ACE) inhibited renal scan will identify stenosis of a segmental branch of a single renal artery or of an accessory artery where multiple renal arteries are present. Since multiple renal arteries may be present in approximately 25% of all individuals, it will be important to establish whether the ACE-inhibited renal scan is useful in this population. We report a case of stenosis involving a renal artery in a patient with multiple renal arteries, successfully identified by ACE-inhibited renal scintigraphy.

  10. Simulated digestion of proanthocyanidins in grape skin and seed extracts and the effects of digestion on the angiotensin I-converting enzyme (ACE) inhibitory activity.

    PubMed

    Fernández, Katherina; Labra, Javiera

    2013-08-15

    This study investigated the effect of in vitro gastrointestinal digestion on the stability and composition of flavan-3-ols from red grape skin and seed extracts (raw and purified, which are high in proanthocyanidins (PAs)). In addition, the effects of digestion on the angiotensin I-converting enzyme (ACE) inhibitory activities of these extracts were evaluated. The extracts were digested with a mixture of pepsin-HCl for 2 h, followed by a 2 h incubation with pancreatin and bile salts including a cellulose dialysis tubing (molecular weight cut-off 12 kDa) at 37°C with shaking in the dark and under N2. Under gastric conditions, the mean degree of polymerisation (mDP) of seed extracts, raw (mDP≈6, p<0.05), and purified (mDP≈10, p<0.05) was stable. The mDP of the raw skin extracts increased from 19 to 25 towards the end of the digestion. The PAs were significantly degraded (up to 80%) during the pancreatic digestion, yielding low-molecular-weight compounds that diffused into the serum-available fraction (mDP≈2). The overall mass transfer coefficient (K) of the seed extracts was 10(-7) m(2)/s. After simulated gastrointestinal digestion, over 80% of ACE inhibition by raw seed and skin extracts was preserved. However, the purified seed and skin extracts lost their ability to inhibit ACE after intestinal digestion.

  11. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype

    PubMed Central

    Shrestha, Sanjeeb; Noh, Jae Myoung; Kim, Shin-Yeong; Ham, Hwa-Yong; Kim, Yeon-Ja; Yun, Young-Jin; Kim, Min-Ju; Kwon, Min-Soo; Song, Dong-Keun; Hong, Chang-Won

    2016-01-01

    ABSTRACT Tumor microenvironments polarize neutrophils to protumoral phenotypes. Here, we demonstrate that the angiotensin converting enzyme inhibitors (ACEis) and angiotensin II type 1 receptor (AGTR1) antagonist attenuate tumor growth via polarization of neutrophils toward an antitumoral phenotype. The ACEis or AGTR1 antagonist enhanced hypersegmentation of human neutrophils and increased neutrophil cytotoxicity against tumor cells. This neutrophil hypersegmentation was dependent on the mTOR pathway. In a murine tumor model, ACEis and AGTR1 antagonist attenuated tumor growth and enhanced neutrophil hypersegmentation. ACEis inhibited tumor-induced polarization of neutrophils to a protumoral phenotype. Neutrophil depletion reduced the antitumor effect of ACEi. Together, these data suggest that the modulation of Ang II pathway attenuates tumor growth via polarization of neutrophils to an antitumoral phenotype. PMID:26942086

  12. Perioperative management of patients treated with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: a quality improvement audit.

    PubMed

    Vijay, A; Grover, A; Coulson, T G; Myles, P S

    2016-05-01

    Previous studies have shown that patients continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on the day of surgery are more likely to have significant intraoperative hypotension, higher rates of postoperative acute kidney injury, and lower incidences of postoperative atrial fibrillation. However, many of these studies were prone to bias and confounding, and questions remain over the validity of these outcomes. This observational, before-and-after quality improvement audit aimed to assess the effect of withholding these medications on the morning of surgery. We recruited 323 participants, with 83 (26%) having their preoperative angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB) withheld on the day of surgery. There were only very small Spearman rank-order correlations between time since last dose of these medications (rho -0.12, P=0.057) and intraoperative and recovery room intravenous fluid administration (rho -0.11, P=0.042). There was no statistically significant difference between the continued or withheld groups in vasopressor (metaraminol use 3.5 [1.5-8.3] mg versus 3.5 [1.5-8.5] mg, P=0.67) or intravenous fluid administration (1000 ml [800-1500] ml versus 1000 [800-1500] ml, P=0.096), nor rates of postoperative acute kidney injury (13% vs 18%, P=0.25) or atrial fibrillation (15% versus 18%, P=0.71). This audit found no significant differences in measured outcomes between the continued or withheld ACEi/ARB groups. This finding should be interpreted with caution due to the possibility of confounding and an insufficient sample size. However, as the finding is in contrast to many previous studies, future prospective randomised clinical trials are required to answer this important question.

  13. Diagnostic use of angiotensin converting enzyme inhibitors in radioisotope evaluation of unilateral renal artery stenosis

    SciTech Connect

    Kremer Hovinga, T.K.; de Jong, P.E.; Piers, D.A.; Beekhuis, H.; van der Hem, G.K.; de Zeeuw, D.

    1989-05-01

    Iodine-123 hippurate renography, (/sup 99m/Tc)diethylenetriaminepentaacetic acid (DTPA) renography, and (/sup 99m/Tc)dimercapto succinic acid (DMSA) renal scintigraphy were performed before and during angiotensin converting enzyme (ACE) inhibition in a group of 15 hypertensive patients with angiographically ''significant'' unilateral renal artery stenosis. Visual and quantitative evaluation of the three radioisotope methods before ACE inhibition already disclosed abnormalities suggestive of renal artery stenosis in a high percentage (87%, 60%, and 60%, respectively) in this group of patients, but ACE inhibition further improved the diagnostic yield in all three methods (93%, 86%, and 80%). Iodine-123 hippurate renography was at least as useful as (/sup 99m/Tc)DTPA renography in this respect, while (/sup 99m/Tc)DMSA scintigraphy can be used particularly in segmental stenosis. Despite a large drop in blood pressure after ACE inhibition little adverse reactions were seen and overall renal function was fairly well maintained, the exceptions noted in patients with initially a more impaired renal function.

  14. Bradykinin-mediated cardiovascular protective actions of ACE inhibitors. A new dimension in anti-ischaemic therapy?

    PubMed

    Remme, W J

    1997-01-01

    In addition to being accepted therapy in hypertension and heart failure, ACE inhibitors may well offer a new dimension in anti-ischaemic therapy. Currently, anti-ischaemic properties have been demonstrated by ACE inhibitors in selected patient groups, including patients with left ventricular dysfunction with or without a direct temporal relationship with myocardial infarction. Anti-ischaemic effects of ACE inhibitors become apparent late after initiation of treatment and suggest a structural rather than a functional effect. Underlying mechanisms may include a reduction in ventricular dilatation and (abnormal) cardiac hypertrophy, leading to less myocardial oxygen demand and, possibly, improved subendocardial blood supply, and vasculoprotective effects, i.e. anti-atherosclerotic and antiremodelling properties, a beneficial effect on the fibrinolytic system and an improvement in abnormal endothelial vasodilator function. The latter aspect is most probably the pivotal mode of action where the anti-ischaemic profile of ACE inhibition is concerned. An improvement in endothelial dysfunction has been shown in patients with mild to moderate coronary artery disease [Trial on Reversing ENdothelial Dysfunction (TREND)]. It is of importance that, in both clinical experiments and human studies, the role of bradykinin appears central in the structural and functional cardiovascular effects of ACE inhibition. This is particularly true for the improvement of impaired endothelial function. Myocardial ischaemia evokes vasoconstrictor neurohormonal activation, which may lead to coronary vasoconstriction in diseased coronary segments. The subsequent abnormal endothelial function leads to diminished coronary flow and also increases systemic vasotone and afterload, thus unfavourably altering the myocardial oxygen supply/demand ratio. Under laboratory conditions, acute ACE inhibition counteracts this activation in humans. However, it is speculated that this anti-ischaemic mechanism may

  15. Assessment of 105 Patients with Angiotensin Converting Enzyme-Inhibitor Induced Angioedema

    PubMed Central

    von Buchwald, Christian; Prasad, Sumangali Chandra; Kamaleswaran, Shailajah; Ajgeiy, Kawa Khaled; Authried, Georg; Pallesen, Kristine Appel U.

    2017-01-01

    Objective. To asses a cohort of 105 consecutive patients with angiotensin converting enzyme-inhibitor induced angioedema with regard to demographics, risk factors, family history of angioedema, hospitalization, airway management, outcome, and use of diagnostic codes used for the condition. Study Design. Cohort study. Methods. This was a retrospective cohort study of 105 patients with angiotensin converting enzyme-inhibitor induced angioedema in the period 1995–2014. Results. The cohort consisted of 67 females and 38 males (F : M ratio 1.8), with a mean age of 63 [range 26–86] years. Female gender was associated with a significantly higher risk of angiotensin converting enzyme-inhibitor induced angioedema. 6.7% had a positive family history of angioedema. Diabetes seemed to be a protective factor with regard to angioedema. 95% experienced angioedema of the head and neck. 4.7% needed intubation or tracheostomy. 74 admissions took place during the study period with a total of 143 days spent in the hospital. The diagnosis codes most often used for this condition were “DT783 Quincke's oedema” and “DT78.4 Allergy unspecified”. Complement C1 inhibitor was normal in all tested patients. Conclusion. Female gender predisposes to angiotensin converting enzyme-inhibitor induced angioedema, whereas diabetes seems to be a protective factor. PMID:28286522

  16. Absence of Cardiac Benefit with Early Combination ACE Inhibitor and Beta Blocker Treatment in mdx Mice.

    PubMed

    Blain, Alison; Greally, Elizabeth; Laval, Steven H; Blamire, Andrew M; MacGowan, Guy A; Straub, Volker W

    2015-04-01

    Most patients with Duchenne muscular dystrophy (DMD) will develop cardiomyopathy; however, the evidence for prophylactic treatment of children with cardiac medications is limited. We have used the mdx mouse model of DMD to assess if early combination treatment with beta blocker (BB) and ACE inhibitor (AI) is superior to single treatment with either one of these drugs. Mice were assessed with cardiac MRI (ventricular structure and function, in vivo calcium influx (manganese-enhanced MRI)), pressure-volume loops, and histopathology. Combination treatment did not show benefits over treatment with AI or BB alone. Indeed, some beneficial aspects of BB and AI were lost when used in combination. None of the treatments impacted RV function. Combination treatment had no significant effect on sarcolemmal damage or histopathology. The study suggests that combined BB and AI may not confer an advantage at an early stage in DMD cardiomyopathy. However, limitations of the mdx model should be considered.

  17. The use of angiotensin-converting enzyme inhibitors and diuretics is associated with a reduced incidence of impairment on cognition in elderly women.

    PubMed

    Yasar, S; Zhou, J; Varadhan, R; Carlson, M C

    2008-07-01

    The effects of angiotensin-converting enzyme inhibitors (ACE-Is) and diuretics (used as antihypertensive agents) on global and domain-specific cognitive decline were evaluated in 326 non-demented community-dwelling participants over the age of 70 years in the Women's Health and Aging Study II. Time-dependent Cox proportional hazards regression analysis was used for evaluating the association between parameters. The use of ACE-I for more than 3 years was associated with reduced incidence of impairment on Mini-Mental State Examination (MMSE), Trail Making Test-Part A and Part B (TMT, Parts A and B), Hopkins Verbal Learning Test-Immediate Recall (HVLT-I), and Hopkins Verbal Learning Test-Delayed Recall (HVLT-D). The use of diuretics for more than 3 years was associated with reduced incidence of impairment on MMSE, TMT, Parts A and B, HVLT-I, and (HVLT-D). The presence of vascular disease did not make any difference to these effects. Therefore, the use of ACE-Is or diuretics was associated with reduced incidence of impairment of both global and domain-specific cognition in elderly women, and may help delay progression to dementia.

  18. An angiotensin converting enzyme inhibitor, benazepril can be transformed to an active metabolite, benazeprilat, by the liver of dogs with ascitic pulmonary heartworm disease.

    PubMed

    Kitagawa, Hitoshi; Ohba, Yasunori; Kuwahara, Yasuhito; Ohne, Rieko; Kondo, Masahiro; Nakano, Masakazu; Sasaki, Yoshihide; Kitoh, Katsuya

    2003-06-01

    To examine whether an angiotensin converting enzyme (ACE) inhibitor, benazepril, can be transformed to the active metabolite, benazeprilat, by severely injured liver of dogs with ascitic heartworm disease, benazepril hydrochloride was administered orally to dogs once daily for 7 consecutive days at a dose rate of 0.29 mg/kg to 0.63 mg/kg of body weight, and plasma benazepril and benazeprilat concentrations were determined on the 1st and 7th administration days. In 7 dogs with ascitic pulmonary heartworm disease, plasma benazeprilat concentrations tended to be higher than in 7 control dogs both on the 1st and 7th administration days. The peak concentration and area under the concentration-time curve tended to be greater in dogs of the ascites group than in control dogs, but the statistics could not detect significant differences in the time to peak concentration and t(1/2) between the control and ascites groups. Plasma ACE activities decreased after administration of benazepril. In dogs with ascitic heartworm disease, benazepril was readily transformed to benazeprilat by the liver, and was effective for suppression of plasma ACE activity.

  19. Association between the Angiotensin-Converting Enzyme (ACE) Genetic Polymorphism and Diabetic Retinopathy—A Meta-Analysis Comprising 10,168 Subjects

    PubMed Central

    Luo, Shasha; Shi, Chao; Wang, Furu; Wu, Zhifeng

    2016-01-01

    Aims—to address the inconclusive findings of the association of angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism on risk of diabetic retinopathy (DR), a meta-analysis was conducted. Methods—we conducted a meta-analysis on 4252 DR cases and 5916 controls from 40 published studies by searching electronic databases and reference lists of relevant articles. A random-effects or fixed-effects model was used to estimate the overall and stratification effect sizes on ACE I/D polymorphism on the risk of DR. Results—we found a significant association between the ACE I/D polymorphism and the risk of DR for all genetic model (ID vs. II: OR = 1.14, 95% CI: 1.00–1.30; DD vs. II: OR = 1.38, 95% CI: 1.11–1.71; Allele contrast: OR = 1.17, 95% CI: 1.05–1.30; recessive model: OR = 1.24, 95% CI: 1.02–1.51 and dominant model: OR = 1.21, 95% CI: 1.06–1.38, respectively). In stratified analysis by ethnicity and DM type, we further found that the Asian group with T2DM showed a significant association for all genetic models (ID vs. II: OR = 1.14, 95% CI: 1.01–1.30; DD vs. II: OR = 1.54, 95% CI: 1.14–2.08; Allele contrast: OR = 1.26, 95% CI: 1.09–1.47; recessive model: OR = 1.42, 95% CI: 1.07–1.88 and dominant model: OR = 1.26, 95% CI: 1.07–1.49, respectively). Conclusion—our study suggested that the ACE I/D polymorphism may contribute to DR development, especially in the Asian group with type 2 diabetes mellitus (T2DM). Prospective and more genome-wide association studies (GWAS) are needed to clarify the real role of the ACE gene in determining susceptibility to DR. PMID:27854313

  20. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides.

    PubMed

    Dave, Lakshmi A; Hayes, Maria; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J

    2016-02-01

    It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived.

  1. Angiotensin I-converting enzyme inhibitor derived from cross-linked oyster protein.

    PubMed

    Xie, Cheng-Liang; Kim, Jin-Soo; Ha, Jong-Myung; Choung, Se-Young; Choi, Yeung-Joon

    2014-01-01

    Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity against angiotensin-converting enzyme (ACE) inhibitory activity with the use of a single protease, or a combination of six proteases. The oyster hydrolysate with the lowest 50% ACE inhibitory concentration (IC50) of 0.40 mg/mL was obtained by two-step hydrolysis of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass spectrometry. These peptides were synthesized, and their IC50 values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 μM, respectively. Toxicity of the peptides on the HepG2 cell line was not detected. The oyster hydrolysate also significantly decreased the systolic blood pressure of spontaneously hypertensive rats (SHR). The antihypertensive effect of the oyster hydrolysate on SHR was rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate could be a source of effective nutraceuticals against hypertension.

  2. Angiotensin I-Converting Enzyme Inhibitor Derived from Cross-Linked Oyster Protein

    PubMed Central

    Xie, Cheng-Liang; Kim, Jin-Soo; Ha, Jong-Myung; Choung, Se-Young

    2014-01-01

    Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity against angiotensin-converting enzyme (ACE) inhibitory activity with the use of a single protease, or a combination of six proteases. The oyster hydrolysate with the lowest 50% ACE inhibitory concentration (IC50) of 0.40 mg/mL was obtained by two-step hydrolysis of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass spectrometry. These peptides were synthesized, and their IC50 values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 μM, respectively. Toxicity of the peptides on the HepG2 cell line was not detected. The oyster hydrolysate also significantly decreased the systolic blood pressure of spontaneously hypertensive rats (SHR). The antihypertensive effect of the oyster hydrolysate on SHR was rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate could be a source of effective nutraceuticals against hypertension. PMID:25140307

  3. Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis

    PubMed Central

    Cao, Xi; Yang, Fangyuan; Shi, Tingting; Yuan, Mingxia; Xin, Zhong; Xie, Rongrong; Li, Sen; Li, Hongbing; Yang, Jin-Kui

    2016-01-01

    The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1–7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2−/y) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2−/y mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1–7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what’s more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1–7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1–7)/Mas axis in prevention and treatment of hepatic lipid metabolism. PMID:26883384

  4. Structural characterization of angiotensin I-converting enzyme in complex with a selenium analogue of captopril.

    PubMed

    Akif, Mohd; Masuyer, Geoffrey; Schwager, Sylva L U; Bhuyan, Bhaskar J; Mugesh, Govindasamy; Isaac, R Elwyn; Sturrock, Edward D; Acharya, K Ravi

    2011-10-01

    Human somatic angiotensin I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypeptidase, is central to the regulation of the renin-angiotensin aldosterone system. It is a well-known target for combating hypertension and related cardiovascular diseases. In a recent study by Bhuyan and Mugesh [Org. Biomol. Chem. (2011) 9, 1356-1365], it was shown that the selenium analogues of captopril (a well-known clinical inhibitor of ACE) not only inhibit ACE, but also protect against peroxynitrite-mediated nitration of peptides and proteins. Here, we report the crystal structures of human testis ACE (tACE) and a homologue of ACE, known as AnCE, from Drosophila melanogaster in complex with the most promising selenium analogue of captopril (SeCap) determined at 2.4 and 2.35 Å resolution, respectively. The inhibitor binds at the active site of tACE and AnCE in an analogous fashion to that observed for captopril and provide the first examples of a protein-selenolate interaction. These new structures of tACE-SeCap and AnCE-SeCap inhibitor complexes presented here provide important information for further exploration of zinc coordinating selenium-based ACE inhibitor pharmacophores with significant antioxidant activity.

  5. Cardiovascular risk reduction in hypertension: angiotensin-converting enzyme inhibitors, angiotensin receptor blockers. Where are we up to?

    PubMed

    Sindone, A; Erlich, J; Lee, C; Newman, H; Suranyi, M; Roger, S D

    2016-03-01

    Previously, management of hypertension has concentrated on lowering elevated blood pressure. However, the target has shifted to reducing absolute cardiovascular (CV) risk. It is estimated that two in three Australian adults have three or more CV risk factors at the same time. Moderate reductions in several risk factors can, therefore, be more effective than major reductions in one. When managing hypertension, therapy should be focused on medications with the strongest evidence for CV event reduction, substituting alternatives only when a primary choice is not appropriate. Hypertension management guidelines categorise angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) interchangeably as first-line treatments in uncomplicated hypertension. These medications have different mechanisms of action and quite different evidence bases. They are not interchangeable and their prescription should be based on clinical evidence. Despite this, currently ARB prescriptions are increasing at a higher rate than those for ACEI and other antihypertensive classes. Evidence that ACEI therapy prevents CV events and death, in patients with coronary artery disease or multiple CV risk factors, emerged from the European trial on reduction of cardiac events with perindopril in stable coronary artery disease (EUROPA) and Heart Outcomes Prevention Evaluation (HOPE) trials respectively. The consistent benefit has been demonstrated in meta-analyses. The clinical trial data for ARB are less consistent, particularly regarding CV outcomes and mortality benefit. The evidence supports the use of ACEI (Class 1a) compared with ARB despite current prescribing trends.

  6. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex.

    PubMed

    Natesh, Ramanathan; Schwager, Sylva L U; Sturrock, Edward D; Acharya, K Ravi

    2003-01-30

    Angiotensin-converting enzyme (ACE) has a critical role in cardiovascular function by cleaving the carboxy terminal His-Leu dipeptide from angiotensin I to produce a potent vasopressor octapeptide, angiotensin II. Inhibitors of ACE are a first line of therapy for hypertension, heart failure, myocardial infarction and diabetic nephropathy. Notably, these inhibitors were developed without knowledge of the structure of human ACE, but were instead designed on the basis of an assumed mechanistic homology with carboxypeptidase A. Here we present the X-ray structure of human testicular ACE and its complex with one of the most widely used inhibitors, lisinopril (N2-[(S)-1-carboxy-3-phenylpropyl]-L-lysyl-L-proline; also known as Prinivil or Zestril), at 2.0 A resolution. Analysis of the three-dimensional structure of ACE shows that it bears little similarity to that of carboxypeptidase A, but instead resembles neurolysin and Pyrococcus furiosus carboxypeptidase--zinc metallopeptidases with no detectable sequence similarity to ACE. The structure provides an opportunity to design domain-selective ACE inhibitors that may exhibit new pharmacological profiles.

  7. Effect of angiotensin-converting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition in IDDM patients: findings from the EUCLID Randomized Controlled Trial. EURODIAB Controlled Trial of Lisinopril in IDDM.

    PubMed

    Penno, G; Chaturvedi, N; Talmud, P J; Cotroneo, P; Manto, A; Nannipieri, M; Luong, L A; Fuller, J H

    1998-09-01

    We examined whether the ACE gene insertion/deletion (I/D) polymorphism modulates renal disease progression in IDDM and how ACE inhibitors influence this relationship. The EURODIAB Controlled Trial of Lisinopril in IDDM is a multicenter randomized placebo-controlled trial in 530 nonhypertensive, mainly normoalbuminuric IDDM patients aged 20-59 years. Albumin excretion rate (AER) was measured every 6 months for 2 years. Genotype distribution was 15% II, 58% ID, and 27% DD. Between genotypes, there were no differences in baseline characteristics or in changes in blood pressure and glycemic control throughout the trial. There was a significant interaction between the II and DD genotype groups and treatment on change in AER (P = 0.05). Patients with the II genotype showed the fastest rate of AER progression on placebo but had an enhanced response to lisinopril. AER at 2 years (adjusted for baseline AER) was 51.3% lower on lisinopril than placebo in the II genotype patients (95% CI, 15.7 to 71.8; P = 0.01), 14.8% in the ID group (-7.8 to 32.7; P = 0.2), and 7.7% in the DD group (-36.6 to 37.6; P = 0.7). Absolute differences in AER between placebo and lisinopril at 2 years were 8.1, 1.7, and 0.8 microg/min in the II, ID, and DD groups, respectively. The significant beneficial effect of lisinopril on AER in the II group persisted when adjusted for center, blood pressure, and glycemic control, and also for diastolic blood pressure at 1 month into the study. Progression from normoalbuminuria to microalbuminuria (lisinopril versus placebo) was 0.27 (0.03-2.26; P = 0.2) in the II group, and 1.30 (0.33-5.17; P = 0.7) in the DD group (P = 0.6 for interaction). Knowledge of ACE genotype may be of value in determining the likely impact of ACE inhibitor treatment.

  8. Effects of ACE-inhibitors and beta-blockers on left ventricular remodeling in chronic heart failure.

    PubMed

    Khattar, R S

    2003-04-01

    In recent years, it has become increasingly recognised that a central feature of the disease progression associated with heart failure is the process of left ventricular remodeling. The remodeling process manifests as an increase in left ventricular volumes, leading to a rise in wall stress and a compensatory increase in myocardial mass. The left ventricle also gradually assumes a more spherical shape, resulting in functional mitral regurgitation leading to further haemodynamic overload, worsening myocardial function and an unfavourable clinical course. Accumulating clinical data support the hypothesis that the benefits in clinical outcome with ACE-inhibitors and beta-blockers may relate to modification of the remodeling process resulting in slowing of disease progression and preservation of contractile function. The general trend from a number of clinical studies indicates that whereas ACE-inhibitors seem to prevent progressive left ventricular dilatation, the third generation beta-blocker, carvedilol, may actually reverse the remodelling process by reducing left ventricular volumes and improving systolic function. Direct comparisons indicate that carvedilol has a similar safety and tolerability profile to ACE-inhibitors and thereby support the feasibility of administering this drug as first-line therapy in selected patients with mild to moderate chronic heart failure. Therefore, the decision to initiate treatment with carvedilol or an ACE-inhibitor might in future be tailored on an individual basis and followed thereafter by combination therapy at the earliest and safest opportunity. Finally, the possible development of treatment strategies addressing the cellular and molecular mechanisms responsible for the remodeling process and the recently published benefits of device therapies herald a combined, synergistic approach to the future management of heart failure.

  9. [ACE inhibitors and its usefulness in the prevention of aspiration pneumonia in chronic cerebrovascular disease patients with asymptomatic swallowing dysfunction].

    PubMed

    Shibuya, Seiji; Murahashi, Makoto; Inoue, Masahiko; Jimi, Takahiro; Wakayama, Yoshihiro

    2002-03-01

    The double contrast pharyngogram by use of computed radiography (DCP-CR) has been found to be useful in detection of asymptomatic swallowing dysfunction. Following the DCP-CR examination, we investigated the incidence of aspiration pneumonia in 143 patients with chronic cerebrovascular disease (CVD) for 3 years and the effects of ACE inhibitors on the prevention of pneumonia. Aspiration pneumonia occurred in 29 out of 143 patients, and more frequently in the elderly chronic CVD patients with multiple brain lesions. Aspiration pneumonia was confirmed in 26 out of 85 patients (30.6%) with abnormal barium adhesion to the pharyngeal wall on the double contrast pharyngogram image by DCP-CR; whereas pneumonia occurred in 3 out of 58 patients (5.2%) with normal findings of DCP-CR pharyngogram. Among chronic CVD patients with abnormal findings of DCP-CR pharyngogram, the incidence of aspiration pneumonia was significantly lower in the patients treated with ACE inhibitors than in those treated with other antihypertensive agents or without antihypertensive agents (chi 2 value = 7.163, p < 0.05). Accordingly, ACE inhibitors may prevent the aspiration pneumonia and reduce the incidence of aspiration pneumonia in the chronic CVD patients with abnormal DCP-CR pharyngogram images.

  10. An update on non-peptide angiotensin receptor antagonists and related RAAS modulators.

    PubMed

    Aulakh, G K; Sodhi, R K; Singh, M

    2007-08-02

    The renin-angiotensin-aldosterone-system (RAAS) is an important regulator of blood pressure and fluid-electrolyte homeostasis. RAAS has been implicated in pathogenesis of hypertension, congestive heart failure, and chronic renal failure. Aliskiren is the first non-peptide orally active renin inhibitor approved by FDA. Angiotensin Converting Enzyme (ACE) Inhibitors are associated with frequent side effects such as cough and angio-oedema. Recently, the role of ACE2 and neutral endopeptidase (NEP) in the formation of an important active metabolite/mediator of RAAS, ang 1-7, has initiated attempts towards development of ACE2 inhibitors and combined ACE/NEP inhibitors. Furukawa and colleagues developed a series of low molecular weight nonpeptide imidazole analogues that possess weak but selective, competitive AT1 receptor blocking property. Till date, many compounds have exhibited promising AT1 blocking activity which cause a more complete RAAS blockade than ACE inhibitors. Many have reached the market for alternative treatment of hypertension, heart failure and diabetic nephropathy in ACE inhibitor intolerant patients and still more are waiting in the queue. But, the hallmark of this area of drug research is marked by a progress in understanding molecular interaction of these blockers at the AT1 receptor and unraveling the enigmatic influence of AT2 receptors on growth/anti-growth, differentiation and the regeneration of neuronal tissue. Different modeling strategies are underway to develop tailor made molecules with the best of properties like Dual Action (Angiotensin And Endothelin) Receptor Antagonists (DARA), ACE/NEP inhibitors, triple inhibitors, AT2 agonists, AT1/TxA2 antagonists, balanced AT1/AT2 antagonists, and nonpeptide renin inhibitors. This abstract gives an overview of these various angiotensin receptor antagonists.

  11. The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis.

    PubMed

    Monti, Martina; Terzuoli, Erika; Ziche, Marina; Morbidelli, Lucia

    2013-10-01

    Pediatric and adult cancer patients, following the use of the antitumor drug Doxorubicin develop cardiotoxicity. Pharmacological protection of microvascular endothelium might produce a double benefit: (i) reduction of myocardial toxicity (the primary target of Doxorubicin action) and (ii) maintenance of the vascular functionality for the adequate delivery of chemotherapeutics to tumor cells. This study was aimed to evaluate the mechanisms responsible of the protective effects of the angiotensin converting enzyme inhibitor (ACEI) Zofenoprilat against the toxic effects exerted by Doxorubicin on coronary microvascular endothelium. We found that exposure of endothelial cells to Doxorubicin (0.1-1μM range) impaired cell survival by promoting their apoptosis. ERK1/2 related p53 activation, but not reactive oxygen species, was responsible for Doxorubicin induced caspase-3 cleavage. P53 mediated-apoptosis and impairment of survival were reverted by treatment with Zofenoprilat. The previously described PI-3K/eNOS/endogenous fibroblast growth factor signaling was not involved in the protective effect, which, instead, could be ascribed to cystathionine gamma lyase dependent availability of H2S from Zofenoprilat. Furthermore, considering the tumor environment, the treatment of endothelial/tumor co-cultures with Zofenoprilat did not affect the antitumor efficacy of Doxorubicin. In conclusion the ACEI Zofenoprilat exerts a protective effect on Doxorubicin induced endothelial damage, without affecting its antitumor efficacy. Thus, sulfhydryl containing ACEI may be a useful therapy for Doxorubicin-induced cardiotoxicity.

  12. Angiotensin receptor-neprilysin inhibitor (ARNi): Clinical studies on a new class of drugs.

    PubMed

    Gori, Mauro; Volterrani, Maurizio; Piepoli, Massimo; Senni, Michele

    2017-01-01

    Sacubritil∗valsartan (Entresto, Novartis, still commonly referred to as LCZ696) is a combination drug described as a new class of dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). This combination drug has been successfully studied in patients with heart failure with both preserved (HFpEF) and reduced ejection fraction (HFrEF). In this review, the evidences in patients with HFpEF and HFrEF are summarized, including the results of more recent studies.

  13. Aliskiren in Patients Failing to Achieve Blood Pressure Targets With Angiotensin Converting Enzyme Inhibitors or Angiotensin Receptor Blockers

    PubMed Central

    Hawkins, Elizabeth B.; Ling, Hua; Burns, Tammy L.; Mooss, Aryan N.; Hilleman, Daniel E.

    2012-01-01

    Background To assess the efficacy of aliskiren in patients failing to reach blood pressure (BP) goals with angiotensin converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB). Methods A total of 107 patients who failed to reach BP goals on ACEI or ARB were switched to aliskiren. Changes in BP were determined during maximal ACEI, ARB, or aliskiren therapy. Results Mean reduction in sBP and dBP with ACEI was 8.5 ± 6.3 mmHg and 6.0 ± 4.7 mmHg, respectively. Mean reduction in sBP and dBP with ARB was 8.3 ± 6.7 mmHg and 5.0 ± 5.2 mmHg, respectively. Mean reduction in sBP and dBP with aliskiren 150 mg/d was 6.7 ± 5.4 mmHg and 5.4 ± 4.8 mmHg, respectively. Mean reduction in sBP and dBP with aliskiren 300 mg/d was 8.6 ± 6.3 mmHg and 6.0 ± 4.9 mmHg, respectively. BP reductions between ACEI, ARB, and aliskiren were not significantly different. Conclusions Aliskiren is ineffective in patients failing ACEI or ARB therapy. Given the label changes restricting the use of aliskiren in combination with ACEI and ARB, excess cost compared to ACEI and ARB, and a paucity of outcome data, there is a limited role for aliskiren in practice.

  14. Antihypertensive efficacy of the angiotensin receptor blocker azilsartan medoxomil compared with the angiotensin-converting enzyme inhibitor ramipril

    PubMed Central

    Bönner, G; Bakris, G L; Sica, D; Weber, M A; White, W B; Perez, A; Cao, C; Handley, A; Kupfer, S

    2013-01-01

    Drug therapy often fails to control hypertension. Azilsartan medoxomil (AZL-M) is a newly developed angiotensin II receptor blocker with high efficacy and good tolerability. This double-blind, controlled, randomised trial compared its antihypertensive efficacy and safety vs the angiotensin-converting enzyme inhibitor ramipril (RAM) in patients with clinic systolic blood pressure (SBP) 150–180 mm Hg. Patients were randomised (n=884) to 20 mg AZL-M or 2.5 mg RAM once daily for 2 weeks, then force-titrated to 40 or 80 mg AZL-M or 10 mg RAM for 22 weeks. The primary endpoint was change in trough, seated, clinic SBP. Mean patient age was 57±11 years, 52.4% were male, 99.5% were Caucasian. Mean baseline BP was 161.1±7.9/94.9±9.0 mm Hg. Clinic SBP decreased by 20.6±0.95 and 21.2±0.95 mm Hg with AZL-M 40 and 80 mg vs12.2±0.95 mm Hg with RAM (P<0.001 for both AZL-M doses). Adverse events leading to discontinuation were less frequent with AZL-M 40 and 80 mg (2.4% and 3.1%, respectively) than with RAM (4.8%). These data demonstrated that treatment of stage 1–2 hypertension with AZL-M was more effective than RAM and better tolerated. PMID:23514842

  15. The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism.

    PubMed

    Sonsalla, Patricia K; Coleman, Christal; Wong, Lai-Yoong; Harris, Suzan L; Richardson, Jason R; Gadad, Bharathi S; Li, Wenhao; German, Dwight C

    2013-12-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by a prominent loss of nigrostriatal dopamine (DA) neurons with an accompanying neuroinflammation. The peptide angiotensin II (AngII) plays a role in oxidative-stress induced disorders and is thought to mediate its detrimental actions via activation of AngII AT1 receptors. The brain renin-angiotensin system is implicated in neurodegenerative disorders including PD. Blockade of the angiotensin converting enzyme or AT1 receptors provides protection in acute animal models of parkinsonism. We demonstrate here that treatment of mice with the angiotensin converting enzyme inhibitor captopril protects the striatum from acutely administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP), and that chronic captopril protects the nigral DA cell bodies from degeneration in a progressive rat model of parkinsonism created by the chronic intracerebral infusion of 1-methyl-4-phenylpyridinium (MPP+). The accompanying activation of microglia in the substantia nigra of MPP+-treated rats was reduced by the chronic captopril treatment. These findings indicate that captopril is neuroprotective for nigrostriatal DA neurons in both acute and chronic rodent PD models. Targeting the brain AngII pathway may be a feasible approach to slowing neurodegeneration in PD.

  16. ACE inhibitors in heart failure--switching from enalapril to perindopril.

    PubMed

    Masuell, Marcelo; Brusca, Gustavo; Pardo, Augusto; Piñeiro, Daniel; Checkerdhemian, Sergio; Forcada, Pedro

    2002-01-01

    Although ACE inhibitors have demonstrated their beneficial effects in heart failure, whether different agents may induce different benefits remains unclear. We designed an open, sequential, prospective study switching heart failure patients receiving enalapril to perindopril which has been reported to be longer acting and better tolerated. The objective of the study was to find out if clinical and functional status could be further improved by changing from enalapril 30 mg daily to a perindopril 4 mg daily. Assessments of clinical status, echocardiography and nuclear ventriculography were performed at baseline under enalapril (30 mg mean dose (b.i.d.)), then 6 and 12 months after the switch to perindopril (4 mg/day mean dose). Thirty-one patients were included (90% men, aged 56.5 +/- 11.8 years, mean radionuclide left ventricular (LV) ejection fraction 22.4 +/- 8.5 %). After 6 months of treatment, NYHA functional class was significantly improved; the percentage of patients in class I increased to 57% after perindopril versus 20% at baseline (p < 0.001), and 50% of the total study population gained at least one NYHA class. After 12 months of treatment, 80% of the patients were in NYHA class I. Blood pressure decreased significantly with a good tolerance at 6 months and then remained stable. After 12 months of treatment, significant reductions of LV end-diastolic diameter (61.4 +/- 5.3 vs. 64.5 +/- 6.5 mm; p = 0.001) and LV mass index (143.3 +/- 21.5 vs. 164.2 +/- 40.2 g/m2; p < 0.001) were observed, reflecting a positive effect on the LV remodelling process. Despite some limitations, because it is of an open-label design with a small number of patients, our study found significant differences in clinical and objective parameters in heart failure patients switched from enalapril to perindopril. The prognostic significance of these findings remains to be investigated.

  17. Angiotensin converting enzyme 2 and atherosclerosis.

    PubMed

    Wang, Yutang; Tikellis, Chris; Thomas, Merlin C; Golledge, Jonathan

    2013-01-01

    Angiotensin converting enzyme 2 (ACE2) is a homolog of angiotensin converting enzyme (ACE) which generates angiotensin II from angiotensin I. ACE, its product angiotensin II and the downstream angiotensin type I receptor are important components of the renin-angiotensin system (RAS). Angiotensin II, the most important component of the RAS, promotes the development of atherosclerosis. The identification of ACE2 in 2000 opened a new chapter of research on the regulation of the RAS. ACE2 degrades pro-atherosclerotic angiotensin II and generates anti-atherosclerotic angiotensin 1-7. In this review, we explored the importance of ACE2 in protecting experimental animals from developing atherosclerosis and its involvement in human atherosclerosis. We also examined the published evidence assessing the importance of ACE2 in different cell types relevant to atherosclerosis and putative underlying cellular and molecular mechanisms linking ACE2 with protection from atherosclerosis. ACE2 shifts the balance from angiotensin II to angiotensin 1-7 inhibiting the progression of atherosclerosis in animal models.

  18. Angiotensin receptor-neprilysin inhibitors: clinical potential in heart failure and beyond

    PubMed Central

    Singh, Jagdeep SS; Lang, Chim C

    2015-01-01

    Heart failure remains a major concern across the globe as life expectancies and delivery of health care continue to improve. There has been a dearth of new developments in heart failure therapies in the last decade until last year, with the release of the results from the PARADIGM-HF Trial heralding the arrival of a promising new class of drug, ie, the angiotensin receptor-neprilysin inhibitor. In this review, we discuss the evolution of our incremental understanding of the neurohormonal mechanisms involved in the pathophysiology of heart failure, which has led to our success in modulating its various pathways. We start by examining the renin-angiotensin-aldosterone system, followed by the challenges of modulating the natriuretic peptide system. We then delve deeper into the pharmacology and mechanisms by which angiotensin receptor-neprilysin inhibitors achieve their significant cardiovascular benefits. Finally, we also consider the potential application of this new class of drug in other areas, such as heart failure with preserved ejection fraction, hypertension, patients with renal impairment, and following myocardial infarction. PMID:26082640

  19. Angiotensin receptor-neprilysin inhibitors: clinical potential in heart failure and beyond.

    PubMed

    Singh, Jagdeep S S; Lang, Chim C

    2015-01-01

    Heart failure remains a major concern across the globe as life expectancies and delivery of health care continue to improve. There has been a dearth of new developments in heart failure therapies in the last decade until last year, with the release of the results from the PARADIGM-HF Trial heralding the arrival of a promising new class of drug, ie, the angiotensin receptor-neprilysin inhibitor. In this review, we discuss the evolution of our incremental understanding of the neurohormonal mechanisms involved in the pathophysiology of heart failure, which has led to our success in modulating its various pathways. We start by examining the renin-angiotensin-aldosterone system, followed by the challenges of modulating the natriuretic peptide system. We then delve deeper into the pharmacology and mechanisms by which angiotensin receptor-neprilysin inhibitors achieve their significant cardiovascular benefits. Finally, we also consider the potential application of this new class of drug in other areas, such as heart failure with preserved ejection fraction, hypertension, patients with renal impairment, and following myocardial infarction.

  20. Effects of taxifolin on the activity of angiotensin-converting enzyme and reactive oxygen and nitrogen species in the aorta of aging rats and rats treated with the nitric oxide synthase inhibitor and dexamethasone.

    PubMed

    Arutyunyan, Tamara V; Korystova, Antonina F; Kublik, Ludmila N; Levitman, Maria Kh; Shaposhnikova, Vera V; Korystov, Yuri N

    2013-12-01

    The action of taxifolin on the angiotensin-converting enzyme (ACE) and the formation of reactive oxygen and nitrogen species (ROS/RNS) in the aorta of aging rats and rats treated with nitric oxide synthase inhibitor (N ω-nitro-L-arginine methyl ester (L-NAME)) or dexamethasone have been studied. The ACE activity in aorta sections was determined by measuring the hydrolysis of hippuryl-L-histidyl-L-leucine, and the ROS/RNS production was measured by oxidation of dichlorodihydrofluorescein. It was shown that taxifolin at a dose of 30-100 μg/kg/day decreases the ACE activity in the aorta of aging rats and of rats treated with L-NAME or dexamethasone to the level of the ACE activity in young control rats. Taxifolin (100 μg/kg/day) was found to also reduce the amount of ROS/RNS in the aorta that increased as a result of L-NAME intake. L-NAME treatment increases the contribution of 5-lipoxygenase and NADPH oxidase to ROS/RNS production in the aorta, while taxifolin (100 μg/kg/day) decreases the contribution of these enzymes to the normal level.

  1. Syndrome of inappropriate secretion of antidiuretic hormone associated with angiotensin-converting enzyme inhibitor administration.

    PubMed

    Murakami, Tomoaki; Horibata, Yoko; Morimoto, Yasuko; Tateno, Shigeru; Kawasoe, Yasutaka; Niwa, Koichiro

    2013-06-01

    Angiotensin-converting enzyme inhibitors (ACEI's) are an important medication in the treatment of congestive heart failure. However, ACEIs may cause harmful side effects, such as the syndrome of inappropriate secretion of antidiuretic hormone (SIADH), which is a rare but important side effect. We describe here a case of SIADH associated with ACEI administration in a 6-year-old boy with restrictive cardiomyopathy. After recovery from acute exacerbation of congestive heart failure by tolvaptan administration, an ACEI (cilazapril) was started to decrease the production of angiotensin II, which upregulates serum antidiuretic hormone secretion. The patient's heart failure symptoms worsened, including accumulation of right pleural effusion and ascites, after the initiation of ACEI administration. Cessation of ACEI administration dramatically improved his symptoms. Because it is difficult to distinguish SIADH associated with ACEI from worsening congestive heart failure, the possibility of fluid retention due to ACEI administration should always be considered when this agent is administered to patients with heart failure.

  2. Effects of a lipoxygenase inhibitor, panaxynol, on vascular contraction induced by angiotensin II.

    PubMed

    Takai, S; Jin, D; Kirimura, K; Ikeda, J; Sakaguchi, M; Baba, K; Fujita, T; Miyazaki, M

    1999-05-01

    We investigated whether a lipoxygenase inhibitor, panaxynol, affected the vascular contraction induced by angiotensin (Ang) II and the mean arterial pressure in spontaneously hypertensive rats (SHR). Panaxynol suppressed dose-dependently the contractile responses induced by 30 nM Ang II in isolated intact and endothelial cell-denuded aorta in the hamster. IC50 values in the intact and endothelial cell-denuded aorta were 23 and 20 microM, respectively. In SHR, the mean arterial pressure after injection of 30 and 60 mg/kg panaxynol was reduced, and the maximum hypotensive values were 23 and 48 mmHg, respectively. Thus, lipoxygenase products may affect the renin-angiotensin system.

  3. Effects of Small Molecule Calcium-Activated Chloride Channel Inhibitors on Structure and Function of Accessory Cholera Enterotoxin (Ace) of Vibrio cholerae

    PubMed Central

    Chatterjee, Tanaya; Sheikh, Irshad Ali; Chakravarty, Devlina; Chakrabarti, Pinak; Sarkar, Paramita; Saha, Tultul; Chakrabarti, Manoj K.; Hoque, Kazi Mirajul

    2015-01-01

    Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX) and Accessory cholera enterotoxin (Ace) secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser attention has been paid to the interaction of chloride channel modulators with bacterial toxins. Here we report the modulation of the structure/function of recombinant Ace by small molecule calcium-activated chloride channel (CaCC) inhibitors, namely CaCCinh-A01, digallic acid (DGA) and tannic acid. Biophysical studies indicate that the unfolding (induced by urea) free energy increases upon binding CaCCinh-A01 and DGA, compared to native Ace, whereas binding of tannic acid destabilizes the protein. Far-UV CD experiments revealed that the α-helical content of Ace-CaCCinh-A01 and Ace-DGA complexes increased relative to Ace. In contrast, binding to tannic acid had the opposite effect, indicating the loss of protein secondary structure. The modulation of Ace structure induced by CaCC inhibitors was also analyzed using docking and molecular dynamics (MD) simulation. Functional studies, performed using mouse ileal loops and Ussing chamber experiments, corroborate biophysical data, all pointing to the fact that tannic acid destabilizes Ace, inhibiting its function, whereas DGA stabilizes the toxin with enhanced fluid accumulation in mouse ileal loop. The efficacy of tannic acid in mouse model suggests that the targeted modulation of Ace structure may be of therapeutic benefit for gastrointestinal disorders. PMID:26540279

  4. Effects of Small Molecule Calcium-Activated Chloride Channel Inhibitors on Structure and Function of Accessory Cholera Enterotoxin (Ace) of Vibrio cholerae.

    PubMed

    Chatterjee, Tanaya; Sheikh, Irshad Ali; Chakravarty, Devlina; Chakrabarti, Pinak; Sarkar, Paramita; Saha, Tultul; Chakrabarti, Manoj K; Hoque, Kazi Mirajul

    2015-01-01

    Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX) and Accessory cholera enterotoxin (Ace) secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser attention has been paid to the interaction of chloride channel modulators with bacterial toxins. Here we report the modulation of the structure/function of recombinant Ace by small molecule calcium-activated chloride channel (CaCC) inhibitors, namely CaCCinh-A01, digallic acid (DGA) and tannic acid. Biophysical studies indicate that the unfolding (induced by urea) free energy increases upon binding CaCCinh-A01 and DGA, compared to native Ace, whereas binding of tannic acid destabilizes the protein. Far-UV CD experiments revealed that the α-helical content of Ace-CaCCinh-A01 and Ace-DGA complexes increased relative to Ace. In contrast, binding to tannic acid had the opposite effect, indicating the loss of protein secondary structure. The modulation of Ace structure induced by CaCC inhibitors was also analyzed using docking and molecular dynamics (MD) simulation. Functional studies, performed using mouse ileal loops and Ussing chamber experiments, corroborate biophysical data, all pointing to the fact that tannic acid destabilizes Ace, inhibiting its function, whereas DGA stabilizes the toxin with enhanced fluid accumulation in mouse ileal loop. The efficacy of tannic acid in mouse model suggests that the targeted modulation of Ace structure may be of therapeutic benefit for gastrointestinal disorders.

  5. The growth factor midkine regulates the renin-angiotensin system in mice

    PubMed Central

    Hobo, Akinori; Yuzawa, Yukio; Kosugi, Tomoki; Kato, Noritoshi; Asai, Naoto; Sato, Waichi; Maruyama, Shoichi; Ito, Yasuhiko; Kobori, Hiroyuki; Ikematsu, Shinya; Nishiyama, Akira; Matsuo, Seiichi; Kadomatsu, Kenji

    2009-01-01

    The renin-angiotensin system plays a pivotal role in regulating blood pressure and is involved in the pathogenesis of kidney disorders and other diseases. Here, we report that the growth factor midkine is what we believe to be a novel regulator of the renin-angiotensin system. The hypertension induced in mice by 5/6 nephrectomy was accompanied by renal damage and elevated plasma angiotensin II levels and was ameliorated by an angiotensin-converting enzyme (ACE) inhibitor and an angiotensin receptor blocker. Notably, ACE activity in the lung, midkine expression in the lung, and midkine levels in the plasma were all increased after 5/6 nephrectomy. Exposure to midkine protein enhanced ACE expression in primary cultured human lung microvascular endothelial cells. Furthermore, hypertension was not induced and renal damage was less severe in midkine-deficient mice. Supplemental administration of midkine protein to midkine-deficient mice restored ACE expression in the lung and hypertension after 5/6 nephrectomy. Oxidative stress might be involved in midkine expression, since expression of NADH/NADPH oxidase–1, –2, and –4 was induced in the lung after 5/6 nephrectomy. Indeed, the antioxidative reagent tempol reduced midkine expression and plasma angiotensin II levels and consequently ameliorated hypertension. These results suggest that midkine regulates the renin-angiotensin system and mediates the kidney-lung interaction after 5/6 nephrectomy. PMID:19451697

  6. Low doses of ethanol decrease the activity of the angiotensin-converting enzyme in the aorta of aging rats and rats treated with a nitric oxide synthase inhibitor and dexamethasone.

    PubMed

    Emel'yanov, Maksim O; Korystova, Antonina F; Kublik, Ludmila N; Levitman, Maria Kh; Shaposhnikova, Vera V; Korystov, Yuri N

    2012-01-01

    In the present study, the activity of ACE (angiotensin-converting enzyme) in the aorta of senescent rats and rats treated with the NOS (NO synthase) inhibitor L-NAME (NG-nitro-L-arginine methyl ester) or dexamethasone and the effect of low doses of ethanol (0.2-1.2 g/kg of body weight, daily for 8-12 days) on this activity were studied. We found that ACE activity increased with age and in response to L-NAME and dexamethasone treatment. Ethanol at a dose of 0.4 g/kg of body weight per day decreased ACE activity in the aorta of aged rats and of rats treated with L-NAME or dexamethasone to the level of activity in young control rats. The optimal ethanol dose (the dose inducing a maximum decrease in ACE activity) increased with increasing doses of dexamethasone: 0.4 g/kg of body weight per day at 30 μg of dexamethasone/kg of body weight and 0.8 g/kg of body weight per day at 100 μg of dexamethasone/kg of body weight. It was also found that optimal doses of ethanol increased the number of cells in the thymus of rats treated with dexamethasone. The optimal dose of ethanol of 0.4 g/kg of body weight per day, which induced a maximum decrease in ACE activity in rat aorta, corresponded to a dose of 30 g of ethanol/day, which, according to epidemiological data, produces a maximum decrease in the incidence of cardiovascular disease in humans. In conclusion, the decrease in ACE activity in vessels may be one of the main mechanisms of the beneficial effects of low doses of ethanol on human health.

  7. Age and the pharmacokinetics of angiotensin converting enzyme inhibitors enalapril and enalaprilat.

    PubMed Central

    Hockings, N; Ajayi, A A; Reid, J L

    1986-01-01

    The pharmacokinetics of angiotension converting enzyme (ACE) inhibitors enalapril (10 mg orally) and its active metabolite, enalaprilat (10 mg intravenously) were studied in nine young healthy volunteers aged 22-30 years and nine sex matched elderly subjects aged 65-73 years. After both drugs, a biexponential curve was fitted to the decline in plasma enalaprilat concentration. Area under the plasma concentration-time curve (AUC) was greater in the elderly for both drugs. Clearance (CL) and clearance/bioavailability (CL/F) were less in the elderly for enalaprilat and enalapril, respectively. There was no difference in F between young (0.62 +/- 0.16) and elderly subjects (0.61 +/- 0.15). Enalaprilat CL and enalapril CL/F were significantly and positively correlated to endogenous creatinine clearance. There was a significant difference in the weight corrected volume of distribution at steady state after enalaprilat between the young and elderly (P less than 0.02). The relationship between plasma enalaprilat concentrations and percentage ACE inhibition, using the Hill equation, showed no difference in the sensitivity to ACE inhibition between the young and the elderly group. The pharmacokinetic differences observed are likely to be related to an age dependent decline in renal function as well as changes in body composition. Kinetic differences partly explain the greater pharmacodynamic response in the elderly. PMID:3011046

  8. Novel Trifluoromethyl-Containing Peptides as Inhibitors for Angiotensin- Converting Enzyme and Enkephalin-Aminopeptidase

    DTIC Science & Technology

    1992-01-01

    Although many analogs of the potent ACE inhibitors, captopril and enalaprilat, have been synthesized, there is a paucity of information in the...analogs and homologs of captopril and enalaprilat (Table 1). As Table I shows, the direct substitution of TFM for methyl provides a very potent captopril ...active cite conformations by SYBIL 5.0 program indicates that 1-(R,S) should be at least 5 times better than (S,S)- captopril (IC50-- 4 x 10-9M), and

  9. Effects of centrally acting ACE inhibitors on the rate of cognitive decline in dementia

    PubMed Central

    Gao, Yang; O'Caoimh, Rónán; Healy, Liam; Kerins, David M; Eustace, Joseph; Guyatt, Gordon; Sammon, David; Molloy, D William

    2013-01-01

    Objectives There is growing evidence that antihypertensive agents, particularly centrally acting ACE inhibitors (CACE-Is), which cross the blood–brain barrier, are associated with a reduced rate of cognitive decline. Given this, we compared the rates of cognitive decline in clinic patients with dementia receiving CACE-Is (CACE-I) with those not currently treated with CACE-Is (NoCACE-I), and with those who started CACE-Is, during their first 6 months of treatment (NewCACE-I). Design Observational case–control study. Setting 2 university hospital memory clinics. Participants 817 patients diagnosed with Alzheimer's disease, vascular or mixed dementia. Of these, 361 with valid cognitive scores were included for analysis, 85 CACE-I and 276 NoCACE-I. Measurements Patients were included if the baseline and end-point (standardised at 6 months apart) Standardised Mini-Mental State Examination (SMMSE) or Quick Mild Cognitive Impairment (Qmci) scores were available. Patients with comorbid depression or other dementia subtypes were excluded. The average 6-month rates of change in scores were compared between CACE-I, NoCACE-I and NewCACE-I patients. Results When the rate of decline was compared between groups, there was a significant difference in the median, 6-month rate of decline in Qmci scores between CACE-I (1.8 points) and NoCACE-I (2.1 points) patients (p=0.049), with similar, non-significant changes in SMMSE. Median SMMSE scores improved by 1.2 points in the first 6 months of CACE treatment (NewCACE-I), compared to a 0.8 point decline for the CACE-I (p=0.003) group and a 1 point decline for the NoCACE-I (p=0.001) group over the same period. Multivariate analysis, controlling for baseline characteristics, showed significant differences in the rates of decline, in SMMSE, between the three groups, p=0.002. Conclusions Cognitive scores may improve in the first 6 months after CACE-I treatment and use of CACE-Is is associated with a reduced rate of cognitive

  10. Angiotensin-(1-7): A Novel Peptide to Treat Hypertension and Nephropathy in Diabetes?

    PubMed Central

    Padda, Ranjit Singh; Shi, Yixuan; Lo, Chao-Sheng; Zhang, Shao-Ling; Chan, John S.D.

    2015-01-01

    The renin-angiotensin system (RAS) plays a pivotal role in mammalian homeostasis physiology. The RAS can be delineated into a classical RAS (the pressor arm) including angiotensinogen (Agt), renin, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R), and a counterbalancing novel RAS (the depressor arm) including Agt, renin, angiotensin-converting enzyme-2 (ACE-2), angiotensin-(1-7) (Ang 1-7) and Ang 1-7 receptor (or Mas receptor (MasR)). Hyperglycemia (diabetes) induces severe tissue oxidative stress, which stimulates the pressor arm of the renal RAS axis and leads to an increase in ACE/ACE-2 ratio, with excessive formation of Ang II. There is a growing body of evidence for beneficial effects of the depressor arm of RAS (ACE-2/Ang 1-7/MasR) axis in diabetes, hypertension and several other diseased conditions. Evidence from in vitro, in vivo and clinical studies reflects anti-oxidant, anti-fibrotic, and anti-inflammatory properties of Ang 1-7. Most of the currently available therapies only target suppression of the pressor arm of RAS with angiotensin receptor blockers (ARBs) and ACE inhibitors (ACEi). However, it is time to consider simultaneous activation of the depressor arm for more effective outcomes. This review summarizes the recent updates on the protective role of Ang 1-7 in hypertension and kidney injury in diabetes, as well as the possible underlying mechanism(s) of Ang 1-7 action, suggesting that the ACE-2/Ang 1-7/MasR axis can be developed as a therapeutic target for the treatment of diabetes-induced hypertension and renal damage. PMID:26793405

  11. Angiotensin-(1-7): A Novel Peptide to Treat Hypertension and Nephropathy in Diabetes?

    PubMed

    Padda, Ranjit Singh; Shi, Yixuan; Lo, Chao-Sheng; Zhang, Shao-Ling; Chan, John S D

    2015-10-14

    The renin-angiotensin system (RAS) plays a pivotal role in mammalian homeostasis physiology. The RAS can be delineated into a classical RAS (the pressor arm) including angiotensinogen (Agt), renin, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R), and a counterbalancing novel RAS (the depressor arm) including Agt, renin, angiotensin-converting enzyme-2 (ACE-2), angiotensin-(1-7) (Ang 1-7) and Ang 1-7 receptor (or Mas receptor (MasR)). Hyperglycemia (diabetes) induces severe tissue oxidative stress, which stimulates the pressor arm of the renal RAS axis and leads to an increase in ACE/ACE-2 ratio, with excessive formation of Ang II. There is a growing body of evidence for beneficial effects of the depressor arm of RAS (ACE-2/Ang 1-7/MasR) axis in diabetes, hypertension and several other diseased conditions. Evidence from in vitro, in vivo and clinical studies reflects anti-oxidant, anti-fibrotic, and anti-inflammatory properties of Ang 1-7. Most of the currently available therapies only target suppression of the pressor arm of RAS with angiotensin receptor blockers (ARBs) and ACE inhibitors (ACEi). However, it is time to consider simultaneous activation of the depressor arm for more effective outcomes. This review summarizes the recent updates on the protective role of Ang 1-7 in hypertension and kidney injury in diabetes, as well as the possible underlying mechanism(s) of Ang 1-7 action, suggesting that the ACE-2/Ang 1-7/MasR axis can be developed as a therapeutic target for the treatment of diabetes-induced hypertension and renal damage.

  12. EARLY Treatment with azilsartan compared to ACE-inhibitors in anti-hypertensive therapy – rationale and design of the EARLY hypertension registry

    PubMed Central

    2013-01-01

    Background Arterial hypertension is highly prevalent but poorly controlled. Blood pressure (BP) reduction substantially reduces cardiovascular morbidity and mortality. Recent randomized, double-blind clinical trials demonstrated that azilsartan medoxomil (AZM) is more effective in reducing BP than the ubiquitary ACE inhibitor ramipril. Therefore, we aimed to test whether these can be verified under clinical practice conditions. Methods/Design The “Treatment with Azilsartan Compared to ACE-Inhibitors in Anti-Hypertensive Therapy” (EARLY) registry is a prospective, observational, national, multicenter registry with a follow-up of up to 12 months. It will include up to 5000 patients on AZM or ACE-inhibitor monotherapy in a ratio of 7 to 3. A subgroup of patients will undergo 24-hour BP monitoring. EARLY has two co-primary objectives: 1) Description of the safety profile of azilsartan and 2) achievement of BP targets based on recent national and international guidelines for patients treated with azilsartan in comparison to those treated with ACE-inhibitors. The most important secondary endpoints are the determination of persistence with treatment and the documentation of cardiovascular and renal events. Recruitment commenced in January 2012 and will be completed by February 2013. Conclusions The data obtained will supplement previous results from randomized controlled trials to document the potential value of utilizing azilsartan medoxomil in comparison to ACE-inhibitor treatment for target BP achievement in clinical practice. PMID:23819631

  13. Regulation of urinary ACE2 in diabetic mice.

    PubMed

    Wysocki, Jan; Garcia-Halpin, Laura; Ye, Minghao; Maier, Christoph; Sowers, Kurt; Burns, Kevin D; Batlle, Daniel

    2013-08-15

    Angiotensin-converting enzyme-2 (ACE2) enhances the degradation of ANG II and its expression is altered in diabetic kidneys, but the regulation of this enzyme in the urine is unknown. Urinary ACE2 was studied in the db/db model of type 2 diabetes and stretozotocin (STZ)-induced type 1 diabetes during several physiological and pharmacological interventions. ACE2 activity in db/db mice was increased in the serum and to a much greater extent in the urine compared with db/m controls. Neither a specific ANG II blocker, telmisartan, nor an ACE inhibitor, captopril, altered the levels of urinary ACE2 in db/db or db/m control mice. High-salt diet (8%) increased whereas low-salt diet (0.1%) decreased urinary ACE2 activity in the urine of db/db mice. In STZ mice, urinary ACE2 was also increased, and insulin decreased it partly but significantly after several weeks of administration. The increase in urinary ACE2 activity in db/db mice reflected an increase in enzymatically active protein with two bands identified of molecular size at 110 and 75 kDa and was associated with an increase in kidney cortex ACE2 protein at 110 kDa but not at 75 kDa. ACE2 activity was increased in isolated tubular preparations but not in glomeruli from db/db mice. Administration of soluble recombinant ACE2 to db/m and db/db mice resulted in a marked increase in serum ACE2 activity, but no gain in ACE2 activity was detectable in the urine, further demonstrating that urinary ACE2 is of kidney origin. Increased urinary ACE2 was associated with more efficient degradation of exogenous ANG II (10(-9) M) in urine from db/db compared with that from db/m mice. Urinary ACE2 could be a potential biomarker of increased metabolism of ANG II in diabetic kidney disease.

  14. Angiotensin-converting enzyme inhibitors-induced angioedema treated by C1 esterase inhibitor concentrate (Berinert®): about one case and review of the therapeutic arsenal.

    PubMed

    Lipski, Samuel Michael; Casimir, Georges; Vanlommel, Martine; Jeanmaire, Mathieu; Dolhen, Pierre

    2015-02-01

    C1 esterase inhibitor (Berinert®) is generally used to treat severe attack of hereditary angioedema. We describe here the case of a patient who presented with a severe angioedema induced by angiotensin-converting enzyme inhibitors (ACEIs) endangering her life. It could be successfully treated with that medicine.

  15. Human ACE gene polymorphism and distilled water induced cough

    PubMed Central

    Morice, A. H.; Turley, A. J.; Linton, T. K.

    1997-01-01

    BACKGROUND: Inhibitors of angiotensin converting enzyme (ACE) cause a non-productive cough. The insertion/deletion polymorphism of ACE was used as a genetic marker to investigate the relationship between ACE genotype and cough sensitivity. METHODS: A double blind cough challenge was performed in 66 normotensive subjects (34 men) of mean age 34.8 years (range 18-80) using aerosols of distilled water. The number of coughs during the one minute exposure to water was recorded. DNA samples from venous blood were amplified by the polymerase chain reaction and resolved on a 1% agarose gel. They were analysed for the presence of a polymorphism in intron 16 of the ACE gene consisting of an insertion (I) or deletion (D) of an Alu repetitive sequence 287 base pairs long. RESULTS: The distribution of genotypes was 20 II, 26 ID, and 20 DD. The cough response was significantly (p < 0.01) related to the ACE genotype, the mean number of coughs being 15.8, 11.3, and 9.6, respectively, in subjects with the II, ID, and DD genotypes. CONCLUSIONS: The observation that cough challenge is dependent on ACE genotype in normal subjects is evidence of a link between ACE activity and the cough reflex. 


 PMID:9059468

  16. Angiotensin converting enzyme versus angiotensin converting enzyme-2 selectivity of MLN-4760 and DX600 in human and murine bone marrow-derived cells

    PubMed Central

    Joshi, Shrinidh; Balasubramanian, Narayanaganesh; Vasam, Goutham; Jarajapu, Yagna PR

    2016-01-01

    Angiotensin-converting enzymes, ACE and ACE2, are key members of renin angiotensin system. Activation of ACE2/Ang-(1-7) pathway enhances cardiovascular protective functions of bone marrow-derived stem/progenitor cells. The current study evaluated the selectivity of ACE2 inhibitors, MLN-4760 and DX-600, and ACE and ACE2 activities in human (hu) and murine (mu) bone marrow cells. Assays were carried out in hu and mu mononuclear cells (MNCs) and huCD34+ cells or mu-lineage-depleted (muLin-) cells, human-recombinant (rh) enzymes, and mu-heart with enzyme-specific substrates. ACE or ACE2 inhibition by racemic MLN-4760, its isomers MLN-4760-A and MLN-4760-B, DX600 and captopril were characterized. MLN-4760-B is relatively less efficacious and less-selective than the racemate or MLN-4760-A at hu-rhACE2, and all three of them inhibited 43% rhACE. In huMNCs, MLN-4760-B detected 63% ACE2 with 28-fold selectivity over ACE. In huCD34+ cells, MLN-4760-B detected 38% of ACE2 activity with 63-fold selectivity. In mu-heart and muMNCs, isomer B was 100- and 228-fold selective for ACE2, respectively. In muLin- cells, MLN-4760-B detected 25% ACE2 activity with a pIC50 of 6.3. The racemic mixture and MLN-4760-A showed lower efficacy and poor selectivity for ACE2 in MNCs and mu-heart. ACE activity detected by captopril was 32 and 19%, respectively, in huCD34+ and muLin- cells. DX600 was less efficacious, and more selective for ACE2 compared to MLN-4760-B in all samples tested. These results suggest that MLN-4760-B is a better antagonist of ACE2 than DX600 at 10μM concentration in human and murine bone marrow cells, and that these cells express more functional ACE2 than ACE. PMID:26851370

  17. Angiotensin-converting enzyme gene polymorphism predicts the time-course of blood pressure response to angiotensin converting enzyme inhibition in the AASK trial

    PubMed Central

    Bhatnagar, Vibha; O’Connor, Daniel T.; Schork, Nicholas J.; Salem, Rany M.; Nievergelt, Caroline M.; Rana, Brinda K.; Smith, Douglas W.; Bakris, George L.; Middleton, John P.; Norris, Keith C.; Wright, Jackson T.; Cheek, Deanna; Hiremath, Leena; Contreras, Gabriel; Appel, Lawrence J.; Lipkowitz, Michael S.

    2009-01-01

    Objective It has yet to be determined whether genotyping at the angiotensin-converting enzyme (ACE) locus is predictive of blood pressure response to an ACE inhibitor. Methods Participants from the African American Study of Kidney Disease and Hypertension trial randomized to the ACE inhibitor ramipril (n = 347) were genotyped at three polymorphisms on ACE, just downstream from the ACE insertion/deletion polymorphism (Ins/Del): G12269A, C17888T, and G20037A. Time to reach target mean arterial pressure (≤ 107 mmHg) was analyzed by genotype and ACE haplotype using Kaplan–Meier survival curves and Cox proportional hazard models. Results Individuals with a homozygous genotype at G12269A responded significantly faster than those with a heterozygous genotype; the adjusted (average number of medications and baseline mean arterial pressure) hazard ratio (homozygous compared to heterozygous genotype) was 1.86 (95% confidence limits 1.32–3.23; P < 0.001 for G12269A genotype). The adjusted hazard ratio for participants with homozygous ACE haplotypes compared to those heterozygous ACE haplotypes was 1.40 (1.13–1.75; P = 0.003 for haplotype). The ACE genotype effects were specific for ACE inhibition (i.e., not seen among those randomized to a calcium channel blocker), and were independent of population stratification. Conclusions African-Americans with a homozygous genotype at G12269A or homozygous ACE haplotypes responded to ramipril significantly faster than those with a heterozygous genotype or heterozygous haplotypes, suggesting that heterosis may be an important determinant of responsiveness to an ACE inhibitor. These associations may be a result of biological activity of this polymorphism, or of linkage disequilibrium with nearby variants such as the ACE Ins/Del, perhaps in the regulation of ACE splicing. PMID:17885551

  18. Impact of drug price adjustments on utilization of and expenditures on angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in Taiwan

    PubMed Central

    2012-01-01

    Background A previous study has suggested that drug price adjustments allow physicians in Taiwan to gain greater profit by prescribing generic drugs. To better understand the effect of price adjustments on physician choice, this study used renin-angiotensin drugs (including angiotensin-converting enzyme inhibitors [ACEIs] and angiotensin receptor blockers [ARBs]) to examine the impact of price adjustments on utilization of and expenditures on patented and off-patent drugs with the same therapeutic indication. Methods Using the Taiwan’s Longitudinal Health Insurance Database (2005), we identified 147,157 patients received ACEIs and/or ARBs between 1997 and 2008. The annual incident and prevalent users of ACEIs, ARBs and overall renin-angiotensin drugs were examined. Box-Tiao intervention analysis was applied to assess the impact of price adjustments on monthly utilization of and expenditures on these drugs. ACEIs were divided into patented and off-patent drugs, off-patent ACEIs were further divided into original brands and generics, and subgroup analyses were performed. Results The number of incident renin-angiotensin drug users decreased over the study period. The number of prevalent ARB users increased and exceeded the cumulative number of first-time renin-angiotensin drug users starting on ARBs, implying that some patients switched from ACEIs to ARBs. After price adjustments, long term trend increases in utilization were observed for patented ACEIs and ARBs; a long-term trend decrease was observed for off-patent ACEIs; long-term trend change was not significant for overall renin-angiotensin drugs. Significant long-term trend increases in expenditures were observed for patented ACEIs after price adjustment in 2007 (200.9%, p = 0.0088) and in ARBs after price adjustments in 2001 (173.4%, p < 0.0001) and 2007 (146.3%, p < 0.0001). A significant long-term trend decrease in expenditures was observed for off-patent ACEIs after 2004 price adjustment (

  19. Do renin–angiotensin system inhibitors influence the recurrence, metastasis, and survival in cancer patients?

    PubMed Central

    Sun, Hong; Li, Tao; Zhuang, Rongyuan; Cai, Weimin; Zheng, Yuanting

    2017-01-01

    Abstract Background: Renin–angiotensin system inhibitors (RAS inhibitors) are antihypertensive agents with potential antitumor effects. However, various studies have yielded conflicting results on the influence of RAS inhibitors on survival of cancer patients. The aim of this study was to evaluate the effect of RAS inhibitors on recurrence, metastasis, and survival in cancer patients through a meta-analysis. Methods: PubMed, Web of Science, EMBASE, and Cochrane Library were systematically searched from inception to December 2016. The pooled hazard ratio (HR) with its 95% confidence interval (95% CI) was calculated to evaluate the association between RAS inhibitors and recurrence, metastasis, and survival in cancer patients. Results: Fifty-five eligible studies were included in the present meta-analysis. Results showed that there were significant improvements in overall survival (OS) (HR = 0.82; 95% CI: 0.77–0.88; P < 0.001), progression-free survival (HR = 0.74; 95% CI: 0.66–0.84; P < 0.001), and disease-free survival (HR = 0.80; 95% CI: 0.67–0.95; P = 0.01) in RAS inhibitor users compared with nonusers. Subgroup analyses revealed that the effect of RAS inhibitors on OS depended on the cancer type or different RAS inhibitors. Conclusion: This meta-analysis suggests that RAS inhibitors could improve the survival of cancer patients and depend on cancer type and types of RAS inhibitors. PMID:28353566

  20. Patterns of antihypertensive use among patients in the US Department of Defense database initially prescribed an angiotensin-converting enzyme inhibitor or calcium channel blocker.

    PubMed

    Okano, G J; Rascati, K L; Wilson, J P; Remund, D D; Grabenstein, J D; Brixner, D I

    1997-01-01

    The US Department of Defense recently assembled electronic records of outpatient prescriptions dispensed through the Uniformed Services Prescription Database Project (USPDP) going back to 1990. The objectives of this portion of a larger study were: (1) to examine longitudinally the patterns of antihypertensive drug use during the first year of therapy in patients whose initial therapy was with an angiotensin-converting enzyme (ACE) inhibitor or a calcium channel blocker (CCB); (2) to determine continuous and noncontinuous users of antihypertensive drugs; and (3) to estimate the direct medication costs for each pattern of medication use. Filtering criteria for patient and prescription identification were developed, because the USPDP contains no records of confirmatory diagnoses of hypertension. Once data filters were implemented, information for 771 patients was analyzed. An ACE inhibitor was the initial therapy for 328 patients, accounting for 1935 antihypertensive medication prescription fills, and a CCB was the initial therapy for 443 patients, accounting for 2459 fills (including refills). Slightly more than half of the patients (n = 401, 52.0%) were classified as continuous users (> or = 80% medication-possession ratio [supply of medication in days divided by the number of days in the 12-month study period]). In the first year, 177 of these continuous users (44.1%) had no change in therapy in the first year, 49 (12.2%) had an increase in dose, 8 (2.0%) had a decrease in dose, 15 (3.7%) had a change to a different therapeutic class of antihypertensive medication, 14 (3.5%) were changed to a different medication in the same therapeutic class, 20 (5.0%) had a new medication added to the regimen, and 118 (29.4%) had complex regimens involving more than one change. For continuous users, the mean medication supply in days was 354.6, and the average time before a medication change was 152.1 days for those continuous users who had one change in therapy. The overall

  1. Renin-angiotensin system inhibitors and troponin elevation in spinal surgery.

    PubMed

    McClendon, Jamal; Smith, Timothy R; Thompson, Sara E; Sugrue, Patrick A; Sauer, Andrew J; O'Shaughnessy, Brian A; Carabini, Louanne; Koski, Tyler R

    2014-07-01

    Renin-angiotensin system (RAS) inhibition by angiotensin-converting enzyme inhibitors (ACEI)/angiotensin receptor blockers (ARB) has been shown to reduce cardiovascular mortality and non-fatal myocardial infarction (MI) in high-risk surgical patients. However, their effect in spinal surgery has not been explored. Our objective was to determine the effect of RAS inhibitors on postoperative troponin elevation in spinal fusions, and to examine their correlation with hospital stay. We retrospectively analyzed 208 consecutive patients receiving spinal fusions ⩾5 levels between 2007-2010 with a mean follow-up of 1.7 years. Inclusion criteria were age ⩾18 years, elective fusions for kyphoscoliosis, and semi-elective fusions for tumor or infection. Exclusion criteria were trauma and follow-up <1 year. Descriptives, frequencies, and logistic and linear regression were used to analyze troponin elevation (⩾0.04 ng/mL), peak troponin level, and hospital stay. The results featured 208 patients with a mean body mass index (BMI) 28.5 kg/m(2) who underwent 345 spinal fusions. ACEI/ARB were withheld the day prior to surgery in 121 patients with 11 patients noteworthy for intra-operative electrocardiogram changes, 126 patients with troponin elevation, and 14 MI identified prior to discharge. Multivariate logistic regression identified BMI (p=0.04), estimated blood loss (p=0.015), and preoperative ACEI/ARB (p=0.015, odds ratio=2.7) as significant independent predictors for postoperative troponin elevation. Multivariate linear regression showed preoperative Oswestry Disability Index (p=0.002), unplanned return to operating room (p=0.007), pneumonia prior to hospital discharge (p<0.01), and preoperative ACEI/ARB to be associated with hospital stay. In patients with spinal fusions ⩾5 levels, ACEI/ARB are independently associated with postoperative troponin elevation and increased hospital stay.

  2. Activation of the ACE2/Ang-(1-7)/Mas pathway reduces oxygen-glucose deprivation induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction

    PubMed Central

    Zheng, Jiaolin; Li, Guangze; Chen, Shuzhen; Chen, Ji; Buck, Joshua; Zhu, Yulan; Xia, Huijing; Lazartigues, Eric; Chen, Yanfang; Olson, James E.

    2014-01-01

    We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD results from diminished ROS production coupled with lower expression of NADPH oxidases. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production. PMID:24814023

  3. Marketing research on the angiotensin-converting enzyme inhibitors antihypertensive medicines

    PubMed Central

    BOBOIA, ANAMARIA; GRIGORESCU, MARIUS RAREŞ; TURCU - ŞTIOLICĂ, ADINA

    2017-01-01

    Background and aims The research aimed at investigating sales trends of angiotensin-converting enzyme inhibitors antihypertensive medicines, both in terms of quantity and value, in ten community pharmacies, for a period of three years. The research on the antihypertensive medicines consumption is important for highlighting the ever increasing impact of hypertension among the population. Methods The methods used in this research were the following: marketing research, method of sampling, descriptive methods, retrospective analysis, method of comparison. Results The results showed that the drugs containing the active substances of the angiotensin converting enzyme inhibitors class had had significant increases in quantitative and value sales, bringing substantial revenues to pharmacies. From the quantitative perspective, the best-selling products were those containing Enalaprilum, while in terms of value, the best-selling medicines were those containing Perindoprilum. We evidenced that spectacular sales were also achieved for products that have Lisinoprilum, respectively Captoprilum, as active substances. The largest quantities were marketed for the Captopril Terapia® product and the highest earnings were recorded for the Prestarium® medicine. Conclusion This paper approaches an interesting and topical issue, which can be helpful to professionals (pharmacists, doctors) and other categories, such as economists, statisticians, representatives of companies manufacturing medicines, as well as to hypertensive patients, as it could be used to warn population regarding the incidence of cardiovascular diseases, and, at the same time, trace sales trends in order to accomplish profitable business plans. PMID:28246502

  4. Effects of age and sex on the pharmacokinetics of LCZ696, an angiotensin receptor neprilysin inhibitor.

    PubMed

    Gan, Lu; Langenickel, Thomas; Petruck, Jesika; Kode, Kiran; Rajman, Iris; Chandra, Priya; Zhou, Wei; Rebello, Sam; Sunkara, Gangadhar

    2016-01-01

    LCZ696, a novel angiotensin receptor neprilysin inhibitor, is in development for the treatment of heart failure. Administration of LCZ696 results in systemic exposure to sacubitril (inactive prodrug of LBQ657), LBQ657 (neprilysin inhibitor), and valsartan (angiotensin II receptor blocker). We investigated the potential effects of age and sex on the pharmacokinetics of LCZ696 analytes (LBQ657 and valsartan) in an open-label, single oral dose (400 mg), parallel-group study in healthy subjects. Among 36 enrolled subjects, there were 19 male and 17 female subjects; 18 subjects were 18-45 years old (young), and 18 subjects were 65 years of age or older (elderly). Compared with young subjects, the AUCinf and T1/2 for LBQ657 were 42% and 30% greater, respectively, in elderly subjects. The Cmax for LBQ657 was similar between age groups. The AUCinf, Cmax, and T1/2 for valsartan were 30%, 24% greater, and 3.35 hours longer, respectively, in the elderly when compared with young subjects. All pharmacokinetic parameters of LCZ696 analytes (LBQ657 and valsartan) were similar between male and female subjects, indicating no effect on the pharmacokinetics of LCZ696 analytes based on sex. Considering the magnitude of change and its clinical significance, dose adjustment based on age or sex is not considered necessary.

  5. [Alzheimer disease--contribution of renin-angiotensin system to Alzheimer disease progression].

    PubMed

    Ohrui, Takashi

    2012-09-01

    There is increasing evidence that certain components of the renin-angiotensin system (RAS) may have a crucial role in learning and memory processes. We have previously shown that brain-penetrating ACE inhibitors can reduce the incidence of Alzheimer diseases (AD) in elderly hypertensive patients and that hypertension treatment with brain penetrating ACE inhibitors slowed the rate of cognitive decline in mild-to-moderate AD patients with hypertension. We speculate that the favorable effects might be due to the direct effects of brain-penetrating ACE inhibitors on RAS in the brain, since no significant differences were found in the levels of blood pressure among the groups treated with several antihypertensive drugs. Brain penetrating ACE inhibitors might have benefits not only for the prevention but also for the treatment of mild to moderate AD with hypertension.

  6. Angiotensin-converting enzyme inhibition in myocardial infarction--Part 1: Clinical data.

    PubMed

    Huckell, V F; Bernstein, V; Cairns, J A; Crowell, R; Dagenais, G R; Higginson, L A; Isserow, S; Laramée, P; Liu, P; McCans, J L; Orchard, R C; Prewitt, R; Quinn, B P; Samson, M; Turazza, F; Warnica, J W; Wielgosz, A

    1997-02-01

    There is an increasing body of clinical trial evidence to support the use of angiotensin-converting enzyme (ACE) inhibitors in the management of patients following myocardial infarction (MI). Enthusiasm for the use of ACE inhibitors in the acute phase of MI had previously been tempered by the adverse results of an early trial. However, exciting new information is available from several large, randomized studies that has not only quelled those initial concerns but also attests to the efficacy of using this class of medication in the first 24 h after an acute MI. A Canadian National Opinion Leader Symposium was held in November 1995 to review the results of the major ACE inhibitor clinical trials and to discuss key issues and controversies surrounding their use in acute MI. The focus of this paper, the first of two parts, is on the results of the major ACE inhibitor clinical trials.

  7. Angiotensin I-converting enzyme inhibitory peptide derived from glycinin, the 11S globulin of soybean (Glycine max).

    PubMed

    Mallikarjun Gouda, K G; Gowda, Lalitha R; Rao, A G Appu; Prakash, V

    2006-06-28

    Angiotensin I-converting enzyme (ACE), a dipeptidyl carboxypeptidase, catalyzes the conversion of Angiotensin I to the potent vasoconstrictor Angiotensin II and plays an important physiological role in regulating blood pressure. Inhibitors of angiotensin 1-converting enzyme derived from food proteins are utilized for pharmaceuticals and physiologically functional foods. ACE inhibitory properties of different enzymatic hydrolysates of glycinin, the major storage protein of soybean, have been demonstrated. The IC50 value for the different enzyme digests ranges from 4.5 to 35 microg of N2. The Protease P hydrolysate contained the most potent suite of ACE inhibitory peptides. The ACE inhibitory activity of the Protease P hydrolysate after fractionation by RP-HPLC and ion-pair chromatography was ascribed to a single peptide. The peptide was homogeneous as evidenced by MALDI-TOF and identified to be a pentapeptide. The sequence was Val-Leu-Ile-Val-Pro. This peptide was synthesized using solid-phase FMOC chemistry. The IC50 for ACE inhibition was 1.69 +/- 0.17 microM. The synthetic peptide was a potent competitive inhibitor of ACE with a Ki of 4.5 +/- 0.25 x 10(-6) M. This peptide was resistant to digestion by proteases of the gastrointestinal tract. The antihypertensive property of this peptide derived from glycinin might find importance in the development of therapeutic functional foods.

  8. Role of Genetic Polymorphism of Angiotensin-Converting Enzyme, Plasminogen Activator Inhibitor-1 and Endothelial Nitric Oxide Synthase in the Prognosis of Coronary Artery Disease

    PubMed Central

    Zhang, Ai Yuan; Ji, Xiang Wu; Zhang, Ai Juan; Guan, Li Xue; Huang, Jing; Wang, Jing Xian

    2010-01-01

    Background This study was to investigate the effects of multiple genetic polymorphisms and conventional risk factors in the prognosis of coronary artery disease (CAD). Methods One hundred and fifty five patients with CAD were prospectively recruited, they were subgrouped as single vessel disease (SVD) and multiple vessel disease (MVD). All patients were detected I/D polymorphism of angiotensin-converting enzyme (ACE) gene, 4G/5G polymorphism of plasminogen activator inhibitor-1 (PAI-1) gene, and G894→T mutation of endothelial nitric oxide synthase (eNOS) gene. The patients were followed up for 10-65 months, mean 35 months. End points were major adverse cardiovascular events (MACE), including angina, myocardial infarction, and cardiac sudden death. Results During the follow-up period, MACE developed in 81 patients, 73 patients with angina, seven with myocardial infarction, and one with cardiac sudden death. CAD patients with MVD were more probable of developing MACE during follow-up. Distribution of PAI-1 gene polymorphism was significantly different between SVD and MVD patients, p < 0.001. The frequency of DD genotype of ACE and 4G/4G genotype of PAI-1 in patients with MACE were significantly higher than those in patients without MACE, p < 0.001 and p = 0.002, respectively. Incidence of diabetes mellitus was significantly higher in patients with MACE than in patients without MACE, P = 0.03. Cox regression analysis showed that diabetes mellitus (HR 2.36, 95% CI 1.33-4.46, p = 0.003), 4G/4G polymorphism of PAI-1 gene (HR 3.45, 95% CI 1.71-6.56, p = 0.009), and D/D polymorphism of ACE gene (HR 2.99, 95% CI 1.84-5.76, p = 0.005), were independent predictors of the MACE. Conclusions Our results showed that the conventional risk factors and genetic polymorphisms have significant influence on prognosis of CAD patients. CAD patients with diabetes mellitus, DD genotype of ACE, and 4G/4G genotype of PAI-1 suggested poor prognosis.

  9. The Dynamic Nonprime Binding of Sampatrilat to the C-Domain of Angiotensin-Converting Enzyme.

    PubMed

    Sharma, Rajni K; Espinoza-Moraga, Marlene; Poblete, Horacio; Douglas, Ross G; Sturrock, Edward D; Caballero, Julio; Chibale, Kelly

    2016-12-27

    Sampatrilat is a vasopeptidase inhibitor that inhibits both angiotensin I-converting enzyme (ACE) and neutral endopeptidase. ACE is a zinc dipeptidyl carboxypeptidase that contains two extracellular domains (nACE and cACE). In this study the molecular basis for the selectivity of sampatrilat for nACE and cACE was investigated. Enzyme inhibition assays were performed to evaluate the in vitro ACE domain selectivity of sampatrilat. The inhibition of the C-domain (Ki = 13.8 nM) by sampatrilat was 12.4-fold more potent than that for the N-domain (171.9 nM), indicating differences in affinities for the respective ACE domain binding sites. Interestingly, replacement of the P2 group of sampatrilat with an aspartate abrogated its C-selectivity and lowered the potency of the inhibitor to activities in the micromolar range. The molecular basis for this selective profile was evaluated using molecular modeling methods. We found that the C-domain selectivity of sampatrilat is due to occupation of the lysine side chain in the S1 and S2 subsites and interactions with Glu748 and Glu1008, respectively. This study provides new insights into ligand interactions with the nonprime binding site that can be exploited for the design of domain-selective ACE inhibitors.

  10. ACE inhibitors hypothesis generation for selective design, synthesis and biological evaluation of 3-mercapto-2-methyl-propanoyl-pyrrolidine-3-imine derivatives as antihypertensive agents.

    PubMed

    Ismail, Mohamed A H; Nabil Aboul-Enein, M; Abouzid, Khaled A M; Abou El Ella, Dalal A; Ismail, Nasser S M

    2009-05-15

    A series of new 3-mercapto-2-methyl-propanoyl-pyrrolidine derivatives (V, VIa-e) were designed. A new validated ACE inhibitors pharmacophore model (hypothesis) was generated for the first time in this research from the biologically active (frozen) conformation of Lisinopril-Human ACE complex that was downloaded from PDB, using stepwise technique of CATALYST modules. The molecular modeling compare-fit study of the designed molecules (V, VIa-e), with such ACE inhibitors hypothesis was fulfilled, and several compounds showed significant high simulation fit values. The compounds with high fit values were synthesized and biologically evaluated in vivo as hypotensive agents. It appears that the in vivo hypotensive activity of compounds V, VIa, VIb, and VIe was consistent with their molecular modeling results, and compound VIe showed the highest activity in comparison to Captopril.

  11. Effect of the Angiotensin I Converting Enzyme Inhibitor, MK-421, on Experimentally Induced Drinking

    NASA Technical Reports Server (NTRS)

    Fregley, Melvin J.; Fater, Dennis C.; Greenleaf, John E.

    1982-01-01

    MK-421, the ethyl ester maleate salt of N-(S)-1-(ethoxycarbonyl)-3-phenyl-propyl- Ala-L-Pro, is an angiotensin I converting enzyme inhibitor. An initial objective was to determine whether MK-421, administered at 0, 2.5, 5.0, 10.0, 20.0 and 40.0 mg/kg, ip to 96 female rats 15 min prior to administration of the beta-adrenergic agonist, isoproterenol (25 microgram/kg, ip), would inhibit the drinking induced by isoproterenol during 2 h after its administration. The water intake induced by isoproterenol was inhibited significantly by 2.5 mg MK-421/kg. When a similar experiment was performed using Angiotensin I (AI) (200 microgram/kg, ip) as the dipsogenic agent, MK-421 (5 mg/kg, ip), administered 15 min prior to AI, inhibited significantly both the dipsogenic and the diuretic effect of AI. However, administration of angiotensin II (AII, 200 microgram/kg, ip) 15 min after MK-421 (5mg/kg) was accompanied by a water intake that did not differ from AII alone. The drink induced by ip administration of 1.0 m NaCl solution (1% of body wt, ip) was not inhibited by administration of MK-421 (5 mg/kg) 15 min prior to allowing access to water while the drink induced by a 24 h dehydration was partially inhibited. Thus, the drinks induced by administraition of either isoproterenol or AI are dependent on formation of AII. That induced by dehydration is partially dependent, while that induced by hypertonic siilinc is independent of the formation of AII.

  12. Effect of angiotensin-converting enzyme inhibitors on vascular endothelial function in hypertensive patients after intensive periodontal treatment.

    PubMed

    Rubio, María C; Lewin, Pablo G; De la Cruz, Griselda; Sarudiansky, Andrea N; Nieto, Mauricio; Costa, Osvaldo R; Nicolosi, Liliana N

    2016-04-01

    There is a relation between vascular endothelial function, atherosclerotic disease, and inflammation. Deterioration of endothelial function has been observed twenty-four hours after intensive periodontal treatment. This effect may be counteracted by the action of angiotensin-converting enzyme inhibitors, which improve endothelial function. The aim of the present study was to evaluate vascular endothelial function after intensive periodontal treatment, in hypertensive patients treated with angiotensinconverting enzyme inhibitors. A prospective, longitudinal, comparative study involving repeated measurements was conducted. Fifty-two consecutive patients with severe periodontal disease were divided into two groups, one comprising hypertensive patients treated with converting enzyme inhibitors and the other comprising patients with no clinical signs of pathology and not receiving angiotensin-converting enzyme inhibitors. Endothelial function was assessed by measuring postischemic dilation of the humeral artery (baseline echocardiography Doppler), and intensive periodontal treatment was performed 24h later. Endothelial function was re-assessed 24h and 15 days after periodontal treatment.

  13. Polymorphisms of ACE2 gene are associated with essential hypertension and antihypertensive effects of Captopril in women.

    PubMed

    Fan, X; Wang, Y; Sun, K; Zhang, W; Yang, X; Wang, S; Zhen, Y; Wang, J; Li, W; Han, Y; Liu, T; Wang, X; Chen, J; Wu, H; Hui, R

    2007-08-01

    ACE2 appears to counterbalance the vasopressor effect of angiotensin I converting enzyme (ACE) in the reninangiotensin system. We hypothesized that ACE2 polymorphisms could confer a high risk of hypertension and have an impact on the antihypertensive response to ACE inhibitors. The hypothesis was tested in two casecontrol studies and a clinical trial of 3,408 untreated hypertensive patients randomized to Atenolol, Hydrochlorothiazide, Captopril, or Nifedipine treatments for 4 weeks. ACE2 rs2106809 T allele was found to confer a 1.6-fold risk for hypertension in women (95% confidence interval (CI), 1.132.06), whereas when combined with the effect of the ACE DD genotype, the risk was 2.34-fold (95% CI, 1.754.85) in two independent samples. The adjusted diastolic blood pressure response to Captopril was 3.3 mm Hg lower in ACE2 T allele carriers than in CC genotype carriers (P=0.019) in women. We conclude that the ACE2 T allele confers a high risk for hypertension and reduced antihypertensive response to ACE inhibitors.

  14. The effects of drug market regulation on pharmaceutical prices in Europe: overview and evidence from the market of ACE inhibitors.

    PubMed

    von der Schulenburg, Fritz; Vandoros, Sotiris; Kanavos, Panos

    2011-11-21

    This study provides an overview of policy measures targeting pharmaceutical expenditure in Europe and analyses their impact on originator pharmaceutical prices. Panel data methods are used to examine the market of ACE Inhibitors in six European countries (Denmark, France, Germany, Netherlands, Sweden, United Kingdom) over period 1991-2006. We find that although some measures are effective in reducing originator prices, others appear to have an insignificant effect. Results suggest that supply side measures such as mandatory generic substitution, regressive pharmacy mark-ups and claw-backs are effective in reducing pharmaceuticals prices. Results are not as strong for demand side measures. Profit controls and the use of cost-effectiveness analysis appear to have a negative effect on prices, while results on reference pricing are inconclusive. Findings also indicate that, although originator prices are not immediately affected by generic entry, they may be influenced by changes in generic prices post patent expiry.

  15. Medicinal Chemistry and Therapeutic Relevance of Angiotensin-Converting Enzyme Inhibitors

    PubMed Central

    2007-01-01

    Chemical Basis of Drug Action (PHA337 and PHA447) is a required 2-semester course sequence taught to second-professional year pharmacy students at Creighton University in both the campus and distance-education pathways. The course emphasizes integration of previous content, critical thinking, and therapeutic relevance. The content and learning experiences are organized to transition the students' thinking through a constructive process that provides ample opportunities to recall and integrate previous knowledge, learn and apply new knowledge, establish a logical connection between the science and its therapeutic relevance, and finally to apply the science knowledge to predict clinical activity and clinical outcomes as can be expected in a patient. This manuscript is based on the angiotensin converting enzyme inhibitors as an illustration of how our course objectives are accomplished. PMID:19503707

  16. Renin-angiotensin system inhibitor and statins combination therapeutics - what have we learnt?

    PubMed

    Koh, Kwang Kon; Sakuma, Ichiro; Hayashi, Toshio; Kim, Sang Hyun; Chung, Wook-Jin

    2015-05-01

    Hypercholesterolemia and hypertension are the most common risk factors for cardiovascular disease (CVD). Updated guidelines emphasize target reduction of overall cardiovascular risks. Hypercholesterolemia and hypertension have a synergistic deleterious effect on insulin resistance and endothelial dysfunction. Unregulated renin-angiotensin system (RAS) is important in the pathogenesis of atherosclerosis. Statins are the most important in patients with hypercholesterolemia to prevent CVD by lowering low-density lipoprotein-cholesterol, improving endothelial dysfunction, and other anti-atherosclerotic effects. Unfortunately, statin therapy dose-dependently causes insulin resistance and increases the risk of type 2 diabetes mellitus. RAS inhibitors improve both endothelial dysfunction and insulin resistance in addition to blood pressure lowering. Further, cross-talk between hypercholesterolemia and RAS exists at multiple steps of insulin resistance and endothelial dysfunction. In this regard, combined therapy with statins and RAS inhibitors demonstrates additive/synergistic beneficial effects on endothelial dysfunction and insulin resistance in addition to lowering both cholesterol levels and blood pressure and it did reduce cardiovascular events when compared with either monotherapy in patients. This is mediated by both distinct and interrelated mechanisms. Therefore, combined therapy with statins and RAS inhibitors may be important in developing optimal management strategies in patients with hypertension, hypercholesterolemia, diabetes, metabolic syndrome or obesity to prevent or treat CVD.

  17. Inhibition of MAPK-mediated ACE expression by compound C66 prevents STZ-induced diabetic nephropathy.

    PubMed

    Pan, Yong; Huang, Yi; Wang, Zhe; Fang, Qilu; Sun, Yusheng; Tong, Chao; Peng, Kesong; Wang, Yangwei; Miao, Lining; Cai, Lu; Zhao, Yunjie; Liang, Guang

    2014-02-01

    A range of in vitro, experimental and clinical intervention studies have implicated an important role for hyperglycaemia-induced activation of the renin-angiotensin system (RAS) in the development and progression of diabetic nephropathy (DN). Blockade of RAS by angiotensin converting enzyme (ACE) inhibitors is an effective strategy in treating diabetic kidney diseases. However, few studies demonstrate the mechanism by which hyperglycaemia up-regulates the expression of ACE gene. Our previous studies have identified a novel curcumin analogue, (2E,6E)-2,6-bis(2-(trifluoromethyl)benzylidene)cyclohexanone (C66), which could inhibit the high glucose (HG)-induced phosphorylation of mitogen-activated protein kinases in mouse macrophages. In this study, we found that the renal protection of C66 in diabetic mice was associated with mitogen-activated protein kinase (MAPK) inactivation and ACE/angiotensin II (Ang II) down-regulation. Generally, MAPKs have been considered as a downstream signalling of Ang II and a mediator for Ang II-induced pathophysiological actions. However, using C66 and specific inhibitors as small molecule probes, in vitro experiments demonstrate that the MAPK signalling pathway regulates ACE expression under HG stimulation, which contributes to renal Ang II activation and the development of DN. This study indicates that C66 is a potential candidate of DN therapeutic agents, and more importantly, that reduction in ACE expression by MAPKs inhibition seems to be an alternative strategy for the treatment of DN.

  18. Naturally occurring active N-domain of human angiotensin I-converting enzyme.

    PubMed Central

    Deddish, P A; Wang, J; Michel, B; Morris, P W; Davidson, N O; Skidgel, R A; Erdös, E G

    1994-01-01

    Angiotensin I-converting enzyme (ACE, kininase II) is a single-chain protein containing two active site domains (named N- and C-domains according to position in the chain). ACE is bound to plasma membranes by its C-terminal hydrophobic transmembrane anchor. Ileal fluid, rich in ACE activity, obtained from patients after surgical colectomy was used as the source. Column chromatography, including modified affinity chromatography on lisinopril-Sepharose, yielded homogeneous ACE after only a 45-fold purification. N-terminal sequencing of ileal ACE and partial sequencing of CNBr fragments revealed the presence of an intact N terminus but only a single N-domain active site, ending between residues 443 and 559. Thus, ileal-fluid ACE is a unique enzyme differing from the widely distributed two-domain somatic enzyme or the single C-domain testicular (germinal) ACE. The molecular mass of ileal ACE is 108 kDa and when deglycosylated, the molecular mass is 68 kDa, indicating extensive glycosylation (37% by weight). In agreement with the results reported with recombinant variants of ACE, the ileal enzyme is less Cl(-)-dependent than somatic ACE; release of the C-terminal dipeptide from a peptide substrate was optimal in only 10 mM Cl-. In addition to hydrolyzing at the C-terminal end of peptides, ileal ACE efficiently cleaved the protected N-terminal tripeptide from the luteinizing hormone-releasing hormone and its congener 6-31 times faster, depending on the Cl- concentration, than the C-domain in recombinant testicular ACE. Thus we have isolated an active human ACE consisting of a single N-domain. We suggest that there is a bridge section of about 100 amino acids between the active N- and C-domains of somatic ACE where it may be proteolytically cleaved to liberate the active N-domain. These findings have potential relevance and importance in the therapeutic application of ACE inhibitors. PMID:8052664

  19. Is there an embryopathy associated with first-trimester exposure to angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists? A critical review of the evidence.

    PubMed

    Polifka, Janine E

    2012-08-01

    Drugs that interfere with the renin-angiotensin system, such as angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), are widely used to manage hypertension and heart failure. Adequate functioning of the RAS is essential for normal fetal kidney development. The potential for ACEIs and ARBs to impair fetal and neonatal renal function if taken after the first trimester of pregnancy has been well documented. Although these drugs were not found to be teratogenic in animals, until recently little was known about the teratogenic effects of ACEIs and ARBs in humans when exposure was limited to the first trimester of pregnancy. New evidence from epidemiologic studies indicates that there may be an elevated teratogenic risk when these drugs are taken during the first trimester of pregnancy. However, this elevated risk does not appear to be specific to ACEIs and ARBs, but is instead related to maternal factors and diseases that typically coexist with hypertension in pregnancy, such as diabetes, advanced maternal age, and obesity. Women who become pregnant while being treated with an ACEI or ARB should be advised to avoid exposure to these drugs during the second and third trimesters of pregnancy by switching to a different class of antihypertensive drugs between weeks 8 and 10 after conception.

  20. [Is there an indication for the association of betablockers and angiotensin II receptor antagonists in cardiac failure?].

    PubMed

    Jondeau, G; Milleron, O; Morisson-Castagnet, J F

    2004-06-01

    ACE inhibitors initially developed as vasodilators are effective by their anti-hormonal action. Antagonists of the receptors of angiotensin II (ARA II) should provide an equivalent or better blockade of the rennin-angiotensin system (absence of tolerance). Clinical trials have shown equivalent haemodynamic effects of the two classes, equal functional tolerance but mortality studies have shown more variable results. None have shown the superiority of ARA II over ACE inhibitors and the demonstration of their equivalence has just been reported with high doses in the post-infarction period. A deleterious effect of ARA II in association with betablockers was reported in two mortality studies but has not been confirmed in the most recent trials. The difficulty is to determine the roles of the association of ARA II-ACE inhibitors, ARA II-antialdosterones or of the association of all three classes of molecules.

  1. Angiotensin converting enzyme in the brain, testis, epididymis, pituitary gland and adrenal gland

    SciTech Connect

    Strittmatter, S.M.

    1986-01-01

    (/sup 3/H)Captopril binds to angiotensin converting enzyme (ACE) in rat tissue homogenates. The pharmacology, regional distribution and copurification of (/sup 3/H)captopril binding with enzymatic activity demonstrate the selectivity of (/sup 3/H)captopril labeling of ACE. (/sup 3/H)Captopril binding to purified ACE reveals differences in cationic dependence and anionic regulation between substrate catalysis and inhibitor recognition. (/sup 3/H)Captopril association with ACE is entropically driven. The selectivity of (/sup 3/H)captopril binding permits autoradiographic localization of the ACE in the brain, male reproductive system, pituitary gland and adrenal gland. In the brain, ACE is visualized in a striatonigral neuronal pathway which develops between 1 and 7 d after birth. In the male reproductive system, (/sup 3/H)captopril associated silver grains are found over spermatid heads and in the lumen of seminiferous tubules in stages I-VIII and XII-XIV. In the pituitary gland, ACE is localized to the posterior lobe and patches of the anterior lobe. The adrenal medulla contains moderate ACE levels while low levels are found in the adrenal cortex. Adrenal medullary ACE is increased after hypophysectomy and after reserpine treatment. The general of ligand binding techniques for the study of enzymes is demonstrated by the specific labeling of another enzyme, enkephaline convertase, in crude tissue homogenates by the inhibitor (/sup 3/H)GEMSA.

  2. Angiotensin II regulates collagen metabolism through modulating tissue inhibitor of metalloproteinase-1 in diabetic skin tissues.

    PubMed

    Ren, Meng; Hao, Shaoyun; Yang, Chuan; Zhu, Ping; Chen, Lihong; Lin, Diaozhu; Li, Na; Yan, Li

    2013-09-01

    We investigated the effect of angiotensin II (Ang II) on matrix metalloproteinase-1 (MMP-1)/tissue inhibitor of metalloproteinase-1 (TIMP-1) balance in regulating collagen metabolism of diabetic skin. Skin tissues from diabetic model were collected, and the primary cultured fibroblasts were treated with Ang II receptor inhibitors before Ang II treatment. The collagen type I (Coll I) and collagen type III (Coll III) were measured by histochemistry. The expressions of transforming growth factor-β (TGF-β), MMP-1, TIMP-1 and propeptides of types I and III procollagens in skin tissues and fibroblasts were quantified using polymerase chain reaction (PCR), Western blot or enzyme-linked immunosorbent assay (ELISA). Collagen dysfunction was documented by changed collagen I/III ratio in streptozotocin (STZ)-injected mice compared with controls. This was accompanied by increased expression of TGF-β, TIMP-1 and propeptides of types I and III procollagens in diabetic skin tissues. In primary cultured fibroblasts, Ang II prompted collagen synthesis accompanied by increases in the expressions of TGF-β, TIMP-1 and types I and III procollagens, and these increases were inhibited by losartan, an Ang II type 1 (AT1) receptor blocker, but not affected by PD123319, an Ang II type 2 (AT2) receptor antagonist. These findings present evidence that Ang-II-mediated changes in the productions of MMP-1 and TIMP-1 occur via AT1 receptors and a TGF-β-dependent mechanism.

  3. Role of renin angiotensin system inhibitors in cardiovascular and renal protection: a lesson from clinical trials.

    PubMed

    Stojiljkovic, Ljuba; Behnia, Rahim

    2007-01-01

    Beneficial effects of angiotensin converting enzyme inhibitors (ACEI) and angiotensin type 1 receptor (AT1) blockers in patients with cardiovascular and renal diseases have been clearly demonstrated in numerous large outcomes studies. In patients with heart failure (HF), ACEI have been shown to reduce overall mortality, mortality from cardiovascular causes, to increase life expectancy, as well as to preserve the renal function (CONSENSUS, SAVE, TRACE, AIRE, AIREX, CATS trials). In addition, in the PROGRESS study ACEI substantially decreased the risk of stroke and transient ischemic attacks in patients with cerebrovascular disorders. The HOPE and EUROPA studies confirmed that long term therapy with ACEI provides significant survival benefit in patients with broad range of atherosclerotic cardiovascular diseases. After these large and well designed clinical studies, ACEI have become standard therapy for routine secondary prevention in all patients with cardiovascular diseases, unless contraindicated. AT1 receptor blockers have been recently added to the cardiovascular therapeutic armamentarium. They are believed to provide additional protection by inhibition of locally synthesized angiotensin II on the level of AT1 receptor. The ELITE II, ValHeFT and CHARM studies have shown that AT1 receptor blockers are equally effective as ACEI in reduction of mortality and morbidity in patients with HF. Importantly, they may be used together with ACEI, or as alternative treatment in ACEI intolerant patients. Renal protection is another important effect of both ACEI and AT1 blockers that has been confirmed in several large clinical trials. The North American Microalbuminemia Study group and EUCLID group demonstrated significant reduction in progression of diabetic nephropathy in patients with insulin dependent diabetes mellitus (IDDM) treated with ACEI. AT1 receptor blockers are mainly studied in the non-insulin dependent diabetes mellitus (NIDDM) nephropathy. Four recent clinical

  4. Impairing effects of angiotensin-converting enzyme inhibitor Captopril on bone of normal mice.

    PubMed

    Yang, Min; Xia, Chao; Song, Yan; Zhao, Xi; Wong, Man-Sau; Zhang, Yan

    2016-01-15

    There are contradicting results about the effects of angiotensin-converting enzyme inhibitors (ACEIs) on bones. This study was aimed to investigate the effect of ACEI, Captopril, on bone metabolism and histology as well as the action of Captopril on skeletal renin-angiotensin system (RAS) and bradykinin receptor pathway in normal male mice. The urine, serum, tibias and femurs from normal control mice and Captopril-treated (10mg/kg) mice were collected for biochemical, histological and molecular analyses after drug administration for eight weeks. The mice after the treatment with Captopril had a significant decrease of serum testosterone level. The histological measurements showed the loss of trabecular bone mass and trabecular bone number, and the breakage of trabecular bone network as well as the changes of chondrocyte zone at epiphyseal plate in Captopril-treated mice. The defect of Captopril on trabecular bone was reflected by the quantitative bio-parameters from micro-CT. The expression of renin receptor and bradykinin B2 receptor (B2R) was significantly up-regulated in tibia of mice upon to the Captopril treatment, which decreased the ratio of OPG/RANKL and the expression of osteoblastic factor RUNX2. Furthermore, Captopril treatment resulted in the increase of pAkt/Akt and pNFκB expression in tibia. The present study revealed the impairing effects of Captopril on bone via interfering with the circulating sex hormone level and B2R pathway, which suggests that the bone metabolism of patients need to be carefully monitored when being prescribed for ACEIs.

  5. Characterization of a native angiotensin from an anciently diverged serine protease inhibitor in lamprey.

    PubMed

    Wong, Marty K S; Takei, Yoshio

    2011-04-01

    Angiotensinogen belongs to family A serine protease inhibitors (SERPIN family) and we have cloned and characterized SERPIN genes in two lamprey species, which possess all the properties of angiotensinogen. The putative angiotensinogens in lampreys can be considered as an evolutionary link between SERPIN and other angiotensinogen according to the phylogenetic analyses. The inferred sea lamprey angiotensinogen gene was expressed abundantly in liver and to a lesser extent in other tissues. The predicted lamprey angiotensin I (Ang I) sequence was unique and different from the teleost-type Ang I identified previously by the incubation of lamprey plasma with its kidney extract. Therefore, we characterized and compared the biochemical and physiological properties of this native lamprey Ang II (LpAng II) (EEDYDERPYMQPF) with teleost-type Ang II (NRVYVHPF). Using a newly developed RIA for LpAng II, plasma levels in Japanese lamprey were measured (157.4 ± 35.2 fmol/ml, n=6), but teleost-type Ang II was undetectable. In conscious cannulated lamprey, LpAng II at 100 pmol/kg elicited a transient vasodepressor effect. At doses higher than 300 pmol/kg, a biphasic cardiovascular response with an initial vasodepressor effect followed by a transient rebound vasopressor effect was observed in a dose-dependent manner. However, teleost-type Ang II was not vasoactive up to 1 nmol/kg. In Japanese eel, LpAng II injection up to 3 nmol/kg did not alter the cardiovascular parameters. Our results suggested that the renin-angiotensin system first appeared in cyclostomes, and LpAng II could be important for the regulation of cardiovascular dynamics in lampreys because of its potent and acute vasoactive effect.

  6. Angiotensin II Receptor Blocker Neprilysin Inhibitor (ARNI): New Avenues in Cardiovascular Therapy.

    PubMed

    Volpe, M; Tocci, G; Battistoni, A; Rubattu, S

    2015-09-01

    The burden of cardiovascular disease (CVD) is continuously and progressively raising worldwide. Essential hypertension is a major driver of cardiovascular events, including coronary artery disease, myocardial infarction, ischemic stroke and congestive heart failure. This latter may represent the final common pathway of different cardiovascular diseases, and it is often mediated by progressive uncontrolled hypertension. Despite solid advantages derived from effective and sustained blood pressure control, and the widespread availability of effective antihypertensive medications, the vast majority of the more than 1 billion hypertensive patients worldwide continue to have uncontrolled hypertension. Among various factors that may be involved, the abnormal activation of neurohormonal systems is one consistent feature throughout the continuum of cardiovascular diseases. These systems may initiate biologically meaningful "injury responses". However, their sustained chronic overactivity often may induce and maintain the progression from hypertension towards congestive heart failure. The renin-angiotensin-aldosteron system, the sympathetic nervous system and the endothelin system are major neurohormonal stressor systems that are not only able to elevate blood pressure levels by retaining water and sodium, but also to play a role in the pathophysiology of cardiovascular diseases. More recently, the angiotensin receptor neprilysin inhibitor (ARNI) represents a favourable approach to inhibit neutral endopeptidase (NEP) and suppress the RAAS via blockade of the AT1 receptors, without the increased risk of angioedema. LCZ696, the first-in-class ARNI, has already demonstrated BP lowering efficacy in patients with hypertension, in particular with respect to systolic blood pressure levels, improved cardiac biomarkers, cardiac remodelling and prognosis in patients with heart failure. This manuscript will briefly overview the main pathophysiological and therapeutic aspects of ARNI in

  7. Impact of Angiotensin I-converting Enzyme Inhibitors and Angiotensin II Type-1 Receptor Blockers on Survival of Patients with NSCLC

    PubMed Central

    Miao, Lili; Chen, Wei; Zhou, Ling; Wan, Huanying; Gao, Beili; Feng, Yun

    2016-01-01

    It has been shown that angiotensin I-converting enzyme inhibitors (ACEIs) and angiotensin II type-1 receptor blockers (ARBs) can decrease tumor growth and tumor-associated angiogenesis and inhibit metastasis. Epidermal growth factor receptor (EGFR) mutations are found in approximately 30% of patients with advanced non-small cell lung cancer (NSCLC) in East Asia and in 10–15% of such patients in Western countries. We retrospectively identified 228 patients with histologically confirmed advanced NSCLC and 73 patients with early stage disease; 103 of these patients took antihypertensive drugs, and 112 received treatment with EGFR tyrosine kinase inhibitors (TKIs). There was a significant difference in progression-free survival after first-line therapy (PFS1) between the ACEI/ARB group and the non-ACEI/ARB group. For the patients treated with TKIs, there was a significant difference in PFS but not in overall survival (OS) between the ACEI/ARB group and the non-ACEI/ARB group. For the patients with advanced NSCLC, there was a significant difference in PFS1 between the ACEI/ARB group and the non-ACEI/ARB group. ACEI/ARB in combination with standard chemotherapy or TKIs had a positive effect on PFS1 or OS, regardless of whether the lung cancer was in the early or advanced stage. PMID:26883083

  8. Combination of ACE inhibitor with nicorandil provides further protection in chronic kidney disease.

    PubMed

    Shiraishi, Takeshi; Tamura, Yoshifuru; Taniguchi, Kei; Higaki, Masato; Ueda, Shuko; Shima, Tomoko; Nagura, Michito; Nakagawa, Takahiko; Johnson, Richard J; Uchida, Shunya

    2014-12-15

    An inhibition in the renin-angiotensin system (RAS) is one of the most widely used therapies to treat chronic kidney disease. However, its effect is occasionally not sufficient and additional treatments may be required. Recently, we reported that nicorandil exhibited renoprotective effects in a mouse model of diabetic nephropathy. Here we examined if nicorandil can provide an additive protection on enalapril in chronic kidney disease. Single treatment with either enalapril or nicorandil significantly ameliorated glomerular and tubulointerstitial injury in the rat remnant kidney while the combination of these two compounds provided additive effects. In addition, an increase in oxidative stress in remnant kidney was also blocked by either enalapril or nicorandil while the combination of the drugs was more potent. A mechanism was likely due for nicorandil to preventing manganase superoxide dismutase (MnSOD) and sirtuin (Sirt)3 from being reduced in injured kidneys. A study with cultured podocytes indicated that the antioxidative effect could be mediated through sulfonylurea receptor (SUR) in the mitochondrial KATP channel since blocking SUR with glibenclamide reduced MnSOD and Sirt3 expression in podocytes. In conclusion, nicorandil may synergize with enalapril to provide superior protection in chronic kidney disease.

  9. Top-down Targeted Metabolomics Reveals a Sulfur-Containing Metabolite with Inhibitory Activity against Angiotensin-Converting Enzyme in Asparagus officinalis.

    PubMed

    Nakabayashi, Ryo; Yang, Zhigang; Nishizawa, Tomoko; Mori, Tetsuya; Saito, Kazuki

    2015-05-22

    The discovery of bioactive natural compounds containing sulfur, which is crucial for inhibitory activity against angiotensin-converting enzyme (ACE), is a challenging task in metabolomics. Herein, a new S-containing metabolite, asparaptine (1), was discovered in the spears of Asparagus officinalis by targeted metabolomics using mass spectrometry for S-containing metabolites. The contribution ratio (2.2%) to the IC50 value in the crude extract showed that asparaptine (1) is a new ACE inhibitor.

  10. ACE2 alterations in kidney disease

    PubMed Central

    Soler, María José; Wysocki, Jan; Batlle, Daniel

    2013-01-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that degrades angiotensin (Ang) II to Ang-(1–7). ACE2 is highly expressed within the kidneys, it is largely localized in tubular epithelial cells and less prominently in glomerular epithelial cells and in the renal vasculature. ACE2 activity has been shown to be altered in diabetic kidney disease, hypertensive renal disease and in different models of kidney injury. There is often a dissociation between tubular and glomerular ACE2 expression, particularly in diabetic kidney disease where ACE2 expression is increased at the tubular level but decreased at the glomerular level. In this review, we will discuss alterations in circulating and renal ACE2 recently described in different renal pathologies and disease models as well as their possible significance. PMID:23956234

  11. Neprilysin is a Mediator of Alternative Renin-Angiotensin-System Activation in the Murine and Human Kidney

    PubMed Central

    Domenig, Oliver; Manzel, Arndt; Grobe, Nadja; Königshausen, Eva; Kaltenecker, Christopher C.; Kovarik, Johannes J.; Stegbauer, Johannes; Gurley, Susan B.; van Oyen, Dunja; Antlanger, Marlies; Bader, Michael; Motta-Santos, Daisy; Santos, Robson A.; Elased, Khalid M.; Säemann, Marcus D.; Linker, Ralf A.; Poglitsch, Marko

    2016-01-01

    Cardiovascular and renal pathologies are frequently associated with an activated renin-angiotensin-system (RAS) and increased levels of its main effector and vasoconstrictor hormone angiotensin II (Ang II). Angiotensin-converting-enzyme-2 (ACE2) has been described as a crucial enzymatic player in shifting the RAS towards its so-called alternative vasodilative and reno-protective axis by enzymatically converting Ang II to angiotensin-(1-7) (Ang-(1-7)). Yet, the relative contribution of ACE2 to Ang-(1-7) formation in vivo has not been elucidated. Mass spectrometry based quantification of angiotensin metabolites in the kidney and plasma of ACE2 KO mice surprisingly revealed an increase in Ang-(1-7), suggesting additional pathways to be responsible for alternative RAS activation in vivo. Following assessment of angiotensin metabolism in kidney homogenates, we identified neprilysin (NEP) to be a major source of renal Ang-(1-7) in mice and humans. These findings were supported by MALDI imaging, showing NEP mediated Ang-(1-7) formation in whole kidney cryo-sections in mice. Finally, pharmacologic inhibition of NEP resulted in strongly decreased Ang-(1-7) levels in murine kidneys. This unexpected new role of NEP may have implications for the combination therapy with NEP-inhibitors and angiotensin-receptor-blockade, which has been shown being a promising therapeutic approach for heart failure therapy. PMID:27649628

  12. Angiotensin-converting enzyme inhibitors and beta-blockers in cardiac asymptomatic patients with Duchenne muscular dystrophy.

    PubMed

    Fayssoil, A

    2010-01-01

    Duchenne muscular dystrophy (DMD) is an X-linkedrecessive disorder caused by the absence of dystrophin. Cardiac dysfunction is a classical complication in this disease. Most DMD patients remain asymptomatic for years in spite of the progression of cardiac dysfunction because of their limited daily activities. Angiotensin-converting enzyme inhibitors and beta-blockers may delay the onset and the progression of cardiac dysfunction and have to be recommended earlier in this disease.

  13. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats.

    PubMed

    Balti, Rafik; Bougatef, Ali; Sila, Assaâd; Guillochon, Didier; Dhulster, Pascal; Nedjar-Arroume, Naima

    2015-03-01

    This study aimed to identify novel ACE inhibitory peptides from the muscle of cuttlefish. Proteins were hydrolyzed and the hydrolysates were then subjected to various types of chromatography to isolate the active peptides. Nine ACE inhibitory peptides were isolated and their molecular masses and amino acid sequences were determined using ESI-MS and ESI-MS/MS, respectively. The structures of the most potent peptides were identified as Val-Glu-Leu-Tyr-Pro, Ala-Phe-Val-Gly-Tyr-Val-Leu-Pro and Glu-Lys-Ser-Tyr-Glu-Leu-Pro. The first peptide displayed the highest ACE inhibitory activity with an IC50 of 5.22μM. Lineweaver-Burk plots suggest that Val-Glu-Leu-Tyr-Pro acts as a non-competitive inhibitor against ACE. Furthermore, antihypertensive effects in spontaneously hypertensive rats (SHR) also revealed that oral administration of Val-Glu-Leu-Tyr-Pro can decrease systolic blood pressure significantly (p<0.01). These results suggest that the Val-Glu-Leu-Tyr-Pro would be a beneficial ingredient for nutraceuticals and pharmaceuticals acting against hypertension and its related diseases.

  14. Local actions of angiotensin II: quantitative in vitro autoradiographic localization of angiotensin II receptor binding and angiotensin converting enzyme in target tissues

    SciTech Connect

    Chai, S.Y.; Allen, A.M.; Adam, W.R.; Mendelsohn, F.A.

    1986-01-01

    In order to gain insight into the local actions of angiotensin II (ANG II) we have determined the distribution of a component of the effector system for the peptide, the ANG II receptor, and that of an enzyme-catalysing ANG II formation, angiotensin converting enzyme (ACE), by in vitro autoradiography in several target tissues. The superagonist ANG II analog, /sup 125/I(Sar1)ANG II, or the antagonist analog, /sup 125/I(Sar1,Ile8)ANG II, were used as specific radioligands for ANG II receptors. A derivative of the specific ACE inhibitor, lysinopril, called /sup 125/I-351A, was used to label ACE in tissues. In the adrenal, a high density of ANG II receptors occurs in the glomerulosa zone of the cortex and in the medulla. ACE is also localized in these two zones, indicating that local production of ANG II may occur close to its sites of action in the zona glomerulosa and adrenal medulla. In the kidney, a high density of ANG II receptors is associated with glomeruli in the cortex and also with vasa recta bundles in the inner stripe of the outer medulla. ACE is found in very high concentration in deep proximal convoluted tubules of the cortex, while much lower concentrations of the enzyme occur in the vascular endothelium throughout the kidney. In the central nervous system three classes of relationships between ANG II receptors and ACE are observed: In the circumventricular organs, including the subfornical organ and organum vasculosum of the lamina terminalis, a high concentration of both components occurs. Since these structures have a deficient blood-brain barrier, local conversion of circulating angiotensin I (ANG I) to ANG II may contribute to the action of ANG II at these sites.

  15. ACE2/Ang-(1-7)/Mas axis stimulates vascular repair-relevant functions of CD34+ cells.

    PubMed

    Singh, Neha; Joshi, Shrinidh; Guo, Lirong; Baker, Matthew B; Li, Yan; Castellano, Ronald K; Raizada, Mohan K; Jarajapu, Yagna P R

    2015-11-15

    CD34(+) stem/progenitor cells have been identified as a promising cell population for the autologous cell-based therapies in patients with cardiovascular disease. The counter-regulatory axes of renin angiotensin system, angiotensin converting enzyme (ACE)/Ang II/angiotensin type 1 (AT1) receptor and ACE2/Ang-(1-7)/Mas receptor, play an important role in the cardiovascular repair. This study evaluated the expression and vascular repair-relevant functions of these two pathways in human CD34(+) cells. CD34(+) cells were isolated from peripheral blood mononuclear cells (MNCs), obtained from healthy volunteers. Expression of ACE, ACE2, AT1, and angiotensin type 2 and Mas receptors were determined. Effects of Ang II, Ang-(1-7), Norleu(3)-Ang-(1-7), and ACE2 activators, xanthenone (XNT) and diminazene aceturate (DIZE) on proliferation, migration, and adhesion of CD34(+) cells were evaluated. ACE2 and Mas were relatively highly expressed in CD34(+) cells compared with MNCs. Ang-(1-7) or its analog, Norleu(3)-Ang-(1-7), stimulated proliferation of CD34(+) cells that was associated with decrease in phosphatase and tensin homologue deleted on chromosome 10 levels and was inhibited by triciribin, an AKT inhibitor. Migration of CD34(+) cells was enhanced by Ang-(1-7) or Norleu(3)-Ang-(1-7) that was decreased by a Rho-kinase inhibitor, Y-27632. In the presence of Ang II, XNT or DIZE enhanced proliferation and migration that were blocked by DX-600, an ACE2 inhibitor. Treatment of MNCs with Ang II, before the isolation of CD34(+) cells, attenuated the proliferation and migration to stromal derived factor-1α. This attenuation was reversed by apocynin, an NADPH oxidase inhibitor. Adhesion of MNCs or CD34(+) cells to fibronectin was enhanced by Ang II and was unaffected by Ang-(1-7). This study suggests that ACE2/Ang-(1-7)/Mas pathway stimulates functions of CD34(+) cells that are cardiovascular protective, whereas Ang II attenuates these functions by acting on MNCs. These findings

  16. ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer's disease.

    PubMed

    AbdAlla, Said; Langer, Andreas; Fu, Xuebin; Quitterer, Ursula

    2013-08-16

    Increased generation of reactive oxygen species (ROS) is a significant pathological feature in the brains of patients with Alzheimer's disease (AD). Experimental evidence indicates that inhibition of brain ROS could be beneficial in slowing the neurodegenerative process triggered by amyloid-beta (Abeta) aggregates. The angiotensin II AT1 receptor is a significant source of brain ROS, and AD patients have an increased brain angiotensin-converting enzyme (ACE) level, which could account for an excessive angiotensin-dependent AT1-induced ROS generation. Therefore, we analyzed the impact of ACE inhibition on signs of neurodegeneration of aged Tg2576 mice as a transgenic animal model of AD. Whole genome microarray gene expression profiling and biochemical analyses demonstrated that the centrally active ACE inhibitor captopril normalized the excessive hippocampal ACE activity of AD mice. Concomitantly, the development of signs of neurodegeneration was retarded by six months of captopril treatment. The neuroprotective profile triggered by captopril was accompanied by reduced amyloidogenic processing of the amyloid precursor protein (APP), and decreased hippocampal ROS, which is known to enhance Abeta generation by increased activation of beta- and gamma-secretases. Taken together, our data present strong evidence that ACE inhibition with a widely used cardiovascular drug could interfere with Abeta-dependent neurodegeneration.

  17. Antihypertensive Effects of Artemisia scoparia Waldst in Spontaneously Hypertensive Rats and Identification of Angiotensin I Converting Enzyme Inhibitors.

    PubMed

    Cho, Jeong-Yong; Park, Kyung-Hee; Hwang, Do Young; Chanmuang, Saoraya; Jaiswal, Lily; Park, Yang-Kyun; Park, Sun-Young; Kim, So-Young; Kim, Haeng-Ran; Moon, Jae-Hak; Ham, Kyung-Sik

    2015-11-03

    We investigated the antihypertensive effects of Artemisia scoparia (AS) in spontaneously hypertensive rats (SHR). The rats were fed diets containing 2% (w/w) hot water extracts of AS aerial parts for 6 weeks. The AS group had significantly lower systolic and diastolic blood pressure levels than the control group. The AS group also had lower angiotensin I converting enzyme (ACE) activity and angiotensin II content in serum compared to the control group. The AS group showed higher vascular endothelial growth factor and lower ras homolog gene family member A expression levels in kidney compared to the control group. The AS group had significantly lower levels of plasma lipid oxidation and protein carbonyls than the control group. One new and six known compounds were isolated from AS by guided purification. The new compound was determined to be 4'-O-β-D-glucopyranoyl (E)-4-hydroxy-3-methylbut-2-enyl benzoate, based on its nuclear magnetic resonance and electrospray ionization-mass spectroscopy data.

  18. [Psychotropic effects of angiotensin-converting enzyme inhibitors: what are the arguments?].

    PubMed

    Mesure, G; Fallet, A; Chevalier, J F

    1995-01-01

    The authors report a case of acute mania induced by perindopril (Coversyl) in a 57 year old man with no prior history of mental illness. This Angiotensin-Converting Enzyme Inhibitor (ACEI) had been introduced eight days prior to the first signs of excitation, in order to treat recently diagnosed arterial hypertension. Without proof of reintroduction, and on the basis of clinical observations, the attribution appears plausible. Similar observations have been made for other molecules in this class of medication, such as captopril (Lopril). A review of literature regroups recent data concerning psychotropic effects of ACEIs. Several reports claim that captopril clearly acts as an antidepressant. Studies on the mood or the quality of life of treated hypertensive patients show ACEIs to have an euphoric-type positive effect compared to other anti-hypertensive treatments. Captopril and perindopril also act like potential antidepressants in experimental models of antidepression. Furthermore, pharmacologic data confirm that the most lipophilic ACEIs penetrate the central nervous system and argue in favor of the role of these molecules in activating central opioides. As these data provide evidence of mood swing in some patients, but also of an overall benefit in hypertensive populations, the clinical importance of the antidepressant effect of ACEIs needs further investigations.

  19. Effect of combined ultrasonic and alkali pretreatment on enzymatic preparation of angiotensin converting enzyme (ACE) inhibitory peptides from native collagenous materials.

    PubMed

    Zhang, Yuhao; Ma, Liang; Cai, Luyun; Liu, Yi; Li, Jianrong

    2017-05-01

    The combined effect of ultrasonic and alkali pretreatment for the hydrolysis of native collagenous materials and release of ACE inhibitory peptides was investigated. The ultrasonic and alkali pretreatment of pig skin could accelerate the release of the ACE inhibitory peptides from the triple helix of collagen in early stages of hydrolysis. Furthermore, the pretreatment could also accelerate collapse of the triple helix and release more ACE inhibitory peptides during hydrolysis than collagen samples left untreated. Compared to untreated and alkali pretreated samples, the ultrasonic and alkali pretreatment could decrease the thermostability of pig skin significantly (P<0.05) because the ultrasonic and alkali pretreatment could weaken hydrogen bonds and break parts of covalent bonds in collagen, leading to damage of the triple helical structure in collagen. Therefore, the ultrasonic and alkali pretreatment could damage the triple helical structure of collagen in native collagenous materials and expose more inner sites for subsequent hydrolysis, and it could be a potential way to prepare ACE inhibitory peptides effectively from collagen-rich raw material.

  20. A genome-wide association study identifies variants in KCNIP4 associated with ACE inhibitor-induced cough.

    PubMed

    Mosley, J D; Shaffer, C M; Van Driest, S L; Weeke, P E; Wells, Q S; Karnes, J H; Velez Edwards, D R; Wei, W-Q; Teixeira, P L; Bastarache, L; Crawford, D C; Li, R; Manolio, T A; Bottinger, E P; McCarty, C A; Linneman, J G; Brilliant, M H; Pacheco, J A; Thompson, W; Chisholm, R L; Jarvik, G P; Crosslin, D R; Carrell, D S; Baldwin, E; Ralston, J; Larson, E B; Grafton, J; Scrol, A; Jouni, H; Kullo, I J; Tromp, G; Borthwick, K M; Kuivaniemi, H; Carey, D J; Ritchie, M D; Bradford, Y; Verma, S S; Chute, C G; Veluchamy, A; Siddiqui, M K; Palmer, C N A; Doney, A; MahmoudPour, S H; Maitland-van der Zee, A H; Morris, A D; Denny, J C; Roden, D M

    2016-06-01

    The most common side effect of angiotensin-converting enzyme inhibitor (ACEi) drugs is cough. We conducted a genome-wide association study (GWAS) of ACEi-induced cough among 7080 subjects of diverse ancestries in the Electronic Medical Records and Genomics (eMERGE) network. Cases were subjects diagnosed with ACEi-induced cough. Controls were subjects with at least 6 months of ACEi use and no cough. A GWAS (1595 cases and 5485 controls) identified associations on chromosome 4 in an intron of KCNIP4. The strongest association was at rs145489027 (minor allele frequency=0.33, odds ratio (OR)=1.3 (95% confidence interval (CI): 1.2-1.4), P=1.0 × 10(-8)). Replication for six single-nucleotide polymorphisms (SNPs) in KCNIP4 was tested in a second eMERGE population (n=926) and in the Genetics of Diabetes Audit and Research in Tayside, Scotland (GoDARTS) cohort (n=4309). Replication was observed at rs7675300 (OR=1.32 (1.01-1.70), P=0.04) in eMERGE and at rs16870989 and rs1495509 (OR=1.15 (1.01-1.30), P=0.03 for both) in GoDARTS. The combined association at rs1495509 was significant (OR=1.23 (1.15-1.32), P=1.9 × 10(-9)). These results indicate that SNPs in KCNIP4 may modulate ACEi-induced cough risk.

  1. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse.

    PubMed

    Roca-Ho, Heleia; Riera, Marta; Palau, Vanesa; Pascual, Julio; Soler, Maria Jose

    2017-03-05

    Renin angiotensin system (RAS) is known to play a key role in several diseases such as diabetes, and renal and cardiovascular pathologies. Its blockade has been demonstrated to delay chronic kidney disease progression and cardiovascular damage in diabetic patients. In this sense, since local RAS has been described, the aim of this study is to characterize angiotensin converting enzyme (ACE) and ACE2 activities, as well as protein expression, in several tissues of the non-obese diabetic (NOD) mice model. After 21 or 40 days of diabetes onset, mouse serums and tissues were analyzed for ACE and ACE2 enzyme activities and protein expression. ACE and ACE2 enzyme activities were detected in different tissues. Their expressions vary depending on the studied tissue. Thus, whereas ACE activity was highly expressed in lungs, ACE2 activity was highly expressed in pancreas among the studied tissues. Interestingly, we also observed that diabetes up-regulates ACE mainly in serum, lung, heart, and liver, and ACE2 mainly in serum, liver, and pancreas. In conclusion, we found a marked serum and pulmonary alteration in ACE activity of diabetic mice, suggesting a common regulation. The increase of ACE2 activity within the circulation in diabetic mice may be ascribed to a compensatory mechanism of RAS.

  2. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse

    PubMed Central

    Roca-Ho, Heleia; Riera, Marta; Palau, Vanesa; Pascual, Julio; Soler, Maria Jose

    2017-01-01

    Renin angiotensin system (RAS) is known to play a key role in several diseases such as diabetes, and renal and cardiovascular pathologies. Its blockade has been demonstrated to delay chronic kidney disease progression and cardiovascular damage in diabetic patients. In this sense, since local RAS has been described, the aim of this study is to characterize angiotensin converting enzyme (ACE) and ACE2 activities, as well as protein expression, in several tissues of the non-obese diabetic (NOD) mice model. After 21 or 40 days of diabetes onset, mouse serums and tissues were analyzed for ACE and ACE2 enzyme activities and protein expression. ACE and ACE2 enzyme activities were detected in different tissues. Their expressions vary depending on the studied tissue. Thus, whereas ACE activity was highly expressed in lungs, ACE2 activity was highly expressed in pancreas among the studied tissues. Interestingly, we also observed that diabetes up-regulates ACE mainly in serum, lung, heart, and liver, and ACE2 mainly in serum, liver, and pancreas. In conclusion, we found a marked serum and pulmonary alteration in ACE activity of diabetic mice, suggesting a common regulation. The increase of ACE2 activity within the circulation in diabetic mice may be ascribed to a compensatory mechanism of RAS. PMID:28273875

  3. Angiotensin-converting enzyme inhibition reduces food intake and weight gain and improves glucose tolerance in melanocortin-4 receptor deficient female rats.

    PubMed

    Mul, Joram D; Seeley, Randy J; Woods, Stephen C; Begg, Denovan P

    2013-09-10

    Functional loss of melanocortin-4 receptor (MC4R) activity leads to hyperphagia and an obese, glucose intolerant phenotype. We have previously established that inhibition of angiotensin-converting enzyme (ACE) reduces food intake, body weight and glucose homeostasis in diet-induced obesity. The current study assessed the effect of ACE inhibitor treatment in MC4R-deficient female rats on body weight, adiposity and glucose tolerance. Rats homozygous (HOM) for a loss of function Mc4r mutation had an obese phenotype relative to their wildtype (WT) littermates. Inhibition of ACE for 8weeks produced reductions in body weight gain in both HOM and WT rats; however, food intake was only reduced in HOM rats. Weight loss following ACE inhibitor treatment was specific to fat mass while lean mass was unaffected. HOM rats were severely glucose intolerant and insensitive to exogenous insulin injection, and treatment with an ACE inhibitor improved both glucose tolerance and insulin sensitivity in HOM rats although not fully to that of the level of WT rats. The current study indicates that HOM rats are sensitive to the anorectic effects of ACE inhibition, unlike their WT littermates. This resulted in a more rapid reduction in body weight gain and a more substantial loss of adipose mass in HOM animals, relative to WT animals, treated with an ACE inhibitor. Overall, these data demonstrate that MC4R signaling is not required for weight loss following treatment with an ACE inhibitor.

  4. Chebulin: Terminalia chebula Retz. fruit-derived peptide with angiotensin-I-converting enzyme inhibitory activity.

    PubMed

    Sornwatana, Thakorn; Bangphoomi, Kunan; Roytrakul, Sittiruk; Wetprasit, Nuanchawee; Choowongkomon, Kiattawee; Ratanapo, Sunanta

    2015-01-01

    Angiotensin-I-converting enzyme (ACE) plays an important role in blood pressure regulation. In this study, an ACE-hexapeptide inhibitor (Asp-Glu-Asn-Ser-Lys-Phe) designated as chebulin was produced from the fruit protein of Terminalia chebula Retz. by pepsin digestion, ultrafiltrated through a 3 KDa cut-off membrane, a reverse-phase high-performance liquid chromatography, and nano-liquid chromatography tandem mass spectrometry analysis. Chebulin was found to inhibit ACE in a noncompetitive manner, as supported by the structural model. It bounds to ACE by the hydrogen bond, hydrophobic and ionic interactions via the interactions of C-terminal Phe (Phe-6), and N-terminal residues (Asp-1 and Glu-2) with the amino acid residues on noncatalytic sites of the ACE. The results showed that chebulin derived from fruits of T. chebula Retz. is a potential ACE-peptide inhibitor that could be used as a functional food additive for the prevention of hypertension and as an alternative to ACE inhibitor drug.

  5. Angiotensin-converting enzyme inhibitors reduce oxidative stress intensity in hyperglicemic conditions in rats independently from bradykinin receptor inhibitors

    PubMed Central

    Mikrut, Kinga; Kupsz, Justyna; Koźlik, Jacek; Krauss, Hanna; Pruszyńska-Oszmałek, Ewa; Gibas-Dorna, Magdalena

    2016-01-01

    Aim To investigate whether bradykinin-independent antioxidative effects of angiotensin-converting enzyme inhibitors (ACEIs) exist in acute hyperglycemia. Methods Male Wistar rats were divided into the normoglycemic group (n = 40) and the hyperglycemic group (n = 40). Hyperglycemia was induced by a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) dissolved in 0.1 mol/L citrate buffer (pH 4.5) 72 hours before sacrifice. The normoglycemic group received the same volume of citrate buffer. Each group was divided into five subgroups (n = 8): control group, captopril group, captopril + bradykinin B1 and B2 receptor antagonists group, enalapril group, and enalapril + bradykinin B1 and B2 receptor antagonists group. Captopril, enalapril, B1 and B2 receptor antagonists, or 0.15 mol/L NaCl were given at 2 and 1 hour before sacrifice. Oxidative status was determined by measuring the concentration of malondialdehyde and H2O2, and the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Results In STZ-induced hyperglycemic rats ACEIs significantly reduced H2O2 and MDA concentration, while they significantly enhanced SOD and GPx activity. The hyperglycemic group treated simultaneously with ACEIs and bradykinin B1 and B2 receptor antagonists showed a significant decrease in H2O2 concentration compared to the control hyperglycemic group. Conclusion These results suggest the existence of additional antioxidative effect of ACEIs in hyperglycemic conditions, which is not related to the bradykinin mediation and the structure of the drug molecule. PMID:27586552

  6. Renoprotective effects of combined SGLT2 and ACE inhibitor therapy in diabetic Dahl S rats

    PubMed Central

    Kojima, Naoki; Williams, Jan M; Slaughter, Tiffani N; Kato, Sota; Takahashi, Teisuke; Miyata, Noriyuki; Roman, Richard J

    2015-01-01

    This study examined whether control of hyperglycemia with a new SGLT2 inhibitor, luseogliflozin, given alone or in combination with lisinopril could prevent the development of renal injury in diabetic Dahl salt-sensitive (Dahl S) rats treated with streptozotocin (Dahl-STZ). Blood glucose levels increased from normoglycemic to hyperglycemic levels after treatment of STZ in Dahl S rats. Chronic treatment of Dahl-STZ rats with luseogliflozin (10 mg/kg/day) increased the fractional excretion of glucose and normalized blood glucose and HbA1c levels. Lisinopril (20 mg/kg/day) reduced blood pressure from 145 ± 9 to 120 ± 5 mmHg in Dahl-STZ rats, while luseogliflozin had no effect on blood pressure. Combination therapy reduced blood pressure more than that seen in the rats treated with luseogliflozin or lisinopril alone. Dahl-STZ rats exhibited hyperfiltration, mesangial matrix expansion, severe progressive proteinuria, focal glomerulosclerosis and interstitial fibrosis. Control of hyperglycemia with luseogliflozin reduced the degree of hyperfiltration and renal injury but had no effect on blood pressure or the development of proteinuria. Treatment with lisinopril reduced hyperfiltration, proteinuria and renal injury in Dahl-STZ rats. Combination therapy afforded greater renoprotection than administration of either drug alone. These results suggest that long-term control of hyperglycemia with luseogliflozin, especially in combination with lisinopril to lower blood pressure, attenuates the development of renal injury in this rat model of advanced diabetic nephropathy. PMID:26169541

  7. Isolation, Purification and Molecular Mechanism of a Peanut Protein-Derived ACE-Inhibitory Peptide

    PubMed Central

    Shi, Aimin; Liu, Hongzhi; Liu, Li; Hu, Hui; Wang, Qiang; Adhikari, Benu

    2014-01-01

    Although a number of bioactive peptides are capable of angiotensin I-converting enzyme (ACE) inhibitory effects, little is known regarding the mechanism of peanut peptides using molecular simulation. The aim of this study was to obtain ACE inhibiting peptide from peanut protein and provide insight on the molecular mechanism of its ACE inhibiting action. Peanut peptides having ACE inhibitory activity were isolated through enzymatic hydrolysis and ultrafiltration. Further chromatographic fractionation was conducted to isolate a more potent peanut peptide and its antihypertensive activity was analyzed through in vitro ACE inhibitory tests and in vivo animal experiments. MALDI-TOF/TOF-MS was used to identify its amino acid sequence. Mechanism of ACE inhibition of P8 was analyzed using molecular docking and molecular dynamics simulation. A peanut peptide (P8) having Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence was obtained which had the highest ACE inhibiting activity of 85.77% (half maximal inhibitory concentration (IC50): 0.0052 mg/ml). This peanut peptide is a competitive inhibitor and show significant short term (12 h) and long term (28 days) antihypertensive activity. Dynamic tests illustrated that P8 can be successfully docked into the active pocket of ACE and can be combined with several amino acid residues. Hydrogen bond, electrostatic bond and Pi-bond were found to be the three main interaction contributing to the structural stability of ACE-peptide complex. In addition, zinc atom could form metal-carboxylic coordination bond with Tyr, Met residues of P8, resulting into its high ACE inhibiting activity. Our finding indicated that the peanut peptide (P8) having a Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence can be a promising candidate for functional foods and prescription drug aimed at control of hypertension. PMID:25347076

  8. Protein Kinase C-δ Mediates Shedding of Angiotensin-Converting Enzyme 2 from Proximal Tubular Cells

    PubMed Central

    Xiao, Fengxia; Zimpelmann, Joseph; Burger, Dylan; Kennedy, Christopher; Hébert, Richard L.; Burns, Kevin D.

    2016-01-01

    Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin (Ang) II to Ang-(1–7), and protects against diabetic renal injury. Soluble ACE2 fragments are shed from the proximal tubule, and appear at high levels in the urine with diabetes. High glucose-induced shedding of ACE2 from proximal tubular cells is mediated by the enzyme “a disintegrin and metalloproteinase-17″ (ADAM17). Here, we investigated the mechanism for constitutive shedding of ACE2. Mouse proximal tubular cells were cultured and ACE2 shedding into the media was assessed by enzyme activity assay and immunoblot analysis. Cells were incubated with pharmacologic inhibitors, or transfected with silencing (si) RNA. Incubation of proximal tubular cells with increasing concentrations of D-glucose stimulated ACE2 shedding, which peaked at 16 mM, while L-glucose (osmotic control) had no effect on shedding. In cells maintained in 7.8 mM D-glucose, ACE2 shedding was significantly inhibited by the pan-protein kinase C (PKC) competitive inhibitor sotrastaurin, but not by an inhibitor of ADAM17. Incubation of cells with the PKC-α and -β1-specific inhibitor Go6976, the PKC β1 and β2-specific inhibitor ruboxistaurin, inhibitors of matrix metalloproteinases-2,-8, and -9, or an inhibitor of ADAM10 (GI250423X) had no effect on basal ACE2 shedding. By contrast, the PKC-δ inhibitor rottlerin significantly inhibited both constitutive and high glucose-induced ACE2 shedding. Transfection of cells with siRNA directed against PKC-δ reduced ACE2 shedding by 20%, while knockdown of PKC-ε was without effect. These results indicate that constitutive shedding of ACE2 from proximal tubular cells is mediated by PKC-δ, which is also linked to high glucose-induced shedding. Targeting PKC-δ may preserve membrane-bound ACE2 in proximal tubule in disease states and diminish Ang II-stimulated adverse signaling. PMID:27313531

  9. Tissue-Specific Expression of Transgenic Secreted ACE in Vasculature Can Restore Normal Kidney Functions, but Not Blood Pressure, of Ace-/- Mice

    PubMed Central

    Chattopadhyay, Saurabh; Kessler, Sean P.; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C.

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE. PMID:24475296

  10. Diminazene aceturate enhances ACE2 activity and attenuates ischemia-induced cardiac pathophysiology

    PubMed Central

    Qi, YanFei; Zhang, Juan; Cole-Jeffrey, Colleen T; Shenoy, Vinayak; Espejo, Andrew; Hanna, Mina; Song, Chunjuan; Pepine, Carl J; Katovich, Michael J; Raizada, Mohan K

    2013-01-01

    Angiotensin-converting enzyme 2 (ACE2) plays a critical role against myocardial infarction (MI). We hypothesized that activation of intrinsic ACE2 would be protective against ischemia-induced cardiac pathophysiology. Diminazine aceturate (DIZE), a small molecule ACE2 activator has been used to evaluate this hypothesis. DIZE (15 mg/kg/day, s.c.) was injected two days prior to MI surgery and continued throughout the study-period. MI rats showed a 62% decrease in fractional shortening (FS,%) [control (Con): 51.1 ± 3.2; DIZE alone (D) : 52.1 ± 3.2; MI (M): 19.1± 3.0], a 55% decrease in contractility (dP/dtmax mmHg/s) (Con: 9480 ± 425.3; D: 9585 ± 597.4; M: 4251 ± 657.7), and a 27% increase in ventricular hypertrophy [VH, mg/mm (Con: 26.5 ± 1.5; D: 26.9 ± 1.4; M: 33.4± 1.1)]. DIZE attenuated the MI-induced decrease in FS by 89%, improved dP/dtmax by 92%, and reversed VH by 18%. MI also significantly increased ACE and angiotensin type 1 receptor levels while decreased ACE2 activity by 40% (Con: 246.2 ± 25.1; D: 254.2 ± 20.6; M: 148.9 ± 29.2, RFU/min), which was reversed by DIZE treatment. Thus, DIZE treatment decreased the infarct area, attenuated LV remodeling post-MI and restored normal balance of the cardiac renin angiotensin system. Additionally, DIZE treatment increased circulating endothelial progenitor cells, increased engraftment of cardiac progenitor cells and decreased inflammatory cells in peri-infarct cardiac regions. All of the beneficial effects associated with DIZE treatment were abolished by C-16, an ACE2 inhibitor. Collectively, DIZE and DIZE-like small molecules may represent promising new therapeutic agents for MI. PMID:23959549

  11. Angiotensin-converting enzyme inhibitors in preventing remodeling and development of heart failure after acute myocardial infarction: results of the German multicenter study of the effects of captopril on cardiopulmonary exercise parameters (ECCE).

    PubMed

    Kleber, F X; Sabin, G V; Winter, U J; Reindl, I; Beil, S; Wenzel, M; Fischer, M; Doering, W

    1997-08-04

    Early action of angiotensin-converting enzyme (ACE) inhibitors after myocardial infarction (MI) has been shown in large scale clinical trials to reduce mortality over the first weeks. However, the mechanisms involved are yet unclear and several trials showed a tendency toward a small, albeit unexpected, rise in cardiogenic shock or mortality. Since cardiopulmonary exercise testing (CPX) has become a "gold standard" in assessing the severity of heart failure, we studied--after finishing a pilot trial--the effect of captopril versus placebo in 208 patients who were individually titrated (titrated dose, mean 46/69 mg/day after 7 days/4 weeks, respectively) in order to preserve their blood pressure in the acute phase of myocardial infarction; we followed the development of congestive heart failure (CHF) over 4 weeks by measuring oxygen consumption. After 4 weeks, overall oxygen consumption at the anaerobic threshold (VO2-AT; 13.7 vs 13.1), maximal oxygen consumption (VO2max 19.3 vs 18.9 mL/kg per min) and exercise duration (896 vs 839 sec) showed a nonsignificant difference in favor of the captopril group. The predefined, categorized, combined endpoint of severe heart failure or death (heart failure necessitating ACE inhibition, VO2max < 10 mL/kg per min, or death) was significantly reduced in the captopril group (n = 7/104) versus placebo (n = 18/104; p = 0.03). Differences were mainly caused by fewer CHF events (delta n = 10). We conclude that ACE inhibition with individualized dose titration markedly reduces the 4-week incidence of severe heart failure or death; > 10 patients per 100 treated gained major benefits from this therapy.

  12. Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme.

    PubMed

    Eckman, Elizabeth A; Adams, Stephanie K; Troendle, Frederick J; Stodola, Becky A; Kahn, Murad A; Fauq, Abdul H; Xiao, Hong D; Bernstein, Kenneth E; Eckman, Christopher B

    2006-10-13

    The deposition of beta-amyloid in the brain is a pathological hallmark of Alzheimer disease (AD). Normally, the accumulation of beta-amyloid is prevented in part by the activities of several degradative enzymes, including the endothelin-converting enzymes, neprilysin, insulin-degrading enzyme, and plasmin. Recent reports indicate that another metalloprotease, angiotensin-converting enzyme (ACE), can degrade beta-amyloid in vitro and in cellular overexpression experiments. In addition, ACE gene variants are linked to AD risk in several populations. Angiotensin-converting enzyme, neprilysin and endothelin-converting enzyme function as vasopeptidases and are the targets of drugs designed to treat cardiovascular disorders, and ACE inhibitors are commonly prescribed. We investigated the potential physiological role of ACE in regulating endogenous brain beta-amyloid levels for two reasons: first, to determine whether beta-amyloid degradation might be the mechanism by which ACE is associated with AD, and second, to determine whether ACE inhibitor drugs might block beta-amyloid degradation in the brain and potentially increase the risk for AD. We analyzed beta-amyloid accumulation in brains from ACE-deficient mice and in mice treated with ACE inhibitors and found that ACE deficiency did not alter steady-state beta-amyloid concentration. In contrast, beta-amyloid levels are significantly elevated in endothelin-converting enzyme and neprilysin knock-out mice, and inhibitors of these enzymes cause a rapid increase in beta-amyloid concentration in the brain. The results of these studies do not support a physiological role for ACE in the degradation of beta-amyloid in the brain but confirm roles for endothelin-converting enzyme and neprilysin and indicate that reductions in these enzymes result in additive increases in brain amyloid beta-peptide levels.

  13. Pharmacogenetic effects of angiotensin-converting enzyme inhibitors over age-related urea and creatinine variations in patients with dementia due to Alzheimer disease

    PubMed Central

    Berretta, Juliana Marília; Suchi Chen, Elizabeth; Cardoso Smith, Marilia; Ferreira Bertolucci, Paulo Henrique

    2016-01-01

    Background: Renal function declines according to age and vascular risk factors, whereas few data are available regarding genetically-mediated effects of anti-hypertensives over renal function. Objective: To estimate urea and creatinine variations in dementia due to Alzheimer disease (AD) by way of a pharmacogenetic analysis of the anti-hypertensive effects of angiotensin-converting enzyme inhibitors (ACEis). Methods: Consecutive outpatients older than 60 years-old with AD and no history of kidney transplant or dialytic therapy were recruited for prospective correlations regarding variations in fasting blood levels of urea and creatinine in one year, considering ACE genotypes of rs1800764 and rs4291 and their respective haplotypes, and treatment with ACEis along with blood pressure variations. Results: For 190 patients, 152 had arterial hypertension, and 122 used ACEis. Minor allele frequencies were 0.492 for rs1800764-C and 0.337 for rs4291-T, both in Hardy-Weinberg equilibrium. There were no overall significant yearly variations in levels of urea and creatinine, but their concurrent variations were positively correlated (ρ <0.0001). Each A allele of rs4291 led to an yearly urea increase of 3,074 mg/dL, and an yearly creatinine increase of 0.044 mg/dL, while the use of ACEis was protective regarding creatinine variations. The use of ACEis was also protective for carriers of rs1800764-CT/rs4291-AA, while carriers of rs1800764-CT/rs4291-AT had steeper reductions in creatinine levels, particularly when they were treated with ACEis. Conclusions: Effects of ACEis over creatinine variations are genetically mediated and independent of blood pressure variations in older people with AD. PMID:27546928

  14. Release of angiotensin converting enzyme-inhibitor peptides during in vitro gastrointestinal digestion of Parmigiano Reggiano PDO cheese and their absorption through an in vitro model of intestinal epithelium.

    PubMed

    Basiricò, L; Catalani, E; Morera, P; Cattaneo, S; Stuknytė, M; Bernabucci, U; De Noni, I; Nardone, A

    2015-11-01

    The occurrence of 8 bovine casein-derived peptides (VPP, IPP, RYLGY, RYLG, AYFYPEL, AYFYPE, LHLPLP, and HLPLP) reported as angiotensin converting enzyme-inhibitors (ACE-I) was investigated in the 3-kDa ultrafiltered water-soluble extract (WSE) of Parmigiano Reggiano (PR) cheese samples by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry via an electrospray ionization source. Only VPP, IPP, LHLPLP, and HLPLP were revealed in the WSE, and their total amount was in the range of 8.46 to 21.55 mg/kg of cheese. Following in vitro static gastrointestinal digestion, the same ACE-I peptides along with the newly formed AYFYPEL and AYFYPE were found in the 3 kDa WSE of PR digestates. Digestates presented high amounts (1,880-3,053 mg/kg) of LHLPLP, whereas the remaining peptides accounted for 69.24 to 82.82 mg/kg. The half-maximal inhibitory concentration (IC50) values decreased from 7.92 ± 2.08 in undigested cheese to 3.20 ± 1.69 after in vitro gastrointestinal digestion. The 3-kDa WSE of digested cheeses were used to study the transport of the 8 ACE-I peptides across the monolayers of the Caco-2 cell culture grown on a semipermeable membrane of the transwells. After 1h of incubation, 649.20 ± 148.85 mg/kg of LHLPLP remained in the apical compartment, whereas VPP, IPP, AYFYPEL, AYFYPE, and HLPLP accounted in total for less than 36.78 mg/kg. On average, 0.6% of LHLPLP initially present in the digestates added to the apical compartment were transported intact to the basolateral chamber after the same incubation time. Higher transport rate (2.9%) was ascertained for the peptide HLPLP. No other intact ACE-I peptides were revealed in the basolateral compartment. For the first time, these results demonstrated that the ACE-I peptides HLPLP and LHLPLP present in the in vitro digestates of PR cheese are partially absorbed through an in vitro model of human intestinal epithelium.

  15. An additive effect of anti-PAI-1 antibody to ACE inhibitor on slowing the progression of diabetic kidney disease.

    PubMed

    Gu, Chunyan; Zhang, Jiandong; Noble, Nancy A; Peng, Xiao-Rong; Huang, Yufeng

    2016-11-01

    While angiotensin II blockade slows the progression of diabetic nephropathy, current data suggest that it alone cannot stop the disease process. New therapies or drug combinations will be required to further slow or halt disease progression. Inhibition of plasminogen activator inhibitor type 1 (PAI-1) aimed at enhancing ECM degradation has shown therapeutic potential in diabetic nephropathy. Here, using a mouse model of type diabetes, the maximally therapeutic dose of the PAI-1-neutralizing mouse monoclonal antibody (MEDI-579) was determined and compared with the maximally effective dose of enalapril. We then examined whether addition of MEDI-579 to enalapril would enhance the efficacy in slowing the progression of diabetic nephropathy. Untreated uninephrectomized diabetic db/db mice developed progressive albuminuria and glomerulosclerosis associated with increased expression of transforming growth factor (TGF)-β1, PAI-1, type IV collagen, and fibronectin from weeks 18 to 22, which were reduced by MEDI-579 at 3 mg/kg body wt, similar to enalapril given alone from weeks 12 to 22 Adding MEDI-579 to enalapril from weeks 18 to 22 resulted in further reduction in albuminuria and markers of renal fibrosis. Renal plasmin generation was dramatically reduced by 57% in diabetic mice, a decrease that was partially reversed by MEDI-579 or enalapril given alone but was further restored by these two treatments given in combination. Our results suggest that MEDI-579 is effective in slowing the progression of diabetic nephropathy in db/db mice and that the effect is additive to ACEI. While enalapril is renal protective, the add-on PAI-1 antibody may offer additional renoprotection in progressive diabetic nephropathy via enhancing ECM turnover.

  16. Sources of heterogeneity in case-control studies on associations between statins, ACE-inhibitors, and proton pump inhibitors and risk of pneumonia.

    PubMed

    de Groot, Mark C H; Klungel, Olaf H; Leufkens, Hubert G M; van Dijk, Liset; Grobbee, Diederick E; van de Garde, Ewoudt M W

    2014-10-01

    The heterogeneity in case-control studies on the associations between community-acquired pneumonia (CAP) and ACE-inhibitors (ACEi), statins, and proton pump inhibitors (PPI) hampers translation to clinical practice. Our objective is to explore sources of this heterogeneity by applying a common protocol in different data settings. We conducted ten case-control studies using data from five different health care databases. Databases varied on type of patients (hospitalised vs. GP), level of case validity, and mode of exposure ascertainment (prescription or dispensing based). Identified CAP patients and controls were matched on age, gender, and calendar year. Conditional logistic regression was used to calculate odds ratios (OR) for the associations between the drugs of interest and CAP. Associations were adjusted by a common set of potential confounders. Data of 38,742 cases and 118,019 controls were studied. Comparable patterns of variation between case-control studies were observed for ACEi, statins and PPI use and pneumonia risk with adjusted ORs varying from 1.04 to 1.49, 0.82 to 1.50 and 1.16 to 2.71, respectively. Overall, higher ORs were found for hospitalised CAP patients matched to population controls versus GP CAP patients matched to population controls. Prevalence of drug exposure was higher in dispensing data versus prescription data. We show that case-control selection and methods of exposure ascertainment induce bias that cannot be adjusted for and to a considerable extent explain the heterogeneity in results obtained in case-control studies on statins, ACEi and PPIs and CAP. The common protocol approach helps to better understand sources of variation in observational studies.

  17. In vitro modeling of angiotensin-converting enzyme inhibitor's absorption with chromatographic retention data and selected molecular descriptors.

    PubMed

    Odović, Jadranka; Marković, Bojan; Vladimirov, Sote; Karljiković-Rajić, Katarina

    2014-03-15

    Set of nine angiotensin-converting enzyme inhibitors (enalapril, quinapril, fosinopril, lisinopril, cilazapril, ramipril, benazepril, perindopril and moexipril) were studied to evaluate the correlation between their intestinal absorption and salting-out thin-layer chromatography hydrophobicity parameters (RM(0) or C0) obtained by ascending technique applying four different salts, (NH4)2SO4, NH4NO3, NH4Cl and NaCl as mobile phases. The best correlations between KOWWIN logP and both hydrophobicity parameters, RM(0) and C0, (R(2)>0.850) were observed for NaCl (1.0-3.0M) while the lowest R(2) was obtained for (NH4)2SO4 (0.649 and 0.427, respectively) due to highest salting-out effect of (NH4)2SO4. The effect of selected inorganic salts in the salting-out mobile phases, on the solutes solubility and retention was evaluated. The topological polar surface area should be selected as independent variable (only this molecular descriptor showed low correlation with chromatographic hydrophobicity parameters) for multiple linear regression analysis, to obtain reliable correlation between angiotensin-converting enzyme inhibitor's intestinal absorption data and salting-out thin-layer chromatograpic hydrophobicity parameters. These correlations provide R(2)=0.823 for RM(0) or R(2)=0.799 for C0 indicating good relationship between predicted and literature available intestinal absorption (ranged from 22% to 70%) of investigated angiotensin-converting enzyme inhibitors. The proposed in vitro model was checked with three in addition experimentally analyzed drugs, zofenopril, trandolapril and captoril. The satisfactory absorption prediction was obtained for zofenopril and trandolapril, while divergence established for captopril resulted from considerably different structure.

  18. Resistive index as a predictor of renal progression in patients with moderate renal dysfunction regardless of angiotensin converting enzyme inhibitor or angiotensin receptor antagonist medication

    PubMed Central

    Kim, Jae Hoon; Lee, Su Mi; Son, Young Ki; Kim, Seong Eun; An, Won Suk

    2017-01-01

    Background Previous studies have shown that a higher resistive index (RI) on renal duplex ultrasonography was related with renal progression and acute kidney injury, especially in patients with chronic kidney disease (CKD) using an angiotensin converting enzyme inhibitor (ACEI) or angiotensin receptor antagonist (ARB). We evaluated whether a RI value is a predictive factor for renal progression regardless of ACEI or ARB medication in patients with moderate renal dysfunction. Methods We retrospectively analyzed 119 patients with moderate renal dysfunction that had been evaluated with renal duplex ultrasonography from February 2011 to April 2015. Moderate renal dysfunction was defined as a stage 3 to 4 CKD. Renal progression was defined as a doubling of the baseline serum creatinine (sCr), a decrease of baseline glomerular filtration rate by > 50%, or initiation of renal replacement therapy. Results The mean age was 64.7 ± 11.0 years and sCr level was 2.1 ± 1.2 mg/dL. The RI ≥ 0.79 group showed a higher incidence of renal progression (P = 0.004, log-rank test) compared with the RI < 0.79 group, irrespective of ACEI or ARB usage. In the Cox proportional hazard model, RI ≥ 0.79 was an independent prognostic factor after adjusting for age, sex, diabetes mellitus, sCr, proteinuria, and use of ACEI or ARB (hazard ratio, 4.88; 95% confidence interval, 1.06–22.53; P = 0.043). Conclusion RI ≥ 0.79 on the renal duplex ultrasonography can be a helpful predictor for renal progression in patients with moderate renal dysfunction, regardless of their ACEI or ARB usage.

  19. The endopeptidase activity and the activation by Cl- of angiotensin-converting enzyme is evolutionarily conserved: purification and properties of an an angiotensin-converting enzyme from the housefly, Musca domestica.

    PubMed Central

    Lamango, N S; Sajid, M; Isaac, R E

    1996-01-01

    A soluble 67 kDa angiotensin-converting enzyme (ACE) has been purified by lisinopril-Sepharose affinity column chromatography from adult houseflies, Musca domestica. The dipeptidyl carboxypeptidase activity towards benzoyl-Gly-His-Leu was inhibited by captopril (IC50 50 nM) and fosinoprilat (IC50 251 nM), two inhibitors of mammalian ACE, and was activated by Cl- (optimal Cl- concentration 600 mM). Musca ACE removed C-terminal dipeptides from angiotensin I, bradykinin [Leu5]enkephalin and [Met5]enkephalin and also functioned as an endopeptidase by hydrolysing dipeptideamides from [Leu5]enkephalinamide and [Met5]enkephalinamide, and a dipeptideamide and a tripeptideamide from substance P. Musca ACE was also able to cleave a tripeptide from both the N-terminus and C-terminus of luteinizing hormone-releasing hormone, with C-terminal hydrolysis predominating. Maximal N-terminal tripeptidase activity occurred at 150 mM NaCl, whereas the C-terminal tripeptidase activity continued to rise with increasing concentration of Cl- (0-0.5 M). Musca ACE displays properties of both the N- and C-domains of human ACE, indicating a high degree of conservation during evolution of the substrate specificity of ACE and its response to Cl-. PMID:8670080

  20. Renin–angiotensin system inhibitors protect against age-related changes in rat liver mitochondrial DNA content and gene expression

    PubMed Central

    de Cavanagh, Elena M.V.; Flores, Idhaliz; Ferder, Marcelo; Inserra, Felipe; Ferder, León

    2016-01-01

    Chronic renin–angiotensin system inhibition protects against liver fibrosis, ameliorates age-associated mitochondrial dysfunction and increases rodent lifespan. We hypothesized that life-long angiotensin-II-mediated stimulation of oxidant generation might participate in mitochondrial DNA “common deletion” formation, and the resulting impairment of bioenergetic capacity. Enalapril (10 mg/kg/d) or losartan (30 mg/kg/d) administered during 16.5 months were unable to prevent the age-dependent accumulation of rat liver mitochondrial DNA “common deletion”, but attenuated the decrease of mitochondrial DNA content. This evidence – together with the enhancement of NRF-1 and PGC-1 mRNA contents – seems to explain why enalapril and losartan improved mitochondrial functioning and lowered oxidant production, since both the absolute number of mtDNA molecules and increased NRF-1 and PGC-1 transcription are positively related to mitochondrial respiratory capacity, and PGC-1 protects against increases in ROS production and damage. Oxidative stress evoked by abnormal respiratory function contributes to the pathophysiology of mitochondrial disease and human aging. If the present mitochondrial actions of renin–angiotensin system inhibitors are confirmed in humans they may modify the therapeutic significance of that strategy. PMID:18765277

  1. Liquid chromatographic determination of hippuric acid for the evaluation of ethacrynic acid as angiotensin converting enzyme inhibitor.

    PubMed

    Mehanna, A S; Dowling, M

    1999-05-01

    A rapid, simple and interference-free method is described to evaluate the inhibitory effects of organic compounds on the activity of angiotensin converting enzyme irrespective of their acid-base properties. The assay is based on the high performance liquid chromatographic separation of the synthetic substrate hippuryl-L-histidyl-L-leucine, the hydrolysis product hippuric acid and the test compound. Using the new method, the diuretic drug ethacrynic acid was found to act as an inhibitor for the enzyme in a non competitive mode.

  2. Renin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles.

    PubMed

    Chadwick, Jessica A; Bhattacharya, Sayak; Lowe, Jeovanna; Weisleder, Noah; Rafael-Fortney, Jill A

    2017-02-01

    Angiotensin-converting enzyme inhibitors (ACEi) and mineralocorticoid receptor (MR) antagonists are FDA-approved drugs that inhibit the renin-angiotensin-aldosterone system (RAAS) and are used to treat heart failure. Combined treatment with the ACEi lisinopril and the nonspecific MR antagonist spironolactone surprisingly improves skeletal muscle, in addition to heart function and pathology in a Duchenne muscular dystrophy (DMD) mouse model. We recently demonstrated that MR is present in all limb and respiratory muscles and functions as a steroid hormone receptor in differentiated normal human skeletal muscle fibers. The goals of the current study were to begin to define cellular and molecular mechanisms mediating the skeletal muscle efficacy of RAAS inhibitor treatment. We also compared molecular changes resulting from RAAS inhibition with those resulting from the current DMD standard-of-care glucocorticoid treatment. Direct assessment of muscle membrane integrity demonstrated improvement in dystrophic mice treated with lisinopril and spironolactone compared with untreated mice. Short-term treatments of dystrophic mice with specific and nonspecific MR antagonists combined with lisinopril led to overlapping gene-expression profiles with beneficial regulation of metabolic processes and decreased inflammatory gene expression. Glucocorticoids increased apoptotic, proteolytic, and chemokine gene expression that was not changed by RAAS inhibitors in dystrophic mice. Microarray data identified potential genes that may underlie RAAS inhibitor treatment efficacy and the side effects of glucocorticoids. Direct effects of RAAS inhibitors on membrane integrity also contribute to improved pathology of dystrophic muscles. Together, these data will inform clinical development of MR antagonists for treating skeletal muscles in DMD.

  3. A focused parameter update: hereditary angioedema, acquired C1 inhibitor deficiency, and angiotensin-converting enzyme inhibitor-associated angioedema.

    PubMed

    Zuraw, Bruce L; Bernstein, Jonathan A; Lang, David M; Craig, Timothy; Dreyfus, David; Hsieh, Fred; Khan, David; Sheikh, Javed; Weldon, David; Bernstein, David I; Blessing-Moore, Joann; Cox, Linda; Nicklas, Richard A; Oppenheimer, John; Portnoy, Jay M; Randolph, Christopher R; Schuller, Diane E; Spector, Sheldon L; Tilles, Stephen A; Wallace, Dana

    2013-06-01

    These parameters were developed by the Joint Task Force on Practice Parameters (JTFPP), representing the American Academy of Allergy, Asthma & Immunology (AAAAI); the American College of Allergy, Asthma & Immunology (ACAAI); and the Joint Council of Allergy, Asthma and Immunology. The AAAAI and the ACAAI have jointly accepted responsibility for establishing "A focused parameter update: Hereditary angioedema, acquired C1 inhibitor deficiency, and angiotensin-converting enzyme inhibitor-associated angioedema." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the JTFPP, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma and Immunology. The Joint Task Force on Practice Parameters understands that the cost of diagnostic tests and therapeutic agents is an important concern that might appropriately influence the work-up and treatment chosen for a given patient. The JTFPP recognizes that the emphasis of our primary recommendations regarding a medication might vary, for example, depending on third-party payer issues and product patent expiration dates. However, because the cost of a given test or agent is so widely variable and there is a paucity of pharmacoeconomic data, the JTFPP generally does not consider cost when formulating practice parameter recommendations. In some instances the cost benefit of an intervention is considered relevant, and commentary might be provided. These parameters are not designed for use by pharmaceutical companies in drug promotion

  4. Serum levels of renin, angiotensin-converting enzyme and angiotensin II in patients treated by surgical excision, propranolol and captopril for problematic proliferating infantile haemangioma.

    PubMed

    Sulzberger, L; Baillie, R; Itinteang, T; de Jong, S; Marsh, R; Leadbitter, P; Tan, S T

    2016-03-01

    The role of the renin-angiotensin system (RAS) in the biology of infantile haemangioma (IH) and its accelerated involution induced by β-blockers was first proposed in 2010. This led to the first clinical trial in 2012 using low-dose captopril, an angiotensin-converting enzyme (ACE) inhibitor, demonstrating a similar response in these tumours. This study aimed to compare serial serum levels of the components of the RAS in patients before and after surgical excision, propranolol or captopril treatment for problematic proliferating IH. Patients with problematic proliferating IH underwent measurements of serum levels of plasma renin activity (PRA), ACE and angiotensin II (ATII) before, and 1-2 and 6 months following surgical excision, propranolol or captopril treatment. This study included 27 patients undergoing surgical excision (n = 8), propranolol (n = 11) and captopril (n = 8) treatment. Treatment with either surgical excision or propranolol resulted in significant decrease in the mean levels of PRA. Surgical excision or captopril treatment led to significant decline in the mean levels of ATII. All three treatment modalities had no significant effect on the mean levels of ACE. This study demonstrates the effect of surgical excision, propranolol and captopril treatment in lowering the levels of PRA and ATII, but not ACE, supporting a mechanistic role for the RAS in the biology of IH.

  5. Statins and Renin Angiotensin System Inhibitors Dose-Dependently Protect Hypertensive Patients against Dialysis Risk

    PubMed Central

    Wu, Szu-Yuan

    2016-01-01

    Background Taiwan has the highest renal disease incidence and prevalence in the world. We evaluated the association of statin and renin–angiotensin system inhibitor (RASI) use with dialysis risk in hypertensive patients. Methods Of 248,797 patients who received a hypertension diagnosis in Taiwan during 2001–2012, our cohort contained 110,829 hypertensive patients: 44,764 who used RASIs alone; 7,606 who used statins alone; 27,836 who used both RASIs and statins; and 33,716 who used neither RASIs or statins. We adjusted for the following factors to reduce selection bias by using propensity scores (PSs): age; sex; comorbidities; urbanization level; monthly income; and use of nonstatin lipid-lowering drugs, metformin, aspirin, antihypertensives, diuretics, and beta and calcium channel blockers. The statin and RASI use index dates were considered the hypertension confirmation dates. To examine the dose–response relationship, we categorized only statin or RASI use into four groups in each cohort: <28 (nonusers), 28–90, 91–365, and >365 cumulative defined daily doses (cDDDs). Results In the main model, PS-adjusted hazard ratios (aHRs; 95% confidence intervals [CIs]) for dialysis risk were 0.57 (0.50–0.65), 0.72 (0.53–0.98), and 0.47 (0.41–0.54) in the only RASI, only statin, and RASI + statin users, respectively. RASIs dose-dependently reduced dialysis risk in most subgroups and in the main model. RASI use significantly reduced dialysis risk in most subgroups, regardless of comorbidities or other drug use (P < 0.001). Statins at >365 cDDDs protected hypertensive patients against dialysis risk in the main model (aHR = 0.62, 95% CI: 0.54–0.71), regardless of whether a high cDDD of RASIs, metformin, or aspirin was used. Conclusion Statins and RASIs independently have a significant dose-dependent protective effect against dialysis risk in hypertensive patients. The combination of statins and RASIs can additively protect hypertensive patients against dialysis

  6. Losartan, a selective inhibitor of subtype AT1 receptors for angiotensin II, inhibits the binding of N-formylmethionyl-leucyl-phenylalanine to neutrophil receptors.

    PubMed

    Raiden, S; Giordano, M; Andonegui, G; Trevani, A S; López, D H; Nahmod, V; Geffner, J R

    1997-05-01

    Losartan, a selective antagonist of AT1 receptors for angiotensin II, is widely used clinically to manage hypertension. We report here that losartan markedly inhibits neutrophil shape change, adherence and chemiluminescence responses triggered by N-formylmethionyl-leucyl-phenylalanine (fMLP), without affecting responses induced by immune complexes, zymosan or concanavalin A. Neither saralasin, another antagonist of angiotensin II receptors, nor captopril, an angiotensin-converting enzyme inhibitor, reproduced the effects of losartan. It was also observed that neutrophil responses triggered by fMLP were not affected by exogenously added angiotensin II. The effect of losartan on the binding of fMLP was measured using [3H]fMLP. It was found that losartan inhibits the binding of [3H]fMLP to neutrophil receptors. As observed for neutrophils, studies performed with monocytes showed that losartan inhibits chemiluminescence emission triggered by fMLP, without affecting chemiluminescence responses triggered by immune complexes, zymosan or concanavalin A.

  7. Electrochemically reduced graphene and iridium oxide nanoparticles for inhibition-based angiotensin-converting enzyme inhibitor detection.

    PubMed

    Kurbanoglu, Sevinc; Rivas, Lourdes; Ozkan, Sibel A; Merkoçi, Arben

    2017-02-15

    In this work, a novel biosensor based on electrochemically reduced graphene oxide and iridium oxide nanoparticles for the detection of angiotensin-converting enzyme inhibitor drug, captopril, is presented. For the preparation of the biosensor, tyrosinase is immobilized onto screen printed electrode by using 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-Hydroxysuccinimide coupling reagents, in electrochemically reduced graphene oxide and iridium oxide nanoparticles matrix. Biosensor response is characterized towards catechol, in terms of graphene oxide concentration, number of cycles to reduce graphene oxide, volume of iridium oxide nanoparticles and tyrosinase solution. The designed biosensor is used to inhibit tyrosinase activity by Captopril, which is generally used to treat congestive heart failure. It is an angiotensin-converting enzyme inhibitor that operates via chelating copper at the active site of tyrosinase and thioquinone formation. The captopril detections using both inhibition ways are very sensitive with low limits of detection: 0.019µM and 0.008µM for chelating copper at the active site of tyrosinase and thioquinone formation, respectively. The proposed methods have been successfully applied in captopril determination in spiked human serum and pharmaceutical dosage forms with acceptable recovery values.

  8. Disposition and metabolism of [(14)C] Sacubitril/Valsartan (formerly LCZ696) an angiotensin receptor neprilysin inhibitor, in healthy subjects.

    PubMed

    Flarakos, Jimmy; Du, Yancy; Bedman, Timothy; Al-Share, Qusai; Jordaan, Pierre; Chandra, Priya; Albrecht, Diego; Wang, Lai; Gu, Helen; Einolf, Heidi J; Huskey, Su-Er; Mangold, James B

    2016-11-01

    1. Sacubitril/valsartan (LCZ696) is an angiotensin receptor neprilysin inhibitor (ARNI) providing simultaneous inhibition of neprilysin (neutral endopeptidase 24.11; NEP) and blockade of the angiotensin II type-1 (AT1) receptor. 2. Following oral administration, [(14)C]LCZ696 delivers systemic exposure to valsartan and AHU377 (sacubitril), which is rapidly metabolized to LBQ657 (M1), the biologically active neprilysin inhibitor. Peak sacubitril plasma concentrations were reached within 0.5-1 h. The mean terminal half-lives of sacubitril, LBQ657 and valsartan were ∼1.3, ∼12 and ∼21 h, respectively. 3. Renal excretion was the dominant route of elimination of radioactivity in human. Urine accounted for 51.7-67.8% and feces for 36.9 to 48.3 % of the total radioactivity. The majority of the drug was excreted as the active metabolite LBQ657 in urine and feces, total accounting for ∼85.5% of the total dose. 4. Based upon in vitro studies, the potential for LCZ696 to inhibit or induce cytochrome P450 (CYP) enzymes and cause CYP-mediated drug interactions clinically was found to be low.

  9. Captopril improves postresuscitation hemodynamics protective against pulmonary embolism by activating the ACE2/Ang-(1-7)/Mas axis.

    PubMed

    Xiao, Hong-Li; Li, Chun-Sheng; Zhao, Lian-Xing; Yang, Jun; Tong, Nan; An, Le; Liu, Qi-Tong

    2016-11-01

    Acute pulmonary embolism (APE) has a very high mortality rate, especially at cardiac arrest and even after the return of spontaneous circulation (ROSC). This study investigated the protective effect of the angiotensin-converting enzyme (ACE) inhibitor captopril on postresuscitation hemodynamics, in a porcine model of cardiac arrest established by APE. Twenty-nine Beijing Landrace pigs were infused with an autologous thrombus leading to cardiac arrest and subjected to standard cardiopulmonary resuscitation and thrombolysis. Ten resuscitated pigs were randomly and equally apportioned to receive either captopril (22.22 mg/kg) infusion or the same volume saline, 30 min after ROSC. Hemodynamic changes and ACE-Ang II-angiotensin II type 1 receptor (AT1R) and ACE2/Ang-(1-7)/Mas receptor axis levels were determined. APE was associated with a decline in mean arterial pressure and a dramatic increase in pulmonary artery pressure and mean right ventricular pressure. After ROSC, captopril infusion was associated with significantly lower mean right ventricular pressure and systemic and pulmonary vascular resistance, faster heart rate, and higher Ang-(1-7) levels, ACE2/ACE, and Ang-(1-7)/Ang II, compared with the saline infusion. The ACE2/Ang-(1-7)/Mas pathway correlated negatively with external vascular lung water and pulmonary vascular permeability and positively with the right cardiac index. In conclusion, in a pig model of APE leading to cardiac arrest, captopril infusion was associated with less mean right ventricular pressure overload after resuscitation, compared with saline infusion. The reduction in systemic and pulmonary vascular resistance associated with captopril may be by inhibiting the ACE-Ang II-AT1R axis and activating the ACE2/Ang-(1-7)/Mas axis.

  10. Localized accumulation of angiotensin II and production of angiotensin-(1-7) in rat luteal cells and effects on steroidogenesis.

    PubMed

    Pepperell, John R; Nemeth, Gabor; Yamada, Yuji; Naftolin, Frederick; Merino, Maricruz

    2006-08-01

    These studies aim to investigate subcellular distribution of angiotensin II (ANG II) in rat luteal cells, identify other bioactive angiotensin peptides, and investigate a role for angiotensin peptides in luteal steroidogenesis. Confocal microscopy showed ANG II distributed within the cytoplasm and nuclei of luteal cells. HPLC analysis showed peaks that eluted with the same retention times as ANG-(1-7), ANG II, and ANG III. Their relative concentrations were ANG II >or= ANG-(1-7) > ANG III, and accumulation was modulated by quinapril, an inhibitor of angiotensin-converting enzyme (ACE), Z-proprolinal (ZPP), an inhibitor of prolyl endopeptidase (PEP), and parachloromercurylsulfonic acid (PCMS), an inhibitor of sulfhydryl protease. Phenylmethylsulfonyl fluoride (PMSF), a serine protease inhibitor, did not affect peptide accumulation. Quinapril, ZPP, PCMS, and PMSF, as well as losartan and PD-123319, the angiotensin receptor type 1 (AT1) and type 2 (AT2) receptor antagonists, were used in progesterone production studies. ZPP significantly reduced luteinizing hormone (LH)-dependent progesterone production (P < 0.05). Quinapril plus ZPP had a greater inhibitory effect on LH-stimulated progesterone than either inhibitor alone, but this was not reversed by exogenous ANG II or ANG-(1-7). Both PCMS and PMSF acutely blocked LH-stimulated progesterone, and PCMS blocked LH-sensitive cAMP accumulation. Losartan inhibited progesterone production in permeabilized but not intact luteal cells and was reversed by ANG II. PD-123319 had no significant effect on luteal progesterone production in either intact or permeabilized cells. These data suggest that steroidogenesis may be modulated by angiotensin peptides that act in part through intracellular AT1 receptors.

  11. Effects of a novel ACE inhibitor, 3-(3-thienyl)-l-alanyl-ornithyl-proline, on endothelial vasodilation and hepatotoxicity in l-NAME-induced hypertensive rats.

    PubMed

    Seth, Mahesh Kumar; Hussain, M Ejaz; Pasha, Santosh; Fahim, Mohammad

    2016-01-01

    Nitric oxide (NO) is a widespread biological mediator involved in many physiological and pathological processes, eg, in the regulation of vascular tone and hypertension. Chronic inhibition of NO synthase by N(G)-nitro-l-arginine methyl ester (l-NAME) hydrochloride results in the development of hypertension accompanied by an increase in vascular responsiveness to adrenergic stimuli. Recently, we developed a novel sulfur-containing angiotensin-converting enzyme inhibitor: 3-(3-thienyl)-l-alanyl-ornithyl-proline (TOP). Our previous studies indicated a superior nature of the molecule as an antihypertensive agent in spontaneously hypertensive rats (showing the involvement of renin-angiotensin-aldosterone system) in comparison to captopril. The aim of the present study was to investigate the effect of TOP on NO pathway in l-NAME-induced hypertensive rats, and captopril was included as the standard treatment group. Treatment with both TOP (20 mg/kg) and captopril (40 mg/kg) prevented the development of hypertension in l-NAME model, but TOP showed better restoration of NO and normal levels of angiotensin-converting enzyme. In addition, in vitro vasorelaxation assay showed an improvement in endothelium-dependent vasodilation in both the cases. Further, the biochemical (malondialdehyde, alanine aminotransferase, and aspartate aminotransferase) and the histopathological effects of TOP on rat liver tissues revealed a protective nature of TOP in comparison to captopril in the l-NAME model. In conclusion, TOP at 50% lesser dose than captopril was found to be better in the l-NAME model.

  12. Enhancement by exogenous and locally generated angiotensin II of purinergic neurotransmission via angiotensin type 1 receptor in the guinea-pig isolated mesenteric artery

    PubMed Central

    Onaka, Uran; Fujii, Koji; Abe, Isao; Fujishima, Masatoshi

    1997-01-01

    Angiotensin II is known to enhance sympathetic neurotransmission in the vasculature by increasing the release of noradrenaline, but little is known about the effect on the co-released transmitter, adenosine 5′-triphosphate (ATP). In the present study we have examined the effect of angiotensin II on the excitatory junction potential (e.j.p.) elicited by repetitive field stimulation in the guinea-pig isolated mesenteric artery, to establish the angiotensin II receptor subtype involved in modulating the release of ATP and the role of the endothelium in converting angiotensin I to angiotensin II. Suramin (300 μM), a P2 purinoceptor antagonist, abolished both the e.j.ps and depolarizing response to α,β-methylene-ATP, a stable analogue of ATP, without affecting the resting membrane potential and noradrenaline-induced depolarization. Angiotensin II (0.1 μM) affected neither the resting membrane potential nor the amplitude of the first e.j.p., but increased the amplitudes of the subsequent e.j.ps. This enhancing effect of angiotensin II was abolished by CV-11974 (0.1 μM), an angiotensin II type 1 (AT1) receptor antagonist, but unaffected by PD 123319 (1 μM), an angiotensin II type 2 (AT2) receptor antagonist, or CGP 42112A (1 μM), AT2 receptor ligand. Angiotensin I (0.1 μM) exerted a similar effect on e.j.ps to that of angiotensin II. CV-11974 (0.1 μM) or temocaprilat (10 μM), an angiotensin converting enzyme (ACE) inhibitor, abolished the effect of angiotensin I. Removal of the endothelium did not alter the action of angiotensin I. The results of the present study indicate that the release of ATP from sympathetic nerves innervating the guinea-pig isolated mesenteric artery, as determined from the magnitude of the e.j.p., can be enhanced by angiotensin II via activation of prejunctional AT1 receptors. Qualitatively similar effects were observed with angiotensin I, which appears to be converted into angiotensin II by a subendothelial process

  13. Antithrombotic effect of captopril and losartan is mediated by angiotensin-(1-7).

    PubMed

    Kucharewicz, Iwona; Pawlak, Robert; Matys, Tomasz; Pawlak, Dariusz; Buczko, Wlodzimierz

    2002-11-01

    It is well established that renin-angiotensin system blockers exert NO/prostacyclin-dependent antithrombotic effects. Because some beneficial effects of these drugs are mediated by angiotensin (Ang)-(1-7), in the present study we examined if their antithrombotic action could be mediated by Ang-(1-7). Intravenous infusion of Ang-(1-7) (1, 10, or 100 pmol/kg per minute for 2 hours) into rats developing venous thrombosis caused 50% to 70% reduction of the thrombus weight. This effect was dose-dependently reversed by cotreatment with A-779 (selective Ang-[1-7] receptor antagonist) or EXP 3174 (angiotensin type 1 receptor antagonist) but not by PD 123,319 (angiotensin type 2 receptor antagonist). Similarly, the antithrombotic effects of captopril (ACE inhibitor) and losartan (angiotensin type 1 receptor blocker) were attenuated by A-779 in a dose-dependent manner. The effect of Ang-(1-7) was completely abolished by concomitant administration of NO synthase inhibitor (N(G)-nitro-L-arginine methyl ester) and prostacyclin synthesis inhibitor (indomethacin), as has been shown previously for captopril and losartan. Thus, the antithrombotic effect of renin-angiotensin system blockers involves Ang-(1-7)-evoked release of NO and prostacyclin.

  14. ACE and response to pulmonary rehabilitation in COPD: two observational studies

    PubMed Central

    Kon, Samantha S C; Jolley, Caroline J; Shrikrishna, Dinesh; Montgomery, Hugh E; Skipworth, James R A; Puthucheary, Zudin; Moxham, John; Polkey, Michael I; Man, William D-C

    2017-01-01

    Introduction Skeletal muscle impairment is an important feature of chronic obstructive pulmonary disease (COPD). Renin–angiotensin system activity influences muscle phenotype, so we wished to investigate whether it affects the response to pulmonary rehabilitation. Methods Two studies are described; in the first, the response of 168 COPD patients (mean forced expiratory volume in one second 51.9% predicted) to pulmonary rehabilitation was compared between different ACE insertion/deletion polymorphism genotypes. In a second, independent COPD cohort (n=373), baseline characteristics and response to pulmonary rehabilitation were compared between COPD patients who were or were not taking ACE inhibitors or angiotensin receptor antagonists (ARB). Results In study 1, the incremental shuttle walk distance improved to a similar extent in all three genotypes; DD/ID/II (n=48/91/29) 69(67)m, 61 (76)m and 78 (78)m, respectively, (p>0.05). In study 2, fat free mass index was higher in those on ACE-I/ARB (n=130) than those who were not (n=243), 17.8 (16.0, 19.8) kg m−2 vs 16.5 (14.9, 18.4) kg/m2 (p<0.001). However change in fat free mass, walking distance or quality of life in response to pulmonary rehabilitation did not differ between groups. Conclusions While these data support a positive association of ACE-I/ARB treatment and body composition in COPD, neither treatment to reduce ACE activity nor ACE (I/D) genotype influence response to pulmonary rehabilitation. PMID:28321311

  15. Changes in renal vessels associated with long-term administration of angiotensin converting enzyme inhibitor in Zucker fatty rats

    PubMed Central

    Nakanishi, Kazushige; Nagai, Yohko; Akimoto, Tatsuo; Yamanaka, Nobuaki

    2017-01-01

    Background Recently, we showed that long-term angiotensin receptor blocker (ARB) administration induced unusual proliferative changes in smooth muscle cells (SMCs) of afferent arterioles of the kidneys of Zucker fatty rats (ZFRs). In this study, we investigated renal afferent arteriolar changes induced by the long-term administration of an angiotensin converting enzyme inhibitor (ACEI) in ZFRs. Materials and Methods Fourteen 6-week-old male ZFRs were divided into two groups (n=14): the ZFR+ACEI group (n=6) was fed a standard diet containing ACEI (Enalapril, 2 mg/kg/day), and the ZFR control group (n=8) for 12 weeks. Blood pressure and proteinuria were examined and morphological studies on kidneys were performed. Results Remarkable proliferative changes in the afferent arteriolar SMCs were frequently observed in the group given ACEI; (66.1 ± 12.9%) compared with the control group (1.77 ± 1.56%, P<0.001). Conclusions It was indicated that long-term ACEI administration induced unusual proliferative changes in SMCs in afferent arterioles of ZFRs. These changes could reduce intraglomerular pressure by narrowing the lumens of afferent arterioles, but they could cause irreversible damage to the arterioles. PMID:28260705

  16. Des-Aspartate-Angiotensin I Attenuates Mortality of Mice Exposed to Gamma Radiation via a Novel Mechanism of Action.

    PubMed

    Wang, Hong; Sethi, Gautam; Loke, Weng-Keong; Sim, Meng-Kwoon

    2015-01-01

    ACE inhibitors and ARBs (angiotensin receptor blockers) have been shown to attenuate radiation injuries in animal models of lethal gamma irradiation. These two classes of drug act by curtailing the actions of angiotensin II-linked inflammatory pathways that are up-regulated during gamma radiation in organ systems such as the brain, lung, kidney, and bone marrow. ACE inhibitors inhibit ACE and attenuate the formation of angiotensin II from angiotensin I; ARBs block the angiotensin AT1 receptor and attenuate the actions of angiotensin II that are elicited through the receptor. DAA-I (des-aspartate-angiotensin I), an orally active angiotensin peptide, also attenuates the deleterious actions of angiotensin II. It acts as an agonist on the angiotensin AT1 receptor and elicits responses that oppose those of angiotensn II. Thus, DAA-I was investigated for its anticipated radioprotection in gamma irradiated mice. DAA-I administered orally at 800 nmole/kg/day for 30 days post exposure (6.4 Gy) attenuated the death of mice during the 30-day period. The attenuation was blocked by losartan (50 nmole/kg/day, i.p.) that was administered sequential to DAA-I administration. This shows that the radioprotection was mediated via the angiotensin AT1 receptor. Furthermore, the radioprotection correlated to an increase in circulating PGE2 of surviving animals, and this suggests that PGE2 is involved in the radioprotection in DAA-I-treated mice. At the hematopoietic level, DAA-I significantly improved two syndromes of myelosuppression (leucopenia and lymphocytopenia), and mice pre-treated with DAA-I prior to gamma irradiation showed significant improvement in the four myelodysplastic syndromes that were investigated, namely leucopenia, lymphocytopenia, monocytopenia and thrombocytopenia. Based on the known ability of PGE2 to attenuate the loss of functional hematopoietic stem and progenitor cells in radiation injury, we hypothesize that PGE2 mediated the action of DAA-I. DAA-I completely

  17. Des-Aspartate-Angiotensin I Attenuates Mortality of Mice Exposed to Gamma Radiation via a Novel Mechanism of Action

    PubMed Central

    Wang, Hong; Sethi, Gautam; Loke, Weng-Keong; Sim, Meng-Kwoon

    2015-01-01

    ACE inhibitors and ARBs (angiotensin receptor blockers) have been shown to attenuate radiation injuries in animal models of lethal gamma irradiation. These two classes of drug act by curtailing the actions of angiotensin II-linked inflammatory pathways that are up-regulated during gamma radiation in organ systems such as the brain, lung, kidney, and bone marrow. ACE inhibitors inhibit ACE and attenuate the formation of angiotensin II from angiotensin I; ARBs block the angiotensin AT1 receptor and attenuate the actions of angiotensin II that are elicited through the receptor. DAA-I (des-aspartate-angiotensin I), an orally active angiotensin peptide, also attenuates the deleterious actions of angiotensin II. It acts as an agonist on the angiotensin AT1 receptor and elicits responses that oppose those of angiotensn II. Thus, DAA-I was investigated for its anticipated radioprotection in gamma irradiated mice. DAA-I administered orally at 800 nmole/kg/day for 30 days post exposure (6.4 Gy) attenuated the death of mice during the 30-day period. The attenuation was blocked by losartan (50 nmole/kg/day, i.p.) that was administered sequential to DAA-I administration. This shows that the radioprotection was mediated via the angiotensin AT1 receptor. Furthermore, the radioprotection correlated to an increase in circulating PGE2 of surviving animals, and this suggests that PGE2 is involved in the radioprotection in DAA-I-treated mice. At the hematopoietic level, DAA-I significantly improved two syndromes of myelosuppression (leucopenia and lymphocytopenia), and mice pre-treated with DAA-I prior to gamma irradiation showed significant improvement in the four myelodysplastic syndromes that were investigated, namely leucopenia, lymphocytopenia, monocytopenia and thrombocytopenia. Based on the known ability of PGE2 to attenuate the loss of functional hematopoietic stem and progenitor cells in radiation injury, we hypothesize that PGE2 mediated the action of DAA-I. DAA-I completely

  18. Evaluation of Bacillus subtilis SPB1 biosurfactant effects on hyperglycemia, angiotensin I-converting enzyme (ACE) activity and kidney function in rats fed on high-fat-high-fructose diet.

    PubMed

    Zouari, Raida; Hamden, Khaled; El Feki, Abdelfattah; Chaabouni, Khansa; Makni-Ayadi, Fatma; Sallemi, Fahima; Ellouze-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2017-05-01

    This study investigated the protective and the curative effects of Bacillus subtilis SPB1 crude lipopeptide biosurfactant in alleviating induced obesity complications in rats fed on high-fat-high-fructose diet (HFFD). Male Wistar rats were divided into five groups with the following treatment schedule: normal diet-fed rats (CD), HFFD-fed rats, HFFD-fed rats supplemented with SPB1 biosurfactant from the first day of the experiment (HFFD + Bios1), rats fed on HFFD receiving standard drug (HFFD + Torva), or SPB1 biosurfactant (HFFD + Bios2) during the last 4 weeks of the study. HFFD induced hyperglycemia, manifested by a significant (p < 0.001) increase (20%) in the levels of glucose and α-amylase activity in the plasma, when compared with CD. The administration of SPB1 biosurfactant to rats fed on HFFD reverted back normal blood glucose and α-amylase activity levels. Also, the findings clearly showed that acute oral administration of SPB1 biosurfactant reduced significantly (34%) the peak of blood glucose concentration 60 min after glucose administration, as compared with untreated rats fed on HFFD. Furthermore, renal dysfunction indices such as creatinine and urea as well as the level of angiotensin I-converting enzyme (ACE) exhibited remarkable increases in serum of rats fed on HFFD by 28.35%, 46%, and 92%,. Interestingly, SPB1 lipopeptides treatments decreased the creatinine and urea levels significantly (p < 0.001) near normal values, as compared with that of the HFFD group, and also showed an improvement of the kidney cortex architecture. Moreover, SPB1 biosurfactant displayed a potent inhibition of ACE activity in vitro (CI50  value= 1.37 mg/mL) as well as in vivo in obese rats by 42% and 27.25% with HFFD + Bios1 and HFFD + Bios2 treatments, respectively, and comparatively with the HFFD group. Besides, SPB1 lipopeptides treatments improved some of serum electrolytes such as Na(+), K(+), Ca(2+ ), and Mg(2+). The results

  19. Pharmacokinetics of M100240 and MDL 100,173, a dual angiotensin-converting enzyme/neutral endopeptidase inhibitor, in healthy young and elderly volunteers.

    PubMed

    Emmons, Gary T; Argenti, Rick; Martin, Louis L; Martin, Nancy E; Jensen, Bradford K

    2004-08-01

    M100240 is an acetate thioester of MDL 100,173-a dual angiotensin-converting enzyme (ACE)/neutral endopeptidase (NEP) inhibitor-in phase II development. The pharmacokinetics of M100240 and MDL 100,173 were compared in young and elderly subjects. Pharmacokinetic data were obtained from 12 young (ages 18-45 years, 10 male, 2 female) and 12 elderly (ages 65-85 years, 7 male, 5 female) healthy subjects in a parallel-group, open-label study. Following an overnight fast, subjects received a single 25-mg oral dose of M100240. Serial plasma concentrations of M100240 and MDL 100,173 were determined using a validated liquid chromatography/tandem mass spectrometry (LC/MS/MS) method, and pharmacokinetic parameters were calculated with noncompartmental methods. Single-dose treatment with M100240 was well tolerated in both groups of subjects, with no clinically significant changes in vital signs, ECG recordings, or laboratory safety parameters. M100240 was rapidly absorbed and converted to MDL 100,173, with M100240 concentrations no longer detectable at 3 to 4 hours postdose in both groups. The pharmacokinetics of the pharmacologically active MDL 100,173 were similar for both groups. Although maximum concentrations of M100240 were generally higher in elderly versus young subjects (C(max) 0.48 ng/mL vs. 0.17 ng/mL), systemic availability of M100240 was quite low and variable with plasma, and this apparent difference in parent drug exposure is unlikely to have important clinical implications. No age-related differences in the pharmacokinetic parameters of MDL 100,173 (C(max) 8.16 vs. 9.62 ng/mL, t(max) 1.25 vs. 1.5 h, AUC((0-last)) 81.6 vs. 72.2 ng x h/mL) were observed between young and elderly subjects, respectively. In conclusion, there are no age-related differences in the pharmacokinetics of MDL 100,173 between young and elderly subjects.

  20. Effects of nabumetone, celecoxib, and ibuprofen on blood pressure control in hypertensive patients on angiotensin converting enzyme inhibitors.

    PubMed

    Palmer, Robert; Weiss, Robert; Zusman, Randall M; Haig, Ann; Flavin, Susan; MacDonald, Brian

    2003-02-01

    Nonsteroidal anti-inflammatory drugs interfere with certain antihypertensive therapies. In a double-blind study, 385 hypertensive patients stabilized on an angiotensin converting enzyme inhibitor were treated with nabumetone, celecoxib, ibuprofen, or placebo for 4 weeks. Ibuprofen caused significantly greater increases in systolic (P < .001) and diastolic (P < .01) blood pressures (BPs) compared to placebo, but not nabumetone or celecoxib. The proportion of patients with systolic BP increases of clinical concern at end point was significantly higher (P < .001) for the ibuprofen group (16.7%; 15 of 90), but not for the nabumetone group (5.5%; 5 of 91) or the celecoxib group (4.6%; 4 of 87) compared to the placebo group (1.1%; 1 of 91).

  1. Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo.

    PubMed

    Echeverría-Rodríguez, Omar; Del Valle-Mondragón, Leonardo; Hong, Enrique

    2014-01-01

    The renin-angiotensin system (RAS) regulates skeletal muscle insulin sensitivity through different mechanisms. The overactivation of the ACE (angiotensin-converting enzyme)/Ang (angiotensin) II/AT1R (Ang II type 1 receptor) axis has been associated with the development of insulin resistance, whereas the stimulation of the ACE2/Ang 1-7/MasR (Mas receptor) axis improves insulin sensitivity. The in vivo mechanisms by which this axis enhances skeletal muscle insulin sensitivity are scarcely known. In this work, we investigated whether rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis and determined the effect of Ang 1-7 on rat skeletal muscle glucose uptake in vivo. Western blot analysis revealed the expression of ACE2 and MasR, while Ang 1-7 levels were detected in rat soleus muscle by capillary zone electrophoresis. The euglycemic clamp exhibited that Ang 1-7 by itself did not promote glucose transport, but it increased insulin-stimulated glucose disposal in the rat. In a similar manner, captopril (an ACE inhibitor) enhanced insulin-induced glucose uptake and this effect was blocked by the MasR antagonist A-779. Our results show for the first time that rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis of the RAS, and Ang 1-7 improves insulin sensitivity by enhancing insulin-stimulated glucose uptake in rat skeletal muscle in vivo. Thus, endogenous (systemic and/or local) Ang 1-7 could regulate insulin-mediated glucose transport in vivo.

  2. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: Possible involvement of angiotensin-converting enzyme-2

    SciTech Connect

    Han Suxia; He Guangming; Wang Tao; Chen Lei; Ning Yunye; Luo Feng; An Jin; Yang Ting; Dong Jiajia; Liao Zenglin; Xu Dan; Wen Fuqiang

    2010-05-15

    Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6 months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along with increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.

  3. Novel angiotensin I-converting enzyme inhibitory peptides derived from an edible mushroom, Pleurotus cystidiosus O.K. Miller identified by LC-MS/MS

    PubMed Central

    2013-01-01

    Background Angiotensin I-converting enzyme (ACE) inhibitors have been reported to reduce mortality in patients with hypertension. Compared to chemosynthetic drugs, ACE inhibitors derived from natural sources such as food proteins are believed to be safer for consumption and to have fewer adverse effects. Some edible mushrooms have been reported to significantly reduce blood pressure after oral administration. In addition, mushrooms are known to be rich in protein content. This makes them a potential source of ACE inhibitory peptides. Hence, the objective of the current study was to isolate and characterise ACE inhibitory peptides from an edible mushroom, Pleurotus cystidiosus. Methods ACE inhibitory proteins were isolated from P. cystidiosus based on the bioassay guided purification steps, i.e. ammonium sulphate precipitation, reverse phase high performance liquid chromatography and size exclusion chromatography. Active fraction was then analysed by LC-MS/MS and potential ACE inhibitory peptides identified were chemically synthesized. Effect of in vitro gastrointestinal digestions on the ACE inhibitory activity of the peptides and their inhibition patterns were evaluated. Results Two potential ACE inhibitory peptides, AHEPVK and GPSMR were identified from P. cystidiosus with molecular masses of 679.53 and 546.36 Da, respectively. Both peptides exhibited potentially high ACE inhibitory activity with IC50 values of 62.8 and 277.5 μM, respectively. SEC chromatograms and BIOPEP analysis of these peptides revealed that the peptide sequence of the hexapeptide, AHEPVK, was stable throughout gastrointestinal digestion. The pentapeptide, GPSMR, was hydrolysed after digestion and it was predicted to release a dipeptide ACE inhibitor, GP, from its precursor. The Lineweaver-Burk plot of AHEPVK showed that this potent and stable ACE inhibitor has a competitive inhibitory effect against ACE. Conclusion The present study indicated that the peptides from P. cystidiosus could be

  4. Identification of prolyl carboxypeptidase as an alternative enzyme for processing of renal angiotensin II using mass spectrometry

    PubMed Central

    Grobe, Nadja; Weir, Nathan M.; Leiva, Orly; Ong, Frank S.; Bernstein, Kenneth E.; Schmaier, Alvin H.; Morris, Mariana

    2013-01-01

    Angiotensin-converting enzyme 2 (ACE2) catalyzes conversion of ANG II to ANG-(1–7). The present study uses newly established proteomic approaches and genetic mouse models to examine the contribution of alternative renal peptidases to ACE2-independent formation of ANG-(1–7). In situ and in vitro mass spectrometric characterization showed that substrate concentration and pH control renal ANG II processing. At pH ≥6, ANG-(1–7) formation was significantly reduced in ACE2 knockout (KO) mice. However, at pH <6, formation of ANG-(1–7) in ACE2 KO mice was similar to that in wild-type (WT) mice, suggesting alternative peptidases for renal ANG II processing. Furthermore, the dual prolyl carboxypeptidase (PCP)-prolyl endopeptidase (PEP) inhibitor Z-prolyl-prolinal reduced ANG-(1–7) formation in ACE2 KO mice, while the ACE2 inhibitor MLN-4760 had no effect. Unlike the ACE2 KO mice, ANG-(1–7) formation from ANG II in PEP KO mice was not different from that in WT mice at any tested pH. However, at pH 5, this reaction was significantly reduced in kidneys and urine of PCP-depleted mice. In conclusion, results suggest that ACE2 metabolizes ANG II in the kidney at neutral and basic pH, while PCP catalyzes the same reaction at acidic pH. This is the first report demonstrating that renal ANG-(1–7) formation from ANG II is independent of ACE2. Elucidation of ACE2-independent ANG-(1–7) production pathways may have clinically important implications in patients with metabolic and renal disease. PMID:23392115

  5. ACE2 and Microbiota: Emerging Targets for Cardiopulmonary Disease Therapy.

    PubMed

    Cole-Jeffrey, Colleen T; Liu, Meng; Katovich, Michael J; Raizada, Mohan K; Shenoy, Vinayak

    2015-12-01

    The health of the cardiovascular and pulmonary systems is inextricably linked to the renin-angiotensin system (RAS). Physiologically speaking, a balance between the vasodeleterious (Angiotensin-converting enzyme [ACE]/Angiotensin II [Ang II]/Ang II type 1 receptor [AT1R]) and vasoprotective (Angiotensin-converting enzyme 2 [ACE2]/Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor [MasR]) components of the RAS is critical for cardiopulmonary homeostasis. Upregulation of the ACE/Ang II/AT1R axis shifts the system toward vasoconstriction, proliferation, hypertrophy, inflammation, and fibrosis, all factors that contribute to the development and progression of cardiopulmonary diseases. Conversely, stimulation of the vasoprotective ACE2/Ang-(1-7)/MasR axis produces a counter-regulatory response that promotes cardiovascular health. Current research is investigating novel strategies to augment actions of the vasoprotective RAS components, particularly ACE2, in order to treat various pathologies. Although multiple approaches to increase the activity of ACE2 have displayed beneficial effects against experimental disease models, the mechanisms behind its protective actions remain incompletely understood. Recent work demonstrating a non-catalytic role for ACE2 in amino acid transport in the gut has led us to speculate that the therapeutic effects of ACE2 can be mediated, in part, by its actions on the gastrointestinal tract and/or gut microbiome. This is consistent with emerging data which suggest that dysbiosis of the gut and lung microbiomes is associated with cardiopulmonary disease. This review highlights new developments in the protective actions of ACE2 against cardiopulmonary disorders, discusses innovative approaches to targeting ACE2 for therapy, and explores an evolving role for gut and lung microbiota in cardiopulmonary health.

  6. The retinal renin-angiotensin system: implications for therapy in diabetic retinopathy.

    PubMed

    Sjølie, A K; Chaturvedi, N

    2002-08-01

    Retinopathy is the most common complication of diabetes, and a leading cause of blindness in people of working age. Optimal blood pressure and metabolic control can reduce the risk of diabetic retinopathy, but are difficult to achieve in clinical practice. In the EUCLID Study, the angiotensin converting enzyme (ACE) inhibitor lisinopril reduced the risk of progression of retinopathy by approximately 50%, and also significantly reduced the risk of progression to proliferative retinopathy. These findings are consistent with extensive evidence that the renin-angiotensin system is expressed in the eye, and that adverse effects of angiotensin II on retinal angiogenesis and function can be inhibited by ACE inhibitors or angiotensin II-receptor blockers. However, in the EUCLID Study retinopathy was not a primary end-point and the study was not sufficiently powered for the eye-related outcomes. Hence, the Diabetic Retinopathy Candesartan Trials (DIRECT) programme has been established to determine whether AT(1)-receptor blockade with candesartan can prevent the incidence and progression of diabetic retinopathy. This programme comprises three studies, involving a total of 4500 patients recruited from about 300 centres worldwide. The patients are normotensive or treated hypertensive individuals, and so the DIRECT programme should assess the potential of an AT(1)-receptor blocker to protect against the pathological changes in the eye following diabetes.

  7. Experiences with ACE inhibitors early after acute myocardial infarction. Rationale and design of the German Multicenter Study on the Effects of Captopril on Cardiopulmonary Exercise parameters post myocardial infarction (ECCE).

    PubMed

    Kleber, F X; Reindl, I; Wenzel, M; Rodewyk, P; Beil, S; Kosloswki, B; Doering, W; Sabin, G V; Hinzmann, S; Winter, U J

    1993-12-01

    Left ventricular damage by necrosis of myocardial tissue can lead to compromise of left ventricular function, to left ventricular volume increase and ultimately to development of heart failure. This sequence in the pathophysiology has been shown to be blunted by ACE inhibitors. Volume increase, however, can also be helpful in restoring stroke volume and ameliorate elevation of filling pressures. Furthermore, very early institution of ACE inhibition has failed to improve short-term mortality after myocardial infarction in one large trial. The aim of the ECCE trial therefore is, to investigate the early effects of the ACE inhibitor captopril on compromise of exercise capacity, thought to be a first measurable sign of developing heart failure. The ECCE trial is a randomized, seven-center investigation, studying the effects of ACE inhibition on oxygen uptake in a double blind, placebo controlled design in a group of 204 patients. Sample size was calculated on the basis of a pilot trial. The study design and first not unblinded data of 104 patients are presented. The population consists of predominantly male patients with mostly first myocardial infarction. They were admitted to hospital within five hours of onset of chest pain. End-diastolic volumes were normal, but ejection fraction was moderately compromised. ACE inhibition was started after the first day, but within 72 hours of onset of chest pain. After four and after twelve weeks, oxygen uptake was considerably below expected values and one third of the patients had severe compromise of exercise capacity.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Angioedema Related to Angiotensin-Converting Enzyme Inhibitors: Attack Severity, Treatment, and Hospital Admission in a Prospective Multicenter Study.

    PubMed

    Javaud, Nicolas; Achamlal, Jallal; Reuter, Paul-George; Lapostolle, Frédéric; Lekouara, Akim; Youssef, Mustapha; Hamza, Lilia; Karami, Ahmed; Adnet, Frédéric; Fain, Olivier

    2015-11-01

    The number of cases of acquired angioedema related to angiotensin converting enzyme inhibitors induced (ACEI-AAE) is on the increase, with a potential concomitant increase in life-threatening attacks of laryngeal edema. Our objective was to determine the main characteristics of ACEI-AAE attacks and, in doing so, the factors associated with likelihood of hospital admission from the emergency department (ED) after a visit for an attack.A prospective, multicenter, observational study (April 2012-December 2014) was conducted in EDs of 4 French hospitals in collaboration with emergency services (SAMU 93) and a reference center for bradykinin-mediated angioedema. For each patient presenting with an attack, emergency physicians collected demographic and clinical presentation data, treatments, and clinical course. They recorded time intervals from symptom onset to ED arrival and to treatment decision, from ED arrival to specific treatment with plasma-derived C1-inhibitor (C1-INH) or icatibant, and from specific treatment to onset of symptom relief. Attacks requiring hospital admission were compared with those not requiring admission.Sixty-two eligible patients with ACEI-AAE (56% men, median age 63 years) were included. Symptom relief occurred significantly earlier in patients receiving specific treatment than in untreated patients (0.5 [0.5-1.0] versus 3.9 [2.5-7.0] hours; P < 0.0001). Even though icatibant was injected more promptly than plasma-derived C1-INH, there, however, was no significant difference in median time to onset of symptom relief between the 2 drugs (0.5 [0.5-1.3] versus 0.5 [0.4-1.0] hours for C1-INH and icatibant, respectively, P = 0.49). Of the 62 patients, 27 (44%) were admitted to hospital from the ED. In multivariate analysis, laryngeal involvement and progressive swelling at ED arrival were independently associated with admission (Odds ratio [95% confidence interval] = 6.2 [1.3-28.2] and 5.9 [1.3-26.5], respectively). A favorable course

  9. Renoprotective effects of renin–angiotensin system inhibitor combined with calcium channel blocker or diuretic in hypertensive patients

    PubMed Central

    Cheng, Yiming; Huang, Rongshuang; Kim, Sehee; Zhao, Yuliang; Li, Yi; Fu, Ping

    2016-01-01

    Abstract Objectives: To conduct a meta-analysis of studies comparing the renoprotective effects of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker (ACEI/ARB) combined with either calcium channel blocker (CCB) or diuretic, but not both, in hypertensive patients. Data sources: Pubmed, Embase, Medline, and Cochrane databases were searched to identify randomized controlled trials (RCTs) of blood pressure lowering treatments in patients with hypertension. Study selection: RCTs comparing the renoprotective effects of ACEI/ARB plus CCB with ACEI/ARB plus diuretic in hypertensive patients, with at least one of the following reported outcomes: urinary protein, estimated glomerular filtration rate/creatinine clearance (eGFR/CrCl), or serum creatinine. Results: Based on 14 RCTs with 18,125 patients, statistically significant benefits were found in ACEI/ARB plus CCB for maintaining eGFR/CrCl (standardized mean difference [SMD] = 0.36; 95% confidence interval [CI]: 0.20–0.53; P < 0.001), serum creatinine reduction (mean difference [MD] = −0.05 mg/dL; 95% CI: −0.07 to −0.03; P < 0.001). However, no statistical differences were found between the 2 therapeutic strategies in terms of urinary protein (MD = 7.48%; 95% CI: –6.13% to 21.08%; P = 0.28; I2 = 92%). Conclusions: This meta-analysis concluded that ACEI/ARB plus CCB have a stronger effect on the maintenance of renal function in patients with hypertension than ACEI/ARB plus diuretic. PMID:27428210

  10. Influence of ACE I/D Polymorphism on Circulating Levels of Plasminogen Activator Inhibitor 1, D-Dimer, Ultrasensitive C-Reactive Protein and Transforming Growth Factor β1 in Patients Undergoing Hemodialysis

    PubMed Central

    de Carvalho, Sara Santos; Simões e Silva, Ana Cristina; Sabino, Adriano de Paula; Evangelista, Fernanda Cristina Gontijo; Gomes, Karina Braga; Dusse, Luci Maria SantAna; Rios, Danyelle Romana Alves

    2016-01-01

    Background There is substantial evidence that chronic renal and cardiovascular diseases are associated with coagulation disorders, endothelial dysfunction, inflammation and fibrosis. Angiotensin-Converting Enzyme Insertion/Deletion polymorphism (ACE I/D polymorphism) has also be linked to cardiovascular diseases. Therefore, this study aimed to compare plasma levels of ultrassensible C-reactive protein (usCRP), PAI-1, D-dimer and TGF-β1 in patients undergoing HD with different ACE I/D polymorphisms. Methods The study was performed in 138 patients at ESRD under hemodialysis therapy for more than six months. The patients were divided into three groups according to the genotype. Genomic DNA was extracted from blood cells (leukocytes). ACE I/D polymorphism was investigated by single polymerase chain reaction (PCR). Plasma levels of D-dimer, PAI-1 and TGF-β1 were measured by enzyme-linked immunosorbent assay (ELISA), and the determination of plasma levels of usCRP was performed by immunonephelometry. Data were analyzed by the software SigmaStat 2.03. Results Clinical characteristics were similar in patients with these three ACE I/D polymorphisms, except for interdialytic weight gain. I allele could be associated with higher interdialytic weight gain (P = 0.017). Patients genotyped as DD and as ID had significantly higher levels of PAI-1 than those with II genotype. Other laboratory parameters did not significantly differ among the three subgroups (P = 0.033). Despite not reaching statistical significance, plasma levels of usCRP were higher in patients carrying the D allele. Conclusion ACE I/D polymorphisms could be associated with changes in the regulation of sodium, fibrinolytic system, and possibly, inflammation. Our data showed that high levels of PAI-1 are detected when D allele is present, whereas greater interdialytic gain is associated with the presence of I allele. However, further studies with different experimental designs are necessary to elucidate the

  11. Modulation of angiotensin-converting enzyme by nitric oxide

    PubMed Central

    Ackermann, A; Fernández-Alfonso, M S; Sánchez de Rojas, R; Ortega, T; Paul, M; González, C

    1998-01-01

    The aim of the present study was to determine the effect of nitric oxide (NO) on angiotensin-converting enzyme (ACE) activity.A biochemical study was performed in order to analyse the effect of the NO-donors, SIN-1 and diethylamine/NO (DEA/NO), and of an aqueous solution of nitric oxide on the ACE activity in plasma from 3-month old male Sprague-Dawley rats and on ACE purified from rabbit lung. SIN-1 significantly inhibited the activity of both enzymes in a concentration-dependent way between 1 and 100 μM. DEA/NO inhibited the activity of purified ACE from 0.1 μM to 10 μM and plasma ACE, with a lower potency, between 1 and 100 μM. An aqueous solution of NO (100 and 150 μM) also inhibited significantly the activity of both enzymes. Lineweaver-Burk plots indicated an apparent competitive inhibition of Hip-His-Leu hydrolysis by NO-donors.Modulation of ACE activity by NO was also assessed in the rat carotid artery by comparing contractions elicited by angiotensin I (AI) and AII. Concentration-response curves to both peptides were performed in arteries with endothelium in the presence of the guanylyl cyclase inhibitor, ODQ (10 μM), and the inhibitor of NO formation, L-NAME (0.1 mM). NO, which is still released from endothelium in the presence of 10 μM ODQ, elicited a significant inhibition of AI contractions at low concentrations (1 and 5 nM). In the absence of endothelium, 1 μM SIN-1 plus 10 μM ODQ, as well as 10 μM DEA/NO plus 10 μM ODQ induced a significant inhibition on AI-induced contractions at 1 and 5 nM and at 1–100 nM, respectively.In conclusion, we demonstrated that (i) NO and NO-releasing compounds inhibit ACE activity in a concentration-dependent and competitive way and that (ii) NO release from endothelium physiologically reduces conversion of AI to AII. PMID:9641545

  12. Combination therapy with renin-angiotensin-aldosterone system inhibitor telmisartan and serine protease inhibitor camostat mesilate provides further renoprotection in a rat chronic kidney disease model.

    PubMed

    Narita, Yuki; Ueda, Miki; Uchimura, Kohei; Kakizoe, Yutaka; Miyasato, Yoshikazu; Mizumoto, Teruhiko; Morinaga, Jun; Hayata, Manabu; Nakagawa, Terumasa; Adachi, Masataka; Miyoshi, Taku; Sakai, Yoshiki; Kadowaki, Daisuke; Hirata, Sumio; Mukoyama, Masashi; Kitamura, Kenichiro

    2016-02-01

    We previously reported that camostat mesilate (CM) had renoprotective and antihypertensive effects in rat CKD models. In this study, we examined if CM has a distinct renoprotective effect from telmisartan (TE), a renin-angiotensin-aldosterone system (RAS) inhibitor, on the progression of CKD. We evaluated the effect of CM (400 mg/kg/day) and/or TE (10 mg/kg/day) on renal function, oxidative stress, renal fibrosis, and RAS components in the adenine-induced rat CKD model following 5-weeks treatment period. The combination therapy with CM and TE significantly decreased the adenine-induced increase in serum creatinine levels compared with each monotherapy, although all treatment groups showed similar reduction in blood pressure. Similarly, adenine-induced elevation in oxidative stress markers and renal fibrosis markers were significantly reduced by the combination therapy relative to each monotherapy. Furthermore, the effect of the combination therapy on plasma renin activity (PRA) and plasma aldosterone concentration (PAC) was similar to that of TE monotherapy, and CM had no effect on both PRA and PAC, suggesting that CM has a distinct pharmacological property from RAS inhibition. Our findings indicate that CM could be a candidate drug for an add-on therapy for CKD patients who had been treated with RAS inhibitors.

  13. Effects of aqueous extract of Hibiscus sabdariffa on the renin-angiotensin-aldosterone system of Nigerians with mild to moderate essential hypertension: A comparative study with lisinopril

    PubMed Central

    Nwachukwu, Daniel Chukwu; Aneke, Eddy Ikemefuna; Obika, Leonard Fidelis; Nwachukwu, Nkiru Zuada

    2015-01-01

    Objectives: The present study investigated the effects of aqueous extract of Hibiscus sabdariffa (HS) on the three basic components of renin-angiotensin-aldosterone system: Plasma renin, serum angiotensin-converting enzyme (ACE), and plasma aldosterone (PA) in mild to moderate essential hypertensive Nigerians and compared with that of lisinopril, an ACE inhibitor. Materials and Methods: A double-blind controlled randomized clinical study was used. Seventy-eight newly diagnosed but untreated mild to moderate hypertensive subjects attending Medical Outpatients Clinic of Enugu State University Teaching Hospital, Enugu were recruited for the study. Those in Group A received placebo (150 mg/kg/day), Group B were given lisinopril (10 mg once daily) while those in Group C received aqueous extract of HS (150 mg/kg/day). After 4 weeks of treatment, the levels of plasma renin, serum ACE, and PA were determined. Results: HS and lisinopril significantly (P < 0.001) reduced PA compared to placebo by 32.06% and 30.01%, respectively. Their effects on serum ACE and plasma renin activity (PRA) were not significant compared to placebo; they reduced ACE by 6.63% and 5.67% but increased plasma PRA by 2.77% and 5.36%, respectively. Conclusion: HS reduced serum ACE and PA in mild to moderate hypertensive Nigerians with equal efficacy as lisinopril. These actions are possibly due to the presence of anthocyanins in the extract. PMID:26600645

  14. Advanced Glycation End Products Activate a Chymase-Dependent Angiotensin II Generating Pathway in Diabetic Complications

    PubMed Central

    Koka, Vijay; Wang, Wansheng; Huang, Xiao Ru; Kim-Mitsuyama, Shokei; Truong, Luan D.; Lan, Hui Y

    2006-01-01

    Background: Angiotensin II is a key mediator of diabetes-related vascular disease. It is now recognized that in addition to angiotensin converting enzyme (ACE), chymase is an important alternative angiotensin II generating enzyme in hypertension and diabetes. However, the mechanism of induction of chymase in diabetes remains unknown. Methods and Results: Here we report that chymase is upregulated in coronary and renal arteries in patients with diabetes by immunohistochemistry. Upregulation of vascular chymase is associated with deposition of advanced glycation end products (AGEs), increase in expression of the receptor for AGEs (RAGE), and activation of ERK1/2 MAP kinase. In vitro, AGEs can induce chymase expression and chymase-dependent angiotensin II generation in human vascular smooth muscle cells via the RAGE-ERK1/2 MAP kinase-dependent mechanism. This is confirmed by blockade of AGE-induced vascular chymase expression with a neutralizing RAGE antibody and an inhibitor to ERK1/2, and by overexpression of the dominant negative-ERK1/2. Compared to ACE, chymase contributes to the majority of angiotensin II production (more than 70%, p<0.01) in response to AGEs. Further more, AGE-induced Angiotensin II production is blocked by the anti-RAGE antibody and by inhibition of ERK1/2 MAP kinase activities. Conclusions: Advanced glycation end products, a hallmark of diabetes, induce chymase via the RAGE-ERK1/2 MAP kinase pathway. Chymase initiates an important alternative angiotensin II generating pathway in diabetes and may play a critical role in diabetic vascular disease. PMID:16520412

  15. Angiotensin-Converting-Enzyme Inhibition in Stable Coronary Artery Disease

    PubMed Central

    2008-01-01

    BACKGROUND Angiotensin-converting-enzyme (ACE) inhibitors are effective in reducing the risk of heart failure, myocardial infarction, and death from cardiovascular causes in patients with left ventricular systolic dysfunction or heart failure. ACE inhibitors have also been shown to reduce atherosclerotic complications in patients who have vascular disease without heart failure. METHODS In the Prevention of Events with Angiotensin Converting Enzyme Inhibition (PEACE) Trial, we tested the hypothesis that patients with stable coronary artery disease and normal or slightly reduced left ventricular function derive therapeutic benefit from the addition of ACE inhibitors to modern conventional therapy. The trial was a double-blind, placebo-controlled study in which 8290 patients were randomly assigned to receive either trandolapril at a target dose of 4 mg per day (4158 patients) or matching placebo (4132 patients). RESULTS The mean (±SD) age of the patients was 64±8 years, the mean blood pressure 133±17/78±10 mm Hg, and the mean left ventricular ejection fraction 58±9 percent. The patients received intensive treatment, with 72 percent having previously undergone coronary revascularization and 70 percent receiving lipid-lowering drugs. The incidence of the primary end point — death from cardiovascular causes, myocardial infarction, or coronary revascularization — was 21.9 percent in the trandolapril group, as compared with 22.5 percent in the placebo group (hazard ratio in the trandolapril group, 0.96; 95 percent confidence interval, 0.88 to 1.06; P=0.43) over a median follow-up period of 4.8 years. CONCLUSIONS In patients with stable coronary heart disease and preserved left ventricular function who are receiving “current standard” therapy and in whom the rate of cardiovascular events is lower than in previous trials of ACE inhibitors in patients with vascular disease, there is no evidence that the addition of an ACE inhibitor provides further benefit in

  16. Angiotensin converting enzyme from sheep mammary, lingual and other tissues.

    PubMed

    Rao, N Mallikarjuna; Udupa, E G Padmanabha

    2007-11-01

    Occurrence of angiotensin converting enzyme (ACE) in mammary gland and tongue taste epithelium was demonstrated for the first time. Six times higher ACE activity in lactating mammary gland, than non-lactating mammary gland, suggested pregnancy and lactation hormonal dependent expression of ACE in female mammals. ACE activity was highest in choroid plexus, less in spinal cord and moderate in cerebrum, medulla, cerebellum and pons. Distribution of ACE in different regions of skin, kidney and among other tissues was different. Presence of ACE in adrenal glands, pancreas, bone marrow and thyroid gland indicated functions other than blood pressure homeostasis for this enzyme.

  17. [Gender-related differences in the efficacy of treatment of hypertensive and coronary heart diseases in aged and elderly patients by angiotensin II receptor blockers and angiotensin converting enzyme inhibitors].

    PubMed

    Zaslavskaia, R M; Krivchikova, L V

    2013-01-01

    The aim of the work was to study hemodynamics and clinical symptoms before and after treatment of arterial hypertension (AH) and coronary heart disease (CHD) using angiotensin II receptor blockers and angiotensin converting enzyme inhibitors depending on the patients' sex. A total of 150 patients with AH and CHD were examined (80 women and 70 men, mean age 70 a 66 yr respectively). Eighty two of them (group 1) were given receptor blockers (losap, losartan, lorista, bloctran) and 63 (group 2) inhibitors (prestarium, noliprel). Effectiveness of treatment was evaluated from the results of 24-hr AP monitoring, daily self-control of AP (as described by Korotkov) and responds to questionnaires. The effectiveness of receptor blockers showed marked gender-specific differences. Specifically, they reduced systolic and diastolic pressure and improved well-being in women. In men, this treatment decreased the frequency of angina attacks, headache, and heart throbs. Enzyme inhibitors caused a greater reduction of diastolic AP in women but less pronounced gender-related changes in dynamics of main AP and ECG parameters than receptor blockers.

  18. Not just angiotensinases: new roles for the angiotensin-converting enzymes.

    PubMed

    Lambert, Daniel W; Clarke, Nicola E; Turner, Anthony J

    2010-01-01

    The renin-angiotensin system (RAS) is a critical regulator of blood pressure and fluid homeostasis. Angiotensin II, the primary bioactive peptide of the RAS, is generated from angiotensin I by angiotensin-converting enzyme (ACE). A homologue of ACE, ACE2, is able to convert angiotensin II to a peptide with opposing effects, angiotensin-(1-7). It is proposed that disturbance of the balance of ACE and ACE2 expression and/or function is important in pathologies in which angiotensin II plays a role. These include cardiovascular and renal disease, lung injury and liver fibrosis. The critical roles of ACE and ACE2 in regulating angiotensin II levels have traditionally focussed attention on their activities as angiotensinases. Recent discoveries, however, have illuminated the roles of these enzymes and of the ACE2 homologue, collectrin, in intracellular trafficking and signalling. This paper reviews the key literature regarding both the catalytic and non-catalytic roles of the angiotensin-converting enzyme gene family.

  19. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme

    PubMed Central

    Ahmad, Sarfaraz; Varagic, Jasmina; VonCannon, Jessica L.; Groban, Leanne; Collawn, James F.; Dell'Italia, Louis J.; Ferrario, Carlos M.

    2016-01-01

    We showed previously that rat angiotensin-(1-12) [Ang-(1-12)] is metabolized by chymase and angiotensin converting enzyme (ACE) to generate Angiotensin II (Ang II). Here, we investigated the affinity of cardiac chymase and ACE enzymes for Ang-(1-12) and Angiotensin I (Ang I) substrates. Native plasma membranes (PMs) isolated from heart and lung tissues of adult spontaneously hypertensive rats (SHR) were incubated with radiolabeled 125I-Ang-(1-12) or 125I-Ang I, in the absence or presence of a chymase or ACE inhibitor (chymostatin and lisinopril, respectively). Products were quantitated by HPLC connected to an in-line flow-through gamma detector. The rate of 125I-Ang II formation from 125I-Ang-(1-12) by chymase was significantly higher (heart: 7.0 ± 0.6 fmol/min/mg; lung: 33 ± 1.2 fmol/min/mg, P < 0.001) when compared to 125I-Ang I substrate (heart: 0.8 ± 0.1 fmol/min/mg; lung: 2.1 ± 0.1 fmol/min/mg). Substrate affinity of 125I-Ang-(1-12) for rat cardiac chymase was also confirmed using excess unlabeled Ang-(1-12) or Ang I (0–250 µM). The rate of 125I-Ang II formation was significantly lower using unlabeled Ang-(1-12) compared to unlabeled Ang I substrate. Kinetic data showed that rat chymase has a lower Km (64 ± 6.3 µM vs 142 ± 17 µM), higher Vmax (13.2 ± 1.3 µM/min/mg vs 1.9 ± 0.2 µM/min/mg) and more than 15-fold higher catalytic efficiency (ratio of Vmax/Km) for Ang-(1-12) compared to Ang I substrate, respectively. We also investigated ACE mediated hydrolysis of 125I-Ang-(1-12) and 125I-Ang I in solubilized membrane fractions of the SHR heart and lung. Interestingly, no significant difference in 125I-Ang II formation by ACE was detected using either substrate, 125I-Ang-(1-12) or 125I-Ang I, both in the heart (1.8 ± 0.2 fmol/min/mg and 1.8 ± 0.3 fmol/min/mg, respectively) and in the lungs (239 ± 25 fmol/min/mg and 248 ± 34 fmol/min/mg, respectively). Compared to chymase, ACE-mediated Ang-(1-12) metabolism in the heart was several fold lower

  20. A Variant in XPNPEP2 Is Associated with Angioedema Induced by Angiotensin I–Converting Enzyme Inhibitors

    PubMed Central

    Duan, Qing Ling; Nikpoor, Borzoo; Dubé, Marie-Pierre; Molinaro, Giuseppe; Meijer, Inge A.; Dion, Patrick; Rochefort, Daniel; Saint-Onge, Judith; Flury, Leah; Brown, Nancy J.; Gainer, James V.; Rouleau, Jean L.; Agostoni, Angelo; Cugno, Massimo; Simon, Pierre; Clavel, Pierre; Potier, Jacky; Wehbe, Bassem; Benarbia, Seddik; Marc-Aurèle, Julien; Chanard, Jacques; Foroud, Tatiana; Adam, Albert; Rouleau, Guy A.

    2005-01-01

    Angiotensin I–converting enzyme inhibitors (ACEi), which are used to treat common cardiovascular diseases, are associated with a potentially life-threatening adverse reaction known as angioedema (AE-ACEi). We have previously documented a significant association between AE-ACEi and low plasma aminopeptidase P (APP) activity. With eight large pedigrees, we hereby demonstrate that this quantitative trait is partially regulated by genetic factors. We tested APP activity using a variance-component QTL analysis of a 10-cM genomewide microsatellite scan enriched with seven markers over two candidate regions. We found significant linkage (LOD = 3.75) to a locus that includes the XPNPEP2 candidate gene encoding membrane-bound APP. Mutation screening of this QTL identified a large coding deletion segregating in one pedigree and an upstream single-nucleotide polymorphism (C–2399A SNP), which segregates in the remaining seven pedigrees. Measured genotype analysis strongly suggests that the linkage signal for APP activity at this locus is accounted for predominantly by the SNP association. In a separate case-control study (20 cases and 60 controls), we found significant association of this SNP to ACEi-induced AE (P=.0364). In conclusion, our findings provide supporting evidence that the C-2399A variant in XPNPEP2 is associated with reduced APP activity and a higher incidence of AE-ACEi. PMID:16175507

  1. Effect of angiotensin-converting enzyme inhibitors on arterial stiffness in hypertension: systematic review and meta-analysis.

    PubMed

    Mallareddy, Madhavi; Parikh, Chirag R; Peixoto, Aldo J

    2006-06-01

    Arterial stiffness is an independent cardiovascular prognostic factor and is modulated by angiotensin-converting enzyme inhibitors (ACEIs). The authors performed a meta-analysis of clinical trials investigating the effects of ACEIs on pulse wave velocity (PWV) or augmentation index. The search included randomized clinical trials as well as uncontrolled studies that measured in-treatment changes in arterial stiffness. The authors performed separate analyses for carotid-femoral PWV, brachioradial PWV, and augmentation index. Average absolute and relative reduction in mean arterial pressure and PWV were -15.4 mm Hg and -13.04% and -1.15 m/s and -9.74% for carotid-femoral PWV studies; and -11.2 mm Hg and -9.3% and -1.9 m/s and -16.7% for brachioradial PWV studies. There was a greater reduction in augmentation index by ACEIs when compared with controls (-1.0% to -5.3%). The authors conclude that ACEIs have modest beneficial effects on arterial stiffness measured as PWV and augmentation index, and this effect is at least partly independent of changes in blood pressure.

  2. Evaluation of the antioxidant properties of the angiotensin-converting enzyme inhibitor, captopril and the nucleotide enhancing agent, acadesine.

    PubMed

    Wasil, M; Kelly, F J

    1995-11-01

    The angiotensin-converting enzyme inhibitor, captopril and the nucleotide enhancing agent, acadesine, protect myocardial tissue from ischaemia/reperfusion-induced injury. Although both drugs have well established, independent mechanisms of cardiac protection, they may also have antioxidant activity which could contribute to their beneficial action. In this study we have examined the antioxidant activity of captopril and acadesine by examining their ability to scavenge ABTS radicals, formed from the interaction of ferryl metmyoglobin with phenothiazine in the presence of hydrogen peroxide. For comparison, we compared these results to those obtained for a range of other drugs commonly used for the treatment of cardiovascular disorders. These included verapamil (arrhythmia), isosorbide dinitrate (angina), atenolol (hypertension) and enalapril (congestive heart failure). The antioxidant properties of these drugs were then compared to the well characterised antioxidants, Trolox (a water soluble vitamin E analogue), ascorbate and glutathione. Captopril and acadesine were both shown to be efficient scavengers of ABTS radicals, importantly at drug concentrations expected to be found in vivo. These data confirm that the antioxidant potential of captopril and acadesine may be an important component of their mechanism of action, with both drugs probably protecting the myocardium against oxygen derived free radicals during ischaemia/reperfusion.

  3. A comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced memory impairments in rats

    PubMed Central

    Jawaid, Talha; Jahan, Shah; Kamal, Mehnaz

    2015-01-01

    The comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced neuroinflammation in albino Wistar rats was studied. Male albino rats were administered with scopolamine to induce memory impairment. The standard nootropic agent, piracetam (200 mg/kg b.w., [i.p.]), perindopril (0.1 mg/kg b.w., [i.p.]), enalapril (0.1 mg/kg b.w., [i.p.]), and ramipril (0.1 mg/kg b.w., [i.p.]) were administered in different group of animals for 5 days. On 5th day, scopolamine (1 mg/kg b.w., i.p.) was administered after 60 min of the last dose of test drug. Memory function was evaluated in Morris water maze (MWM) test and pole climbing test (PCT). Biochemical estimations like glutathione (GSH), malondialdehyde (MDA), and acetylcholinesterase activity in the brain were estimated after completion of behavior study. All three test groups shows improvement in learning and memory in comparison to control group. Perindopril treated group showed a more effective significant decrease in escape latency time and transfer latency time compared to enalapril and ramipril treated group on day 4 in MWM test and PCT, respectively. Perindopril shows a significant reduction in MDA level and acetylcholinesterase activity and a significant rise in GSH level compared to enalapril and ramipril. The finding of this study indicates that Perindopril is more effective in memory retention compared to enalapril and ramipril. PMID:26317078

  4. Sleep-related movement disorder symptoms in SHR are attenuated by physical exercise and an angiotensin-converting enzyme inhibitor.

    PubMed

    Frank, Miriam Kannebley; de Mello, Marco Tulio; Lee, Kil Sun; Daubian-Nosé, Paulo; Tufik, Sergio; Esteves, Andrea Maculano

    2016-02-01

    The relationship between hypertension and sleep-related movement disorders has been hypothesized for humans, but the causes and mechanisms have not been elucidated. We investigated whether an alteration in blood pressure (BP) induced by physical exercise and/or an angiotensin-converting enzyme inhibitor (enalapril) could affect locomotor activity in spontaneously hypertensive rats, with emphasis on the dopaminergic system. We used SHR and normotensive Wistar rats distributed into 4 groups for each strain: control, physical exercise, enalapril and physical exercise+enalapril. Physical exercise was performed on a treadmill, and enalapril was administered by gavage, both for 8weeks. During this period, locomotor activity was evaluated in an open field test, and BP was evaluated by tail plethysmography. Dopaminergic receptors, dopamine transporter and tyrosine hydroxylase levels at the striatum were evaluated by Western blotting. The control group of spontaneously hypertensive rats showed higher BP, increased activity in the open field test and lower levels of D2 receptors and tyrosine hydroxylase compared with all other groups throughout the experimental period. In general, physical exercise and enalapril attenuated these alterations. This study suggested the existence of comorbidity between hypertension and sleep-related movement disorders in spontaneously hypertensive rats. Physical exercise and enalapril conferred protection for both hypertension and the observed behavioral changes. In addition, these treatments led to changes in dopaminergic signaling in the striatal region (i.e., D2 receptor, TH and DAT).

  5. Angiotensin II Induces a Region-Specific Hyperplasia of the Ascending Aorta Through Regulation of Inhibitor of Differentiation 3

    PubMed Central

    Owens, A. Phillip; Subramanian, Venkateswaran; Moorleghen, Jessica J.; Guo, Zhenheng; McNamara, Coleen A.; Cassis, Lisa A; Daugherty, Alan

    2010-01-01

    Rationale Angiotensin II (AngII) has diverse effects on smooth muscle cells. The diversity of effects may relate to the regional location of this cell type. Objective The aim of this study was to define whether AngII exerted divergent effects on smooth muscle cells (SMC) in the aorta and determine the role of blood pressure and specific oxidant mechanisms. Methods and Results AngII (1,000 ng/kg/min) infusion for 28 days into mice increased systolic blood pressure (SBP) and promoted medial expansion of equivalent magnitude throughout the entire aorta. Both effects were ablated by AT1a receptor deficiency. Similar increases in blood pressure by administration of norepinephrine promoted no changes in aortic medial thickness. Increased medial thickness was due to SMC expansion attributable to hypertrophy in most aortic regions, with the exception of hyperplasia of the ascending aorta. Deficiency of the p47phox component of NADPH oxidase ablated AngII-induced medial expansion in all aortic regions. Analysis of mRNA and protein throughout the aorta revealed a much higher abundance of the inhibitor of differentiation 3 (Id3) in the ascending aorta compared to all other regions. A functional role was demonstrated by Id3 deficiency inhibiting AngII-induced SMC hyperplasia of the ascending aorta. Conclusions In conclusion, AngII promotes both aortic medial hypertrophy and hyperplasia in a region-specific manner via an oxidant mechanism. The ascending aortic hyperplasia is dependent on Id3. PMID:20019328

  6. Pre-treatment with LCZ696, an orally active angiotensin receptor neprilysin inhibitor, prevents ischemic brain damage.

    PubMed

    Bai, Hui-Yu; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Kukida, Masayoshi; Shan, Bao-Shuai; Yamauchi, Toshifumi; Higaki, Akinori; Iwanami, Jun; Horiuchi, Masatsugu

    2015-09-05

    Angiotensin II receptor blockers (ARBs) are known to prevent ischemic brain damage after stroke. Natriuretic peptides, which are increased by a neprilysin inhibitor, are also reported to protect against brain damage. Therefore, we investigated the possible protective effect of valsartan (VAL) compared with LCZ696 (VAL+ neprilysin inhibitor; 1:1) after middle cerebral artery (MCA) occlusion. Eight-week-old male C57BL/6J mice were treated with VAL (3mg/kg per day) or LCZ696 (6mg/kg per day) for 2 weeks before MCA occlusion. Blood pressure and heart rate were measured by telemetry. Cerebral blood flow (CBF) was determined by laser-Doppler flowmetry. Ischemic area was evaluated by triphenytetrasodium chloride staining, and oxidative stress was determined by dihydroethidium staining. Blood pressure and heart rate were not significantly different before and after treatment. Pre-treatment with LCZ696 or VAL reduced the ischemic area, and this effect of LCZ696 was more marked than that of VAL pre-treatment. The decrease in CBF in the peripheral region of the ischemic area was significantly attenuated by pre-treatment with LCZ696 or VAL, without any significant effect on CBF in the core region. VAL or LCZ696 pre-treatment significantly decreased the increase of superoxide anion production in the cortex on the ischemic side. However, no significant difference in CBF and superoxide anion production was observed between VAL and LCZ696 pre-treatment. The preventive effect of LCZ696 on ischemic brain damage after stroke was more marked than that of VAL. LCZ696 could be used as a new approach to prevent brain damage after stroke. (246 words).

  7. Drug discovery in renin-angiotensin system intervention: past and future.

    PubMed

    Williams, Bryan

    2016-06-01

    The renin-angiotensin system (RAS) plays a central role in the control of blood pressure in the body and the way this interacts with other systems is widely recognized. This has not always been the case and this review summarizes how our knowledge has evolved from the initial discovery of renin by Tigerstedt and Berman in 1898. This includes the identification of angiotensin in the 1950s to the proposed relationship between this system, hypertension and ultimately cardiovascular disease. While the RAS is far more complex than originally thought, much is now known about this system and the wide ranging effects of angiotensin in the body. This has enabled the development of therapies that target the various proteins in this pathway and hence are implicated in disease. The first of these treatments was the angiotensin converting enzyme inhibitors (ACE-Is), followed by the angiotensin receptor blockers (ARBs), and more recently the direct renin inhibitors (DRIs). Clinical outcome trials have shown these drugs to be effective, but as they act at contrasting points in the RAS, there are differences in their efficacy and safety profiles. RAS blockade is the foundation of modern combination therapy with a calcium channel blocker and/or a diuretic given to reduce blood pressure and limit the impact of RAS activation. Other options that complement these treatments may be available in the future and will offer more choice to clinicians.

  8. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle.

    PubMed

    Henriksen, Erik J; Prasannarong, Mujalin

    2013-09-25

    The canonical renin-angiotensin system (RAS) involves the initial action of renin to cleave angiotensinogen to angiotensin I (ANG I), which is then converted to ANG II by the angiotensin converting enzyme (ACE). ANG II plays a critical role in numerous physiological functions, and RAS overactivity underlies many conditions of cardiovascular dysregulation. In addition, ANG II, by acting on both endothelial and myocellular AT1 receptors, can induce insulin resistance by increasing cellular oxidative stress, leading to impaired insulin signaling and insulin-stimulated glucose transport activity. This insulin resistance associated with RAS overactivity, when coupled with progressive ß-cell dysfunction, eventually leads to the development of type 2 diabetes. Interventions that target RAS overactivity, including ACE inhibitors, ANG II receptor blockers, and, most recently, renin inhibitors, are effective both in reducing hypertension and in improving whole-body and skeletal muscle insulin action, due at least in part to enhanced Akt-dependent insulin signaling and insulin-dependent glucose transport activity. ANG-(1-7), which is produced from ANG II by the action of ACE2 and acts via Mas receptors, can counterbalance the deleterious actions of the ACE/ANG II/AT1 receptor axis on the insulin-dependent glucose transport system in skeletal muscle. This beneficial effect of the ACE2/ANG-(1-7)/Mas receptor axis appears to depend on the activation of Akt. Collectively, these findings underscore the importance of RAS overactivity in the multifactorial etiology of insulin resistance in skeletal muscle, and provide support for interventions that target the RAS to ameliorate both cardiovascular dysfunctions and insulin resistance in skeletal muscle tissue.

  9. Angiotensin Converting Enzyme Inhibitor and HMG-CoA Reductase Inhibitor as Adjunct Treatment for Persons with HIV Infection: A Feasibility Randomized Trial

    PubMed Central

    Baker, Jason V.; Huppler Hullsiek, Kathleen; Prosser, Rachel; Duprez, Daniel; Grimm, Richard; Tracy, Russell P.; Rhame, Frank; Henry, Keith; Neaton, James D.

    2012-01-01

    Background Treatments that reduce inflammation and cardiovascular disease (CVD) risk among individuals with HIV infection receiving effective antiretroviral therapy (ART) are needed. Design and Methods We conducted a 2×2 factorial feasibility study of lisinopril (L) (10 mg daily) vs L-placebo in combination with pravastatin (P) (20 mg daily) vs P-placebo among participants receiving ART with undetectable HIV RNA levels, a Framingham 10 year risk score (FRS) ≥3%, and no indication for ACE-I or statin therapy. Tolerability and adherence were evaluated. Longitudinal mixed models assessed changes in blood pressure (BP), blood lipids, and inflammatory biomarkers from baseline through months 1 and 4. Results Thirty-seven participants were randomized and 34 [lisinopril/pravastatin (n = 9), lisinopril/P-placebo (n = 8), L-placebo/pravastatin (n = 9), L-placebo/P-placebo (n = 8)] attended at least one follow-up visit. Participants were 97% male, 41% white, 67% were current smokers, and 65% were taking a protease inhibitor. Median age was 48 years, CD4 count 483 cells/mm3, FRS 7.79%, total cholesterol 184 mg/dL, and LDL-C 95 mg/dL. There was no treatment difference for pravastatin vs P-placebo in total cholesterol, LDL-C, or any of the inflammatory biomarkers. Participants randomized to lisinopril vs. L-placebo had significant declines in diastolic BP (−3.3 mmHg, p = 0.05), hsCRP (−0.61 µg/mL, p = 0.02) and TNF-α (−0.17 pg/mL, p = 0.04). Participants taking lisinopril vs L-placebo were more likely to report missed doses (88 vs 35%; p = 0.001) and have adherence <90% by pill count (42 vs. 0%; p = 0.02). Few participants from either group reported side effects (n = 3 vs. n = 1). Conclusions The modest BP changes and decreased adherence with lisinopril and absence of lipid differences with pravastatin suggest future studies of these drug classes should consider a run-in period to assess adherence and use a different statin

  10. Vascular Wall ACE is not required for Atherogenesis in ApoE-/- mice

    PubMed Central

    Weiss, Daiana; Bernstein, Kenneth E.; Fuchs, Sebastian; Adams, Jonathan; Synetos, Andreas; Taylor, W. Robert

    2009-01-01

    Background It has been proposed that elements of the renin angiotensin system expressed in the arterial wall are critical for the development of atherosclerosis. Angiotensin converting enzyme (ACE) is highly expressed by the endothelium and is responsible for a critical enzymatic step in the generation of angiotensin II. However, the functional contribution of ACE expression in the vascular wall in atherogenesis is unknown. Therefore, we made use of unique genetic models in which mice without expression of ACE in the vascular wall were crossed with apoE-/- mice in order to determine the contribution of tissue ACE expression to atherosclerotic lesion formation. Methods and Results Mice expressing either a soluble form of ACE (ACE 2/2) or mice with somatic ACE expression restricted to the liver and kidney (ACE 3/3) on an ApoE-/- background were placed on a standard chow or Western diet for 6 months. Atherosclerotic lesion area in the ACE 2/2 mice was significantly lower than that seen in the ACE 3/3 mice. However, these animals also had significantly lower blood pressure and reduced plasma ACE activity which precluded establishing a specific causal relationship between absent tissue ACE activity and decreased atherosclerotic lesion extent. Therefore, we studied the ACE 3/3 mice which are normotensive and lack vascular ACE expression. In the ACE 3/3 animals, atherosclerotic lesion area was no different from wild type controls despite reduced plasma ACE activity. Conclusions We concluded that under these experimental conditions, expression of ACE in the arterial wall is not required for atherosclerotic lesion formation. PMID:19880118

  11. LCZ696, a First-in-Class Angiotensin Receptor-Neprilysin Inhibitor: The First Clinical Experience in Patients With Severe Hypertension.

    PubMed

    Kario, Kazuomi; Tamaki, Yuko; Okino, Naoko; Gotou, Hiromi; Zhu, Min; Zhang, Jack

    2016-04-01

    The safety of LCZ696, a novel angiotensin receptor-neprilysin inhibitor, was evaluated for the first time in patients with severe hypertension in this 8-week, multicenter, open-label study. Thirty-five Japanese patients with either office systolic blood pressure (SBP) ≥180 mm Hg or diastolic blood pressure (DBP) ≥110 mm Hg received LCZ696 200 mg. If blood pressure was uncontrolled, the LCZ696 dose was increased to 400 mg after 2 weeks (if there were no safety concerns; n=32), followed by an optional addition of another antihypertensive drug (except angiotensin receptor blocker and angiotensin-converting enzyme inhibitor) after 4 weeks (n=21). Reductions in office SBP/DBP (baseline, 173.4 mm Hg/112.4 mm Hg) and pulse pressure (baseline, 61.0 mm Hg) at week 8 were 35.3/22.1 mm Hg and 13.2 mm Hg, respectively. The overall incidence of adverse events was 48.6% with no reports of dizziness, hypotension, or angioedema. The LCZ696-based regimen was generally well-tolerated and could present a treatment option for severe hypertension in Asian patients especially in reducing SBP and pulse pressure.

  12. Angiotensin-converting enzyme 2 in lung diseases.

    PubMed

    Kuba, Keiji; Imai, Yumiko; Penninger, Josef M

    2006-06-01

    The renin-angiotensin system (RAS) plays a key role in maintaining blood pressure homeostasis, as well as fluid and salt balance. Angiotensin II, a key effector peptide of the system, causes vasoconstriction and exerts multiple biological functions. Angiotensin-converting enzyme (ACE) plays a central role in generating angiotensin II from angiotensin I, and capillary blood vessels in the lung are one of the major sites of ACE expression and angiotensin II production in the human body. The RAS has been implicated in the pathogenesis of pulmonary hypertension and pulmonary fibrosis, both commonly seen in chronic lung diseases such as chronic obstructive lung disease. Recent studies indicate that the RAS also plays a critical role in acute lung diseases, especially acute respiratory distress syndrome (ARDS). ACE2, a close homologue of ACE, functions as a negative regulator of the angiotensin system and was identified as a key receptor for SARS (severe acute respiratory syndrome) coronavirus infections. In the lung, ACE2 protects against acute lung injury in several animal models of ARDS. Thus, the RAS appears to play a critical role in the pathogenesis of acute lung injury. Indeed, increasing ACE2 activity might be a novel approach for the treatment of acute lung failure in several diseases.

  13. MicroRNAs mediate the cardioprotective effect of angiotensin-converting enzyme inhibition in acute kidney injury.

    PubMed

    Rana, Indrajeetsinh; Velkoska, Elena; Patel, Sheila K; Burrell, Louise M; Charchar, Fadi J

    2015-12-01

    Cardiovascular disease, including cardiac hypertrophy, is common in patients with kidney disease and can be partially attenuated using blockers of the renin-angiotensin system (RAS). It is unknown whether cardiac microRNAs contribute to the pathogenesis of cardiac hypertrophy or to the protective effect of RAS blockade in kidney disease. Using a subtotal nephrectomy rat model of kidney injury, we investigated changes in cardiac microRNAs that are known to have direct target genes involved in the regulation of apoptosis, fibrosis, and hypertrophy. The effect of treatment with the angiotensin-converting enzyme (ACE) inhibitor ramipril on cardiac microRNAs was also investigated. Kidney injury led to a significant increase in cardiac microRNA-212 and microRNA-132 expression. Ramipril reduced cardiac hypertrophy, attenuated the increase in microRNA-212 and microRNA-132, and significantly increased microRNA-133 and microRNA-1 expression. There was altered expression of caspase-9, B cell lymphoma-2, transforming growth factor-β, fibronectin 1, collagen type 1A1, and forkhead box protein O3, which are all known to be involved in the regulation of apoptosis, fibrosis, and hypertrophy in cardiac cells while being targets for the above microRNAs. ACE inhibitor treatment increased expression of microRNA-133 and microRNA-1. The inhibitory action of ACE inhibitor treatment on increased cardiac NADPH oxidase isoform 1 expression after subtotal nephrectomy surgery suggests that inhibition of oxidative stress is also one of mechanism of ACE inhibitor-mediated cardioprotection. These finding suggests the involvement of microRNAs in the cardioprotective action of ACE inhibition in acute renal injury, which is mediated through an inhibitory action on profibrotic and proapoptotic target genes and stimulatory action on antihypertrophic and antiapoptotic target genes.

  14. Investigating the selectivity of metalloenzyme inhibitors.

    PubMed

    Day, Joshua A; Cohen, Seth M

    2013-10-24

    The inhibitory activity of a broad group of known metalloenzyme inhibitors against a panel of metalloenzymes was evaluated. Clinically approved inhibitors were selected as well as several other reported metalloprotein inhibitors in order to represent a broad range of metal binding groups (MBGs), including hydroxamic acid, carboxylate, hydroxypyridinonate, thiol, and N-hydroxyurea functional groups. A panel of metalloenzymes, including carbonic anhydrase (hCAII), several matrix metalloproteinases (MMPs), angiotensin converting enzyme (ACE), histone deacetylase (HDAC-2), and tyrosinase (TY), was selected based on their clinical importance for a range of pathologies. In addition, each inhibitor was evaluated for its ability to remove Fe(3+) from holo-transferrin to gauge the ability of the inhibitors to access Fe(3+) from a primary transport protein. The results show that the metalloenzyme inhibitors are quite selective for their intended targets, suggesting that despite their ability to bind metal ions, metalloprotein inhibitors are not prone to widespread off-target enzyme inhibition activity.

  15. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System.

    PubMed

    Wang, Guoxing; Zhang, Qian; Yuan, Wei; Wu, Junyuan; Li, Chunsheng

    2015-11-12

    Sildenafil, a phosphodiesterase-5 inhibitor sold as Viagra, is a cardioprotector against myocardial ischemia/reperfusion (I/R) injury. Our study explored whether sildenafil protects against I/R-induced damage in a porcine cardiac arrest and resuscitation (CAR) model via modulating the renin-angiotensin system. Male pigs were randomly divided to three groups: Sham group, Saline group, and sildenafil (0.5 mg/kg) group. Thirty min after drug infusion, ventricular fibrillation (8 min) and cardiopulmonary resuscitation (up to 30 min) was conducted in these animals. We found that sildenafil ameliorated the reduced cardiac function and improved the 24-h survival rate in this model. Sildenafil partly attenuated the increases of plasma angiotensin II (Ang II) and Ang (1-7) levels after CAR. Sildenafil also decreased apoptosis and Ang II expression in myocardium. The increases of expression of angiotensin-converting-enzyme (ACE), ACE2, Ang II type 1 receptor (AT1R), and the Ang (1-7) receptor Mas in myocardial tissue were enhanced after CAR. Sildenafil suppressed AT1R up-regulation, but had no effect on ACE, ACE2, and Mas expression. Sildenafil further boosted the upregulation of endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP) and inducible nitric oxide synthase(iNOS). Collectively, our results suggest that cardioprotection of sildenafil in CAR model is accompanied by an inhibition of Ang II-AT1R axis activation.

  16. Angiotensin receptor neprilysin inhibition in heart failure: mechanistic action and clinical impact.

    PubMed

    Buggey, Jonathan; Mentz, Robert J; DeVore, Adam D; Velazquez, Eric J

    2015-09-01

    Heart failure (HF) is an increasingly common syndrome associated with high mortality and economic burden, and there has been a paucity over the past decade of new pharmacotherapies that improve outcomes. However, recent data from a large randomized controlled trial compared the novel agent LCZ696, a dual-acting angiotensin receptor blocker and neprilysin inhibitor (ARNi), with the well established angiotensin-converting enzyme (ACE) inhibitor enalapril and found significant reduction in mortality among the chronic reduced ejection fraction HF population. Preclinical and clinical data suggest that neprilysin inhibition provides beneficial outcomes in HF patients by preventing the degradation of natriuretic peptides and thereby promoting natriuresis and vasodilatation and counteracting the negative cardiorenal effects of the up-regulated renin-angiotensin-aldosterone system. Agents such as omapatrilat combined neprilysin and ACE inhibition but had increased rates of angioedema. Goals of an improved safety profile provided the rationale for the development of the ARNi LCZ696. Along with significant reductions in mortality and hospitalizations, clinical trials suggest that LCZ696 may improve surrogate markers of HF severity. In this paper, we review the preclinical and clinical data that led to the development of LCZ696, the understanding of the underlying mechanistic action, and the robust clinical impact that LCZ696 may have in the near future.

  17. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis.

    PubMed

    Segura Campos, Maira Rubi; Peralta González, Fanny; Chel Guerrero, Luis; Betancur Ancona, David

    2013-01-01

    Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa). ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64%) and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%). This fraction's amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5-2.5 kDa) exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427-455 mL elution volume). The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system.

  18. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis

    PubMed Central

    Segura Campos, Maira Rubi; Peralta González, Fanny; Chel Guerrero, Luis

    2013-01-01

    Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa). ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64%) and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%). This fraction's amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5–2.5 kDa) exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427–455 mL elution volume). The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system. PMID:26904588

  19. SLCO1B1 Variants and Angiotensin Converting Enzyme Inhibitor (Enalapril)-Induced Cough: a Pharmacogenetic Study.

    PubMed

    Luo, Jian-Quan; He, Fa-Zhong; Wang, Zhen-Min; Sun, Ning-Ling; Wang, Lu-Yan; Tang, Gen-Fu; Liu, Mou-Ze; Li, Qing; Chen, Xiao-Ping; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei

    2015-11-26

    Clinical observations suggest that incidence of cough in Chinese taking angiotensin converting enzyme inhibitors is much higher than other racial groups. Cough is the most common adverse reaction of enalapril. We investigate whether SLCO1B1 genetic polymorphisms, previously reported to be important determinants of inter-individual variability in enalapril pharmacokinetics, are associated with the enalapril-induced cough. A cohort of 450 patients with essential hypertension taking 10 mg enalapril maleate were genotyped for the functional SLCO1B1 variants, 388A > G (Asn130Asp, rs2306283) and 521T > C (Val174Ala, rs4149056). The primary endpoint was cough, which was recorded when participants were bothered by cough and respiratory symptoms during enalapril treatment without an identifiable cause. SLCO1B1 521C allele conferred a 2-fold relative risk of enalapril-induced cough (95% confidence interval [CI] = 1.34-3.04, P = 6.2 × 10(-4)), and haplotype analysis suggested the relative risk of cough was 6.94-fold (95% CI = 1.30-37.07, P = 0.020) in SLCO1B1*15/*15 carriers. Furthermore, there was strong evidence for a gene-dose effect (percent with cough in those with 0, 1, or 2 copy of the 521C allele: 28.2%, 42.5%, and 71.4%, trend P = 6.6 × 10(-4)). Our study highlights, for the first time, SLCO1B1 variants are strongly associated with an increased risk of enalapril-induced cough. The findings will be useful to provide pharmacogenetic markers for enalapril treatment.

  20. Angiotensin-Converting Enzyme Inhibitor Use by Older Adults Is Associated with Greater Functional Responses to Exercise

    PubMed Central

    Buford, Thomas W.; Manini, Todd M.; Hsu, Fang-Chi; Cesari, Matteo; Anton, Stephen D.; Nayfield, Susan; Stafford, Randall S.; Church, Timothy S.; Pahor, Marco; Carter, Christy S.

    2013-01-01

    OBJECTIVES To assess the association between angiotensin converting enzyme inhibitors (ACEis) and improvements in the physical function of older adults in response to chronic exercise training. DESIGN Secondary analysis of the Lifestyle Interventions and Independence for Elders Pilot (LIFE-P) study, a multisite randomized clinical trial to evaluate the effects of chronic exercise on the physical function of older adults at risk for mobility disability. SETTING Four academic research centers within the United States. PARTICIPANTS Four hundred twenty-four individuals aged 70 to 89 with mild to moderate functional impairments categorized for this analysis as ACEi users, users of other antihypertensive drugs, or antihypertensive nonusers. INTERVENTION A 12-month intervention of structured physical activity (PA) or health education promoting successful aging (SA). MEASUREMENTS Change in walking speed during a 400-m test and performance on a battery of short-duration mobility tasks (Short Physical Performance Battery (SPPB)). RESULTS Physical activity significantly improved the adjusted walking speed of ACEi users (P < .001) but did not of nonusers. PA improved the adjusted SPPB score of ACEi users (P < .001) and of persons who used other antihypertensive drugs (P = .005) but not of antihypertensive nonusers (P = .91). The percentage of ACEi users deriving clinically significant benefit from exercise training for walking speed (30%) and SPPB score (48%) was dramatically higher than for nonusers (14% and 12%, respectively). CONCLUSION For older adults at risk for disability, exercise-derived improvements in physical function were greater for ACEi users than users of other antihypertensive drugs and antihypertensive nonusers. PMID:22726232

  1. Cardiovascular and Renal Outcomes of Renin–Angiotensin System Blockade in Adult Patients with Diabetes Mellitus: A Systematic Review with Network Meta-Analyses

    PubMed Central

    Catalá-López, Ferrán; Macías Saint-Gerons, Diego; González-Bermejo, Diana; Rosano, Giuseppe M.; Davis, Barry R.; Ridao, Manuel; Zaragoza, Abel; Montero-Corominas, Dolores; Tobías, Aurelio; de la Fuente-Honrubia, César; Tabarés-Seisdedos, Rafael; Hutton, Brian

    2016-01-01

    Background Medications aimed at inhibiting the renin–angiotensin system (RAS) have been used extensively for preventing cardiovascular and renal complications in patients with diabetes, but data that compare their clinical effectiveness are limited. We aimed to compare the effects of classes of RAS blockers on cardiovascular and renal outcomes in adults with diabetes. Methods and Findings Eligible trials were identified by electronic searches in PubMed/MEDLINE and the Cochrane Database of Systematic Reviews (1 January 2004 to 17 July 2014). Interventions of interest were angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and direct renin (DR) inhibitors. The primary endpoints were cardiovascular mortality, myocardial infarction, and stroke—singly and as a composite endpoint, major cardiovascular outcome—and end-stage renal disease [ESRD], doubling of serum creatinine, and all-cause mortality—singly and as a composite endpoint, progression of renal disease. Secondary endpoints were angina pectoris and hospitalization for heart failure. In all, 71 trials (103,120 participants), with a total of 14 different regimens, were pooled using network meta-analyses. When compared with ACE inhibitor, no other RAS blocker used in monotherapy and/or combination was associated with a significant reduction in major cardiovascular outcomes: ARB (odds ratio [OR] 1.02; 95% credible interval [CrI] 0.90–1.18), ACE inhibitor plus ARB (0.97; 95% CrI 0.79–1.19), DR inhibitor plus ACE inhibitor (1.32; 95% CrI 0.96–1.81), and DR inhibitor plus ARB (1.00; 95% CrI 0.73–1.38). For the risk of progression of renal disease, no significant differences were detected between ACE inhibitor and each of the remaining therapies: ARB (OR 1.10; 95% CrI 0.90–1.40), ACE inhibitor plus ARB (0.97; 95% CrI 0.72–1.29), DR inhibitor plus ACE inhibitor (0.99; 95% CrI 0.65–1.57), and DR inhibitor plus ARB (1.18; 95% CrI 0.78–1.84). No significant

  2. Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response

    PubMed Central

    Bernstein, Kenneth E.; Khan, Zakir; Giani, Jorge F.; Zhao, Tuantuan; Eriguchi, Masahiro; Bernstein, Ellen A.; Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.

    2016-01-01

    Angiotensin-converting enzyme (ACE) converts angiotensin I to the vasoconstrictor angiotensin II and thereby plays an important role in blood pressure control. However, ACE is relatively non-specific in its substrate specificity and cleaves many other peptides. Recent analysis of mice overexpressing ACE in monocytes, macrophages, and other myelomonocytic cells shows that these animals have a marked increase in resistance to experimental melanoma and to infection by Listeria monocytogenes or methicillin-resistant Staphylococcus aureus (MRSA). Several other measures of immune responsiveness, including antibody production, are enhanced in these animals. These studies complement a variety of studies indicating an important role of ACE in the immune response. PMID:27018193

  3. ACE--Some Issues.

    ERIC Educational Resources Information Center

    Campbell, Annie, Ed.; Curtin, Penelope, Ed.

    This publication contains four papers that identify issues within the adult and community education (ACE) sector. "Overview" (Annie Campbell, Peter Thomson) considers what defines ACE; who offers ACE programs; who participates in ACE programs and who does not participate; what are the barriers to participation; who is responsible for…

  4. Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Enzymatic Hydrolysates of Razor Clam Sinonovacula constricta

    PubMed Central

    Li, Yun; Sadiq, Faizan A.; Fu, Li; Zhu, Hui; Zhong, Minghua; Sohail, Muhammad

    2016-01-01

    Angiotensin I-converting enzyme (ACE) inhibitory activity of razor clam hydrolysates produced using five proteases, namely, pepsin, trypsin, alcalase, flavourzyme and proteases from Actinomucor elegans T3 was investigated. Flavourzyme hydrolysate showed the highest level of degree of hydrolysis (DH) (45.87%) followed by A. elegans T3 proteases hydrolysate (37.84%) and alcalase (30.55%). The A. elegans T3 proteases was observed to be more effective in generating small peptides with ACE-inhibitory activity. The 3 kDa membrane permeate of A. elegans T3 proteases hydrolysate showed the highest ACE-inhibitory activity with an IC50 of 0.79 mg/mL. After chromatographic separation by Sephadex G-15 gel filtration and reverse phase-high performance liquid chromatography, the potent fraction was subjected to MALDI/TOF-TOF MS/MS for identification. A novel ACE-inhibitory peptide (VQY) was identified exhibiting an IC50 of 9.8 μM. The inhibitory kinetics investigation by Lineweaver-Burk plots demonstrated that the peptide acts as a competitive ACE inhibitor. The razor clam hydrolysate obtained by A. elegans T3 proteases could serve as a source of functional peptides with ACE-inhibitory activity for physiological benefits. PMID:27271639

  5. Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Enzymatic Hydrolysates of Razor Clam Sinonovacula constricta.

    PubMed

    Li, Yun; Sadiq, Faizan A; Fu, Li; Zhu, Hui; Zhong, Minghua; Sohail, Muhammad

    2016-06-03

    Angiotensin I-converting enzyme (ACE) inhibitory activity of razor clam hydrolysates produced using five proteases, namely, pepsin, trypsin, alcalase, flavourzyme and proteases from Actinomucor elegans T3 was investigated. Flavourzyme hydrolysate showed the highest level of degree of hydrolysis (DH) (45.87%) followed by A. elegans T3 proteases hydrolysate (37.84%) and alcalase (30.55%). The A. elegans T3 proteases was observed to be more effective in generating small peptides with ACE-inhibitory activity. The 3 kDa membrane permeate of A. elegans T3 proteases hydrolysate showed the highest ACE-inhibitory activity with an IC50 of 0.79 mg/mL. After chromatographic separation by Sephadex G-15 gel filtration and reverse phase-high performance liquid chromatography, the potent fraction was subjected to MALDI/TOF-TOF MS/MS for identification. A novel ACE-inhibitory peptide (VQY) was identified exhibiting an IC50 of 9.8 μM. The inhibitory kinetics investigation by Lineweaver-Burk plots demonstrated that the peptide acts as a competitive ACE inhibitor. The razor clam hydrolysate obtained by A. elegans T3 proteases could serve as a source of functional peptides with ACE-inhibitory activity for physiological benefits.

  6. [Oxidative inactivation of angiotensin-converting enzyme].

    PubMed

    Sakharov, I Iu; Dukhanina, E A; Puchnina, E A; Danilov, S M; Muzykantov, V R

    1991-01-01

    Hydrogen peroxide inactivates the purified human angiotensin-converting enzyme (ACE) in vitro; the inactivating effect of H2O2 is eliminated by an addition of catalase. The lung and kidney ACE are equally sensitive to the effect of hydrogen peroxide. After addition of oxidants (H2O2 alone or H2O2 + ascorbate or H2O2 + Fe2+ mixtures) to the membranes or homogenates of the lung, the inactivation of membrane-bound ACE is far less pronounced despite the large-scale accumulation of lipid peroxidation products. The marked inactivation of ACE in the membrane fraction (up to 55% of original activity) was observed during ACE incubation with a glucose:glucose oxidase:Fe2+ mixture. Presumably the oxidative potential of H2O2 in tissues in consumed, predominantly, for the oxidation of other components of the membrane (e.g., lipids) rather than for ACE inactivation.

  7. ACE and AGTR1 polymorphisms in elite rhythmic gymnastics.

    PubMed

    Di Cagno, Alessandra; Sapere, Nadia; Piazza, Marina; Aquino, Giovanna; Iuliano, Enzo; Intrieri, Mariano; Calcagno, Giuseppe

    2013-02-01

    In the angiotensin-converting enzyme (ACE) gene, Alu deletion, in intron 16, is associated with higher concentrations of ACE serum activity and this may be associated with elite sprint and power performance. The Alu insertion is associated with lower ACE levels and this could lead to endurance performance. Moreover, recent studies have identified a single-nucleotide polymorphism of the angiotensin type 1 receptor gene AGTR1, which seems to be related to ACE activity. The aim of this study was to examine the involvement of the ACE and the AGTR1 gene polymorphisms in 28 Italian elite rhythmic gymnasts (age range 21 ± 7.6 years), and compare them to 23 middle level rhythmic gymnasts (age range 17 ± 10.9 years). The ACE D allele was significantly more frequent in elite athletes than in the control population (χ(2)=4.07, p=0.04). Comparisons between the middle level and elite athletes revealed significant differences (p<0.0001) for the ACE DD genotype (OR=6.48, 95% confidence interval=1.48-28.34), which was more frequent in elite athletes. There were no significant differences in the AGTR1 A/C genotype or allele distributions between the middle level and elite athletes. In conclusion, the ACE D allele genotype could be a contributing factor to high-performance rhythmic gymnastics that should be considered in athlete development and could help to identify which skills should be trained for talent promotion.

  8. Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury.

    PubMed

    Rey-Parra, G J; Vadivel, A; Coltan, L; Hall, A; Eaton, F; Schuster, M; Loibner, H; Penninger, J M; Kassiri, Z; Oudit, G Y; Thébaud, B

    2012-06-01

    Despite substantial progress, mortality and morbidity of the acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), remain unacceptably high. There is no effective treatment for ARDS/ALI. The renin-angiotensin system (RAS) through Angiotensin-converting enzyme (ACE)-generated Angiotensin II contributes to lung injury. ACE2, a recently discovered ACE homologue, acts as a negative regulator of the RAS and counterbalances the function of ACE. We hypothesized that ACE2 prevents Bleomycin (BLM)-induced lung injury. Fourteen to 16-week-old ACE2 knockout mice-male (ACE2(-/y)) and female (ACE2(-/-))-and age-matched wild-type (WT) male mice received intratracheal BLM (1.5U/kg). Male ACE2(-/y) BLM injured mice exhibited poorer exercise capacity, worse lung function and exacerbated lung fibrosis and collagen deposition compared with WT. These changes were associated with increased expression of the profibrotic genes α-smooth muscle actin (α-SMA) and Transforming Growth Factor ß1. Compared with ACE2(-/y) exposed to BLM, ACE2(-/-) exhibited better lung function and architecture and decreased collagen deposition. Treatment with intraperitoneal recombinant human (rh) ACE2 (2 mg/kg) for 21 days improved survival, exercise capacity, and lung function and decreased lung inflammation and fibrosis in male BLM-WT mice. Female BLM WT mice had mild fibrosis and displayed a possible compensatory upregulation of the AT2 receptor. We conclude that ACE2 gene deletion worsens BLM-induced lung injury and more so in males than females. Conversely, ACE2 protects against BLM-induced fibrosis. rhACE2 may have therapeutic potential to attenuate respiratory morbidity in ALI/ARDS.

  9. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications.

    PubMed

    Nagai, Ryoji; Murray, David B; Metz, Thomas O; Baynes, John W

    2012-03-01

    This article outlines evidence that advanced glycation end product (AGE) inhibitors and breakers act primarily as chelators, inhibiting metal-catalyzed oxidation reactions that catalyze AGE formation. We then present evidence that chelation is the most likely mechanism by which ACE inhibitors, angiotensin receptor blockers, and aldose reductase inhibitors inhibit AGE formation in diabetes. Finally, we note several recent studies demonstrating therapeutic benefits of chelators for diabetic cardiovascular and renal disease. We conclude that chronic, low-dose chelation therapy deserves serious consideration as a clinical tool for prevention and treatment of diabetes complications.

  10. The pharmacological mechanism of angiotensin-converting enzyme inhibition by green tea, Rooibos and enalaprilat - a study on enzyme kinetics.

    PubMed

    Persson, Ingrid A-L

    2012-04-01

    Green tea (Camellia sinensis L.) and Rooibos (Aspalathus linearis Dahlg.) inhibit angiotensin-converting enzyme (ACE) in vitro and in vivo. The ACE inhibitor enalaprilat has been described previously as a competitive inhibitor and sometimes as a non-competitive inhibitor. The aim of this study was to investigate the pharmacological mechanism of ACE inhibition of green tea and Rooibos by enzyme kinetics, and to compare this with enalaprilat. A Michaelis-Menten kinetics and Lineweaver-Burk graph showed mean values of V(max)  = 3.73 µM and K(m)  = 0.71 µM for green tea, of V(max)  = 6.76 µM and K(m)  = 0.78 µM for Rooibos, of V(max)  = 12.54 µM and K(m)  = 2.77 µM for enalaprilat, and of V(max)  = 51.33 µM and K(m)  = 9.22 µM for the PBS control. Incubating serum with green tea or Rooibos saturated with zinc chloride did not change the inhibitory effect. Enalaprilat preincubated with zinc chloride showed a decrease in the inhibitory effect. In conclusion, green tea, Rooibos and enalaprilat seem to inhibit ACE activity using a mixed inhibitor mechanism.

  11. Long-term renin-angiotensin blocking therapy in hypertensive patients with normal aorta may attenuate the formation of abdominal aortic aneurysms.

    PubMed

    Silverberg, Daniel; Younis, Anan; Savion, Naphtali; Harari, Gil; Yakubovitch, Dmitry; Sheick Yousif, Basheer; Halak, Moshe; Grossman, Ehud; Schneiderman, Jacob

    2014-08-01

    Renin-angiotensin system (RAS) has been implicated in the pathogenesis of abdominal aortic aneurysm (AAA). Angiotensin II type 1 receptor blocker (ARB), when given with angiotensin II prevents AAA formation in mice, but found ineffective in attenuating the progression of preexisting AAA. This study was designed to evaluate the effect of chronic RAS blockers on abdominal aortic diameter in hypertensive patients without known aortic aneurysm. Consecutive hypertensive outpatients (n = 122) were stratified according to antihypertensive therapy they received for 12 months or more, consisting of ARB (n = 45), angiotensin converting enzyme inhibitor (ACE-I; n = 45), or nonARB/nonACE-I (control therapy; n = 32). Abdominal ultrasonography was performed to measure maximal subrenal aortic diameter. Eighty-four patients were reexamined by ultrasonography 8 months later. The correlation between the different antihypertensive therapies and aortic diameter was examined. Aortic diameters were significantly smaller in ARB than in control patients in the baseline and follow-up measurements (P = .004; P = .0004, respectively). Risk factor adjusted covariance analysis showed significant differences between ARB or ACE-I treated groups and controls (P = .006 or P = .046, respectively). Ultrasound that was performed 8 months later showed smaller increases in mean aortic diameters of the ARB and ACE-I groups than in controls. Both ARB and ACE-I therapy attenuated expansion of nonaneurysmal abdominal aorta in humans. These results indicate that RAS blockade given before advancement of aortic medial remodeling may slow down the development of AAA.

  12. When Nothing Else Works: Fresh Frozen Plasma in the Treatment of Progressive, Refractory Angiotensin-Converting Enzyme Inhibitor-Induced Angioedema.

    PubMed

    Chaaya, Gerard; Afridi, Faraz; Faiz, Arfa; Ashraf, Ali; Ali, Mahrukh; Castiglioni, Analia

    2017-01-11

    Angioedema is a severe form of an allergic reaction characterized by the localized edematous swelling of the dermis and subcutaneous tissues. Angiotensin-converting enzyme inhibitor-induced angioedema (ACEI-IA) is an allergic reaction that can be severe in some cases requiring advanced management measures. Fresh frozen plasma has been used off-labeled in some case reports to improve and to prevent worsening of the angioedema in a few cases of ACEI-IA. We are reporting this case to increase the awareness of physicians and to widen their therapeutic options when encountering this clinically significant condition.

  13. γ-Aminobutyric Acid (GABA) Production and Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-Culture of Lactobacillus brevis with Aspergillus oryzae.

    PubMed

    Jang, Eun Kyeong; Kim, Nam Yeun; Ahn, Hyung Jin; Ji, Geun Eog

    2015-08-01

    To enhance the γ-aminobutyric acid (GABA) content, the optimized fermentation of soybean with added sea tangle extract was evaluated at 30°C and pH 5.0. The medium was first inoculated with Aspergillus oryzae strain FMB S46471 and fermented for 3 days, followed by the subsequent inoculation with Lactobacillus brevis GABA 100. After fermentation for 7 days, the fermented soybean showed approximately 1.9 g/kg GABA and exhibited higher ACE inhibitory activity than the traditional soybean product. Furthermore, several peptides in the fraction containing the highest ACE inhibitory activity were identified. The novel fermented soybean enriched with GABA and ACE inhibitory components has great pharmaceutical and functional food values.

  14. Triple ACE-ECE-NEP inhibition in heart failure: a comparison with ACE and dual ECE-NEP inhibition.

    PubMed

    Mellin, Virginie; Jeng, Arco Y; Monteil, Christelle; Renet, Sylvanie; Henry, Jean Paul; Thuillez, Christian; Mulder, Paul

    2005-09-01

    Mortality remains high in chronic heart failure (CHF) because under ACE inhibitor treatment other neurohumoral systems remain/become (de)activated, such as the endothelin and atrial natriuretic peptide pathways. Dual endothelin-converting enzyme-neutral endopeptidase (ECE-NEP) inhibition exerts beneficial effects in experimental CHF, but whether "triple" ACE-ECE-NEP inhibition is superior to ACE or ECE-NEP inhibition is unknown. We compared, in rats with CHF, ACE-ECE-NEP to ACE or ECE-NEP inhibition in terms of left ventricular (LV) hemodynamics and remodeling. Benazepril (2 mg/kg/d) or the ECE-NEP inhibitor CGS26303 (10 mg/kg/d) were administered alone or in combination (subcutaneously for 28 days starting 7 days after coronary ligation). ACE-ECE-NEP inhibition reduced blood pressure more markedly than ACE or ECE-NEP inhibition. All treatments increased cardiac output to the same extent, but ACE-ECE-NEP inhibition reduced LV diameter and LV end-diastolic pressure more markedly than ACE or ECE-NEP inhibition. The reduction of LV weight and collagen accumulation in the "viable" myocardium was most pronounced after ACE-ECE-NEP inhibition. These results, obtained in experimental CHF, illustrate a further improvement of LV hemodynamics and structure after ACE-ECE-NEP inhibition compared with either ACE or ECE-NEP inhibition, but whether this is associated with a further improvement of exercise tolerance and/or survival remains to be determined.

  15. Rationale and study design of the Prospective comparison of Angiotensin Receptor neprilysin inhibitor with Angiotensin receptor blocker MEasuring arterial sTiffness in the eldERly (PARAMETER) study

    PubMed Central

    Williams, Bryan; Cockcroft, John R; Kario, Kazuomi; Zappe, Dion H; Cardenas, Pamela; Hester, Allen; Brunel, Patrick; Zhang, Jack

    2014-01-01

    Introduction Hypertension in elderly people is characterised by elevated systolic blood pressure (SBP) and increased pulse pressure (PP), which indicate large artery ageing and stiffness. LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor (ARNI), is being developed to treat hypertension and heart failure. The Prospective comparison of Angiotensin Receptor neprilysin inhibitor with Angiotensin receptor blocker MEasuring arterial sTiffness in the eldERly (PARAMETER) study will assess the efficacy of LCZ696 versus olmesartan on aortic stiffness and central aortic haemodynamics. Methods and analysis In this 52-week multicentre study, patients with hypertension aged ≥60 years with a mean sitting (ms) SBP ≥150 to <180 and a PP>60 mm Hg will be randomised to once daily LCZ696 200 mg or olmesartan 20 mg for 4 weeks, followed by a forced-titration to double the initial doses for the next 8 weeks. At 12–24 weeks, if the BP target has not been attained (msSBP <140  and ms diastolic BP <90 mm Hg), amlodipine (2.5–5 mg) and subsequently hydrochlorothiazide (6.25–25 mg) can be added. The primary and secondary endpoints are changes from baseline in central aortic systolic pressure (CASP) and central aortic PP (CAPP) at week 12, respectively. Other secondary endpoints are the changes in CASP and CAPP at week 52. A sample size of 432 randomised patients is estimated to ensure a power of 90% to assess the superiority of LCZ696 over olmesartan at week 12 in the change from baseline of mean CASP, assuming an SD of 19 mm Hg, the difference of 6.5 mm Hg and a 15% dropout rate. The primary variable will be analysed using a two-way analysis of covariance. Ethics and dissemination The study was initiated in December 2012 and final results are expected in 2015. The results of this study will impact the design of future phase III studies assessing cardiovascular protection. Clinical trials identifier EUDract number 2012

  16. Effects of Angiotensin-Converting Enzyme Inhibitor Derived from Tropaeolum majus L. in Rat Preimplantation Embryos: Evidence for the Dehydroepiandrosterone and Estradiol Role

    PubMed Central

    Botelho Lourenço, Emerson Luiz; Muller, Juliane Centeno; Boareto, Ana Claudia; Lourenço, Ana Carolina; Calloi Palozi, Rhanany Alan; Lima Prando, Thiago Bruno; Dalsenter, Paulo Roberto

    2014-01-01

    Although several studies have shown the inhibitory effects of Tropaeolum majus extracts (HETM) on angiotensin-converting enzyme (ACE) activity, no studies have been carried out during the beginning of pregnancy, when humoral and hormonal imbalance may affect zygote and early embryo transport. This study investigates whether HETM can affect embryonic development when administered during the one-cell-blastocyst period. Pregnant Wistar rats received orally the HETM (3, 30, and 300 mg/kg/day) from the 1st to the 7th gestational day. Rats were killed on the 8th day of pregnancy and the following parameters were evaluated: clinical symptoms of toxicity (including organ weights), number of corpora lutea, implants per group, preimplantation losses ratio, and the serum levels of dehydroepiandrosterone (DHEA), estradiol, and progesterone. No clinical symptoms of maternal toxicity were evidenced. On the 8th day of pregnancy, the levels of DHEA and estradiol were increased and significant preimplantation losses were observed at all doses used. The present study reveals that the HETM can raise levels of DHEA and estradiol and induce difficulty in the embryo implantation in the early stages of pregnancy. The data contributes significantly to the safety aspects of using this natural product when trying to get pregnant or during pregnancy. PMID:24778700

  17. Brain renin-angiotensin system and dopaminergic cell vulnerability

    PubMed Central

    Labandeira-García, Jose L.; Garrido-Gil, Pablo; Rodriguez-Pallares, Jannette; Valenzuela, Rita; Borrajo, Ana; Rodríguez-Perez, Ana I.

    2014-01-01

    Although the renin-angiotensin system (RAS) was classically considered as a circulating system that regulates blood pressure, many tissues are now known to have a local RAS. Angiotensin, via type 1 receptors, is a major activator of the NADPH-oxidase complex, which mediates several key events in oxidative stress (OS) and inflammatory processes involved in the pathogenesis of major aging-related diseases. Several studies have demonstrated the presence of RAS components in the basal ganglia, and particularly in the nigrostriatal system. In the nigrostriatal system, RAS hyperactivation, via NADPH-oxidase complex activation, exacerbates OS and the microglial inflammatory response and contributes to progression of dopaminergic degeneration, which is inhibited by angiotensin receptor blockers and angiotensin converting enzyme (ACE) inhibitors. Several factors may induce an increase in RAS activity in the dopaminergic system. A decrease in dopaminergic activity induces compensatory upregulation of local RAS function in both dopaminergic neurons and glia. In addition to its role as an essential neurotransmitter, dopamine may also modulate microglial inflammatory responses and neuronal OS via RAS. Important counterregulatory interactions between angiotensin and dopamine have also been observed in several peripheral tissues. Neurotoxins and proinflammatory factors may also act on astrocytes to induce an increase in RAS activity, either independently of or before the loss of dopamine. Consistent with a major role of RAS in dopaminergic vulnerability, increased RAS activity has been observed in the nigra of animal models of aging, menopause and chronic cerebral hypoperfusion, which also showed higher dopaminergic vulnerability. Manipulation of the brain RAS may constitute an effective neuroprotective strategy against dopaminergic vulnerability and progression of Parkinson’s disease. PMID:25071471

  18. Distribution of angiotensin converting enzyme in sheep hypothalamus and medulla oblongata visualized by in vitro autoradiography

    SciTech Connect

    Chai, S.Y.; McKinley, M.J.; Mendelsohn, F.A.

    1987-01-01

    In vitro autoradiographic mapping of angiotensin converting enzyme (ACE) in sheep brain using the specific ACE inhibitor, /sup 125/I-351A, revealed very high densities of binding in large blood vessels and choroid plexus. In the a very high density of labelling occurred in the organum vasculosum of the lamina terminalis and median eminence and a high density in the subfornical organ and moderate density in supraoptic, suprachiasmatic, arcuate and paraventricular nuclei. All fiber tracts were unlabelled. In the medulla oblongata, a very high density of binding was detected in the area postrema and a high density in the nucleus of the solitary tract and dorsal motor nucleus of the vagus; a moderate density was found in the substantia gelatinosa of the spinal tract and the inferior olivary nucleus.

  19. Inhibition of angiotensin-converting enzyme increases oestradiol production in ewes submitted to oestrous synchronization protocol.

    PubMed

    Costa, A s; Junior, A S; Viana, G E N; Muratori, M C S; Reis, A M; Costa, A P R

    2014-10-01

    This study aimed at evaluating the effects of angiotensin-converting enzyme inhibitor (enalapril) and angiotensin II antagonist (valsartan) on the oestradiol and progesterone production in ewes submitted to oestrous synchronization protocol. The animals were weighed and randomly divided into three groups (n = 7). A pre-experiment conducted to verify the effectiveness and toxicity of enalapril (0.5 mg/kg LW) and valsartan (2.2 mg/kg LW) showed that, in the doses used, these drugs were effective in reducing blood pressure without producing toxic effects. In the experiment, all animals were subjected to oestrous synchronization protocol during 12 days. On D10, D11 and D12, animals received saline, enalapril or valsartan (same doses of the pre-experiment), according to the group randomly divided. The hormonal analysis showed an increase in oestradiol on the last day of the protocol (D12) in animals that received enalapril (p < 0.05), but not in other groups, without changing the concentration of progesterone in any of the treatments. It is concluded that valsartan and enalapril are safe and effective subcutaneously for use in sheep and that the angiotensin-converting enzyme (ACE) inhibition with enalapril leads to an increase in oestradiol production near ovulation without changing the concentration of progesterone. This shows that ACE inhibition may be a useful tool in reproductive biotechnologies involving induction and synchronization of oestrus and ovulation in sheep.

  20. ACE-I Inhibitory Activity from Phaseolus lunatus and Phaseolus vulgaris Peptide Fractions Obtained by Ultrafiltration.

    PubMed

    Betancur-Ancona, David; Dávila-Ortiz, Gloria; Chel-Guerrero, Luis Antonio; Torruco-Uco, Juan Gabriel

    2015-11-01

    The involvement of angiotensin-I-converting enzyme (ACE-I) as one of the mechanisms controlling blood pressure is being studied to find alternative means of control of hypertension on human beings. On the market there are synthetic drugs that can control it, but these can cause undesirable health side effects. In this work was assessed the fractionation by ultrafiltration of the Lima bean (Phaseolus lunatus) and Jamapa bean (Phaseolus vulgaris), protein hydrolysates obtained with Alcalase(®) and Flavourzyme(®) on ACE-I inhibitory activity. Four membranes of different molecular cutoffs (10, 5, 3, and 1 kDa) were used. Fractions that had a higher inhibitory activity in both legumes were denominated as E (<1 kDa) with IC50 of 30.3 and 51.8 μg/mL values for the P. lunatus with Alcalase and Flavourzyme, respectively, and for the Phaseolus vulgaris with Alcalase and Flavourzyme with about 63.8 and 65.8 μg/mL values, respectively. The amino acid composition of these fractions showed residues in essential amino acids, which make a good source of energy and amino acids. On the other hand, the presence of hydrophobic amino acids such as V and P is a determining factor in the ACE-I inhibitor effect. The results suggest the possibility of obtaining and utilizing these peptide fractions in the development and innovation of a functional product that helps with treatment and/or prevention of hypertension.

  1. Effect of Sodium-Glucose Co-Transporter 2 Inhibitor, Dapagliflozin, on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes

    PubMed Central

    Shin, Seok Joon; Chung, Sungjin; Kim, Soo Jung; Lee, Eun-Mi; Yoo, Young-Hye; Kim, Ji-Won; Ahn, Yu-Bae; Kim, Eun-Sook; Moon, Sung-Dae; Kim, Myung-Jun

    2016-01-01

    Background Renal renin-angiotensin system (RAS) activation is one of the important pathogenic mechanisms in the development of diabetic nephropathy in type 2 diabetes. The aim of this study was to investigate the effects of a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, dapagliflozin, on renal RAS in an animal model with type 2 diabetes. Methods Dapagliflozin (1.0 mg/kg, OL-DA) or voglibose (0.6 mg/kg, OL-VO, diabetic control) (n = 10 each) was administered to Otsuka Long-Evans Tokushima Fatty (OLETF) rats for 12 weeks. We used voglibose, an alpha-glucosidase inhibitor, as a comparable counterpart to SGLT2 inhibitor because of its postprandial glucose-lowering effect without proven renoprotective effects. Control Long-Evans Tokushima Otsuka (LT) and OLETF (OL-C) rats received saline (n = 10, each). Changes in blood glucose, urine albumin, creatinine clearance, and oxidative stress were measured. Inflammatory cell infiltration, mesangial widening, and interstitial fibrosis in the kidney were evaluated by histological analysis. The effects of dapagliflozin on renal expression of the RAS components were evaluated by quantitative RT-PCR in renal tissue. Results After treatment, hyperglycemia and urine microalbumin levels were attenuated in both OL-DA and OL-VO rather than in the OL-C group (P < 0.05). The urine angiotensin II (Ang II) and angiotensinogen levels were significantly decreased following treatment with dapagliflozin or voglibose, but suppression of urine Ang II level was more prominent in the OL-DA than the OL-VO group (P < 0.05). The expressions of angiotensin type 1 receptor and tissue oxidative stress markers were markedly increased in OL-C rats, which were reversed by dapagliflozin or voglibose (P < 0.05, both). Inflammatory cell infiltration, mesangial widening, interstitial fibrosis, and total collagen content were significantly increased in OL-C rats, which were attenuated in OL-DA group (P < 0.05). Conclusion Dapagliflozin treatment showed

  2. Angiotensin Converting Enzyme Activity in Alopecia Areata

    PubMed Central

    Namazi, Mohammad Reza; Handjani, Farhad; Eftekhar, Ebrahim; Kalafi, Amir

    2014-01-01

    Background. Alopecia areata (AA) is a chronic inflammatory disease of the hair follicle. The exact pathogenesis of AA remains unknown, although recent studies support a T-cell mediated autoimmune process. On the other hand, some studies have proposed that the renin-angiotensin-aldosterone system (RAAS) may play a role in autoimmunity. Therefore, we assessed serum activity of angiotensin converting enzyme (ACE), a component of this system, in AA. Methods. ACE activity was measured in the sera of 19 patients with AA and 16 healthy control subjects. In addition, the relationship between severity and duration of the disease and ACE activity was evaluated. Results. Serum ACE activity was higher in the patient group (55.81 U/L) compared to the control group (46.41 U/L), but the difference was not statistically significant (P = 0.085). Also, there was no correlation between ACE activity and severity (P = 0.13) and duration of disease (P = 0.25) in the patient group. Conclusion. The increased serum ACE activity found in this study may demonstrate local involvement of the RAAS in the pathogenesis of AA. Assessment of ACE in a study with a larger sample size as well as in tissue samples is recommended in order to further evaluate the possible role of RAAS in AA. PMID:25349723

  3. Comprehensive Database Service : ACE

    NASA Astrophysics Data System (ADS)

    Hiroki, Morio; Abe, Tetsuya

    The Data base, ACE commercialized by Chunichi Shimbun in Feb. 1986, aims at covering not only newspaper articles but also the other information which composes different data bases. This paper introduces newspaper articles, new material information and character information which are included in ACE. The content of ACE, how to use the online service, and future subjects are described.

  4. Arterial hypertension treated with angiotensin converting enzyme inhibitors and glucocorticoids are independent risk factors associated with decreased glomerular filtration rate in systemic sclerosis.

    PubMed

    Ostojic, Predrag; Stojanovski, Natasa

    2017-03-01

    The aim of this study was to estimate prevalence and severity of renal insufficiency in systemic sclerosis (SSc) and to assess risk factors associated with reduced glomerular filtration rate (GFR) in SSc patients. Seventy-three consecutive patients with SSc (67 women and 6 men), mean age 56.2 years, mean disease duration 6.7 years, were included in this cross-sectional study. GFR was measured by creatinine clearance (CCr) in all patients, as well as 24-h proteinuria. We assessed frequency and severity of renal insufficiency in our patients with SSc and estimated the association of renal insufficiency with age, disease duration, subtype of the disease, earlier diagnosed arterial hypertension, and medications for which we assumed to affect renal function-cytostatics, nonsteroidal anti-inflammatory drugs, glucocorticoids, ACE inhibitors, diuretics, and calcium channel blockers (CCB). Fifty-six out of 73 patients with SSc (76.7%) had reduced GFR (CCr lower than 90 ml/min), compared to 17/73 (23.3%) of patients with normal renal function. Mild renal insufficiency was noticed in 28/73 (38.4%), moderate in 21/73 (28.8%) and severe renal insufficiency in 5/73 (6.8%). End-stage renal disease (CCr < 15 ml/min) was found in 2/73 (2.7%) of patients. Using the univariate general linear statistical model, we have found that previously diagnosed arterial hypertension and treatment with glucocorticoids are independent risk factors for reduced GFR. On the other hand, age, disease duration, disease form, as well as antibodies (anticentromere antibodies-ACA and anti-topoisomerase I antibodies-ATA) were excluded as independent risk factors. Patients with SSc and arterial hypertension treated with CCB had significantly higher mean CCr than patients treated with diuretics (90.4 vs 53.5 ml/min, p = 0.03), or patients treated with ACE inhibitors (90.4 vs 41.7 ml/min, p = 0.001). Decreased GFR is common in SSc. Most of patients have mild or moderate renal insufficiency

  5. Captopril avoids hypertension, the increase in plasma angiotensin II but increases angiotensin 1-7 and angiotensin II-induced perfusion pressure in isolated kidney in SHR.

    PubMed

    Castro-Moreno, P; Pardo, J P; Hernández-Muñoz, R; López-Guerrero, J J; Del Valle-Mondragón, L; Pastelín-Hernández, G; Ibarra-Barajas, M; Villalobos-Molina, R

    2012-10-01

    We investigated captopril effects, an ACE inhibitor, on hypertension development, on Ang II and Ang-(1-7) plasma concentrations, on Ang II-induced contraction in isolated kidneys, and on kidney AT1R from spontaneously hypertensive (SHR) rats. Five weeks-old SHR and Wistar Kyoto (WKY) rats were treated with captopril at 30 mg/kg/day, in drinking water for 2 or 14 weeks. Systolic blood pressure (SBP) was measured, and isolated kidneys were tested for perfusion pressure and AT1R expression; while Ang II and Ang-(1-7) concentrations were determined in plasma. Captopril did not modify SBP in WKY rats and avoided its increase as SHR aged. Plasma Ang-II concentration was ∼4-5 folds higher in SHR rats, and captopril reduced it (P<0.05); while captopril increased Ang-(1-7) by ∼2 fold in all rat groups. Captopril increased Ang II-induced pressor response in kidneys of WKY and SHR rats, phenomenon not observed in kidneys stimulated with phenylephrine, a α₁-adrenoceptor agonist. Captopril did not modify AT1R in kidney cortex and medulla among rat strains and ages. Data indicate that captopril increased Ang II-induced kidney perfusion pressure but not AT₁R density in kidney of WKY and SHR rats, due to blockade of angiotensin II synthesis; however, ACE inhibitors may have other actions like activating signaling processes that could contribute to their diverse effects.

  6. CD36/Sirtuin 1 Axis Impairment Contributes to Hepatic Steatosis in ACE2-Deficient Mice

    PubMed Central

    Qadri, Fatimunnisa; Penninger, Josef M.; Santos, Robson Augusto S.; Bader, Michael

    2016-01-01

    Background and Aims. Angiotensin converting enzyme 2 (ACE2) is an important component of the renin-angiotensin system. Since angiotensin peptides have been shown to be involved in hepatic steatosis, we aimed to evaluate the hepatic lipid profile in ACE2-deficient (ACE2−/y) mice. Methods. Male C57BL/6 and ACE2−/y mice were analyzed at the age of 3 and 6 months for alterations in the lipid profiles of plasma, faeces, and liver and for hepatic steatosis. Results. ACE2−/y mice showed lower body weight and white adipose tissue at all ages investigated. Moreover, these mice had lower levels of cholesterol, triglycerides, and nonesterified fatty acids in plasma. Strikingly, ACE2−/y mice showed high deposition of lipids in the liver. Expression of CD36, a protein involved in the uptake of triglycerides in liver, was increased in ACE2−/y mice. Concurrently, these mice exhibited an increase in hepatic oxidative stress, evidenced by increased lipid peroxidation and expression of uncoupling protein 2, and downregulation of sirtuin 1. ACE2−/y mice also showed impairments in glucose metabolism and insulin signaling in the liver. Conclusions. Deletion of ACE2 causes CD36/sirtuin 1 axis impairment and thereby interferes with lipid homeostasis, leading to lipodystrophy and steatosis. PMID:28101297

  7. CD36/Sirtuin 1 Axis Impairment Contributes to Hepatic Steatosis in ACE2-Deficient Mice.

    PubMed

    Nunes-Souza, Valéria; Alenina, Natalia; Qadri, Fatimunnisa; Penninger, Josef M; Santos, Robson Augusto S; Bader, Michael; Rabelo, Luiza A

    2016-01-01

    Background and Aims. Angiotensin converting enzyme 2 (ACE2) is an important component of the renin-angiotensin system. Since angiotensin peptides have been shown to be involved in hepatic steatosis, we aimed to evaluate the hepatic lipid profile in ACE2-deficient (ACE2(-/y)) mice. Methods. Male C57BL/6 and ACE2(-/y) mice were analyzed at the age of 3 and 6 months for alterations in the lipid profiles of plasma, faeces, and liver and for hepatic steatosis. Results. ACE2(-/y) mice showed lower body weight and white adipose tissue at all ages investigated. Moreover, these mice had lower levels of cholesterol, triglycerides, and nonesterified fatty acids in plasma. Strikingly, ACE2(-/y) mice showed high deposition of lipids in the liver. Expression of CD36, a protein involved in the uptake of triglycerides in liver, was increased in ACE2(-/y) mice. Concurrently, these mice exhibited an increase in hepatic oxidative stress, evidenced by increased lipid peroxidation and expression of uncoupling protein 2, and downregulation of sirtuin 1. ACE2(-/y) mice also showed impairments in glucose metabolism and insulin signaling in the liver. Conclusions. Deletion of ACE2 causes CD36/sirtuin 1 axis impairment and thereby interferes with lipid homeostasis, leading to lipodystrophy and steatosis.

  8. Correlation between ultra-high performance liquid chromatography-tandem mass spectrometry and reversed-phase thin-layer chromatography hydrophobicity data for evaluation of angiotensin-converting enzyme inhibitors absorption.

    PubMed

    Odovic, Jadranka V; Markovic, Bojan D; Injac, Rade D; Vladimirov, Sote M; Karljikovic-Rajic, Katarina D

    2012-10-05

    In this research seven ACE inhibitors (enalapril, quinapril, fosinopril, lisinopril, cilazapril, ramipril, benazepril) were studied to evaluate the correlation between their absorption and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS) and reversed-phase thin-layer chromatography (RP-TLC) hydrophobicity data (φ(0) or C(0) parameters, respectively). Their absorption values were in the range of 25-60%, while calculated KOWWIN logP values were from -0.94 to 6.61. Additionally, perindopril (absorption 70%, KOWWIN logP 2.59) and moexipril (absorption 22%, KOWWIN logP 3.36) were introduced for the theoretical considerations due to their high/low absorption values which were on the opposite sites in comparison with the majority of ACE inhibitors (25-60%). In the theoretical considerations it was shown that the solubility data (logS) must be considered, as independent variable, simultaneously with KOWWIN logP to obtain reliable correlation (r(2)=0.7208) between absorption and ACE inhibitors lipophilicity. As the main topic of this study, the relationships between literature available and absorption data predicted by multiple linear regression (MLR) using logS values besides chromatographically obtained hydrophobicity parameters C(0) (r(2)=0.6424) or φ(0) (r(2)=0.6762) were studied proving that these parameters could be used in ACE inhibitors absorption evaluation. The UHPLC-MS method provides the direct application of experimentally obtained φ(0) values that is the advantage of this method. For better MLR correlation of ACE inhibitors absorption with C(0) parameters (RP-TLC) and logS, mathematical conversion of C(0) parameters to logC(0) values was necessary based on requisite for probability value of regression analysis (P<0.05). The accordance and differences between hydrophobicity parameters obtained by UHPLC-MS and RP-TLC were defined.

  9. Comparative Effects of Direct Renin Inhibitor and Angiotensin Receptor Blocker on Albuminuria in Hypertensive Patients with Type 2 Diabetes. A Randomized Controlled Trial

    PubMed Central

    Uzu, Takashi; Araki, Shin-ichi; Kashiwagi, Atsunori; Haneda, Masakazu; Koya, Daisuke; Yokoyama, Hiroki; Kida, Yasuo; Ikebuchi, Motoyoshi; Nakamura, Takaaki; Nishimura, Masataka; Takahara, Noriko; Obata, Toshiyuki; Omichi, Nobuyuki; Sakamoto, Katsuhiko; Shingu, Ryosuke; Taki, Hideki; Nagai, Yoshio; Tokuda, Hiroaki; Kitada, Munehiro; Misawa, Miwa; Nishiyama, Akira; Kobori, Hiroyuki; Maegawa, Hiroshi

    2016-01-01

    Background In patients with diabetes, albuminuria is a risk marker of end-stage renal disease and cardiovascular events. An increased renin-angiotensin system activity has been reported to play an important role in the pathological processes in these conditions. We compared the effect of aliskiren, a direct renin inhibitor (DRI), with that of angiotensin receptor blockers (ARBs) on albuminuria and urinary excretion of angiotensinogen, a marker of intrarenal renin-angiotensin system activity. Methods We randomly assigned 237 type 2 diabetic patients with high-normal albuminuria (10 to <30 mg/g of albumin-to-creatinine ratio) or microalbuminuria (30 to <300 mg/g) to the DRI group or ARB group (any ARB) with a target blood pressure of <130/80 mmHg. The primary endpoint was a reduction in albuminuria. Results Twelve patients dropped out during the observation period, and a total of 225 patients were analyzed. During the study period, the systolic and diastolic blood pressures were not different between the groups. The changes in the urinary albumin-to-creatinine ratio from baseline to the end of the treatment period in the DRI and ARB groups were similar (-5.5% and -6.7%, respectively). In contrast, a significant reduction in the urinary excretion of angiotensinogen was observed in the ARB group but not in the DRI group. In the subgroup analysis, a significant reduction in the albuminuria was observed in the ARB group but not in the DRI group among high-normal albuminuria patients. Conclusion DRI and ARB reduced albuminuria in hypertensive patients with type 2 diabetes. In addition, ARB, but not DRI, reduced albuminuria even in patients with normal albuminuria. DRI is not superior to ARB in the reduction of urinary excretion of albumin and angiotensinogen. PMID:28033332

  10. Empirical and bioinformatic characterization of buffalo (Bubalus bubalis) colostrum whey peptides & their angiotensin I-converting enzyme inhibition.

    PubMed

    Ashok, N R; Aparna, H S

    2017-08-01

    Whey based peptides are well known for their nutritional and multifunctional properties. In this context, whey proteins from buffalo colostrum & milk were digested by in vitro simulation digestion and analyzed by nano-LC-MS/MS. Functional protein association networks, gene annotations and localization of identified proteins were carried out. An ACE inhibitory peptide sorted from the library was custom synthesized and an in vitro ACE assay was performed. The study led to the identification of 74 small peptides which were clustered into 5 gene functional groups and majority of them were secretory proteins. Among the identified peptides, majority of them were found identical to angiotensin I-converting enzyme (ACE) inhibitors, antioxidant, antimicrobial, immunomodulatory and opioidal peptides. An octapeptide (m/z - 902.51, IQKVAGTW) synthesized was found to inhibit ACE with an IC50 of 300±2µM. The present investigation thus establishes newer vista for food derived peptides having ACE inhibitory potential for nutraceutical or therapeutic applications.

  11. Structural basis of Ac-SDKP hydrolysis by Angiotensin-I converting enzyme

    PubMed Central

    Masuyer, Geoffrey; Douglas, Ross G.; Sturrock, Edward D.; Acharya, K. Ravi

    2015-01-01

    Angiotensin-I converting enzyme (ACE) is a zinc dipeptidylcarboxypeptidase with two active domains and plays a key role in the regulation of blood pressure and electrolyte homeostasis, making it the principal target in the treatment of cardiovascular disease. More recently, the tetrapetide N-acetyl-Ser–Asp–Lys–Pro (Ac-SDKP) has emerged as a potent antifibrotic agent and negative regulator of haematopoietic stem cell differentiation which is processed exclusively by ACE. Here we provide a detailed biochemical and structural basis for the domain preference of Ac-SDKP. The high resolution crystal structures of N-domain ACE in complex with the dipeptide products of Ac-SDKP cleavage were obtained and offered a template to model the mechanism of substrate recognition of the enzyme. A comprehensive kinetic study of Ac-SDKP and domain co-operation was performed and indicated domain interactions affecting processing of the tetrapeptide substrate. Our results further illustrate the molecular basis for N-domain selectivity and should help design novel ACE inhibitors and Ac-SDKP analogues that could be used in the treatment of fibrosis disorders. PMID:26403559

  12. Early administration of angiotensin-converting enzyme inhibitor captopril, prevents the development of hypertension programmed by intrauterine exposure to a maternal low-protein diet in the rat.

    PubMed

    Sherman, R C; Langley-Evans, S C

    1998-04-01

    administration of an angiotensin-converting enzyme inhibitor. The actions of angiotensin II in the late suckling period may be a critical determinant of long-term cardiovascular functions in these animals.

  13. Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a diminution in the expression and activity of connective tissue growth factor (CTGF/CCN-2).

    PubMed

    Morales, María Gabriela; Cabrera, Daniel; Céspedes, Carlos; Vio, Carlos P; Vazquez, Yaneisi; Brandan, Enrique; Cabello-Verrugio, Claudio

    2013-07-01

    The renin-angiotensin system (RAS), through angiotensin II and the angiotensin-converting enzyme (ACE), is involved in the genesis and progression of fibrotic diseases characterized by the replacement of normal tissue by an accumulation of an extracellular matrix (ECM). Duchenne muscular dystrophy (DMD) presents fibrosis and a decrease in muscle strength produced by chronic damage. The mdx mouse is a murine model of DMD and develops the same characteristics as dystrophic patients when subjected to chronic exercise. The connective tissue growth factor (CTGF/CCN2) and transforming growth factor type beta (TGF-β), which are overexpressed in muscular dystrophies, play a major role in many progressive scarring conditions. We have tested the hypothesis that ACE inhibition decreases fibrosis in dystrophic skeletal muscle by treatment of mdx mice with the ACE inhibitor enalapril. Both sedentary and exercised mdx mice treated with enalapril showed improvement in gastrocnemius muscle strength explained by a reduction in both muscle damage and ECM accumulation. ACE inhibition decreased CTGF expression in sedentary or exercised mdx mice and diminished CTGF-induced pro-fibrotic activity in a model of CTGF overexpression by adenoviral infection. Enalapril did not have an effect on TGF-β1 expression or its signaling activity in sedentary or exercised dystrophic mice. Thus, ACE inhibition might improve muscle strength and decrease fibrosis by diminishing specifically CTGF expression and activity without affecting TGF-β1 signaling. Our data provide insights into the pathogenic events in dystrophic muscle. We propose ACE as a target for developing therapies for DMD and related diseases.

  14. A unique geometry of the active site of angiotensin-converting enzyme consistent with structure-activity studies

    NASA Astrophysics Data System (ADS)

    Mayer, Dorica; Naylor, Christopher B.; Motoc, Ioan; Marshall, Garland R.

    1987-04-01

    Previous structure-activity studies of captopril and related active angiotensin-converting enzyme (ACE) inhibitors have led to the conclusion that the basic structural requirements for inhibition of ACE involve (a) a terminal carboxyl group; (b) an amido carbonyl group; and (c) different types of effective zinc (Zn) ligand functional groups. Such structural requirements common to a set of compounds acting at the same receptor have been used to define a pharmacophoric pattern of atoms or groups of atoms mutually oriented in space that is necessary for ACE inhibition from a stereochemical point of view. A unique pharmacophore model (within the resolution of approximately 0.15 Å) was observed using a method for systematic search of the conformational hyperspace available to the 28 structurally different molecules under study. The method does not assume a common molecular framework, and, therefore, allows comparison of different compounds that is independent of their absolute orientation. Consequently, by placing the carboxyl binding group, the binding site for amido carbonyl, and the Zn atom site in positions determined by ideal binding geometry with the inhibitors' functional groups, it was possible to clearly specify a geometry for the active site of ACE.

  15. Investigations into inhibitor type and mode, simulated gastrointestinal digestion, and cell transport of the angiotensin I-converting enzyme-inhibitory peptides in Pacific hake (Merluccius productus) fillet hydrolysate.

    PubMed

    Cinq-Mars, Crystal D; Hu, Chun; Kitts, David D; Li-Chan, Eunice C Y

    2008-01-23

    Fish protein hydrolysate (FPH) produced by incubation of Pacific hake fillet with 3.00% Protamex at pH 6.5 and 40 degrees C for 125 min demonstrated in vitro ACE-inhibitory activity (IC50 = 165 microg/mL), which was enhanced by ultrafiltration through a 10 kDa molecular weight cutoff membrane (IC50 = 44 microg/mL). However, after simulated gastrointestinal digestion, FPH and ultrafiltrate had similar ACE-inhibitory activity (IC 50 = 90 microg/mL), indicating that FPH peptides act as "pro-drug type" inhibitors and that enrichment by ultrafiltration may be unnecessary. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry confirmed that the molecular weights of major peaks were <1 kDa regardless of ultrafiltration. ACE-inhibitory activities of digested hydrolysates were not significantly affected by preincubation with ACE ( P > 0.05) and exhibited a competitive inhibitory mode. A permeability assay using fully differentiated colorectal adenocarcinoma (Caco-2) cells showed an apical to basolateral transport of peptides that ranged from approximately 2 to 20% after 2 h at 37 degrees C. Pacific hake fillet hydrolysates are a potentially bioavailable source of ACE-inhibitory peptides awaiting further in vivo study.

  16. Economic evaluations of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in type 2 diabetic nephropathy: a systematic review

    PubMed Central

    2014-01-01

    Background Structured comparison of pharmacoeconomic analyses for ACEIs and ARBs in patients with type 2 diabetic nephropathy is still lacking. This review aims to systematically review the cost-effectiveness of both ACEIs and ARBs in type 2 diabetic patients with nephropathy. Methods A systematic literature search was performed in MEDLINE and EMBASE for the period from November 1, 1999 to Oct 31, 2011. Two reviewers independently assessed the quality of the articles included and extracted data. All cost-effectiveness results were converted to 2011 Euros. Results Up to October 2011, 434 articles were identified. After full-text checking and quality assessment, 30 articles were finally included in this review involving 39 study settings. All 6 ACEIs studies were literature-based evaluations which synthesized data from different sources. Other 33 studies were directed at ARBs and were designed based on specific trials. The Markov model was the most common decision analytic method used in the evaluations. From the cost-effectiveness results, 37 out of 39 studies indicated either ACEIs or ARBs were cost-saving comparing with placebo/conventional treatment, such as amlodipine. A lack of evidence was assessed for valid direct comparison of cost-effectiveness between ACEIs and ARBs. Conclusion There is a lack of direct comparisons of ACEIs and ARBs in existing economic evaluations. Considering the current evidence, both ACEIs and ARBs are likely cost-saving comparing with conventional therapy, excluding such RAAS inhibitors. PMID:24428868

  17. Renin angiotensin system inhibitors for patients with stable coronary artery disease without heart failure: systematic review and meta-analysis of randomized trials

    PubMed Central

    Fakheri, Robert; Wandel, Simon; Toklu, Bora; Wandel, Jasmin; Messerli, Franz H

    2017-01-01

    Objective To critically evaluate the efficacy of renin angiotensin system inhibitors (RASi) in patients with coronary artery disease without heart failure, compared with active controls or placebo. Design Meta-analysis of randomized trials. Data sources PubMed, EMBASE, and CENTRAL databases until 1 May 2016. Eligibility criteria for selecting studies Randomized trials of RASi versus placebo or active controls in patients with stable coronary artery disease without heart failure (defined as left ventricular ejection fraction ≥40% or without clinical heart failure). Each trial had to enroll at least 100 patients with coronary artery disease without heart failure, with at least one year’s follow-up. Studies were excluded if they were redacted or compared use of angiotensin converting enzyme inhibitors with angiotensin receptor blockers. Outcomes were death, cardiovascular death, myocardial infarction, angina, stroke, heart failure, revascularization, incident diabetes, and drug withdrawal due to adverse effects. Results 24 trials with 198 275 patient years of follow-up were included. RASi reduced the risk of all cause mortality (rate ratio 0.84, 95% confidence interval 0.72 to 0.98), cardiovascular mortality (0.74, 0.59 to 0.94), myocardial infarction (0.82, 0.76 to 0.88), stroke (0.79, 0.70 to 0.89), angina, heart failure, and revascularization when compared with placebo but not when compared with active controls (all cause mortality, 1.05, 0.94 to 1.17; Pinteraction=0.006; cardiovascular mortality, 1.08, 0.93 to 1.25, Pinteraction<0.001; myocardial infarction, 0.99, 0.87 to 1.12, Pinteraction=0.01; stroke, 1.10, 0.93 to 1.31; Pinteraction=0.002). Bayesian meta-regression analysis showed that the effect of RASi when compared with placebo on all cause mortality and cardiovascular mortality was dependent on the control event rate, such that RASi was only beneficial in trials with high control event rates (>14.10 deaths and >7.65 cardiovascular deaths per

  18. Brain ACE2 shedding contributes to the development of neurogenic hypertension

    PubMed Central

    Chhabra, Kavaljit H.; Lazartigues, Eric

    2015-01-01

    Rationale Over-activity of the brain Renin Angiotensin System (RAS) is a major contributor to neurogenic hypertension. While over-expression of Angiotensin-Converting Enzyme type 2 (ACE2) has been shown to be beneficial in reducing hypertension by transforming Angiotensin (Ang)-II into Ang-(1-7), several groups have reported decreased brain ACE2 expression and activity during the development of hypertension. Objective We hypothesized that ADAM17-mediated ACE2 shedding results in decreased membrane-bound ACE2 in the brain, thus promoting the development of neurogenic hypertension. Methods and Results To test this hypothesis, we used the DOCA-salt model of neurogenic hypertension in non-transgenic (NT) and syn-hACE2 mice over-expressing ACE2 in neurons. DOCA-salt treatment in NT mice led to significant increases in blood pressure, hypothalamic Ang-II levels, inflammation, impaired baroreflex sensitivity, autonomic dysfunction, as well as decreased hypothalamic ACE2 activity and expression, while these changes were blunted or prevented in syn-hACE2 mice. In addition, reduction of ACE2 expression and activity in the brain paralleled a rise in ACE2 activity in the cerebrospinal fluid of NT mice following DOCA-salt treatment and was accompanied by enhanced ADAM17 expression and activity in the hypothalamus. Chronic knockdown of ADAM17 in the brain blunted the development of hypertension and restored ACE2 activity and baroreflex function. Conclusions Our data provide the first evidence that ADAM17-mediated shedding impairs brain ACE2 compensatory activity, thus contributing to the development of neurogenic hypertension. PMID:24014829

  19. Alternative Roles of STAT3 and MAPK Signaling Pathways in the MMPs Activation and Progression of Lung Injury Induced by Cigarette Smoke Exposure in ACE2 Knockout Mice

    PubMed Central

    Hung, Yi-Han; Hsieh, Wen-Yeh; Hsieh, Jih-Sheng; Liu, Fon-Chang; Tsai, Chin-Hung; Lu, Li-Che; Huang, Chen-Yi; Wu, Chien-Liang; Lin, Chih-Sheng

    2016-01-01

    Inflammation-mediated abnormalities in the renin-angiotensin system (RAS) and expression of matrix metalloproteinases (MMPs) are implicated in the pathogenesis of lung injury. Angiotensin converting enzyme II (ACE2), an angiotensin converting enzyme (ACE) homologue that displays antagonist effects on ACE/angiotensin II (Ang II) axis, could also play a protective role against lung diseases. However, the relationship between ACE2 and MMPs activation in lung injury is still largely unclear. The purpose of this study is to investigate whether MMPs activity could be affected by ACE2 and which ACE2 derived signaling pathways could be also involved via using a mouse model with lung injury induced by cigarette smoke (CS) exposure for 1 to 3 weeks. Wild-type (WT; C57BL/6) and ACE2 KO mice (ACE2-/-) were utilized to study CS-induced lung injury. Increases in the resting respiratory rate (RRR), pulmonary immunokines, leukocyte infiltration and bronchial hyperplasia were observed in the CS-exposed mice. Compared to WT mice, more serious physiopathological changes were found in ACE2-/- mice in the first week of CS exposure. CS exposure increased pulmonary ACE and ACE2 activities in WT mice, and significantly increased ACE in ACE2-/- mice. Furthermore, the activity of pulmonary MMPs was decreased in CS-exposed WT mice, whereas this activity was increased in ACE2-/- mice. CS exposure increased the pulmonary p-p38, p-JNK and p-ERK1/2 level in all mice. In ACE2-/- mice, a significant increase p-STAT3 signaling was detected; however, no effect was observed on the p-STAT3 level in WT mice. Our results support the hypothesis that ACE2 deficiency influences MMPs activation and STAT3 phosphorylation signaling to promote more pulmonary inflammation in the development of lung injury. PMID:27019629

  20. ACE2 deficiency reduces β-cell mass and impairs β-cell proliferation in obese C57BL/6 mice

    PubMed Central

    Shoemaker, Robin; Yiannikouris, Frederique; Thatcher, Sean

    2015-01-01

    Drugs that inhibit the renin-angiotensin system (RAS) decrease the onset of type 2 diabetes (T2D). Pancreatic islets express RAS components, including angiotensin-converting enzyme 2 (ACE2), which cleaves angiotensin II (Ang II) to angiotensin-(1–7) [Ang-(1–7)]. Overexpression of ACE2 in pancreas of diabetic mice improved glucose homeostasis. The purpose of this study was to determine if deficiency of endogenous ACE2 contributes to islet dysfunction and T2D. We hypothesized that ACE2 deficiency potentiates the decline in β-cell function and augments the development of diet-induced T2D. Male Ace2+/y or Ace2−/y mice were fed a low-fat (LF) or high-fat (HF) diet for 1 or 4 mo. A subset of 1-mo HF-fed mice were infused with Sal (Sal), losartan (Los), or Ang-(1–7). At 4 mo, while both genotypes of HF-fed mice developed a similar level of insulin resistance, adaptive hyperinsulinemia was reduced in Ace2−/y vs. Ace2+/y mice. Similarly, in vivo glucose-stimulated insulin secretion (GSIS) was reduced in 1-mo HF-fed Ace2−/y compared with Ace2+/y mice, resulting in augmented hyperglycemia. The average islet area was significantly smaller in both LF- and HF-fed Ace2−/y vs. Ace2+/y mice. Additionally, β-cell mass and proliferation were reduced significantly in HF-fed Ace2−/y vs. Ace2+/y mice. Neither infusion of Los nor Ang-(1–7) was able to correct impaired in vivo GSIS of HF-fed ACE2-deficient mice. These results demonstrate a critical role for endogenous ACE2 in the adaptive β-cell hyperinsulinemic response to HF feeding through regulation of β-cell proliferation and growth. PMID:26389599

  1. Dynamics of ADAM17-Mediated Shedding of ACE2 Applied to Pancreatic Islets of Male db/db Mice

    PubMed Central

    Pedersen, Kim Brint; Chodavarapu, Harshita; Porretta, Constance; Robinson, Leonie K.

    2015-01-01

    Angiotensin-converting enzyme 2 (ACE2) gene therapy aimed at counteracting pancreatic ACE2 depletion improves glucose regulation in two diabetic mouse models: db/db mice and angiotensin II-infused mice. A disintegrin and metalloproteinase 17 (ADAM17) can cause shedding of ACE2 from the cell membrane. The aim of our studies was to determine whether ADAM17 depletes ACE2 levels in pancreatic islets and β-cells. Dynamics of ADAM17-mediated ACE2 shedding were investigated in 832/13 insulinoma cells. Within a wide range of ACE2 expression levels, including the level observed in mouse pancreatic islets, overexpression of ADAM17 increases shed ACE2 and decreases cellular ACE2 levels. We provide a mathematical description of shed and cellular ACE2 activities as a function of the ADAM17 activity. The effect of ADAM17 on the cellular ACE2 content was relatively modest with an absolute control strength value less than 0.25 and approaching 0 at low ADAM17 activities. Although we found that ADAM17 and ACE2 are both expressed in pancreatic islets, the β-cell is not the major cell type expressing ACE2 in islets. During diabetes progression in 8-, 12-, and 15-week-old db/db mice, ACE2 mRNA and ACE2 activity levels in pancreatic islets were not decreased over time nor significantly decreased compared with nondiabetic db/m mice. Levels of ADAM17 mRNA and ADAM17 activity were also not significantly changed. Inhibiting basal ADAM17 activity in mouse islets failed to affect ACE2 levels. We conclude that whereas ADAM17 has the ability to shed ACE2, ADAM17 does not deplete ACE2 from pancreatic islets in diabetic db/db mice. PMID:26441236

  2. JS ISH-ECCR-4 THE PLASMA ALDOSTERONE / ANGIOTENSIN II RATIO FOR THE SCREENING OF SECONDARY HYPERTENSION.

    PubMed

    Poglitsch, Marko

    2016-09-01

    the portion of physiologically active angiotensin II in a patient sample. The performance of the AA2-Ratio is superior to the ARR in terms of the diagnostic window, which can be explained by the much closer functional link between aldosterone and angiotensin II comparing to the molecular distant relationship between aldosterone and renin. It has been shown that the correlation between renin concentration or activity and angiotensin II is poor especially in patients treated with anti-hypertensive drugs. In sharp contrast, the AA2-Ratio does not interfere with first line anti-hypertensive drugs including ACE inhibitors.The AA2-Ratio has the potential to be superior to the ARR in terms of its ability to better reflecting the activity of the true direct circulating regulator of aldosterone (i.e. angiotensin II rather than renin), and being unaffected by antihypertensive medications including ACE inhibitors. Data obtained in proof-of-concept studies proved the AA2-Ratio to be a powerful and cost-effective diagnostic tool for the diagnosis of PA among hypertensive patients. The stability of the AA2-Ratio in the presence of ACE-inhibition points to a potential use of the AA2-Ratio PA screening in hypertensive patients without ACE-inhibitor discontinuation.

  3. Angiotensin-converting enzyme 2 amplification limited to the circulation does not protect mice from development of diabetic nephropathy.

    PubMed

    Wysocki, Jan; Ye, Minghao; Khattab, Ahmed M; Fogo, Agnes; Martin, Aline; David, Nicolae Valentin; Kanwar, Yashpal; Osborn, Mark; Batlle, Daniel

    2016-12-04

    Blockers of the renin-angiotensin system are effective in the treatment of experimental and clinical diabetic nephropathy. An approach different from blocking the formation or action of angiotensin II (1-8) that could also be effective involves fostering its degradation. Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that cleaves angiotensin II (1-8) to form angiotensin (1-7). Therefore, we examined the renal effects of murine recombinant ACE2 in mice with streptozotocin-induced diabetic nephropathy as well as that of amplification of circulating ACE2 using minicircle DNA delivery prior to induction of experimental diabetes. This delivery resulted in a long-term sustained and profound increase in serum ACE2 activity and enhanced ability to metabolize an acute angiotensin II (1-8) load. In mice with streptozotocin-induced diabetes pretreated with minicircle ACE2, ACE2 protein in plasma increased markedly and this was associated with a more than 100-fold increase in serum ACE2 activity. However, minicircle ACE2 did not result in changes in urinary ACE2 activity as compared to untreated diabetic mice. In both diabetic groups, glomerular filtration rate increased significantly and to the same extent as compared to non-diabetic controls. Albuminuria, glomerular mesangial expansion, glomerular cellularity, and glomerular size were all increased to a similar extent in minicircle ACE2-treated and untreated diabetic mice, as compared to non-diabetic controls. Recombinant mouse ACE2 given for 4 weeks by intraperitoneal daily injections in mice with streptozotocin-induced diabetic nephropathy also failed to improve albuminuria or kidney pathology. Thus, a profound augmentation of ACE2 confined to the circulation failed to ameliorate the glomerular lesions and hyperfiltration characteristic of early diabetic nephropathy. These findings emphasize the importance of targeting the kidney rather than the circulatory renin angiotensin system to combat diabetic

  4. Bradykinin and angiotensin-converting enzyme inhibition in cardioprotection

    PubMed Central

    Jancso, G; Jaberansari, MT; Gasz, B; Szanto, Z; Cserepes, B; Röth, E

    2004-01-01

    OBJECTIVES: To show that angiotensin-converting enzyme (ACE) inhibition potentiates subthreshold ischemic preconditioning (IPC) via the elevation of bradykinin activity, leading to a fully delayed cardioprotective response. METHODS: On day 1 of the experiment, pigs were subjected to sham (group 1, controls) or IPC protocols. In groups 2 and 3, 4×5 min and 2×2 min of IPC, respectively, were elicited by occluding the left anterior descending coronary artery with percutaneous transluminal coronary angioplasty inflatable balloon catheter. Group 4 was subjected to the ACE inhibitor perindoprilate only. In group 5, the pigs were pretreated with perindoprilate (0.06 mg/kg) and then subjected to 2×2 min IPC. In group 6, intracoronary HOE 140 (a selective bradykinin B2 receptor antagonist) was added before the perindoprilateaugmented subthreshold (2×2 min) PC stimulus. On the second day, all animals underwent 40 min left anterior descending coronary artery ligation and 3 h reperfusion, followed by infarct size analysis using triphenyl tetrazolium chloride staining. RESULTS: The rates of infarct size and risk zone were the following in the experimental groups: group 1, 42.8%; group 2,19.5% (P<0.05); group 3, ischemia/reperfusion (I/R) 33.4%; group 4, I/R 18.4% (P<0.05); group 5, I/R 31.2%; and group 6, I/R 36.3%. A significant increase of nuclear factor kappa B activation in groups 2 and 4 was seen. CONCLUSIONS: Results confirm that ACE inhibitors do not give total pharmacological IPC, but they enhance the induction effect of small ischemic insults, which raises the ischemic tolerance of myocardium. It was determined that enhanced bradykinin activity leads to downstream nuclear factor kappa B activation in this model. PMID:19641692

  5. Antiproteinuric effect of cilnidipine in hypertensive Japanese treated with renin-angiotensin-system inhibitors - a multicenter, open, randomized trial using 24-hour urine collection.

    PubMed

    Miwa, Yoshikazu; Tsuchihashi, Takuya; Ohta, Yuko; Tominaga, Mitsuhiro; Kawano, Yuhei; Sasaguri, Toshiyuki; Ueno, Michio; Matsuoka, Hiroaki

    2010-01-01

    Sustained proteinuria is an important risk factor for not only renal but also cardiovascular morbidity and mortality. Although inhibitors of the renin-angiotensin system (RAS) have been shown to reduce proteinuria. Monotherapy with those drugs is often insufficient for optimal blood pressure (BP)-lowering and therefore, combined therapy is needed. Recent reports suggested that cilnidipine, a dual L-/N-type calcium channel blocker, has renoprotective effect by dilating both efferent and afferent arterioles. In this study, a multicenter, open, randomized trial was designed to compare the antiproteinuric effect between cilnidipine and amlodipine when coupled with RAS inhibitors in hypertensive patients with significant proteinuria. Proteinuria was evaluated by 24-h home urine collection for all patients. A total of 35 proteinuric (>0.1 g/day) patients with uncontrolled BP (>135/85 mmHg) were randomized to receive either cilnidipine (n = 18) or amlodipine (n = 17) after a 6-month treatment with RAS inhibitors and were followed for 48 weeks. At baseline, the cilnidipine group was older and had lower body mass index (BMI) compared to the amlodipine group. After 32 weeks of treatment, diastolic blood pressure (DBP) was slightly, but significantly reduced, in the cilnidipine group, although systolic blood pressure (SBP) and mean BP did not differ. The urinary protein did not differ at baseline (cilnidipine group 0.48 g/day, amlodipine group 0.52 g/day); however, it significantly decreased in the cilnidipine group (0.22 g/day) compared to the amlodipine group (0.50 g/day) after 48 weeks of treatment. Our findings suggest that cilnidipine is superior to amlodipine in preventing the progression of proteinuria in hypertensive patients even undergoing treatment with RAS inhibitors.

  6. Angiotensin Blockade in Late Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Torres, Vicente E.; Abebe, Kaleab Z.; Chapman, Arlene B.; Schrier, Robert W.; Braun, William E.; Steinman, Theodore I.; Winklhofer, Franz T.; Brosnahan, Godela; Czarnecki, Peter G.; Hogan, Marie C.; Miskulin, Dana C.; Rahbari-Oskoui, Frederic F.; Grantham, Jared J.; Harris, Peter C.; Flessner, Michael F.; Moore, Charity G.; Perrone, Ronald D.

    2014-01-01

    BACKGROUND Hypertension develops early in patients with autosomal dominant polycystic kidney disease (ADPKD) and is associated with disease progression. The renin–angiotensin–aldosterone system (RAAS) is implicated in the pathogenesis of hypertension in patients with ADPKD. Dual blockade of the RAAS may circumvent compensatory mechanisms that limit the efficacy of monotherapy with an angiotensin-converting–enzyme (ACE) inhibitor or angiotensin II–receptor blocker (ARB). METHODS In this double-blind, placebo-controlled trial, we randomly assigned 486 patients, 18 to 64 years of age, with ADPKD (estimated glomerular filtration rate [GFR], 25 to 60 ml per minute per 1.73 m2 of body-surface area) to receive an ACE inhibitor (lisinopril) and placebo or lisinopril and an ARB (telmisartan), with the doses adjusted to achieve a blood pressure of 110/70 to 130/80 mm Hg. The composite primary outcome was the time to death, end-stage renal disease, or a 50% reduction from the baseline estimated GFR. Secondary outcomes included the rates of change in urinary aldosterone and albumin excretion, frequency of hospitalizations for any cause and for cardiovascular causes, incidence of pain, frequency of ADPKD-related symptoms, quality of life, and adverse study-medication effects. Patients were followed for 5 to 8 years. RESULTS There was no significant difference between the study groups in the incidence of the composite primary outcome (hazard ratio with lisinopril–telmisartan, 1.08; 95% confidence interval, 0.82 to 1.42). The two treatments controlled blood pressure and lowered urinary aldosterone excretion similarly. The rates of decline in the estimated GFR, urinary albumin excretion, and other secondary outcomes and adverse events, including hyperkalemia and acute kidney injury, were also similar in the two groups. CONCLUSIONS Monotherapy with an ACE inhibitor was associated with blood-pressure control in most patients with ADPKD and stage 3 chronic kidney disease

  7. ACE2 orthologues in non-mammalian vertebrates (Danio, Gallus, Fugu, Tetraodon and Xenopus).

    PubMed

    Chou, Chih-Fong; Loh, Chay Boon; Foo, Yik Khoon; Shen, Shuo; Fielding, Burtram C; Tan, Timothy H P; Khan, Sehaam; Wang, Yue; Lim, Seng Gee; Hong, Wanjin; Tan, Yee-Joo; Fu, Jianlin

    2006-08-01

    Angiotensin-converting enzyme 2 (ACE2), a newly identified member in the renin-angiotensin system (RAS), acts as a negative regulator of ACE. It is mainly expressed in cardiac blood vessels and the tubular epithelia of kidneys and abnormal expression has been implicated in diabetes, hypertension and heart failure. The mechanism and physiological function of this zinc metallopeptidase in mammals are not yet fully understood. Non-mammalian vertebrate models offer attractive and simple alternatives that could facilitate the exploration of ACE2 function. In this paper we report the in silico analysis of Ace2 genes from the Gallus (chicken), Xenopus (frog), Fugu and Tetraodon (pufferfish) genome assembly databases, and from the Danio (zebrafish) cDNA library. Exon ambiguities of Danio and Xenopus Ace2s were resolved by RT-PCR and 3'RACE. Analyses of the exon-intron structures, alignment, phylogeny and hydrophilicity plots, together with the conserved synteny among these vertebrates, support the orthologous relationship between mammalian and non-mammalian ACE2s. The putative promoters of Ace2 from human, Tetraodon and Xenopus tropicalis drove the expression of enhanced green fluorescent protein (EGFP) specifically in the heart tissue of transgenic Xenopus thus making it a suitable model for future functional genomic studies. Additionally, the search for conserved cis-elements resulted in the discovery of WGATAR motifs in all the putative Ace2 promoters from 7 different animals, suggesting a possible role of GATA family transcriptional factors in regulating the expression of Ace2.

  8. Design, synthesis, and antihypertensive activity of curcumin-inspired compounds via ACE inhibition and vasodilation, along with a bioavailability study for possible benefit in cardiovascular diseases

    PubMed Central

    Zhuang, Xiao-dong; Liao, Li-zhen; Dong, Xiao-bian; Hu, Xun; Guo, Yue; Du, Zhi-min; Liao, Xin-xue; Wang, Li-chun

    2016-01-01

    This study describes the synthesis of a novel series of curcumin-inspired compounds via a facile synthetic route. The structures of these derivatives were ascertained using various spectroscopic and analytic techniques. The pharmacological effects of the target analogs were assessed by assaying their inhibition of angiotensin-converting enzyme (ACE). All of the synthesized derivatives exhibited considerable inhibition of ACE, with half-maximal inhibitory concentrations ranging from 1.23 to 120.32 μM. In a docking analysis with testicular ACE (tACE), the most promising inhibitor (4j) was efficiently accommodated in the deep cleft of the protein cavity, making close interatomic contacts with Glu162, His353, and Ala356, comparable with lisinopril. Compounds 4i, 4j, 4k, and 4l were further selected for determination of their vasodilator activity (cardiac output and stroke volume) on isolated rat hearts using the Langendorff technique. The bioavailability of compound 4j was determined in experimental mice. PMID:26792980

  9. Sex differences in the enhanced responsiveness to acute angiotensin II in growth-restricted rats: role of fasudil, a Rho kinase inhibitor

    PubMed Central

    Ojeda, Norma B.; Royals, Thomas P.

    2013-01-01

    This study tested the hypothesis that Rho kinase contributes to the enhanced pressor response to acute angiotensin II in intact male growth-restricted and gonadectomized female growth-restricted rats. Mean arterial pressure (MAP) and renal function were determined in conscious animals pretreated with enalapril (250 mg/l in drinking water) for 1 wk to block the endogenous renin-angiotensin system and normalize blood pressure (baseline). Blood pressure and renal hemodynamics did not differ at baseline. Acute Ang II (100 ng·kg−1·min−1) induced a greater increase in MAP and renal vascular resistance and enhanced reduction in glomerular filtration rate in intact male growth-restricted rats compared with intact male controls (P < 0.05). Cotreatment with the Rho kinase inhibitor fasudil (33 μg·kg−1·min−1) significantly attenuated these hemodynamic changes (P < 0.05), but it did not abolish the differential increase in blood pressure above baseline, suggesting that the impact of intrauterine growth restriction on blood pressure in intact male growth-restricted rats is independent of Rho kinase. Gonadectomy in conjunction with fasudil returned blood pressure back to baseline in male growth-restricted rats, and yet glomerular filtration rate remained significantly reduced (P < 0.05). Thus, these data suggest a role for enhanced renal sensitivity to acute Ang II in the developmental programming of hypertension in male growth-restricted rats. However, inhibition of Rho kinase had no effect on the basal or enhanced increase in blood pressure induced by acute Ang II in the gonadectomized female growth-restricted rat. Therefore, these studies suggest that Rho kinase inhibition exerts a sex-specific effect on blood pressure sensitivity to acute Ang II in growth-restricted rats. PMID:23344570

  10. Impact of losartan and angiotensin II on the expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in rat vascular smooth muscle cells.

    PubMed

    Guo, Yan-Song; Wu, Zong-Gui; Yang, Jun-Ke; Chen, Xin-Jing

    2015-03-01

    The present study aimed to investigate the impact of losartan and angiotensin II (AngII) on the expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1), secreted by rat vascular smooth muscle cells (VSMCs). Rat VSMCs were isolated and cultured in different concentrations of AngII and losartan for 24 h and western blot analysis and quantitative polymerase chain reaction were performed to observe the subsequent impact on the gene and protein expression of MMP-9 and TIMP-1. AngII was shown to promote the protein and gene expression of MMP-9 in VSMCs in a concentration-dependent manner. No effect was observed on the expression of TIMP-1, therefore, an increase in the MMP-9/TIMP-1 ratio was observed. Losartan was shown to be able to inhibit MMP-9 protein and gene expression in a concentration-dependent manner, whilst promoting an increase in TIMP-1 expression, thus decreasing the ratio of MMP-9/TIMP-1. The combined action of losartan and AngII resulted in the same directional changes in MMP-9 and TIMP-1 expression as observed for losartan alone. The comparison of AngII, losartan and the combinatory effect on the expression of MMP-9 and TIMP-1 in VSMCs indicated that losartan inhibited the effects of AngII, therefore reducing the MMP-9/TIMP-1 ratio, which may contribute to the molecular mechanism of losartan in preventing atherosclerosis. In atherosclerosis, the development of the extracellular matrix of plaque is closely correlated with the evolution of AS. The balance between MMPs and TIMPs is important in maintaining the dynamic equilibrium between the ECM, and the renin-angiotensin-aldosterone system, which is involved in the pathologenesis of AS, and in which AngII has a central role.

  11. Marketing ACE in Victoria.

    ERIC Educational Resources Information Center

    2001

    This publication presents options raised through various forums for marketing adult and community education (ACE) in Victoria, Australia, and suggested strategies. After an introduction (chapter 1), chapters 2 and 3 provide a broad view of the current situation for marketing ACE. Chapter 2 discusses general issues in the current position--ACE…

  12. ACE2 and Microbiota: Emerging Targets for Cardiopulmonary Disease Therapy

    PubMed Central

    Cole-Jeffrey, Colleen T; Liu, Meng; Katovich, Michael J; Raizada, Mohan K; Shenoy, Vinayak

    2015-01-01

    The health of the cardiovascular and pulmonary systems is inextricably linked to the renin-angiotensin system (RAS). Physiologically speaking, a balance between the vasodeleterious (ACE/Ang II/AT1R) and vasoprotective (ACE2/Ang-(1–7)/MasR) components of the RAS is critical for cardiopulmonary homeostasis. Upregulation of the ACE/Ang II/AT1R axis shifts the system toward vasoconstriction, proliferation, hypertrophy, inflammation, and fibrosis, all factors that contribute to the development and progression of cardiopulmonary diseases. Conversely, stimulation of the vasoprotective ACE2/Ang-(1–7)/MasR axis produces a counter-regulatory response that promotes cardiovascular health. Current research is investigating novel strategies to augment actions of the vasoprotective RAS components, particularly ACE2, in order to treat various pathologies. While multiple approaches to increase the activity of ACE2 have displayed beneficial effects against experimental disease models, the mechanisms behind its protective actions remain incompletely understood. Recent work demonstrating a non-catalytic role for ACE2 in amino acid transport in the gut has led us to speculate that the therapeutic effects of ACE2 can be mediated, in part, by its actions on the gastrointestinal tract and/or gut microbiome. This is consistent with emerging data which suggests that dysbiosis of the gut and lung microbiomes is associated with cardiopulmonary disease. This review highlights new developments in the protective actions of ACE2 against cardiopulmonary disorders, discusses innovative approaches to targeting ACE2 for therapy, and explores an evolving role for gut and lung microbiota in cardiopulmonary health. PMID:26322922

  13. The absence of intrarenal ACE protects against hypertension

    PubMed Central

    Gonzalez-Villalobos, Romer A.; Janjoulia, Tea; Fletcher, Nicholas K.; Giani, Jorge F.; Nguyen, Mien T.X.; Riquier-Brison, Anne D.; Seth, Dale M.; Fuchs, Sebastien; Eladari, Dominique; Picard, Nicolas; Bachmann, Sebastian; Delpire, Eric; Peti-Peterdi, Janos; Navar, L. Gabriel; Bernstein, Kenneth E.; McDonough, Alicia A.

    2013-01-01

    Activation of the intrarenal renin-angiotensin system (RAS) can elicit hypertension independently from the systemic RAS. However, the precise mechanisms by which intrarenal Ang II increases blood pressure have never been identified. To this end, we studied the responses of mice specifically lacking kidney angiotensin-converting enzyme (ACE) to experimental hypertension. Here, we show that the absence of kidney ACE substantially blunts the hypertension induced by Ang II infusion (a model of high serum Ang II) or by nitric oxide synthesis inhibition (a model of low serum Ang II). Moreover, the renal responses to high serum Ang II observed in wild-type mice, including intrarenal Ang II accumulation, sodium and water retention, and activation of ion transporters in the loop of Henle (NKCC2) and distal nephron (NCC, ENaC, and pendrin) as well as the transporter activating kinases SPAK and OSR1, were effectively prevented in mice that lack kidney ACE. These findings demonstrate that ACE metabolism plays a fundamental role in the responses of the kidney to hypertensive stimuli. In particular, renal ACE activity is required to increase local Ang II, to stimulate sodium transport in loop of Henle and the distal nephron, and to induce hypertension. PMID:23619363

  14. The absence of intrarenal ACE protects against hypertension.

    PubMed

    Gonzalez-Villalobos, Romer A; Janjoulia, Tea; Fletcher, Nicholas K; Giani, Jorge F; Nguyen, Mien T X; Riquier-Brison, Anne D; Seth, Dale M; Fuchs, Sebastien; Eladari, Dominique; Picard, Nicolas; Bachmann, Sebastian; Delpire, Eric; Peti-Peterdi, Janos; Navar, L Gabriel; Bernstein, Kenneth E; McDonough, Alicia A

    2013-05-01

    Activation of the intrarenal renin-angiotensin system (RAS) can elicit hypertension independently from the systemic RAS. However, the precise mechanisms by which intrarenal Ang II increases blood pressure have never been identified. To this end, we studied the responses of mice specifically lacking kidney angiotensin-converting enzyme (ACE) to experimental hypertension. Here, we show that the absence of kidney ACE substantially blunts the hypertension induced by Ang II infusion (a model of high serum Ang II) or by nitric oxide synthesis inhibition (a model of low serum Ang II). Moreover, the renal responses to high serum Ang II observed in wild-type mice, including intrarenal Ang II accumulation, sodium and water retention, and activation of ion transporters in the loop of Henle (NKCC2) and distal nephron (NCC, ENaC, and pendrin) as well as the transporter activating kinases SPAK and OSR1, were effectively prevented in mice that lack kidney ACE. These findings demonstrate that ACE metabolism plays a fundamental role in the responses of the kidney to hypertensive stimuli. In particular, renal ACE activity is required to increase local Ang II, to stimulate sodium transport in loop of Henle and the distal nephron, and to induce hypertension.

  15. Green asparagus (Asparagus officinalis) prevented hypertension by an inhibitory effect on angiotensin-converting enzyme activity in the kidney of spontaneously hypertensive rats.

    PubMed

    Sanae, Matsuda; Yasuo, Aoyagi

    2013-06-12

    Green asparagus (Asparagus officinalis) is known to be rich in functional components. In the present study, spontaneously hypertensive rats (SHR) were used to clarify whether green asparagus prevents hypertension by inhibition of angiotensin-converting enzyme (ACE) activity. Six-week-old male SHR were fed a diet with (AD group) or without (ND group) 5% asparagus for 10 weeks. Systolic blood pressure (SBP) (AD: 159 ± 4.8 mmHg, ND: 192 ± 14.7 mmHg), urinary protein excretion/creatinine excretion, and ACE activity in the kidney were significantly lower in the AD group compared with the ND group. Creatinine clearance was significantly higher in the AD group compared with the ND group. In addition, ACE inhibitory activity was observed in a boiling water extract of asparagus. The ACE inhibitor purified and isolated from asparagus was identified as 2″-hydroxynicotianamine. In conclusion, 2″-hydroxynicotianamine in asparagus may be one of the factors inhibiting ACE activity in the kidney, thus preventing hypertension and preserving renal function.

  16. Effects of angiotensin II (AT1) receptor blockade on cardiac vagal control in heart failure.

    PubMed

    Vaile, J C; Chowdhary, S; Osman, F; Ross, H F; Fletcher, J; Littler, W A; Coote, J H; Townend, J N

    2001-12-01

    The objective of the present study was to determine the autonomic effects of angiotensin II (AT(1)) receptor blocker therapy in heart failure. In a randomized double-blind cross-over study, we compared the effects of candesartan and placebo on baroreflex sensitivity and on heart rate variability at rest, during stress and during 24 h monitoring. Acute effects were assessed 4 h after oral candesartan (8 mg) and chronic effects after 4 weeks of treatment (dose titrated to 16 mg daily). The study group comprised 21 patients with heart failure [mean (S.E.M.) ejection fraction 33% (1%)], in the absence of angiotensin-converting enzyme (ACE) inhibitor therapy. We found that acute candesartan was not different from placebo in its effects on blood pressure or mean RR interval. Chronic candesartan significantly reduced blood pressure [placebo, 137 (3)/82 (3) mmHg; candesartan, 121 (4)/75 (2) mmHg; P<0.001; values are mean (S.E.M.)], but had no effect on mean RR interval [placebo, 857 (25) ms; candesartan, 857 (21) ms]. Compared with placebo there were no significant effects of acute or chronic candesartan on heart rate variability in the time domain and no consistent effects in the frequency domain. Baroreflex sensitivity assessed by the phenylephrine bolus method was significantly increased after chronic candesartan [placebo, 3.5 (0.5) ms/mmHg; candesartan, 4.8 (0.7) ms/mmHg; P<0.05], although there were no changes in cross-spectral baroreflex sensitivity. Thus, in contrast with previous results with ACE inhibitors, angiotensin II receptor blockade in heart failure did not increase heart rate variability, and there was no consistent effect on baroreflex sensitivity.

  17. HMG-CoA reductase inhibitors decrease angiotensin II-induced vascular fibrosis: role of RhoA/ROCK and MAPK pathways.

    PubMed

    Rupérez, Mónica; Rodrigues-Díez, Raquel; Blanco-Colio, Luis Miguel; Sánchez-López, Elsa; Rodríguez-Vita, Juan; Esteban, Vanesa; Carvajal, Gisselle; Plaza, Juan José; Egido, Jesús; Ruiz-Ortega, Marta

    2007-08-01

    3-Hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors (statins) present beneficial effects in cardiovascular diseases. Angiotensin II (Ang II) contributes to cardiovascular damage through the production of profibrotic factors, such as connective tissue growth factor (CTGF). Our aim was to investigate whether HMG-CoA reductase inhibitors could modulate Ang II responses, evaluating CTGF expression and the mechanisms underlying this process. In cultured vascular smooth muscle cells (VSMCs) atorvastatin and simvastatin inhibited Ang II-induced CTGF production. The inhibitory effect of statins on CTGF upregulation was reversed by mevalonate and geranylgeranylpyrophosphate, suggesting that RhoA inhibition could be involved in this process. In VSMCs, statins inhibited Ang II-induced Rho membrane localization and activation. In these cells Ang II regulated CTGF via RhoA/Rho kinase activation, as shown by inhibition of Rho with C3 exoenzyme, RhoA dominant-negative overexpression, and Rho kinase inhibition. Furthermore, activation of p38MAPK and JNK, and redox process were also involved in Ang II-mediated CTGF upregulation, and were downregulated by statins. In rats infused with Ang II (100 ng/kg per minute) for 2 weeks, treatment with atorvastatin (5 mg/kg per day) diminished aortic CTGF and Rho activation without blood pressure modification. Rho kinase inhibition decreased CTGF upregulation in rat aorta, mimicking statin effect. CTGF is a vascular fibrosis mediator. Statins diminished extracellular matrix (ECM) overexpression caused by Ang II in vivo and in vitro. In summary, HMG-CoA reductase inhibitors inhibit several intracellular signaling systems activated by Ang II (RhoA/Rho kinase and MAPK pathways and redox process) involved in the regulation of CTGF. Our results may explain, at least in part, some beneficial effects of statins in cardiovascular diseases.

  18. Pharmacodynamic Impact of Carboxylesterase 1 Gene Variants in Patients with Congestive Heart Failure Treated with Angiotensin-Converting Enzyme Inhibitors

    PubMed Central

    Bie, Peter; Ferrero, Laura; Bjerre, Ditte; Bruun, Niels E.; Egfjord, Martin; Rasmussen, Henrik B.; Hansen, Peter R.

    2016-01-01

    Background Variation in the carboxylesterase 1 gene (CES1) may contribute to the efficacy of ACEIs. Accordingly, we examined the impact of CES1 variants on plasma angiotensin II (ATII)/angiotensin I (ATI) ratio in patients with congestive heart failure (CHF) that underwent ACEI dose titrations. Five of these variants have previously been associated with drug response or increased CES1 expression, i.e., CES1 copy number variation, the variant of the duplicated CES1 gene with high transcriptional activity, rs71647871, rs2244613, and rs3815583. Additionally, nine variants, representatives of CES1Var, and three other CES1 variants were examined. Methods Patients with CHF, and clinical indication for ACEIs were categorized according to their CES1 genotype. Differences in mean plasma ATII/ATI ratios between genotype groups after ACEI dose titration, expressed as the least square mean (LSM) with 95% confidence intervals (CIs), were assessed by analysis of variance. Results A total of 200 patients were recruited and 127 patients (63.5%) completed the study. The mean duration of the CHF drug dose titration was 6.2 (SD 3.6) months. After ACEI dose titration, there was no difference in mean plasma ATII/ATI ratios between subjects with the investigated CES1 variants, and only one previously unexplored variation (rs2302722) qualified for further assessment. In the fully adjusted analysis of effects of rs2302722 on plasma ATII/ATI ratios, the difference in mean ATII/ATI ratio between the GG genotype and the minor allele carriers (GT and TT) was not significant, with a relative difference in LSMs of 0.67 (95% CI 0.43–1.07; P = 0.10). Results of analyses that only included enalapril-treated patients remained non-significant after Bonferroni correction for multiple parallel comparisons (difference in LSM 0.60 [95% CI 0.37–0.98], P = 0.045). Conclusion These findings indicate that the included single variants of CES1 do not significantly influence plasma ATII/ATI ratios in CHF

  19. Reappraisal of role of angiotensin receptor blockers in cardiovascular protection.

    PubMed

    Ram, C Venkata S

    2011-01-01

    Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have shown cardioprotective and renoprotective properties. These agents are recommended as first-line therapy for the treatment of hypertension and the reduction of cardiovascular risk. Early studies pointed to the cardioprotective and renoprotective effects of ARBs in high-risk patients. The ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET) established the clinical equivalence of the cardioprotective and renoprotective effects of telmisartan and ramipril, but did not find an added benefit of the combination over ramipril alone. Similar findings were observed in the Telmisartan Randomized AssessmeNt Study in aCE INtolerant subjects with cardiovascular Disease (TRANSCEND) trial conducted in ACEI-intolerant patients. In ONTARGET, telmisartan had a better tolerability profile with similar renoprotective properties compared with ramipril, suggesting a potential clinical benefit over ramipril. The recently completed Olmesartan Reducing Incidence of Endstage Renal Disease in Diabetic Nephropathy Trial (ORIENT) and Olmesartan and Calcium Antagonists Randomized (OSCAR) studies will further define the role of ARBs in cardioprotection and renoprotection for high-risk patients.

  20. Epitope mapping of mAbs to denatured human testicular ACE (CD143).

    PubMed

    Balyasnikova, I V; Metzger, R; Franke, F E; Conrad, N; Towbin, H; Schwartz, D E; Sturrock, E D; Danilov, S M

    2008-10-01

    Angiotensin I-converting enzyme (ACE; CD143) has two homologous enzymatically active domains (N and C) and plays a crucial role in blood pressure regulation and vascular remodeling. A wide spectrum of monoclonal antibodies (mAbs) to different epitopes on the N and C domains of human ACE have been used to study different aspects of ACE biology. In this study, we characterized a set of nine mAbs, developed against the C domain of human ACE, which recognize the denatured forms of ACE and thus are suitable for the detection and quantification of somatic ACE (sACE) and testicular ACE (tACE) using Western blotting and immunohistochemistry on paraffin-embedded human tissues. The epitopes for these mAbs were defined using species cross-reactivity, phage display library screening, Western blotting and ACE mutagenesis. Most of the mAbs recognized common/overlapping region(s) on both somatic and testicular forms of human ACE, whereas mAb 4E10 was relatively specific for the testicular isoform and mAb 5B9 mainly recognized the glycan attached to Asn 731. This set of mAbs is useful for identifying even subtle changes in human ACE conformation because of denaturation. These mAbs are also sensitive tools for the detection of human sACE and tACE in biological fluids and tissues using proteomic approaches. Their high reactivity in paraffin-embedded tissues provides opportunities to study changes in the pattern of ACE expression and glycosylation (particularly with mAb 5B9) in different tissues and cells.

  1. Distribution of ACE insertion/deletion (I/D) polymorphism in Iranian populations

    PubMed Central

    Saadat, Mostafa

    2015-01-01

    Angiotensin converting enzyme (ACE; OMIM: 106180) has an important role in the conversion of angiotensin I to angiotensin II and degradation of bradykinin. Genetic polymorphism I/D (rs4646994) in the gene encoding ACE has been well defined. To get more insight into the genetic structure of Iranian populations, the distribution of the ACE I/D polymorphism among Iranians was compared with each other and with other populations. Prevalence of the D allele was 0.5886 (95% CI: 0.5725-0.6047) in Iran. There was significant difference between Iranian populations (x2=27.7, df=6, P<0.001). The major part of this difference was due to difference between Zahedan study and the other populations, as by removing this population, the heterogeneity between populations, remarkably decreased (x2=10.15, df=5, P=0.071). The D allele showed high frequency in Iran which is similar to Caucasians. PMID:27843997

  2. Angiotensin-converting enzyme inhibition by Brazilian plants.

    PubMed

    Braga, Fernão C; Serra, Carla P; Viana, Nilton S; Oliveira, Alaíde B; Côrtes, Steyner F; Lombardi, Júlio A

    2007-07-01

    The potential antihypertensive activity of Brazilian plants was evaluated in vitro by its ability to inhibit the angiotensin-converting enzyme (ACE). Forty-four plants belonging to 30 families were investigated. Plants were selected based on their popular use as antihypertensive and/or diuretics. The following plants presented significant ACE inhibition rates: Calophyllum brasiliense, Combretum fruticosum, Leea rubra, Phoenix roebelinii and Terminalia catappa.

  3. ACE2 is augmented in dystrophic skeletal muscle and plays a role in decreasing associated fibrosis.

    PubMed

    Riquelme, Cecilia; Acuña, María José; Torrejón, Javiera; Rebolledo, Daniela; Cabrera, Daniel; Santos, Robson A; Brandan, Enrique

    2014-01-01

    Duchenne muscular dystrophy (DMD) is the most common inherited neuromuscular disease and is characterized by absence of the cytoskeletal protein dystrophin, muscle wasting, and fibrosis. We previously demonstrated that systemic infusion or oral administration of angiotensin-(1-7) (Ang-(1-7)), a peptide with opposing effects to angiotensin II, normalized skeletal muscle architecture, decreased local fibrosis, and improved muscle function in mdx mice, a dystrophic model for DMD. In this study, we investigated the presence, activity, and localization of ACE2, the enzyme responsible for Ang-(1-7) production, in wild type (wt) and mdx skeletal muscle and in a model of induced chronic damage in wt mice. All dystrophic muscles studied showed higher ACE2 activity than wt muscle. Immunolocalization studies indicated that ACE2 was localized mainly at the sarcolemma and, to a lesser extent, associated with interstitial cells. Similar results were observed in the model of chronic damage in the tibialis anterior (TA) muscle. Furthermore, we evaluated the effect of ACE2 overexpression in mdx TA muscle using an adenovirus containing human ACE2 sequence and showed that expression of ACE2 reduced the fibrosis associated with TA dystrophic muscles. Moreover, we observed fewer inflammatory cells infiltrating the mdx muscle. Finally, mdx gastrocnemius muscles from mice infused with Ang-(1-7), which decreases fibrosis, contain less ACE2 associated with the muscle. This is the first evidence supporting ACE2 as an important therapeutic target to improve the dystrophic skeletal muscle phenotype.

  4. Combination therapy of renin-angiotensin system inhibitors plus calcium channel blockers versus other two-drug combinations for hypertension: a systematic review and meta-analysis.

    PubMed

    Lu, Z; Chen, Y; Li, L; Wang, G; Xue, H; Tang, W

    2017-01-01

    Many randomized clinical trials (RCTs) have investigated the efficacy and safety of renin-angiotensin system inhibitors (RASIs) plus calcium channel blockers (CCBs), compared with other two-drug combinations, but systematic assessment in this aspect is still lacking. We carried out the present meta-analysis of randomized controlled trials to evaluate the long-term effect and safety of RASIs plus CCBs. Literatures were searched in MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials in September 2014. A fixed-effect model was used to estimate the pooled effect of trials identified. Thirty-four trials with 41 694 patients were included. Compared with RASIs plus diuretics, RASIs plus CCBs decreased total cardiovascular (CV) events (relative risk (RR) 0.82, 95% confidence interval (CI): 0.75, 0.91, adjusted RR (ARR) 1.7%) and withdrawals due to adverse effect (WDAE) (RR 0.87, 95% CI: 0.80, 0.94, ARR 1.3%). Compared with CCBs plus diuretics, RASIs plus CCBs decreased WDAE (RR 0.63, 95% CI: 0.45, 0.90, ARR 1.1%). Our meta-analysis indicates that RASIs plus CCBs provide a superior safety and prevention of CV events to RASIs plus diuretics, whereas this combination is also safer than CCBs plus diuretics. We also raise a new hypothesis. More high-quality RCTs focused on hard end points with CV, cerebrovascular and renal events are needed to confirm the hypothesis we have brought out.

  5. Sulfhydryl angiotensin-converting enzyme inhibitor promotes endothelial cell survival through nitric-oxide synthase, fibroblast growth factor-2, and telomerase cross-talk.

    PubMed

    Donnini, Sandra; Terzuoli, Erika; Ziche, Marina; Morbidelli, Lucia

    2010-03-01

    The protective effect exerted by angiotensin-converting enzyme inhibitors (ACEI) in cardiovascular diseases caused by endothelial injury and aging has been attributed to the restoration of endothelial cell functions. Recently, we demonstrated a central role of the fibroblast growth factor-2 (FGF-2)/FGF receptor-1 system in mediating the acquisition of an angiogenic phenotype in coronary microvascular endothelium exposed to ACEI. Here, we report on the rescuing effect of ACEI on impaired endothelium and the intracellular signaling mechanisms that lead endothelial cells to enter apoptosis and to senesce. Conditions mimicking pathological cell damage (serum deprivation) lead to endothelial apoptosis as evidenced by increased caspase-3 activity. ACEI enhanced cell survival through activation of prosurvival and antiaging signals involving Akt phosphorylation, endothelial nitric-oxide synthase (eNOS) expression and activation, FGF-2 and telomerase catalytic subunit (TERT) up-regulation, and delayed senescence. In microvascular endothelial cells exposed to ACEI, Akt/eNOS pathway-dependent FGF-2 was necessary for gene transcription of TERT. These protective effects were particularly evident for sulfhydryl-containing ACEI (zofenoprilat), which were reported to exhibit potent antioxidant effects. In conclusion, ACEI with antioxidant properties up-regulate eNOS, FGF-2, and TERT mRNA, which favor endothelial cell survival and prolong their lifespan, thus restoring endothelial cell functions after vascular damage. These effects could explain the beneficial effects of these drugs in various cardiovascular diseases associated with endothelial injury and aging.

  6. Arctic Collaborative Environment (ACE)

    DTIC Science & Technology

    2012-08-01

    distribution is unlimited. Key Data Requirements • Sea Ice – Location: Area, Onset, Growth, Drift, and Decay – Characterization: % Coverage, Thickness...Cloud ACE Developmental Server hosted at UAHuntsville ACE User Community Public Internet Tailored Ice Product Generation (NIC) Arctic Research...distribution is unlimited. Arctic Map 26 July 2012 13 Multi-sensor Analyzed Sea Ice Extent; National Data Buoy Center DISTRIBUTION STATEMENT A

  7. Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet.

    PubMed

    Akinyemi, Ayodele Jacob; Ademiluyi, Adedayo Oluwaseun; Oboh, Ganiyu

    2014-03-01

    Angiotensin-1-converting enzyme (ACE) inhibitors are widely used in the treatment of cardiovascular diseases. This study sought to investigate the inhibitory effect of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria on ACE activity in rats fed a high cholesterol diet. The inhibition of ACE activity of two varieties of ginger (Z. officinale) was investigated in a high cholesterol (2%) diet fed to rats for 3 days. Feeding high cholesterol diets to rats caused a significant (P<.05) increase in the ACE activity. However, there was a significant (P<.05) inhibition of ACE activity as a result of supplementation with the ginger varieties. Rats that were fed 4% white ginger had the greatest inhibitory effect as compared with a control diet. Furthermore, there was a significant (P<.05) increase in the plasma lipid profile with a concomitant increase in malondialdehyde (MDA) content in rat liver and heart tissues. However, supplementing the diet with red and white ginger (either 2% or 4%) caused a significant (P<.05) decrease in the plasma total cholesterol, triglyceride, very low density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol levels, and in MDA content in the tissues. Conversely, supplementation caused a significant (P<.05) increase in plasma high-density lipoprotein-cholesterol level when compared with the control diet. Nevertheless, rats fed 4% red ginger had the greatest reduction as compared with control diet. In conclusion, both ginger varieties exhibited anti-hypercholesterolemic properties in a high cholesterol diet fed to rats. This activity of the gingers may be attributed to its ACE inhibitory activity. However, white ginger inhibited ACE better in a high cholesterol diet fed to rats than red ginger. Therefore, both gingers could serve as good functional foods/nutraceuticals in the management/treatment of hypertension and other cardiovascular diseases.

  8. The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy.

    PubMed

    Tsuprykov, Oleg; Ando, Ryotaro; Reichetzeder, Christoph; von Websky, Karoline; Antonenko, Viktoriia; Sharkovska, Yuliya; Chaykovska, Lyubov; Rahnenführer, Jan; Hasan, Ahmed A; Tammen, Harald; Alter, Markus; Klein, Thomas; Ueda, Seiji; Yamagishi, Sho-Ichi; Okuda, Seiya; Hocher, Berthold

    2016-05-01

    Dipeptidyl peptidase (DPP)-4 inhibitors delay chronic kidney disease (CKD) progression in experimental diabetic nephropathy in a glucose-independent manner. Here we compared the effects of the DPP-4 inhibitor linagliptin versus telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. Animals were allocated to 1 of 4 groups: sham operated plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus linagliptin; and 5/6 nephrectomy plus telmisartan. Interstitial fibrosis was significantly decreased by 48% with linagliptin but a non-significant 24% with telmisartan versus placebo. The urine albumin-to-creatinine ratio was significantly decreased by 66% with linagliptin and 92% with telmisartan versus placebo. Blood pressure was significantly lowered by telmisartan, but it was not affected by linagliptin. As shown by mass spectrometry, the number of altered peptide signals for linagliptin in plasma was 552 and 320 in the kidney. For telmisartan, there were 108 peptide changes in plasma and 363 in the kidney versus placebo. Linagliptin up-regulated peptides derived from collagen type I, apolipoprotein C1, and heterogeneous nuclear ribonucleoproteins A2/B1, a potential downstream target of atrial natriuretic peptide, whereas telmisartan up-regulated angiotensin II. A second study was conducted to confirm these findings in 5/6 nephrectomy wild-type and genetically deficient DPP-4 rats treated with linagliptin or placebo. Linagliptin therapy in wild-type rats was as effective as DPP-4 genetic deficiency in terms of albuminuria reduction. Thus, linagliptin showed comparable efficacy to telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. However, the underlying pathways seem to be different.

  9. Role of N-acetyl-seryl-aspartyl-lysyl-proline in the antifibrotic and anti-inflammatory effects of the angiotensin-converting enzyme inhibitor captopril in hypertension.

    PubMed

    Peng, Hongmei; Carretero, Oscar A; Liao, Tang-Dong; Peterson, Edward L; Rhaleb, Nour-Eddine

    2007-03-01

    Angiotensin-converting enzyme inhibitors (ACEis) are known to have antifibrotic effects on the heart and kidney in both animal models and humans. N-acetyl-seryl-aspartyl-lysyl-proline is a natural inhibitor of proliferation of hematopoietic stem cells and a natural substrate of ACEi that was reported to prevent cardiac and renal fibrosis in vivo. However, it is not clear whether N-acetyl-seryl-aspartyl-lysyl-proline participates in the antifibrotic effects of ACEi. To clarify this issue, we used a model of aldosterone-salt-induced hypertension in rats treated with the ACEi captopril either alone or combined with an anti-N-acetyl-seryl-aspartyl-lysyl-proline monoclonal antibody. These hypertensive rats had the following: (1) left ventricular and renal hypertrophy, as well as increased collagen deposition in the left ventricular and the kidney; (2) glomerular matrix expansion; and (3) increased ED1-positive cells and enhanced phosphorylated-p42/44 mitogen-activated protein kinase in the left ventricle and kidney. The ACEi alone significantly lowered systolic blood pressure (P=0.008) with no effect on organ hypertrophy; it significantly lowered left ventricular collagen content, and this effect was blocked by the monoclonal antibody as confirmed by the histological data. As expected, the ACEi significantly decreased renal collagen deposition and glomerular matrix expansion, and these effects were attenuated by the monoclonal antibody. Likewise, the ACEi significantly decreased ED1-positive cells and inhibited p42/44 mitogen-activated protein kinase phosphorylation in the left ventricle and kidney, and these effects were blocked by the monoclonal antibody. We concluded that in aldosterone-salt-induced hypertension, the antifibrotic effect of ACEi on the heart and kidney, is partially mediated by N-acetyl-seryl-aspartyl-lysyl-proline, resulting in decreased inflammatory cell infiltration and p42/44 mitogen-activated protein kinase activation.

  10. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension.

    PubMed

    Mendoza-Torres, Evelyn; Oyarzún, Alejandra; Mondaca-Ruff, David; Azocar, Andrés; Castro, Pablo F; Jalil, Jorge E; Chiong, Mario; Lavandero, Sergio; Ocaranza, María Paz

    2015-08-01

    The renin-angiotensin system (RAS) is a key component of cardiovascular physiology and homeostasis due to its influence on the regulation of electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling. Deregulation of this system contributes significantly to the pathophysiology of cardiovascular and renal diseases. Numerous studies have generated new perspectives about a noncanonical and protective RAS pathway that counteracts the proliferative and hypertensive effects of the classical angiotensin-converting enzyme (ACE)/angiotensin (Ang) II/angiotensin type 1 receptor (AT1R) axis. The key components of this pathway are ACE2 and its products, Ang-(1-7) and Ang-(1-9). These two vasoactive peptides act through the Mas receptor (MasR) and AT2R, respectively. The ACE2/Ang-(1-7)/MasR and ACE2/Ang-(1-9)/AT2R axes have opposite effects to those of the ACE/Ang II/AT1R axis, such as decreased proliferation and cardiovascular remodeling, increased production of nitric oxide and vasodilation. A novel peptide from the noncanonical pathway, alamandine, was recently identified in rats, mice and humans. This heptapeptide is generated by catalytic action of ACE2 on Ang A or through a decarboxylation reaction on Ang-(1-7). Alamandine produces the same effects as Ang-(1-7), such as vasodilation and prevention of fibrosis, by interacting with Mas-related GPCR, member D (MrgD). In this article, we review the key roles of ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) and alamandine as counter-regulators of the ACE-Ang II axis as well as the biological properties that allow them to regulate blood pressure and cardiovascular and renal remodeling.

  11. Kidney scintigraphy after ACE inhibition in the diagnosis of renovascular hypertension

    SciTech Connect

    Ghione, S.; Fommei, E.; Palombo, C.; Giaconi, S.; Mantovanelli, A.; Ragazzini, A.; Palla, L.

    1986-01-01

    Suppression of the renin-angiotensin system (RAS) by angiotensin converting enzyme (ACE) inhibition may induce renal failure in patients with bilateral renal artery stenosis. Recent scintigraphic studies with the glomerular tracer technetium-99m-diethylenetriaminepenta-acetate (99m-Tc DTPA) indicate that in patients with unilateral renal artery stenosis, glomerular filtration rate (GFR) may be markedly reduced in the affected kidney after inhibition of ACE. This finding reflects the important role of the RAS in maintaining GFR (by increasing postglomerular resistance) in states of low renal perfusion pressure. Preliminary observations suggest that this scintigraphic test might be useful in the detection of renovascular hypertension.

  12. Effect of extrusion process on antioxidant and ACE inhibition properties from bovine haemoglobin concentrate hydrolysates incorporated into expanded maize products.

    PubMed

    Cian, Raúl E; Luggren, Pablo; Drago, Silvina R

    2011-11-01

    Extrusion process has been widely used for the development of many functional foods. The aim of this study was to assess the effect of extrusion process on antioxidant and angiotensin-converting enzyme (ACE) inhibition properties from bovine haemoglobin concentrate (BHC) hydrolysates (P, FC, PF and FCF). Extrusion was carried out with a Brabender single screw extruder. The ACE inhibition and the antioxidant capacity (AC) were estimated by the inhibition of the ACE and ABTS+√ radical cation expressed as Trolox equivalent antioxidant capacity (TEAC), respectively. The ACE inhibition and TEAC values from hydrolysates were significantly higher than that from BHC. The highest ACE inhibition corresponded to P hydrolysate and the highest TEAC corresponded to PF and FCF hydrolysates. The ACE inhibition and AC from extruded products with added hydrolysates were higher than that from maize control; however, the extrusion process modified both ACE inhibition and AC formerly present in hydrolysates.

  13. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63.

    PubMed

    Glowacka, Ilona; Bertram, Stephanie; Herzog, Petra; Pfefferle, Susanne; Steffen, Imke; Muench, Marcus O; Simmons, Graham; Hofmann, Heike; Kuri, Thomas; Weber, Friedemann; Eichler, Jutta; Drosten, Christian; Pöhlmann, Stefan

    2010-01-01

    The human coronaviruses (CoVs) severe acute respiratory syndrome (SARS)-CoV and NL63 employ angiotensin-converting enzyme 2 (ACE2) for cell entry. It was shown that recombinant SARS-CoV spike protein (SARS-S) downregulates ACE2 expression and thereby promotes lung injury. Whether NL63-S exerts a similar activity is yet unknown. We found that recombinant SARS-S bound to ACE2 and induced ACE2 shedding with higher efficiency than NL63-S. Shedding most likely accounted for the previously observed ACE2 downregulation but was dispensable for viral replication. Finally, SARS-CoV but not NL63 replicated efficiently in ACE2-positive Vero cells and reduced ACE2 expression, indicating robust receptor interference in the context of SARS-CoV but not NL63 infection.

  14. Influence of Angiotensin-Converting-Enzyme Gene Polymorphism on Echocardiographic Data of Patients with Ischemic Heart Failure

    PubMed Central

    Duque, Gustavo Salgado; da Silva, Dayse Aparecida; de Albuquerque, Felipe Neves; Schneider, Roberta Siuffo; Gimenez, Alinne; Pozzan, Roberto; Rocha, Ricardo Mourilhe; de Albuquerque, Denilson Campos

    2016-01-01

    Background Association between angiotensin-converting-enzyme (ACE) gene polymorphisms and different clinical and echocardiographic outcomes has been described in patients with heart failure (HF) and coronary artery disease. Studying the genetic profile of the local population with both diseases is necessary to assess the occurrence of that association. Objectives To assess the frequency of ACE gene polymorphisms in patients with ischemic HF in a Rio de Janeiro population, as well as its association with echocardiographic findings. Methods Genetic assessment of I/D ACE polymorphism in association with clinical, laboratory and echocardiographic analysis of 99 patients. Results The allele frequency was: 53 I alleles, and 145 D alleles. Genotype frequencies were: 49.5% DD; 47.48% DI; 3.02% II. Drug treatment was optimized: 98% on beta-blockers, and 84.8% on ACE inhibitors or angiotensin-receptor blocker. Echocardiographic findings: difference between left ventricular diastolic diameters (ΔLVDD) during follow-up: 2.98±8.94 (DD) vs. 0.68±8.12 (DI) vs. -11.0±7.00 (II), p=0.018; worsening during follow-up of the LV systolic diameter (LVSD): 65.3% DD vs. 19.0% DI vs. 0.0% II, p=0.01; of the LV diastolic diameter (LVDD): 65.3% DD vs. 46.8% DI vs. 0.0% II, p=0.03; and of the LV ejection fraction (LVEF): 67.3% DD vs. 40.4% DI vs. 33.3% II, p=0.024. Correlated with D allele: ΔLVEF, ΔLVSD, ΔLVDD. Conclusions More DD genotype patients had worsening of the LVEF, LVSD and LVDD, followed by DI genotype patients, while II genotype patients had the best outcome. The same pattern was observed for ΔLVDD. PMID:27812677

  15. Effect of angiotensin-converting enzyme inhibitors and receptor blockers on appropriate implantable cardiac defibrillator shock in patients with severe systolic heart failure (from the GRADE Multicenter Study).

    PubMed

    AlJaroudi, Wael A; Refaat, Marwan M; Habib, Robert H; Al-Shaar, Laila; Singh, Madhurmeet; Gutmann, Rebecca; Bloom, Heather L; Dudley, Samuel C; Ellinor, Patrick T; Saba, Samir F; Shalaby, Alaa A; Weiss, Raul; McNamara, Dennis M; Halder, Indrani; London, Barry

    2015-04-01

    Sudden cardiac death (SCD) is a leading cause of mortality in patients with cardiomyopathy. Although angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs) decrease cardiac mortality in these cohorts, their role in preventing SCD has not been well established. We sought to determine whether the use of ACEi or ARB in patients with cardiomyopathy is associated with a lower incidence of appropriate implantable cardiac defibrillator (ICD) shocks in the Genetic Risk Assessment of Defibrillator Events study that included subjects with an ejection fraction of ≤30% and ICDs. Treatment with ACEi/ARB versus no-ACEi/ARB was physician dependent. There were 1,509 patients (mean age [SD] 63 [12] years, 80% men, mean [SD] EF 21% [6%]) with 1,213 (80%) on ACEi/ARB and 296 (20%) not on ACEi/ARB. We identified 574 propensity-matched patients (287 in each group). After a mean (SD) of 2.5 (1.9) years, there were 334 (22%) appropriate shocks in the entire cohort. The use of ACEi/ARB was associated with lower incidence of shocks at 1, 3, and 5 years in the matched cohort (7.7%, 16.7%, and 18.5% vs 13.2%, 27.5%, and 32.0%; RR = 0.61 [0.43 to 0.86]; p = 0.005). Among patients with glomerular filtration rate (GFR) >60 and 30 to 60 ml/min/1.73 m(2), those on no-ACEi/ARB were at 45% and 77% increased risk of ICD shock compared with those on ACEi/ARB, respectively. ACEi/ARB were associated with significant lower incidence of appropriate ICD shock in patients with cardiomyopathy and GFR ≥30 ml/min/1.73 m(2) and with neutral effect in those with GFR <30 ml/min/1.73 m(2).

  16. Meta-Analysis of Randomized Trials on the Efficacy and Safety of Angiotensin-Converting Enzyme Inhibitors in Patients ≥65 Years of Age.

    PubMed

    Bavishi, Chirag; Ahmed, Mohammed; Trivedi, Vrinda; Khan, Abdur Rahman; Gongora, Carlos; Bangalore, Sripal; Messerli, Franz H

    2016-11-01

    The comparative efficacy and safety of angiotensin-converting enzyme inhibitors (ACEIs) with other agents in patients ≥65 years of age with cardiovascular diseases or at-risk are unknown. Electronic databases were systematically searched to identify all randomized controlled trials that compared ACEIs with control (placebo or active) and reported long-term cardiovascular outcomes. We required the mean age of patients in the studies to be ≥65 years. Random-effects model was used to pool study results. Sixteen trials with 104,321 patients and a mean follow-up of 2.9 years were included. Compared with placebo, ACEIs significantly reduced all outcomes except stroke. Compared with active controls, ACEIs had similar effect on all-cause mortality (relative risk [RR] 0.99, 95% confidence interval [CI] 0.95 to 1.03), cardiovascular mortality (RR 0.99, 95% CI 0.93 to 1.04), heart failure (RR 0.97, 95% CI 0.91 to 1.03), myocardial infarction (RR 0.94, 95% CI 0.88 to 1.00), and stroke (RR 1.07, 95% CI 0.99 to 1.15). ACEIs were associated with an increased risk of angioedema (RR 2.79, 95% CI 1.05 to 7.42), whereas risk for hypotension and renal insufficiency was similar compared with active controls. Meta-regression analysis showed that the effect of ACEIs on outcomes remained consistent with age increasing ≥65 years. Sensitivity analysis excluding trials comparing ACEIs with angiotensin receptor blockers and heart failure trials yielded similar results, except for reduction in myocardial infarction. In conclusion, the efficacy of ACEIs was similar to active controls for mortality outcomes. Compared with placebo, there was evidence for reduction in cardiovascular outcomes; however, ACEIs failed to prevent stroke and increased the risk of angioedema, hypotension, and renal failure.

  17. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells.

    PubMed

    Huang, I-Chueh; Bosch, Berend Jan; Li, Fang; Li, Wenhui; Lee, Kyoung Hoa; Ghiran, Sorina; Vasilieva, Natalya; Dermody, Terence S; Harrison, Stephen C; Dormitzer, Philip R; Farzan, Michael; Rottier, Peter J M; Choe, Hyeryun

    2006-02-10

    Viruses require specific cellular receptors to infect their target cells. Angiotensin-converting enzyme 2 (ACE2) is a cellular receptor for two divergent coronaviruses, SARS coronavirus (SARS-CoV) and human coronavirus NL63 (HCoV-NL63). In addition to hostcell receptors, lysosomal cysteine proteases are required for productive infection by some viruses. Here we show that SARS-CoV, but not HCoV-NL63, utilizes the enzymatic activity of the cysteine protease cathepsin L to infect ACE2-expressing cells. Inhibitors of cathepsin L blocked infection by SARS-CoV and by a retrovirus pseudotyped with the SARS-CoV spike (S) protein but not infection by HCoV-NL63 or a retrovirus pseudotyped with the HCoV-NL63 S protein. Expression of exogenous cathepsin L substantially enhanced infection mediated by the SARS-CoV S protein and by filovirus GP proteins but not by the HCoV-NL63 S protein or the vesicular stomatitis virus G protein. Finally, an inhibitor of endosomal acidification had substantially less effect on infection mediated by the HCoV-NL63 S protein than on that mediated by the SARS-CoV S protein. Our data indicate that two coronaviruses that utilize a common receptor nonetheless enter cells through distinct mechanisms.

  18. Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families.

    PubMed

    Patten, Glen S; Abeywardena, Mahinda Y; Bennett, Louise E

    2016-01-01

    Hypertension is a major risk factor for coronary heart disease, kidney disease, and stroke. Interest in medicinal or nutraceutical plant bioactives to reduce hypertension has increased dramatically. The main biological regulation of mammalian blood pressure is via the renin-angiotensin-aldosterone system. The key enzyme is angiotensin converting enzyme (ACE) that converts angiotensin I into the powerful vasoconstrictor, angiotensin II. Angiotensin II binds to its receptors (AT1) on smooth muscle cells of the arteriole vasculature causing vasoconstriction and elevation of blood pressure. This review focuses on the in vitro and in vivo reports of plant-derived extracts that inhibit ACE activity, block angiotensin II receptor binding and demonstrate hypotensive activity in animal or human studies. We describe 74 families of plants that exhibited significant ACE inhibitory activity and 16 plant families with potential AT1 receptor blocking activity, according to in vitro studies. From 43 plant families including some of those with in vitro bioactivity, the extracts from 73 plant species lowered blood pressure in various normotensive or hypertensive in vivo models by the oral route. Of these, 19 species from 15 families lowered human BP when administered orally. Some of the active plant extracts, isolated bioactives and BP-lowering mechanisms are discussed.

  19. The Cooperative Effect of Local Angiotensin-II in Liver with Adriamycin Hepatotoxicity on Mitochondria

    PubMed Central

    Taskin, Eylem; Guven, Celal; Sahin, Leyla; Dursun, Nurcan

    2016-01-01

    Background Adriamycin (ADR) is a drug used clinically for anticancer treatment; however, it causes adverse effects in the liver. The mechanism by which these adverse effects occur remains unclear, impeding efforts to enhance the therapeutic effects of ADR. Its hepatotoxicity might be related to increasing reactive oxygen species (ROS) and mitochondrial dysfunction. The interaction between ADR and the local renin-angiotensin system (RAS) in the liver is unclear. ADR might activate the RAS. Angiotensin-II (Ang-II) leads to ROS production and mitochondrial dysfunction. In the present study we investigated whether ADR’s hepatotoxicity interacts with local RAS in causing oxidative stress resulting from mitochondrial dysfunction in the rat liver. Material/Methods Rats were divided into 5 groups: control, ADR, co-treated ADR with captopril, co-treated ADR with Aliskiren, and co-treated ADR with both captopril and Aliskiren. Mitochondria and cytosol were separated from the liver, then biochemical measurements were made from them. Mitochondrial membrane potential (MMP) and ATP levels were evaluated. Results ADR remarkably decreased MMP and ATP in liver mitochondria (p<0.05). Co-administration with ADR and Aliskiren and captopril improved the dissipation of MMP (p<0.05). The decreased ATP level was restored by treatment with inhibitors of ACE and renin. Conclusions Angiotensin-II may contribute to hepatotoxicity of in the ADR via mitochondrial oxidative production, resulting in the attenuation of MMP and ATP production. PMID:27019222

  20. Renin-Angiotensin Activation and Oxidative Stress in Early Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Negi, Smita I.; Jeong, Euy-Myoung; Shukrullah, Irfan; Veleder, Emir; Jones, Dean P.; Fan, Tai-Hwang M.; Varadarajan, Sudhahar; Danilov, Sergei M.; Fukai, Tohru; Dudley, Samuel C.

    2015-01-01

    Animal models have suggested a role of renin-angiotensin system (RAS) activation and subsequent cardiac oxidation in heart failure with preserved ejection fraction (HFpEF). Nevertheless, RAS blockade has failed to show efficacy in treatment of HFpEF. We evaluated the role of RAS activation and subsequent systemic oxidation in HFpEF. Oxidative stress markers were compared in 50 subjects with and without early HFpEF. Derivatives of reactive oxidative metabolites (DROMs), F2-isoprostanes (IsoPs), and ratios of oxidized to reduced glutathione (Eh GSH) and cysteine (Eh CyS) were measured. Angiotensin converting enzyme (ACE) levels and activity were measured. On univariate analysis, HFpEF was associated with male sex (p = 0.04), higher body mass index (BMI) (p = 0.003), less oxidized Eh CyS (p = 0.001), lower DROMs (p = 0.02), and lower IsoP (p = 0.03). Higher BMI (OR: 1.3; 95% CI: 1.1–1.6) and less oxidized Eh CyS (OR: 1.2; 95% CI: 1.1–1.4) maintained associations with HFpEF on multivariate analysis. Though ACE levels were higher in early HFpEF (OR: 1.09; 95% CI: 1.01–1.05), ACE activity was similar to that in controls. HFpEF is not associated with significant systemic RAS activation or oxidative stress. This may explain the failure of RAS inhibitors to alter outcomes in HFpEF. PMID:26504834

  1. Acute Lead Exposure Increases Arterial Pressure: Role of the Renin-Angiotensin System

    PubMed Central

    Simões, Maylla Ronacher; Ribeiro Júnior, Rogério F.; Vescovi, Marcos Vinícius A.; de Jesus, Honério C.; Padilha, Alessandra S.; Stefanon, Ivanita; Vassallo, Dalton V.; Salaices, Mercedes; Fioresi, Mirian

    2011-01-01

    Background Chronic lead exposure causes hypertension and cardiovascular disease. Our purpose was to evaluate the effects of acute exposure to lead on arterial pressure and elucidate the early mechanisms involved in the development of lead-induced hypertension. Methodology/Principal Findings Wistar rats were treated with lead acetate (i.v. bolus dose of 320 µg/Kg), and systolic arterial pressure, diastolic arterial pressure and heart rate were measured during 120 min. An increase in arterial pressure was found, and potential roles of the renin-angiotensin system, Na+,K+-ATPase and the autonomic reflexes in this change in the increase of arterial pressure found were evaluated. In anesthetized rats, lead exposure: 1) produced blood lead levels of 37±1.7 µg/dL, which is below the reference blood concentration (60 µg/dL); 2) increased systolic arterial pressure (Ct: 109±3 mmHg vs Pb: 120±4 mmHg); 3) increased ACE activity (27% compared to Ct) and Na+,K+-ATPase activity (125% compared to Ct); and 4) did not change the protein expression of the α1-subunit of Na+,K+-ATPase, AT1 and AT2. Pre-treatment with an AT1 receptor blocker (losartan, 10 mg/Kg) or an ACE inhibitor (enalapril, 5 mg/Kg) blocked the lead-induced increase of arterial pressure. However, a ganglionic blockade (hexamethonium, 20 mg/Kg) did not prevent lead's hypertensive effect. Conclusion Acute exposure to lead below the reference blood concentration increases systolic arterial pressure by increasing angiotensin II levels due to ACE activation. These findings offer further evidence that acute exposure to lead can trigger early mechanisms of hypertension development and might be an environmental risk factor for cardiovascular disease. PMID:21494558

  2. Add-on angiotensin II receptor blockade lowers urinary transforming growth factor-beta levels.

    PubMed

    Agarwal, Rajiv; Siva, Senthuran; Dunn, Stephen R; Sharma, Kumar

    2002-03-01

    Progression of renal failure, despite renoprotection with angiotensin-converting enzyme (ACE) inhibitors in patients with proteinuric nephropathies, may be caused by persistent renal production of transforming growth factor-beta1 (TGF-beta1) through the angiotensin II subtype 1 (AT1) receptors. We tested the hypothesis that AT1-receptor blocker therapy added to a background of chronic maximal ACE inhibitor therapy will result in a reduction in urinary TGF-beta1 levels in such patients. Sixteen patients completed a two-period, crossover, randomized, controlled trial, details of which have been previously reported. All patients were administered lisinopril, 40 mg/d, with either losartan, 50 mg/d, or placebo. Blood pressure (BP) was measured using a 24-hour ambulatory BP monitor. Overnight specimens of urine were analyzed for urine TGF-beta1, protein, and creatinine concentrations. Mean age of the study population was 53 +/- 9 (SD) years; body mass index, 38 +/- 5.7 kg/m2; seated BP, 156 +/- 18/88 +/- 12 mm Hg; and urine protein excretion, 3.6 +/- 0.71 g/g of creatinine. Twelve patients had diabetic nephropathy, and the remainder had chronic glomerulonephritis. At baseline, urinary TGF-beta1 levels were significantly increased in the study population compared with healthy controls (13.2 +/- 1.2 versus 1.7 +/- 1.1 ng/g creatinine; P < 0.001). There was a strong correlation between baseline urine protein excretion and urinary TGF-beta1 level (r2 = 0.53; P = 0.001), as well as systolic BP and urinary TGF-beta1 level (r2 = 0.57; P < 0.001). After 4 weeks of add-on losartan therapy, there was a 38% (95% confidence interval [CI], 16% to 55%) decline in urinary TGF-beta1 levels (13.3 [95% CI, 11.4 to 15.5] to 8.2 pg/mg creatinine [95% CI, 6.2 to 10.7]). The reduction in urinary TGF-beta1 levels occurred independent of changes in mean urinary protein excretion or BP. Thus, proteinuric patients with renal failure, despite maximal ACE inhibition, had increased urinary levels of

  3. Angiotensin converting enzymes in fish venom.

    PubMed

    Dos Santos, Dávida Maria Ribeiro Cardoso; de Souza, Cledson Barros; Pereira, Hugo Juarez Vieira

    2017-06-01

    Animal venoms are multifaceted mixtures, including proteins, peptides and enzymes produced by animals in defense, predation and digestion. These molecules have been investigated concerning their molecular mechanisms associated and possible pharmacological applications. Thalassophryne nattereri is a small venomous fish inhabiting the northern and northeastern coast of Brazil, and represents a relatively frequent cause of injuries. Its venom causes severe inflammatory response followed frequently by the necrosis of the affected area. Scorpaena plumieri is the most venomous fish in the Brazilian fauna and is responsible for relatively frequent accidents involving anglers and bathers. In humans, its venom causes edema, erythema, ecchymoses, nausea, vomiting, and syncope. Recently, the presence of a type of angiotensin converting enzyme (ACE) activity in the venom of Thalassophryne nattereri and Scorpaena plumieri, endemic fishes in northeastern coast of Brazil, has been described. The ACE converts angiotensin I (Ang I) into angiotensin II (Ang II) and inactivates bradykinin, there by regulating blood pressure and electrolyte homeostasis, however, their function in these venoms remains an unknown. This article provides an overview of the current knowledge on ACE in the venoms of Thalassophryne nattereri and Scorpaena plumier.

  4. Effects of bradykinin B2 receptor antagonism on the hypotensive effects of ACE inhibition.

    PubMed Central

    Bouaziz, H; Joulin, Y; Safar, M; Benetos, A

    1994-01-01

    1. The aim of this study was to determine the participation of endogenous bradykinin (BK) in the antihypertensive effects of the angiotensin converting enzyme inhibitor (ACEI), perindoprilat, in the spontaneously hypertensive rat (SHR) on different salt diets. 2. Conscious SHRs receiving either a low or a high NaCl diet were used in order to evaluate the respective roles of angiotensin II suppression and bradykinin stimulation in the acute hypotensive effects of perindoprilat. Two different B2 receptor antagonists (B 4146 and Hoe 140) were used after bolus administration of 7 mg kg-1 of the ACEI, perindoprilat. In separate animals, Hoe 140 was administered before the injection of perindoprilat. In other experiments, the effects of Hoe 140 on the hypotensive effects of the calcium antagonist, nicardipine, were tested. 3. The different NaCl diets had no effect on baseline blood pressure. Hoe 140 injection before ACE inhibition did not modify blood pressure. Perindoprilat caused more marked hypotension in the low salt-fed rats than in the high salt animals (P < 0.01). Administration of Hoe 140 or B4146 after perindoprilat significantly reduced the antihypertensive effects of perindoprilat in the different groups, but this effect was more pronounced in high salt-fed rats. However, in SHRs receiving Hoe 140 before perindoprilat, the antihypertensive effect of perindoprilat was completely abolished in both high or low salt diet rats. In separate experiments we confirmed that Hoe 140 did not affect the hypotensive efficacy of the calcium antagonist, nicardipine. 4. Our study shows that inhibition of endogenous bradykinin degradation participates in the acute antihypertensive effects of perindoprilat in SHRs. The role of bradykinin is more pronounced following exposure to a high salt diet i.e., when the renin-angiotensin system is suppressed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7858859

  5. Involvement of human plasma angiotensin I-converting enzyme in the degradation of the haemoregulatory peptide N-acetyl-seryl-aspartyl-lysyl-proline.

    PubMed Central

    Rieger, K J; Saez-Servent, N; Papet, M P; Wdzieczak-Bakala, J; Morgat, J L; Thierry, J; Voelter, W; Lenfant, M

    1993-01-01

    The degradation of N-Ac-Ser-Asp-Lys-Pro (AcSDKP), a negative regulator controlling the proliferation of the haematopoietic stem cell, by enzymes present in human plasma, has been investigated. Radiolabelled AcSD[4-3H]KP ([3H]AcSDKP, 1 mM) was completely metabolized in human plasma with a half-life of 80 min, leading exclusively to the formation of radiolabelled lysine. The cleavage of AcSDKP was insensitive to classical proteinase inhibitors including leupeptin, but sensitive to metalloprotease inhibitors. The degradation was completely blocked by specific inhibitors of angiotensin I-converting enzyme (ACE; kininase II; peptidyldipeptide hydrolase, EC 3.4.15.1), showing that the first step of the hydrolysis was indeed due to ACE. In dialysed plasma, the hydrolysis proceeded at only 17% of the maximal rate, whereas addition of 20 mM NaCl led to the recovery of the initial rate observed with normal plasma. Hydrolysis of AcSDKP by commercial rabbit lung ACE generated the C-terminal dipeptide Lys-Pro. Thus, ACE cleaves AcSDKP by a dipeptidyl carboxypeptidase activity. In fact the formation of Lys-Pro was observed when AcSDKP was incubated in human plasma in the presence of HgCl2. These results suggest that ACE is involved in the first limiting step of AcSDKP degradation in human plasma. The second step seems to be under the control of a leupeptin- and E-64-insensitive, HgCl2-sensitive plasmatic enzyme. PMID:8257427

  6. Interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes.

    PubMed

    Tikellis, Chris; Pickering, Raelene; Tsorotes, Despina; Du, Xiao-Jun; Kiriazis, Helen; Nguyen-Huu, Thu-Phuc; Head, Geoffrey A; Cooper, Mark E; Thomas, Merlin C

    2012-10-01

    Local and systemic AngII (angiotensin II) levels are regulated by ACE2 (angiotensin-converting enzyme 2), which is reduced in diabetic tissues. In the present study, we examine the effect of ACE2 deficiency on the early cardiac and vascular changes associated with experimental diabetes. Streptozotocin diabetes was induced in male C57BL6 mice and Ace2-KO (knockout) mice, and markers of RAS (renin-angiotensin system) activity, cardiac function and injury were assessed after 10 weeks. In a second protocol, diabetes was induced in male ApoE (apolipoprotein E)-KO mice and ApoE/Ace2-double-KO mice, and plaque accumulation and markers of atherogenesis assessed after 20 weeks. The induction of diabetes in wild-type mice led to reduced ACE2 expression and activity in the heart, elevated circulating AngII levels and reduced cardiac Ang-(1-7) [angiotensin-(1-7)] levels. This was associated structurally with thinning of the LV (left ventricular) wall and mild ventricular dilatation, and histologically with increased cardiomyocyte apoptosis on TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) staining and compensatory hypertrophy denoted by an increased cardiomyocyte cross-sectional area. By contrast Ace2-KO mice failed to increase circulating AngII concentration, experienced a paradoxical fall in cardiac AngII levels and no change in Ang-(1-7) following the onset of diabetes. At the same time the major phenotypic differences between Ace2-deficient and Ace2-replete mice with respect to BP (blood pressure) and cardiac hypertrophy were eliminated following the induction of diabetes. Consistent with findings in the heart, the accelerated atherosclerosis that was observed in diabetic ApoE-KO mice was not seen in diabetic ApoE/Ace2-KO mice, which experienced no further increase in plaque accumulation or expression in key adhesion molecules beyond that seen in ApoE/Ace2-KO mice. These results point to the potential role of ACE2 deficiency in regulating

  7. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    SciTech Connect

    Kang, Yu-Ming; Zhang, Dong-Mei; Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing; Suo, Yu-Ping; Yue, Li-Ying; Zhu, Guo-Qing; Qin, Da-Nian

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  8. An additive effect of eplerenone to ACE inhibitor on slowing the progression of diabetic nephropathy in the db/db mice

    PubMed Central

    Zhou, Guangyu; Johansson, Ulrika; Peng, Xiao-Rong; Bamberg, Krister; Huang, Yufeng

    2016-01-01

    Although blockade of the renin-angiotensin-system (RAS) has become standard therapy for diabetic nephropathy (DN), decline in kidney function towards end-stage renal disease is seen in many patients. Elevated plasma aldosterone often accompanies RAS blockade by a phenomenon known as “aldosterone escape” and activates the mineralocorticoid receptor (MR). We therefore examined whether addition of the MR antagonist eplerenone to an ACEI would enhance the efficacy in slowing the progression of DN. Untreated uninephrectomized diabetic db/db mice developed progressive albuminuria and glomerulosclerosis between weeks 18 and 22, associated with decreased number of podocytes and increased renal expression of fibrotic markers. The therapeutic effect of eplerenone at 100 mg/kg BW/d on albuminuria, podocyte injury and renal fibrosis was similar to that of enalapril given alone at maximally effective doses. Adding eplerenone to enalapril resulted in further reduction in these measurements. Renal expressions of TNF-α, MCP-1, Nox2 and p47phox and renal TBARS levels, markers of inflammation and oxidative stress, were increased during disease progression in diabetic mice, which were reduced by eplerenone or enalapril given alone and further reduced by the two drugs given in combination. However, there were no treatment related effects on plasma K+. Our results suggest that eplerenone is effective in slowing the progression of DN in db/db mice and that the effect is additive to an ACEI. The addition of an MR antagonist void of effects on plasma K+ to an ACEI may offer additional renoprotection in progressive DN via blocking the effects of aldosterone due to escape or diabetes-induction. PMID:27186263

  9. Impact of the additive effect of angiotensin-converting enzyme inhibitors and /or statins with antiplatelet medication on mortality after acute ischaemic stroke.

    PubMed

    Hassan, Yahaya; Al-Jabi, Samah W; Aziz, Noorizan Abd; Looi, Irene; Zyoud, Sa'ed H

    2012-04-01

    There has been recent interest in combining antiplatelets, angiotensin-converting enzyme inhibitors (ACEIs) and statins in primary and secondary ischaemic stroke prevention. This observational study was performed to evaluate the impact of adding ACEIs and/or statins to antiplatelets on post-stroke in-hospital mortality. Ischaemic stroke patients attending a hospital in Malaysia over an 18-month period were evaluated. Patients were categorized according to their vital status at discharge. Data included demographic information, risk factors, clinical characteristics and previous medications with particular attention on antiplatelets, ACEIs and statins. In-hospital mortality was compared among patients who were not taking antiplatelets, ACEIs or statins before stroke onset versus those who were taking antiplatelets alone or in combination with either ACEIs, statins or both. Data analysis was performed using SPSS version 15. Overall, 637 patients met the study inclusion criteria. After controlling for the effects of confounders, adding ACEIs or statins to antiplatelets significantly decreased the incidence of death after stroke attack by 68% (p = 0.036) and 81% (p = 0.010), respectively, compared to patients on antiplatelets alone or none of these medications. Additionally, the addition of both ACEIs and statins to antiplatelet medication resulted in the highest reduction (by 94%) of the occurrence of death after stroke attack (p < 0.001). Our results suggest that adding ACEIs and/or statins to antiplatelets for patients at risk of developing stroke, either as a primary or as a secondary preventive regimen, was associated with a significant reduction in the incidence of mortality after ischaemic stroke than antiplatelets alone. These results might help reduce the rate of ischaemic stroke morbidity and mortality by enhancing the application of specific therapeutic and management strategies for patients at a high risk of acute stroke.

  10. VO2 max is associated with ACE genotype in postmenopausal women.

    PubMed

    Hagberg, J M; Ferrell, R E; McCole, S D; Wilund, K R; Moore, G E

    1998-11-01

    Relationships have frequently been found between angiotensin-converting enzyme (ACE) genotype and various pathological and physiological cardiovascular outcomes and functions. Thus we sought to determine whether ACE genotype affected maximal O2 consumption (VO2 max) and maximal exercise hemodynamics in postmenopausal women with different habitual physical activity levels. Age, body composition, and habitual physical activity levels did not differ among ACE genotype groups. However, ACE insertion/insertion (II) genotype carriers had a 6.3 ml . kg-1 . min-1 higher VO2 max (P < 0.05) than the ACE deletion/deletion (DD) genotype group after accounting for the effect of physical activity levels. The ACE II genotype group also had a 3.3 ml . kg-1 . min-1 higher VO2 max (P < 0.05) than the ACE insertion/deletion (ID) genotype group. The ACE ID group tended to have a higher VO2 max than the DD genotype group, but the difference was not significant. ACE genotype accounted for 12% of the variation in VO2 max among women after accounting for the effect of habitual physical activity levels. The entire difference in VO2 max among ACE genotype groups was the result of differences in maximal arteriovenous O2 difference (a-vDO2). ACE genotype accounted for 17% of the variation in maximal a-vDO2 in these women. Maximal cardiac output index did not differ whatsoever among ACE genotype groups. Thus it appears that ACE genotype accounts for a significant portion of the interindividual differences in VO2 max among these women. However, this difference is the result of genotype-dependent differences in maximal a-vDO2 and not of maximal stroke volume and maximal cardiac output.

  11. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia.

    PubMed

    Yoshida, Tadashi; Tabony, A Michael; Galvez, Sarah; Mitch, William E; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-10-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5' AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.

  12. Renal tubular angiotensin converting enzyme is responsible for nitro-L-arginine methyl ester (L-NAME)-induced salt sensitivity.

    PubMed

    Giani, Jorge F; Eriguchi, Masahiro; Bernstein, Ellen A; Katsumata, Makoto; Shen, Xiao Z; Li, Liang; McDonough, Alicia A; Fuchs, Sebastien; Bernstein, Kenneth E; Gonzalez-Villalobos, Romer A

    2017-04-01

    Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension.

  13. Circulating renin-angiotensin system and catecholamines in childhood: is there a role for birthweight?

    PubMed

    Franco, Maria C P; Casarini, Dulce E; Carneiro-Ramos, Marcela S; Sawaya, Ana L; Barreto-Chaves, Maria L M; Sesso, Ricardo

    2008-03-01

    There have been only a few reports on the sympathoadrenal and renin-angiotensin systems in children of small gestational age. The purpose of the present study was to investigate plasma levels of ACE (angiotensin-converting enzyme) activity, angiotensin and catecholamines in 8- to 13-year-old children and to determine whether there are correlations between the components of these systems with both birthweight and BP (blood pressure) levels. This clinical study included 66 children (35 boys and 31 girls) in two groups: those born at term with an appropriate birthweight [AGA (appropriate-for-gestational age) group, n=31] and those born at term but with a small birthweight for gestational age [SGA (small-for-gestational age) group, n=35]. Concentrations of angiotensin, catecholamines and ACE activity were determined in plasma. Circulating noradrenaline levels were significantly elevated in SGA girls compared with AGA girls (P=0.036). In addition, angiotensin II and ACE activity were higher in SGA boys (P=0.024 and P=0.050 respectively). There was a significant association of the circulating levels of both angiotensin II and ACE activity with BP levels in our study population. Although the underlying mechanisms that link restricted fetal growth with later cardiovascular events are not fully understood, the findings in the present study support the link between low birthweight and overactivity of both sympathoadrenal and renin-angiotensin systems into later childhood.

  14. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity

    PubMed Central

    Patel, Vaibhav B.; Mori, Jun; McLean, Brent A.; Basu, Ratnadeep; Das, Subhash K.; Ramprasath, Tharmarajan; Parajuli, Nirmal; Penninger, Josef M.; Grant, Maria B.; Lopaschuk, Gary D.

    2016-01-01

    Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance. PMID:26224885

  15. The sweeter side of ACE2: physiological evidence for a role in diabetes.

    PubMed

    Bindom, Sharell M; Lazartigues, Eric

    2009-04-29

    Diabetes mellitus is a growing problem in all parts of the world. Both clinical trials and animal models of type I and type II diabetes have shown that hyperactivity of angiotensin-II (Ang-II) signaling pathways contribute to the development of diabetes and diabetic complications. Of clinical relevance, blockade of the renin-angiotensin system prevents new-onset diabetes and reduces the risk of diabetic complications. Angiotensin-converting enzyme (ACE) 2 is a recently discovered mono-carboxypeptidase and the first homolog of ACE. It is thought to inhibit Ang-II signaling cascades mostly by cleaving Ang-II to generate Ang-(1-7), which effects oppose Ang-II and are mediated by the Mas receptor. The enzyme is present in the kidney, liver, adipose tissue and pancreas. Its expression is elevated in the endocrine pancreas in diabetes and in the early phase during diabetic nephropathy. ACE2 is hypothesized to act in a compensatory manner in both diabetes and diabetic nephropathy. Recently, we have shown the presence of the Mas receptor in the mouse pancreas and observed a reduction in Mas receptor immuno-reactivity as well as higher fasting blood glucose levels in ACE2 knockout mice, indicating that these mice may be a new model to study the role of ACE2 in diabetes. In this review we will examine the role of the renin-angiotensin system in the physiopathology and treatment of diabetes and highlight the potential benefits of the ACE2/Ang-(1-7)/Mas receptor axis, focusing on recent data about ACE2.