Science.gov

Sample records for ace inhibitory peptide

  1. Affinity purification of angiotensin converting enzyme inhibitory peptides using immobilized ACE.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, María del Mar; Alaiz, Manuel; Girón-Calle, Julio; Millan, Francisco; Vioque, Javier

    2006-09-20

    A lung extract rich in angiotensin converting enzyme (ACE) and pure ACE were immobilized by reaction with the activated support 4 BCL glyoxyl-agarose. These immobilized ACE derivatives were used for purification of ACE inhibitory peptides by affinity chromatography. The immobilized lung extract was used to purify inhibitory peptides from sunflower and rapeseed protein hydrolysates that had been obtained by treatment of protein isolates with alcalase. The ACE binding peptides that were retained by the derivatives were specifically released by treatment with the ACE inhibitor captopril and further purified by reverse-phase C18 HPLC chromatography. Inhibitory peptides with IC50 50 and 150 times lower than those of the original sunflower and rapeseed hydrolysates, respectively, were obtained. The derivative prepared using pure ACE was used for purification of ACE inhibitory peptides from the same type of sunflower protein hydrolysate. ACE binding peptides were released from the ACE-agarose derivatives by treatment with 1 M NaCl and had an IC50 a little higher than those obtained using immobilized extract and elution with captopril. Affinity chromatography facilitated the purification of ACE inhibitory peptides and potentially other bioactive peptides present in food proteins.

  2. Isolation, Purification and Molecular Mechanism of a Peanut Protein-Derived ACE-Inhibitory Peptide

    PubMed Central

    Shi, Aimin; Liu, Hongzhi; Liu, Li; Hu, Hui; Wang, Qiang; Adhikari, Benu

    2014-01-01

    Although a number of bioactive peptides are capable of angiotensin I-converting enzyme (ACE) inhibitory effects, little is known regarding the mechanism of peanut peptides using molecular simulation. The aim of this study was to obtain ACE inhibiting peptide from peanut protein and provide insight on the molecular mechanism of its ACE inhibiting action. Peanut peptides having ACE inhibitory activity were isolated through enzymatic hydrolysis and ultrafiltration. Further chromatographic fractionation was conducted to isolate a more potent peanut peptide and its antihypertensive activity was analyzed through in vitro ACE inhibitory tests and in vivo animal experiments. MALDI-TOF/TOF-MS was used to identify its amino acid sequence. Mechanism of ACE inhibition of P8 was analyzed using molecular docking and molecular dynamics simulation. A peanut peptide (P8) having Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence was obtained which had the highest ACE inhibiting activity of 85.77% (half maximal inhibitory concentration (IC50): 0.0052 mg/ml). This peanut peptide is a competitive inhibitor and show significant short term (12 h) and long term (28 days) antihypertensive activity. Dynamic tests illustrated that P8 can be successfully docked into the active pocket of ACE and can be combined with several amino acid residues. Hydrogen bond, electrostatic bond and Pi-bond were found to be the three main interaction contributing to the structural stability of ACE-peptide complex. In addition, zinc atom could form metal-carboxylic coordination bond with Tyr, Met residues of P8, resulting into its high ACE inhibiting activity. Our finding indicated that the peanut peptide (P8) having a Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence can be a promising candidate for functional foods and prescription drug aimed at control of hypertension. PMID:25347076

  3. Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar) Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    PubMed Central

    Darewicz, Małgorzata; Borawska, Justyna; Vegarud, Gerd E.; Minkiewicz, Piotr; Iwaniak, Anna

    2014-01-01

    The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE) inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes) and ex vivo digestion (with human gastrointestinal enzymes). Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50%) of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes. PMID:25123137

  4. Angiotensin I-converting enzyme (ACE) inhibitory activity and ACE inhibitory peptides of salmon (Salmo salar) protein hydrolysates obtained by human and porcine gastrointestinal enzymes.

    PubMed

    Darewicz, Małgorzata; Borawska, Justyna; Vegarud, Gerd E; Minkiewicz, Piotr; Iwaniak, Anna

    2014-08-13

    The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE) inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes) and ex vivo digestion (with human gastrointestinal enzymes). Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50%) of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  5. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins

    PubMed Central

    Yousr, Marwa; Howell, Nazlin

    2015-01-01

    Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF). Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS) in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y) and tryptophan (W), in sequences identified by LC-MS as WYGPD (EYGF-23) and KLSDW (EYGF-33), contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56) was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69%) and IC50 value (3.35 mg/mL). The SDNRNQGY peptide (10 mg/mL) had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL). In addition, YPSPV in (EYGF-33) (10 mg/mL) had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk. PMID:26690134

  6. ACE-I Inhibitory Activity from Phaseolus lunatus and Phaseolus vulgaris Peptide Fractions Obtained by Ultrafiltration.

    PubMed

    Betancur-Ancona, David; Dávila-Ortiz, Gloria; Chel-Guerrero, Luis Antonio; Torruco-Uco, Juan Gabriel

    2015-11-01

    The involvement of angiotensin-I-converting enzyme (ACE-I) as one of the mechanisms controlling blood pressure is being studied to find alternative means of control of hypertension on human beings. On the market there are synthetic drugs that can control it, but these can cause undesirable health side effects. In this work was assessed the fractionation by ultrafiltration of the Lima bean (Phaseolus lunatus) and Jamapa bean (Phaseolus vulgaris), protein hydrolysates obtained with Alcalase(®) and Flavourzyme(®) on ACE-I inhibitory activity. Four membranes of different molecular cutoffs (10, 5, 3, and 1 kDa) were used. Fractions that had a higher inhibitory activity in both legumes were denominated as E (<1 kDa) with IC50 of 30.3 and 51.8 μg/mL values for the P. lunatus with Alcalase and Flavourzyme, respectively, and for the Phaseolus vulgaris with Alcalase and Flavourzyme with about 63.8 and 65.8 μg/mL values, respectively. The amino acid composition of these fractions showed residues in essential amino acids, which make a good source of energy and amino acids. On the other hand, the presence of hydrophobic amino acids such as V and P is a determining factor in the ACE-I inhibitor effect. The results suggest the possibility of obtaining and utilizing these peptide fractions in the development and innovation of a functional product that helps with treatment and/or prevention of hypertension.

  7. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study.

    PubMed

    Wu, Qiongying; Du, Jinjuan; Jia, Junqiang; Kuang, Cong

    2016-05-15

    In this study, sweet sorghum grain protein (SSGP) was hydrolyzed using alcalase yielding ACE inhibitory peptides. A kinetic model was proposed to describe the enzymolysis process of SSGP. The kinetic parameters, a and b, were determined according to experimental data. It was found that the model was reliable to describe the kinetic behaviour for SSGP hydrolysis by alcalase. After hydrolysis, the SSGP hydrolysate with DH of 19% exhibited the strongest ACE inhibitory activity and the hydrolysate was then used to isolate ACE inhibitory peptides. A novel ACE inhibitory peptide was successfully purified from this hydrolysate by ultrafiltration, ion exchange chromatography, gel filtration chromatography, and reversed-phased high performance liquid chromatography (RP-HPLC). The amino acid sequence of the purified peptide was identified as Thr-Leu-Ser (IC50=102.1 μM). The molecular docking studies revealed that the ACE inhibition of the tripeptide was mainly attributed to its C-terminal Ser, which can effectively interact with the S1 and S2 pockets of ACE. Our studies suggest that the tripeptide from the SSGP hydrolysate can be utilized to develop functional food ingredients or pharmaceuticals for prevention of hypertension.

  8. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study.

    PubMed

    Wu, Qiongying; Du, Jinjuan; Jia, Junqiang; Kuang, Cong

    2016-05-15

    In this study, sweet sorghum grain protein (SSGP) was hydrolyzed using alcalase yielding ACE inhibitory peptides. A kinetic model was proposed to describe the enzymolysis process of SSGP. The kinetic parameters, a and b, were determined according to experimental data. It was found that the model was reliable to describe the kinetic behaviour for SSGP hydrolysis by alcalase. After hydrolysis, the SSGP hydrolysate with DH of 19% exhibited the strongest ACE inhibitory activity and the hydrolysate was then used to isolate ACE inhibitory peptides. A novel ACE inhibitory peptide was successfully purified from this hydrolysate by ultrafiltration, ion exchange chromatography, gel filtration chromatography, and reversed-phased high performance liquid chromatography (RP-HPLC). The amino acid sequence of the purified peptide was identified as Thr-Leu-Ser (IC50=102.1 μM). The molecular docking studies revealed that the ACE inhibition of the tripeptide was mainly attributed to its C-terminal Ser, which can effectively interact with the S1 and S2 pockets of ACE. Our studies suggest that the tripeptide from the SSGP hydrolysate can be utilized to develop functional food ingredients or pharmaceuticals for prevention of hypertension. PMID:26775955

  9. Enrichment of ACE inhibitory peptides in navy bean (Phaseolus vulgaris) using lactic acid bacteria.

    PubMed

    Rui, Xin; Wen, Delan; Li, Wei; Chen, Xiaohong; Jiang, Mei; Dong, Mingsheng

    2015-02-01

    The present study was conducted to explore a novel strategy to enhance angiotensin I-converting enzyme (ACE) inhibitory activities of navy bean by preparation of navy bean milk (NBM) which was then subjected to fermentation of four lactic acid bacteria (LAB) strains, namely, Lactobacillus bulgaricus, Lactobacillus helveticus MB2-1, Lactobacillus plantarum B1-6, and Lactobacillus plantarum 70810. With the exception of L. helveticus MB2-1, the other three selected strains had good growth performances in NBM with viable counts increased to log 8.30-8.39 cfu ml(-1) during 6 h of fermentation, and thus were selected for the following investigations. Protein contents of NBM significantly reduced when treated with L. bulgaricus and L. plantarum B1-6, and the electrophoresis patterns showed the preferable proteins for LAB strains to hydrolyze were α- and β-type phaseolins, whereas γ-type phaseolin was resistant to hydrolysis. RP-HPLC analysis demonstrated all fermented NBM had higher intensities of peaks with retention times between 2.5 and 3.5 min indicative of formation of small peptides. All fermented NBM showed higher ACE inhibitory activity compared to the unfermented ones, for which 2 h, 3 h, and 5 h were found to be the optimum fermentation periods for respectively L. plantarum 70810, L. plantarum B1-6 and L. bulgaricus, with IC50 values of 109 ± 5.1, 108 ± 1.1, and 101 ± 2.2 μg protein ml(-1). The subsequent in vitro gastrointestinal simulation afforded all fermented extracts reduced IC50 values and the extracts fermented by L. plantarum B1-6 exerted the lowest IC50 value of 21 ± 2.1 μg protein ml(-1). The research has broadened our knowledge bases on the effect of LAB fermentation on the degradation of navy bean proteins and the capacity to release ACE inhibitory peptides. The approach was promising to obtain probiotic products with potential to serve as functional ingredients targeting hypertension.

  10. Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk.

    PubMed

    Gútiez, Loreto; Gómez-Sala, Beatriz; Recio, Isidra; del Campo, Rosa; Cintas, Luis M; Herranz, Carmen; Hernández, Pablo E

    2013-08-16

    Enterococcus faecalis isolates from food and environmental origin were evaluated for their angiotensin-converting enzyme (ACE)-inhibitory activity (ACE-IA) after growth in bovine skim milk (BSM). Most (90% active) but not all (10% inactive) E. faecalis strains produced BSM-derived hydrolysates with high ACE-IA. Known ACE-inhibitory peptides (ACE-IP) and an antioxidant peptide were identified in the E. faecalis hydrolysates by reversed-phase high-performance liquid chromatography-tandem mass spectrometry (RP-HPLC-MS/MS). Antimicrobial activity against Pediococcus damnosus CECT4797 and Listeria ivanovii CECT913 was also observed in the E. faecalis hydrolysates. The incidence of virulence factors in the E. faecalis strains with ACE-IA and producers of ACE-IP was variable but less virulence factors were observed in the food and environmental strains than in the clinical reference strains. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) based analysis demonstrated that food and environmental E. faecalis strains were genetically different from those of clinical origin. When evaluated, most E. faecalis strains of clinical origin also originated BSM-derived hydrolysates with high ACE-IA due to the production of ACE-IP. Accordingly, the results of this work suggest that most E. faecalis strains of food, environmental and clinical origin produce BSM-derived bioactive peptides with human health connotations and potential biotechnological applications.

  11. Yeasts from Colombian Kumis as source of peptides with Angiotensin I converting enzyme (ACE) inhibitory activity in milk.

    PubMed

    Chaves-López, Clemencia; Tofalo, Rosanna; Serio, Annalisa; Paparella, Antonello; Sacchetti, Giampiero; Suzzi, Giovanna

    2012-09-17

    This study investigated the possibility of using yeast strains in fermented milks to obtain products with high Angiotensin I-converting enzyme (ACE) inhibitory activity and low bitter taste. Ninety-three yeast strains isolated from Colombian Kumis in different geographic regions were molecularly identified, and their milk fermentation performances were determined. Molecular identification evidenced that Galactomyces geotrichum, Pichia kudriavzevii, Clavispora lusitaniae and Candida tropicalis, were the dominant species. Eighteen out of 93 strains produced fermented milk with ACE-inhibitory (ACEI) activity values ranging from 8.69 to 88.19%. Digestion of fermented milk samples by pepsin and pancreatin demonstrated an increase in ACEI activity, with C. lusitaniae KL4A as the best producer of ACEI peptides. Moreover, sensory analysis of the products containing the major ACE-inhibitory activity pointed out that P. kudriavzevii KL84A and Kluyveromyces marxianus KL26A could be selected as potential adjunct starter cultures in Kumis, since they made a considerable contribution to the ACE inhibitory activity and produced fermented milk without bitter taste. In this study we observed that Colombian Kumis can be an excellent vehicle for the isolation of yeasts with a potential to enhance bioactive peptides produced during milk fermentation. PMID:22938834

  12. Egg ovotransferrin‐derived ACE inhibitory peptide IRW increases ACE2 but decreases proinflammatory genes expression in mesenteric artery of spontaneously hypertensive rats

    PubMed Central

    Majumder, Kaustav; Liang, Guanxiang; Chen, Yanhong; Guan, LeLuo; Davidge, Sandra T.

    2015-01-01

    Scope Egg ovotransferrin‐derived angiotensin converting enzyme (ACE) inhibitory peptide IRW was previously shown to reduce blood pressure in spontaneously hypertensive rats through reduced vascular inflammation and increased nitric oxide‐mediated vasorelaxation. The main objective of the present study was to investigate the molecular mechanism of this peptide through transcriptome analysis by RNAseq technique. Methods and results Total RNA was extracted from kidney and mesenteric arteries; the RNAseq libraries (from untreated and IRW‐treated groups) were constructed and subjected to sequence using HiSeq 2000 system (Illumina) system. A total of 12 764 and 13 352 genes were detected in kidney and mesenteric arteries, respectively. The differentially expressed (DE) genes between untreated and IRW‐treated groups were identified and the functional analysis through ingenuity pathway analysis revealed a greater role of DE genes identified from mesenteric arteries than that of kidney in modulating various cardiovascular functions. Subsequent qPCR analysis further confirmed that IRW significantly increased the expression of ACE‐2, ABCB‐1, IRF‐8, and CDH‐1 while significantly decreased the expression ICAM‐1 and VCAM‐1 in mesenteric arteries. Conclusion Our research showed for the first time that ACE inhibitory peptide IRW could contribute to its antihypertensive activity through increased ACE2 and decreased proinflammatory genes expression. PMID:26016560

  13. Characterization of ACE Inhibitory Peptides from Mactra veneriformis Hydrolysate by Nano-Liquid Chromatography Electrospray Ionization Mass Spectrometry (Nano-LC-ESI-MS) and Molecular Docking

    PubMed Central

    Liu, Rui; Zhu, Yunhan; Chen, Jiao; Wu, Hao; Shi, Lei; Wang, Xinzhi; Wang, Lingchong

    2014-01-01

    Food-derived bioactive compounds are gaining increasing significance in life sciences. In the present study, we identified angiotensin I-converting enzyme (ACE)-inhibitory peptides from Mactra veneriformis hydrolysate using a nano-LC-MS/MS method. Mactra veneriformis hydrolysate was first separated into four fractions (F1–F4) based on molecular weight by ultrafiltration. The fraction with molecular weight lower than 1 kDa (F1) showed the highest ACE inhibitory activity. F1 was then analyzed by a high throughput nano-LC-MS/MS method and sequences of peptides in F1 were calculated accordingly. The 27 peptides identified as above were chemically synthesized and tested for ACE-inhibitory activity. The hexapeptide VVCVPW showed the highest potency with an IC50 value of 4.07 μM. We then investigated the interaction mechanism between the six most potent peptides and ACE by molecular docking. Our docking results suggested that the ACE inhibitory peptides bind to ACE via interactions with His383, His387, and Glu411 residues. Particularly, similar to the thiol group of captopril, the cysteine thiol group of the most potent peptide VVCVPW may play a key role in the binding of this peptide to the ACE active site. PMID:24983637

  14. CoMFA and CoMSIA analysis of ACE-inhibitory, antimicrobial and bitter-tasting peptides.

    PubMed

    Wu, Shufen; Qi, Wei; Su, Rongxin; Li, Tonghe; Lu, Dan; He, Zhimin

    2014-09-12

    Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were applied to the ACE-inhibitory, antimicrobial, and bitter-tasting peptides. Predictive 3D-QSAR models were established using SYBYL multifit molecular alignment rule over a training set and a test set. The optimum models were all statistically significant with cross-validated coefficients (Q(2)) >0.5 and conventional coefficients (R(2)) >0.9, indicating that they were reliable enough for activity prediction. The obtained results may aid in the design of novel bioactive peptides.

  15. Purification and identification of endogenous antioxidant and ACE-inhibitory peptides from donkey milk by multidimensional liquid chromatography and nanoHPLC-high resolution mass spectrometry.

    PubMed

    Zenezini Chiozzi, Riccardo; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Piovesana, Susy; Samperi, Roberto; Laganà, Aldo

    2016-08-01

    Donkey milk is a valuable product for the food industry due to its nutraceutical, nutritional, and functional properties. In this work, the endogenous peptides from donkey milk were investigated for their antioxidant and ACE-inhibitory activities, combining a two-dimensional peptide fractionation strategy with high-resolution mass spectrometry, bioinformatics analysis, and in vitro assays. After extraction, the endogenous peptides were fractionated twice, first by polymeric reversed phase and then by hydrophilic interaction chromatography. Fractions were screened for the investigated bioactivities and only the most active ones were finally analyzed by nanoRP-HPLC-MS/MS; this approach allowed to reduce the total number of possible bioactive sequences. Results were further mined by in silico analysis using PeptideRanker, BioPep, and PepBank, which provided a bioactivity score to the identified peptides and matched sequences to known bioactive peptides, in order to select candidates for chemical synthesis. Thus, five peptides were prepared and then compared to the natural occurring ones, checking their retention times and fragmentation patterns in donkey milk alone and in spiked donkey milk samples. Pure peptide standards were finally in vitro tested for the specific bioactivity. In this way, two novel endogenous antioxidant peptides, namely EWFTFLKEAGQGAKDMWR and GQGAKDMWR, and two ACE-inhibitory peptides, namely REWFTFLK and MPFLKSPIVPF, were successfully validated from donkey milk. Graphical Abstract Analytical workflow for purification and identification of bioactive peptides from donkey milk sample.

  16. A novel angiotensin-І converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study.

    PubMed

    Wu, Qiongying; Jia, Junqiang; Yan, Hui; Du, Jinjuan; Gui, Zhongzheng

    2015-06-01

    Silkworm pupa (Bombyx mori) protein was hydrolyzed using gastrointestinal endopeptidases (pepsin, trypsin and α-chymotrypsin). Then, the hydrolysate was purified sequentially by ultrafiltration, gel filtration chromatography and RP-HPLC. A novel ACE inhibitory peptide, Ala-Ser-Leu, with the IC50 value of 102.15μM, was identified by IT-MS/MS. This is the first report of Ala-Ser-Leu from natural protein. Lineweaver-Burk plots suggest that the peptide is a competitive inhibitor against ACE. The molecular docking studies revealed that the ACE inhibition of Ala-Ser-Leu is mainly attributed to forming very strong hydrogen bonds with the S1 pocket (Ala354) and the S2 pocket (Gln281 and His353). The results indicate that silkworm pupa (B. mori) protein or its gastrointestinal protease hydrolysate could be used as a functional ingredient in auxiliary therapeutic foods against hypertension.

  17. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats.

    PubMed

    Balti, Rafik; Bougatef, Ali; Sila, Assaâd; Guillochon, Didier; Dhulster, Pascal; Nedjar-Arroume, Naima

    2015-03-01

    This study aimed to identify novel ACE inhibitory peptides from the muscle of cuttlefish. Proteins were hydrolyzed and the hydrolysates were then subjected to various types of chromatography to isolate the active peptides. Nine ACE inhibitory peptides were isolated and their molecular masses and amino acid sequences were determined using ESI-MS and ESI-MS/MS, respectively. The structures of the most potent peptides were identified as Val-Glu-Leu-Tyr-Pro, Ala-Phe-Val-Gly-Tyr-Val-Leu-Pro and Glu-Lys-Ser-Tyr-Glu-Leu-Pro. The first peptide displayed the highest ACE inhibitory activity with an IC50 of 5.22μM. Lineweaver-Burk plots suggest that Val-Glu-Leu-Tyr-Pro acts as a non-competitive inhibitor against ACE. Furthermore, antihypertensive effects in spontaneously hypertensive rats (SHR) also revealed that oral administration of Val-Glu-Leu-Tyr-Pro can decrease systolic blood pressure significantly (p<0.01). These results suggest that the Val-Glu-Leu-Tyr-Pro would be a beneficial ingredient for nutraceuticals and pharmaceuticals acting against hypertension and its related diseases.

  18. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats.

    PubMed

    Balti, Rafik; Bougatef, Ali; Sila, Assaâd; Guillochon, Didier; Dhulster, Pascal; Nedjar-Arroume, Naima

    2015-03-01

    This study aimed to identify novel ACE inhibitory peptides from the muscle of cuttlefish. Proteins were hydrolyzed and the hydrolysates were then subjected to various types of chromatography to isolate the active peptides. Nine ACE inhibitory peptides were isolated and their molecular masses and amino acid sequences were determined using ESI-MS and ESI-MS/MS, respectively. The structures of the most potent peptides were identified as Val-Glu-Leu-Tyr-Pro, Ala-Phe-Val-Gly-Tyr-Val-Leu-Pro and Glu-Lys-Ser-Tyr-Glu-Leu-Pro. The first peptide displayed the highest ACE inhibitory activity with an IC50 of 5.22μM. Lineweaver-Burk plots suggest that Val-Glu-Leu-Tyr-Pro acts as a non-competitive inhibitor against ACE. Furthermore, antihypertensive effects in spontaneously hypertensive rats (SHR) also revealed that oral administration of Val-Glu-Leu-Tyr-Pro can decrease systolic blood pressure significantly (p<0.01). These results suggest that the Val-Glu-Leu-Tyr-Pro would be a beneficial ingredient for nutraceuticals and pharmaceuticals acting against hypertension and its related diseases. PMID:25306378

  19. Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions.

    PubMed

    Di Bernardini, Roberta; Mullen, Anne Maria; Bolton, Declan; Kerry, Joseph; O'Neill, Eileen; Hayes, Maria

    2012-01-01

    The main objective was to investigate the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of sarcoplasmic proteins isolated from the brisket muscle (Pectoralis profundus) of 3 (Bos taurus) cattle and hydrolysed with papain for 24 h at 37°C. Sarcoplasmic protein hydrolysates were ultra-filtered using molecular weight cut off (MWCO) membranes and 10-kDa and 3-kDa filtrates were obtained. The total sarcoplasmic protein extracts and the 3-kDa filtrates were tested for angiotensin I-converting enzyme inhibitory (ACE-I) activities. The total hydrolysates, 10-kDa and 3-kDa filtrates were also tested for their associated antioxidant activities using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay, the ferric ion reducing antioxidant power (FRAP) assay and the Fe(2+) metal chelating ability assay. The peptidic content of the total hydrolysates, the 10-kDa and the 3-kDa filtrates were analysed using an ORBITRAP mass spectrometer, and mass spectral data obtained were analysed using TurboSEQUEST. Eleven peptides were characterised from the total hydrolysates, fifteen from the 10-kDa filtrate fractions, whilst nine peptides were characterised from the 3-kDa filtrate fractions. Similarities between the amino acid sequences of the peptides identified in this study and previously identified antioxidant and ACE-I inhibitory peptides detailed in the BIOPEP database were outlined. PMID:21880436

  20. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata

    PubMed Central

    Furuta, Tomoe; Miyabe, Yoshikatsu; Yasui, Hajime; Kinoshita, Yasunori; Kishimura, Hideki

    2016-01-01

    We examined the inhibitory activity of angiotensin I converting enzyme (ACE) in protein hydrolysates from dulse, Palmaria palmata. The proteins extracted from dulse were mainly composed of phycoerythrin (PE) followed by phycocyanin (PC) and allophycocyanin (APC). The dulse proteins showed slight ACE inhibitory activity, whereas the inhibitory activity was extremely enhanced by thermolysin hydrolysis. The ACE inhibitory activity of hydrolysates was hardly affected by additional pepsin, trypsin and chymotrypsin treatments. Nine ACE inhibitory peptides (YRD, AGGEY, VYRT, VDHY, IKGHY, LKNPG, LDY, LRY, FEQDWAS) were isolated from the hydrolysates by reversed-phase high-performance liquid chromatography (HPLC), and it was demonstrated that the synthetic peptide LRY (IC50: 0.044 μmol) has remarkably high ACE inhibitory activity. Then, we investigated the structural properties of dulse phycobiliproteins to discuss the origin of dulse ACE inhibitory peptides. Each dulse phycobiliprotein possesses α-subunit (Mw: 17,477–17,638) and β-subunit (Mw: 17,455–18,407). The sequences of YRD, AGGEY, VYRT, VDHY, LKNPG and LDY were detected in the primary structure of PE α-subunit, and the LDY also exists in the APC α- and β-subunits. In addition, the LRY sequence was found in the β-subunits of PE, PC and APC. From these results, it was suggested that the dulse ACE inhibitory peptides were derived from phycobiliproteins, especially PE. To make sure the deduction, we carried out additional experiment by using recombinant PE. We expressed the recombinant α- and β-subunits of PE (rPEα and rPEβ, respectively), and then prepared their peptides by thermolysin hydrolysis. As a result, these peptides showed high ACE inhibitory activities (rPEα: 94.4%; rPEβ: 87.0%). Therefore, we concluded that the original proteins of dulse ACE inhibitory peptides were phycobiliproteins. PMID:26861357

  1. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata.

    PubMed

    Furuta, Tomoe; Miyabe, Yoshikatsu; Yasui, Hajime; Kinoshita, Yasunori; Kishimura, Hideki

    2016-02-04

    We examined the inhibitory activity of angiotensin I converting enzyme (ACE) in protein hydrolysates from dulse, Palmaria palmata. The proteins extracted from dulse were mainly composed of phycoerythrin (PE) followed by phycocyanin (PC) and allophycocyanin (APC). The dulse proteins showed slight ACE inhibitory activity, whereas the inhibitory activity was extremely enhanced by thermolysin hydrolysis. The ACE inhibitory activity of hydrolysates was hardly affected by additional pepsin, trypsin and chymotrypsin treatments. Nine ACE inhibitory peptides (YRD, AGGEY, VYRT, VDHY, IKGHY, LKNPG, LDY, LRY, FEQDWAS) were isolated from the hydrolysates by reversed-phase high-performance liquid chromatography (HPLC), and it was demonstrated that the synthetic peptide LRY (IC50: 0.044 μmol) has remarkably high ACE inhibitory activity. Then, we investigated the structural properties of dulse phycobiliproteins to discuss the origin of dulse ACE inhibitory peptides. Each dulse phycobiliprotein possesses α-subunit (Mw: 17,477-17,638) and β-subunit (Mw: 17,455-18,407). The sequences of YRD, AGGEY, VYRT, VDHY, LKNPG and LDY were detected in the primary structure of PE α-subunit, and the LDY also exists in the APC α- and β-subunits. In addition, the LRY sequence was found in the β-subunits of PE, PC and APC. From these results, it was suggested that the dulse ACE inhibitory peptides were derived from phycobiliproteins, especially PE. To make sure the deduction, we carried out additional experiment by using recombinant PE. We expressed the recombinant α- and β-subunits of PE (rPEα and rPEβ, respectively), and then prepared their peptides by thermolysin hydrolysis. As a result, these peptides showed high ACE inhibitory activities (rPEα: 94.4%; rPEβ: 87.0%). Therefore, we concluded that the original proteins of dulse ACE inhibitory peptides were phycobiliproteins.

  2. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata.

    PubMed

    Furuta, Tomoe; Miyabe, Yoshikatsu; Yasui, Hajime; Kinoshita, Yasunori; Kishimura, Hideki

    2016-02-01

    We examined the inhibitory activity of angiotensin I converting enzyme (ACE) in protein hydrolysates from dulse, Palmaria palmata. The proteins extracted from dulse were mainly composed of phycoerythrin (PE) followed by phycocyanin (PC) and allophycocyanin (APC). The dulse proteins showed slight ACE inhibitory activity, whereas the inhibitory activity was extremely enhanced by thermolysin hydrolysis. The ACE inhibitory activity of hydrolysates was hardly affected by additional pepsin, trypsin and chymotrypsin treatments. Nine ACE inhibitory peptides (YRD, AGGEY, VYRT, VDHY, IKGHY, LKNPG, LDY, LRY, FEQDWAS) were isolated from the hydrolysates by reversed-phase high-performance liquid chromatography (HPLC), and it was demonstrated that the synthetic peptide LRY (IC50: 0.044 μmol) has remarkably high ACE inhibitory activity. Then, we investigated the structural properties of dulse phycobiliproteins to discuss the origin of dulse ACE inhibitory peptides. Each dulse phycobiliprotein possesses α-subunit (Mw: 17,477-17,638) and β-subunit (Mw: 17,455-18,407). The sequences of YRD, AGGEY, VYRT, VDHY, LKNPG and LDY were detected in the primary structure of PE α-subunit, and the LDY also exists in the APC α- and β-subunits. In addition, the LRY sequence was found in the β-subunits of PE, PC and APC. From these results, it was suggested that the dulse ACE inhibitory peptides were derived from phycobiliproteins, especially PE. To make sure the deduction, we carried out additional experiment by using recombinant PE. We expressed the recombinant α- and β-subunits of PE (rPEα and rPEβ, respectively), and then prepared their peptides by thermolysin hydrolysis. As a result, these peptides showed high ACE inhibitory activities (rPEα: 94.4%; rPEβ: 87.0%). Therefore, we concluded that the original proteins of dulse ACE inhibitory peptides were phycobiliproteins. PMID:26861357

  3. Antihypertensive effect of an angiotensin converting enzyme inhibitory peptide from enzyme modified cheese.

    PubMed

    Tonouchi, Hidekazu; Suzuki, Masayuki; Uchida, Masayuki; Oda, Munehiro

    2008-08-01

    Two angiotensin converting enzyme (ACE)-inhibitory peptides were isolated from enzyme modified cheese (EMC) and their amino acid sequences were identified as Leu-Gln-Pro and Met-Ala-Pro. The EMC was prepared by a combination of Protease N, Umamizyme, and Flavourzyme 500L. Both peptides were derived from beta-casein, f 88-90 and f 102-104, respectively. Met-Ala-Pro showed strong ACE inhibitory activity (IC50=0.8 mum) and antihypertensive activity in spontaneously hypertensive rats (SHR) after single oral administration. The IC50 value of Met-Ala-Pro was not affected by pre-incubation with ACE, suggesting that this peptide was a true ACE-inhibitory peptide. We report here, for the first time antihypertensive peptides from EMC.

  4. Activity Prediction and Molecular Mechanism of Bovine Blood Derived Angiotensin I-Converting Enzyme Inhibitory Peptides

    PubMed Central

    Zhang, Ting; Nie, Shaoping; Liu, Boqun; Yu, Yiding; Zhang, Yan; Liu, Jingbo

    2015-01-01

    Development of angiotensin I-converting enzyme (ACE, EC 3.4.15.1) inhibitory peptides from food protein is under extensive research as alternative for the prevention of hypertension. However, it is difficult to identify peptides released from food sources. To accelerate the progress of peptide identification, a three layer back propagation neural network model was established to predict the ACE-inhibitory activity of pentapeptides derived from bovine hemoglobin by simulated enzyme digestion. The pentapeptide WTQRF has the best predicted value with experimental IC50 23.93 μM. The potential molecular mechanism of the WTQRF / ACE interaction was investigated by flexible docking. PMID:25768442

  5. Activity prediction and molecular mechanism of bovine blood derived angiotensin I-converting enzyme inhibitory peptides.

    PubMed

    Zhang, Ting; Nie, Shaoping; Liu, Boqun; Yu, Yiding; Zhang, Yan; Liu, Jingbo

    2015-01-01

    Development of angiotensin I-converting enzyme (ACE, EC 3.4.15.1) inhibitory peptides from food protein is under extensive research as alternative for the prevention of hypertension. However, it is difficult to identify peptides released from food sources. To accelerate the progress of peptide identification, a three layer back propagation neural network model was established to predict the ACE-inhibitory activity of pentapeptides derived from bovine hemoglobin by simulated enzyme digestion. The pentapeptide WTQRF has the best predicted value with experimental IC50 23.93 μM. The potential molecular mechanism of the WTQRF / ACE interaction was investigated by flexible docking. PMID:25768442

  6. Pretreatment of garlic powder using sweep frequency ultrasound and single frequency countercurrent ultrasound: optimization and comparison for ACE inhibitory activities.

    PubMed

    Ma, Haile; Huang, Liurong; Peng, Lei; Wang, Zhenbin; Yang, Qiaorong

    2015-03-01

    The sweep frequency ultrasound (SFU) and single frequency countercurrent ultrasound (SFCU) pretreatments were modeled and compared based on production of angiotensin I-converting enzyme (ACE) inhibitory peptides from garlic hydrolysates. Two mathematical models were developed to show the effect of each variable and their combinatorial interactions on ACE inhibitory activity. The optimum levels of the parameters in SFU were determined using uniform design, which revealed these as follows: total ultrasonic time 1.5 h, on-time of pulse 18 s and off-time of pulse 3 s. Under optimized conditions, the experimental values of SFU and SFCU were 65.88% and 67.78%, which agreed closely with the predicted values of 63.44% and 67.33%. The SFU and SFCU pretreatments both resulted in higher ACE inhibitory activity compared with untreated garlic (p<0.05). However, there were no significant differences in the ACE inhibitory activities and IC₅₀ values obtained from SFCU and SFU pretreatments under optimum conditions (p>0.05).

  7. Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine beta-lactoglobulin.

    PubMed

    Mullally, M M; Meisel, H; FitzGerald, R J

    1997-02-01

    The angiotensin-I-converting enzyme (ACE) inhibitory activity of a tryptic digest of bovine beta-lactoglobulin (beta-lg) was investigated. Intact beta-lg essentially did not inhibit ACE while the tryptic digest gave an 84.3% inhibition of ACE. Peptide material eluting between 20 and 25% acetonitrile during C18 solid-phase extraction of the beta-lg tryptic digest inhibited ACE by 93.6%. This solid-phase extraction fraction was shown by mass spectroscopy to contain beta-lg f(142-148). This peptide had an ACE IC50 value of 42.6 micromol/l. The peptide was resistant to further digestion with pepsin and was hydrolysed to a very low extent with chymotrypsin. The contribution of specific amino acid residues within the peptide to ACE inhibitory activity and the potential application of this peptide as a nutraceutical is discussed.

  8. Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Enzymatic Hydrolysates of Razor Clam Sinonovacula constricta.

    PubMed

    Li, Yun; Sadiq, Faizan A; Fu, Li; Zhu, Hui; Zhong, Minghua; Sohail, Muhammad

    2016-01-01

    Angiotensin I-converting enzyme (ACE) inhibitory activity of razor clam hydrolysates produced using five proteases, namely, pepsin, trypsin, alcalase, flavourzyme and proteases from Actinomucor elegans T3 was investigated. Flavourzyme hydrolysate showed the highest level of degree of hydrolysis (DH) (45.87%) followed by A. elegans T3 proteases hydrolysate (37.84%) and alcalase (30.55%). The A. elegans T3 proteases was observed to be more effective in generating small peptides with ACE-inhibitory activity. The 3 kDa membrane permeate of A. elegans T3 proteases hydrolysate showed the highest ACE-inhibitory activity with an IC50 of 0.79 mg/mL. After chromatographic separation by Sephadex G-15 gel filtration and reverse phase-high performance liquid chromatography, the potent fraction was subjected to MALDI/TOF-TOF MS/MS for identification. A novel ACE-inhibitory peptide (VQY) was identified exhibiting an IC50 of 9.8 μM. The inhibitory kinetics investigation by Lineweaver-Burk plots demonstrated that the peptide acts as a competitive ACE inhibitor. The razor clam hydrolysate obtained by A. elegans T3 proteases could serve as a source of functional peptides with ACE-inhibitory activity for physiological benefits. PMID:27271639

  9. Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Enzymatic Hydrolysates of Razor Clam Sinonovacula constricta

    PubMed Central

    Li, Yun; Sadiq, Faizan A.; Fu, Li; Zhu, Hui; Zhong, Minghua; Sohail, Muhammad

    2016-01-01

    Angiotensin I-converting enzyme (ACE) inhibitory activity of razor clam hydrolysates produced using five proteases, namely, pepsin, trypsin, alcalase, flavourzyme and proteases from Actinomucor elegans T3 was investigated. Flavourzyme hydrolysate showed the highest level of degree of hydrolysis (DH) (45.87%) followed by A. elegans T3 proteases hydrolysate (37.84%) and alcalase (30.55%). The A. elegans T3 proteases was observed to be more effective in generating small peptides with ACE-inhibitory activity. The 3 kDa membrane permeate of A. elegans T3 proteases hydrolysate showed the highest ACE-inhibitory activity with an IC50 of 0.79 mg/mL. After chromatographic separation by Sephadex G-15 gel filtration and reverse phase-high performance liquid chromatography, the potent fraction was subjected to MALDI/TOF-TOF MS/MS for identification. A novel ACE-inhibitory peptide (VQY) was identified exhibiting an IC50 of 9.8 μM. The inhibitory kinetics investigation by Lineweaver-Burk plots demonstrated that the peptide acts as a competitive ACE inhibitor. The razor clam hydrolysate obtained by A. elegans T3 proteases could serve as a source of functional peptides with ACE-inhibitory activity for physiological benefits. PMID:27271639

  10. ACE

    NASA Technical Reports Server (NTRS)

    Lumia, R.

    1999-01-01

    This document describes the progress made during the fourth year of the Center for Autonomous Control Engineering (ACE). We currently support 30 graduate students, 52 undergraduate students, 9 faculty members, and 4 staff members. Progress will be divided into two categories. The first category explores progress for ACE in general. The second describes the results of each specific project supported within ACE.

  11. Two angiotensin-converting enzyme-inhibitory peptides from almond protein and the protective action on vascular endothelial function.

    PubMed

    Liu, Rui-Lin; Ge, Xian-Li; Gao, Xiang-Yu; Zhan, Han-Ying; Shi, Ting; Su, Na; Zhang, Zhi-Qi

    2016-09-14

    This study aimed to discover and prepare novel angiotensin converting enzyme (ACE) inhibitory peptides from almond protein and further evaluate the effect on endothelial function of human umbilical vascular endothelial cells (HUVECs). Almond protein was hydrolyzed using a two-stage alcalase-protamex hydrolysis process, and the hydrolysates were subjected to a series of separations, ultrafiltration, gel filtration chromatography, and reversed-phased preparative chromatography, to obtain the active peptides. Seven ACE inhibitory fractions with the molecular weight below 1.5 kDa were isolated and prepared, and two purified ACE inhibitory peptides with the IC50 values of 67.52 ± 0.05 and 43.18 ± 0.07 μg mL(-1), were identified as Met-His-Thr-Asp-Asp and Gln-His-Thr-Asp-Asp, respectively. Then the effect of two ACE inhibitory peptides on the endothelial function of HUVECs was evaluated. Results showed that the two potent ACE inhibitory peptides significantly regulated the release of nitric oxide and endothelin in HUVECs. These results suggest that almond peptides have potential as an antihypertensive nutraceuticals or a functional food ingredient. PMID:27502043

  12. Enzyme Hydrolysates from Stichopus horrens as a New Source for Angiotensin-Converting Enzyme Inhibitory Peptides

    PubMed Central

    Forghani, Bita; Ebrahimpour, Afshin; Bakar, Jamilah; Abdul Hamid, Azizah; Hassan, Zaiton; Saari, Nazamid

    2012-01-01

    Stichopus horrens flesh was explored as a potential source for generating peptides with angiotensin-converting enzyme (ACE) inhibitory capacity using 6 proteases, namely alcalase, flavourzyme, trypsin, papain, bromelain, and protamex. Degree of hydrolysis (DH) and peptide profiling (SDS-PAGE) of Stichopus horrens hydrolysates (SHHs) was also assessed. Alcalase hydrolysate showed the highest DH value (39.8%) followed by flavourzyme hydrolysate (32.7%). Overall, alcalase hydrolysate exhibited the highest ACE inhibitory activity (IC50 value of 0.41 mg/mL) followed by flavourzyme hydrolysate (IC50 value of 2.24 mg/mL), trypsin hydrolysate (IC50 value of 2.28 mg/mL), papain hydrolysate (IC50 value of 2.48 mg/mL), bromelain hydrolysate (IC50 value of 4.21 mg/mL), and protamex hydrolysate (IC50 value of 6.38 mg/mL). The SDS-PAGE results showed that alcalase hydrolysate represented a unique pattern compared to others, which yielded potent ACE inhibitory peptides with molecular weight distribution lower than 20 kDa. The evaluation of the relationship between DH and IC50 values of alcalase and flavourzyme hydrolysates revealed that the trend between those parameters was related to the type of the protease used. We concluded that the tested SHHs would be used as a potential source of functional ACE inhibitory peptides for physiological benefits. PMID:22927875

  13. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism

    PubMed Central

    2004-01-01

    In the RAS (renin–angiotensin system), Ang I (angiotensin I) is cleaved by ACE (angiotensin-converting enzyme) to form Ang II (angiotensin II), which has effects on blood pressure, fluid and electrolyte homoeostasis. We have examined the kinetics of angiotensin peptide cleavage by full-length human ACE, the separate N- and C-domains of ACE, the homologue of ACE, ACE2, and NEP (neprilysin). The activity of the enzyme preparations was determined by active-site titrations using competitive tight-binding inhibitors and fluorogenic substrates. Ang I was effectively cleaved by NEP to Ang (1–7) (kcat/Km of 6.2×105 M−1·s−1), but was a poor substrate for ACE2 (kcat/Km of 3.3×104 M−1·s−1). Ang (1–9) was a better substrate for NEP than ACE (kcat/Km of 3.7×105 M−1·s−1 compared with kcat/Km of 6.8×104 M−1·s−1). Ang II was cleaved efficiently by ACE2 to Ang (1–7) (kcat/Km of 2.2×106 M−1·s−1) and was cleaved by NEP (kcat/Km of 2.2×105 M−1·s−1) to several degradation products. In contrast with a previous report, Ang (1–7), like Ang I and Ang (1–9), was cleaved with a similar efficiency by both the N- and C-domains of ACE (kcat/Km of 3.6×105 M−1·s−1 compared with kcat/Km of 3.3×105 M−1·s−1). The two active sites of ACE exhibited negative co-operativity when either Ang I or Ang (1–7) was the substrate. In addition, a range of ACE inhibitors failed to inhibit ACE2. These kinetic data highlight that the flux of peptides through the RAS is complex, with the levels of ACE, ACE2 and NEP dictating whether vasoconstriction or vasodilation will predominate. PMID:15283675

  14. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    PubMed Central

    Segura-Campos, Maira R.; Peralta-González, Fanny; Castellanos-Ruelas, Arturo; Chel-Guerrero, Luis A.; Betancur-Ancona, David A.

    2013-01-01

    Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE) plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%). Hydrophobic residues contributed substantially to the peptides' inhibitory potency. The 5–10 and <1 kDa fractions were selected for further fractionation by gel filtration chromatography. ACE inhibitory activity (%) ranged from 22.66 to 45.96% with the 5–10 kDa ultrafiltered fraction and from 36.91 to 55.83% with the <1 kDa ultrafiltered fraction. The highest ACE inhibitory activity was observed in F2 (IC50 = 6.7 μg/mL) from the 5–10 kDa fraction and F1 (IC50 = 4.78 μg/mL) from the <1 kDa fraction. ACE inhibitory fractions from Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry. PMID:24224169

  15. In Vitro and In Vivo Assessment of Angiotensin-Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Milk by Lactobacillus casei Strains.

    PubMed

    Bao, Zhijie; Chi, Yujie

    2016-08-01

    Angiotensin-converting enzyme (ACE) inhibitory activity of fermented soybean milk (FSM) by Lactobacillus casei strains in vitro was investigated in this study. Effects of fermented soybean milk administration by gavage on systolic blood pressure and diastolic blood pressure was also evaluated in spontaneously hypertensive rats (SHR) rats and Wistar-Kyoto (WKY) rats. Results showed that, CICC 20280 and CICC 23184 FSM showed high ACE inhibitory activity in vitro test and ACE inhibitory activity of CICC 23184 FSM was higher than CICC 20280 FSM. The bioactive substances of FSM were peptide and γ-aminobutyric acid (GABA). Their contents in CICC 20280 FSM and CICC 23184 FSM were 3.97 ± 0.67 mg/ml (peptide), 1.71 ± 0.36 mg/ml (GABA) and 5.17 ± 0.22 mg/ml (peptide), 1.57 ± 0.21 mg/ml (GABA), respectively. Moreover, CICC 20280 and CICC 23184 FSM administration by gavage could effectively lower the blood pressure of SHR to a normal level, while there was no effect on blood pressure of WKY rats. This result indicated that the bioactive substances could play an antihypertensive role when the blood pressure was not within the normal levels (high levels). PMID:27139252

  16. Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven- and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala).

    PubMed

    Elavarasan, K; Shamasundar, B A; Badii, Faraha; Howell, Nazlin

    2016-09-01

    The angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven-dried (OD-FPH) and freeze-dried (FD-FPH) protein hydrolysates derived from fresh water fish (Cirrhinus mrigala) muscle, using papain, were investigated. Amino acid profiles indicated a higher proportion of hydrophobic residues in OD-FPH and hydrophilic residues in FD-FPH samples. Fourier transform infrared (FT-IR) spectra revealed random coil structure in OD-FPH and β-sheet in FD-FPH samples. The approximate molecular weight of peptides in OD-FPH and FD-FPH was in the range of 7030-339Da. The IC50 values for ACE inhibition by OD-FPH and FD-FPH samples were found to be 1.15 and 1.53mg of proteinml(-1), respectively. The ACE-inhibitory activity of OD-FPH was more stable (during sequential digestion, using pepsin and pancreatin) than that of FD-FPH sample. The study suggested that the ACE inhibitory activity of protein hydrolysate was not affected by oven-drying. PMID:27041318

  17. Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven- and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala).

    PubMed

    Elavarasan, K; Shamasundar, B A; Badii, Faraha; Howell, Nazlin

    2016-09-01

    The angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven-dried (OD-FPH) and freeze-dried (FD-FPH) protein hydrolysates derived from fresh water fish (Cirrhinus mrigala) muscle, using papain, were investigated. Amino acid profiles indicated a higher proportion of hydrophobic residues in OD-FPH and hydrophilic residues in FD-FPH samples. Fourier transform infrared (FT-IR) spectra revealed random coil structure in OD-FPH and β-sheet in FD-FPH samples. The approximate molecular weight of peptides in OD-FPH and FD-FPH was in the range of 7030-339Da. The IC50 values for ACE inhibition by OD-FPH and FD-FPH samples were found to be 1.15 and 1.53mg of proteinml(-1), respectively. The ACE-inhibitory activity of OD-FPH was more stable (during sequential digestion, using pepsin and pancreatin) than that of FD-FPH sample. The study suggested that the ACE inhibitory activity of protein hydrolysate was not affected by oven-drying.

  18. Angiotensin I-converting enzyme inhibitory activity of gelatin hydrolysates and identification of bioactive peptides.

    PubMed

    Herregods, Griet; Van Camp, John; Morel, Nicole; Ghesquière, Bart; Gevaert, Kris; Vercruysse, Lieselot; Dierckx, Stephan; Quanten, Erwin; Smagghe, Guy

    2011-01-26

    In this project we report on the angiotensin I-converting enzyme (ACE)-inhibitory activity of a bovine gelatin hydrolysate (Bh2) that was submitted to further hydrolysis by different enzymes. The thermolysin hydrolysate (Bh2t) showed the highest in vitro ACE inhibitory activity, and interestingly a marked in vivo blood pressure-lowering effect was demonstrated in spontaneously hypertensive rats (SHR). In contrast, Bh2 showed no effect in SHR, confirming the need for the extra thermolysin hydrolysis. Hence, an angiotensin I-evoked contractile response in isolated rat aortic rings was inhibited by Bh2t, but not by Bh2, suggesting ACE inhibition as the underlying antihypertensive mechanism for Bh2t. Using mass spectrometry, seven small peptides, AG, AGP, VGP, PY, QY, DY and IY or LY or HO-PY were identified in Bh2t. As these peptides showed ACE inhibitory activity and were more prominent in Bh2t than in Bh2, the current data provide evidence that these contribute to the antihypertensive effect of Bh2t.

  19. Modelling of the production of ACE inhibitory hydrolysates of horse mackerel using proteases mixtures.

    PubMed

    Pérez-Gálvez, R; Morales-Medina, R; Espejo-Carpio, F; Guadix, A; Guadix, E M

    2016-09-14

    Fish protein hydrolysates from Mediterranean horse mackerel were produced by using a mixture of two commercial endoproteases (i.e. subtilisin and trypsin) at different levels of substrate concentration (2.5 g L(-1), 5 g L(-1), and 7.5 g L(-1) of protein), temperature (40 °C, 47.5 °C, and 55 °C) and percentage of subtilisin in the enzyme mixture (0%, 25%, 50%, 75% and 100%). A crossed mixture process model was employed to predict the degree of hydrolysis (DH) and the ACE inhibitory activity of the final hydrolysates as a function of the experimental factors. Both models were optimized for a maximum DH and ACE inhibition. A maximum DH (17.1%) was predicted at 2.54 g L(-1) of substrate concentration, 40 °C and an enzyme mixture comprising 38.3% of subtilisin and 61.7% of trypsin. Although its proteolytic activity is limited, the presence of trypsin in the enzyme mixture allowed obtaining higher degrees of hydrolysis at low temperatures, which is desirable to minimize thermal deactivation of the proteins. Similarly, a percentage of ACE inhibition above 48% was attained at 2.5 g L(-1) of protein, 40 °C and a 1 : 1 mixture of both proteases. Higher values of ACE inhibition could be attained by increasing both the temperature and the amount of trypsin in the enzyme mixture (e.g. 50% ACE inhibition at 55 °C and 81.5% of trypsin). Finally, those hydrolysates exhibiting the highest levels of ACE inhibition were subjected to simulated gastrointestinal digestion. These assays confirmed the resistance of active fractions against their degradation by digestive enzymes. PMID:27526864

  20. Purification and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from an enzymatic hydrolysate of duck skin byproducts.

    PubMed

    Lee, Seung-Jae; Kim, Yon-Suk; Kim, Seong-Eun; Kim, Eun-Kyung; Hwang, Jin-Woo; Park, Tae-Kyu; Kim, Bo Kyung; Moon, Sang-Ho; Jeon, Byong-Tae; Jeon, You-Jin; Ahn, Chang-Bum; Je, Jae-Young; Park, Pyo-Jam

    2012-10-10

    An angiotensin I-converting enzyme (ACE) inhibitory peptide was isolated and identified from hydrolysates of duck skin byproducts. Duck skin byproducts were hydrolyzed using nine proteases (Alcalase, Collagenase, Flavourzyme, Neutrase, papain, pepsin, Protamex, trypsin, and α-chymotrypsin) to produce an antihypertensive peptide. Of the various hydrolysates produced, the α-chymotrypsin hydrolysate exhibited the highest ACE inhibitory activity. The hydrolysate was purified using fast protein liquid chromatography (FPLC) and high-performance liquid chromatography (HPLC). The amino acid sequence of the ACE inhibitory peptide was identified as a hexapeptide Trp-Tyr-Pro-Ala-Ala-Pro, with a molecular weight of 693.90 Da. The peptide had an IC50 value of 137 μM, and the inhibitory pattern of the purified ACE inhibitor from duck skin byproducts was determined to be competitive by Lineweaver-Burk plots. In addition, the peptide was synthesized and the ACE inhibitory activity was verified in vivo. Spontaneously hypertensive rats (SHR) exhibited significantly decreased blood pressure and heart rate after peptide injection. Taken together, the results suggest that Trp-Tyr-Pro-Ala-Ala-Pro may be useful as a new antihypertensive agent.

  1. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis.

    PubMed

    Segura Campos, Maira Rubi; Peralta González, Fanny; Chel Guerrero, Luis; Betancur Ancona, David

    2013-01-01

    Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa). ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64%) and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%). This fraction's amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5-2.5 kDa) exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427-455 mL elution volume). The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system.

  2. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis

    PubMed Central

    Segura Campos, Maira Rubi; Peralta González, Fanny; Chel Guerrero, Luis

    2013-01-01

    Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa). ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64%) and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%). This fraction's amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5–2.5 kDa) exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427–455 mL elution volume). The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system. PMID:26904588

  3. Antioxidant activity and ACE-inhibitory of Class II hydrophobin from wild strain Trichoderma reesei.

    PubMed

    Khalesi, Mohammadreza; Jahanbani, Raheleh; Riveros-Galan, David; Sheikh-Hassani, Vahid; Sheikh-Zeinoddin, Mahmoud; Sahihi, Mehdi; Winterburn, James; Derdelinckx, Guy; Moosavi-Movahedi, Ali Akbar

    2016-10-01

    There are several possible uses of the Class II hydrophobin HFBII in clinical applications. To fully understand and exploit this potential however, the antioxidant activity and ACE-inhibitory potential of this protein need to be better understood and have not been previously reported. In this study, the Class II hydrophobin HFBII was produced by the cultivation of wild type Trichoderma reesei. The crude hydrophobin extract obtained from the fermentation process was purified using reversed-phase liquid chromatography and the identity of the purified HFBII verified by MALDI-TOF (molecular weight: 7.2kDa). Subsequently the antioxidant activities of different concentrations of HFBII (0.01-0.40mg/mL) were determined. The results show that for HFBII concentrations of 0.04mg/mL and upwards the protein significantly reduced the presence of ABTS(+) radicals in the medium, the IC50 value found to be 0.13mg/mL. Computational modeling highlighted the role of the amino acid residues located in the conserved and exposed hydrophobic patch on the surface of the HFBII molecule and the interactions with the aromatic rings of ABTS. The ACE-inhibitory effect of HFBII was found to occur from 0.5mg/mL and upwards, making the combination of HFBII with strong ACE-inhibitors attractive for use in the healthcare industry. PMID:27211298

  4. Identification and formation of angiotensin-converting enzyme-inhibitory peptides in Manchego cheese by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Gómez-Ruiz, José Angel; Ramos, Mercedes; Recio, Isidra

    2004-10-29

    A total of 75 peptides included in the fraction with molecular mass below 3000 from an 8-month-old Manchego cheese could be identified using HPLC coupled on line to an ion trap mass spectrometer. Some previously described peptides with antihypertensive and/or angiotensin-converting enzyme (ACE)-inhibitory activity were detected. The formation of five active sequences was followed during cheese ripening in four different batches of Manchego cheese. Two experimental batches of Manchego cheese elaborated with selected bacterial strains with the aim of improve the organoleptic characteristics demonstrated also a good performance in the formation of peptides with ACE-inhibitory activity during cheese ripening. PMID:15553153

  5. Occurrence and fate of ACE-inhibitor peptides in cheeses and in their digestates following in vitro static gastrointestinal digestion.

    PubMed

    Stuknytė, Milda; Cattaneo, Stefano; Masotti, Fabio; De Noni, Ivano

    2015-02-01

    The occurrence of the casein-derived angiotensin converting enzyme-inhibitor (ACE-I) peptides VPP, IPP, RYLGY, RYLG, AYFYPEL, AYFYPE, LHLPLP and HLPLP were investigated in 12 different cheese samples by Ultra Performance Liquid Chromatography/High-Resolution Mass Spectrometry. The total amount of ACE-I peptides was in the range 0.87-331mgkg(-1). VPP and IPP largely prevailed in almost all cheeses. Following in vitro static gastrointestinal digestion of Cheddar, Gorgonzola, Maasdam and Grana Padano cheeses, type and amount of ACE-I peptides changed, and only VPP, IPP, HLPLP and LHLPLP were detected in the intestinal digestates. The results evidenced that the degree of proteolysis itself cannot be regarded as a promoting or hindering factor for ACE-I peptide release during cheese digestion. Moreover, the data indicated that the ACE-I potential of cheeses cannot be inferred based on the type and amount of ACE-I peptides present in undigested samples.

  6. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis.

    PubMed

    Lafarga, Tomas; O'Connor, Paula; Hayes, Maria

    2014-09-01

    Angiotensin-I-converting enzyme (ACE-I, EC 3.4.15.1), renin (EC 3.4.23.15), and dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) play key roles in the control of hypertension and the development of type-2 diabetes and other diseases associated with metabolic syndrome. The aim of this work was to utilize known in silico methodologies, peptide databases and software including ProtParam (http://web.expasy.org/protparam/), Basic Local Alignment Tool (BLAST), ExPASy PeptideCutter (http://web.expasy.org/peptide_cutter/) and BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/pl/biopep) to assess the release of potentially bioactive DPP-IV, renin and ACE-I inhibitory peptides from bovine and porcine meat proteins including hemoglobin, collagen and serum albumin. These proteins were chosen as they are found commonly in meat by-products such as bone, blood and low-value meat cuts. In addition, the bioactivities of identified peptides were confirmed using chemical synthesis and in vitro bioassays. The concentration of peptide required to inhibit the activity of ACE-I and DPP-IV by 50% was determined for selected, active peptides. Novel ACE-I and DPP-IV inhibitory peptides were identified in this study using both in silico analysis and a literature search to streamline enzyme selection for peptide production. These novel peptides included the ACE-I inhibitory tri-peptide Ile-Ile-Tyr and the DPP-IV inhibitory tri-peptide Pro-Pro-Leu corresponding to sequences f (182-184) and f (326-328) of both porcine and bovine serum albumin which can be released following hydrolysis with the enzymes papain and pepsin, respectively. This work demonstrates that meat proteins are a suitable resource for the generation of bioactive peptides and further demonstrates the usefulness of in silico methodologies to streamline identification and generation of bioactive peptides.

  7. γ-Aminobutyric Acid (GABA) Production and Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-Culture of Lactobacillus brevis with Aspergillus oryzae.

    PubMed

    Jang, Eun Kyeong; Kim, Nam Yeun; Ahn, Hyung Jin; Ji, Geun Eog

    2015-08-01

    To enhance the γ-aminobutyric acid (GABA) content, the optimized fermentation of soybean with added sea tangle extract was evaluated at 30°C and pH 5.0. The medium was first inoculated with Aspergillus oryzae strain FMB S46471 and fermented for 3 days, followed by the subsequent inoculation with Lactobacillus brevis GABA 100. After fermentation for 7 days, the fermented soybean showed approximately 1.9 g/kg GABA and exhibited higher ACE inhibitory activity than the traditional soybean product. Furthermore, several peptides in the fraction containing the highest ACE inhibitory activity were identified. The novel fermented soybean enriched with GABA and ACE inhibitory components has great pharmaceutical and functional food values.

  8. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension.

    PubMed

    Mendoza-Torres, Evelyn; Oyarzún, Alejandra; Mondaca-Ruff, David; Azocar, Andrés; Castro, Pablo F; Jalil, Jorge E; Chiong, Mario; Lavandero, Sergio; Ocaranza, María Paz

    2015-08-01

    The renin-angiotensin system (RAS) is a key component of cardiovascular physiology and homeostasis due to its influence on the regulation of electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling. Deregulation of this system contributes significantly to the pathophysiology of cardiovascular and renal diseases. Numerous studies have generated new perspectives about a noncanonical and protective RAS pathway that counteracts the proliferative and hypertensive effects of the classical angiotensin-converting enzyme (ACE)/angiotensin (Ang) II/angiotensin type 1 receptor (AT1R) axis. The key components of this pathway are ACE2 and its products, Ang-(1-7) and Ang-(1-9). These two vasoactive peptides act through the Mas receptor (MasR) and AT2R, respectively. The ACE2/Ang-(1-7)/MasR and ACE2/Ang-(1-9)/AT2R axes have opposite effects to those of the ACE/Ang II/AT1R axis, such as decreased proliferation and cardiovascular remodeling, increased production of nitric oxide and vasodilation. A novel peptide from the noncanonical pathway, alamandine, was recently identified in rats, mice and humans. This heptapeptide is generated by catalytic action of ACE2 on Ang A or through a decarboxylation reaction on Ang-(1-7). Alamandine produces the same effects as Ang-(1-7), such as vasodilation and prevention of fibrosis, by interacting with Mas-related GPCR, member D (MrgD). In this article, we review the key roles of ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) and alamandine as counter-regulators of the ACE-Ang II axis as well as the biological properties that allow them to regulate blood pressure and cardiovascular and renal remodeling.

  9. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension.

    PubMed

    Mendoza-Torres, Evelyn; Oyarzún, Alejandra; Mondaca-Ruff, David; Azocar, Andrés; Castro, Pablo F; Jalil, Jorge E; Chiong, Mario; Lavandero, Sergio; Ocaranza, María Paz

    2015-08-01

    The renin-angiotensin system (RAS) is a key component of cardiovascular physiology and homeostasis due to its influence on the regulation of electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling. Deregulation of this system contributes significantly to the pathophysiology of cardiovascular and renal diseases. Numerous studies have generated new perspectives about a noncanonical and protective RAS pathway that counteracts the proliferative and hypertensive effects of the classical angiotensin-converting enzyme (ACE)/angiotensin (Ang) II/angiotensin type 1 receptor (AT1R) axis. The key components of this pathway are ACE2 and its products, Ang-(1-7) and Ang-(1-9). These two vasoactive peptides act through the Mas receptor (MasR) and AT2R, respectively. The ACE2/Ang-(1-7)/MasR and ACE2/Ang-(1-9)/AT2R axes have opposite effects to those of the ACE/Ang II/AT1R axis, such as decreased proliferation and cardiovascular remodeling, increased production of nitric oxide and vasodilation. A novel peptide from the noncanonical pathway, alamandine, was recently identified in rats, mice and humans. This heptapeptide is generated by catalytic action of ACE2 on Ang A or through a decarboxylation reaction on Ang-(1-7). Alamandine produces the same effects as Ang-(1-7), such as vasodilation and prevention of fibrosis, by interacting with Mas-related GPCR, member D (MrgD). In this article, we review the key roles of ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) and alamandine as counter-regulators of the ACE-Ang II axis as well as the biological properties that allow them to regulate blood pressure and cardiovascular and renal remodeling. PMID:26275770

  10. Ex vivo digestion of carp muscle tissue--ACE inhibitory and antioxidant activities of the obtained hydrolysates.

    PubMed

    Borawska, J; Darewicz, M; Vegarud, G E; Iwaniak, A; Minkiewicz, P

    2015-01-01

    In the digestive tract of humans, bioactive peptides, i.e. protein fragments impacting the physiological activity of the body, may be released during the digestion of food proteins, including those of fish. The aim of the study was to establish the method of human ex vivo digestion of carp muscle tissue and evaluate the angiotensin I-converting enzyme inhibitory and antioxidant activities of hydrolysates obtained after digestion. It was found that the hydrolysates of carp muscle tissue obtained with the three-stage method of simulated ex vivo digestion showed ACE inhibitory as well as antioxidative activities. It was demonstrated that the degree of hydrolysis depended on the duration of individual stages and the degree of comminution of the examined material. Although the applied gastric juices initiated the process of hydrolysis of carp muscle tissue, the duodenal juices caused a rapid increase in the amount of hydrolysed polypeptide bonds. The antihypertensive and antioxidative activities of the hydrolysates of carp muscle tissue increased together with progressive protein degradation. However, the high degree of protein hydrolysis does not favour an increase in the activity of free radical scavenging. The presented results are an example of the first preliminary screening of the potential health-promoting biological activity of carp muscle tissue in an ex vivo study.

  11. Functional characterization of the recombinant antimicrobial peptide Trx-Ace-AMP1 and its application on the control of tomato early blight disease.

    PubMed

    Wu, Yin; He, Yue; Ge, Xiaochun

    2011-05-01

    Ace-AMP1 is a potent antifungal peptide found in onion (Allium cepa) seeds with sequence similarity to plant lipid transfer proteins. Transgenic plants over-expressing Ace-AMP1 gene have enhanced disease resistance to some fungal pathogens. However, mass production in heterologous systems and in vitro application of this peptide have not been reported. In this study, Ace-AMP1 was highly expressed in a prokaryotic Escherichia coli system as a fusion protein. The purified protein inhibited the growth of many plant fungal pathogens, especially Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, and Verticillium dahliae. The inhibitory effect was accompanied by hyphal hyperbranching for V. dahliae but not for F. oxysporum f. sp. vasinfectum and A. solani, suggesting that the mode of action of Ace-AMP1 on different fungi might be different. Application of Ace-AMP1 on tomato leaves showed that the recombinant protein conferred strong resistance to the tomato pathogen A. solani and could be used as an effective fungicide. PMID:21380518

  12. A peptide antagonist disrupts NK cell inhibitory synapse formation.

    PubMed

    Borhis, Gwenoline; Ahmed, Parvin S; Mbiribindi, Bérénice; Naiyer, Mohammed M; Davis, Daniel M; Purbhoo, Marco A; Khakoo, Salim I

    2013-03-15

    Productive engagement of MHC class I by inhibitory NK cell receptors depends on the peptide bound by the MHC class I molecule. Peptide:MHC complexes that bind weakly to killer cell Ig-like receptors (KIRs) can antagonize the inhibition mediated by high-affinity peptide:MHC complexes and cause NK cell activation. We show that low-affinity peptide:MHC complexes stall inhibitory signaling at the step of Src homology protein tyrosine phosphatase 1 recruitment and do not go on to form the KIR microclusters induced by high-affinity peptide:MHC, which are associated with Vav dephosphorylation and downstream signaling. Furthermore, the low-affinity peptide:MHC complexes prevented the formation of KIR microclusters by high-affinity peptide:MHC. Thus, peptide antagonism of NK cells is an active phenomenon of inhibitory synapse disruption.

  13. Antioxidant, antibacterial and ACE-inhibitory activity of four monofloral honeys in relation to their chemical composition.

    PubMed

    León-Ruiz, Virginia; González-Porto, Amelia V; Al-Habsi, Nasser; Vera, Soledad; San Andrés, María Paz; Jauregi, Paula

    2013-11-01

    Different monofloral honeys from Castilla-La Mancha (Spain) have been studied in order to determine their main functional and biological properties. Thyme honey and chestnut honey possess the highest antioxidant capacity, which is due to their high vitamin C (in thyme honey) and total polyphenolic content (in chestnut honey). On the other hand, chestnut honey showed high antimicrobial activity against Staphylococcus aureus and Escherichia coli, whilst others had no activity against S. aureus and showed very small activity against E. coli. Moreover it was found that the antimicrobial activity measured in chestnut honey was partly due to its lysozyme content. In addition the angiotensin I-converting enzyme (ACE) inhibitory activity was measured, and the ACE inhibition is one mechanism by which antihypertensive activity is exerted in vivo. All the types of honey showed some activity but chestnut honey had the highest ACE inhibitory activity. PMID:24056722

  14. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora) Hydrolysates.

    PubMed

    Ghanbari, Raheleh; Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2015-01-01

    In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions. PMID:26690117

  15. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora) Hydrolysates

    PubMed Central

    Ghanbari, Raheleh; Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2015-01-01

    In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions. PMID:26690117

  16. Angiotensin I converting enzyme (ACE) inhibitory activity of hetero-chitooligosaccharides prepared from partially different deacetylated chitosans.

    PubMed

    Park, Pyo-Jam; Je, Jae-Young; Kim, Se-Kwon

    2003-08-13

    Angiotensin I converting enzyme (ACE) inhibitory activity of hetero-chitooligosaccharides (hetero-COSs) prepared from partially different deacetylated chitosans was investigated. Partially deacetylated chitosans, 90, 75, and 50% deacetylated chitosan, were prepared from crab chitin by N-deacetylation with 40% sodium hydroxide solution for durations. In addition, nine kinds of hetero-COSs with relatively high molecular masses (5000-10 000 Da; 90-HMWCOSs, 75-HMWCOSs, and 50-HMWCOSs), medium molecular masses (1000-5000 Da; 90-MMWCOSs, 75-MMWCOSs, and 50-MMWCOSs), and low molecular masses (below 1000 Da; 90-LMWCOSs, 75-LMWCOSs, and 50-LMWCOSs) were prepared using an ultrafiltration membrane bioreactor system. ACE inhibitory activity of hetero-COSs was dependent on the degree of deacetylation of chitosans. 50-MMWCOSs that are COSs hydrolyzed from 50% deacetylated chitosan, the relatively lowest degree of deacetylation, exhibited the highest ACE inhibitory activity, and the IC(50) value was 1.22 +/- 0.13 mg/mL. In addition, the ACE inhibition pattern of the 50-MMWCOSs was investigated by Lineweaver-Burk plots, and the inhibition pattern was found to be competitive.

  17. Occurrence and fate of ACE-inhibitor peptides in cheeses and in their digestates following in vitro static gastrointestinal digestion.

    PubMed

    Stuknytė, Milda; Cattaneo, Stefano; Masotti, Fabio; De Noni, Ivano

    2015-02-01

    The occurrence of the casein-derived angiotensin converting enzyme-inhibitor (ACE-I) peptides VPP, IPP, RYLGY, RYLG, AYFYPEL, AYFYPE, LHLPLP and HLPLP were investigated in 12 different cheese samples by Ultra Performance Liquid Chromatography/High-Resolution Mass Spectrometry. The total amount of ACE-I peptides was in the range 0.87-331mgkg(-1). VPP and IPP largely prevailed in almost all cheeses. Following in vitro static gastrointestinal digestion of Cheddar, Gorgonzola, Maasdam and Grana Padano cheeses, type and amount of ACE-I peptides changed, and only VPP, IPP, HLPLP and LHLPLP were detected in the intestinal digestates. The results evidenced that the degree of proteolysis itself cannot be regarded as a promoting or hindering factor for ACE-I peptide release during cheese digestion. Moreover, the data indicated that the ACE-I potential of cheeses cannot be inferred based on the type and amount of ACE-I peptides present in undigested samples. PMID:25172679

  18. Hypotensive, Angiotensin Converting Enzyme (ACE) Inhibitory and Diuretic Activities of the Aqueous-methanol Extract of Ipomoea reniformis

    PubMed Central

    Jabeen, Qaiser; Aslam, Naveed

    2013-01-01

    Ipomoea reniformis Roxb. (Convolvulaceae) is a small, weedy herb used for the management of cardiac problems in traditional systems of medicine in India and Pakistan. Objective of the present study was to investigate the hypotensive, diuretic and angiotensin converting enzyme (ACE) inhibitory activities of the aqueous-methanol (30:70) crude extract of the dried aerial parts of I. reniformis (Ir.Cr.) in rats. To record blood pressure lowering effects of the Ir.Cr, different doses of the extract were administered through jugular vein to the ketamine-diazepam anesthetized normotensive rats and blood pressure was recorded via carotid artery. ACE inhibitory activity of the extract was studied in-vitro; using hippuryl-l-histidyl-l-leucine as substrate, the product hippurate was quantified spectrophotometrically after reacting with cyanuric chloride/dioxane reagent. Effects of intraperitoneal administration of the extract on urine and urinary electrolyte excretion were also investigated in rats. The extract (Ir.Cr.) produced 21.51 ± 3.41, 28.99 ± 2.30, 53.34 ± 0.88 and 61.71 ± 3.37% fall in mean arterial blood pressure of the anesthetized rats at the doses of 0.1, 0.3, 1.0 and 3.0 mg/Kg, respectively. Ir.Cr. was found to have serum ACE inhibitory activity, with IC50 value of 422 ± 21.16 μg/mL. The extract also increased urine volume and urinary Na+ excretion significantly at the doses of 30 and 50 mg/Kg in rats. The study concludes that the crude extract of Ipomoea reniformis (Ir.Cr.) has hypotensive, ACE inhibitory and diuretic activities, which provide the scientific justification for the traditional uses of the plant as cardioprotective, antihypertensive and diuretic remedy. PMID:24523757

  19. Non-disulfide-bridged peptides from Tityus serrulatus venom: Evidence for proline-free ACE-inhibitors.

    PubMed

    Pucca, Manuela Berto; Cerni, Felipe Augusto; Pinheiro-Junior, Ernesto Lopes; Zoccal, Karina Furlani; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Peigneur, Steve; Vriens, Kim; Thevissen, Karin; Cammue, Bruno Philippe Angelo; Júnior, Ronaldo Bragança Martins; Arruda, Eurico; Faccioli, Lúcia Helena; Tytgat, Jan; Arantes, Eliane Candiani

    2016-08-01

    The present study purifies two T. serrulatus non-disulfide-bridged peptides (NDBPs), named venom peptides 7.2 (RLRSKG) and 8 (KIWRS) and details their synthesis and biological activity, comparing to the synthetic venom peptide 7.1 (RLRSKGKK), previously identified. The synthetic replicate peptides were subjected to a range of biological assays: hemolytic, antifungal, antiviral, electrophysiological, immunological and angiotensin-converting enzyme (ACE) inhibition activities. All venom peptides neither showed to be cytolytic nor demonstrated significant antifungal or antiviral activities. Interestingly, peptides were able to modulate macrophages' responses, increasing IL-6 production. The three venom peptides also demonstrated potential to inhibit ACE in the following order: 7.2>7.1>8. The ACE inhibition activity was unexpected, since peptides that display this function are usually proline-rich peptides. In attempt to understand the origin of such small peptides, we discovered that the isolated peptides 7.2 and 8 are fragments of the same molecule, named Pape peptide precursor. Furthermore, the study discusses that Pape fragments could be originated from a post-splitting mechanism resulting from metalloserrulases and other proteinases cleavage, which can be seen as a clever mechanism used by the scorpion to enlarge its repertoire of venom components. Scorpion venom remains as an interesting source of bioactive proteins and this study advances our knowledge about three NDBPs and their biological activities. PMID:27221550

  20. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis.

    PubMed

    Lafarga, Tomas; O'Connor, Paula; Hayes, Maria

    2014-09-01

    Angiotensin-I-converting enzyme (ACE-I, EC 3.4.15.1), renin (EC 3.4.23.15), and dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) play key roles in the control of hypertension and the development of type-2 diabetes and other diseases associated with metabolic syndrome. The aim of this work was to utilize known in silico methodologies, peptide databases and software including ProtParam (http://web.expasy.org/protparam/), Basic Local Alignment Tool (BLAST), ExPASy PeptideCutter (http://web.expasy.org/peptide_cutter/) and BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/pl/biopep) to assess the release of potentially bioactive DPP-IV, renin and ACE-I inhibitory peptides from bovine and porcine meat proteins including hemoglobin, collagen and serum albumin. These proteins were chosen as they are found commonly in meat by-products such as bone, blood and low-value meat cuts. In addition, the bioactivities of identified peptides were confirmed using chemical synthesis and in vitro bioassays. The concentration of peptide required to inhibit the activity of ACE-I and DPP-IV by 50% was determined for selected, active peptides. Novel ACE-I and DPP-IV inhibitory peptides were identified in this study using both in silico analysis and a literature search to streamline enzyme selection for peptide production. These novel peptides included the ACE-I inhibitory tri-peptide Ile-Ile-Tyr and the DPP-IV inhibitory tri-peptide Pro-Pro-Leu corresponding to sequences f (182-184) and f (326-328) of both porcine and bovine serum albumin which can be released following hydrolysis with the enzymes papain and pepsin, respectively. This work demonstrates that meat proteins are a suitable resource for the generation of bioactive peptides and further demonstrates the usefulness of in silico methodologies to streamline identification and generation of bioactive peptides. PMID:25020248

  1. Effect of Flavourzyme(®) on Angiotensin-Converting Enzyme Inhibitory Peptides Formed in Skim Milk and Whey Protein Concentrate during Fermentation by Lactobacillus helveticus.

    PubMed

    Ahtesh, Fatah; Stojanovska, Lily; Shah, Nagendra; Mishra, Vijay Kumar

    2016-01-01

    Angiotensin-converting enzyme inhibitory (ACE-I) activity as affected by Lactobacillus helveticus strains (881315, 881188, 880474, and 880953), and supplementation with a proteolytic enzyme was studied. Reconstituted skim milk (12% RSM) or whey protein concentrate (4% WPC), with and without Flavourzyme(®) (0.14% w/w), were fermented with 4 different L. helveticus strains at 37 °C for 0, 4, 8, and 12 h. Proteolytic and in vitro ACE-I activities, and growth were significantly affected (P < 0.05) by strains, media, and with enzyme supplementation. RSM supported higher growth and produced higher proteolysis and ACE-I compared to WPC without enzyme supplementation. The strains L. helveticus 881315 and 881188 were able to increase ACE-I to >80% after 8 h of fermentation when combined with Flavourzyme(®) in RSM compared to the same strains without enzyme supplementation. Supplementation of media by Flavourzyme(®) was beneficial in increasing ACE-I peptides in both media. The best media to release more ACE-I peptides was RSM with enzyme supplementation. The L. helveticus 881315 outperformed all strains as indicated by highest proteolytic and ACE-I activities. PMID:26646984

  2. Effect of Flavourzyme(®) on Angiotensin-Converting Enzyme Inhibitory Peptides Formed in Skim Milk and Whey Protein Concentrate during Fermentation by Lactobacillus helveticus.

    PubMed

    Ahtesh, Fatah; Stojanovska, Lily; Shah, Nagendra; Mishra, Vijay Kumar

    2016-01-01

    Angiotensin-converting enzyme inhibitory (ACE-I) activity as affected by Lactobacillus helveticus strains (881315, 881188, 880474, and 880953), and supplementation with a proteolytic enzyme was studied. Reconstituted skim milk (12% RSM) or whey protein concentrate (4% WPC), with and without Flavourzyme(®) (0.14% w/w), were fermented with 4 different L. helveticus strains at 37 °C for 0, 4, 8, and 12 h. Proteolytic and in vitro ACE-I activities, and growth were significantly affected (P < 0.05) by strains, media, and with enzyme supplementation. RSM supported higher growth and produced higher proteolysis and ACE-I compared to WPC without enzyme supplementation. The strains L. helveticus 881315 and 881188 were able to increase ACE-I to >80% after 8 h of fermentation when combined with Flavourzyme(®) in RSM compared to the same strains without enzyme supplementation. Supplementation of media by Flavourzyme(®) was beneficial in increasing ACE-I peptides in both media. The best media to release more ACE-I peptides was RSM with enzyme supplementation. The L. helveticus 881315 outperformed all strains as indicated by highest proteolytic and ACE-I activities.

  3. Angiotensin I-converting enzyme inhibitory peptides generated from in vitro gastrointestinal digestion of pork meat.

    PubMed

    Escudero, Elizabeth; Sentandreu, Miguel Angel; Arihara, Keizo; Toldrá, Fidel

    2010-03-10

    The main purpose of this work was to study the generation of Angiotensin I-converting enzyme inhibitory (ACEI) peptides after gastrointestinal digestion of pork meat by the action of pepsin and pancreatin at simulated gut conditions. The hydrolysate was further subjected to reverse phase chromatography in order to separate the fractions with ACEI activity. Using MALDI-TOF/TOF mass spectrometry, 12 peptides were identified in these fractions. It is worth highlighting the novel peptides ER, KLP, and RPR with IC(50) values of 667 microM, 500 microM, and 382 microM, respectively. Results obtained by MALDI-TOF/TOF mass spectrometry were complemented by a second approach consisting of the analysis of the hydrolysate directly by nanoLC-ESI-MS/MS followed by a study of the obtained sequences and comparison with known ACEI peptide sequences. By using these two approaches, a total of 22 peptides were selected for its synthesis and further in vitro assay of ACEI activity. The strongest ACE inhibition was observed for peptide KAPVA (IC(50) = 46.56 microM) followed by the sequence PTPVP (IC(50) = 256.41 microM). Sequence similarity searches revealed that these two peptides derive from muscle titin, constituting the first identified ACEI peptides coming from this protein. This is also the first time that ACEI sequences MYPGIA and VIPEL have been reported. Other identified and synthesized sequences showed less ACEI activity. The obtained results evidence the potential of pork meat proteins as a source of antihypertensive peptides after gastrointestinal digestion.

  4. Angiotensin-I-converting enzyme-inhibitory peptides in commercial Wisconsin Cheddar cheeses of different ages.

    PubMed

    Lu, Y; Govindasamy-Lucey, S; Lucey, J A

    2016-01-01

    Bioactive peptides, including angiotensin-I-converting enzyme-inhibitory (ACEI) peptides, were investigated in commercially produced Wisconsin Cheddar cheeses that ranged in age from ≤ 6d to more than 2 yr. The ACEI activity of cheese was determined in water-soluble extracts (WSE) that were fractionated for components with molecular weight (MW) ≤ 3,000 Da, and peptides identified using HPLC and tandem mass spectrometry. The number of types of bioactive peptides increased with an increase in ripening time. Six of the identified ACEI peptides, Ile-Pro-Pro (IPP), Val-Pro-Pro (VPP), Glu-Lys-Asp-Glu-Arg-Phe (EKDERF), Val-Arg-Tyr-Leu (VRYL), Tyr-Pro-Phe-Pro-Gly-Pro-Ile-Pro-Asn (YPFPGPIPN), and Phe-Phe-Val-Ala-Pro (FFVAP), with known high ACEI activity (low IC50 values, the concentration needed to inhibit ACE to 50% of its original activity) were synthesized and used to quantify the amounts of these peptides in various cheese extracts. The concentrations of these 6 ACEI peptides increased up to a certain stage of ripening. The maximum contents of IPP, VPP, and EKDERF were 2.8, 7.4, and 5.3mg/100 g of cheese, respectively, and these levels were found in a 1-yr-old Cheddar cheese sample. The maximum content of VRYL (7.5mg/100 g of cheese) was found in a 2-yr-old Cheddar cheese sample, whereas the maximum content of YPFPGPIPN (6.8 mg/100 g of cheese) was found in a 6-mo-old Cheddar cheese sample. Trace amounts of FFVAP were found in these cheeses. Aged Cheddar cheese was found to be a rich source of ACEI peptides even though large differences exist between cheeses from different manufacturers. PMID:26506550

  5. Short communication: Measuring the angiotensin-converting enzyme inhibitory activity of an 8-amino acid (8mer) fragment of the C12 antihypertensive peptide.

    PubMed

    Paul, Moushumi; Phillips, John G; Renye, John A

    2016-05-01

    An 8-AA (8mer) fragment (PFPEVFGK) of a known antihypertensive peptide derived from bovine αS1-casein (C12 antihypertensive peptide) was synthesized by microwave-assisted solid-phase peptide synthesis and purified by reverse phase HPLC. Its ability to inhibit angiotensin-converting enzyme (ACE) was assessed and compared with that of the parent 12mer peptide (FFVAPFPEVFGK) to determine the effect of truncating the sequence on overall hypotensive activity. The activity of the truncated 8mer peptide was found to be almost 1.5 times less active than that of the 12mer, with ACE-inhibiting IC50 (half-maximal inhibitory concentration) values of 108 and 69μM, for the 8mer and 12mer, respectively. Although the 8mer peptide is less active than the original 12mer peptide, its overall activity is comparable to activities reported for other small proteins that elicit physiological responses within humans. These results suggest that microbial degradation of the 12mer peptide would not result in a complete loss of antihypertensive activity if used to supplement fermented foods and that the stable 8mer peptide could have potential as a blood pressure-lowering agent for use in functional foods.

  6. Structural, functional, and ACE inhibitory properties of water-soluble polysaccharides from chickpea flours.

    PubMed

    Mokni Ghribi, Abir; Sila, Assaâd; Maklouf Gafsi, Ines; Blecker, Christophe; Danthine, Sabine; Attia, Hamadi; Bougatef, Ali; Besbes, Souhail

    2015-04-01

    The present study aimed to characterize and investigate the functional and angiotensin-I converting enzyme (ACE) inhibition activities of chickpea water-soluble polysaccharides (CPWSP). Physico-chemical characteristics were determined by nuclear magnetic resonance spectroscopy (NMR), Fourier transform-infrared spectroscopy (FT-IR) analysis, and X-ray diffractometry (XRD). Functional properties (water holding capacity: WHC, water solubility index: WSI, swelling capacity: SC, oil holding capacity: OHC, foaming, and emulsion properties) and ACE activities were also investigated using well-established procedures. The FT-IR spectra obtained for the CPWSP revealed two significant peaks, at about 3500 and 500 cm(-1), which corresponded to the carbohydrate region and were characteristic of polysaccharides. All spectra showed the presence of a broad absorption between 1500 and 670 cm(-1), which could be attributed to CH, CO, and OH bands in the polysaccharides. CPWSP had an XRD pattern that was typical for a semi-crystalline polymer with a major crystalline reflection at 19.6 °C. They also displayed important techno-functional properties (SWC, WSI, WHC, and OHC) that can be modulated according to temperature. The CPWSP were also noted to display good anti-hypertensive activities. Overall, the results indicate that CPWSP have attractive chemical, biological, and functional properties that make them potential promising candidates for application as alternative additives in various food, cosmetic, and pharmaceutical preparations.

  7. Proteolytic and ACE-inhibitory activities of probiotic yogurt containing non-viable bacteria as affected by different levels of fat, inulin and starter culture.

    PubMed

    Shakerian, Mansour; Razavi, Seyed Hadi; Ziai, Seyed Ali; Khodaiyan, Faramarz; Yarmand, Mohammad Saeid; Moayedi, Ali

    2015-04-01

    In this study, the effects of fat (0.5 %, 3.2 % and 5.0 %), inulin (0.0 and 1.0 %) and starter culture (0.0 %, 0.5 %, 1.0 % and 1.5 %) on the angiotensin converting enzyme (ACE)-inhibitory activity of probiotic yogurt containing non-viable bacteria were assessed. Proteolytic activities of bacteria were also investigated. Yogurts were prepared either using a sole yogurt commercial culture including Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus or bifidobacterium animalis BB-12 and Lactobacillus acidophilus La5 in addition to yogurt culture. Relative degrees of proteolysis were found to be considerably higher in yogurt samples than UHT milk as the control. Both regular and probiotic yogurts showed considerable ACE-inhibitory activities. Results showed that degree of proteolysis was not influenced by different fat contents, while was increased by high concentration of starter culture (1.5 % w/w) and reduced by inulin (1 % w/w). ACE-inhibitory activities of yogurt were also negatively affected by the presence of inulin and high levels of fat (5 % w/w). Moreover, yogurt containing probiotic bacteria showed higher inhibitory against ACE in comparison to the yogurt prepared with non-probiotic strains.

  8. The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia).

    PubMed

    Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska

    2014-01-01

    In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin (Cucurbita ficifolia). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 <0.64 mg/mL and DPP-IV IC50 <0.55 mg/mL. This study suggests that peptides generated from whey proteins may support postprandial glycemia regulation and blood pressure maintenance, and could be used as functional food ingredients in the diet of patients with type 2 diabetes.

  9. A Tricholoma matsutake Peptide with Angiotensin Converting Enzyme Inhibitory and Antioxidative Activities and Antihypertensive Effects in Spontaneously Hypertensive Rats

    PubMed Central

    Geng, Xueran; Tian, Guoting; Zhang, Weiwei; Zhao, Yongchang; Zhao, Liyan; Wang, Hexiang; Ng, Tzi Bun

    2016-01-01

    Hypertension is a major risk factor for cardiovascular disease. A crude water extract of the fruiting bodies of a highly prized mushroom Tricholoma matsutakei exerted an antihypertensive action on spontaneously hypertensive rats (SHRs) at a dosage of 400 mg/kg. An angiotensin converting enzyme (ACE) inhibitory peptide with an IC50 of 0.40 μM was purified from the extract and designated as TMP. Its amino acid sequence was elucidated to be WALKGYK through LC-MS/MS analysis. The Lineweaver-Burk plot suggested that TMP was a non-competitive inhibitor of ACE. A short-term assay of antihypertensive activity demonstrated that TMP at the dosage of 25 mg/kg could significantly lower the systolic blood pressure (SBP) of SHRs. TMP exhibited remarkable stability over a wide range of temperatures and pH values. It also demonstrated 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The aforementioned activities of TMP were corroborated by utilizing the synthetic peptide. Hence T. matsutake can be used as a functional food to help prevent hypertension- associated diseases. PMID:27052674

  10. Enhancement of ACE and prolyl oligopeptidase inhibitory potency of protein hydrolysates from sardine and tuna by-products by simulated gastrointestinal digestion.

    PubMed

    Martínez-Alvarez, Oscar; Batista, Irineu; Ramos, Cristina; Montero, Pilar

    2016-04-01

    This work was focused on the study of the bioactive potential of three fish protein hydrolysates, one of them prepared from industrial sardine by-products (head and viscera) and the others from tuna by-products (head, and muscle and viscera). These protein hydrolysates exhibited moderate ability to inhibit Angiotensin Converting Enzyme or ACE (IC50 between 0.24-1.16 mg dry weight per ml) and prolyl oligopeptidase or PO (IC50 between 3.30-9.57 mg ml(-1)), those obtained from tuna by-products being the most effective. Overall, ACE- and PO-inhibiting activities were enhanced by sequential nanofiltration through 3 and 1 kDa MWCO membranes (IC50 between 0.02-0.16 mg ml(-1) (ACE) and 1.10-4.21 mg ml(-1) (PO)). The inhibitory properties of the hydrolysates were greatly improved by in vitro gastric digestion, and were barely affected by further intestinal digestion. The digested tuna hydrolysates, mainly that from heads, proved to be the best source of PO- and ACE- inhibiting molecules (IC50 = 0.16 mg ml(-1) (ACE) and 1.04 mg ml(-1) (PO)) and could be potential new ingredients in food with interest in the prevention or treatment of cardiovascular and neurological diseases. PMID:27045751

  11. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Hypertensive Effect of Protein Hydrolysate from Actinopyga lecanora (Sea Cucumber) in Rats

    PubMed Central

    Sadegh Vishkaei, Mahdokht; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2016-01-01

    Food protein hydrolysates are known to exhibit angiotensin converting enzyme (ACE) inhibitory properties and can be used as a novel functional food for prevention of hypertension. This study evaluated the ACE inhibitory potentials of Actinopyga lecanora proteolysate (ALP) in vivo. The pre-fed rats with ALP at various doses (200, 400, 800 mg/kg body weight) exhibited a significant (p ≤ 0.05) suppression effect after inducing hypertension. To determine the optimum effective dose that will produce maximal reduction in blood pressure, ALP at three doses was fed to the rats after inducing hypertension. The results showed that the 800 mg/kg body weight dose significantly reduced blood pressure without noticeable negative physiological effect. In addition, there were no observable changes in the rats’ heart rate after oral administration of the ALP. It was concluded that Actinopyga lecanora proteolysate could potentially be used for the development of functional foods and nutraceuticals for prevention and treatment of hypertension. PMID:27706040

  12. A Bovine Fibrinogen-Enriched Fraction as a Source of Peptides with in Vitro Renin and Angiotensin-I-Converting Enzyme Inhibitory Activities.

    PubMed

    Lafarga, Tomas; Rai, Dilip K; O'Connor, Paula; Hayes, Maria

    2015-10-01

    Bovine fibrinogen is currently used in the food industry as a binding agent in restructured meat products. However, this protein is underused as a source of bioactive peptides. In this study, a number of novel angiotensin-I-converting enzyme (ACE-I) and renin inhibitory peptides were identified and enriched from a bovine fibrinogen fraction. Fibrinogen was isolated and enriched from bovine blood and hydrolyzed with the food-grade enzyme papain, which was selected for use using in silico analysis. The generated hydrolysate was subjected to ultrafiltration and its peptide profile characterized by liquid chromatography-tandem mass spectrometry. A number of peptides were identified and chemically synthesized to confirm their bioactivity in vitro. Identified peptides included the multifunctional tripeptide SLR, corresponding to f(35-37) of the β-chain of bovine fibrinogen with ACE-I and renin IC50 values of 0.17 and 7.2 mM, respectively. Moreover, the resistance of identified peptides to gastrointestinal degradation and their bitterness were predicted using in silico methods. PMID:26373334

  13. A PEPTIDE ANTAGONIST DISRUPTS NATURAL KILLER CELL INHIBITORY SYNAPSE FORMATION1

    PubMed Central

    Borhis, Gwenoline; Ahmed, Parvin S.; Mbiribindi, Bérénice; Naiyer, Mohammed M.; Davis, Daniel M; Purbhoo, Marco A; Khakoo, Salim I

    2013-01-01

    Productive engagement of MHC Class I by inhibitory NK cell receptors depends on the peptide bound by the MHC class I molecule. Peptide:MHC complexes that bind weakly to killer cell immunoglobulin-like receptors (KIR) can antagonize the inhibition mediated by high affinity peptide:MHC complexes and cause NK cell activation. We show that low affinity peptide:MHC complexes stall inhibitory signalling at the step of SHP-1 recruitment and do not go on to form the KIR microclusters induced by high affinity peptide:MHC, which are associated with Vav dephosphorylation and downstream signalling. Furthermore the low affinity peptide:MHC complexes prevented the formation of KIR microclusters by high affinity peptide:MHC. Thus peptide antagonism of NK cells is an active phenomenon of inhibitory synapse disruption. PMID:23382564

  14. Hybrid in Silico/in Vitro Approach for the Identification of Angiotensin I Converting Enzyme Inhibitory Peptides from Parma Dry-Cured Ham.

    PubMed

    Dellafiora, Luca; Paolella, Sara; Dall'Asta, Chiara; Dossena, Arnaldo; Cozzini, Pietro; Galaverna, Gianni

    2015-07-22

    The bioactivity assessment of foodborne peptides is currently a research area of great relevance, and, in particular, several studies are devoted to the antihypertensive effects through the inhibition of angiotensin I converting enzyme (ACE). In the present work, a straightforward workflow to identify inhibitory peptides from food matrices is proposed, which involves a hybrid in vitro/in silico tandem approach. Parma dry-cured ham was chosen as case study. In particular, the advantage of using the hybrid approach to identify active sequences (in comparison to the experimental trials alone) has been pointed out. Specifically, fractions obtained by in vitro gastrointestinal digestion of ham samples of 18 and 24 months of aging have been assessed for ACE inhibition. At the same time, the released peptidomic profiles, which cannot be entirely evaluated by using in vitro assays, have been screened for the inhibition by using an in silico model. Then, to identify novel inhibitory sequences, a series of strong candidates have been synthesized and assessed for their inhibitory activity through in vitro assay. On the one hand, the use of computational simulations appeared to be an effective strategy to find active sequences, as confirmed by in vitro analysis. On the other hand, strong inhibitory sequences were identified for the first time in Parma dry-cured ham (e.g., LGL and SFVTT with IC50 values of 145 and 395 μM, respectively), which is a product of international dietary and economic relevance. Therefore, these findings demonstrate the usefulness of in silico methodologies coupled to in vitro tests for the identification of potentially bioactive peptides, and they give an important contribution to the study of the overall nutritional value of Parma ham.

  15. In vivo efficacy of anuran trypsin inhibitory peptides against staphylococcal skin infection and the impact of peptide cyclization.

    PubMed

    Malik, U; Silva, O N; Fensterseifer, I C M; Chan, L Y; Clark, R J; Franco, O L; Daly, N L; Craik, D J

    2015-04-01

    Staphylococcus aureus is a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weak in vitro inhibitory activities against S. aureus, but several had strong antibacterial activities against S. aureus in an in vivo murine wound infection model. pYR, an immunomodulatory peptide from Rana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg(-1). Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen. PMID:25624332

  16. In vivo efficacy of anuran trypsin inhibitory peptides against staphylococcal skin infection and the impact of peptide cyclization.

    PubMed

    Malik, U; Silva, O N; Fensterseifer, I C M; Chan, L Y; Clark, R J; Franco, O L; Daly, N L; Craik, D J

    2015-04-01

    Staphylococcus aureus is a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weak in vitro inhibitory activities against S. aureus, but several had strong antibacterial activities against S. aureus in an in vivo murine wound infection model. pYR, an immunomodulatory peptide from Rana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg(-1). Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.

  17. In Vivo Efficacy of Anuran Trypsin Inhibitory Peptides against Staphylococcal Skin Infection and the Impact of Peptide Cyclization

    PubMed Central

    Malik, U.; Silva, O. N.; Fensterseifer, I. C. M.; Chan, L. Y.; Clark, R. J.; Franco, O. L.; Daly, N. L.

    2015-01-01

    Staphylococcus aureus is a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weak in vitro inhibitory activities against S. aureus, but several had strong antibacterial activities against S. aureus in an in vivo murine wound infection model. pYR, an immunomodulatory peptide from Rana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen. PMID:25624332

  18. Simulated digestion of proanthocyanidins in grape skin and seed extracts and the effects of digestion on the angiotensin I-converting enzyme (ACE) inhibitory activity.

    PubMed

    Fernández, Katherina; Labra, Javiera

    2013-08-15

    This study investigated the effect of in vitro gastrointestinal digestion on the stability and composition of flavan-3-ols from red grape skin and seed extracts (raw and purified, which are high in proanthocyanidins (PAs)). In addition, the effects of digestion on the angiotensin I-converting enzyme (ACE) inhibitory activities of these extracts were evaluated. The extracts were digested with a mixture of pepsin-HCl for 2 h, followed by a 2 h incubation with pancreatin and bile salts including a cellulose dialysis tubing (molecular weight cut-off 12 kDa) at 37°C with shaking in the dark and under N2. Under gastric conditions, the mean degree of polymerisation (mDP) of seed extracts, raw (mDP≈6, p<0.05), and purified (mDP≈10, p<0.05) was stable. The mDP of the raw skin extracts increased from 19 to 25 towards the end of the digestion. The PAs were significantly degraded (up to 80%) during the pancreatic digestion, yielding low-molecular-weight compounds that diffused into the serum-available fraction (mDP≈2). The overall mass transfer coefficient (K) of the seed extracts was 10(-7) m(2)/s. After simulated gastrointestinal digestion, over 80% of ACE inhibition by raw seed and skin extracts was preserved. However, the purified seed and skin extracts lost their ability to inhibit ACE after intestinal digestion.

  19. Genetic and biochemical evidence that recombinant Enterococcus spp. strains expressing gelatinase (GelE) produce bovine milk-derived hydrolysates with high angiotensin converting enzyme-inhibitory activity (ACE-IA).

    PubMed

    Gútiez, Loreto; Borrero, Juan; Jiménez, Juan J; Gómez-Sala, Beatriz; Recio, Isidra; Cintas, Luis M; Herranz, Carmen; Hernández, Pablo E

    2014-06-18

    In this work, genes encoding gelatinase (gelE) and serine proteinase (sprE), two extracellular proteases produced by Enterococcus faecalis DBH18, were cloned in the protein expression vector pMG36c, containing the constitutive P32 promoter, generating the recombinant plasmids pCG, pCSP, and pCGSP encoding gelE, sprE, and gelE-sprE, respectively. Transformation of noncaseinolytic E. faecalis P36, E. faecalis JH2-2, E. faecium AR24, and E. hirae AR14 strains with these plasmids permitted detection of caseinolytic activity only in the strains transformed with pCG or pCGSP. Complementation of a deletion (knockout) mutant of E. faecalis V583 for production of gelatinase (GelE) with pCG unequivocally supported that gelE is responsible for the caseinolytic activity of the transformed strain grown in bovine skim milk (BSM). RP-HPLC-MS/MS analysis of hydrolysates of transformed Enterococcus spp. strains grown in BSM permitted the identification of 38 major peptide fragments including peptides with previously reported angiotensin converting enzyme-inhibitory activity (ACE-IA), antihypertensive activity, and antioxidant activity.

  20. Antioxidant and ACE-inhibitory activities of hemp (Cannabis sativa L.) protein hydrolysates produced by the proteases AFP, HT, Pro-G, actinidin and zingibain.

    PubMed

    Teh, Sue-Siang; Bekhit, Alaa El-Din A; Carne, Alan; Birch, John

    2016-07-15

    Hemp protein isolates (HPIs) were hydrolysed by proteases (AFP, HT, ProG, actinidin and zingibain). The enzymatic hydrolysis of HPIs was evaluated through the degree of hydrolysis and SDS-PAGE profiles. The bioactive properties of the resultant hydrolysates (HPHs) were accessed through ORAC, DPPḢ scavenging and ACE-inhibitory activities. The physical properties of the resultant HPHs were evaluated for their particle sizes, zeta potential and surface hydrophobicity. HT had the highest rate of caseinolytic activity at the lowest concentration (0.1 mg mL(-1)) compared to other proteases that required concentration of 100 mg mL(-1) to achieve their maximum rate of caseinolytic activity. This led to the highest degree of hydrolysis of HPIs by HT in the SDS-PAGE profiles. Among all proteases and substrates, HT resulted in the highest bioactivities (ORAC, DPPḢ scavenging and ACE-inhibitory activities) generated from alkali extracted HPI in the shortest time (2 h) compared to the other protease preparations.

  1. Antioxidant and ACE-inhibitory activities of hemp (Cannabis sativa L.) protein hydrolysates produced by the proteases AFP, HT, Pro-G, actinidin and zingibain.

    PubMed

    Teh, Sue-Siang; Bekhit, Alaa El-Din A; Carne, Alan; Birch, John

    2016-07-15

    Hemp protein isolates (HPIs) were hydrolysed by proteases (AFP, HT, ProG, actinidin and zingibain). The enzymatic hydrolysis of HPIs was evaluated through the degree of hydrolysis and SDS-PAGE profiles. The bioactive properties of the resultant hydrolysates (HPHs) were accessed through ORAC, DPPḢ scavenging and ACE-inhibitory activities. The physical properties of the resultant HPHs were evaluated for their particle sizes, zeta potential and surface hydrophobicity. HT had the highest rate of caseinolytic activity at the lowest concentration (0.1 mg mL(-1)) compared to other proteases that required concentration of 100 mg mL(-1) to achieve their maximum rate of caseinolytic activity. This led to the highest degree of hydrolysis of HPIs by HT in the SDS-PAGE profiles. Among all proteases and substrates, HT resulted in the highest bioactivities (ORAC, DPPḢ scavenging and ACE-inhibitory activities) generated from alkali extracted HPI in the shortest time (2 h) compared to the other protease preparations. PMID:26948606

  2. Inhibitory effect of midkine-binding peptide on tumor proliferation and migration

    PubMed Central

    Huang, Hui-Lian; Shen, Jian-Fen; Min, Li-Shan; Ping, Jin-Liang; Lu, Yong-Liang; Dai, Li-Cheng

    2015-01-01

    Background: To investigate the inhibitory effect of midkine-binding peptides on human umbilical vein endothelial cells (HUVECs) proliferation and angiogenesis of xenograft tumor. Methods: The midkine-binding peptides were panned by Ph.D.-7™ Phage Display Peptide Library Kit, and the specific binding activities of positive clones to target protein were examined by phage ELISA. The effect of midkine-binding peptides on proliferation of HUVECs was confirmed by MTT test. The xenograft tumor model was formed in BALB/c mice with the murine hepatocarcinoma cells H22 (H22). Microvessel density (MVD) was analyzed by immunohistochemistry of factor VIII staining. Results: Midkine-binding peptides have the inhibitory effects on tumor angiogenesis, a proliferation assay using human umbilical vein endothelial cells (HUVECs) indicated that particular midkine-binding peptides significantly inhibited the proliferation of the HUVECs. Midkine-binding peptides were also observed to efficiently suppress angiogenesis induced by murine hepatocarcinoma H22 cells in BALB/c nude mice. Conclusion: The midkine-binding peptides can inhibit solid tumor growth by retarding the formation of new blood vessels. The results indicate that midkine-binding peptides may represent potent anti-angiogenesis agents in vivo. PMID:26191241

  3. Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham.

    PubMed

    Gallego, Marta; Aristoy, María-Concepción; Toldrá, Fidel

    2014-02-01

    Dipeptidyl peptidase IV (DPP-IV) inhibitors are promising new therapies for type 2 diabetes. The aim of this study was to assay DPP-IV inhibitory peptides that can be present in a water soluble extract of Spanish dry-cured ham. Such an extract was fractionated by size-exclusion chromatography and the in vitro DPP-IV inhibitory activity determined in each collected fraction. Then, several peptides previously identified in dry-cured ham extracts or known to be products of DPP IV action were synthesised and assayed for DPP-IV inhibition. Peptides KA and AAATP showed the strongest DPP-IV inhibitory activity, with IC50 values of 6.27 mM and 6.47 mM, respectively. Dipeptides AA, GP, PL, and carnosine, as well as peptides AAAAG, ALGGA, and LVSGM were also DPP-IV inhibitors, although at a lower degree. These findings suggest the potential of Spanish dry-cured ham as a natural precursor of DPP-IV inhibitory peptides. These biopeptides could also be used as ingredients for functional foods or pharmaceutical products against type 2 diabetes. PMID:24200567

  4. Cyclolinopeptides, cyclic peptides from flaxseed with osteoclast differentiation inhibitory activity.

    PubMed

    Kaneda, Toshio; Yoshida, Haruka; Nakajima, Yuki; Toishi, Minako; Nugroho, Alfarius Eko; Morita, Hiroshi

    2016-04-01

    Flaxseed (Linum usitatissimum seed) is widely used in food and natural health products. In our search for osteoclast differentiation inhibitors, some cyclic peptides isolated from flaxseed, known as the cyclolinopeptides, were discovered to have osteoclast differentiation inhibition activity. The osteoclast differentiation inhibition activity of cyclolinopeptides A-I (1-9) and their related derivatives (10-14) are described herein. Cyclolinopeptides F, H and I (6, 8 and 9), in particular, showed potent osteoclast differentiation inhibition activity. PMID:26923696

  5. Purification and identification of adipogenesis inhibitory peptide from black soybean protein hydrolysate.

    PubMed

    Kim, Hyun Jeong; Bae, In Young; Ahn, Chang-Won; Lee, Suyong; Lee, Hyeon Gyu

    2007-11-01

    Adipogenesis inhibitory peptide was isolated and identified from black soybean (Rhynchosia volubilis Lour.) hydrolysate. An adipogenesis inhibitor was purified using consecutive methods including: ultrafiltration (MWCO; 3 and 10kDa), gel filtration chromatography (Superdex Peptide 10/300 GL column), and reverse-phase high-performance liquid chromatography (microBondapak C(18) column). Also, the adipogenesis inhibition effect of the purified peptide was measured by observation of droplet of 3T3-L1 adipocyte by Oil Red O staining in the highest active fraction in each step. The peptide was shown to inhibit the differentiation of the 3T3-L1 pre-adipocyte, which was confirmed by morphological study. The adipogenesis inhibitory peptide was purified 71.43-fold from black soybean hydrolysate throughout a five-step purification procedure. The adipogenesis inhibitor was identified to be a tripeptide, Ile-Gln-Asn, having an IC(50) value of 0.014 mg protein/ml. Furthermore, the synthetic tripeptide (Ile-Gln-Asn) exhibited the similar adipogenesis effects to the purified peptide. Thus, these results showed the potential anti-obesity effect of the purified peptide through control of adiposity.

  6. Inhibitory Effects of Antimicrobial Peptides on Lipopolysaccharide-Induced Inflammation

    PubMed Central

    Sun, Yue; Shang, Dejing

    2015-01-01

    Antimicrobial peptides (AMPs) are usually small molecule peptides, which display broad-spectrum antimicrobial activity, high efficiency, and stability. For the multiple-antibiotic-resistant strains, AMPs play a significant role in the development of novel antibiotics because of their broad-spectrum antimicrobial activities and specific antimicrobial mechanism. Besides broad-spectrum antibacterial activity, AMPs also have anti-inflammatory activity. The neutralization of lipopolysaccharides (LPS) plays a key role in anti-inflammatory action of AMPs. On the one hand, AMPs can readily penetrate the cell wall barrier by neutralizing LPS to remove Gram-negative bacteria that can lead to infection. On the contrary, AMPs can also inhibit the production of biological inflammatory cytokines to reduce the inflammatory response through neutralizing circulating LPS. In addition, AMPs also modulate the host immune system by chemotaxis of leukocytes, to promote immune cell proliferation, epithelialization, and angiogenesis and thus play a protective role. This review summarizes some recent researches about anti-inflammatory AMPs, with a focus on the interaction of AMPs and LPS on the past decade. PMID:26612970

  7. Antioxidant and ACE Inhibitory Activity of Cultivated and Wild Angelica gigas Nakai Extracts Prepared Using Different Extraction Conditions

    PubMed Central

    Noh, Bo-Young; Lee, Hye-Jin; Do, Jeong-Ryong; Kim, Hyun-Ku

    2014-01-01

    The purpose of this study was to investigate the biological activities of cultivated Angelica gigas Nakai (CAG) and wild Angelica gigas Nakai (WAG) extracts prepared by extraction with water, 30% ethanol, 60% ethanol, or 90% ethanol. The electron donating ability of the WAG extracts was higher than that of the CAG extracts and 0.1% and 1.0% solutions of the comparative substance, L-ascorbic acid. The superoxide dismutase-like activity of the CAG extracts was higher than that of WAG extracts. Superoxide dismutase-like activity was highest (33.95%) in the CAG water extract. The total polyphenol content was highest in the 60% ethanol extracts of WAG. The nitrite scavenging ability of the CAG and WAG extracts was highest at a pH of 1.2. The tyrosinase inhibitory effect was highest (43.72%) in the water extract of WAG. The angiotensin converting enzyme inhibitory activity was highest (83.84%) in the 60% ethanol extract of WAG. The results of the present study will be useful for understanding the antioxidant and angiotensin-converting enzyme inhibitory activities of Angelica gigas Nakai extracts. PMID:25580391

  8. Evaluating molecular mechanism of hypotensive peptides interactions with renin and angiotensin converting enzyme.

    PubMed

    He, Rong; Aluko, Rotimi E; Ju, Xing-Rong

    2014-01-01

    Our previous study showed that three rapeseed protein-derived peptides (TF, LY and RALP) inhibited the in vitro activities of angiotensin converting enzyme (ACE) and renin. Oral administration of these peptides to spontaneously hypertensive rats led to reductions in systolic blood pressure. In the present work, we examined the potential molecular mechanisms responsible for the ACE- and renin-inhibitory activities of these peptides. Enzyme inhibition kinetics showed competitive, non-competitive and mixed-type peptide-dependent inhibition of renin and ACE activities. Intrinsic fluorescence intensity data showed that LY and RALP have stronger binding effects on ACE molecule compared to that of TF. LY and RALP showed the highest inhibition of ACE and renin activities, respectively. Circular dichroism data showed that the inhibitory mechanism involved extensive peptide-dependent reductions in α-helix and β-sheet fractions of ACE and renin protein conformations. Molecular docking studies confirmed that the higher renin-inhibitory activity of RALP may be due to formation of several hydrogen bonds (H-bonds) with the enzyme's active site residues. The rapeseed peptides inhibited renin and ACE activities mostly through binding to enzyme active site or non-active sites and forming extensive H-bonds that distorted the normal configuration required for catalysis. Data presented from this work could enhance development of highly potent antihypertensive natural peptides or peptidomimetics. PMID:24603692

  9. Influence of starter culture and a protease on the generation of ACE-inhibitory and antioxidant bioactive nitrogen compounds in Iberian dry-fermented sausage "salchichón".

    PubMed

    Fernández, Margarita; Benito, María J; Martín, Alberto; Casquete, Rocío; Córdoba, Juan J; Córdoba, María G

    2016-03-01

    The effect of the addition of an autochthonous starter culture and the protease EPg222 on the generation of angiotensin-I-converting enzyme (ACE)-inhibitory and antioxidant compounds by the dry-fermented sausage "salchichón" was investigated. Sausages were prepared with purified EPg222 and Pediococcus acidilactici MS200 and Staphylococcus vitulus RS34 as the starter culture (P200S34), separately and together, ripened for 90 days, and compared to a control batch. Among the ripening time points (20, 35, 65, 90 days) studied, batches inoculated with EPg222 had higher nitrogen compound concentrations at 63 days of ripening. ACE-inhibitory and antioxidant activities were also highest in both batches with EPg222 at 63 days of ripening, and these activities were stable in most cases after in vitro simulated gastrointestinal digestion. These activities were correlated with the most relevant compounds detected by HLPC-ESI-MS. The principal components analysis (PCA) linked the P200S34 + EPg222 batch with the major compounds identified. The antioxidant activity was higher at 63 days of ripening, especially in highly proteolytic batches, such as P200S34 + EPg222. The ACE-inhibitory activity was not associated with any of the major compounds. The use of the enzyme EPg222 in association with the starter culture P200S34 in the preparation of dry-cured meat products could be of great importance due to their demonstrated ability to produce compounds with high biological activity, such as ACE-inhibitory and antioxidant activity.

  10. Influence of starter culture and a protease on the generation of ACE-inhibitory and antioxidant bioactive nitrogen compounds in Iberian dry-fermented sausage "salchichón".

    PubMed

    Fernández, Margarita; Benito, María J; Martín, Alberto; Casquete, Rocío; Córdoba, Juan J; Córdoba, María G

    2016-03-01

    The effect of the addition of an autochthonous starter culture and the protease EPg222 on the generation of angiotensin-I-converting enzyme (ACE)-inhibitory and antioxidant compounds by the dry-fermented sausage "salchichón" was investigated. Sausages were prepared with purified EPg222 and Pediococcus acidilactici MS200 and Staphylococcus vitulus RS34 as the starter culture (P200S34), separately and together, ripened for 90 days, and compared to a control batch. Among the ripening time points (20, 35, 65, 90 days) studied, batches inoculated with EPg222 had higher nitrogen compound concentrations at 63 days of ripening. ACE-inhibitory and antioxidant activities were also highest in both batches with EPg222 at 63 days of ripening, and these activities were stable in most cases after in vitro simulated gastrointestinal digestion. These activities were correlated with the most relevant compounds detected by HLPC-ESI-MS. The principal components analysis (PCA) linked the P200S34 + EPg222 batch with the major compounds identified. The antioxidant activity was higher at 63 days of ripening, especially in highly proteolytic batches, such as P200S34 + EPg222. The ACE-inhibitory activity was not associated with any of the major compounds. The use of the enzyme EPg222 in association with the starter culture P200S34 in the preparation of dry-cured meat products could be of great importance due to their demonstrated ability to produce compounds with high biological activity, such as ACE-inhibitory and antioxidant activity. PMID:27441267

  11. Inhibitory Properties of Cysteine Protease Pro-Peptides from Barley Confer Resistance to Spider Mite Feeding

    PubMed Central

    Diaz-Mendoza, Mercedes; Martinez, Manuel; Diaz, Isabel

    2015-01-01

    C1A plant cysteine proteases are synthesized as pre-pro-enzymes that need to be processed to become active by the pro-peptide claves off from its cognate enzyme. These pro-sequences play multifunctional roles including the capacity to specifically inhibit their own as well as other C1A protease activities from diverse origin. In this study, it is analysed the potential role of C1A pro-regions from barley as regulators of cysteine proteases in target phytophagous arthropods (coleopteran and acari). The in vitro inhibitory action of these pro-sequences, purified as recombinant proteins, is demonstrated. Moreover, transgenic Arabidopsis plants expressing different fragments of HvPap-1 barley gene containing the pro-peptide sequence were generated and the acaricide function was confirmed by bioassays conducted with the two-spotted spider mite Tetranychus urticae. Feeding trials resulted in a significant reduction of leaf damage in the transgenic lines expressing the pro-peptide in comparison to non-transformed control and strongly correlated with an increase in mite mortality. Additionally, the analysis of the expression levels of a selection of potential mite targets (proteases and protease inhibitors) revealed a mite strategy to counteract the inhibitory activity produced by the C1A barley pro-prodomain. These findings demonstrate that pro-peptides can control mite pests and could be applied as defence proteins in biotechnological systems. PMID:26039069

  12. Inhibitory properties of cysteine protease pro-peptides from barley confer resistance to spider mite feeding.

    PubMed

    Santamaria, M Estrella; Arnaiz, Ana; Diaz-Mendoza, Mercedes; Martinez, Manuel; Diaz, Isabel

    2015-01-01

    C1A plant cysteine proteases are synthesized as pre-pro-enzymes that need to be processed to become active by the pro-peptide claves off from its cognate enzyme. These pro-sequences play multifunctional roles including the capacity to specifically inhibit their own as well as other C1A protease activities from diverse origin. In this study, it is analysed the potential role of C1A pro-regions from barley as regulators of cysteine proteases in target phytophagous arthropods (coleopteran and acari). The in vitro inhibitory action of these pro-sequences, purified as recombinant proteins, is demonstrated. Moreover, transgenic Arabidopsis plants expressing different fragments of HvPap-1 barley gene containing the pro-peptide sequence were generated and the acaricide function was confirmed by bioassays conducted with the two-spotted spider mite Tetranychus urticae. Feeding trials resulted in a significant reduction of leaf damage in the transgenic lines expressing the pro-peptide in comparison to non-transformed control and strongly correlated with an increase in mite mortality. Additionally, the analysis of the expression levels of a selection of potential mite targets (proteases and protease inhibitors) revealed a mite strategy to counteract the inhibitory activity produced by the C1A barley pro-prodomain. These findings demonstrate that pro-peptides can control mite pests and could be applied as defence proteins in biotechnological systems.

  13. Pharmacological Actions of Glucagon-Like Peptide-1, Gastric Inhibitory Polypeptide, and Glucagon.

    PubMed

    Sekar, R; Singh, K; Arokiaraj, A W R; Chow, B K C

    2016-01-01

    Glucagon family of peptide hormones is a group of structurally related brain-gut peptides that exert their pleiotropic actions through interactions with unique members of class B1 G protein-coupled receptors (GPCRs). They are key regulators of hormonal homeostasis and are important drug targets for metabolic disorders such as type-2 diabetes mellitus (T2DM), obesity, and dysregulations of the nervous systems such as migraine, anxiety, depression, neurodegeneration, psychiatric disorders, and cardiovascular diseases. The current review aims to provide a detailed overview of the current understanding of the pharmacological actions and therapeutic advances of three members within this family including glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), and glucagon. PMID:27572131

  14. In silico and in vitro analyses of the angiotensin-I converting enzyme inhibitory activity of hydrolysates generated from crude barley (Hordeum vulgare) protein concentrates.

    PubMed

    Gangopadhyay, Nirupama; Wynne, Kieran; O'Connor, Paula; Gallagher, Eimear; Brunton, Nigel P; Rai, Dilip K; Hayes, Maria

    2016-07-15

    Angiotensin-I-converting enzyme (ACE-I) plays a key role in control of hypertension, and type-2 diabetes mellitus, which frequently co-exist. Our current work utilised in silico methodologies and peptide databases as tools for predicting release of ACE-I inhibitory peptides from barley proteins. Papain was the enzyme of choice, based on in silico analysis, for experimental hydrolysis of barley protein concentrate, which was performed at the enzyme's optimum conditions (60 °C, pH 6.0) for 24 h. The generated hydrolysate was subjected to molecular weight cut-off (MWCO) filtration, following which the non-ultrafiltered hydrolysate (NUFH), and the generated 3 kDa and 10 kDa MWCO filtrates were assessed for their in vitro ACE-I inhibitory activities. The 3 kDa filtrate (1 mg/ml), that demonstrated highest ACE-I inhibitory activity of 70.37%, was characterised in terms of its peptidic composition using mass spectrometry and 1882 peptides derived from 61 barley proteins were identified, amongst which 15 peptides were selected for chemical synthesis based on their predicted ACE-I inhibitory properties. Of the synthesized peptides, FQLPKF and GFPTLKIF were most potent, demonstrating ACE-I IC50 values of 28.2 μM and 41.2 μM respectively. PMID:26948626

  15. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity.

    PubMed

    Nongonierma, Alice B; FitzGerald, Richard J

    2016-05-01

    Quantitative structure activity type models were developed in an attempt to predict the key features of peptide sequences having dipeptidyl peptidase IV (DPP-IV) inhibitory activity. The models were then employed to help predict the potential of peptides, which are currently reported in the literature to be present in the intestinal tract of humans following milk/dairy product ingestion, to act as inhibitors of DPP-IV. Two models (z- and v-scale) for short (2-5 amino acid residues) bovine milk peptides, behaving as competitive inhibitors of DPP-IV, were developed. The z- and the v-scale models (p<0.05, R(2) of 0.829 and 0.815, respectively) were then applied to 56 milk protein-derived peptides previously reported in the literature to be found in the intestinal tract of humans which possessed a structural feature of DPP-IV inhibitory peptides (P at the N2 position). Ten of these peptides were synthetized and tested for their in vitro DPP-IV inhibitory properties. There was no agreement between the predicted and experimentally determined DPP-IV half maximal inhibitory concentrations (IC50) for the competitive peptide inhibitors. However, the ranking for DPP-IV inhibitory potency of the competitive peptide inhibitors was conserved. Furthermore, potent in vitro DPP-IV inhibitory activity was observed with two peptides, LPVPQ (IC50=43.8±8.8μM) and IPM (IC50=69.5±8.7μM). Peptides present within the gastrointestinal tract of human may have promise for the development of natural DPP-IV inhibitors for the management of serum glucose.

  16. Identification and Characterization of a Small Inhibitory Peptide That Can Target DNA-PKcs Autophosphorylation and Increase Tumor Radiosensitivity

    SciTech Connect

    Sun Xiaonan; Yang Chunying; Liu Hai; Wang Qi; Wu Shixiu; Li Xia; Xie Tian; Brinkman, Kathryn L.; Teh, Bin S.; Butler, E. Brian; Xu Bo; Zheng, Shu

    2012-12-01

    Purpose: The DNA protein kinase catalytic subunit (DNA-PKcs) is one of the critical elements involved in the DNA damage repair process. Inhibition of DNA-PKcs results in hypersensitivity to ionizing radiation (IR); therefore, this approach has been explored to develop molecular targeted radiosensitizers. Here, we aimed to develop small inhibitory peptides that could specifically target DNA-PKcs autophosphorylation, a critical step for the enzymatic activation of the kinase in response to IR. Methods and Materials: We generated several small fusion peptides consisting of 2 functional domains, 1 an internalization domain and the other a DNA-PKcs autophosphorylation inhibitory domain. We characterized the internalization, toxicity, and radiosensitization activities of the fusion peptides. Furthermore, we studied the mechanisms of the inhibitory peptides on DNA-PKcs autophosphorylation and DNA repair. Results: We found that among several peptides, the biotin-labeled peptide 3 (BTW3) peptide, which targets DNA-PKcs threonine 2647 autophosphorylation, can abrogate IR-induced DNA-PKcs activation and cause prolonged {gamma}-H2AX focus formation. We demonstrated that BTW3 exposure led to hypersensitivity to IR in DNA-PKcs-proficient cells but not in DNA-PKcs-deficient cells. Conclusions: The small inhibitory peptide BTW3 can specifically target DNA-PKcs autophosphorylation and enhance radiosensitivity; therefore, it can be further developed as a novel class of radiosensitizer.

  17. Identification of a NFκB inhibitory peptide from tryptic β-casein hydrolysate.

    PubMed

    Malinowski, J; Klempt, M; Clawin-Rädecker, I; Lorenzen, P Chr; Meisel, H

    2014-12-15

    Several bioactive peptides are encrypted within the sequence of major milk proteins, requiring enzymatic proteolysis for release and activation. The present study aimed at the identification of potential anti-inflammatory activities in tryptic hydrolysates of bovine β-casein. Inflammatory processes involve in most cases an activation of Nuclear factor Kappa-light-chain enhancer of activated B cells (NFκB), which is a pro-inflammatory transcription factor of several genes. Hence, a NFκB reporter cell line was established, and TNF-α mediated activation of NFκB was used as a measurement. Bovine β-casein (β-CN) was hydrolysed by trypsin and fractionated by ultrafiltration. Total proteolysate as well as the fraction containing peptides between 1 and 5 kDa showed an inhibitory effect in the cell-based assay, while the fraction containing molecules smaller than 1 kDa did not. This anti-inflammatory effect was ascribed to a group of large, hydrophobic peptides, which were identified using LC-MS. The main peptide was synthesised and showed a significant anti-inflammatory effect in HEK(nfkb-RE)-cells. Thus, for the first time, a casein-derived peptide having an anti-inflammatory effect in vitro has been identified.

  18. Secreted antiviral entry inhibitory (SAVE) peptides for gene therapy of HIV infection.

    PubMed

    Egerer, Lisa; Volk, Andreas; Kahle, Joerg; Kimpel, Janine; Brauer, Frances; Hermann, Felix G; von Laer, Dorothee

    2011-07-01

    Gene therapeutic strategies for human immunodeficiency virus type 1 (HIV-1) infection could potentially overcome the limitations of standard antiretroviral drug therapy (ART). However, in none of the clinical gene therapy trials published to date, therapeutic levels of genetic protection have been achieved in the target cell population for HIV-1. To improve systemic antiviral efficacy, C peptides, which are efficient inhibitors of HIV-1 entry, were engineered for high-level secretion by genetically modified cells. The size restrictions for efficient peptide export through the secretory pathway were overcome by expressing the C peptides as concatemers, which were processed into monomers by furin protease cleavage. These secreted antiviral entry inhibitory (SAVE) peptides mediated a substantial protective bystander effect on neighboring nonmodified cells, thus suppressing virus replication even if only a small fraction of cells was genetically modified. Accordingly, these SAVE peptides may provide a strong benefit to AIDS patients in future, and, if applied by direct in vivo gene delivery, could present an effective alternative to antiretroviral drug regimen. PMID:21364540

  19. Peptide array on cellulose support--a screening tool to identify peptides with dipeptidyl-peptidase IV inhibitory activity within the sequence of α-lactalbumin.

    PubMed

    Lacroix, Isabelle M E; Li-Chan, Eunice C Y

    2014-11-13

    The inhibition of the enzyme dipeptidyl-peptidase IV (DPP-IV) is an effective pharmacotherapeutic approach for the management of type 2 diabetes. Recent findings have suggested that dietary proteins, including bovine α-lactalbumin, could be precursors of peptides able to inhibit DPP-IV. However, information on the location of active peptide sequences within the proteins is far from being comprehensive. Moreover, the traditional approach to identify bioactive peptides from foods can be tedious and long. Therefore, the objective of this study was to use peptide arrays to screen α-lactalbumin-derived peptides for their interaction with DPP-IV. Deca-peptides spanning the entire α-lactalbumin sequence, with a frame shift of 1 amino acid between successive sequences, were synthesized on cellulose membranes using "SPOT" technology, and their binding to and inhibition of DPP-IV was studied. Among the 114 α-lactalbumin-derived decamers investigated, the peptides 60WCKDDQNPHS69 (αK(i) = 76 µM), 105LAHKALCSEK114 (K(i) = 217 µM) and 110LCSEKLDQWL119 (K(i) = 217 µM) were among the strongest DPP-IV inhibitors. While the SPOT- and traditionally-synthesized peptides showed consistent trends in DPP-IV inhibitory activity, the cellulose-bound peptides' binding behavior was not correlated to their ability to inhibit the enzyme. This research showed, for the first time, that peptide arrays are useful screening tools to identify DPP-IV inhibitory peptides from dietary proteins.

  20. Delivery of Topically Applied Calpain Inhibitory Peptide to the Posterior Segment of the Rat Eye

    PubMed Central

    Yamashita, Tetsuro; Ishiguro, Sei-ichi

    2015-01-01

    We developed an inhibitory peptide that specifically acts against mitochondrial μ-calpain (Tat-μCL, 23 amino acid, 2857.37 Da) and protects photoreceptors in retinal dystrophic rats. In the present study, we topically administered Tat-μCL to the eyes of Sprague-Dawley rats for 7 days to determine both the delivery route of the peptide to the posterior segment of the eye and the kinetics after topical application in adult rats. Distribution of the peptide was determined by immunohistochemical analysis, and enzyme-linked immune-absorbent assay was used to quantify the accumulation in the retina. Peptides were prominently detected in both the anterior and posterior segments of the eye at 1 h after the final eye drop application. Immunohistochemically positive reactions were observed in the retina, optic nerve, choroid, sclera and the retrobulbar tissues, even in the posterior portion of the eye. Immunoactivities gradually diminished at 3 and 6 h after the final eye drop. Quantitative estimations of the amount of peptide in the retina were 15.3, 5.8 and 1.0 pg/μg protein at 1, 3 and 6 h after the final instillation, respectively. Current results suggest that while the topically applied Tat-μCL peptide reaches the posterior segment of the retina and the optic nerve, the sufficient concentration (> IC50) is maintained for at least 6 h in the rat retina. Our findings suggest that delivery of topically applied peptide to the posterior segment and optic nerve occurs through the conjunctiva, periocular connective tissue, sclera and optic nerve sheath. PMID:26107400

  1. Antihypertensive effect of cattle bone collagen-derived peptides in ovariectomized stroke-prone spontaneously hypertensive rats.

    PubMed

    Mizutani, K; Ikeda, K; Ishikado, A; Kawai, Y; Yamori, Y

    2000-01-01

    1. The effect of food collagen, cattle bone collagen-derived (CBC) peptides, on ovariectomy induced increases in blood pressure was examined in stroke-prone spontaneously hypertensive rats (SHRSP). 2. Long-term administration of CBC peptides to ovariectomized SHRSP suppressed the hypertension compared with ovariectomized SHRSP fed standard chow. 3. The CBC peptides showed an inhibitory activity (IC50 = 40 microg/mL) for angiotensin I-converting enzyme (ACE) in vitro. Furthermore, pre-incubation of CBC peptides with gastrointestinal proteases did not change this inhibitory activity of CBC for ACE. 4. These results indicate that CBC peptides may prevent increases in blood pressure in ovariectomized SHRSP by a possible mechanism of an inhibitory action against ACE.

  2. Sensitivity of Pseudomonas syringae to Bovine Lactoferrin Hydrolysates and Identification of a Novel Inhibitory Peptide

    PubMed Central

    Kim, Woan-Sub; Kim, Pyeung-Hyeun; Shimazaki, Kei-ichi

    2016-01-01

    The antimicrobial activity of bovine lactoferrin hydrolysates (bLFH) was measured against Pseudomonas strains (P. syringae and P. fluorescens) in vitro. To compare susceptibility to bLFH, minimal inhibitory concentration (MIC) values were determined using chemiluminescence assays and paper disc plate assays. Antimicrobial effect against P. fluorescens was not observed by either assay, suggesting that bLFH did not exhibit antimicrobial activity against P. fluorescens. However, a significant inhibition of P. syringae growth was observed in the presence of bLFH. The addition of bLFH in liquid or solid medium inhibited growth of P. syringae in a dose-dependent manner. Furthermore, a bLFH peptide with antimicrobial activity toward P. syringae was isolated and identified. The N-terminal amino acid sequences of thus obtained antimicrobial bLFH peptides were analyzed by a protein sequencer and were found to be Leu-Arg-Ile-Pro-Ser-Lys-Val-Asp-Ser-Ala and Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met. The latter peptide sequence is known to be characteristic of lactoferricin. Therefore, in the present study, we identified a new antimicrobial peptide against P. syringae, present within the N-terminus and possessing the amino acid sequence of Leu-Arg-Ile-Pro-Ser-Lys-Val-Asp-Ser-Ala.

  3. Sensitivity of Pseudomonas syringae to Bovine Lactoferrin Hydrolysates and Identification of a Novel Inhibitory Peptide

    PubMed Central

    Kim, Woan-Sub; Kim, Pyeung-Hyeun; Shimazaki, Kei-ichi

    2016-01-01

    The antimicrobial activity of bovine lactoferrin hydrolysates (bLFH) was measured against Pseudomonas strains (P. syringae and P. fluorescens) in vitro. To compare susceptibility to bLFH, minimal inhibitory concentration (MIC) values were determined using chemiluminescence assays and paper disc plate assays. Antimicrobial effect against P. fluorescens was not observed by either assay, suggesting that bLFH did not exhibit antimicrobial activity against P. fluorescens. However, a significant inhibition of P. syringae growth was observed in the presence of bLFH. The addition of bLFH in liquid or solid medium inhibited growth of P. syringae in a dose-dependent manner. Furthermore, a bLFH peptide with antimicrobial activity toward P. syringae was isolated and identified. The N-terminal amino acid sequences of thus obtained antimicrobial bLFH peptides were analyzed by a protein sequencer and were found to be Leu-Arg-Ile-Pro-Ser-Lys-Val-Asp-Ser-Ala and Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met. The latter peptide sequence is known to be characteristic of lactoferricin. Therefore, in the present study, we identified a new antimicrobial peptide against P. syringae, present within the N-terminus and possessing the amino acid sequence of Leu-Arg-Ile-Pro-Ser-Lys-Val-Asp-Ser-Ala. PMID:27621689

  4. Sensitivity of Pseudomonas syringae to Bovine Lactoferrin Hydrolysates and Identification of a Novel Inhibitory Peptide.

    PubMed

    Kim, Woan-Sub; Kim, Pyeung-Hyeun; Shimazaki, Kei-Ichi

    2016-01-01

    The antimicrobial activity of bovine lactoferrin hydrolysates (bLFH) was measured against Pseudomonas strains (P. syringae and P. fluorescens) in vitro. To compare susceptibility to bLFH, minimal inhibitory concentration (MIC) values were determined using chemiluminescence assays and paper disc plate assays. Antimicrobial effect against P. fluorescens was not observed by either assay, suggesting that bLFH did not exhibit antimicrobial activity against P. fluorescens. However, a significant inhibition of P. syringae growth was observed in the presence of bLFH. The addition of bLFH in liquid or solid medium inhibited growth of P. syringae in a dose-dependent manner. Furthermore, a bLFH peptide with antimicrobial activity toward P. syringae was isolated and identified. The N-terminal amino acid sequences of thus obtained antimicrobial bLFH peptides were analyzed by a protein sequencer and were found to be Leu-Arg-Ile-Pro-Ser-Lys-Val-Asp-Ser-Ala and Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met. The latter peptide sequence is known to be characteristic of lactoferricin. Therefore, in the present study, we identified a new antimicrobial peptide against P. syringae, present within the N-terminus and possessing the amino acid sequence of Leu-Arg-Ile-Pro-Ser-Lys-Val-Asp-Ser-Ala. PMID:27621689

  5. Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth.

    PubMed

    Wang, Zhujun; Zhang, Xuewu

    2016-02-01

    In this study, the whole proteins of Spirulina (Arthrospira) platensis were extracted, hydrolysis with three proteases (trypsin, alcalase and papain) was performed, and gel filtration chromatography was employed to separate hydrolysates. Totally, 15 polypeptides were isolated, which showed anti-proliferation activities on five cancer cells (HepG-2, MCF-7, SGC-7901, A549 and HT-29), with the IC50 values between <31.25 and 336.57 μg mL(-1). Moreover, a new peptide YGFVMPRSGLWFR was identified from papain-digested hydrolysates. It also exhibited inhibitory activities on cancer cells, and the best activity was observed on A549 cancer cells (IC50 values 104.05 μg mL(-1)). In other words, these polypeptides exhibited anti-proliferation activities on cancer cells, and low toxicity or stimulatory activity on normal cells, suggesting that they are promising ingredients in food and pharmaceutical applications. PMID:26584028

  6. Targeting a c-Myc inhibitory polypeptide to specific intracellular compartments using cell penetrating peptides.

    PubMed

    Bidwell, Gene L; Davis, Aisha N; Raucher, Drazen

    2009-04-01

    The therapeutic index of current anti-cancer chemotherapeutics can be improved by two major mechanisms: 1) developing drugs which are specifically toxic to the cancer cells and 2) developing methods to deliver drugs to the tumor site. In an attempt to combine these approaches, we developed a thermally responsive polypeptide inhibitor of c-Myc. This polypeptide is based on the thermally responsive Elastin-like polypeptide (ELP). When injected systemically, ELP-fused drugs will aggregate and accumulate at the tumor site where local hyperthermia is applied. ELP was fused to a peptide which blocks c-Myc/Max dimerization (H1), thereby inhibiting transcription activation by c-Myc (ELP-H1). In this study, the cellular uptake, intracellular distribution, and potency of the Pen, Tat and Bac cell penetrating peptides fused to ELP-H1 were evaluated. While Pen-ELP-H1 and Tat-ELP-H1 were localized in the cytoplasm, Bac-ELP-H1 localized to the nucleus in a subset of the cells and was the most potent inhibitor of MCF-7 cell proliferation. This data demonstrates that ELP can be targeted to the desired cellular compartment simply by choice of the CPP used, resulting in a more potent nuclear targeted c-Myc inhibitory polypeptide which may be beneficial in cancer therapy.

  7. Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes.

    PubMed

    Power, Orla; Nongonierma, A B; Jakeman, P; FitzGerald, R J

    2014-02-01

    The prevalence of type 2 diabetes mellitus (T2DM) is increasing and it is estimated that by 2030 approximately 366 million people will be diagnosed with this condition. The use of dipeptidyl peptidase IV (DPP-IV) inhibitors is an emerging strategy for the treatment of T2DM. DPP-IV is a ubiquitous aminodipeptidase that cleaves incretins such as glucagon like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), resulting in a loss in their insulinotropic activity. Synthetic DPP-IV drug inhibitors are being used to increase the half-life of the active GLP-1 and GIP. Dietary intervention is accepted as a key component in the prevention and management of T2DM. Therefore, identification of natural food protein-derived DPP-IV inhibitors is desirable. Peptides with DPP-IV inhibitory activity have been identified in a variety of food proteins. This review aims to provide an overview of food protein hydrolysates as a source of the DPP-IV inhibitory peptides with particular focus on milk proteins. In addition, the proposed modes of inhibition and structure-activity relationship of peptide inhibitors are discussed. Milk proteins and associated peptides also display insulinotropic activity and help regulate blood glucose in healthy and diabetic subjects. Therefore, milk protein derived peptide inhibitors may be a unique multifunctional peptide approach for the management of T2DM.

  8. The role of ACE2 in cardiovascular physiology.

    PubMed

    Oudit, Gavin Y; Crackower, Michael A; Backx, Peter H; Penninger, Josef M

    2003-04-01

    The renin-angiotensin system (RAS) is critically involved in cardiovascular and renal function and in disease conditions, and has been shown to be a far more complex system than initially thought. A recently discovered homologue of angiotensin-converting enzyme (ACE)--ACE2--appears to negatively regulate the RAS. ACE2 cleaves Ang I and Ang II into the inactive Ang 1-9 and Ang 1-7, respectively. ACE2 is highly expressed in kidney and heart and is especially confined to the endothelium. With quantitative trait locus (QTL) mapping, ACE2 was defined as a QTL on the X chromosome in rat models of hypertension. In these animal models, kidney ACE2 messenger RNA and protein expression were markedly reduced, making ACE2 a candidate gene for this QTL. Targeted disruption of ACE2 in mice failed to elicit hypertension, but resulted in severe impairment in myocardial contractility with increased angiotensin II levels. Genetic ablation of ACE in the ACE2 null mice rescued the cardiac phenotype. These genetic data show that ACE2 is an essential regulator of heart function in vivo. Basal renal morphology and function were not altered by the inactivation of ACE2. The novel role of ACE2 in hydrolyzing several other peptides-such as the apelin peptides, opioids, and kinin metabolites-raises the possibility that peptide systems other than angiotensin and its derivatives also may have an important role in regulating cardiovascular and renal function.

  9. Membrane-associated zinc peptidase families: comparing ACE and ACE2.

    PubMed

    Guy, J L; Lambert, D W; Warner, F J; Hooper, N M; Turner, A J

    2005-08-01

    In contrast to the relatively ubiquitous angiotensin-converting enzyme (ACE), expression of the mammalian ACE homologue, ACE2, was initially described in the heart, kidney and testis. ACE2 is a type I integral membrane protein with its active site domain exposed to the extracellular surface of endothelial cells and the renal tubular epithelium. Here ACE2 is poised to metabolise circulating peptides which may include angiotensin II, a potent vasoconstrictor and the product of angiotensin I cleavage by ACE. To this end, ACE2 may counterbalance the effects of ACE within the renin-angiotensin system (RAS). Indeed, ACE2 has been implicated in the regulation of heart and renal function where it is proposed to control the levels of angiotensin II relative to its hypotensive metabolite, angiotensin-(1-7). The recent solution of the structure of ACE2, and ACE, has provided new insight into the substrate and inhibitor profiles of these two key regulators of the RAS. As the complexity of this crucial pathway is unravelled, there is a growing interest in the therapeutic potential of agents that modulate the activity of ACE2.

  10. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis.

    PubMed

    do Nascimento, Viviane V; Mello, Érica de O; Carvalho, Laís P; de Melo, Edésio J T; Carvalho, André de O; Fernandes, Katia V S; Gomes, Valdirene M

    2015-01-01

    Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target. PMID:26285803

  11. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis

    PubMed Central

    do Nascimento, Viviane V.; Mello, Érica de O.; Carvalho, Laís P.; de Melo, Edésio J.T.; Carvalho, André de O.; Fernandes, Katia V.S.; Gomes, Valdirene M.

    2015-01-01

    Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target. PMID:26285803

  12. Inhibitory Effect of Curcumin-Cu(II) and Curcumin-Zn(II) Complexes on Amyloid-Beta Peptide Fibrillation

    PubMed Central

    2014-01-01

    Mononuclear complexes of Curcumin with Cu(II) and Zn(II) have been synthesized and, characterized and their effects on the fibrillization and aggregation of amyloid-beta (Aβ) peptide have been studied. FTIR spectroscopy and atomic force microscopy (AFM) observations demonstrate that the complexes can inhibit the transition from less structured oligomers to β-sheet rich protofibrils which act as seeding factors for further fibrillization. The metal complexes also impart more improved inhibitory effects than Curcumin on peptide fibrillization. PMID:25147492

  13. Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers

    SciTech Connect

    James Graham, Robert Leslie . E-mail: rl.graham@ulster.ac.uk; Graham, Ciaren; McClean, Stephen; Chen, Tianbao; O'Rourke, Martin; Hirst, David; Theakston, David; Shaw, Chris

    2005-12-23

    A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.

  14. Relationship between structure and P-glycoprotein inhibitory activity of dimeric peptides related to the Dmt-Tic pharmacophore.

    PubMed

    Ambo, Akihiro; Ohkatsu, Hiromichi; Minamizawa, Motoko; Watanabe, Hideko; Sugawara, Shigeki; Nitta, Kazuo; Tsuda, Yuko; Okada, Yoshio; Sasaki, Yusuke

    2012-03-15

    To develop novel inhibitors of P-glycoprotein (P-gp), dimeric peptides related to an opioid peptide containing the Dmt-Tic pharmacophore were synthesized and their P-gp inhibitory activities were analyzed. Of the 30 analogs synthesized, N(α),N(ε)-[(CH(3))(2)Mle-Tic](2)Lys-NH(2) and its D-Lys analog were found to exhibit potent P-gp inhibitory activity, twice that of verapamil, in doxorubicin-resistant K562 cells. Structure-activity studies indicated that the correct hydrophobicity and spacer length between two aromatic rings are important structural elements in this series of analogs for inhibition of P-gp.

  15. Zeta Inhibitory Peptide as a Novel Therapy to Control Chronic Visceral Hypersensitivity in a Rat Model

    PubMed Central

    Chen, Yu; Guo, Lixia; Dai, Hengfen; Huang, Yang; Chen, Qianqian; Lin, Chun

    2016-01-01

    Background The pathogenesis of multiple chronic visceral pain syndromes, such as irritable bowel syndrome (IBS), is not well known, and as a result current therapies are ineffective. The objective of this study was to investigate the effect of spinal protein kinase M zeta (PKMζ) on visceral pain sensitivity in rats with IBS to better understand the pathogenesis and investigate the effect of zeta inhibitory peptide (ZIP) as a therapy for chronic visceral pain. Methods Visceral hypersensitivity rats were produced by neonatal maternal separation (NMS). Visceral pain sensitivity was assessed by electromyographic (EMG) responses of abdominal muscles to colorectal distention (CRD). Spinal PKMζ and phosphorylated PKMζ (p-PKMζ) were detected by western blot. Varying doses of ZIP were intrathecally administered to investigate the role of spinal PKMζ in chronic visceral hypersensitivity. The open field test was used to determine if ZIP therapy causes spontaneous motor activity side effects. Results Graded CRD pressure significantly increased EMG responses in NMS rats compared to control rats (p < 0.05). p-PKMζ expression increased in the thoracolumbar and lumbosacral spinal cord in the IBS-like rats with notable concomitant chronic visceral pain compared to control rats (p < 0.05). EMG data revealed that intrathecal ZIP injection (1, 5, and 10 μg) dose-dependently attenuated visceral pain hypersensitivity in IBS-like rats. Conclusions Phosphorylated PKMζ may be involved in the spinal central sensitization of chronic visceral hypersensitivity in IBS, and administration of ZIP could effectively treat chronic visceral pain with good outcomes in rat models. PMID:27776136

  16. Hypotensive effects and angiotensin-converting enzyme inhibitory peptides of reishi (Ganoderma lingzhi) auto-digested extract.

    PubMed

    Tran, Hai-Bang; Yamamoto, Atsushi; Matsumoto, Sayaka; Ito, Hisatomi; Igami, Kentaro; Miyazaki, Toshitsugu; Kondo, Ryuichiro; Shimizu, Kuniyoshi

    2014-01-01

    Reishi (Ganoderma lingzhi) has been used as a traditional medicine for millennia. However, relatively little is known about this mushroom's proteins and their bioactivities. In this study, we used reishi's own proteases to hydrolyze its protein and obtained auto-digested reishi (ADR) extract. The extract was subjected to in vitro assays and administered to spontaneous hypertensive rats (SHRs) to determine its potential for use as a hypotensive medication. Bioassay-guided fractionation and de novo sequencing were used for identifying the active compounds. After 4 h administration of ADR, the systolic pressure of SHRs significantly decreased to 34.3 mmHg (19.5% change) and the effect was maintained up to 8 h of administration, with the decrease reaching as low as 26.8 mmHg (15% reduction-compare to base line a decrease of 26.8 mmHg is less than a decrease of 34.3 mmHg so it should give a smaller % reduction). Eleven peptides were identified and four of them showed potent inhibition against ACE with IC50 values ranging from 73.1 μM to 162.7 μM. The results showed that ADR could be a good source of hypotensive peptides that could be used for antihypertensive medication or incorporation into functional foods. PMID:25178067

  17. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins.

    PubMed

    Bernkop-Schnürch, A

    1998-03-01

    The peroral administration of peptide drugs is a major challenge to pharmaceutical science. In order to provide a sufficient bioavailability of these therapeutic agents after oral dosing, several barriers encountered with the gastrointestinal (GI) tract have to be overcome by a suitable galenic. One of these barriers is caused by proteolytic enzymes, leading to a severe presystemic degradation in the GI tract. Besides some other strategies to overcome the so-called enzymatic barrier, the use of inhibitory agents has gained considerable scientific interest, as various in vivo studies could demonstrate a significantly improved bioavailability of therapeutic peptides and proteins, due to the co-administration of such excipients. In vitro techniques to evaluate the actual potential of inhibitory agents incubation with pure proteases, freshly collected gastric or intestinal fluids, mucosal homogenates, brush border vesicles and freshly excised mucosa. In situ techniques are based on single-pass perfusion studies cannulating different intestinal segments and determining the amount of undegraded model drug in perfusion solutions or blood. For in vivo studies, insulin is mostly used as a model drug, offering the advantage of a well-established method to evaluate the biological response after oral dosing by determining the decrease in blood glucose level. Generally, inhibitory agents can be divided into: inhibitors which are not based on amino acids (I), such as p-aminobenzamidine, FK-448 and camostat mesilate; amino acids and modified amino acids (II), such acid derivatives; peptides and modified peptides (III), e.g. bacitracin, antipain, chymostatin and amastatin; and polypeptide protease inhibitors (IV), e.g. aprotinin, Bowman-Birk inhibitor and soybean trypsin inhibitor. Furthermore, complexing agents and some mucoadhesive polymers also display enzyme inhibitory activity. Drawbacks of inhibitory agents, such the risk of toxic side effects or high production costs, might

  18. Bi-functional peptides with both trypsin-inhibitory and antimicrobial activities are frequent defensive molecules in Ranidae amphibian skins.

    PubMed

    Yan, Xiuwen; Liu, Huan; Yang, Xuening; Che, Qiaolin; Liu, Rui; Yang, Hailong; Liu, Xiuhong; You, Dewen; Wang, Aili; Li, Jianxu; Lai, Ren

    2012-07-01

    Amphibian skins act as the first line against noxious aggression by microorganisms, parasites, and predators. Anti-microorganism activity is an important task of amphibian skins. A large amount of gene-encoded antimicrobial peptides (AMPs) has been identified from amphibian skins. Only a few of small protease inhibitors have been found in amphibian skins. From skin secretions of 5 species (Odorrana livida, Hylarana nigrovittata, Limnonectes kuhlii, Odorrana grahami, and Amolops loloensis) of Ranidae frogs, 16 small serine protease inhibitor peptides have been purified and characterized. They have lengths of 17-20 amino acid residues (aa). All of them are encoded by precursors with length of 65-70 aa. These small peptides show strong trypsin-inhibitory abilities. Some of them can exert antimicrobial activities. They share the conserved GCWTKSXXPKPC fragment in their primary structures, suggesting they belong to the same families of peptide. Signal peptides of precursors encoding these serine protease inhibitors share obvious sequence similarity with those of precursors encoding AMPs from Ranidae frogs. The current results suggest that these small serine protease inhibitors are the common defensive compounds in frog skin of Ranidae as amphibian skin AMPs. PMID:21927839

  19. Bi-functional peptides with both trypsin-inhibitory and antimicrobial activities are frequent defensive molecules in Ranidae amphibian skins.

    PubMed

    Yan, Xiuwen; Liu, Huan; Yang, Xuening; Che, Qiaolin; Liu, Rui; Yang, Hailong; Liu, Xiuhong; You, Dewen; Wang, Aili; Li, Jianxu; Lai, Ren

    2012-07-01

    Amphibian skins act as the first line against noxious aggression by microorganisms, parasites, and predators. Anti-microorganism activity is an important task of amphibian skins. A large amount of gene-encoded antimicrobial peptides (AMPs) has been identified from amphibian skins. Only a few of small protease inhibitors have been found in amphibian skins. From skin secretions of 5 species (Odorrana livida, Hylarana nigrovittata, Limnonectes kuhlii, Odorrana grahami, and Amolops loloensis) of Ranidae frogs, 16 small serine protease inhibitor peptides have been purified and characterized. They have lengths of 17-20 amino acid residues (aa). All of them are encoded by precursors with length of 65-70 aa. These small peptides show strong trypsin-inhibitory abilities. Some of them can exert antimicrobial activities. They share the conserved GCWTKSXXPKPC fragment in their primary structures, suggesting they belong to the same families of peptide. Signal peptides of precursors encoding these serine protease inhibitors share obvious sequence similarity with those of precursors encoding AMPs from Ranidae frogs. The current results suggest that these small serine protease inhibitors are the common defensive compounds in frog skin of Ranidae as amphibian skin AMPs.

  20. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin.

    PubMed

    Silveira, Silvana T; Martínez-Maqueda, Daniel; Recio, Isidra; Hernández-Ledesma, Blanca

    2013-11-15

    Dipeptidyl peptidase-IV (DPP-IV) is a serine protease involved in the degradation and inactivation of incretin hormones that act by stimulating glucose-dependent insulin secretion after meal ingestion. DPP-IV inhibitors have emerged as new and promising oral agents for the treatment of type 2 diabetes. The purpose of this study was to investigate the potential of β-lactoglobulin as natural source of DPP-IV inhibitory peptides. A whey protein concentrate rich in β-lactoglobulin was hydrolysed with trypsin and fractionated using a chromatographic separation at semipreparative scale. Two of the six collected fractions showed notable DPP-IV inhibitory activity. These fractions were analysed by HPLC coupled to tandem mass spectrometry (HPLC-MS/MS) to identify peptides responsible for the observed activity. The most potent fragment (IPAVF) corresponded to β-lactoglobulin f(78-82) which IC50 value was 44.7μM. The results suggest that peptides derived from β-lactoglobulin would be beneficial ingredients of foods against type 2 diabetes.

  1. Bioactive Peptides from Muscle Sources: Meat and Fish

    PubMed Central

    Ryan, Joseph Thomas; Ross, Reynolds Paul; Bolton, Declan; Fitzgerald, Gerald F.; Stanton, Catherine

    2011-01-01

    Bioactive peptides have been identified in a range of foods, including plant, milk and muscle, e.g., beef, chicken, pork and fish muscle proteins. Bioactive peptides from food proteins offer major potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an outline of the bioactive peptides identified in the muscle protein of meat to date, with a focus on muscle protein from domestic animals and fish. The majority of research on bioactives from meat sources has focused on angiotensin-1-converting enzyme (ACE) inhibitory and antioxidant peptides. PMID:22254123

  2. Catalytic Features of the Botulinum Neurotoxin A Light Chain Revealed by High Resolution Structure of an Inhibitory Peptide Complex

    SciTech Connect

    Silvaggi,N.; Wilson, D.; Tzipori, S.; Allen, K.

    2008-01-01

    The Clostridium botulinum neurotoxin serotype A light chain (BoNT/A-LC) is a Zn(II)-dependent metalloprotease that blocks the release of acetylcholine at the neuromuscular junction by cleaving SNAP-25, one of the SNARE proteins required for exocytosis. Because of the potential for use of the toxin in bioterrorism and the increasingly widespread application of the toxin in the medical field, there is significant interest in the development of small-molecule inhibitors of the metalloprotease. Efforts to design such inhibitors have not benefited from knowledge of how peptides bind to the active site since the enzyme-peptide structures available previously either were not occupied in the vicinity of the catalytic Zn(II) ion or did not represent the product of SNAP-25 substrate cleavage. Herein we report the 1.4 Angstroms-resolution X-ray crystal structure of a complex between the BoNT/A-LC and the inhibitory peptide N-Ac-CRATKML, the first structure of the light chain with an inhibitory peptide bound at the catalytic Zn(II) ion. The peptide is bound with the Cys S? atom coordinating the metal ion. Surprisingly, the cysteine sulfur is oxidized to the sulfenic acid form. Given the unstable nature of this species in solution, is it likely that oxidation occurs on the enzyme. In addition to the peptide-bound structure, we report two structures of the unliganded light chain with and without the Zn(II) cofactor bound at 1.25 and 1.20 Angstroms resolution, respectively. The two structures are nearly identical, confirming that the Zn(II) ion plays a purely catalytic role. Additionally, the structure of the Zn(II)-bound uncomplexed enzyme allows identification of the catalytic water molecule and a second water molecule that occupies the same position as the peptidic oxygen in the tetrahedral intermediate. This observation suggests that the enzyme active site is prearranged to stabilize the tetrahedral intermediate of the protease reaction.

  3. Identification of bioactive peptide from Oreochromis niloticus skin gelatin.

    PubMed

    Choonpicharn, Sadabpong; Tateing, Suriya; Jaturasitha, Sanchai; Rakariyatham, Nuansri; Suree, Nuttee; Niamsup, Hataichanoke

    2016-02-01

    Fish skin, one type of wastes generated from Nile tilapia processing, is still a good source of collagen and gelatin. Bioactive peptides can be obtained from Nile tilapia skin gelatin by trypsin digestion. Trypsin hydrolysate was subsequently purified by gel filtration chromatography. Trypsin A fraction showed the greatest reducing power (5.138 ± 1.060 μM trolox/mg peptide) among all hydrolysate fractions, while trypsin B fraction from gel filtration column was found to exhibit the best radical scavenging and angiotensin-I-converting enzyme (ACE) inhibitory activities 8.16 ± 2.18 μg trolox/mg peptide and 59.32 ± 9.97 % inhibition, respectively. The most active fraction was subjected to MALDI-TOF/TOF MS/MS. After annotation by Mascot sequence matching software (Matrix Science) with Ludwig NR Database, two peptide sequences were identified; GPEGPAGAR (MW 810.87 Da) and GETGPAGPAGAAGPAGPR (MW 1490.61 Da). The docking analysis suggested that the shape of the shorter peptide may be slightly more proper, to fit into the binding cleft of the ACE. However, the binding affinities calculated from the docking showed no significant difference between the two peptides. In good agreement with the in silico data, results from the in vitro ACE inhibitory activity with synthetic peptides also showed no significant difference. Both peptides are thus interesting novel candidates suitable for further development as ACE inhibitory and antioxidant agents from the natural source. PMID:27162402

  4. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study.

    PubMed

    Sun, Yunxiang; Qian, Zhenyu; Wei, Guanghong

    2016-05-14

    Alzheimer's disease (AD) is associated with the pathological self-assembly of amyloid-β (Aβ) peptides into β-sheet enriched fibrillar aggregates. Aβ dimers formed in the initial step of Aβ aggregation were reported to be the smallest toxic species. Inhibiting the formation of β-sheet-rich oligomers and fibrils is considered as the primary therapeutic strategy for AD. Previous studies reported that fullerene derivatives strongly inhibit Aβ fibrillation. However, the underlying inhibitory mechanism remains elusive. As a first step to understand fullerene-modulated full-length Aβ aggregation, we investigated the conformational ensemble of the Aβ1-42 dimer with and without 1,2-(dimethoxymethano)fullerene (DMF) - a more water-soluble fullerene derivative - by performing a 340 ns explicit-solvent replica exchange molecular dynamics simulation. Our simulations show that although disordered states are the most abundant conformations of the Aβ1-42 dimer, conformations containing diverse extended β-hairpins are also populated. The first most-populated β-hairpins involving residues L17-D23 and A30-V36 strongly resemble the engineered β-hairpin which is a building block of toxic Aβ oligomers. We find that the interaction of DMFs with Aβ peptides greatly impedes the formation of such β-hairpins and inter-peptide β-sheets. Binding energy analyses demonstrate that DMF preferentially binds not only to the central hydrophobic motif LVFFA of the Aβ peptide as suggested experimentally, but also to the aromatic residues including F4 and Y10 and the C-terminal hydrophobic region I31-V40. This study reveals a complete picture of the inhibitory mechanism of full-length Aβ1-42 aggregation by fullerenes, providing theoretical insights into the development of drug candidates against AD.

  5. The monocyte locomotion inhibitory factor an anti-inflammatory peptide; therapeutics originating from amebic abscess of the liver.

    PubMed

    Velazquez, Juan R

    2011-01-01

    Entamoeba histolytica in culture produces a pentapeptide (MQCNS). This oligopeptide inhibits the in vitro and in vivo locomotion of human monocytes, hence its denomination Monocyte Locomotion Inhibitory Factor (MLIF). The original isolated peptide and its synthetic construct display similar effects, among others, being inhibition of the respiratory burst in monocytes and neutrophils, decrease of Dinitrochlorobenzene (DNCB) skin hypersensitivity in guinea pigs and gerbils, and delay of mononuclear leukocytes in human Rebuck skin windows with inhibition of vascular cell Very late antigen (VLA)-4 and Vascular adhesion molecules (VCAM) in endothelia and monocytes. The MLIF molecular mechanism of action is unknown, but data reveal its implication in Nuclear factor-kappa B (NF-κB) and Mitogenactivated protein kinase (MAPK) pathways. This could explain MLIF multiplicity of biological effects. On the other hand, the amebic peptide has been useful in treating experimental amebiasis of the liver. The amebic peptide is effective in reducing inflammation induced by carragenin and arthritis in a Collagen-induced arthritis (CIA) model. Microarray data from experimental arthritis revealed an MLIF gene expression profile that includes genes that are involved in apoptosis, cell adhesion, extracellular matrix, and inflammation / chemotaxis. MLIF could be involved in unsuspected biological factions because there is increasing data on the peptide effect on several cell activities. This review also presents uses of MLIF as described in patents.

  6. Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding

    PubMed Central

    Danilov, Sergei M.; Lünsdorf, Heinrich; Akinbi, Henry T.; Nesterovitch, Andrew B.; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V.; Piegeler, Tobias; Golukhova, Elena Z.; Schwartz, David E.; Dull, Randal O.; Minshall, Richard D.; Kost, Olga A.; Garcia, Joe G. N.

    2016-01-01

    Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients. PMID:27734897

  7. [Application of reversed-phase liquid chromatography-tandem mass spectrometry in the identification of protein and bioactivity peptides from rape bee pollen].

    PubMed

    Guo, Jing; Yan, Jiaze; Guo, Ming; Jin, Yan

    2014-03-01

    Based on the shotgun proteomic method, rape bee pollen protein was prepared with ultrasonic extraction and digested by trypsin, then separated and sequenced by reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS), followed by protein database searching. After the above analysis, 353 peptides were identified and the molecular biological functions of 239 proteins have been known. The identified molecular biological functions of these proteins mainly included binding activity, enzyme activity, transporter activity, inhibitor activity and so on. Five peptides were obtained after the screening and appropriate amino acid modification among the identified 353 peptides, according to the relationship between the sequence structure of the bioactivity peptide and angiotensin converting enzyme (ACE) inhibitor activity. The five peptides were speculated to have ACE inhibitor activity and synthesized to detect ACE inhibitor activity. The results showed that all of the five peptides had good ACE inhibitor activity. The peptides of AELDIVLALF and LAVNLIPFP among the five peptides displayed especially good ACE inhibition with half maximal inhibitory concentration (IC50) of (10.65 +/- 0.50) micromol/L and (23.66 +/- 1.08) micromol/L, respectively. This method is rapid, low-cost and achieves the goal of high-throughput screening of bioactivity peptides that greatly shorten the period of identification compared with traditional methods.

  8. Characterization of Peptides from Capsicum annuum Hybrid Seeds with Inhibitory Activity Against α-Amylase, Serine Proteinases and Fungi.

    PubMed

    Vieira Bard, Gabriela C; Nascimento, Viviane V; Ribeiro, Suzanna F F; Rodrigues, Rosana; Perales, Jonas; Teixeira-Ferreira, André; Carvalho, André O; Fernandes, Katia Valevski S; Gomes, Valdirene M

    2015-04-01

    Over the last several years, the activity of antimicrobial peptides (AMPs), isolated from plant species, against different microorganisms has been demonstrated. More recently, some of these AMPs have been described as potent inhibitors of α-amylases and serine proteinases from insects and mammals. The aim of this work was to obtain AMPs from protein extracts of a hybrid Capsicum (Ikeda × UENF 1381) seeds and to evaluate their microbial and enzyme inhibitory activities. Initially, proteins were extracted from the Capsicum hybrid seeds in buffer (sodium phosphate pH 5.4,) and precipitated with ammonium sulfate (90% saturated). Extract of hybrid seeds was subjected to size exclusion chromatography, and three fractions were obtained: S1, S2 and S3. The amino acid sequence, obtained by mass spectrometry, of the 6 kDa peptide from the S3 fraction, named HyPep, showed 100% identity with PSI-1.2, a serine protease inhibitor isolated from C. annuum seeds, however the bifunctionality of this inhibitor against two enzymes is being shown for the first time in this work. The S3 fraction showed the highest antifungal activity, inhibiting all the yeast strains tested, and it also exhibited inhibitory activity against human salivary and Callosobruchus maculatus α-amylases as well as serine proteinases.

  9. Angiotensin converting enzyme inhibitory activity of soy protein subjected to selective hydrolysis and thermal processing.

    PubMed

    Margatan, Wynnie; Ruud, Kirsten; Wang, Qian; Markowski, Todd; Ismail, Baraem

    2013-04-10

    Soy protein isolate (SPI) and β-conglycinin- and glycinin-rich fractions were hydrolyzed using papain and pepsin. Protein denaturation, profiling, and peptide identification were carried out following DSC, SDS-PAGE, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The in vitro antihypertensive activity of the hydrolysates was compared by determining the angiotensin converting enzyme (ACE) inhibitory activity. SDS-PAGE and LC-MS/MS analysis confirmed pepsin selectivity to glycinin and papain partial selectivity to β-conglycinin when the protein is least denatured. Both the papain-hydrolyzed SPI and the papain-hydrolyzed β-conglycinin-rich fraction had more than double the ACE inhibitory activity of that of pepsin-hydrolyzed SPI and pepsin-hydrolyzed glycinin-rich fraction. This observation indicated that β-conglycinin is a better precursor for antihypertensive peptides than glycinin. Additionally, the inhibitory activity of the papain-hydrolyzed SPI was thermally stable. This work demonstrated, for the first time, that selective hydrolysis to release peptides with ACE inhibitory activity can be accomplished without inducing extensive hydrolysis and performing unnecessary fractionation. PMID:23514371

  10. Inhibitory effects of a peptide-fusion protein (Latarcin-PAP1-Thanatin) against chikungunya virus.

    PubMed

    Rothan, Hussin A; Bahrani, Hirbod; Shankar, Esaki M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2014-08-01

    Chikungunya virus (CHIKV) outbreaks have led to a serious economic burden, as the available treatment strategies can only alleviate disease symptoms, and no effective therapeutics or vaccines are currently available for human use. Here, we report the use of a new cost-effective approach involving production of a recombinant antiviral peptide-fusion protein that is scalable for the treatment of CHIKV infection. A peptide-fusion recombinant protein LATA-PAP1-THAN that was generated by joining Latarcin (LATA) peptide with the N-terminus of the PAP1 antiviral protein, and the Thanatin (THAN) peptide to the C-terminus, was produced in Escherichia coli as inclusion bodies. The antiviral LATA-PAP1-THAN protein showed 89.0% reduction of viral plaque formation compared with PAP1 (46.0%), LATA (67.0%) or THAN (79.3%) peptides alone. The LATA-PAP1-THAN protein reduced the viral RNA load that was 0.89-fold compared with the untreated control cells. We also showed that PAP1 resulted in 0.44-fold reduction, and THAN and LATA resulting in 0.78-fold and 0.73-fold reductions, respectively. The LATA-PAP1-THAN protein inhibited CHIKV replication in the Vero cells at an EC50 of 11.2μg/ml, which is approximately half of the EC50 of PAP1 (23.7μg/ml) and protected the CHIKV-infected mice at the dose of 0.75mg/ml. We concluded that production of antiviral peptide-fusion protein in E. coli as inclusion bodies could accentuate antiviral activities, enhance cellular internalisation, and could reduce product toxicity to host cells and is scalable to epidemic response quantities.

  11. Proteins, peptides, polysaccharides, and nucleotides with inhibitory activity on human immunodeficiency virus and its enzymes.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Chan, Wai Yee

    2015-12-01

    Human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome, has claimed innumerable lives in the past. Many biomolecules which suppress HIV replication and also other biomolecules that inhibit enzymes essential to HIV replication have been reported. Proteins including a variety of milk proteins, ribosome-inactivating proteins, ribonucleases, antifungal proteins, and trypsin inhibitors; peptides comprising cathelicidins, defensins, synthetic peptides, and others; polysaccharides and polysaccharopeptides; nucleosides, nucleotides, and ribozymes, demonstrated anti-HIV activity. In many cases, the mechanism of anti-HIV action has been elucidated. Strategies have been devised to augment the anti-HIV potency of these compounds.

  12. Gastrointestinal Endogenous Proteins as a Source of Bioactive Peptides - An In Silico Study

    PubMed Central

    Dave, Lakshmi A.; Montoya, Carlos A.; Rutherfurd, Shane M.; Moughan, Paul J.

    2014-01-01

    Dietary proteins are known to contain bioactive peptides that are released during digestion. Endogenous proteins secreted into the gastrointestinal tract represent a quantitatively greater supply of protein to the gut lumen than those of dietary origin. Many of these endogenous proteins are digested in the gastrointestinal tract but the possibility that these are also a source of bioactive peptides has not been considered. An in silico prediction method was used to test if bioactive peptides could be derived from the gastrointestinal digestion of gut endogenous proteins. Twenty six gut endogenous proteins and seven dietary proteins were evaluated. The peptides present after gastric and intestinal digestion were predicted based on the amino acid sequence of the proteins and the known specificities of the major gastrointestinal proteases. The predicted resultant peptides possessing amino acid sequences identical to those of known bioactive peptides were identified. After gastrointestinal digestion (based on the in silico simulation), the total number of bioactive peptides predicted to be released ranged from 1 (gliadin) to 55 (myosin) for the selected dietary proteins and from 1 (secretin) to 39 (mucin-5AC) for the selected gut endogenous proteins. Within the intact proteins and after simulated gastrointestinal digestion, angiotensin converting enzyme (ACE)-inhibitory peptide sequences were the most frequently observed in both the dietary and endogenous proteins. Among the dietary proteins, after in silico simulated gastrointestinal digestion, myosin was found to have the highest number of ACE-inhibitory peptide sequences (49 peptides), while for the gut endogenous proteins, mucin-5AC had the greatest number of ACE-inhibitory peptide sequences (38 peptides). Gut endogenous proteins may be an important source of bioactive peptides in the gut particularly since gut endogenous proteins represent a quantitatively large and consistent source of protein. PMID:24901416

  13. Intracellular Analysis of the Interaction between the Human Papillomavirus Type 16 E6 Oncoprotein and Inhibitory Peptides

    PubMed Central

    Stutz, Christina; Reinz, Eileen; Honegger, Anja; Bulkescher, Julia; Schweizer, Johannes; Zanier, Katia; Travé, Gilles; Lohrey, Claudia; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2015-01-01

    Oncogenic types of human papillomaviruses (HPVs) cause cervical cancer and other malignancies in humans. The HPV E6 oncoprotein is considered to be an attractive therapeutic target since its inhibition can lead to the apoptotic cell death of HPV-positive cancer cells. The HPV type 16 (HPV16) E6-binding peptide pep11, and variants thereof, induce cell death specifically in HPV16-positive cancer cells. Although they do not encompass the LxxLL binding motif found in cellular HPV16 E6 interaction partners, such as E6AP, the pep11 variants strongly bind to HPV16 E6 by contacting the recently identified E6AP binding pocket. Thus, these peptides can serve as prototype E6-inhibitory molecules which target the E6AP pocket. We here analyzed their intracellular interaction with HPV16 E6. By comprehensive intracellular binding studies and GST pull-down assays, we show that E6-binding competent pep11 variants induce the formation of a trimeric complex, consisting of pep11, HPV16 E6 and p53. These findings indicate that peptides, which do not contain the LxxLL motif, can reshape E6 to enable its interaction with p53. The formation of the trimeric HPV16 E6 / peptide / p53 complex was associated with an increase of endogenous HPV16 E6 protein amounts. Yet, total cellular p53 amounts were also increased, indicating that the E6 / E6AP-mediated degradation of p53 is blocked. These findings suggest that inhibition of oncogenic activities by targeting the E6AP pocket on HPV16 E6 could be a strategy for therapeutic intervention. PMID:26151636

  14. Isolation, characterization and mechanism of action of an antimicrobial peptide from Lecythis pisonis seeds with inhibitory activity against Candida albicans.

    PubMed

    Vieira, Maria Eliza Brambila; Vasconcelos, Ilka Maria; Machado, Olga Lima Tavares; Gomes, Valdirene Moreira; Carvalho, André de Oliveira

    2015-09-01

    Antimicrobial peptides (AMPs) are produced by a range of organisms as a first line of defense against invaders or competitors. Owing to their broad antimicrobial activity, AMPs have attracted attention as a potential source of chemotherapeutic drugs. The increasing prevalence of infections caused by Candida species as opportunistic pathogens in immunocompromised patients requires new drugs. Lecythis pisonis is a Lecythydaceae tree that grows in Brazil. The AMPs produced by this tree have not been described previously. We describe the isolation of 12 fractions enriched in peptides from L. pisonis seeds. Of the 12 fractions, at 10 μg/ml, the F4 fraction had the strongest growth inhibitory effect (53.7%) in Candida albicans, in addition to a loss of viability of 94.9%. The F4 fraction was separated into seven sub-fractions by reversed-phase chromatography. The F4.7' fraction had the strongest activity at 10 μg/ml, inhibiting C. albicans growth by 38.5% and a 69.3% loss of viability. The peptide in F4.7' was sequenced and was found to be similar to plant defensins. For this reason, the peptide was named L. pisonis defensin 1 (Lp-Def1). The mechanism of action that is responsible for C. albicans inhibition by Lp-Def1 includes a slight increase of reactive oxygen species induction and a significant loss of mitochondrial function. The results described here support the future development of plant defensins, specifically Lp-Def1, as new therapeutic substances against fungi, especially C. albicans. PMID:26245301

  15. Angiotensin I Converting enzyme inhibitory peptides from commercial wet- and dry-milled corn germ

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioprocesses were developed to enhance the value of proteins from de-oiled corn germ. Proteins were hydrolyzed with trypsin, GC106, Flavourzyme or thermolysin in order to free the bioactive peptide sequences. Protein hydrolysis, at an enzyme to substrate ratio of 1:250, was greater for wet- than d...

  16. Granulosa Cell Apoptosis Induced by a Novel FSH Binding Inhibitory Peptide From Human Ovarian Follicular Fluid

    PubMed Central

    Chitnis, Swati S.; Navlakhe, Rajshri M.; Shinde, Gayatri C.; Barve, Sharmila J.; D'Souza, Serena; Mahale, Smita D.; Nandedkar, Tarala D.

    2008-01-01

    Pituitary gonadotropins, follicle-stimulating hormone and luteinizing hormone, are the key regulators of ovarian folliculogenesis; these are known to be directly or indirectly modulated by many intraovarian factors. Our group has identified and studied one such novel peptide from human ovarian follicular fluid. Its partial N-terminal eight amino acid sequence has been deduced, referred to as octapeptide (OP). OP induces follicular atresia in mice and interferes with normal ovarian function in non-human primates, this action being similar to the native peptide. Thus, in this study, an attempt has been made to elucidate the mechanism of action of the synthetic OP by studying the pathway of follicular atresia in mouse ovary. Changes in granulosa cells were studied using various apoptotic markers by flow cytometry and immunohistochemistry. An increase in apoptotic cell population in atretic- and peptide-treated groups was observed compared with normal controls. Interestingly, both these groups exhibited differences in the apoptotic pathway. Results showed that the mitochondrial pathway was predominant in the atretic group, whereas the Fas-FasL pathway was predominant in the peptide-treated groups. The ultrastructural study also showed apoptotic changes in the OP-treated and atretic groups; the pattern of apoptosis differed at the subcellular level. (J Histochem Cytochem 56:961–968, 2008) PMID:18645207

  17. Global Phenotype Screening and Transcript Analysis Outlines the Inhibitory Mode(s) of Action of Two Amphibian-Derived, α-Helical, Cationic Peptides on Saccharomyces cerevisiae▿ †

    PubMed Central

    Morton, C. Oliver; Hayes, Andrew; Wilson, Michael; Rash, Bharat M.; Oliver, Stephen G.; Coote, Peter

    2007-01-01

    Dermaseptin S3(1-16) [DsS3(1-16)] and magainin 2 (Mag 2) are two unrelated, amphibian-derived cationic peptides that adopt an α-helical structure within microbial membranes and have been proposed to kill target organisms via membrane disruption. Using a combination of global deletion mutant library phenotypic screening, expression profiling, and physical techniques, we have carried out a comprehensive in vitro analysis of the inhibitory action of these two peptides on the model fungus Saccharomyces cerevisiae. Gene ontology profiling (of biological processes) was used to identify both common and unique effects of each peptide. Resistance to both peptides was conferred by genes involved in telomere maintenance, chromosome organization, and double-strand break repair, implicating a common inhibitory action of DNA damage. Crucially, each peptide also required unique genes for maintaining resistance; for example, DsS3(1-16) required genes involved in protein targeting to the vacuole, and Mag 2 required genes involved in DNA-dependent DNA replication and DNA repair. Thus, DsS3(1-16) and Mag 2 have both common and unique antifungal actions that are not simply due to membrane disruption. Physical techniques revealed that both peptides interacted with DNA in vitro but in subtly different ways, and this observation was supported by the functional genomics experiments that provided evidence that both peptides also interfered with DNA integrity differently in vivo. This implies that both peptides are able to pass through the cytoplasmic membrane of yeast cells and damage DNA, an inhibitory action that has not been previously attributed to either of these peptides. PMID:17846143

  18. New antihypertensive peptides isolated from rapeseed.

    PubMed

    Marczak, Ewa D; Usui, Hachiro; Fujita, Hiroyuki; Yang, Yanjun; Yokoo, Megumi; Lipkowski, Andrzej W; Yoshikawa, Masaaki

    2003-06-01

    Four potent angiotensin converting enzyme (ACE) inhibitory peptides, IY, RIY, VW and VWIS, were isolated from subtilisin digest of rapeseed protein. Among them RIY and VWIS are new peptides with IC(50) 28 and 30 microM, respectively. All isolated peptides lowered blood pressure of spontaneously hypertensive rats (SHR) following oral administration. The maximum effect in the case of RIY was observed 4h after administration, while maximum effect of other peptides on blood pressure occurred 2h after administration. Furthermore, the antihypertensive effect of RIY was observed even in old rats, in which ACE inhibitors become less effective, suggesting that a different mechanism other than ACE inhibition is also involved in lowering blood pressure by this peptide. Subtilisin digest of rapeseed protein also significantly lowered blood pressure of SHR after oral administration of a single dosage 0.15 g/kg, exerting maximum antihypertensive effect 4h after administration. This digest appears promising as a functional food, which may be useful in the prevention and treatment of hypertension.

  19. Inhibitory Effects of Synthetic Peptides Containing Bovine Lactoferrin C-lobe Sequence on Bacterial Growth

    PubMed Central

    Kim, Woan-Sub; Ohashi, Midori; Shimazaki, Kei-ichi

    2016-01-01

    Lactoferrin is a glycoprotein with various biological effects, with antibacterial activity being one of the first effects reported. This glycoprotein suppresses bacterial growth through bacteriostatic or bactericidal action. It also stimulates the growth of certain kinds of bacteria such as lactic acid bacteria and bifidobacteria. In this study, Asn-Leu-Asn-Arg was selected and chemically synthesized based on the partial sequences of bovine lactoferrin tryptic fragments. Synthetic Asn-Leu-Asn-Arg suppressed the growth of Pseudomonas fluorescens, P. syringae and Escherichia coli. P. fluorescens is a major psychrotrophic bacteria found in raw and pasteurized milk, which decreases milk quality. P. syringae is a harmful infectious bacterium that damages plants. However, synthetic Asn-Leu-Asn-Arg did not inhibit the growth of Lactobacillus acidophilus. It is expected that this synthetic peptide would be the first peptide sequence from the bovine lactoferrin C-lobe that shows antibacterial activity.

  20. Inhibitory Effects of Synthetic Peptides Containing Bovine Lactoferrin C-lobe Sequence on Bacterial Growth

    PubMed Central

    Kim, Woan-Sub; Ohashi, Midori; Shimazaki, Kei-ichi

    2016-01-01

    Lactoferrin is a glycoprotein with various biological effects, with antibacterial activity being one of the first effects reported. This glycoprotein suppresses bacterial growth through bacteriostatic or bactericidal action. It also stimulates the growth of certain kinds of bacteria such as lactic acid bacteria and bifidobacteria. In this study, Asn-Leu-Asn-Arg was selected and chemically synthesized based on the partial sequences of bovine lactoferrin tryptic fragments. Synthetic Asn-Leu-Asn-Arg suppressed the growth of Pseudomonas fluorescens, P. syringae and Escherichia coli. P. fluorescens is a major psychrotrophic bacteria found in raw and pasteurized milk, which decreases milk quality. P. syringae is a harmful infectious bacterium that damages plants. However, synthetic Asn-Leu-Asn-Arg did not inhibit the growth of Lactobacillus acidophilus. It is expected that this synthetic peptide would be the first peptide sequence from the bovine lactoferrin C-lobe that shows antibacterial activity. PMID:27621684

  1. Inhibitory Effects of Synthetic Peptides Containing Bovine Lactoferrin C-lobe Sequence on Bacterial Growth.

    PubMed

    Kim, Woan-Sub; Ohashi, Midori; Shimazaki, Kei-Ichi

    2016-01-01

    Lactoferrin is a glycoprotein with various biological effects, with antibacterial activity being one of the first effects reported. This glycoprotein suppresses bacterial growth through bacteriostatic or bactericidal action. It also stimulates the growth of certain kinds of bacteria such as lactic acid bacteria and bifidobacteria. In this study, Asn-Leu-Asn-Arg was selected and chemically synthesized based on the partial sequences of bovine lactoferrin tryptic fragments. Synthetic Asn-Leu-Asn-Arg suppressed the growth of Pseudomonas fluorescens, P. syringae and Escherichia coli. P. fluorescens is a major psychrotrophic bacteria found in raw and pasteurized milk, which decreases milk quality. P. syringae is a harmful infectious bacterium that damages plants. However, synthetic Asn-Leu-Asn-Arg did not inhibit the growth of Lactobacillus acidophilus. It is expected that this synthetic peptide would be the first peptide sequence from the bovine lactoferrin C-lobe that shows antibacterial activity.

  2. Synthesis and inhibitory activity of substrate-analog fructosyl peptide oxidase inhibitors.

    PubMed

    Watanabe, Bunta; Ichiyanagi, Atsushi; Hirokawa, Kozo; Gomi, Keiko; Nakatsu, Toru; Kato, Hiroaki; Kajiyama, Naoki

    2015-09-15

    Fructosyl peptide oxidases (FPOXs) play a crucial role in the diagnosis of diabetes. Their main function is to cleave fructosyl amino acids or fructosyl peptides into glucosone and the corresponding amino acids/dipeptides. In this study, the substrate-analog FPOX inhibitors 1a-c were successfully designed and synthesized. These inhibitors mimic N(α)-fructosyl-L-valine (Fru-Val), [N(α)-fructosyl-L-valyl]-L-histidine (Fru-ValHis), and N(ε)-fructosyl-L-lysine (εFru-Lys), respectively. The secondary nitrogen atom in the natural substrates, linking fructose and amino acid or dipeptide moieties, was substituted in 1a-c with a sulfur atom to avoid enzymatic cleavage. Kinetic studies revealed that 1a-c act as competitive inhibitors against an FPOX obtained from Coniochaeta sp., and Ki values of 11.1, 66.8, and 782 μM were obtained for 1a-c, respectively.

  3. Inhibitory Effects of Synthetic Peptides Containing Bovine Lactoferrin C-lobe Sequence on Bacterial Growth.

    PubMed

    Kim, Woan-Sub; Ohashi, Midori; Shimazaki, Kei-Ichi

    2016-01-01

    Lactoferrin is a glycoprotein with various biological effects, with antibacterial activity being one of the first effects reported. This glycoprotein suppresses bacterial growth through bacteriostatic or bactericidal action. It also stimulates the growth of certain kinds of bacteria such as lactic acid bacteria and bifidobacteria. In this study, Asn-Leu-Asn-Arg was selected and chemically synthesized based on the partial sequences of bovine lactoferrin tryptic fragments. Synthetic Asn-Leu-Asn-Arg suppressed the growth of Pseudomonas fluorescens, P. syringae and Escherichia coli. P. fluorescens is a major psychrotrophic bacteria found in raw and pasteurized milk, which decreases milk quality. P. syringae is a harmful infectious bacterium that damages plants. However, synthetic Asn-Leu-Asn-Arg did not inhibit the growth of Lactobacillus acidophilus. It is expected that this synthetic peptide would be the first peptide sequence from the bovine lactoferrin C-lobe that shows antibacterial activity. PMID:27621684

  4. Mechanism of action of the HIV-1 integrase inhibitory peptide LEDGF 361-370.

    PubMed

    Hayouka, Zvi; Levin, Aviad; Maes, Michal; Hadas, Eran; Shalev, Deborah E; Volsky, David J; Loyter, Abraham; Friedler, Assaf

    2010-04-01

    The HIV-1 integrase protein (IN) mediates integration of the viral cDNA into the host genome and is a target for anti-HIV drugs. We have recently described a peptide derived from residues 361-370 of the IN cellular partner protein LEDGF/p75, which inhibited IN catalytic activity in vitro and HIV-1 replication in cells. Here we performed a comprehensive study of the LEDGF 361-370 mechanism of action in vitro, in cells and in vivo. Alanine scan, fluorescence anisotropy binding studies, homology modeling and NMR studies demonstrated that all residues in LEDGF 361-370 contribute to IN binding and inhibition. Kinetic studies in cells showed that LEDGF 361-370 specifically inhibited integration of viral cDNA. Thus, the full peptide was chosen for in vivo studies, in which it inhibited the production of HIV-1 RNA in mouse model. We conclude that the full LEDGF 361-370 peptide is a potent HIV-1 inhibitor and may be used for further development as an anti-HIV lead compound.

  5. Inhibitory effect of plantaricin peptides (Pln E/F and J/K) against Escherichia coli.

    PubMed

    Pal, Gargi; Srivastava, Sheela

    2014-11-01

    Plantaricins are small bioactive peptides produced by Lactobacillus plantarum strains that exhibit significant antimicrobial activity against closely-related Gram-positive bacteria, including food spoilage organisms. In comparison, bacteriocins including plantaricins, are usually less effective against Gram-negative organisms. In this study, we demonstrate that heterologously expressed and purified plantaricins, Pln E, -F, -J, and -K when tested against Gram negative model organism Escherichia coli K-12 were highly effective under certain conditions. The apparent tolerance of Gram-negative members to these peptides has been explained on the basis of the presence of the outer membrane (OM) that acts as a protective barrier. We have shown that agents and/or conditions that destabilize OM of E. coli K-12, make it susceptible to plantaricin peptides. In order to further strengthen this conclusion, an OM lipoprotein-defective lpp mutant strain of E. coli K-12 was also studied and compared. A significant loss of cell viability both in terms of CFU/ml as well as with live-dead dual staining combined with flow cytometry, could be demonstrated with the lpp mutant in comparison to the wild type strain. The results indicate that plantaricins can inhibit Gram-negative bacteria if the outer-membrane is weakened and it can be used in preservation of food with the help of some food-grade chelating agents. PMID:25138074

  6. RFamide-related peptide-like immunoreactivity in the porcine hypothalamus indicates thepresence of a gonadotropin-inhibitory system in the pig

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gonadotropin-inhibitory hormone (GnIH) was identified as an RFamide-related peptide (RFRP) in avian species. Mammalian orthologs (RFRP-1 and RFRP-3) have been reported in the human, rodents, and recently in sheep, but the role of RFRPs in the domestic pig is not established. We hypothesize that a Gn...

  7. Interactions of HIV-1 inhibitory peptide T20 with the gp41 N-HR coiled coil.

    PubMed

    Champagne, Kelly; Shishido, Akira; Root, Michael J

    2009-02-01

    Cellular entry of human immunodeficiency virus type 1 (HIV-1) involves fusion of viral and cellular membranes and is mediated by structural transitions in viral glycoprotein gp41. The antiviral C-peptide T20 targets the gp41 N-terminal heptad repeat region (N-HR), blocking gp41 conformational changes essential for the entry process. To probe the T20 structure-activity relationship, we engineered a molecular mimic of the entire gp41 N-HR coiled coil using the 5-Helix design strategy. T20 bound this artificial protein (denoted 5H-ex) with nanomolar affinity (K(D) = 30 nm), close to its IC50 concentration (approximately 3 nm) but much weaker than the affinity of a related inhibitory C-peptide C37 (K(D) = 0.0007 nm). T20/C37 competitive binding assays confirmed that T20 interacts with the hydrophobic groove on the surface of the N-HR coiled coil outside of a deep pocket region crucial for C37 binding. We used 5H-ex to investigate how the T20 N and C termini contributed to the inhibitor binding activity. Mutating three aromatic residues at the T20 C terminus (WNWF --> ANAA) had no effect on affinity, suggesting that these amino acids do not participate in T20 binding to the gp41 N-HR. The results support recent evidence pointing to a different role for these residues in T20 inhibition (Peisajovich, S. G., Gallo, S. A., Blumenthal, R., and Shai, Y. (2003) J. Biol. Chem. 278, 21012-21017; Liu, S., Jing, W., Cheung, B., Lu, H., Sun, J., Yan, X., Niu, J., Farmar, J., Wu, S., and Jiang, S. (2007) J. Biol. Chem. 282, 9612-9620). By contrast, mutations near the T20 N terminus substantially influenced inhibitor binding strength. When Ile was substituted for Thr in the second T20 position, a 40-fold increase in binding affinity was measured (K(D) = 0.75 nm). The effect of this affinity enhancement on T20 inhibitory potency varied among different viral strains. The original T20 and the higher affinity T20 variant had similar potency against wild type HIV-1. However, the higher

  8. Directed Evolution of an LBP/CD14 Inhibitory Peptide and Its Anti-Endotoxin Activity

    PubMed Central

    Fang, Li; Xu, Zhi; Wang, Guan-song; Ji, Fu-yun; Mei, Chun-xia; Liu, Juan; Wu, Guo-ming

    2014-01-01

    Background LPS-binding protein (LBP) and its ligand CD14 are located upstream of the signaling pathway for LPS-induced inflammation. Blocking LBP and CD14 binding might prevent LPS-induced inflammation. In previous studies, we obtained a peptide analog (MP12) for the LBP/CD14 binding site and showed that this peptide analog had anti-endotoxin activity. In this study, we used in vitro directed evolution for this peptide analog to improve its in vivo and in vitro anti-endotoxin activity. Methods We used error-prone PCR (ep-PCR) and induced mutations in the C-terminus of LBP and attached the PCR products to T7 phages to establish a mutant phage display library. The positive clones that competed with LBP for CD14 binding was obtained by screening. We used both in vivo and in vitro experiments to compare the anti-endotoxin activities of a polypeptide designated P1 contained in a positive clone and MP12. Results 11 positive clones were obtained from among target phages. Sequencing showed that 9 positive clones had a threonine (T) to methionine (M) mutation in amino acid 287 of LBP. Compared to polypeptide MP12, polypeptide P1 significantly inhibited LPS-induced TNF-α expression and NF-κB activity in U937 cells (P<0.05). Compared to MP12, P1 significantly improved arterial oxygen pressure, an oxygenation index, and lung pathology scores in LPS-induced ARDS rats (P<0.05). Conclusion By in vitro directed evolution of peptide analogs for the LBP/CD14 binding site, we established a new polypeptide (P1) with a threonine (T)-to-methionine (M) mutation in amino acid 287 of LBP. This polypeptide had high anti-endotoxin activity in vitro and in vivo, which suggested that amino acid 287 in the C-terminus of LBP may play an important role in LBP binding with CD14. PMID:25025695

  9. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins.

    PubMed

    Wang, Feng; Yu, Guoyong; Zhang, Yanyan; Zhang, Bolin; Fan, Junfeng

    2015-11-01

    Peptides released from oat, buckwheat, and highland barley proteins were examined for their in vitro inhibitory effects on dipeptidyl peptidase IV (DPP4), an enzyme that deactivates incretin hormones involved in insulin secretion. All of the hydrolysates exhibited DPP4 inhibitory activities, with IC50 values ranging from 0.13 mg/mL (oat glutelin alcalase digestion) to 8.15 mg/mL (highland barley albumin tryptic digestion). The lowest IC50 values in gastrointestinal, alcalase, and tryptic digestions were 0.99 mg/mL (oat flour), 0.13 mg/mL (oat glutelin), and 1.83 mg/mL (highland barley glutelin). In all, 35 peptides of more than seven residues were identified in the tryptic hydrolysates of oat globulin using liquid chromatography-mass spectroscopy. Peptides LQAFEPLR and EFLLAGNNK were synthesized and their DPP4 inhibitory activities determined. LQAFEPLR showed high in vitro DPP4 inhibitory activity with an IC50 value of 103.5 μM.

  10. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins.

    PubMed

    Wang, Feng; Yu, Guoyong; Zhang, Yanyan; Zhang, Bolin; Fan, Junfeng

    2015-11-01

    Peptides released from oat, buckwheat, and highland barley proteins were examined for their in vitro inhibitory effects on dipeptidyl peptidase IV (DPP4), an enzyme that deactivates incretin hormones involved in insulin secretion. All of the hydrolysates exhibited DPP4 inhibitory activities, with IC50 values ranging from 0.13 mg/mL (oat glutelin alcalase digestion) to 8.15 mg/mL (highland barley albumin tryptic digestion). The lowest IC50 values in gastrointestinal, alcalase, and tryptic digestions were 0.99 mg/mL (oat flour), 0.13 mg/mL (oat glutelin), and 1.83 mg/mL (highland barley glutelin). In all, 35 peptides of more than seven residues were identified in the tryptic hydrolysates of oat globulin using liquid chromatography-mass spectroscopy. Peptides LQAFEPLR and EFLLAGNNK were synthesized and their DPP4 inhibitory activities determined. LQAFEPLR showed high in vitro DPP4 inhibitory activity with an IC50 value of 103.5 μM. PMID:26468909

  11. Mass Spectrometry of Single GABAergic Somatic Motorneurons Identifies a Novel Inhibitory Peptide, As-NLP-22, in the Nematode Ascaris suum.

    PubMed

    Konop, Christopher J; Knickelbine, Jennifer J; Sygulla, Molly S; Wruck, Colin D; Vestling, Martha M; Stretton, Antony O W

    2015-12-01

    Neuromodulators have become an increasingly important component of functional circuits, dramatically changing the properties of both neurons and synapses to affect behavior. To explore the role of neuropeptides in Ascaris suum behavior, we devised an improved method for cleanly dissecting single motorneuronal cell bodies from the many other cell processes and hypodermal tissue in the ventral nerve cord. We determined their peptide content using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The reduced complexity of the peptide mixture greatly aided the detection of peptides; peptide levels were sufficient to permit sequencing by tandem MS from single cells. Inhibitory motorneurons, known to be GABAergic, contain a novel neuropeptide, As-NLP-22 (SLASGRWGLRPamide). From this sequence and information from the A. suum expressed sequence tag (EST) database, we cloned the transcript (As-nlp-22) and synthesized a riboprobe for in situ hybridization, which labeled the inhibitory motorneurons; this validates the integrity of the dissection method, showing that the peptides detected originate from the cells themselves and not from adhering processes from other cells (e.g., synaptic terminals). Synthetic As-NLP-22 has potent inhibitory activity on acetylcholine-induced muscle contraction as well as on basal muscle tone. Both of these effects are dose-dependent: the inhibitory effect on ACh contraction has an IC50 of 8.3 × 10(-9) M. When injected into whole worms, As-NLP-22 produces a dose-dependent inhibition of locomotory movements and, at higher levels, complete paralysis. These experiments demonstrate the utility of MALDI TOF/TOF MS in identifying novel neuromodulators at the single-cell level. Graphical Abstract ᅟ.

  12. Mass Spectrometry of Single GABAergic Somatic Motorneurons Identifies a Novel Inhibitory Peptide, As-NLP-22, in the Nematode Ascaris suum.

    PubMed

    Konop, Christopher J; Knickelbine, Jennifer J; Sygulla, Molly S; Wruck, Colin D; Vestling, Martha M; Stretton, Antony O W

    2015-12-01

    Neuromodulators have become an increasingly important component of functional circuits, dramatically changing the properties of both neurons and synapses to affect behavior. To explore the role of neuropeptides in Ascaris suum behavior, we devised an improved method for cleanly dissecting single motorneuronal cell bodies from the many other cell processes and hypodermal tissue in the ventral nerve cord. We determined their peptide content using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The reduced complexity of the peptide mixture greatly aided the detection of peptides; peptide levels were sufficient to permit sequencing by tandem MS from single cells. Inhibitory motorneurons, known to be GABAergic, contain a novel neuropeptide, As-NLP-22 (SLASGRWGLRPamide). From this sequence and information from the A. suum expressed sequence tag (EST) database, we cloned the transcript (As-nlp-22) and synthesized a riboprobe for in situ hybridization, which labeled the inhibitory motorneurons; this validates the integrity of the dissection method, showing that the peptides detected originate from the cells themselves and not from adhering processes from other cells (e.g., synaptic terminals). Synthetic As-NLP-22 has potent inhibitory activity on acetylcholine-induced muscle contraction as well as on basal muscle tone. Both of these effects are dose-dependent: the inhibitory effect on ACh contraction has an IC50 of 8.3 × 10(-9) M. When injected into whole worms, As-NLP-22 produces a dose-dependent inhibition of locomotory movements and, at higher levels, complete paralysis. These experiments demonstrate the utility of MALDI TOF/TOF MS in identifying novel neuromodulators at the single-cell level. Graphical Abstract ᅟ. PMID:26174364

  13. Mass Spectrometry of Single GABAergic Somatic Motorneurons Identifies a Novel Inhibitory Peptide, As-NLP-22, in the Nematode Ascaris suum

    NASA Astrophysics Data System (ADS)

    Konop, Christopher J.; Knickelbine, Jennifer J.; Sygulla, Molly S.; Wruck, Colin D.; Vestling, Martha M.; Stretton, Antony O. W.

    2015-12-01

    Neuromodulators have become an increasingly important component of functional circuits, dramatically changing the properties of both neurons and synapses to affect behavior. To explore the role of neuropeptides in Ascaris suum behavior, we devised an improved method for cleanly dissecting single motorneuronal cell bodies from the many other cell processes and hypodermal tissue in the ventral nerve cord. We determined their peptide content using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The reduced complexity of the peptide mixture greatly aided the detection of peptides; peptide levels were sufficient to permit sequencing by tandem MS from single cells. Inhibitory motorneurons, known to be GABAergic, contain a novel neuropeptide, As-NLP-22 (SLASGRWGLRPamide). From this sequence and information from the A. suum expressed sequence tag (EST) database, we cloned the transcript ( As-nlp-22) and synthesized a riboprobe for in situ hybridization, which labeled the inhibitory motorneurons; this validates the integrity of the dissection method, showing that the peptides detected originate from the cells themselves and not from adhering processes from other cells (e.g., synaptic terminals). Synthetic As-NLP-22 has potent inhibitory activity on acetylcholine-induced muscle contraction as well as on basal muscle tone. Both of these effects are dose-dependent: the inhibitory effect on ACh contraction has an IC50 of 8.3 × 10-9 M. When injected into whole worms, As-NLP-22 produces a dose-dependent inhibition of locomotory movements and, at higher levels, complete paralysis. These experiments demonstrate the utility of MALDI TOF/TOF MS in identifying novel neuromodulators at the single-cell level.

  14. Marketing ACE in Victoria.

    ERIC Educational Resources Information Center

    2001

    This publication presents options raised through various forums for marketing adult and community education (ACE) in Victoria, Australia, and suggested strategies. After an introduction (chapter 1), chapters 2 and 3 provide a broad view of the current situation for marketing ACE. Chapter 2 discusses general issues in the current position--ACE…

  15. Characterization of antidiabetic and antihypertensive properties of canary seed (Phalaris canariensis L.) peptides.

    PubMed

    Estrada-Salas, Patricia A; Montero-Morán, Gabriela M; Martínez-Cuevas, Pedro P; González, Carmen; Barba de la Rosa, Ana P

    2014-01-15

    Canary grass is used as traditional food for diabetes and hypertension treatment. The aim of this work is to characterize the biological activity of encrypted peptides released after gastrointestinal digestion of canary seed proteins. Canary peptides showed 43.5% inhibition of dipeptidyl peptidase IV (DPPIV) and 73.5% inhibition of angiotensin-converting enzyme (ACE) activity. An isolated perfused rat heart system was used to evaluate the canary seed vasoactive effect. Nitric oxide (NO), a major vasodilator agent, was evaluated in the venous effluent from isolated perfused rat heart. Canary seed peptides (1 μg/mL) were able to induce the production of NO (12.24 μM) in amounts similar to those induced by captopril (CPT) and bradykinin (BK). These results show that encrypted peptides in canary seed have inhibitory activity against DPPIV and ACE, enzymes that are targets for diabetes and hypertension treatments.

  16. Savinase, the most suitable enzyme for releasing peptides from lentil (Lens culinaris var. Castellana) protein concentrates with multifunctional properties.

    PubMed

    Garcia-Mora, Patricia; Peñas, Elena; Frias, Juana; Martínez-Villaluenga, Cristina

    2014-05-01

    The aim of this study was to produce multifunctional hydrolysates from lentil protein concentrates. Four different proteases (Alcalase, Savinase, Protamex, and Corolase 7089) and different hydrolysis times were evaluated for their degree and pattern of proteolysis and their angiotensin I-converting enzyme (ACE) inhibitory and antioxidant activities. Alcalase and Savinase showed the highest proteolytic effectiveness (P ≤ 0.05), which resulted in higher yield of peptides. The hydrolysate produced by Savinase after 2 h of hydrolysis (S2) displayed the highest ACE-inhibitory (IC50 = 0.18 mg/mL) and antioxidant activity (1.22 μmol of Trolox equiv/mg of protein). Subsequent reverse-phase HPLC-tandem mass spectrometric analysis of 3 kDa permeates of S2 showed 32 peptides, mainly derived from convicilin, vicilin, and legumin containing bioactive amino acid sequences, which makes them potential contributors to ACE-inhibitory and antioxidant activities detected. The ACE-inhibitory and antioxidant activities of S2 were significantly improved after in vitro gastrointestinal digestion (P ≤ 0.05). Multifunctional hydrolysates could encourage value-added utilization of lentil proteins for the formulation of functional foods and nutraceuticals.

  17. ACES: Final performance report

    NASA Astrophysics Data System (ADS)

    Baxter, V. D.

    1981-04-01

    The performance of the ACES in a single family residence near Knoxville, Tennessee was compared with that of two different air to air heat pumps in an identical house. Results show that energy was saved for the testing years. In addition to reducing consumption, the ACES significantly reduced integrated peak utility demands. Reinsulation of the ice storage bin reduced heat leakage rates by about 40 percent and resulted in increasing ground temperatures by an average of 5.60 C over first year levels. The demonstration project and the ACES concept are described. Data acquisition procedures, system modifications, steady state performance, annual cycle performance, and effects of modifications are discussed.

  18. Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses.

    PubMed

    Cheung, Imelda W Y; Nakayama, Satoko; Hsu, Monica N K; Samaranayaka, Anusha G P; Li-Chan, Eunice C Y

    2009-10-14

    The potential for producing antihypertensive peptides from oat proteins through enzymatic hydrolysis was assessed in silico and confirmed in vitro. Thermolysin (EC 3.4.24.27) was predicted using BIOPEP database as the enzyme that would theoretically produce the most angiotensin I converting enzyme (ACE) inhibitory peptides from oat. Experimental evidence confirmed that strong ACE-inhibitory activity was produced under various hydrolysis conditions. Hydrolysates produced under high enzyme-to-substrate ratio (3%) short time (20 min) (HEST) and low enzyme-to-substrate ratio (0.1%) long time (120 min) (LELT) conditions had IC(50) values of 30 and 50 microg/mL, respectively. After simulated gastrointestinal digestion, the IC(50) of the HEST hydrolysate was 35 microg/mL whereas the IC(50) of the LELT hydrolysate was higher at 85 microg/mL. Ultrafiltration revealed that potent ACE-inhibitory peptides had molecular weights below 3 kDa. This study demonstrates the usefulness of in silico analysis to select enzymes for hydrolysis of proteins not previously examined as sources of bioactive peptides.

  19. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis.

  20. Transport of a Prolyl Endopeptidase Inhibitory Peptide across the Blood-Brain Barrier Demonstrated Using the hCMEC/D3 Cell Line Transcytosis Assay.

    PubMed

    Hayes, Maria; Moen, Lars Fredrik; Auty, Mark A E; Lea, Tor Erling

    2016-01-13

    The blood-brain barrier (BBB) remains a significant hurdle for treatment of central nervous system (CNS) and mental health disorders. A prolyl endopeptidase (PEP) inhibitory peptide with the amino acid sequence proline-proline-leucine (PPL) was chemically synthesized labeled with 5-FAM and assessed using a transcytosis assay for its ability to cross the BBB. Transport of this peptide across the BBB was determined using an in vitro model of the human BBB, which utilizes the human cerebral microvascular endothelial cell line (hCMEC/D3). Uptake and transport of 5-FAM-PPL across the hCMEC/D3 cell model was determined using confocal microscopy and mass spectrometry. This is an important parameter in determining whether peptides may reach the target organ (i.e., the brain and central nervous system).This work assessed, for the first time, the ability of a food-derived PEP inhibitory peptide to cross the BBB without the use of animal models.

  1. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto).

    PubMed

    Ngoh, Ying-Yuan; Gan, Chee-Yuen

    2016-01-01

    Antioxidant and α-amylase inhibitor peptides were successfully extracted from Pinto bean protein isolate (PBPI) using Protamex. A factorial design experiment was conducted and the effects of extraction time, pH and temperature were studied. pH 7.5, extraction time of 1h, S/E ratio of 10 (w/w) and temperature of 50 °C gave the highest antioxidant activities (i.e., ABTS scavenging activity (53.3%) and FRAP value (3.71 mM)), whereas pH 6.5 with the same extraction time, S/E ratio and temperature, gave the highest α-amylase inhibitory activity (57.5%). It was then fractioned using membrane ultrafiltration with molecular weight cutoffs of 100, 50, 30, 10 and 3 kDa. Peptide fraction <3 kDa, which exhibited the highest antioxidant activities (i.e., ABTS (42.2%) and FRAP (0.81 mM)) and α-amylase inhibitory activity (62.1%), was then subjected to LCMS and MS/MS analyses. Six sequences were identified for antioxidant peptides, whereas seven peptides for α-amylase inhibitor.

  2. Transport of a Prolyl Endopeptidase Inhibitory Peptide across the Blood-Brain Barrier Demonstrated Using the hCMEC/D3 Cell Line Transcytosis Assay.

    PubMed

    Hayes, Maria; Moen, Lars Fredrik; Auty, Mark A E; Lea, Tor Erling

    2016-01-13

    The blood-brain barrier (BBB) remains a significant hurdle for treatment of central nervous system (CNS) and mental health disorders. A prolyl endopeptidase (PEP) inhibitory peptide with the amino acid sequence proline-proline-leucine (PPL) was chemically synthesized labeled with 5-FAM and assessed using a transcytosis assay for its ability to cross the BBB. Transport of this peptide across the BBB was determined using an in vitro model of the human BBB, which utilizes the human cerebral microvascular endothelial cell line (hCMEC/D3). Uptake and transport of 5-FAM-PPL across the hCMEC/D3 cell model was determined using confocal microscopy and mass spectrometry. This is an important parameter in determining whether peptides may reach the target organ (i.e., the brain and central nervous system).This work assessed, for the first time, the ability of a food-derived PEP inhibitory peptide to cross the BBB without the use of animal models. PMID:26716467

  3. ACE blood test

    MedlinePlus

    Serum angiotensin-converting enzyme; SACE ... Chernecky CC, Berger BJ. Angiotensin-converting enzyme (ACE) - blood. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:138-139.

  4. The auto-inhibitory state of Rho guanine nucleotide exchange factor ARHGEF5/TIM can be relieved by targeting its SH3 domain with rationally designed peptide aptamers.

    PubMed

    He, Ping; Tan, De-Li; Liu, Hong-Xiang; Lv, Feng-Lin; Wu, Wei

    2015-04-01

    The short isoform of Rho guanine nucleotide exchange factor ARHGEF5 is known as TIM, which plays diverse roles in, for example, tumorigenesis, neuronal development and Src-induced podosome formation through the activation of its substrates, the Rho family of GTPases. The activation is auto-inhibited by a putative helix N-terminal to the DH domain of TIM, which is stabilized by the intramolecular interaction of C-terminal SH3 domain with a poly-proline sequence between the putative helix and the DH domain. In this study, we systematically investigated the structural basis, energetic landscape and biological implication underlying TIM auto-inhibition by using atomistic molecular dynamics simulations and binding free energy analysis. The computational study revealed that the binding of SH3 domain to poly-proline sequence is the prerequisite for the stabilization of TIM auto-inhibition. Thus, it is suggested that targeting SH3 domain with competitors of the poly-proline sequence would be a promising strategy to relieve the auto-inhibitory state of TIM. In this consideration, we rationally designed a number of peptide aptamers for competitively inhibiting the SH3 domain based on modeled TIM structure and computationally generated data. Peptide binding test and guanine nucleotide exchange analysis solidified that these designed peptides can both bind to the SH3 domain potently and activate TIM-catalyzed RhoA exchange reaction effectively. Interestingly, a positive correlation between the peptide affinity and induced exchange activity was observed. In addition, separate mutation of three conserved residues Pro49, Pro52 and Lys54 - they are required for peptide recognition by SH3 domain -- in a designed peptide to Ala would completely abolish the capability of this peptide activating TIM. All these come together to suggest an intrinsic relationship between peptide binding to SH3 domain and the activation of TIM.

  5. Fermentation characteristics and angiotensin I-converting enzyme-inhibitory activity of Lactobacillus helveticus isolate H9 in cow milk, soy milk, and mare milk.

    PubMed

    Wang, Jicheng; Li, Changkun; Xue, Jiangang; Yang, Jie; Zhang, Qing; Zhang, Heping; Chen, Yongfu

    2015-06-01

    Lactobacillus helveticus isolate H9 demonstrated high angiotensin I-converting enzyme (ACE)-inhibitory activity in previous research. Here, we evaluated the fermentation characteristics (pH, titratable acidity, free amino nitrogen, and viable bacterial counts), ACE-inhibitory activity, and contents of Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) peptides of stored yogurt (4°C for 28 d) fermented by L. helveticus isolate H9 (initially inoculated at 4 concentrations), from cow, mare, and soy milks. During storage, the pH and titratable acidity remained stable in yogurts produced from all milk types and all inoculation concentrations. The viable bacterial counts in all stored yogurts ranged between 10(6.72) and 10(8.59) cfu/g. The highest ACE-inhibitory activity (70.9-74.5%) was achieved at inoculation concentrations of 5×10(6) cfu/mL. The ACE-inhibitory tripeptides VPP and IPP as determined by ultra-performance liquid chromatography-tandem mass spectrometry were not produced in yogurt made from soy milk or mare milk. These evaluations indicate that L. helveticus H9 has good probiotic properties and would be a promising candidate for production of fermented food with probiotic properties.

  6. Cell adhesion and invasion inhibitory effect of an ovarian cancer targeting peptide selected via phage display in vivo.

    PubMed

    Pu, Ximing; Ma, Chuying; Yin, Guangfu; You, Fei; Wei, Yan

    2014-01-17

    Organ-specific metastasis is of great importance since most of the cancer deaths are caused by spread of the primary cancer to distant sites. Therefore, targeted anti-metastases therapies are needed to prevent cancer cells from metastasizing to different organs. The phage clone pc3-1 displaying peptide WSGPGVWGASVK selected by phage display had been identified which have high binding efficiency and remarkable cell specificity to SK-OV-3 cells. In the present work, the effects of selected cell-binding phage and cognate peptide on the cell adhesion and invasion of targeted cells were investigated. Results showed that the adhesive ability of SK-OV-3 to extracellular matrix was inhibited by pc3-1 and peptide WSGPGVWGASVK, and pc3-1 blocked SK-OV-3 cells attachment more effective than the cognate peptide. The peptide WSGPGVWGASVK suppressed the cell number of SK-OV-3 that attached to HUVECs monolayer up to 24% and could block the spreading of the attaching cells. Forthermore, the cognate peptide could inhibit the invasion of SK-OV-3 significantly. The number of invaded SK-OV-3 cells and invaded SK-OV-3-activated HUVECs pretreated with peptide WSGPGVWGASVK was decreased by 24.3% and 36.6%, respectively. All these results suggested that peptide WSGPGVWGASVK might possess anti-metastasis against SK-OV-3 cells. PMID:24342617

  7. Effect of ace inhibitors and TMOF on growth, development, and trypsin activity of larval Spodoptera littoralis.

    PubMed

    Lemeire, Els; Borovsky, Dov; Van Camp, John; Smagghe, Guy

    2008-12-01

    Angiotensin converting enzyme (ACE) is a zinc metallopeptidase capable of cleaving dipeptide or dipeptideamide moieties at the C-terminal end of peptides. ACE is present in the hemolymph and reproductive tissues of insects. The presence of ACE in the hemolymph and its broad substrate specificity suggests an important role in processing of bioactive peptides. This study reports the effects of ACE inhibitors on larval growth in the cotton leafworm Spodoptera littoralis. Feeding ACE inhibitors ad lib decreased the growth rate, inhibited ACE activity in the larval hemolymph, and down-regulated trypsin activity in the larval gut. These results indicate that S. littoralis ACE may influence trypsin biosynthesis in the larval gut by interacting with a trypsin-modulating oostatic factor (TMOF). Injecting third instar larvae with a combination of Aea-TMOF and the ACE inhibitor captopril, down-regulated trypsin biosynthesis in the larval gut indicating that an Aea-TMOF gut receptor analogue could be present. Injecting captopril and enalapril into newly molted fifth instar larvae stopped larval feeding and decreased weight gain. Together, these results indicate that ACE inhibitors are efficacious in stunting larval growth and ACE plays an important role in larval growth and development. PMID:18949805

  8. EGFR tyrosine kinase inhibitory peptide attenuates Helicobacter pylori-mediated hyper-proliferation in AGS enteric epithelial cells

    SciTech Connect

    Himaya, S.W.A.; Dewapriya, Pradeep; Kim, Se-Kwon

    2013-06-15

    Helicobacter pylori infection is one of the most critical causes of stomach cancer. The current study was conducted to explore the protective effects of an isolated active peptide H-P-6 (Pro-Gln-Pro-Lys-Val-Leu-Asp-Ser) from microbial hydrolysates of Chlamydomonas sp. against H. pylori-induced carcinogenesis. The peptide H-P-6 has effectively suppressed H. pylori-induced hyper-proliferation and migration of gastric epithelial cells (AGS). However, the peptide did not inhibit the viability of the bacteria or invasion into AGS cells. Therefore, the effect of the peptide on regulating H. pylori-induced molecular signaling was investigated. The results indicated that H. pylori activates the EGFR tyrosine kinase signaling and nuclear translocation of the β-catenin. The EGFR activation has led to the up-regulation of PI3K/Akt signaling pathway. Moreover, the nuclear translocation levels of β-catenin were significantly increased as a result of Akt mediated down-regulation of GSK3/β protein levels in the cytoplasm. Both of these consequences have resulted in increased expression of cell survival and migration related genes such as c-Myc, cyclin-D, MMP-2 and matrilysin. Interestingly, the isolated peptide potently inhibited H. pylori-mediated EGFR activation and thereby down-regulated the subsequent P13K/Akt signaling leading to β-catenin nuclear translocation. The effect of the peptide was confirmed with the use of EGFR tyrosine kinase inhibitor AG1487 and molecular docking studies. Collectively this study identifies a potent peptide which regulates the H. pylori-induced hyper-proliferation and migration of AGS cells at molecular level. - Highlights: • Chlamydomonas sp. derived peptide H-P-6 inhibits H. pylori-induced pathogenesis. • H-P-6 suppresses H. pylori-induced hyper-proliferation and migration of AGS cells. • The peptide inhibits H. pylori-induced EGFR activation.

  9. New developments and applications of bacteriocins and peptides in foods.

    PubMed

    Mills, S; Stanton, C; Hill, C; Ross, R P

    2011-01-01

    There is an increased desire for sophisticated foods, whereby consumers harbor higher expectations of health-promoting benefits above basic nutrition. Moreover, there is a move from the adulteration of foods with chemical preservatives toward biopreservation. Such expectations have led scientists to identify novel approaches to satisfy both demands, which utilize bacteriocin and peptide-based solutions. The best known examples of biopreservation involve bacteriocins. However, with the exception of nisin, bacteriocins have received limited use in the food industry. Peptides can be added to foods to improve consumer health. Some of the best known examples are angiotensin I-converting enzyme (ACE)-inhibitory peptides, which inhibit ACE, a key enzyme involved in blood pressure (BP) regulation. To be effective, these peptides must be bioavailable, but by their nature, peptides are degraded by digestion with proteolytic enzymes. This review critically discusses the use and potential of peptides and bacteriocins in food systems in terms of safety, quality, and improvement of human health. PMID:22129385

  10. Solution Structures, Dynamics, and Ice Growth Inhibitory Activity of Peptide Fragments Derived from an Antarctic Yeast Protein

    PubMed Central

    Asmawi, Azren A.; Rahman, Mohd Basyaruddin A.; Murad, Abdul Munir A.; Mahadi, Nor M.; Basri, Mahiran; Rahman, Raja Noor Zaliha A.; Salleh, Abu B.; Chatterjee, Subhrangsu; Tejo, Bimo A.; Bhunia, Anirban

    2012-01-01

    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities. PMID:23209600

  11. Selection of a novel FGF23-binding peptide antagonizing the inhibitory effect of FGF23 on phosphate uptake.

    PubMed

    Huang, Tao; Lin, Xiaomian; Li, Quchou; Luo, Wu; Song, Li; Tan, Xiangpeng; Wang, Wenhui; Li, Xiaokun; Wu, Xiaoping

    2015-04-01

    Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine regulator of phosphate homeostasis and has been considered as a potential therapeutic target for hypophosphatemic disorders. Herein, we isolated a novel FGF23-binding peptide by screening a phage display library with FGF23180-205, the minimal epitope of FGF23 binding to the binary fibroblast growth factor receptor (FGFR)-Klotho complex. The corresponding peptide (referred to as 23-b6) showed high homology to the immunoglobulin-like (Ig-like) domain III (D3) of FGFR1c, the predominant receptor mediating the phosphaturic activity of FGF23. The 23-b6 peptide and panning target FGF23180-205 carried opposite charges and shared similar hydrophilic profiles. Functional analysis indicated that synthetic 23-b6 peptide exhibited antagonistic effect on the inhibition of phosphate uptake by FGF23 in opossum kidney cells (OK cells). The mechanisms of 23-b6 peptide impairing the bioactivity of FGF23 involved blockade of the activation of Erk cascade and up-regulation of NaPi-2a and NaPi-2c expression in OK cells. Our results demonstrate that the 23-b6 peptide is a potent FGF23 antagonist with increased effect on phosphate uptake in kidney cells and might have therapeutic potentials in hypophosphatemic disorders characterized by an abnormally high level of FGF23. PMID:25515813

  12. Using an in vitro xenoantibody-mediated complement-dependent cytotoxicity model to evaluate the complement inhibitory activity of the peptidic C3 inhibitor Cp40

    PubMed Central

    Wang, Junxiang; Wang, Lu; Xiang, Ying; Ricklin, Daniel; Lambris, John D.; Chen, Gang

    2016-01-01

    Simple and reliable methods for evaluating the inhibitory effects of drug candidates on complement activation are essential for preclinical development. Here, using an immortalized porcine aortic endothelial cell line (iPEC) as target, we evaluated the feasibility and effectiveness of an in vitro xenoantibody-mediated complement-dependent cytotoxicity (CDC) model for evaluating the complement inhibitory activity of Cp40, a potent analog of the peptidic C3 inhibitor compstatin. The binding of human xenoantibodies to iPECs led to serum dilution-dependent cell death. Pretreatment of the human serum with Cp40 almost completely inhibited the deposition of C3 fragments and C5b-9 on the cells, resulting in a dose-dependent inhibition of CDC against the iPECs. Using the same method to compare the effects of Cp40 on complement activation in humans, rhesus and cynomolgus monkeys, we found that the inhibitory patterns were similar overall. Thus, the in vitro xenoantibody-mediated CDC assay may have considerable potential for future clinical use. PMID:26548839

  13. The Inhibitory Effects of RFamide-Related Peptide 3 on Luteinizing Hormone Release Involves an Estradiol-Dependent Manner in Prepubertal but Not in Adult Female Mice.

    PubMed

    Xiang, Wei; Zhang, Baoyun; Lv, Fenglin; Ma, Yunxia; Chen, Hang; Chen, Long; Yang, Fang; Wang, Pingqing; Chu, Mingxing

    2015-08-01

    The mammalian gonadotropin-inhibitory hormone (GnIH) ortholog, RFamide-related peptide (RFRP), is considered to act on gonadotropin-releasing hormone (GnRH) neurons and the pituitary to inhibit gonadotropin synthesis and release. However, there is little evidence documenting whether RFamide-related peptide 3 (RFRP-3) plays a primary role in inhibition of the hypothalamo-pituitary-gonadal (HPG) axis prior to the onset of puberty. The present study aimed to understand the functional significance of the neuropeptide on pubertal development. The developmental changes in reproductive-related gene expression at the mRNA level were investigated in the hypothalamus of female mice. The results indicated that RFRP-3 may be an endogenous inhibitory factor for the activation of the HPG axis prior to the onset of puberty. In addition, centrally administered RFRP-3 significantly suppressed plasma luteinizing hormone (LH) levels in prepubertal female mice. Surprisingly, centrally administered RFRP-3 had no effects on plasma LH levels in ovariectomized (OVX) prepubescent female mice. In contrast, RFRP-3 also inhibited plasma LH levels in OVX prepubescent female mice that were treated with 17beta-estradiol replacement. Our study also examined the effects of RFRP-3 on plasma LH release in adult female mice that were ovariectomized at dioestrus, with or without estradiol (E2). Our results showed that the inhibitory effects of RFRP-3 were independent of E2 status. Quantitative real-time PCR and immunohistochemistry analyses showed that RFRP-3 inhibited GnRH expression at both the mRNA and protein levels in the hypothalamus. These data demonstrated that RFRP-3 could effectively suppress pituitary LH release, via the inhibition of GnRH transcription and translation in prepubescent female mice, which is associated with estrogen signaling pathway and developmental stages.

  14. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors.

    PubMed

    Vuille-dit-Bille, Raphael N; Camargo, Simone M; Emmenegger, Luca; Sasse, Tom; Kummer, Eva; Jando, Julia; Hamie, Qeumars M; Meier, Chantal F; Hunziker, Schirin; Forras-Kaufmann, Zsofia; Kuyumcu, Sena; Fox, Mark; Schwizer, Werner; Fried, Michael; Lindenmeyer, Maja; Götze, Oliver; Verrey, François

    2015-04-01

    Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

  15. In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate.

    PubMed

    So, Pamela Berilyn T; Rubio, Peter; Lirio, Stephen; Macabeo, Allan Patrick; Huang, Hsi-Ya; Corpuz, Mary Jho-Anne T; Villaflores, Oliver B

    2016-09-01

    The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS). PMID:27163886

  16. In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate.

    PubMed

    So, Pamela Berilyn T; Rubio, Peter; Lirio, Stephen; Macabeo, Allan Patrick; Huang, Hsi-Ya; Corpuz, Mary Jho-Anne T; Villaflores, Oliver B

    2016-09-01

    The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS).

  17. Juruin: an antifungal peptide from the venom of the Amazonian Pink Toe spider, Avicularia juruensis, which contains the inhibitory cystine knot motif.

    PubMed

    Ayroza, Gabriela; Ferreira, Ivan L C; Sayegh, Raphael S R; Tashima, Alexandre K; da Silva Junior, Pedro I

    2012-01-01

    The aim of this study was to screen the venom of the theraposid spider Avicularia juruensis for the identification of antimicrobial peptides (AMPs) which could be further used as prototypes for drug development. Eleven AMPs, named juruentoxins, with molecular weight ranging from 3.5 to 4.5 kDa, were identified by mass spectrometry after the soluble venom was separated by high performance liquid chromatography. Juruentoxins have a putative inhibitory cystine knot (ICK) motif, generally found in neurotoxins, which are also resistant to proteolysis. One juruentoxin that has 38 amino acid residues and three disulfide bonds were characterized, to which we proposed the name Juruin. Based on liquid growth inhibition assays, it has potent antifungal activity in the micromolar range. Importantly, Juruin lacks haemolytic activity on human erythrocytes at the antimicrobial concentrations. Based on the amino acid sequence, it is highly identical to the insecticidal peptides from the theraposid spiders Selenocosmia huwena, Chilobrachys jingzhao, and Haplopelma schmidti from China, indicating they belong to a group of conserved toxins which are likely to inhibit voltage-gated ion channels. Juruin is a cationic AMP, and Lys22 and Lys23 show maximum positive charge localization that might be important for receptor recognition. Although it shows marked sequence similarity to neurotoxic peptides, Juruin is a novel exciting molecule with potent antifungal activity, which could be used as a novel template for development of drugs against clinical resistant fungi strains. PMID:22973266

  18. Juruin: an antifungal peptide from the venom of the Amazonian Pink Toe spider, Avicularia juruensis, which contains the inhibitory cystine knot motif

    PubMed Central

    Ayroza, Gabriela; Ferreira, Ivan L. C.; Sayegh, Raphael S. R.; Tashima, Alexandre K.; da Silva, Pedro I.

    2012-01-01

    The aim of this study was to screen the venom of the theraposid spider Avicularia juruensis for the identification of antimicrobial peptides (AMPs) which could be further used as prototypes for drug development. Eleven AMPs, named juruentoxins, with molecular weight ranging from 3.5 to 4.5 kDa, were identified by mass spectrometry after the soluble venom was separated by high performance liquid chromatography. Juruentoxins have a putative inhibitory cystine knot (ICK) motif, generally found in neurotoxins, which are also resistant to proteolysis. One juruentoxin that has 38 amino acid residues and three disulfide bonds were characterized, to which we proposed the name Juruin. Based on liquid growth inhibition assays, it has potent antifungal activity in the micromolar range. Importantly, Juruin lacks haemolytic activity on human erythrocytes at the antimicrobial concentrations. Based on the amino acid sequence, it is highly identical to the insecticidal peptides from the theraposid spiders Selenocosmia huwena, Chilobrachys jingzhao, and Haplopelma schmidti from China, indicating they belong to a group of conserved toxins which are likely to inhibit voltage-gated ion channels. Juruin is a cationic AMP, and Lys22 and Lys23 show maximum positive charge localization that might be important for receptor recognition. Although it shows marked sequence similarity to neurotoxic peptides, Juruin is a novel exciting molecule with potent antifungal activity, which could be used as a novel template for development of drugs against clinical resistant fungi strains. PMID:22973266

  19. Discovery of pan-VEGF inhibitory peptides directed to the extracellular ligand-binding domains of the VEGF receptors

    PubMed Central

    Michaloski, Jussara S.; Redondo, Alexandre R.; Magalhães, Leila S.; Cambui, Caio C.; Giordano, Ricardo J.

    2016-01-01

    Receptor tyrosine kinases (RTKs) are key molecules in numerous cellular processes, the inhibitors of which play an important role in the clinic. Among them are the vascular endothelial growth factor (VEGF) family members and their receptors (VEGFR), which are essential in the formation of new blood vessels by angiogenesis. Anti-VEGF therapy has already shown promising results in oncology and ophthalmology, but one of the challenges in the field is the design of specific small-molecule inhibitors for these receptors. We show the identification and characterization of small 6-mer peptides that target the extracellular ligand-binding domain of all three VEGF receptors. These peptides specifically prevent the binding of VEGF family members to all three receptors and downstream signaling but do not affect other angiogenic RTKs and their ligands. One of the selected peptides was also very effective at preventing pathological angiogenesis in a mouse model of retinopathy, normalizing the vasculature to levels similar to those of a normal developing retina. Collectively, our results suggest that these peptides are pan-VEGF inhibitors directed at a common binding pocket shared by all three VEGFRs. These peptides and the druggable binding site they target might be important for the development of novel and selective small-molecule, extracellular ligand-binding inhibitors of RTKs (eTKIs) for angiogenic-dependent diseases.

  20. Bioactive properties of peptides obtained from Argentinian defatted soy flour protein by Corolase PP hydrolysis.

    PubMed

    Coscueta, Ezequiel R; Amorim, Maria M; Voss, Glenise B; Nerli, Bibiana B; Picó, Guillermo A; Pintado, Manuela E

    2016-05-01

    Enzymatic hydrolysis of soybean meal protein isolate (SPI) obtained under two temperature conditions with Corolase PP was studied, assessing the impact of hydrolysis on potential antioxidant and antihypertensive activities. The protein was isolated from soybean meal under controlled conditions of time and temperature (70 °C, 1h; 90 °C, 30 min). Degree of hydrolysis assessed the progress of hydrolysis at different sampling times. For hydrolysates the antioxidant and angiotensin-converting-enzyme (ACE) inhibitory activities were measured. As observed, the DH was increasing until reaching 20% at 10h with disappearance of globular proteins and generation of low molecular weight peptides (less than 3kDa). A significant increase in antioxidant and ACE inhibitory capacities was observed. Five main peptides were identified, which may explain through their sequences the bioactive properties analyzed. Through this study was possible to obtain for the first time with Corolase PP soy hydrolysates with potential antioxidant and ACE inhibitory activities, which can be used to obtain new added value functional ingredients from soy meal.

  1. Production of the blood pressure lowing peptides from brown alga ( Undaria pinnatifida)

    NASA Astrophysics Data System (ADS)

    Minoru, Sato; Takashi, Oba; Takao, Hosokawa; Toshiyasu, Yamaguchi; Toshiki, Nakano; Tadao, Saito; Koji, Muramoto; Takashi, Kahara; Katsura, Funayama; Akio, Kobayashi; Takahisa, Nakano

    2005-07-01

    Brown alga ( Undaria pinnatifida) was treated with alginate lyase and hydrolyzed using 17 kinds of proteases and the inhibitory activity of the hydrolysates for the angiotensin-I-converting enzyme (ACE) was measured. Four hydrolysates with potent ACE-inhibitory activity were administered singly and orally to spontaneously hypertensive rats (SHRs). The systolic blood pressure of SHRs decreases significantly after single oral administration of the brown alga hydrolysates by protease S ‘Amano’ (from Bacillus stearothermophilus) at the concentration of 10 (mg protein) (kg body weight)-1. In the 17 weeks of feeding experiment, 7-week-old SHRs were fed standard diet supplemented with the brown alga hydrolysates for 10 weeks. In SHRs fed 1.0 and 0.1% brown alga hydrolysates, elevating of systolic bloodpressure was significantly suppressed for 7 weeks. To elucidate the active components, the brown alga hydrolysates were fractionated by 1-butanol extraction and HPLC on a reverse-phase column. Seven kinds of ACE-inhibitory peptides were isolated and identified by amino acid composition analysis, sequence analysis, and LC-MS with the results Val-Tyr, Ile-Tyr, Ala-Trp, Phe-Tyr, Val-Trp, Ile-Trp, and Leu-Trp. Each peptide was determined to have an antihypertensive effect after a single oral administration in SHRs. The brown alga hydrolysates were also confirmed to decrease the blood pressure in humans.

  2. A Novel Direct Factor Xa Inhibitory Peptide with Anti-Platelet Aggregation Activity from Agkistrodon acutus Venom Hydrolysates.

    PubMed

    Chen, Meimei; Ye, Xiaohui; Ming, Xin; Chen, Yahui; Wang, Ying; Su, Xingli; Su, Wen; Kong, Yi

    2015-01-01

    Snake venom is a natural substance that contains numerous bioactive proteins and peptides, nearly all of which have been identified over the last several decades. In this study, we subjected snake venom to enzymatic hydrolysis to identify previously unreported bioactive peptides. The novel peptide ACH-11 with the sequence LTFPRIVFVLG was identified with both FXa inhibition and anti-platelet aggregation activities. ACH-11 inhibited the catalytic function of FXa towards its substrate S-2222 via a mixed model with a Ki value of 9.02 μM and inhibited platelet aggregation induced by ADP and U46619 in a dose-dependent manner. Furthermore, ACH-11 exhibited potent antithrombotic activity in vivo. It reduced paralysis and death in an acute pulmonary thrombosis model by 90% and attenuated thrombosis weight in an arterio-venous shunt thrombosis model by 57.91%, both at a dose of 3 mg/kg. Additionally, a tail cutting bleeding time assay revealed that ACH-11 did not prolong bleeding time in mice at a dose of 3 mg/kg. Together, our results reveal that ACH-11 is a novel antithrombotic peptide exhibiting both FXa inhibition and anti-platelet aggregation activities, with a low bleeding risk. We believe that it could be a candidate or lead compound for new antithrombotic drug development. PMID:26035670

  3. Development of a workflow for screening and identification of α-amylase inhibitory peptides from food source using an integrated Bioinformatics-phage display approach: Case study - Cumin seed.

    PubMed

    Siow, Hwee-Leng; Lim, Theam Soon; Gan, Chee-Yuen

    2017-01-01

    The main objective of this study was to develop an efficient workflow to discover α-amylase inhibitory peptides from cumin seed. A total of 56 unknown peptides was initially found in the cumin seed protein hydrolysate. They were subjected to 2 different in silico screenings and 6 peptides were shortlisted. The peptides were then subjected to in vitro selection using phage display technique and 3 clones (CSP3, CSP4 and CSP6) showed high affinity in binding α-amylase. These clones were subjected to the inhibitory test and only CSP4 and CSP6 exhibited high inhibitory activity. Therefore, these peptides were chemically synthesized for validation purposes. CSP4 exhibited inhibition of bacterial and human salivary α-amylases with IC50 values of 0.11 and 0.04μmol, respectively, whereas CSP6 was about 0.10 and 0.15μmol, respectively. Results showed that the strength of each protocol has been successfully combined as deemed fit to enhance the α-amylase inhibitor peptide discovery.

  4. Development of a workflow for screening and identification of α-amylase inhibitory peptides from food source using an integrated Bioinformatics-phage display approach: Case study - Cumin seed.

    PubMed

    Siow, Hwee-Leng; Lim, Theam Soon; Gan, Chee-Yuen

    2017-01-01

    The main objective of this study was to develop an efficient workflow to discover α-amylase inhibitory peptides from cumin seed. A total of 56 unknown peptides was initially found in the cumin seed protein hydrolysate. They were subjected to 2 different in silico screenings and 6 peptides were shortlisted. The peptides were then subjected to in vitro selection using phage display technique and 3 clones (CSP3, CSP4 and CSP6) showed high affinity in binding α-amylase. These clones were subjected to the inhibitory test and only CSP4 and CSP6 exhibited high inhibitory activity. Therefore, these peptides were chemically synthesized for validation purposes. CSP4 exhibited inhibition of bacterial and human salivary α-amylases with IC50 values of 0.11 and 0.04μmol, respectively, whereas CSP6 was about 0.10 and 0.15μmol, respectively. Results showed that the strength of each protocol has been successfully combined as deemed fit to enhance the α-amylase inhibitor peptide discovery. PMID:27507449

  5. Development of a pharmacophore model for the catecholamine release-inhibitory peptide catestatin: virtual screening and functional testing identify novel small molecule therapeutics of hypertension.

    PubMed

    Tsigelny, Igor F; Kouznetsova, Valentina L; Biswas, Nilima; Mahata, Sushil K; O'Connor, Daniel T

    2013-09-15

    The endogenous catecholamine release-inhibitory peptide catestatin (CST) regulates events leading to hypertension and cardiovascular disease. Earlier we studied the structure of CST by NMR, molecular modeling, and amino acid scanning mutagenesis. That structure has now been exploited for elucidation of interface pharmacophores that mediate binding of CST to its target, with consequent secretory inhibition. Designed pharmacophore models allowed screening of 3D structural domains. Selected compounds were tested on both cultured catecholaminergic cells and an in vivo model of hypertension; in each case, the candidates showed substantial mimicry of native CST actions, with preserved or enhanced potency and specificity. The approach and compounds have thus enabled rational design of novel drug candidates for treatment of hypertension or autonomic dysfunction.

  6. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Klotzsche, M. (Compiler)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.

  7. Changes in the concentrations of glucagon-like peptide-1(7-36)amide and gastric inhibitory polypeptide during the lactation cycle in goats.

    PubMed

    Faulkner, A; Martin, P A

    1998-08-01

    Plasma concentrations of glucagon-like peptide-1(7-36)amide (GLP) and gastric inhibitory polypeptide (GIP) were determined at fortnightly intervals for over a year throughout the pregnancy-lactation cycle of goats. Both GIP and GLP concentrations were elevated during lactation and fell rapidly when milk secretion was terminated. At the onset of lactation GLP concentrations rose rapidly whereas GIP concentrations showed a delayed response. GLP concentrations remained high throughout lactation but those of GIP declined linearly as milk yields fell. Serum insulin concentrations correlated positively with plasma glucose concentrations but not with either GIP or GLP concentrations. Negative correlations were found between serum insulin concentrations and milk yield and plasma non-esterified fatty acid concentrations. The results are consistent with plasma GIP and GLP concentrations being determined by other factors in addition to nutrient intake and absorption. Changes in GIP concentrations mirrored reported changes in the hypertrophy and atrophy of the intestine in ruminants while GLP concentrations may be more dependent on the neural and endocrine factors associated with lactation. The elevated concentrations of both peptides indicated a specific role in lactation independent of their normal anabolic and insulinotropic effects.

  8. Zeta Inhibitory Peptide Disrupts Electrostatic Interactions That Maintain Atypical Protein Kinase C in Its Active Conformation on the Scaffold p62*

    PubMed Central

    Tsai, Li-Chun Lisa; Xie, Lei; Dore, Kim; Xie, Li; Del Rio, Jason C.; King, Charles C.; Martinez-Ariza, Guillermo; Hulme, Christopher; Malinow, Roberto; Bourne, Philip E.; Newton, Alexandra C.

    2015-01-01

    Atypical protein kinase C (aPKC) enzymes signal on protein scaffolds, yet how they are maintained in an active conformation on scaffolds is unclear. A myristoylated peptide based on the autoinhibitory pseudosubstrate fragment of the atypical PKCζ, zeta inhibitory peptide (ZIP), has been extensively used to inhibit aPKC activity; however, we have previously shown that ZIP does not inhibit the catalytic activity of aPKC isozymes in cells (Wu-Zhang, A. X., Schramm, C. L., Nabavi, S., Malinow, R., and Newton, A. C. (2012) J. Biol. Chem. 287, 12879–12885). Here we sought to identify a bona fide target of ZIP and, in so doing, unveiled a novel mechanism by which aPKCs are maintained in an active conformation on a protein scaffold. Specifically, we used protein-protein interaction network analysis, structural modeling, and protein-protein docking to predict that ZIP binds an acidic surface on the Phox and Bem1 (PB1) domain of p62, an interaction validated by peptide array analysis. Using a genetically encoded reporter for PKC activity fused to the p62 scaffold, we show that ZIP inhibits the activity of wild-type aPKC, but not a construct lacking the pseudosubstrate. These data support a model in which the pseudosubstrate of aPKCs is tethered to the acidic surface on p62, locking aPKC in an open, signaling-competent conformation. ZIP competes for binding to the acidic surface, resulting in displacement of the pseudosubstrate of aPKC and re-engagement in the substrate-binding cavity. This study not only identifies a cellular target for ZIP, but also unveils a novel mechanism by which scaffolded aPKC is maintained in an active conformation. PMID:26187466

  9. Zeta Inhibitory Peptide Disrupts Electrostatic Interactions That Maintain Atypical Protein Kinase C in Its Active Conformation on the Scaffold p62.

    PubMed

    Tsai, Li-Chun Lisa; Xie, Lei; Dore, Kim; Xie, Li; Del Rio, Jason C; King, Charles C; Martinez-Ariza, Guillermo; Hulme, Christopher; Malinow, Roberto; Bourne, Philip E; Newton, Alexandra C

    2015-09-01

    Atypical protein kinase C (aPKC) enzymes signal on protein scaffolds, yet how they are maintained in an active conformation on scaffolds is unclear. A myristoylated peptide based on the autoinhibitory pseudosubstrate fragment of the atypical PKCζ, zeta inhibitory peptide (ZIP), has been extensively used to inhibit aPKC activity; however, we have previously shown that ZIP does not inhibit the catalytic activity of aPKC isozymes in cells (Wu-Zhang, A. X., Schramm, C. L., Nabavi, S., Malinow, R., and Newton, A. C. (2012) J. Biol. Chem. 287, 12879-12885). Here we sought to identify a bona fide target of ZIP and, in so doing, unveiled a novel mechanism by which aPKCs are maintained in an active conformation on a protein scaffold. Specifically, we used protein-protein interaction network analysis, structural modeling, and protein-protein docking to predict that ZIP binds an acidic surface on the Phox and Bem1 (PB1) domain of p62, an interaction validated by peptide array analysis. Using a genetically encoded reporter for PKC activity fused to the p62 scaffold, we show that ZIP inhibits the activity of wild-type aPKC, but not a construct lacking the pseudosubstrate. These data support a model in which the pseudosubstrate of aPKCs is tethered to the acidic surface on p62, locking aPKC in an open, signaling-competent conformation. ZIP competes for binding to the acidic surface, resulting in displacement of the pseudosubstrate of aPKC and re-engagement in the substrate-binding cavity. This study not only identifies a cellular target for ZIP, but also unveils a novel mechanism by which scaffolded aPKC is maintained in an active conformation.

  10. Identification of a Potent and Broad-Spectrum Hepatitis C Virus Fusion Inhibitory Peptide from the E2 Stem Domain

    PubMed Central

    Chi, Xiaojing; Niu, Yuqiang; Cheng, Min; Liu, Xiuying; Feng, Yetong; Zheng, Fuxiang; Fan, Jingjing; Li, Xiang; Jin, Qi; Zhong, Jin; Li, Yi-Ping; Yang, Wei

    2016-01-01

    Hepatitis C virus (HCV) envelope proteins E1 and E2 play an essential role in virus entry. However, the fusion mechanisms of HCV remain largely unclear, hampering the development of efficient fusion inhibitors. Here, we developed two cell-based membrane fusion models that allow for screening a peptide library covering the full-length E1 and E2 amino acid sequences. A peptide from the E2 stem domain, named E27, was found to possess the ability to block E1E2-mediated cell-cell fusion and inhibit cell entry of HCV pseudoparticles and infection of cell culture-derived HCV at nanomolar concentrations. E27 demonstrated broad-spectrum inhibition of the major genotypes 1 to 6. A time-of-addition experiment revealed that E27 predominantly functions in the late steps during HCV entry, without influencing the expression and localization of HCV co-receptors. Moreover, we demonstrated that E27 interfered with hetero-dimerization of ectopically expressed E1E2 in cells, and mutational analysis suggested that E27 might target a conserved region in E1. Taken together, our findings provide a novel candidate as well as a strategy for developing potent and broad-spectrum HCV fusion inhibitors, which may complement the current direct-acting antiviral medications for chronic hepatitis C, and shed light on the mechanism of HCV membrane fusion. PMID:27121372

  11. Inhibitory effect of oatmeal extract oligomer on vasoactive intestinal peptide-induced inflammation in surviving human skin.

    PubMed

    Boisnic, S; Branchet-Gumila, M C; Coutanceau, C

    2003-01-01

    The aim of this study was to evaluate the antiinflammatory effect of oatmeal extract oligomer on skin fragments stimulated by a neuromediator, vasoactive intestinal peptide (VIP). Skin fragments (from plastic surgery) were maintained in survival conditions for 6 h. To induce inflammation, VIP was placed in contact with dermis by culture medium. Histological analysis was then performed on hematoxylin- and eosin-stained slides. Edema was evaluated with semiquantitative scores. Vasodilation was studied by quantifying the percentage of dilated vessels according to scores and by measuring their surface by morphometrical image analysis. TNF-alpha dosage was made on culture supernatants. Vasodilation was significantly increased after application of VIP. After treatment with oatmeal extract oligomer, the mean surface of dilated vessels and edema were significantly decreased compared with VIP-treated skin. Moreover, treatment with this extract decreased TNF-alpha.

  12. Differential expression of RFamide-related peptide, a mammalian gonadotrophin-inhibitory hormone orthologue, and kisspeptin in the hypothalamus of Abadeh ecotype does during breeding and anoestrous seasons.

    PubMed

    Jafarzadeh Shirazi, M R; Zamiri, M J; Salehi, M S; Moradi, S; Tamadon, A; Namavar, M R; Akhlaghi, A; Tsutsui, K; Caraty, A

    2014-03-01

    Gonadotrophin-inhibitory hormone (GnIH) is a novel hypothalamic neuropeptide that was discovered in birds as an inhibitory factor for gonadotrophin release. RFamide-related peptide (RFRP) is a mammalian GnIH orthologue that inhibits gonadotrophin synthesis and release in mammals through actions on gonadotrophin-releasing hormone (GnRH) neurones and gonadotrophs, mediated via the GnIH receptor (GnIH-R), GPR147. On the other hand, hypothalamic kisspeptin provokes the release of GnRH from the hypothalamus. The present study aimed to compare the expression of RFRP in the dorsomedial hypothalamus and paraventricular nucleus (DMH/PVN) and that of kisspeptin in the arcuate nucleus (ARC) of the female goat hypothalamus during anoestrous and breeding seasons. Mature female Abadeh does were used during anoestrus, as well as the follicular and luteal phases of the cycle. The number of RFRP-immunoreactive (-IR) neurones in the follicular phase was lower than in the luteal and anoestrous stages. Irrespective of the ovarian stage, the number of RFRP-IR neurones in the rostral and middle regions of the DMH/PVN was higher than in the caudal region. By contrast, the number of kisspeptin-IR neurones in the follicular stage was greater than in the luteal stage and during the anoestrous stage. Irrespective of the stage of the ovarian cycle, the number of kisspeptin-IR neurones in the caudal region of the ARC was greater than in the middle and rostral regions. In conclusion, RFRP-IR cells were more abundant in the rostral region of the DMH/PVN nuclei of the hypothalamus, with a greater number being found during the luteal and anoestrous stages compared to the follicular stage. On the other hand, kisspeptin-IR neurones were more abundant in the caudal part of the ARC, with a greater number recorded in the follicular stage compared to the luteal and anoestrous stages.

  13. Antihypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat.

    PubMed

    Escudero, Elizabeth; Toldrá, Fidel; Sentandreu, Miguel Angel; Nishimura, Hitoshi; Arihara, Keizo

    2012-07-01

    This study investigated the in vivo antihypertensive activity of three novel peptides identified in the in vitro digest of pork meat. These peptides were RPR, KAPVA and PTPVP and all of them showed significant antihypertensive activity after oral administration to spontaneously hypertensive rats, RPR being the peptide with the greatest in vivo activity. To our knowledge, this is the first report showing the in vivo antihypertensive action of the three peptides from nebulin (RPR) and titin (KAPVA and PTPVP), thus confirming their reported in vitro angiotensin I-converting enzyme (ACE) inhibitory activity. These findings suggest that pork meat could constitute a source of bioactive constituents that could be utilized in functional foods or nutraceuticals.

  14. Isolation and Identification of Dipeptidyl Peptidase IV-Inhibitory Peptides from Trypsin/Chymotrypsin-Treated Goat Milk Casein Hydrolysates by 2D-TLC and LC-MS/MS.

    PubMed

    Zhang, Ying; Chen, Ran; Ma, Huiqin; Chen, Shangwu

    2015-10-14

    New dipeptidyl peptidase IV (DPP-IV)-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein hydrolysates were isolated and identified by two-dimensional silica thin-layer chromatography (2D-TLC) combined to nano LC-MS/MS. 2D-TLC with chloroform/methanol/25% ammonia (2:2:1) and n-butanol/acetic acid/water (4:1:1) as the first- and second-dimension eluents, respectively, in analytical and semipreparative scales, was set up and verified by reversed-phase high-performance liquid chromatography (RP-HPLC) to be feasible and efficient to separate the hydrolysates. Five new DPP-IV-inhibitory peptides, four relatively large oligopeptides (MHQPPQPL, SPTVMFPPQSVL, VMFPPQSVL, and INNQFLPYPY), and AWPQYL were identified, and INNQFLPYPY showed a notable IC50 value of 40.08 μM as an uncompetitive inhibitor. Interactive effects on DPP-IV inhibition were also observed among separated fractions and pure synthetic peptide mixtures with concentration-dependent activity. The study gives new insights into goat casein hydrolysates with identified DPP-IV-inhibitory peptides efficiently isolated by 2D-TLC, which provides a simple and cost-efficient separation process and is compatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification. PMID:26323964

  15. Extraction of antioxidative and antihypertensive bioactive peptides from Parkia speciosa seeds.

    PubMed

    Siow, Hwee-Leng; Gan, Chee-Yuen

    2013-12-15

    Antioxidative and antihypertensive bioactive peptides were successfully derived from Parkia speciosa seed using alcalase. The effects of temperature (25 and 50 °C), substrate-to-enzyme ratio (S/E ratio, 20 and 50), and incubation time (0.5, 1, 2 and 5h) were evaluated based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and angiotensin-converting enzyme (ACE) assays. Bioactive peptide extracted at a hydrolysis condition of: temperature=50 °C, S/E ratio=50 and incubation time=2h, exhibited the highest DPPH radical scavenging activity (2.9 mg GAE/g), reducing power (11.7 mM) and %ACE-inhibitory activity (80.2%). The sample was subsequently subjected to fractionation and the peptide fraction of <10 kDa showed the strongest bioactivities. A total of 29 peptide sequences from peptide fraction of <10 kDa were identified as the most potent contributors to the bioactivities. These novel bioactive peptides were suggested to be beneficial to nutraceutical and food industries. PMID:23993504

  16. Recombinant Expression and Characterization of Human and Murine ACE2: Species-Specific Activation of the Alternative Renin-Angiotensin-System

    PubMed Central

    Poglitsch, Marko; Domenig, Oliver; Schwager, Cornelia; Stranner, Stefan; Peball, Bernhard; Janzek, Evelyne; Wagner, Bettina; Jungwirth, Helmut; Loibner, Hans; Schuster, Manfred

    2012-01-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase of the renin-angiotensin-system (RAS) which is known to cleave several substrates among vasoactive peptides. Its preferred substrate is Angiotensin II, which is tightly involved in the regulation of important physiological functions including fluid homeostasis and blood pressure. Ang 1–7, the main enzymatic product of ACE2, became increasingly important in the literature in recent years, as it was reported to counteract hypertensive and fibrotic actions of Angiotensin II via the MAS receptor. The functional connection of ACE2, Ang 1–7, and the MAS receptor is also referred to as the alternative axis of the RAS. In the present paper, we describe the recombinant expression and purification of human and murine ACE2 (rhACE2 and rmACE2). Furthermore, we determined the conversion rates of rhACE2 and rmACE2 for different natural peptide substrates in plasma samples and discovered species-specific differences in substrate specificities, probably leading to functional differences in the alternative axis of the RAS. In particular, conversion rates of Ang 1–10 to Ang 1–9 were found to be substantially different when applying rhACE2 or rmACE2 in vitro. In contrast to rhACE2, rm ACE2 is substantially less potent in transformation of Ang 1–10 to Ang 1–9. PMID:22518284

  17. Identification of Antihypertensive Peptides Derived from Low Molecular Weight Casein Hydrolysates Generated during Fermentation by Bifidobacterium longum KACC 91563

    PubMed Central

    Ha, Go Eun; Chang, Oun Ki; Jo, Su-Mi; Han, Gi-Sung; Park, Beom-Young; Ham, Jun-Sang; Jeong, Seok-Geun

    2015-01-01

    Angiotensin-converting enzyme (ACE) inhibitory activity was evaluated for the low-molecular-weight fraction (<3 kDa) obtained from milk fermentation by Bifidobacterium longum KACC91563. The ACE inhibitory activity in this fraction was 62.3%. The peptides generated from the <3 kDa fraction were identified by liquid chromatography-electrospray ionization quantitative time-of-flight mass spectrometry analysis. Of the 28 peptides identified, 11 and 16 were identified as β-casein (CN) and αs1-CN, respectively. One peptide was identified as κ-CN. Three peptides, YQEPVLGPVRGPFPIIV, QEPVLGPVRGPFPIIV, and GPVRGPFPIIV, from β-CN corresponded to known antihypertensive peptides. We also found 15 peptides that were identified as potential antihypertensive peptides because they included a known antihypertensive peptide fragment. These peptides were as follows: RELEELNVPGEIVE (f1-14), YQEPVLGPVRGPFP (f193-206), EPVLGPVRGPFPIIV (f195-206), PVLGPVRGPFPIIV (f196-206), VLGPVRGPFPIIV (f197-206), and LGPVRGPFPIIV (f198-206) for β-CN; and APSFSDIPNPIGSENSEKTTMPLW (f176-199), SFSDIPNPIGSENSEKT- TMPLW (f178-199), FSDIPNPIGSENSEKTTMPLW (f179-199), SDIPNPIGSENSEKTTMPLW (f180-199), DIPNPIGSENSEKTTMPLW (f181-199), IPNPIGSENSEKTTMPLW (f182-199), PIGSENSEKTTMPLW (f185-199), IGSENSEKTTMPLW (f186-199), and SENSEKTTMPLW (f188-199) for αs1-CN. From these results, B. longum could be used as a starter culture in combination with other lactic acid bacteria in the dairy industry, and/or these peptides could be used in functional food manufacturing as additives for the development of a product with beneficial effects for human health. PMID:26877633

  18. Tonic inhibitory control exerted by opioid peptides in the paraventricular nuclei of the hypothalamus on regional hemodynamic activity in rats.

    PubMed

    Lessard, Andrée; Bachelard, Hélène

    2002-07-01

    1. Systemic and regional cardiovascular changes were measured following bilateral microinjection of specific and selective opioid-receptor antagonists into the paraventricular nuclei of the hypothalamus (PVN) of awake, freely moving rats. 2. PVN microinjection of increasing doses of the specific opioid antagonist naloxone - methiodide (1 - 5.0 nmol), or a selective mu-opioid receptor antagonist, beta-funaltrexamine (0.05 - 0.5 nmol), evoked important cardiovascular changes characterized by small and transient increases in heart rate (HR) and mean arterial pressure (MAP), vasoconstriction in renal and superior mesenteric vascular beds and vasodilation in the hindquarter vascular bed. 3. No significant cardiovascular changes were observed following PVN administration of the highly selective delta-opioid-receptor antagonist, ICI 174864 (0.1 - 1 nmol), or the selective kappa-opioid-receptor antagonist, nor-binaltorphine (0.1 - 1 nmol). 4. Most of the cardiovascular responses to naloxone (3 nmol) and beta-funaltrexamine (0.5 nmol) were attenuated or abolished by an i.v. treatment with a specific vasopressin V(1) receptor antagonist. 5. These results suggest that endogenous opioid peptides and mu-type PVN opioid receptors modulate a tonically-active central depressor pathway acting on systemic and regional haemodynamic systems. Part of this influence could involve a tonic inhibition of vasopressin release.

  19. Tonic inhibitory control exerted by opioid peptides in the paraventricular nuclei of the hypothalamus on regional hemodynamic activity in rats

    PubMed Central

    Lessard, Andrée; Bachelard, Hélène

    2002-01-01

    Systemic and regional cardiovascular changes were measured following bilateral microinjection of specific and selective opioid-receptor antagonists into the paraventricular nuclei of the hypothalamus (PVN) of awake, freely moving rats.PVN microinjection of increasing doses of the specific opioid antagonist naloxone – methiodide (1 – 5.0 nmol), or a selective μ-opioid receptor antagonist, β-funaltrexamine (0.05 – 0.5 nmol), evoked important cardiovascular changes characterized by small and transient increases in heart rate (HR) and mean arterial pressure (MAP), vasoconstriction in renal and superior mesenteric vascular beds and vasodilation in the hindquarter vascular bed.No significant cardiovascular changes were observed following PVN administration of the highly selective δ-opioid-receptor antagonist, ICI 174864 (0.1 – 1 nmol), or the selective κ-opioid-receptor antagonist, nor-binaltorphine (0.1 – 1 nmol).Most of the cardiovascular responses to naloxone (3 nmol) and β-funaltrexamine (0.5 nmol) were attenuated or abolished by an i.v. treatment with a specific vasopressin V1 receptor antagonist.These results suggest that endogenous opioid peptides and μ-type PVN opioid receptors modulate a tonically-active central depressor pathway acting on systemic and regional haemodynamic systems. Part of this influence could involve a tonic inhibition of vasopressin release. PMID:12086985

  20. Tissue and plasma angiotensin converting enzyme and the response to ACE inhibitor drugs.

    PubMed Central

    MacFadyen, R J; Lees, K R; Reid, J L

    1991-01-01

    1. There is a body of circumstantial and direct evidence supporting the existence and functional importance of a tissue based RAS at a variety of sites. 2. The relation between circulatory and tissue based systems is complex. The relative importance of the two in determining haemodynamic effects is unknown. 3. Despite the wide range of ACE inhibitors already available, it remains unclear whether there are genuine differences related to tissue specificity. 4. Pathological states such as chronic cardiac failure need to be explored with regard to the contribution of tissue based ACE activities in generating acute and chronic haemodynamic responses to ACE inhibitors. 5. The role of tissue vs plasma ACE activity may be clarified by study of the relation between drug concentration and haemodynamic effect, provided that the temporal dissociation is examined and linked to circulating and tissue based changes in ACE activity, angiotensin peptides and sympathetic hormones. PMID:1849731

  1. ACE2 overexpression inhibits acquired platinum resistance-induced tumor angiogenesis in NSCLC.

    PubMed

    Cheng, Qijian; Zhou, Ling; Zhou, Jianping; Wan, Huanying; Li, Qingyun; Feng, Yun

    2016-09-01

    Angiotensin II (AngII) is a multifunctional bioactive peptide in the renin-angiotensin system (RAS). Angiotensin-converting enzyme 2 (ACE2) is a newly identified component of RAS. We previously reported that ACE2 overexpression may inhibit cell growth and vascular endothelial growth factor (VEGF) production in vitro and in vivo. In the present study, we investigated the effect of ACE2 on tumor-associated angiogen-esis after the development of acquired platinum resistance in non-small cell lung cancer (NSCLC). Four NSCLC cell lines, A549, LLC, A549-DDP and LLC-DDP, were used in vitro, while A549 and A549-DDP cells were used in vivo. A549-DDP and LLC-DDP cells were newly established at our institution as acquired platinum-resistant sublines by culturing the former parent cells in cisplatin (CDDP)-containing conditioned medium for 6 months. These platinum-resistant cells showed significantly higher angiotensin II type 1 receptor (AT1R), ACE and VEGF production and lower ACE2 expression than their corresponding parent cells. We showed that ACE2 overexpression inhibited the production of VEGF in vitro and in vivo compared to their corresponding parent cells. We also found that ACE2 overexpression reduced the expression of AT1R and ACE. Additionally, we confirmed that ACE2 overexpres-sion inhibited cell growth and VEGF production while simultaneously suppressing ACE and AT1R expression in human lung cancer xenografts. Our findings indicate that ACE2 overexpression may potentially suppress angiogenesis in NSCLC after the development of acquired platinum resistance. PMID:27460845

  2. Targeting the ACE2 and Apelin Pathways Are Novel Therapies for Heart Failure: Opportunities and Challenges

    PubMed Central

    Kazemi-Bajestani, Seyyed M. R.; Patel, Vaibhav B.; Wang, Wang; Oudit, Gavin Y.

    2012-01-01

    Angiotensin-converting enzyme 2 (ACE2)/Ang II/Ang 1–7 and the apelin/APJ are two important peptide systems which exert diverse effects on the cardiovascular system. ACE2 is a key negative regulator of the renin-angiotensin system (RAS) where it metabolizes angiotensin (Ang) II into Ang 1–7, an endogenous antagonist of Ang II. Both the prolonged activation of RAS and the loss of ACE2 can be detrimental as they lead to functional deterioration of the heart and progression of cardiac, renal, and vascular diseases. Recombinant human ACE2 in an animal model of ACE2 knockout mice lowers Ang II. These interactions neutralize the pressor and subpressor pathologic effects of Ang II by producing Ang 1–7 levels in vivo, that might be cardiovascular protective. ACE2 hydrolyzes apelin to Ang II and, therefore, is responsible for the degradation of both peptides. Apelin has emerged as a promising peptide biomarker of heart failure. The serum level of apelin in cardiovascular diseases tends to be decreased. Apelin is recognized as an imperative controller of systemic blood pressure and myocardium contractility. Dysregulation of the apelin/APJ system may be involved in the predisposition to cardiovascular diseases, and enhancing apelin action may have important therapeutic effects. PMID:22655211

  3. New Perspectives in the Renin-Angiotensin-Aldosterone System (RAAS) II: Albumin Suppresses Angiotensin Converting Enzyme (ACE) Activity in Human

    PubMed Central

    Fagyas, Miklós; Úri, Katalin; Siket, Ivetta M.; Fülöp, Gábor Á.; Csató, Viktória; Daragó, Andrea; Boczán, Judit; Bányai, Emese; Szentkirályi, István Elek; Maros, Tamás Miklós; Szerafin, Tamás; Édes, István; Papp, Zoltán; Tóth, Attila

    2014-01-01

    About 8% of the adult population is taking angiotensin-converting enzyme (ACE) inhibitors to treat cardiovascular disease including hypertension, myocardial infarction and heart failure. These drugs decrease mortality by up to one-fifth in these patients. We and others have reported previously that endogenous inhibitory substances suppress serum ACE activity, in vivo, similarly to the ACE inhibitor drugs. Here we have made an effort to identify this endogenous ACE inhibitor substance. ACE was crosslinked with interacting proteins in human sera. The crosslinked products were immunoprecipitated and subjected to Western blot. One of the crosslinked products was recognized by both anti-ACE and anti-HSA (human serum albumin) antibodies. Direct ACE-HSA interaction was confirmed by binding assays using purified ACE and HSA. HSA inhibited human purified (circulating) and human recombinant ACE with potencies (IC50) of 5.7±0.7 and 9.5±1.1 mg/mL, respectively. Effects of HSA on the tissue bound native ACE were tested on human saphenous vein samples. Angiotensin I evoked vasoconstriction was inhibited by HSA in this vascular tissue (maximal force with HSA: 6.14±1.34 mN, without HSA: 13.54±2.63 mN), while HSA was without effects on angiotensin II mediated constrictions (maximal force with HSA: 18.73±2.17 mN, without HSA: 19.22±3.50 mN). The main finding of this study is that HSA was identified as a potent physiological inhibitor of the ACE. The enzymatic activity of ACE appears to be almost completely suppressed by HSA when it is present in its physiological concentration. These data suggest that angiotensin I conversion is limited by low physiological ACE activities, in vivo. PMID:24691203

  4. Novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides.

    PubMed

    Esteve, C; Marina, M L; García, M C

    2015-01-15

    This work proposes a new strategy for the revalorization of residual materials from table-olive and olive oil production based on the extraction of bioactive peptides. Enzymatic hydrolysates of olive seed protein isolate were prepared by treatment with five different proteases: Alcalase, Thermolysin, Neutrase, Flavourzyme and PTN. Although all hydrolysates presented antioxidant properties, Alcalase was the enzyme that yielded the hydrolysate with the highest antioxidant capacity. All hydrolysates showed antihypertensive capacity, obtaining IC50 values from 29 to 350 μg/ml. Thermolysin was the enzyme which yielded the hydrolysate with the highest ACE-inhibitory capacity. Hydrolysates were fractionated by ultrafiltration showing a high concentration of short chain peptides, which exhibited significantly higher antioxidant and antihypertensive capacities than fractions with higher molecular weights. Peptides in most active fractions were identified by LC-MS/MS, observing homologies with other recognized antioxidant and antihypertensive peptides. Finally, their antioxidant and antihypertensive capacities were evaluated after in vitro gastrointestinal digestion.

  5. ACE to Ulysses Coherences

    NASA Astrophysics Data System (ADS)

    Thomson, D. J.; Maclennan, C. G.; Lanzerotti, L. J.

    2006-12-01

    The EPAM charged particle instrument on ACE is the backup for the HISCALE instrument on Ulysses making the two ideally suited for spatial coherence studies over large heliosphere distances. Fluxes of low-energy ( ~50 - 200 keV) electrons are detected in eight spatial sectors on both spacecraft. A spherical harmonic description of the particle flux as a function of time using only the l=0 and l=1 degree coefficients describes most of the observed flux. Here we concentrate on the three l=1 coefficients for the 60--100 kev electrons.Between the two spacecraft these result in nine coherence estimates that are all typically moderately coherent, but the fact that the different coefficients at each spacecraft are also coherent with each other makes interpretation difficult. To avoid this difficulty we estimated the canonical coherences between the two groups of three series. This, in effect, chooses an optimum coordinate system at each spacecraft and for each frequency and estimates the coherence in this frame. Using one--minute data, we find that the canonical coherences are generally larger at high frequencies (3 mHz and above) than they are at low frequencies. This appears to be generally true and does not depend particularly on time, range, etc. However, if the data segment is chosen too long, say > 30 days with 1--minute sampling, the coherence at high frequencies drops. This may be because the spatial and temporal features of the mode are confounded, or possibly because the solar modes p--modes are known to change frequency with solar activity, so do not appear coherent on long blocks.The coherences are not smooth functions of frequency, but have a bimodal distribution particularly in the 100 μHz to 5 mHz range. Classifying the data at frequencies where the canonical coherences are high in terms of apparent polarization and orientation, we note two major families of modes that appear to be organized by the Parker spiral. The magnetic field data on the two

  6. Distribution of LPXRFa, a gonadotropin-inhibitory hormone ortholog peptide, and LPXRFa receptor in the brain and pituitary of the tilapia.

    PubMed

    Ogawa, Satoshi; Sivalingam, Mageswary; Biran, Jakob; Golan, Matan; Anthonysamy, Rachel Shalini; Levavi-Sivan, Berta; Parhar, Ishwar S

    2016-10-01

    In vertebrates, gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH), respectively, regulate reproduction in positive and negative manners. GnIH belongs to the LPXRFa family of peptides previously identified in mammalian and nonmammalian vertebrates. Studying the detailed distribution of LPXRFa as well as its receptor (LPXRFa-R) in the brain and pituitary is important for understanding their multiple action sites and potential functions. However, the distribution of LPXRFa and LPXRFa-R has not been studied in teleost species, partially because of the lack of fish-specific antibodies. Therefore, in the present study, we generated specific antibodies against LPXRFa and its receptor from Nile tilapia (Oreochromis niloticus), and examined their distributions in the brain and pituitary by immunohistochemistry. Tilapia LPXRFa-immunoreactive neurons lie in the posterior ventricular nucleus of the caudal preoptic area, whereas LPXRFa-R-immunoreactive cells are distributed widely. Double immunofluorescence showed that neither LPXRFa-immunoreactive fibers nor LPXRFa-R is closely associated or coexpressed with GnRH1, GnRH3, or kisspeptin (Kiss2) neurons. In the pituitary, LPXRFa fibers are closely associated with gonadotropic endocrine cells [expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH)], with adrenocorticomelanotropic cells [corticotropin (ACTH) and α-melanotropin (α-MSH)], and with somatolactin endocrine cells. In contrast, LPXRFa-R are expressed only in LH, ACTH, and α-MSH cells. These results suggest that LPXRFa and LPXRFa-R signaling acts directly on the pituitary cells independent from GnRH or kisspeptin and could play multiple roles in reproductive and nonreproductive functions in teleosts. J. Comp. Neurol. 524:2753-2775, 2016. © 2016 Wiley Periodicals, Inc. PMID:26917324

  7. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes.

    PubMed

    He, Rong; Girgih, Abraham T; Rozoy, Elodie; Bazinet, Laurent; Ju, Xing-Rong; Aluko, Rotimi E

    2016-04-15

    Rapeseed protein isolate was subjected to alcalase digestion to obtain a protein hydrolysate that was separated into peptide fractions using electrodialysis with ultrafiltration membrane (EDUF) technology. The EDUF process (6h duration) led to isolation of three peptide fractions: anionic (recovered in KCl-1 compartment), cationic (recovered in KCl-2 compartment), and those that remained in the feed compartment, which was labeled final rapeseed protein hydrolysate (FRPH). As expected the KCl-1 peptides were enriched in negatively-charged (43.57%) while KCl-2 contained high contents of positively-charged (28.35%) amino acids. All the samples inhibited angiotensin converting enzyme (ACE) and renin activities in dose-dependent manner with original rapeseed protein hydrolysate having the least ACE-inhibitory IC50 value of 0.0932±0.0037 mg/mL while FRPH and KCl-2 had least renin-inhibitory IC50 values of 0.47±0.05 and 0.55±0.06 mg/mL, respectively. Six hours after oral administration (100 mg/kg body weight) to spontaneously hypertensive rats, the FRPH produced the maximum systolic blood pressure reduction of -51 mmHg.

  8. ALTUS Cumulus Electrification Study (ACES)

    NASA Technical Reports Server (NTRS)

    Kim, Tony; Blakeslee, Richard; Russell, Larry W. (Technical Monitor)

    2002-01-01

    The ALTUS Cumulus Electrification Study (ACES) is an uninhabited aerial vehicle (UAV)-based project that will investigate thunderstorms in the vicinity of the Florida Everglades in August 2002. ACES is being conducted to both investigate storm electrical activity and its relationship to storm morphology, and validate Tropical Rainfall Measurement Mission (TRMM) satellite measurements. In addition, as part of NASA's UAV-based science demonstration program, this project will provide a scientifically useful demonstration of the utility and promise of UAV platforms for Earth science and applications observations. Part of the demonstration involves getting approvals from the Federal Aviation Administration and the NASA airworthiness flight safety review board. ACES will employ the ALTUS II aircraft, built by General Atomics - Aeronautical Systems, Inc. Key science objectives simultaneously addressed by ACES are to: (1) investigate lightning-storm relationships, (2) study storm electrical budgets, and (3) provide Lightning Imaging Sensor validation. The ACES payload, already developed and flown on ALTUS, includes electrical, magnetic, and optical sensors to remotely characterize the lightning activity and the electrical environment within and around thunderstorms. ACES will contribute important electrical and optical measurements not available from other sources. Also, the high altitude vantage point of the UAV observing platform (up to 55,000 feet) offers a useful 'cloud-top' perspective. By taking advantage of its slow flight speed (70 to 100 knots), long endurance, and high altitude flight, the ALTUS will be flown near, and when possible, above (but never into) thunderstorms for long periods of time, allowing investigations to be conducted over entire storm life cycles. In addition, concurrent ground-based observations will enable the UAV measurements to be more completely interpreted and evaluated in the context of the thunderstorm structure, evolution, and

  9. ACEE program rationale and implementation

    SciTech Connect

    Aiken, W.S. Jr.; Petersen, R.H.

    1982-08-01

    The impact of the Aircraft Energy Efficiency program (ACEE) on commercial aviation is examined. In addition to the emphasis on air transport fuel efficiency, topics such as airline operating costs, air transport effects on U.S. trade, and fuel price forecasts are addressed. An overview of the program and its contribution to aviation technology is included.

  10. SY 12-1 RENIN ANGIOTENSIN PATHWAY BEYOND ACE AND ANGIOTENSIN II RECEPTORS: HOW IT RELATES TO THE PATHOPHYSIOLOGY OF HYPERTENSION.

    PubMed

    Burrell, Louise

    2016-09-01

    The renin-angiotensin system (RAS) plays a major role in the pathogenesis of hypertension, a major risk factor for stroke, coronary events, heart failure and kidney disease. Within the RAS, angiotensin converting enzyme (ACE) converts angiotensin (Ang) I into the vasoconstrictor Ang II, which mediates its effects via the angiotensin type 1 receptor (AT1R). An "alternate" arm of the RAS is now known to exist in which the monocarboxypeptidase ACE2 counterbalances the effects of the classic RAS through degradation of the vasoconstrictor peptide, Ang II, and generation of the vasodilatory peptide, Ang 1-7. ACE2 is highly expressed in tissues of cardiovascular relevance including the heart, blood vessels and kidney. The catalytically active ectodomain of ACE2 undergoes shedding resulting in ACE2 in the circulation. The finding that the ACE2 gene maps to a quantitative trait locus on the X chromosome in three strains of genetically hypertensive rats suggests that the ACE2 gene may be a candidate gene for hypertension. It is hypothesised that disruption of tissue ACE/ACE2 balance results in changes in blood pressure, with increased ACE2 expression protecting against increased blood pressure, and ACE2 deficiency contributing to hypertension. Studies in experimental models of hypertension have measured ACE2 gene, protein and/or activity, in either the heart or kidney and/or plasma, usually at one time point, and most commonly in animals with established hypertension. As experimental studies report that deletion or inhibition of ACE2 leads to hypertension, whilst enhancing ACE2 protects against the development of hypertension, increasing or activating ACE2 may be a therapeutic option for the management of high blood pressure in man. There have been relatively few studies of ACE2, either at the gene or the circulating level in patients with hypertension. The available data indicates that plasma ACE2 activity is low in healthy subjects, but elevated in patients with

  11. Advanced Collaborative Emissions Study (ACES)

    SciTech Connect

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  12. Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats.

    PubMed

    Fitzgerald, Ciaran; Aluko, Rotimi E; Hossain, Mohammad; Rai, Dilip K; Hayes, Maria

    2014-08-20

    This work examined the resistance of the renin inhibitory, tridecapeptide IRLIIVLMPILMA derived previously from a Palmaria palmata papain hydrolysate, during gastrointestinal (GI) transit. Following simulated GI digestion, breakdown products were identified using mass spectrometry analysis and the known renin and angiotensin I converting enzyme inhibitory dipeptide IR was identified. In vivo animal studies using spontaneously hypertensive rats (SHRs) were used to confirm the antihypertensive effects of both the tridecapeptide IRLIIVLMPILMA and the seaweed protein hydrolysate from which this peptide was isolated. After 24 h, the SHR group fed the P. palmata protein hydrolysate recorded a drop of 34 mm Hg in systolic blood pressure (SBP) from 187 (±0.25) to 153 (± 0.64) mm Hg SBP, while the group fed the tridecapeptide IRLIIVLMPLIMA presented a drop of 33 mm Hg in blood pressure from 187 (±0.95) to 154 (±0.94) mm Hg SBP compared to the SBP recorded at time zero. The results of this study indicate that the seaweed protein derived hydrolysate has potential for use as antihypertensive agents and that the tridecapeptide is cleaved and activated to the dipeptide IR when it travels through the GI tract. Both the hydrolysate and peptide reduced SHR blood pressure when administered orally over a 24 h period.

  13. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).

    PubMed

    Qureshi, Abid; Tandon, Himani; Kumar, Manoj

    2015-11-01

    Peptide-based antiviral therapeutics has gradually paved their way into mainstream drug discovery research. Experimental determination of peptides' antiviral activity as expressed by their IC50 values involves a lot of effort. Therefore, we have developed "AVP-IC50 Pred," a regression-based algorithm to predict the antiviral activity in terms of IC50 values (μM). A total of 759 non-redundant peptides from AVPdb and HIPdb were divided into a training/test set having 683 peptides (T(683)) and a validation set with 76 independent peptides (V(76)) for evaluation. We utilized important peptide sequence features like amino-acid compositions, binary profile of N8-C8 residues, physicochemical properties and their hybrids. Four different machine learning techniques (MLTs) namely Support vector machine, Random Forest, Instance-based classifier, and K-Star were employed. During 10-fold cross validation, we achieved maximum Pearson correlation coefficients (PCCs) of 0.66, 0.64, 0.56, 0.55, respectively, for the above MLTs using the best combination of feature sets. All the predictive models also performed well on the independent validation dataset and achieved maximum PCCs of 0.74, 0.68, 0.59, 0.57, respectively, on the best combination of feature sets. The AVP-IC50 Pred web server is anticipated to assist the researchers working on antiviral therapeutics by enabling them to computationally screen many compounds and focus experimental validation on the most promising set of peptides, thus reducing cost and time efforts. The server is available at http://crdd.osdd.net/servers/ic50avp.

  14. Kinetics and molecular docking studies of the inhibitions of angiotensin converting enzyme and renin activities by hemp seed (Cannabis sativa L.) peptides.

    PubMed

    Girgih, Abraham T; He, Rong; Aluko, Rotimi E

    2014-05-01

    Four novel peptide sequences (WVYY, WYT, SVYT, and IPAGV) identified from an enzymatic digest of hemp seed proteins were used for enzyme inhibition kinetics and molecular docking studies. Results showed that WVYY (IC50 = 0.027 mM) was a more potent (p < 0.05) ACE-inhibitory peptide than WYT (IC50 = 0.574 mM). However, WYT (IC50 = 0.054 mM) and SVYT (IC50 = 0.063 mM) had similar renin-inhibitory activity, which was significantly better than that of IPAGV (IC50 = 0.093 mM). Kinetics studies showed that WVYY had a lower inhibition constant (Ki) of 0.06 mM and hence greater affinity for ACE when compared to the 1.83 mM obtained for WYT. SVYT had lowest Ki value of 0.89 mM against renin, when compared to the values obtained for WYT and IPAGV. Molecular docking results showed that the higher inhibitory activities of WVYY and SVYT were due to the greater degree of noncovalent bond-based interactions with the enzyme protein, especially formation of higher numbers of hydrogen bonds with active site residues.

  15. The Atmospheric Chemistry Experiment (ACE): MLT Results

    NASA Astrophysics Data System (ADS)

    Bernath, Peter

    2010-05-01

    ACE (also known as SCISAT) is making a comprehensive set of simultaneous measurements of numerous trace gases, thin clouds, aerosols and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) gives ACE coverage of tropical, mid-latitudes and polar regions. The primary instrument is a high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-1). ACE was launched by NASA on 12 August 2003 for a nominal 2-year mission; after 6 years on orbit the ACE-FTS performance is still excellent. The first results of ACE have been presented in a special issue of Geophysics Research Letters (http://www.agu.org/journals/ss/ACECHEM1/) in 2005 and recently a special issue on ACE validation has been prepared for Atmospheric Chemistry and Physics (http://www.atmos-chem-phys.net/special_issue114.html) by K. Walker and K. Strong; more information can be found at http://www.ace.uwaterloo.ca. The ACE mission goals were initially focussed mainly on polar ozone chemistry, and more recently have shifted more to the troposphere where organic pollutants such as methanol and formaldehyde have been detected. ACE makes limb observations from about 5 km (cloud free scenes) up to nearly 150 km in the lower thermosphere, where CO2 absorption is still weakly detectable. This talk will review ACE-FTS results in the mesosphere and lower thermosphere. Topics covered will include the mesospheric descent of NOx in the polar winter, spectra of polar mesospheric clouds, concentration profiles of CO2 (which do not match model predictions), and combined Odin-Osiris/ACE-FTS observations.

  16. Sj7170, a Unique Dual-function Peptide with a Specific α-Chymotrypsin Inhibitory Activity and a Potent Tumor-activating Effect from Scorpion Venom*

    PubMed Central

    Song, Yu; Gong, Ke; Yan, Hong; Hong, Wei; Wang, Le; Wu, Yingliang; Li, Wenhua; Li, Wenxin; Cao, Zhijian

    2014-01-01

    A new peptide precursor, termed Sj7170, was characterized from the venomous gland cDNA library of the scorpion Scorpiops jendeki. Sj7170 was deduced to be a 62-amino acid peptide cross-linked by five disulfide bridges. The recombinant Sj7170 peptide (rSj7170) with chromatographic purity was produced by a prokaryotic expression system. Enzyme inhibition assay in vitro and in vivo showed that rSj7170 specifically inhibited the activity of α-chymotrypsin at micromole concentrations. In addition, Sj7170 not only promoted cell proliferation and colony formation by up-regulating the expression of cyclin D1 in vitro but also enhanced tumor growth in nude mice. Finally, Sj7170 accelerated cellular migration and invasion by increasing the expression of the transcription factor Snail and then inducing the epithelial-mesenchymal transition. Moreover, Sj7170 changed cell morphology and cytoskeleton of U87 cells by the GTPase pathway. Taken together, Sj7170 is a unique dual-function peptide, i.e. a specific α-chymotrypsin inhibitor and a potent tumorigenesis/metastasis activator. Our work not only opens an avenue of developing new modulators of tumorigenesis/metastasis from serine protease inhibitors but also strengthens the functional link between protease inhibitors and tumor activators. PMID:24584937

  17. Molecular dynamics simulation and molecular docking studies of Angiotensin converting enzyme with inhibitor lisinopril and amyloid Beta Peptide.

    PubMed

    Jalkute, Chidambar Balbhim; Barage, Sagar Hindurao; Dhanavade, Maruti Jayram; Sonawane, Kailas Dasharath

    2013-06-01

    Angiotensin converting enzyme (ACE) cleaves amyloid beta peptide. So far this cleavage mechanism has not been studied in detail at atomic level. Keeping this view in mind, we performed molecular dynamics simulation of crystal structure complex of testis truncated version of ACE (tACE) and its inhibitor lisinopril along with Zn(2+) to understand the dynamic behavior of active site residues of tACE. Root mean square deviation results revealed the stability of tACE throughout simulation. The residues Ala 354, Glu 376, Asp 377, Glu 384, His 513, Tyr 520 and Tyr 523 of tACE stabilized lisinopril by hydrogen bonding interactions. Using this information in subsequent part of study, molecular docking of tACE crystal structure with Aβ-peptide has been made to investigate the interactions of Aβ-peptide with enzyme tACE. The residues Asp 7 and Ser 8 of Aβ-peptide were found in close contact with Glu 384 of tACE along with Zn(2+). This study has demonstrated that the residue Glu 384 of tACE might play key role in the degradation of Aβ-peptide by cleaving peptide bond between Asp 7 and Ser 8 residues. Molecular basis generated by this attempt could provide valuable information towards designing of new therapies to control Aβ concentration in Alzheimer's patient.

  18. Antihypertensive peptides from food proteins.

    PubMed

    Aluko, Rotimi E

    2015-01-01

    Bioactive peptides are encrypted within the primary structure of food proteins where they remain inactive until released by enzymatic hydrolysis. Once released from the parent protein, certain peptides have the ability to modulate the renin-angiotensin system (RAS) because they decrease activities of renin or angiotensin-converting enzyme (ACE), the two main enzymes that regulate mammalian blood pressure. These antihypertensive peptides can also enhance the endothelial nitric oxide synthase (eNOS) pathway to increase nitric oxide (NO) levels within vascular walls and promote vasodilation. The peptides can block the interactions between angiotensin II (vasoconstrictor) and angiotensin receptors, which can contribute to reduced blood pressure. This review focuses on the methods that are involved in antihypertensive peptide production from food sources, including fractionation protocols that are used to enrich bioactive peptide content and enhance peptide activity. It also discusses mechanisms that are believed to be involved in the antihypertensive activity of these peptides.

  19. Distinct mechanisms of epithelial adhesion for Candida albicans and Candida tropicalis. Identification of the participating ligands and development of inhibitory peptides.

    PubMed Central

    Bendel, C M; Hostetter, M K

    1993-01-01

    The yeast Candida albicans is the leading cause of disseminated fungal infection in neonates, immunocompromised hosts, diabetics, and postoperative patients; Candida tropicalis is the second most frequent isolate. Because the integrin analogue in C. albicans shares antigenic, structural, and functional homologies with the beta 2-integrin subunits alpha M and alpha X, we investigated the role of integrin analogues in epithelial adhesion of C. albicans and C. tropicalis. On flow cytometry with the monoclonal antibody (mAb) OKM1, surface fluorescence was highest for C. albicans and significantly reduced for C. tropicalis (P < 0.001). However, adhesion to the human epithelial cell line HeLa S3 did not differ for these two candidal species: specific adhesion was highest for C. albicans at 44.0 +/- 1.8%, and only slightly lower for C. tropicalis at 38.8 +/- 3.6% (P = NS). The disparity between expression of the integrin analogue and epithelial adhesion suggested distinct mechanisms for this process in C. albicans versus C. tropicalis. Preincubation of C. albicans with anti-alpha M mAbs, with purified iC3b (the RGD ligand for the integrin analogue), or with 9-15-mer RGD peptides from iC3b all inhibited epithelial adhesion significantly (P < 0.001-0.04). Purified fibronectin or fibronectin-RGD peptides failed to block C. albicans adhesion. In contrast, epithelial adhesion of C. tropicalis was significantly inhibited by purified fibronectin and its RGD peptides (P < or = 0.021), but not by iC3b nor the iC3b-RGD peptides. Both iC3b and fibronectin were identified on the surface of epithelial cells after growth in serum-free medium. A polyclonal antibody to C3 inhibited C. albicans adhesion while a control antibody to fibronectin was ineffective; the converse was true for C. tropicalis. These results indicate that the pathogenic yeasts C. albicans and C. tropicalis recognize distinct RGD ligands present at the surface of the epithelial cell and that these interactions can be

  20. Advanced control evaluation for structures (ACES) programs

    NASA Technical Reports Server (NTRS)

    Pearson, Jerome; Waites, Henry

    1988-01-01

    The ACES programs are a series of past, present, and future activities at the Marshall Space Flight Center (MSFC) Ground facility for Large Space Structure Control Verification (GF/LSSCV). The main objectives of the ACES programs are to implement control techniques on a series of complex dynamical systems, to determine the control/structure interaction for the control techniques, and to provide a national facility in which dynamics and control verification can be effected. The focus is on these objectives and how they are implemented under various engineering and economic constraints. Future plans that will be effected in upcoming ACES programs are considered.

  1. Enhanced antifungal and insect α-amylase inhibitory activities of Alpha-TvD1, a peptide variant of Tephrosia villosa defensin (TvD1) generated through in vitro mutagenesis.

    PubMed

    Vijayan, S; Imani, J; Tanneeru, K; Guruprasad, L; Kogel, K H; Kirti, P B

    2012-02-01

    TvD1 is a small, cationic, and highly stable defensin from the weedy legume, Tephrosia villosa with demonstrated in vitro antifungal activity. We show here peptide modifications in TvD1 that lead to enhanced antifungal activities. Three peptide variants, S32R, D37R, and Alpha-TvD1 (-G-M-T-R-T-) with variations in and around the β2-β3 loop region that imposes the two β-strands, β2 and β3 were generated through in vitro mutagenesis. Alpha-TvD1 exhibited enhanced antifungal activity against the fungal pathogens, Fusarium culmorum and Fusarium oxysporum with respective IC(50) values of 2.5 μM and 3.0 μM, when compared to S32R (<5.0 μM and >5.0 μM), D37R (5.5 μM and 4.5 μM), and the wild type TvD1 (6.5 μM). Because of the enhanced antifungal activity, this variant peptide was characterized further. Growth of F. culmorum in the presence of Alpha-TvD1 showed deformities in hyphal walls and nuclear damage. With respect to the plant pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000, both Alpha-TvD1 and the wild type TvD1 showed comparable antibacterial activity. Both wild type TvD1 and Alpha-TvD1 displayed inhibitory activity against the α-amylase of the mealworm beetle, Tenebrio molitor (TMA) with the latter showing enhanced activity. The human salivary as well as barley α-amylase activities were not inhibited even at concentrations of up to 50 μM, which has been predicted to be due to differences in the pocket size and the size of the interacting loops. Present study shows that the variant Alpha-TvD1 exhibits enhanced antifungal as well as insect α-amylase inhibitory activity. PMID:22244814

  2. Release of angiotensin converting enzyme-inhibitor peptides during in vitro gastrointestinal digestion of Parmigiano Reggiano PDO cheese and their absorption through an in vitro model of intestinal epithelium.

    PubMed

    Basiricò, L; Catalani, E; Morera, P; Cattaneo, S; Stuknytė, M; Bernabucci, U; De Noni, I; Nardone, A

    2015-11-01

    The occurrence of 8 bovine casein-derived peptides (VPP, IPP, RYLGY, RYLG, AYFYPEL, AYFYPE, LHLPLP, and HLPLP) reported as angiotensin converting enzyme-inhibitors (ACE-I) was investigated in the 3-kDa ultrafiltered water-soluble extract (WSE) of Parmigiano Reggiano (PR) cheese samples by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry via an electrospray ionization source. Only VPP, IPP, LHLPLP, and HLPLP were revealed in the WSE, and their total amount was in the range of 8.46 to 21.55 mg/kg of cheese. Following in vitro static gastrointestinal digestion, the same ACE-I peptides along with the newly formed AYFYPEL and AYFYPE were found in the 3 kDa WSE of PR digestates. Digestates presented high amounts (1,880-3,053 mg/kg) of LHLPLP, whereas the remaining peptides accounted for 69.24 to 82.82 mg/kg. The half-maximal inhibitory concentration (IC50) values decreased from 7.92 ± 2.08 in undigested cheese to 3.20 ± 1.69 after in vitro gastrointestinal digestion. The 3-kDa WSE of digested cheeses were used to study the transport of the 8 ACE-I peptides across the monolayers of the Caco-2 cell culture grown on a semipermeable membrane of the transwells. After 1h of incubation, 649.20 ± 148.85 mg/kg of LHLPLP remained in the apical compartment, whereas VPP, IPP, AYFYPEL, AYFYPE, and HLPLP accounted in total for less than 36.78 mg/kg. On average, 0.6% of LHLPLP initially present in the digestates added to the apical compartment were transported intact to the basolateral chamber after the same incubation time. Higher transport rate (2.9%) was ascertained for the peptide HLPLP. No other intact ACE-I peptides were revealed in the basolateral compartment. For the first time, these results demonstrated that the ACE-I peptides HLPLP and LHLPLP present in the in vitro digestates of PR cheese are partially absorbed through an in vitro model of human intestinal epithelium.

  3. Nanogel-crosslinked nanoparticles increase the inhibitory effects of W9 synthetic peptide on bone loss in a murine bone resorption model.

    PubMed

    Sato, Toshimi; Alles, Neil; Khan, Masud; Nagano, Kenichi; Takahashi, Mariko; Tamura, Yukihiko; Shimoda, Asako; Ohya, Keiichi; Akiyoshi, Kazunari; Aoki, Kazuhiro

    2015-01-01

    We investigated the biological activity of W9, a bone resorption inhibitor peptide, using NanoClik nanoparticles as an injectable carrier, where acryloyl group-modified cholesterol-bearing pullulan (CHPOA) nanogels were crosslinked by pentaerythritol tetra (mercaptoethyl) polyoxyethylene. Thirty 5-week-old male C57BL/6J mice were fed a low calcium diet and received once-daily subcutaneous injections of the carrier alone, W9 24 mg/kg/day alone, W9 24 mg/kg/day incorporated in cholesterol bearing pullulan (CHP) nanogels, or W9 (8 and 24 mg/kg/day) incorporated in NanoClik nanoparticles for 4 days (n=5). Mice that received a normal calcium diet with NanoClik nanoparticle injections without W9 were used as a control group. Radiological analyses showed that administration of W9 24 mg/kg/day significantly prevented low calcium-induced reduction of bone mineral density in the long bones and lumbar vertebrae, but only when the NanoClik nanoparticles were used as a carrier. Histomorphometric analyses of the proximal tibiae revealed that W9 24 mg/kg/day incorporated in NanoClik nanoparticles prevented the increase in bone resorption indices induced by a low calcium diet, which was confirmed by measurement of serum bone resorption markers. These data suggest that NanoClik nanoparticles could be a useful carrier for peptide therapeutics, and also demonstrate that daily subcutaneous injections of the W9 peptide with the nanoparticles were able to inhibit bone loss in vivo. An osteoclastogenesis inhibition assay performed in vitro confirmed a slower release profile of W9 from NanoClik nanoparticles compared with conventional CHP nanogels. PMID:25999711

  4. Nanogel-crosslinked nanoparticles increase the inhibitory effects of W9 synthetic peptide on bone loss in a murine bone resorption model

    PubMed Central

    Sato, Toshimi; Alles, Neil; Khan, Masud; Nagano, Kenichi; Takahashi, Mariko; Tamura, Yukihiko; Shimoda, Asako; Ohya, Keiichi; Akiyoshi, Kazunari; Aoki, Kazuhiro

    2015-01-01

    We investigated the biological activity of W9, a bone resorption inhibitor peptide, using NanoClik nanoparticles as an injectable carrier, where acryloyl group-modified cholesterol-bearing pullulan (CHPOA) nanogels were crosslinked by pentaerythritol tetra (mercaptoethyl) polyoxyethylene. Thirty 5-week-old male C57BL/6J mice were fed a low calcium diet and received once-daily subcutaneous injections of the carrier alone, W9 24 mg/kg/day alone, W9 24 mg/kg/day incorporated in cholesterol bearing pullulan (CHP) nanogels, or W9 (8 and 24 mg/kg/day) incorporated in NanoClik nanoparticles for 4 days (n=5). Mice that received a normal calcium diet with NanoClik nanoparticle injections without W9 were used as a control group. Radiological analyses showed that administration of W9 24 mg/kg/day significantly prevented low calcium-induced reduction of bone mineral density in the long bones and lumbar vertebrae, but only when the NanoClik nanoparticles were used as a carrier. Histomorphometric analyses of the proximal tibiae revealed that W9 24 mg/kg/day incorporated in NanoClik nanoparticles prevented the increase in bone resorption indices induced by a low calcium diet, which was confirmed by measurement of serum bone resorption markers. These data suggest that NanoClik nanoparticles could be a useful carrier for peptide therapeutics, and also demonstrate that daily subcutaneous injections of the W9 peptide with the nanoparticles were able to inhibit bone loss in vivo. An osteoclastogenesis inhibition assay performed in vitro confirmed a slower release profile of W9 from NanoClik nanoparticles compared with conventional CHP nanogels. PMID:25999711

  5. Nanogel-crosslinked nanoparticles increase the inhibitory effects of W9 synthetic peptide on bone loss in a murine bone resorption model.

    PubMed

    Sato, Toshimi; Alles, Neil; Khan, Masud; Nagano, Kenichi; Takahashi, Mariko; Tamura, Yukihiko; Shimoda, Asako; Ohya, Keiichi; Akiyoshi, Kazunari; Aoki, Kazuhiro

    2015-01-01

    We investigated the biological activity of W9, a bone resorption inhibitor peptide, using NanoClik nanoparticles as an injectable carrier, where acryloyl group-modified cholesterol-bearing pullulan (CHPOA) nanogels were crosslinked by pentaerythritol tetra (mercaptoethyl) polyoxyethylene. Thirty 5-week-old male C57BL/6J mice were fed a low calcium diet and received once-daily subcutaneous injections of the carrier alone, W9 24 mg/kg/day alone, W9 24 mg/kg/day incorporated in cholesterol bearing pullulan (CHP) nanogels, or W9 (8 and 24 mg/kg/day) incorporated in NanoClik nanoparticles for 4 days (n=5). Mice that received a normal calcium diet with NanoClik nanoparticle injections without W9 were used as a control group. Radiological analyses showed that administration of W9 24 mg/kg/day significantly prevented low calcium-induced reduction of bone mineral density in the long bones and lumbar vertebrae, but only when the NanoClik nanoparticles were used as a carrier. Histomorphometric analyses of the proximal tibiae revealed that W9 24 mg/kg/day incorporated in NanoClik nanoparticles prevented the increase in bone resorption indices induced by a low calcium diet, which was confirmed by measurement of serum bone resorption markers. These data suggest that NanoClik nanoparticles could be a useful carrier for peptide therapeutics, and also demonstrate that daily subcutaneous injections of the W9 peptide with the nanoparticles were able to inhibit bone loss in vivo. An osteoclastogenesis inhibition assay performed in vitro confirmed a slower release profile of W9 from NanoClik nanoparticles compared with conventional CHP nanogels.

  6. FIRE_ACE_ER2_MAS

    Atmospheric Science Data Center

    2015-10-28

    ... First ISCCP Regional Experiment (FIRE) Arctic Cloud Experiment (ACE) NASA ER-2 Moderate Resolution Imaging ... SSFR Location:  Northern Alaska Arctic Ocean Spatial Coverage:  Fairbanks, Alaska and the surrounding ...

  7. Partial Molecular Characterization of Arctium minus Aspartylendopeptidase and Preparation of Bioactive Peptides by Whey Protein Hydrolysis.

    PubMed

    Cimino, Cecilia V; Colombo, María Laura; Liggieri, Constanza; Bruno, Mariela; Vairo-Cavalli, Sandra

    2015-08-01

    In this article, we report the cloning of an aspartic protease (AP) from flowers of Arctium minus (Hill) Bernh. (Asteraceae) along with the use of depigmented aqueous flower extracts, as a source of APs, for the hydrolysis of whey proteins. The isolated cDNA encoded a protein product with 509 amino acids called arctiumisin, with the characteristic primary structure organization of typical plant APs. Bovine whey protein hydrolysates, obtained employing the enzyme extracts of A. minus flowers, displayed inhibitory angiotensin-converting enzyme (ACE) and antioxidant activities. Hydrolysates after 3 and 5 h of reaction (degree of hydrolysis 2.4 and 5.6, respectively) and the associated peptide fraction with molecular weight below 3 kDa were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-assisted laser desorption ionization/time of flight mass spectrometry, and reverse phase-high-performance liquid chromatography. The results obtained in this study demonstrate the viability of using proteases from A. minus to increase the antioxidant and inhibitory ACE capacity of whey proteins.

  8. Partial Molecular Characterization of Arctium minus Aspartylendopeptidase and Preparation of Bioactive Peptides by Whey Protein Hydrolysis.

    PubMed

    Cimino, Cecilia V; Colombo, María Laura; Liggieri, Constanza; Bruno, Mariela; Vairo-Cavalli, Sandra

    2015-08-01

    In this article, we report the cloning of an aspartic protease (AP) from flowers of Arctium minus (Hill) Bernh. (Asteraceae) along with the use of depigmented aqueous flower extracts, as a source of APs, for the hydrolysis of whey proteins. The isolated cDNA encoded a protein product with 509 amino acids called arctiumisin, with the characteristic primary structure organization of typical plant APs. Bovine whey protein hydrolysates, obtained employing the enzyme extracts of A. minus flowers, displayed inhibitory angiotensin-converting enzyme (ACE) and antioxidant activities. Hydrolysates after 3 and 5 h of reaction (degree of hydrolysis 2.4 and 5.6, respectively) and the associated peptide fraction with molecular weight below 3 kDa were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-assisted laser desorption ionization/time of flight mass spectrometry, and reverse phase-high-performance liquid chromatography. The results obtained in this study demonstrate the viability of using proteases from A. minus to increase the antioxidant and inhibitory ACE capacity of whey proteins. PMID:25575270

  9. β-Casein(94-123)-derived peptides differently modulate production of mucins in intestinal goblet cells.

    PubMed

    Plaisancié, Pascale; Boutrou, Rachel; Estienne, Monique; Henry, Gwénaële; Jardin, Julien; Paquet, Armelle; Léonil, Joëlle

    2015-02-01

    We recently reported the identification of a peptide from yoghurts with promising potential for intestinal health: the sequence (94-123) of bovine β-casein. This peptide, composed of 30 amino acid residues, maintains intestinal homoeostasis through production of the secreted mucin MUC2 and of the transmembrane-associated mucin MUC4. Our study aimed to search for the minimal sequence responsible for the biological activity of β-CN(94-123) by using several strategies based on (i) known bioactive peptides encrypted in β-CN(94-123), (ii) in silico prediction of peptides reactivity and (iii) digestion of β-CN(94-123) by enzymes of intestinal brush border membranes. The revealed sequences were tested in vitro on human intestinal mucus-producing HT29-MTX cells. We demonstrated that β-CN(108-113) (an ACE-inhibitory peptide) and β-CN(114-119) (an opioid peptide named neocasomorphin-6) up-regulated MUC4 expression whereas levels of the secreted mucins MUC2 and MUC5AC remained unchanged. The digestion of β-CN(94-123) by intestinal enzymes showed that the peptides β-CN(94-108) and β-CN(117-123) were present throughout 1·5 to 3 h of digestion, respectively. These two peptides raised MUC5AC expression while β-CN(117-123) also induced a decrease in the level of MUC2 mRNA and protein. In addition, this inhibitory effect was reproduced in airway epithelial cells. In conclusion, β-CN(94-123) is a multifunctional molecule but only the sequence of 30 amino acids has a stimulating effect on the production of MUC2, a crucial factor of intestinal protection.

  10. ACE-FTS measurements of HCFC-22

    NASA Astrophysics Data System (ADS)

    Kolonjari, F.; Walker, K. A.; Boone, C. D.; Strahan, S.; McLinden, C. A.; Manney, G. L.; Daffer, W. H.; Bernath, P. F.

    2012-04-01

    In the 1980s scientists discovered an annual springtime minimum in stratospheric ozone over the Antarctic. It was determined that the decline in ozone concentration was primarily caused by catalytic reactions of ozone and chlorine. The emissions of anthropogenic chlorofluorocarbons (CFCs) were determined to be major sources of the chlorine. The Montreal Protocol on Substances that Deplete the Ozone Layer (with its subsequent amendments) restricts the emissions of ozone depleting substances. To fulfill the need for safe, stable replacements of CFCs, hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) were developed. The use of HCFC-22 as a replacement has led to an increase in its atmospheric abundance. This is of concern due to its ozone depletion potential and its global warming potential. The Atmospheric Chemistry Experiment (ACE) is a mission on-board the Canadian satellite SCISAT. The primary instrument on SCISAT is a high-resolution infrared Fourier Transform Spectrometer (ACE-FTS). With its wide spectral range, the ACE-FTS is capable of measuring an extensive range of gases including key CFC and HCFC species. The altitude distribution from the ACE-FTS profiles provides information that is complementary to the ground-based measurements that have been used to monitor these species. The global distribution of HCFC-22 has been computed from measurements by ACE-FTS. Both seasonal variations and an inter-hemispheric difference are observed. Additionally, a rapid increase in the global concentration of HCFC-22 has been observed since the start of the ACE mission in 2004. Comparisons to ground-based and air-borne measurements show good agreement with the ACE-FTS measurements. The global distributions of HCFC-22 have also been compared to a chemistry and transport model (CTM), the Global Modelling Initiative Combined Stratospheric-Tropospheric Model. There are distinct differences between the model results and ACE-FTS measurements. The causes and

  11. Computational study of the inhibitory mechanism of the kinase CDK5 hyperactivity by peptide p5 and derivation of a pharmacophore.

    PubMed

    Cardone, A; Brady, M; Sriram, R; Pant, H C; Hassan, S A

    2016-06-01

    The hyperactivity of the cyclic dependent kinase 5 (CDK5) induced by the activator protein p25 has been linked to a number of pathologies of the brain. The CDK5-p25 complex has thus emerged as a major therapeutic target for Alzheimer's disease (AD) and other neurodegenerative conditions. Experiments have shown that the peptide p5 reduces the CDK5-p25 activity without affecting the endogenous CDK5-p35 activity, whereas the peptide TFP5, obtained from p5, elicits similar inhibition, crosses the blood-brain barrier, and exhibits behavioral rescue of AD mice models with no toxic side effects. The molecular basis of the kinase inhibition is not currently known, and is here investigated by computer simulations. It is shown that p5 binds the kinase at the same CDK5/p25 and CDK5/p35 interfaces, and is thus a non-selective competitor of both activators, in agreement with available experimental data in vitro. Binding of p5 is enthalpically driven with an affinity estimated in the low µM range. A quantitative description of the binding site and pharmacophore is presented, and options are discussed to increase the binding affinity and selectivity in the design of drug-like compounds against AD. PMID:27387995

  12. The Aerosol/Cloud/Ecosystems Mission (ACE)

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  13. Radical scavenging and angiotensin converting enzyme inhibitory activities of standardized extracts of Ficus racemosa stem bark.

    PubMed

    Ahmed, Faiyaz; Siddesha, Jalahalli M; Urooj, Asna; Vishwanath, Bannikuppe S

    2010-12-01

    The present study evaluated the radical scavenging and angiotensin converting enzyme (ACE) inhibitory activity of cold and hot aqueous extracts of Ficus racemosa (Moraceae) stem bark. The extracts were standardized using HPLC. Radical scavenging activity was determined using 1,1-diphenyl-2-picrylhydrazyl radical and angiotensin converting enzyme inhibitory activity using rabbit lung and partially purified porcine kidney ACE. HPLC profiles of cold aqueous extract (FRC) showed the presence of bergenin, an isocoumarin, while hot aqueous extract (FRH) was found to contain ferulic acid, kaempferol and coumarin in addition to bergenin. FRH showed significantly higher (p ≤ 0.01) radical scavenging activity than FRC and butylated hydroxytoluene (BHT), consequently resulting in a significantly lower (p ≤ 0.01) IC₅₀ value than FRC and BHT. Both the extracts exhibited a dose dependent inhibition of porcine kidney and rabbit lung ACE. FRH showed significantly higher (p ≤ 0.01) activity than FRC with lower IC(50) values of 1.36 and 1.91 μg/mL respectively, for porcine kidney and rabbit lung ACE, compared with those of FRC (128 and 291 μg/mL). Further, a significant correlation (r = 0.893; p ≤ 0.05) was observed between radical scavenging activity and ACE-inhibitory activity. This is the first report on the ACE-inhibitory activity of F. racemosa stem bark suggesting its potential to be utilized as a therapeutic alternative for hypertension. PMID:20564493

  14. Synthesized Peptides from Yam Dioscorin Hydrolysis in Silico Exhibit Dipeptidyl Peptidase-IV Inhibitory Activities and Oral Glucose Tolerance Improvements in Normal Mice.

    PubMed

    Lin, Yin-Shiou; Han, Chuan-Hsiao; Lin, Shyr-Yi; Hou, Wen-Chi

    2016-08-24

    RRDY, RL, and DPF were the top 3 of 21 peptides for inhibitions against dipeptidyl peptidase-IV (DPP-IV) from the pepsin hydrolysis of yam dioscorin in silico and were further investigated in a proof-of-concept study in normal ICR mice for regulating glucose metabolism by the oral glucose tolerance test (OGTT). The sample or sitagliptin (positive control) was orally administered by a feeding gauge; 30 min later, the glucose loads (2.5 g/kg) were performed. RRDY, yam dioscorin, or sitagliptin preload, but not DPF, lowered the area under the curve (AUC0-120) of blood glucose and DPP-IV activity and elevated the AUC0-120 of blood insulin, which showed significant differences compared to control (P < 0.05 or 0.001). These results suggested that RRDY and yam dioscorin might be beneficial in glycemic control in normal mice and need further investigations in diabetic animal models. PMID:27499387

  15. The Blockade of NF-κB Activation by a Specific Inhibitory Peptide Has a Strong Neuroprotective Role in a Sprague-Dawley Rat Kernicterus Model.

    PubMed

    Li, Mengwen; Song, Sijie; Li, Shengjun; Feng, Jie; Hua, Ziyu

    2015-12-11

    Kernicterus, the permanent nerve damage occurring as a result of bilirubin precipitation, still occurs worldwide and may lead to death or permanent neurological impairments. However, the underlying mechanisms remain unclear, and effective therapeutic strategies are lacking. The present study aims to investigate the activation of NF-κB and to identify the effect of NF-κB inhibition on the newborn rat kernicterus model. The NF-κB essential modifier-binding domain peptide (NBD), coupled with the HIV trans-activator of transcription peptide (TAT) was used to inhibit NF-κB. NF-κB was significantly activated in the cerebrum at 1 and 3 h (p < 0.05) after the model was established, as measured by EMSA. NF-κB activation was inhibited by intraperitoneal administration of TAT-NBD. The general conditions of the TAT-NBD-treated rats were improved; meanwhile, these rats performed much better on the neurological evaluation, the rotarod test, and the Morris water maze test (p < 0.05) than the vehicle-treated rats at 28 days. Furthermore, the morphology of the nerve cells was better preserved in the TAT-NBD group, and these cells displayed less neurodegeneration and astrocytosis. Simultaneously, apoptosis in the brain was attenuated, and the levels of the TNF-α and IL-1β proteins were decreased (p < 0.01). These results suggested that NF-κB was activated, and inhibition of NF-κB activation by TAT-NBD not only attenuated the acute neurotoxicity, apoptosis, and inflammation, but also improved the long term neurobehavioral impairments in the kernicterus model rats in vivo. Thus, inhibiting NF-κB activation might be a potential therapeutic approach for kernicterus. PMID:26499797

  16. Functional study on the mutations in the silkworm (Bombyx mori) acetylcholinesterase type 1 gene (ace1) and its recombinant proteins.

    PubMed

    Wang, Ju-mei; Wang, Bin-bin; Xie, Yi; Sun, Shan-shan; Gu, Zhi-ya; Ma, Lie; Li, Fan-chi; Zhao, Yi-fan; Yang, Bin; Shen, Wei-de; Li, Bing

    2014-01-01

    The acetylcholinesterase of Lepidoptera insects is encoded by two genes, ace1 and ace2. The expression of the ace1 gene is significantly higher than that of the ace2 gene, and mutations in ace1 are one of the major reasons for pesticide resistance in insects. In order to investigate the effects of the mutations in ace1's characteristic sites on pesticide resistance, we generated mutations for three amino acids using site-directed mutagenesis, which were Ala(GCG)303Ser(TCG), Gly(GGA)329Ala(GCA) and Leu (TCT)554Ser(TTC). The Baculovirus expression system was used for the eukaryotic expression of the wild type ace1 (wace1) and the mutant ace1 (mace1). SDS-PAGE and Western blotting were used to detect the targeting proteins with expected sizeof about 76 kDa. The expression products were purified for the determination of AChE activity and the inhibitory effects of physostigmine and phoxim. We observed no significant differences in the overall activity of the wild type and mutant AChEs. However, with 10 min of physostigmine (10 μM) inhibition, the remaining activity of the wild type AChE was significantly lower than that of the mutant AChE. Ten min inhibition with 33.4 μM phoxim also resulted in significantly lower remaining activity of the wild type AChE than that of the mutant AChE. These results indicated that mutations for the three amino acids reduced the sensitivity of AChE to physostigmine and phoxim, which laid the foundation for future in vivo studies on AChE's roles in pesticide resistance.

  17. Interaction of a dengue virus NS1-derived peptide with the inhibitory receptor KIR3DL1 on natural killer cells.

    PubMed

    Townsley, E; O'Connor, G; Cosgrove, C; Woda, M; Co, M; Thomas, S J; Kalayanarooj, S; Yoon, I-K; Nisalak, A; Srikiatkhachorn, A; Green, S; Stephens, H A F; Gostick, E; Price, D A; Carrington, M; Alter, G; McVicar, D W; Rothman, A L; Mathew, A

    2016-03-01

    Killer immunoglobulin-like receptors (KIRs) interact with human leucocyte antigen (HLA) class I ligands and play a key role in the regulation and activation of NK cells. The functional importance of KIR-HLA interactions has been demonstrated for a number of chronic viral infections, but to date only a few studies have been performed in the context of acute self-limited viral infections. During our investigation of CD8(+) T cell responses to a conserved HLA-B57-restricted epitope derived from dengue virus (DENV) non-structural protein-1 (NS1), we observed substantial binding of the tetrameric complex to non-T/non-B lymphocytes in peripheral blood mononuclear cells (PBMC) from a long-standing clinical cohort in Thailand. We confirmed binding of the NS1 tetramer to CD56(dim) NK cells, which are known to express KIRs. Using depletion studies and KIR-transfected cell lines, we demonstrated further that the NS1 tetramer bound the inhibitory receptor KIR3DL1. Phenotypical analysis of PBMC from HLA-B57(+) subjects with acute DENV infection revealed marked activation of NS1 tetramer-binding natural killer (NK) cells around the time of defervescence in subjects with severe dengue disease. Collectively, our findings indicate that subsets of NK cells are activated relatively late in the course of acute DENV illness and reveal a possible role for specific KIR-HLA interactions in the modulation of disease outcomes.

  18. Quantitative analysis of the flavonoid glycosides and terpene trilactones in the extract of Ginkgo biloba and evaluation of their inhibitory activity towards fibril formation of β-amyloid peptide.

    PubMed

    Xie, Haiyan; Wang, Jing-Rong; Yau, Lee-Fong; Liu, Yong; Liu, Liang; Han, Quan-Bin; Zhao, Zhongzhen; Jiang, Zhi-Hong

    2014-04-10

    The standard extract of Ginkgo biloba leaves (EGb761) is used clinically in Europe for the symptomatic treatment of impaired cerebral function in primary degenerative dementia syndromes, and the results of numerous in vivo and in vitro studies have supported such clinical use. The abnormal production and aggregation of amyloid β peptide (Aβ) and the deposition of fibrils in the brain are regarded as key steps in the onset of Alzheimer's Disease (AD), and the inhibition of Aβ aggregation and destabilization of the preformed fibrils represent viable approaches for the prevention and treatment of AD. Flavonoid glycosides and terpene trilactones (TTLs) are the two main components of EGb761 which represent 24 and 6% of the overall content, respectively. In our research, seven abundant flavonoid glycosides 1-7 were isolated from the extract of Ginkgo biloba leaves and characterized by spectroscopic analysis. Furthermore, an ultra-high performance liquid chromatography method was established for the simultaneous quantification of these seven flavonoids. The inhibitory activities of these flavonoids, as well as four TTLs, i.e., ginkgolides A, B, and C and bilobalide (compounds 8-11), were evaluated towards Aβ42 fibril formation using a thioflavin T fluorescence assay. It was found that three flavonoids 1, 3 and 4 exhibited moderate inhibitory activities, whereas the other four flavonoids 2, 5, 6 and 7, as well as the four terpene trilactones, showed poor activity. This is the first report of the inhibition of Aβ fibril formation of two characteristic acylated flavonoid glycosides 6, 7 in Ginkgo leaves, on the basis of which the structure-activity relationship of these flavonoids 1-7 was discussed.

  19. Impact of the co-culture of Saccharomyces cerevisiae-Oenococcus oeni on malolactic fermentation and partial characterization of a yeast-derived inhibitory peptidic fraction.

    PubMed

    Nehme, Nancy; Mathieu, Florence; Taillandier, Patricia

    2010-02-01

    The present study was aimed to evaluate the impact of the co-culture on the output of malolactic fermentation and to further investigate the reasons of the antagonism exerted by yeasts towards bacteria during sequential cultures. The Saccharomyces cerevisiae D strain/Oenococcus oeni X strain combination was tested by applying both sequential culture and co-culture strategies. This pair was chosen amongst others because the malolactic fermentation was particularly difficult to realize during the sequential culture. During this traditional procedure, malolactic fermentation started when alcoholic fermentation was achieved. For the co-culture, both fermentations were conducted together by inoculating yeasts and bacteria into a membrane bioreactor at the same time. Results obtained during the sequential culture and compared to a bacterial control medium, showed that the inhibition exerted by S. cerevisiae D strain in term of decrease of the malic acid consumption rate was mainly due to ethanol (75%) and to a peptidic fraction (25%) having an MW between 5 and 10 kDa. 0.4 g l(-1) of L-malic acid was consumed in this case while 3.7 g l(-1) was consumed when the co-culture was applied. In addition, there was no risk of increased volatile acidity during the co-culture. Therefore, the co-culture strategy was considered effective for malolactic fermentation with the yeast/bacteria pair studied.

  20. Inhibitory effects of C-type natriuretic peptide on the differentiation of cardiac fibroblasts, and secretion of monocyte chemoattractant protein-1 and plasminogen activator inhibitor-1.

    PubMed

    Li, Zhi-Qiang; Liu, Ying-Long; Li, Gang; Li, Bin; Liu, Yang; Li, Xiao-Feng; Liu, Ai-Jun

    2015-01-01

    The present study aimed to investigate the effect of C-type natriuretic peptide (CNP) on the function of cardiac fibroblasts (CFs). Western blotting was used to investigate the expression of myofibroblast marker proteins: α-smooth muscle actin (α-SMA), extra domain-A fibronectin, collagen I and collagen III, and the activity of extracellular signal-regulated kinase 1/2 (ERK1/2). Immunofluorescence was used to examine the morphological changes; a transwell assay was used to analyze migration, and reverse transcription-quantitative polymerase chain reaction and ELISA were employed to determine the mRNA expression and protein secretion of monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1). The results demonstrated that CNP significantly reduced the protein expression of α-SMA, fibronectin, collagen I and collagen III, and suppressed the migratory ability of CFs. Additionally, the mRNA and protein expression of MCP-1 and PAI-1 was inhibited under the CNP treatment; and this effect was mediated by the inhibition of the ERK1/2 activity. In conclusion, CNP inhibited cardiac fibroblast differentiation and migration, and reduced the secretion of MCP-1 and PAI-1, which demonstrates novel mechanisms to explain the antifibrotic effect of CNP.

  1. Cdk5 inhibitory peptide (CIP) inhibits Cdk5/p25 activity induced by high glucose in pancreatic beta cells and recovers insulin secretion from p25 damage.

    PubMed

    Zheng, Ya-Li; Li, Congyu; Hu, Ya-Fang; Cao, Li; Wang, Hui; Li, Bo; Lu, Xiao-Hua; Bao, Li; Luo, Hong-Yan; Shukla, Varsha; Amin, Niranjana D; Pant, Harish C

    2013-01-01

    Cdk5/p25 hyperactivity has been demonstrated to lead to neuron apoptosis and degenerations. Chronic exposure to high glucose (HG) results in hyperactivity of Cdk5 and reduced insulin secretion. Here, we set out to determine whether abnormal upregulation of Cdk5/p25 activity may be induced in a pancreatic beta cell line, Min6 cells. We first confirmed that p25 were induced in overexpressed p35 cells treated with HG and increased time course dependence. Next, we showed that no p25 was detected under short time HG stimulation (4-12 hrs), however was detectable in the long exposure in HG cells (24 hrs and 48 hrs). Cdk5 activity in the above cells was much higher than low glucose treated cells and resulted in more than 50% inhibition of insulin secretion. We confirmed these results by overexpression of p25 in Min6 cells. As in cortical neurons, CIP, a small peptide, inhibited Cdk5/p25 activity and restored insulin secretion. The same results were detected in co-infection of dominant negative Cdk5 (DNCdk5) with p25. CIP also reduced beta cells apoptosis induced by Cdk5/p25. These studies indicate that Cdk5/p25 hyperactivation deregulates insulin secretion and induces cell death in pancreatic beta cells and suggests that CIP may serve as a therapeutic agent for type 2 diabetes. PMID:24039692

  2. Antiaggregation Potential of Padina gymnospora against the Toxic Alzheimer’s Beta-Amyloid Peptide 25–35 and Cholinesterase Inhibitory Property of Its Bioactive Compounds

    PubMed Central

    Shanmuganathan, Balakrishnan; Sheeja Malar, Dicson; Sathya, Sethuraman; Pandima Devi, Kasi

    2015-01-01

    Inhibition of β-amyloid (Aβ) aggregation in the cerebral cortex of the brain is a promising therapeutic and defensive strategy in identification of disease modifying agents for Alzheimer’s disease (AD). Since natural products are considered as the current alternative trend for the discovery of AD drugs, the present study aims at the evaluation of anti-amyloidogenic potential of the marine seaweed Padina gymnospora. Prevention of aggregation and disaggregation of the mature fibril formation of Aβ 25–35 by acetone extracts of P. gymnospora (ACTPG) was evaluated in two phases by Thioflavin T assay. The results were further confirmed by confocal laser scanning microscopy (CLSM) analysis and Fourier transform infrared (FTIR) spectroscopic analysis. The results of antiaggregation and disaggregation assay showed that the increase in fluorescence intensity of aggregated Aβ and the co-treatment of ACTPG (250 μg/ml) with Aβ 25–35, an extensive decrease in the fluorescence intensity was observed in both phases, which suggests that ACTPG prevents the oligomers formation and disaggregation of mature fibrils. In addition, ACTPG was subjected to column chromatography and the bioactivity was screened based on the cholinesterase inhibitory activity. Finally, the active fraction was subjected to LC-MS/MS analysis for the identification of bioactive compounds. Overall, the results suggest that the bioactive compound alpha bisabolol present in the alga might be responsible for the observed cholinesterase inhibition with the IC50 value < 10 μg/ml for both AChE and BuChE when compared to standard drug donepezil (IC50 value < 6 μg/ml) and support its use for the treatment of neurological disorders. PMID:26536106

  3. Gastrointestinal Endogenous Protein-Derived Bioactive Peptides: An in Vitro Study of Their Gut Modulatory Potential

    PubMed Central

    Dave, Lakshmi A.; Hayes, Maria; Mora, Leticia; Montoya, Carlos A.; Moughan, Paul J.; Rutherfurd, Shane M.

    2016-01-01

    A recently proposed paradigm suggests that, like their dietary counterparts, digestion of gastrointestinal endogenous proteins (GEP) may also produce bioactive peptides. With an aim to test this hypothesis, in vitro digests of four GEP namely; trypsin (TRYP), lysozyme (LYS), mucin (MUC), serum albumin (SA) and a dietary protein chicken albumin (CA) were screened for their angiotensin-I converting (ACE-I), renin, platelet-activating factor-acetylhydrolase (PAF-AH) and dipeptidyl peptidase-IV inhibitory (DPP-IV) and antioxidant potential following simulated in vitro gastrointestinal digestion. Further, the resultant small intestinal digests were enriched to obtain peptides between 3–10 kDa in size. All in vitro digests of the four GEP were found to inhibit ACE-I compared to the positive control captopril when assayed at a concentration of 1 mg/mL, while the LYS < 3-kDa permeate fraction inhibited renin by 40% (±1.79%). The LYS < 10-kDa fraction inhibited PAF-AH by 39% (±4.34%), and the SA < 3-kDa fraction inhibited DPP-IV by 45% (±1.24%). The MUC < 3-kDa fraction had an ABTS-inhibition antioxidant activity of 150 (±24.79) µM trolox equivalent and the LYS < 10-kDa fraction inhibited 2,2-Diphenyl-1-picrylhydrazyl (DPPH) by 54% (±1.62%). Moreover, over 190 peptide-sequences were identified from the bioactive GEP fractions. The findings of the present study indicate that GEP are a significant source of bioactive peptides which may influence gut function. PMID:27043546

  4. The protection of rat retinal ganglion cells from ischemia/reperfusion injury by the inhibitory peptide of mitochondrial μ-calpain.

    PubMed

    Ozaki, Taku; Yamashita, Tetsuro; Tomita, Hiroshi; Sugano, Eriko; Ishiguro, Sei-Ichi

    2016-09-30

    Intracellular Ca(2+)-dependent cysteine proteases such as calpains have been suggested as critical factors in retinal ganglion cell (RGC) death. However, it is unknown whether mitochondrial calpains are involved in RGC death. The purpose of the present study was to determine whether the inhibition of mitochondrial μ-calpain activity protects against RGC death during ischemia/reperfusion (I/R) injury. This study used a well-established rat model of experimental acute glaucoma involving I/R injury. A specific peptide inhibitor of mitochondrial μ-calpain, Tat-μCL, was topically applied to rats via eye drops three times a day for 5 days after I/R. RGC death was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The truncation of apoptosis-inducing factor (AIF) was determined by western blot analyses. Retinal morphology was determined after staining with hematoxyline and eosin. In addition, the number of Fluoro Gold-labeled RGCs in flat-mounted retinas was used to determine the percentage of surviving RGCs after I/R injury. After 1 day of I/R, RGC death was observed in the ganglion cell layer. Treatment with Tat-μCL eye drops significantly prevented the death of RGCs and the truncation of AIF. After 5 days of I/R, RGC death decreased by approximately 40%. However, Tat-μCL significantly inhibited the decrease in the retinal sections and flat-mounted retinas. The results suggested that mitochondrial μ-calpain is associated with RGC death during I/R injury via truncation of AIF. In addition, the inhibition of mitochondrial μ-calpain activity by Tat-μCL had a neuroprotective effect against I/R-induced RGC death. PMID:27596965

  5. The Atmospheric Chemistry Experiment (ACE): Mission Overview

    NASA Astrophysics Data System (ADS)

    Bernath, P.

    2003-04-01

    The ACE mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE will make a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) will give ACE coverage of tropical, mid-latitudes and polar regions. The solar occultation advantages are high sensitivity and self-calibration. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4100 cm-1) will measure the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. The ACE concept is derived from the now-retired ATMOS FTS instrument, which flew on the Space Shuttle in 1985, 1992, 1993, 1994. Climate-chemistry coupling may lead to the formation of an Arctic ozone hole. ACE will provide high quality data to confront these model predictions and will monitor polar chemistry as chlorine levels decline. The ACE-FTS can measure water vapor and HDO in the tropical tropopause region to study dehydration and strat-trop exchange. The molecular signatures of massive forest fires will evident in the ACE infrared spectra. The CO_2 in our spectra can be used to either retrieve atmospheric pressure or (if the instrument pointing knowledge proves to be satisfactory) for an independent retrieval of a CO_2 profile for carbon cycle science. Aerosols and clouds will be monitored using the extinction of solar

  6. Developing Communities: Serving ACE through Tertiary Education

    ERIC Educational Resources Information Center

    Sofo, Francesco

    2011-01-01

    Purpose: The purpose of this paper is to review the focus and practice of Adult and Community Education (ACE) as well as its conceptualization and delivery and to suggest parameters for an approach based on excellence, a balanced scorecard and performance to meet community needs. Design/methodology/approach: The review examines key aspects of the…

  7. Advanced Colloids Experiment (ACE-H-2)

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ron; Chmiel, Alan J.; Eustace, John; LaBarbera, Melissa

    2015-01-01

    Increment 43 - 44 Science Symposium presentation of Advanced Colloids Experiment (ACE-H-2) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  8. Advanced Colloids Experiment (ACE-T1)

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ron; Brown, Dan; Eustace, John

    2015-01-01

    Increment 45 - 46 Science Symposium presentation of Advanced Colloids Experiment (ACE-T1) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  9. Ace the Verbal on the SAT

    ERIC Educational Resources Information Center

    Meierding, Loren

    2005-01-01

    Many students are not accepted in to certain colleges and universities because of low SAT scores. Loren Meierding has written Ace the Verbal on the SAT to help students with minimal preparation do well by improving their vocabulary and use better techniques for finding the answers to the questions. This book provides strategies needed to score…

  10. Cardiac and renal distribution of ACE and ACE-2 in rats with heart failure.

    PubMed

    Cohen-Segev, Ravit; Francis, Bahaa; Abu-Saleh, Niroz; Awad, Hoda; Lazarovich, Aviva; Kabala, Aviva; Aronson, Doron; Abassi, Zaid

    2014-10-01

    Congestive heart failure is often associated with impaired kidney function. Over-activation of the renin-angiotensin-aldosterone system (RAAS) contributes to avid salt and water retention in heart failure. While the expression of angiotensin converting enzyme (ACE), a key enzyme in the synthesis of angiotensin II (Ang II), is well established, the expression of angiotensin converting enzyme-2 (ACE-2), an enzyme responsible for angiotensin 1-7 generation, is largely unknown. This issue is of a special interest since angiotensin 1-7 counteracts many of the proliferative and hypertensive effects of angiotensin II. Therefore, the present study was designed to investigate the expression of both enzymes in the kidney and heart of rats with heart failure. Heart failure (CHF) was induced in male Sprague Dawley rats (n=9) by the creation of a surgical aorto-caval fistula. Sham-operated rats served as controls (n=8). Two weeks after surgery, the animals were sacrificed and their hearts and kidneys were harvested for assessment of cardiac remodeling and ACE and ACE-2 immunoreactivity by immunohistochemical staining. ACE immunostaining was significantly increased in the kidneys (4.34 ± 0.39% vs. 2.96 ± 0.40%, P<0.05) and hearts (4.57 ± 0.54% vs. 2.19 ± 0.37%, P<0.01) of CHF rats as compared with their sham controls. In a similar manner, ACE-2 immunoreactivity was also elevated in the kidneys (4.65 ± 1.17% vs. 1.75 ± 0.29%, P<0.05) and hearts (5.48 ± 1.11% vs. 1.13 ± 0.26%, P<0.01) of CHF rats as compared with their healthy controls. This study showed that both ACE and ACE-2 are overexpressed in the cardiac and renal tissues of animals with heart failure as compared with their sham controls. The increased expression of the beneficial ACE-2 in heart failure may serve as a compensatory response to the over-activity of the deleterious isoform, namely, angiotensin converting enzyme 1(ACE-1).

  11. Binding of ACE-inhibitors to in vitro and patient-derived amyloid-β fibril models

    NASA Astrophysics Data System (ADS)

    Bhavaraju, Manikanthan; Phillips, Malachi; Bowman, Deborah; Aceves-Hernandez, Juan M.; Hansmann, Ulrich H. E.

    2016-01-01

    Currently, no drugs exist that can prevent or reverse Alzheimer's disease, a neurodegenerative disease associated with the presence, in the brain, of plaques that are composed of β-amyloid (Aβ) peptides. Recent studies suggest that angiotensin-converting enzyme (ACE) inhibitors, a set of drugs used to treat hypertension, may inhibit amyloid formation in vitro. In the present study, we investigate through computer simulations the binding of ACE inhibitors to patient-derived Aβ fibrils and contrast it with that of ACE inhibitors binding to in vitro generated fibrils. The binding affinities of the ACE inhibitors are compared with that of Congo red, a dye that is used to identify amyloid structures and that is known to be a weak inhibitor of Aβ aggregation. We find that ACE inhibitors have a lower binding affinity to the patient-derived fibrils than to in vitro generated ones. For patient-derived fibrils, their binding affinities are even lower than that of Congo red. Our observations raise doubts on the hypothesis that these drugs inhibit fibril formation in Alzheimer patients by interacting directly with the amyloids.

  12. Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)

    NASA Astrophysics Data System (ADS)

    Dupuy, E.; Walker, K. A.; Kar, J.; Boone, C. D.; McElroy, C. T.; Bernath, P. F.; Drummond, J. R.; Skelton, R.; McLeod, S. D.; Hughes, R. C.; Nowlan, C. R.; Dufour, D. G.; Zou, J.; Nichitiu, F.; Strong, K.; Baron, P.; Bevilacqua, R. M.; Blumenstock, T.; Bodeker, G. E.; Borsdorff, T.; Bourassa, A. E.; Bovensmann, H.; Boyd, I. S.; Bracher, A.; Brogniez, C.; Burrows, J. P.; Catoire, V.; Ceccherini, S.; Chabrillat, S.; Christensen, T.; Coffey, M. T.; Cortesi, U.; Davies, J.; de Clercq, C.; Degenstein, D. A.; de Mazière, M.; Demoulin, P.; Dodion, J.; Firanski, B.; Fischer, H.; Forbes, G.; Froidevaux, L.; Fussen, D.; Gerard, P.; Godin-Beekmann, S.; Goutail, F.; Granville, J.; Griffith, D.; Haley, C. S.; Hannigan, J. W.; Höpfner, M.; Jin, J. J.; Jones, A.; Jones, N. B.; Jucks, K.; Kagawa, A.; Kasai, Y.; Kerzenmacher, T. E.; Kleinböhl, A.; Klekociuk, A. R.; Kramer, I.; Küllmann, H.; Kuttippurath, J.; Kyrölä, E.; Lambert, J.-C.; Livesey, N. J.; Llewellyn, E. J.; Lloyd, N. D.; Mahieu, E.; Manney, G. L.; Marshall, B. T.; McConnell, J. C.; McCormick, M. P.; McDermid, I. S.; McHugh, M.; McLinden, C. A.; Mellqvist, J.; Mizutani, K.; Murayama, Y.; Murtagh, D. P.; Oelhaf, H.; Parrish, A.; Petelina, S. V.; Piccolo, C.; Pommereau, J.-P.; Randall, C. E.; Robert, C.; Roth, C.; Schneider, M.; Senten, C.; Steck, T.; Strandberg, A.; Strawbridge, K. B.; Sussmann, R.; Swart, D. P. J.; Tarasick, D. W.; Taylor, J. R.; Tétard, C.; Thomason, L. W.; Thompson, A. M.; Tully, M. B.; Urban, J.; Vanhellemont, F.; Vigouroux, C.; von Clarmann, T.; von der Gathen, P.; von Savigny, C.; Waters, J. W.; Witte, J. C.; Wolff, M.; Zawodny, J. M.

    2009-01-01

    This paper presents extensive {bias determination} analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45-60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about +20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within ±10% (average values within ±6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes ( 35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements.

  13. Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)

    NASA Astrophysics Data System (ADS)

    Dupuy, E.; Walker, K. A.; Kar, J.; Boone, C. D.; McElroy, C. T.; Bernath, P. F.; Drummond, J. R.; Skelton, R.; McLeod, S. D.; Hughes, R. C.; Nowlan, C. R.; Dufour, D. G.; Zou, J.; Nichitiu, F.; Strong, K.; Baron, P.; Bevilacqua, R. M.; Blumenstock, T.; Bodeker, G. E.; Borsdorff, T.; Bourassa, A. E.; Bovensmann, H.; Boyd, I. S.; Bracher, A.; Brogniez, C.; Burrows, J. P.; Catoire, V.; Ceccherini, S.; Chabrillat, S.; Christensen, T.; Coffey, M. T.; Cortesi, U.; Davies, J.; de Clercq, C.; Degenstein, D. A.; de Mazière, M.; Demoulin, P.; Dodion, J.; Firanski, B.; Fischer, H.; Forbes, G.; Froidevaux, L.; Fussen, D.; Gerard, P.; Godin-Beekman, S.; Goutail, F.; Granville, J.; Griffith, D.; Haley, C. S.; Hannigan, J. W.; Höpfner, M.; Jin, J. J.; Jones, A.; Jones, N. B.; Jucks, K.; Kagawa, A.; Kasai, Y.; Kerzenmacher, T. E.; Kleinböhl, A.; Klekociuk, A. R.; Kramer, I.; Küllmann, H.; Kuttippurath, J.; Kyrölä, E.; Lambert, J.-C.; Livesey, N. J.; Llewellyn, E. J.; Lloyd, N. D.; Mahieu, E.; Manney, G. L.; Marshall, B. T.; McConnell, J. C.; McCormick, M. P.; McDermid, I. S.; McHugh, M.; McLinden, C. A.; Mellqvist, J.; Mizutani, K.; Murayama, Y.; Murtagh, D. P.; Oelhaf, H.; Parrish, A.; Petelina, S. V.; Piccolo, C.; Pommereau, J.-P.; Randall, C. E.; Robert, C.; Roth, C.; Schneider, M.; Senten, C.; Steck, T.; Strandberg, A.; Strawbridge, K. B.; Sussmann, R.; Swart, D. P. J.; Tarasick, D. W.; Taylor, J. R.; Tétard, C.; Thomason, L. W.; Thompson, A. M.; Tully, M. B.; Urban, J.; Vanhellemont, F.; von Clarmann, T.; von der Gathen, P.; von Savigny, C.; Waters, J. W.; Witte, J. C.; Wolff, M.; Zawodny, J. M.

    2008-02-01

    This paper presents extensive validation analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. The ACE satellite instruments operate in the mid-infrared and ultraviolet-visible-near-infrared spectral regions using the solar occultation technique. In order to continue the long-standing record of solar occultation measurements from space, a detailed quality assessment is required to evaluate the ACE data and validate their use for scientific purposes. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the mean differences range generally between 0 and +10% with a slight but systematic positive bias (typically +5%). At higher altitudes (45-60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments by up to ~40% (typically +20%). For the ACE-MAESTRO version 1.2 ozone data product, agreement within ±10% (generally better than ±5%) is found between 18 and 40 km for the sunrise and sunset measurements. At higher altitudes (45-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (by as much as -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS and indicate a large positive bias (+10 to +30

  14. Effect of Allium sativum and fish collagen on the proteolytic and angiotensin-I converting enzyme-inhibitory activities in cheese and yogurt.

    PubMed

    Shori, A B; Baba, A S; Keow, J N

    2012-12-15

    There is an increasing demand of functional foods in developed countries. Yogurt plays an important role in the management of blood pressure. Several bioactive peptides isolated from Allium sativum or fish collagen have shown antihypertensive activity. Thus, in the present study the effects of A. sativum and/or Fish Collagen (FC) on proteolysis and ACE inhibitory activity in yogurt (0, 7 and 14 day) and cheese (0, 14 and 28 day) were investigated. Proteolytic activities were the highest on day 7 of refrigerated storage in A. sativum-FC-yogurt (337.0 +/- 5.3 microg g(-1)) followed by FC-yogurt (275.3 +/- 2.0 microg g(-1)), A. sativum-yogurt (245.8 +/- 4.2 microg g(-1)) and plain-yogurt (40.4 +/- 1.2 microg g(-1)). On the other hand, proteolytic activities in cheese ripening were the highest (p < 0.05) on day 14 of storage for plain and A. sativum-cheeses (411.4 +/- 4.3 and 528.7 +/- 1.6 microg g(-1), respectively). However, the presence of FC increased the proteolysis to the highest level on day 28 of storage for FC- and A. sativum-FC cheeses (641.2 +/- 0.1 and 1128.4 +/- 4.5 microg g(-1), respectively). In addition, plain- and A. sativum-yogurts with or without FC showed maximal inhibition of ACE on day 7 of storage. Fresh plain- and A. sativum-cheeses showed ACE inhibition (72.3 +/- 7.8 and 50.4 +/- 1.6 % respectively), the presence of FC in both type of cheeses reduced the ACE inhibition to 62.9 +/- 0.8 and 44.5 +/- 5.0%, respectively. However, refrigerated storage increased ACE inhibition in cheeses (p < 0.05 on day 28) in the presence of FC more than in the absence. In conclusion, the presence of FC in A. sativum-yogurt or cheese enhanced the proteolytic activity. Thus, it has potential in the development of an effective dietary strategy for hypertension associated cardiovascular diseases.

  15. Wild Mushrooms in Nepal: Some Potential Candidates as Antioxidant and ACE-Inhibition Sources

    PubMed Central

    Hai Bang, Tran; Suhara, Hiroto; Doi, Katsumi; Ishikawa, Hiroya; Fukami, Katsuya; Parajuli, Gopal Prasad; Katakura, Yoshinori; Yamashita, Shuntaro; Watanabe, Kazuo; Adhikari, Mahesh Kumar; Manandhar, Hira Kaji; Kondo, Ryuichiro; Shimizu, Kuniyoshi

    2014-01-01

    Twenty-nine mushrooms collected in the mountainous areas of Nepal were analyzed for antioxidant activity by different methods, including Folin-Ciocalteu, ORAC, ABTS, and DPPH assays. Intracellular H2O2-scavenging activity was also performed on HaCaT cells. The results showed that phenolic compounds are the main antioxidant of the mushrooms. Among studied samples, Inonotus andersonii, and Phellinus gilvus exhibited very high antioxidant activity with the phenolic contents up to 310.8 and 258.7 mg GAE/g extracts, respectively. The H2O2-scavenging assay on cells also revealed the potential of these mushrooms in the prevention of oxidative stress. In term of ACE-inhibition, results showed that Phlebia tremellosa would be a novel and promising candidate for antihypertensive studies. This mushroom exhibited even higher in vitro ACE-inhibition activity than Ganoderma lingzhi, with the IC50 values of the two mushrooms being 32 μg/mL and 2 μg/mL, respectively. This is the first time biological activities of mushrooms collected in Nepal were reported. Information from this study should be a valuable reference for future studies on antioxidant and ACE-inhibitory activities of mushrooms. PMID:24672576

  16. Secoisolariciresinol Diglucoside (SDG) Isolated from Flaxseed, an Alternative to ACE Inhibitors in the Treatment of Hypertension.

    PubMed

    Prasad, Kailash

    2013-12-01

    Secoisolariciresionol diglucoside (SDG) is a plant lignan isolated from flaxseed and is phytoestrogen. SDG is a potent and long-acting hypotensive agent. Plant phytoestrogens have inhibitory effects on angiotensin-converting enzyme (ACE). The hypotensive effects of SDG, a phytoestrogen, may be mediated through inhibition of ACE. The objective of this study was to investigate if SDG-induced hypotension is mediated through inhibition of ACE. The Sprague Dawley male rats were anesthetized and trachea was cannulated. The right jugular vein was cannulated to administer the drug and the carotid artery was cannulated to record arterial pressures using PIOEZ-1 miniature model transducer (Becton, Dickinson and Company, Franklin Lakes, NJ) and Beckman dynograph (Beckman Instruments, Inc., Schiller Park, IL). The effects of angiotensin I (0.2 µg/kg, intravenously [IV]) in the absence and presence of SDG (10 mg/kg, IV), and SDG alone on systolic, diastolic, and mean arterial pressures were measured before and after 15, 30, and 60 minutes of drug administration. SDG decreased the systolic, diastolic, and mean arterial pressure by 37, 47, and 43%, respectively, at 15 minutes and 18.8, 21.2, and 20.3%, respectively, at 60 minutes. Angiotensin I increased the arterial pressure. SDG decreased angiotensin I-induced rise in the systolic, diastolic, and mean arterial pressures by 60, 58, and 51%, respectively, at 15 minutes and 48, 46, and 30%, respectively, at 60 minutes. The data suggest that SDG reduced the angiotensin I-induced rise in the arterial pressures and hence SDG is a potent ACE inhibitor.

  17. Isolation, hyperexpression, and sequencing of the aceA gene encoding isocitrate lyase in Escherichia coli.

    PubMed Central

    Matsuoka, M; McFadden, B A

    1988-01-01

    A structural gene for isocitrate lyase was isolated from a cosmid containing an ace locus of the Escherichia coli chromosome. Cloning and expression under control of the tac promoter in a multicopy plasmid showed that a 1.7-kilobase-pair DNA segment was sufficient for complementation of an aceA deletion mutation and overproduction of isocitrate lyase. DNA sequence analysis of the cloned gene and N-terminal protein sequencing of the cloned and wild-type enzymes revealed an entire aceA gene which encodes a 429-amino-acid residue polypeptide whose C-terminus is histidine. The deduced amino acid sequence for the 47.2-kilodalton subunit of E. coli isocitrate lyase could be aligned with that for the 64.8-kilodalton subunit of the castor bean enzyme with 39% identity except for limited N- and C-terminal regions and a 103-residue stretch that was unique for the plant enzyme and started approximately in the middle of that peptide. Images PMID:3049537

  18. Unraveling the Pivotal Role of Bradykinin in ACE Inhibitor Activity.

    PubMed

    Taddei, Stefano; Bortolotto, L

    2016-10-01

    Historically, the first described effect of an angiotensin converting enzyme (ACE) inhibitor was an increased activity of bradykinin, one of the substrates of ACE. However, in the subsequent years, molecular models describing the mechanism of action of ACE inhibitors in decreasing blood pressure and cardiovascular risk have focused mostly on the renin-angiotensin system. Nonetheless, over the last 20 years, the importance of bradykinin in regulating vasodilation, natriuresis, oxidative stress, fibrinolysis, inflammation, and apoptosis has become clearer. The affinity of ACE appears to be higher for bradykinin than for angiotensin I, thereby suggesting that ACE inhibitors may be more effective inhibitors of bradykinin degradation than of angiotensin II production. Data describing the effect of ACE inhibition on bradykinin signaling support the hypothesis that the most cardioprotective benefits attributed to ACE inhibition may be due to increased bradykinin signaling rather than to decreased angiotensin II signaling, especially when high dosages of ACE inhibitors are considered. In particular, modulation of bradykinin in the endothelium appears to be a major target of ACE inhibition. These new mechanistic concepts may lead to further development of strategies enhancing the bradykinin signaling. PMID:27260014

  19. Angiotensin I-converting enzyme inhibitor peptides derived from the endostatin-containing NC1 fragment of human collagen XVIII.

    PubMed

    Farias, Shirley L; Sabatini, Regiane A; Sampaio, Tatiana C; Hirata, Izaura Y; Cezari, Maria Helena S; Juliano, Maria A; Sturrock, Edward D; Carmona, Adriana K; Juliano, Luiz

    2006-05-01

    Extracellular matrix and soluble plasma proteins generate peptides that regulate biological activities such as cell growth, differentiation and migration. Bradykinin, a peptide released from kininogen by kallikreins, stimulates vasodilatation and endothelial cell proliferation. Various classes of substances can potentiate these biological actions of bradykinin. Among them, the best studied are bradykinin potentiating peptides (BPPs) derived from snake venom, which can also strongly inhibit angiotensin I-converting enzyme (ACE) activity. We identified and synthesized sequences resembling BPPs in the vicinity of potential proteolytic cleavage sites in the collagen XVIII molecule, close to endostatin. These peptides were screened as inhibitors of human recombinant wild-type ACE containing two intact functional domains; two full-length ACE mutants containing only a functional C- or N-domain catalytic site; and human testicular ACE, a natural form of the enzyme that only contains the C-domain. The BPP-like peptides inhibited ACE in the micromolar range and interacted preferentially with the C-domain. The proteolytic activity involved in the release of BPP-like peptides was studied in human serum and human umbilical-vein endothelial cells. The presence of enzymes able to release these peptides in blood led us to speculate on a physiological mechanism for the control of ACE activities.

  20. In vitro digestion of purified β-casein variants A(1), A(2), B, and I: effects on antioxidant and angiotensin-converting enzyme inhibitory capacity.

    PubMed

    Petrat-Melin, B; Andersen, P; Rasmussen, J T; Poulsen, N A; Larsen, L B; Young, J F

    2015-01-01

    Genetic polymorphisms of bovine milk proteins affect the protein profile of the milk and, hence, certain technological properties, such as casein (CN) number and cheese yield. However, reports show that such polymorphisms may also affect the health-related properties of milk. Therefore, to gain insight into their digestion pattern and bioactive potential, β-CN was purified from bovine milk originating from cows homozygous for the variants A(1), A(2), B, and I by a combination of cold storage, ultracentrifugation, and acid precipitation. The purity of the isolated β-CN was determined by HPLC, variants were verified by mass spectrometry, and molar extinction coefficients at λ=280nm were determined. β-Casein from each of the variants was subjected to in vitro digestion using pepsin and pancreatic enzymes. Antioxidant and angiotensin-converting enzyme (ACE) inhibitory capacities of the hydrolysates were assessed at 3 stages of digestion and related to that of the undigested samples. Neither molar extinction coefficients nor overall digestibility varied significantly between these 4 variants; however, clear differences in digestion pattern were indicated by gel electrophoresis. In particular, after 60min of pepsin followed by 5min of pancreatic enzyme digestion, one ≈4kDa peptide with the N-terminal sequence (106)H-K-E-M-P-F-P-K- was absent from β-CN variant B. This is likely a result of the (122)Ser to (122)Arg substitution in variant B introducing a novel trypsin cleavage site, leading to the changed digestion pattern. All investigated β-CN variants exhibited a significant increase in antioxidant capacity upon digestion, as measured by the Trolox-equivalent antioxidant capacity assay. After 60min of pepsin + 120min of pancreatic enzyme digestion, the accumulated increase in antioxidant capacity was ≈1.7-fold for the 4 β-CN variants. The ACE inhibitory capacity was also significantly increased by digestion, with the B variant reaching the highest inhibitory

  1. Multiphysics Applications of ACE3P

    SciTech Connect

    K.H. Lee, C. Ko, Z. Li, C.-K. Ng, L. Xiao, G. Cheng, H. Wang

    2012-07-01

    The TEM3P module of ACE3P, a parallel finite-element electromagnetic code suite from SLAC, focuses on the multiphysics simulation capabilities, including thermal and mechanical analysis for accelerator applications. In this pa- per, thermal analysis of coupler feedthroughs to supercon- ducting rf (SRF) cavities will be presented. For the realistic simulation, internal boundary condition is implemented to capture RF heating effects on the surface shared by a di- electric and a conductor. The multiphysics simulation with TEM3P matched the measurement within 0.4%.

  2. Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1–7/Mas axis

    PubMed Central

    Li, Xiaopeng; Xue, Anita; Gao, Xu; Abdul-Hafez, Amal

    2011-01-01

    Earlier work from this laboratory demonstrated that apoptosis of alveolar epithelial cells (AECs) requires autocrine generation of angiotensin (ANG) II. More recent studies showed that angiotensin converting enzyme-2 (ACE-2), which degrades ANGII to form ANG1–7, is protective but severely downregulated in human and experimental lung fibrosis. Here it was theorized that ACE-2 and its product ANG1–7 might therefore regulate AEC apoptosis. To evaluate this hypothesis, the AEC cell line MLE-12 and primary cultures of rat AECs were exposed to the profibrotic apoptosis inducers ANGII or bleomycin (Bleo). Markers of apoptosis (caspase-9 or -3 activation and nuclear fragmentation), steady-state ANGII and ANG1–7, and JNK phosphorylation were measured thereafter. In the absence of Bleo, inhibition of ACE-2 by small interfering RNA or by a competitive inhibitor (DX600 peptide) caused a reciprocal increase in autocrine ANGII and corresponding decrease in ANG1–7 in cell culture media (both P < 0.05) and, moreover, induced AEC apoptosis. At baseline (without inhibitor), ANG1–7 in culture media was 10-fold higher than ANGII (P < 0.01). Addition of purified ANGII or bleomycin-induced caspase activation, nuclear fragmentation, and JNK phosphorylation in cultured AECs. However, preincubation with ANG1–7 (0.1 μM) prevented JNK phosphorylation and apoptosis. Moreover, pretreatment with A779, a specific blocker of the ANG1–7 receptor mas, prevented ANG1–7 blockade of JNK phosphorylation, caspase activation, and nuclear fragmentation. These data demonstrate that ACE-2 regulates AEC survival by balancing the proapoptotic ANGII and its antiapoptotic degradation product ANG1–7. They also suggest that ANG1–7 inhibits AEC apoptosis through the ANG1–7 receptor mas. PMID:21665960

  3. Phytochemical screening and evaluation of in vitro angiotensin-converting enzyme inhibitory activity of Artocarpus altilis leaf.

    PubMed

    Siddesha, Jalahalli M; Angaswamy, Nataraju; Vishwanath, Bannikuppe S

    2011-12-01

    This study investigates the effect of Artocarpus altilis leaf extracts on angiotensin-converting enzyme (ACE) activity. Among the extracts tested, hot ethanol extract exhibited a potent ACE-inhibitory activity with an IC₅₀ value of 54.08 ± 0.29 µg mL⁻¹ followed by cold ethyl acetate extract (IC₅₀ of 85.44 ± 0.85 µg mL⁻¹). In contrast, the hot aqueous extracts showed minimum inhibition with the IC₅₀ value of 765.52 ± 11.97 µg mL⁻¹ at the maximum concentration tested. Further, the phytochemical analysis indicated the varied distribution of tannins, phenolics, glycosides, saponins, steroids, terpenoids and anthraquinones in cold and hot leaf extracts. The correlation between the phytochemical analysis and ACE-inhibitory activity suggests that the high content of glycosidic and phenolic compounds could be involved in exerting ACE-inhibitory activity. In conclusion, this study supports the utilisation of A. altilis leaf in the folk medicine for the better treatment of hypertension. Further studies on isolation and characterisation of specific ACE-inhibitory molecule(s) from ethyl acetate, ethanol and methanol extracts of A. altilis leaf would be highly interesting.

  4. Bioactive Peptides in Cereals and Legumes: Agronomical, Biochemical and Clinical Aspects

    PubMed Central

    Malaguti, Marco; Dinelli, Giovanni; Leoncini, Emanuela; Bregola, Valeria; Bosi, Sara; Cicero, Arrigo F. G.; Hrelia, Silvana

    2014-01-01

    Cereals and legumes are key components of a healthy and balanced diet. Accordingly, many national nutritional guidelines emphasize their health promoting properties by placing them at the base of nutritional food pyramids. This concept is further validated by the observed correlation between a lower risk and occurrence of chronic diseases and the adherence to dietary patterns, like the Mediterranean diet, in which cereal grains, legumes and derived products represent a staple food. In the search for a dietary approach to control/prevent chronic degenerative diseases, protein derived bioactive peptides may represent one such source of health-enhancing components. These peptides may already be present in foods as natural components or may derive from hydrolysis by chemical or enzymatic treatments (digestion, hydrolysis or fermentation). Many reports are present in the literature regarding the bioactivity of peptides in vitro and a wide range of activities has been described, including antimicrobial properties, blood pressure-lowering (ACE inhibitory) effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, enhancement of mineral absorption/bioavailability, cyto- or immunomodulatory effects, and opioid-like activities. However it is difficult to translate these observed effects to human. In fact, the active peptide may be degraded during digestion, or may not be absorbed or reach the target tissues at a concentration necessary to exert its function. This review will focus on bioactive peptides identified in cereals and legumes, from an agronomical and biochemical point of view, including considerations about requirements for the design of appropriate clinical trials necessary for the assessment of their nutraceutical effect in vivo. PMID:25405741

  5. Sex Hormones Promote Opposite Effects on ACE and ACE2 Activity, Hypertrophy and Cardiac Contractility in Spontaneously Hypertensive Rats

    PubMed Central

    Dalpiaz, P. L. M.; Lamas, A. Z.; Caliman, I. F.; Ribeiro, R. F.; Abreu, G. R.; Moyses, M. R.; Andrade, T. U.; Gouvea, S. A.; Alves, M. F.; Carmona, A. K.; Bissoli, N. S.

    2015-01-01

    Background There is growing interest in sex differences and RAS components. However, whether gender influences cardiac angiotensin I-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity is still unknown. In the present work, we determined the relationship between ACE and ACE2 activity, left ventricular function and gender in spontaneously hypertensive rats (SHRs). Methodology / Principal Findings Twelve-week-old female (F) and male (M) SHRs were divided into 2 experimental groups (n = 7 in each group): sham (S) and gonadectomized (G). Fifty days after gonadectomy, we measured positive and negative first derivatives (dP/dt maximum left ventricle (LV) and dP/dt minimum LV, respectively), hypertrophy (morphometric analysis) and ACE and ACE2 catalytic activity (fluorimetrically). Expression of calcium handling proteins was measured by western blot. Male rats exhibited higher cardiac ACE and ACE2 activity as well as hypertrophy compared to female rats. Orchiectomy decreased the activity of these enzymes and hypertrophy, while ovariectomy increased hypertrophy and ACE2, but did not change ACE activity. For cardiac function, the male sham group had a lower +dP/dt than the female sham group. After gonadectomy, the +dP/dt increased in males and reduced in females. The male sham group had a lower -dP/dt than the female group. After gonadectomy, the -dP/dt increased in the male and decreased in the female groups when compared to the sham group. No difference was observed among the groups in SERCA2a protein expression. Gonadectomy increased protein expression of PLB (phospholamban) and the PLB to SERCA2a ratio in female rats, but did not change in male rats. Conclusion Ovariectomy leads to increased cardiac hypertrophy, ACE2 activity, PLB expression and PLB to SERCA2a ratio, and worsening of hemodynamic variables, whereas in males the removal of testosterone has the opposite effects on RAS components. PMID:26010093

  6. ACE: A Collaborative School Consultation Program for Secondary School Teachers

    ERIC Educational Resources Information Center

    Couture, Caroline; Massé, Line

    2014-01-01

    This article presents a description of ACE (Accompagnement collaboratif des enseignants (Collaborative teacher accompaniment)), a new program designed to guide secondary school teachers in integrating students with behavioral problems in their classrooms. ACE proposes collaborative accompaniment inspired by behavioral and mental health…

  7. ACE and AGTR1 polymorphisms in elite rhythmic gymnastics.

    PubMed

    Di Cagno, Alessandra; Sapere, Nadia; Piazza, Marina; Aquino, Giovanna; Iuliano, Enzo; Intrieri, Mariano; Calcagno, Giuseppe

    2013-02-01

    In the angiotensin-converting enzyme (ACE) gene, Alu deletion, in intron 16, is associated with higher concentrations of ACE serum activity and this may be associated with elite sprint and power performance. The Alu insertion is associated with lower ACE levels and this could lead to endurance performance. Moreover, recent studies have identified a single-nucleotide polymorphism of the angiotensin type 1 receptor gene AGTR1, which seems to be related to ACE activity. The aim of this study was to examine the involvement of the ACE and the AGTR1 gene polymorphisms in 28 Italian elite rhythmic gymnasts (age range 21 ± 7.6 years), and compare them to 23 middle level rhythmic gymnasts (age range 17 ± 10.9 years). The ACE D allele was significantly more frequent in elite athletes than in the control population (χ(2)=4.07, p=0.04). Comparisons between the middle level and elite athletes revealed significant differences (p<0.0001) for the ACE DD genotype (OR=6.48, 95% confidence interval=1.48-28.34), which was more frequent in elite athletes. There were no significant differences in the AGTR1 A/C genotype or allele distributions between the middle level and elite athletes. In conclusion, the ACE D allele genotype could be a contributing factor to high-performance rhythmic gymnastics that should be considered in athlete development and could help to identify which skills should be trained for talent promotion. PMID:23145508

  8. Desert Dust Layers Over Polluted Marine Boundary Layers: ACE-2 Measurements and ACE-Asia Plans

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Schmid, B.; Livingston, J. M.; Redemann, J.; Bergstrom, R. W.; Condon, Estelle P. (Technical Monitor)

    2000-01-01

    Aerosols in ACE-Asia are expected to have some commonalties with those in ACE-2, along with important differences. Among the commonalities are occurrences of desert dust layers over polluted marine boundary layers. Differences include the nature of the dust (yellowish in the East Asia desert outflow, vs. reddish-brown in the Sahara Outflow measured in ACE-2) and the composition of boundary-layer aerosols (e.g., more absorbing, soot and organic aerosol in-the Asian plume, caused by coal and biomass burning, with limited controls). In this paper we present ACE-2 measurements and analyses as a guide to our plans for ACE-2 Asia. The measurements include: (1) Vertical profiles of aerosol optical depth and extinction (380-1558 nm), and of water vapor column and concentration, from the surface through the elevated desert dust, measured by the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14); (2) Comparisons of airborne and shipborne sunphotometer optical depths to satellite-retrieved values, with and without desert dust; (3) Comparisons between airborne Sunphotometer optical depth and extinction spectra and those derived from coincident airborne in situ measurements of aerosol size distribution, scattering and absorption; (4) Comparisons between size distributions measured in situ and retrieved from sunphotometer optical depth spectra; (5) Comparisons between aerosol single scattering albedo values obtained by several techniques, using various combinations of measurements of backscatter, extinction, size distribution, scattering, absorption, and radiative flux. We show how analyses of these data can be used to address questions important to ACE-Asia, such as: (1) How do dust and other absorbing aerosols affect the accuracy of satellite optical depth retrievals? How important are asphericity effects? (2) How important are supermicron dust and seasalt aerosols to overall aerosol optical depth and radiative forcing? How well are these aerosols sampled by aircraft

  9. Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1-FoxM1 complex.

    PubMed

    Yang, Jin; Feng, Xuhui; Zhou, Qiong; Cheng, Wei; Shang, Ching; Han, Pei; Lin, Chiou-Hong; Chen, Huei-Sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin

    2016-09-20

    Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy.

  10. Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1-FoxM1 complex.

    PubMed

    Yang, Jin; Feng, Xuhui; Zhou, Qiong; Cheng, Wei; Shang, Ching; Han, Pei; Lin, Chiou-Hong; Chen, Huei-Sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin

    2016-09-20

    Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy. PMID:27601681

  11. Short communication: Effect of casein haplotype on angiotensin-converting enzyme inhibitory and antioxidant capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes.

    PubMed

    Perna, Annamaria; Simonetti, Amalia; Gambacorta, Emilio

    2016-09-01

    The aim of this work was to investigate the effect of casein haplotype (αS1, β, and κ) on antioxidative and angiotensin-converting enzyme (ACE) inhibitory capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes. The antioxidant capacity was measured using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid and ferric-reducing antioxidant power assays, whereas ACE inhibition was determined by ACE-inhibitory assay. The ACE-inhibitory and antioxidant capacities of milk casein increased during in vitro gastrointestinal digestion. Casein haplotype significantly influenced the antioxidative and ACE-inhibitory capacities of digested casein. In particular, BB-A(2)A(1)-AA casein and BB-A(1)A(1)-AA casein showed the highest ACE-inhibitory capacity, BB-A(2)A(2)-AA casein showed the highest antioxidant capacity, whereas BB-A(2)A(2)-BB casein showed the lowest biological capacity. To date, few studies have been done on the effect of casein haplotype on biological capacity of milk casein, thus the present study sets the basis for a new knowledge that could lead to the production of milk with better nutraceutical properties.

  12. Short communication: Effect of casein haplotype on angiotensin-converting enzyme inhibitory and antioxidant capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes.

    PubMed

    Perna, Annamaria; Simonetti, Amalia; Gambacorta, Emilio

    2016-09-01

    The aim of this work was to investigate the effect of casein haplotype (αS1, β, and κ) on antioxidative and angiotensin-converting enzyme (ACE) inhibitory capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes. The antioxidant capacity was measured using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid and ferric-reducing antioxidant power assays, whereas ACE inhibition was determined by ACE-inhibitory assay. The ACE-inhibitory and antioxidant capacities of milk casein increased during in vitro gastrointestinal digestion. Casein haplotype significantly influenced the antioxidative and ACE-inhibitory capacities of digested casein. In particular, BB-A(2)A(1)-AA casein and BB-A(1)A(1)-AA casein showed the highest ACE-inhibitory capacity, BB-A(2)A(2)-AA casein showed the highest antioxidant capacity, whereas BB-A(2)A(2)-BB casein showed the lowest biological capacity. To date, few studies have been done on the effect of casein haplotype on biological capacity of milk casein, thus the present study sets the basis for a new knowledge that could lead to the production of milk with better nutraceutical properties. PMID:27289148

  13. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases.

    PubMed

    Ryder, Kate; Bekhit, Alaa El-Din; McConnell, Michelle; Carne, Alan

    2016-10-01

    Five commercially available food-grade microbial protease preparations were evaluated for their ability to hydrolyse meat myofibrillar and connective tissue protein extracts to produce bioactive peptides. A bacterial-derived protease (HT) extensively hydrolysed both meat protein extracts, producing peptide hydrolysates with significant in vitro antioxidant and ACE inhibitor activities. The hydrolysates retained bioactivity after simulated gastrointestinal hydrolysis challenge. Gel permeation chromatography sub-fractionation of the crude protein hydrolysates showed that the smaller peptide fractions exhibited the highest antioxidant and ACE inhibitor activities. OFFGEL electrophoresis of the small peptides of both hydrolysates showed that low isoelectric point peptides had antioxidant activity; however, no consistent relationship was observed between isoelectric point and ACE inhibition. Cell-based assays indicated that the hydrolysates present no significant cytotoxicity towards Vero cells. The results indicate that HT protease hydrolysis of meat myofibrillar and connective tissue protein extracts produces bioactive peptides that are non-cytotoxic, should be stable in the gastrointestinal tract and may contain novel bioactive peptide sequences.

  14. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases.

    PubMed

    Ryder, Kate; Bekhit, Alaa El-Din; McConnell, Michelle; Carne, Alan

    2016-10-01

    Five commercially available food-grade microbial protease preparations were evaluated for their ability to hydrolyse meat myofibrillar and connective tissue protein extracts to produce bioactive peptides. A bacterial-derived protease (HT) extensively hydrolysed both meat protein extracts, producing peptide hydrolysates with significant in vitro antioxidant and ACE inhibitor activities. The hydrolysates retained bioactivity after simulated gastrointestinal hydrolysis challenge. Gel permeation chromatography sub-fractionation of the crude protein hydrolysates showed that the smaller peptide fractions exhibited the highest antioxidant and ACE inhibitor activities. OFFGEL electrophoresis of the small peptides of both hydrolysates showed that low isoelectric point peptides had antioxidant activity; however, no consistent relationship was observed between isoelectric point and ACE inhibition. Cell-based assays indicated that the hydrolysates present no significant cytotoxicity towards Vero cells. The results indicate that HT protease hydrolysis of meat myofibrillar and connective tissue protein extracts produces bioactive peptides that are non-cytotoxic, should be stable in the gastrointestinal tract and may contain novel bioactive peptide sequences. PMID:27132822

  15. Top-down Targeted Metabolomics Reveals a Sulfur-Containing Metabolite with Inhibitory Activity against Angiotensin-Converting Enzyme in Asparagus officinalis.

    PubMed

    Nakabayashi, Ryo; Yang, Zhigang; Nishizawa, Tomoko; Mori, Tetsuya; Saito, Kazuki

    2015-05-22

    The discovery of bioactive natural compounds containing sulfur, which is crucial for inhibitory activity against angiotensin-converting enzyme (ACE), is a challenging task in metabolomics. Herein, a new S-containing metabolite, asparaptine (1), was discovered in the spears of Asparagus officinalis by targeted metabolomics using mass spectrometry for S-containing metabolites. The contribution ratio (2.2%) to the IC50 value in the crude extract showed that asparaptine (1) is a new ACE inhibitor. PMID:25922884

  16. Top-down Targeted Metabolomics Reveals a Sulfur-Containing Metabolite with Inhibitory Activity against Angiotensin-Converting Enzyme in Asparagus officinalis.

    PubMed

    Nakabayashi, Ryo; Yang, Zhigang; Nishizawa, Tomoko; Mori, Tetsuya; Saito, Kazuki

    2015-05-22

    The discovery of bioactive natural compounds containing sulfur, which is crucial for inhibitory activity against angiotensin-converting enzyme (ACE), is a challenging task in metabolomics. Herein, a new S-containing metabolite, asparaptine (1), was discovered in the spears of Asparagus officinalis by targeted metabolomics using mass spectrometry for S-containing metabolites. The contribution ratio (2.2%) to the IC50 value in the crude extract showed that asparaptine (1) is a new ACE inhibitor.

  17. Transport of IRW, an ovotransferrin-derived antihypertensive peptide, in human intestinal epithelial Caco-2 cells.

    PubMed

    Bejjani, Satyanarayana; Wu, Jianping

    2013-02-20

    IRW is an egg ovotransferrin-derived ACE inhibitory peptide. The purpose of this study was to evaluate the stability and transcellular transport of IRW in Caco-2 cell monolayers. The stability of IRW was monitored on the apical (AP) surface while its transport was studied from AP to basal (BL) and from BL to AP surfaces. The results revealed that IRW is resistant against intestinal peptidase up to 60 min. Transport of IRW was not affected by addition of wortamanin, a transcytosis inhibitor. However, in the presence of cytochalasin D, a gap junction disruptor, transport of IRW was significantly increased, suggesting a possible passive transport from AP to BL surface. A higher transport of IRW from AP to BL surface than that from BL to AP surface suggests a passive-mediated transport. Moreover, in the presence of glycyl-sarcosine, a substrate for peptide transporter PepT 1, transport of IRW was reduced from AP to BL surface. The above observations showed atypical transport of IRW in Caco-2 cell monolayers. Thus, IRW may possibly be absorbed intact into the site of action for controlling hypertension.

  18. Molecular cloning and characterisation of in vitro immune response against astacin-like metalloprotease Ace-MTP-2 from Ancylostoma ceylanicum.

    PubMed

    Bąska, Piotr; Wiśniewski, Marcin; Krzyżowska, Małgorzata; Długosz, Ewa; Zygner, Wojciech; Górski, Paweł; Wędrychowicz, Halina

    2013-04-01

    Ancylostoma ceylanicum belongs to the group of parasites commonly known as hookworms, blood-sucking nematodes which infect around 576 million people and hundreds of millions of animals. The interactions between these parasites and host immune systems are complicated and yet to be determined. Hookworm infections are usually long lasting and recurrent, due in part to their ability to synthesize macromolecules capable of modulating the host immune response. The interaction of parasite proteins with host immune systems has been proven, but so far there is no data describing the influence of astacin-like metalloproteases (expressed among different parasitic nematodes) on the human immune system. The cDNA encoding A. ceylanicum metalloprotease 2 (Ace-mtp-2) was cloned using RACE-PCR. Computational analysis was used to examine the immunogenicity and recombinant Ace-MTP-2 was used to investigate its influence on human THP-1 monocytes and macrophages. The Ace-mtp-2 gene encodes an astascin-like metalloprotease, with a theoretical molecular mass of 26.7 kDa. The protease has a putative signal peptide, 11 potential phosphorylation sites, and two disulfide bridges revealed by computational analysis. Maximal expression of Ace-mtp-2 by A. ceylanicum occurs in the adult stage of the parasite, and Western blot indicates the secretory nature of the protease. This suggests the protease is working at the host-parasite interface and would likely be exposed to the hosts immune response. Recombinant protein were expressed in Escherichia coli and Pichia pastoris. Recombinant Ace-MTP-2 amplified the in vitro release of TNFα and induced release of IFNγ by lipopolysaccharide activated THP-1 macrophages. The presence of Ace-MTP-2 in secretory products of the adult parasite and the induction of IFNγ release may suggest an important role for Ace-MTP-2 in host-parasite interactions since IFNγ is suggested to be responsible for the protective immune response against adult hookworms. PMID

  19. ACE Inhibitor in the treatment of cutaneous and lymphatic sarcoidosis.

    PubMed

    Kaura, Vinod; Kaura, Samantha H; Kaura, Claire S

    2007-01-01

    Angiotensin-converting enzyme is used as a marker for sarcoid activity. We describe a case of remission of cutaneous and lymphatic sarcoidosis in a patient treated with an ACE inhibitor for congestive heart failure and hypertension; the remission has continued over 4 years of follow-up. Because this is a report of only one case, there is a possibility of sampling error. Whether the patient's remission in this case was a serendipitous spontaneous remission that happened to occur during ACE inhibitor therapy or whether ACE inhibitor therapy can play a role in the treatment of sarcoidosis needs to be determined in a large clinical trial.

  20. AceCloud: Molecular Dynamics Simulations in the Cloud.

    PubMed

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  1. Inhibitory control of hippocampal inhibitory neurons

    PubMed Central

    Chamberland, Simon; Topolnik, Lisa

    2012-01-01

    Information processing within neuronal networks is determined by a dynamic partnership between principal neurons and local circuit inhibitory interneurons. The population of GABAergic interneurons is extremely heterogeneous and comprises, in many brain regions, cells with divergent morphological and physiological properties, distinct molecular expression profiles, and highly specialized functions. GABAergic interneurons have been studied extensively during the past two decades, especially in the hippocampus, which is a relatively simple cortical structure. Different types of hippocampal inhibitory interneurons control spike initiation [e.g., axo-axonic and basket cells (BCs)] and synaptic integration (e.g., bistratified and oriens–lacunosum moleculare interneurons) within pyramidal neurons and synchronize local network activity, providing a means for functional segregation of neuronal ensembles and proper routing of hippocampal information. Thus, it is thought that, at least in the hippocampus, GABAergic inhibitory interneurons represent critical regulating elements at all stages of information processing, from synaptic integration and spike generation to large-scale network activity. However, this raises an important question: if inhibitory interneurons are fundamental for network computations, what are the mechanisms that control the activity of the interneurons themselves? Given the essential role of synaptic inhibition in the regulation of neuronal activity, it would be logical to expect that specific inhibitory mechanisms have evolved to control the operation of interneurons. Here, we review the mechanisms of synaptic inhibition of interneurons and discuss their role in the operation of hippocampal inhibitory circuits. PMID:23162426

  2. The Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Project: Overview and results from ten years of ACE operations

    NASA Astrophysics Data System (ADS)

    Walker, Kaley; Strong, Kimberly

    2014-05-01

    As of February 2014, the Canadian-led Atmospheric Chemistry Experiment (ACE) satellite mission has been making measurements of the Earth's atmosphere for ten years. As ACE operations have extended beyond the initial two-year mission, there is a continuing need to validate the trace gas data products from the ACE-Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instruments. Ground-based measurements provide critical data for the validation of satellite retrievals of trace gases and for the assessment of long-term stability of these measurements. In particular, validation comparisons are needed for ACE during Arctic springtime to understand better the measurements of species involved in stratospheric ozone chemistry. To this end, eleven Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns have been conducted during the spring period (February - April in 2004 - 2014) at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut (80°N, 86°W). This period coincides with the most chemically active time of year in the Arctic, as well as a significant number of satellite overpasses. A suite of as many as 12 ground-based instruments, as well as frequent balloon-borne ozonesonde and radiosonde launches, have been used in each campaign. These instruments include: a ground-based version of the ACE-FTS (PARIS - Portable Atmospheric Research Interferometric Spectrometer), a terrestrial version of the ACE-MAESTRO, a SunPhotoSpectrometer, two zenith-viewing UV-visible grating spectrometers, a Bomem DA8 Fourier transform spectrometer, a Bruker 125HR Fourier transform spectrometer, a Systeme d'Analyse par Observations Zenithales (SAOZ) instrument, and several Brewer spectrophotometers. In the past several years, these results have been used to validate the measurements by the ACE-FTS and ACE-MAESTRO instruments on SCISAT as well

  3. The solar array is installed on ACE in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Applied Physics Laboratory engineers and technicians from Johns Hopkins University assist in guiding the Advanced Composition Explorer (ACE) as it is hoisted over a platform for solar array installation in KSC's Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will contribute to the understanding of the formation and evolution of the solar system as well as the astrophysical processes involved. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.

  4. The solar array is installed on ACE in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Applied Physics Laboratory Engineer Cliff Willey (kneeling) and Engineering Assistant Jim Hutcheson from Johns Hopkins University install solar array panels on the Advanced Composition Explorer (ACE) in KSC's Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles for a better understanding of the formation and evolution of the solar system as well as the astrophysical processes involved. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun. The collecting power of instrumentation aboard ACE is at least 100 times more sensitive than anything previously flown to collect similar data by NASA.

  5. ACE inhibition can improve orthostatic proteinuria associated with nutcracker syndrome.

    PubMed

    Ha, Tae-Sun; Lee, Eun-Ju

    2006-11-01

    Left renal vein entrapment syndrome (nutcracker syndrome) was documented by magnetic resonance angiography (MRA) as a cause of orthostatic proteinuria in a 14-year-old girl female adolescent. Because of continuous proteinuria we performed a left renal biopsy which showed moderate mesangial hypercellularity. Her overt orthostatic proteinuria disappeared after a treatment of angiotensin-converting enzyme (ACE) inhibition. Nutcracker syndrome remains a rare but important cause of elevated protein excretion, which can induce mesangial changes and be improved by ACE inhibitor treatment.

  6. Molecular and recombinational mapping of mutations in the Ace locus of Drosophila melanogaster

    SciTech Connect

    Nagoshi, R.N.; Gelbart, W.M.

    1987-11-01

    The Ace locus in Drosophila melanogaster is known to be the structural gene for acetylcholinesterase. Ace is located in a region of chromosome arm 3R which has been subjected to intensive genetic and molecular analysis. Previous deletion mapping studies have identified a 40-kb region with which the Ace gene resides. This report focuses on the further localization of Ace within this 40-kb interval. Within this region, selective fine structure recombinational analysis was employed to localize three recessive Ace lethals relative to unselected restriction site variations. These three mutations fall into a segment of 7 kb within the Ace interval. Fine structure recombinational analysis was also used to confirm that the Ace/sup -/ phenotype of one deletion, Df(3R)Ace/sup HD1/, co-segregated with the molecular deletion. This deletion does not fully remove Ace activity, but it behaves as a recessive Ace lethal. Df(3R)Ace/sup HD1/ is the most distal Ace lesion identified and indicates that the Ace locus must extend at least 16 kb. Several poly(A)transcripts are detectable in the region defined by the Ace lesions. The position and extent of the Ace locus, as well as the types of transcripts found, is consistent with the recent findings which identified Torpedo-AChE homologous cDNA sequences in this region.

  7. Climate-active Trace Gases from ACE Satellite Observations

    NASA Astrophysics Data System (ADS)

    Bernath, P. F.; Brown, A.; Harrison, J.; Chipperfield, M.; Boone, C.; Wilson, C.; Walker, K. A.

    2011-12-01

    ACE (also known as SCISAT) is making a comprehensive set of simultaneous measurements of more than 30 trace gases, thin clouds, aerosols and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) gives ACE coverage of tropical, mid-latitudes and polar regions. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-1) is measuring the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. Launched by NASA in August 2003 for a nominal two-year mission, ACE performance remains excellent after 8 years in orbit. Volume mixing ratio (VMR) profiles of sixteen halogenated trace gases are routinely retrieved from ACE-FTS atmospheric spectra: CCl4, CF4, CCl3F (CFC-11), CCl2F2 (CFC-12), C2Cl3F3 (CFC-113), CH3Cl, ClONO2, COF2, COCl2, COClF, CHF2Cl (HCFC-22), CH3CCl2F (HCFC-141b), CH3CClF2 (HCFC-142b), HCl, HF and SF6. ACE also provides VMR profiles for CH4, N2O and OCS; HCFC-23 (CHF3) is a recent research product. ACE-FTS measurements were compared to surface measurements made by the AGAGE network and output from the SLIMCAT three-dimensional (3-D) chemical transport model, which is constrained by similar surface data. ACE-FTS measurements of CFCs (and HCl) show declining trends which agree with both AGAGE and SLIMCAT values. The concentrations of HCFCs are increasing with ACE-FTS, SLIMCAT and AGAGE all showing positive trends. These results illustrate the success of the Montreal Protocol in reducing ozone depleting substances. The replacement of CFCs with HCFCs has led to an increase in the VMR of HF in the stratosphere. As chlorine containing compounds continue to be phased out and replaced by fluorine-containing molecules, it is likely that total atmospheric fluorine will continue increasing in the near future. These species are all powerful greenhouse gases. ACE provides near global VMR

  8. Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling.

    PubMed

    Assem, Naila; Ferreira, David J; Wolan, Dennis W; Dawson, Philip E

    2015-07-20

    Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags.

  9. Peptide nanotubes.

    PubMed

    Hamley, Ian W

    2014-07-01

    The self-assembly of different classes of peptide, including cyclic peptides, amyloid peptides and surfactant-like peptides into nanotube structures is reviewed. The modes of self-assembly are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.

  10. Conformational Properties of Seven Toac-Labeled Angiotensin I Analogues Correlate with Their Muscle Contraction Activity and Their Ability to Act as ACE Substrates

    PubMed Central

    Teixeira, Luis Gustavo D.; Malavolta, Luciana; Bersanetti, Patrícia A.; Schreier, Shirley; Carmona, Adriana K.; Nakaie, Clovis R.

    2015-01-01

    Conformational properties of the angiotensin II precursor, angiotensin I (AngI) and analogues containing the paramagnetic amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 1, 3, 5, 8, 9, and 10, were examined by EPR, CD, and fluorescence. The conformational data were correlated to their activity in muscle contraction experiments and to their properties as substrates of the angiotensin I-converting enzyme (ACE). Biological activity studies indicated that TOAC0-AngI and TOAC1-AngI maintained partial potency in guinea pig ileum and rat uterus. Kinetic parameters revealed that only derivatives labeled closer to the N-terminus (positions 0, 1, 3, and 5) were hydrolyzed by ACE, indicating that peptides bearing the TOAC moiety far from the ACE cleavage site (Phe8-His9 peptide bond) were susceptible to hydrolysis, albeit less effectively than the parent compound. CD spectra indicated that AngI exhibited a flexible structure resulting from equilibrium between different conformers. While the conformation of N-terminally-labeled derivatives was similar to that of the native peptide, a greater propensity to acquire folded structures was observed for internally-labeled, as well as C-terminally labeled, analogues. These structures were stabilized in secondary structure-inducing agent, TFE. Different analogues gave rise to different β-turns. EPR spectra in aqueous solution also distinguished between N-terminally, internally-, and C-terminally labeled peptides, yielding narrower lines, indicative of greater mobility for the former. Interestingly, the spectra of peptides labeled at, or close, to the C-terminus, showed that the motion in this part of the peptides was intermediate between that of N-terminally and internally-labeled peptides, in agreement with the suggestion of turn formation provided by the CD spectra. Quenching of the Tyr4 fluorescence by the differently positioned TOAC residues corroborated the data obtained by the

  11. Contemplating Synergistic Algorithms for the NASA ACE Mission

    NASA Technical Reports Server (NTRS)

    Mace, Gerald G.; Starr, David O.; Marchand, Roger; Ackerman, Steven A.; Platnick, Steven E.; Fridlind, Ann; Cooper, Steven; Vane, Deborah G.; Stephens, Graeme L.

    2013-01-01

    ACE is a proposed Tier 2 NASA Decadal Survey mission that will focus on clouds, aerosols, and precipitation as well as ocean ecosystems. The primary objective of the clouds component of this mission is to advance our ability to predict changes to the Earth's hydrological cycle and energy balance in response to climate forcings by generating observational constraints on future science questions, especially those associated with the effects of aerosol on clouds and precipitation. ACE will continue and extend the measurement heritage that began with the A-Train and that will continue through Earthcare. ACE planning efforts have identified several data streams that can contribute significantly to characterizing the properties of clouds and precipitation and the physical processes that force these properties. These include dual frequency Doppler radar, high spectral resolution lidar, polarimetric visible imagers, passive microwave and submillimeter wave radiometry. While all these data streams are technologically feasible, their total cost is substantial and likely prohibitive. It is, therefore, necessary to critically evaluate their contributions to the ACE science goals. We have begun developing algorithms to explore this trade space. Specifically, we will describe our early exploratory algorithms that take as input the set of potential ACE-like data streams and evaluate critically to what extent each data stream influences the error in a specific cloud quantity retrieval.

  12. Design, synthesis, and antihypertensive activity of curcumin-inspired compounds via ACE inhibition and vasodilation, along with a bioavailability study for possible benefit in cardiovascular diseases

    PubMed Central

    Zhuang, Xiao-dong; Liao, Li-zhen; Dong, Xiao-bian; Hu, Xun; Guo, Yue; Du, Zhi-min; Liao, Xin-xue; Wang, Li-chun

    2016-01-01

    This study describes the synthesis of a novel series of curcumin-inspired compounds via a facile synthetic route. The structures of these derivatives were ascertained using various spectroscopic and analytic techniques. The pharmacological effects of the target analogs were assessed by assaying their inhibition of angiotensin-converting enzyme (ACE). All of the synthesized derivatives exhibited considerable inhibition of ACE, with half-maximal inhibitory concentrations ranging from 1.23 to 120.32 μM. In a docking analysis with testicular ACE (tACE), the most promising inhibitor (4j) was efficiently accommodated in the deep cleft of the protein cavity, making close interatomic contacts with Glu162, His353, and Ala356, comparable with lisinopril. Compounds 4i, 4j, 4k, and 4l were further selected for determination of their vasodilator activity (cardiac output and stroke volume) on isolated rat hearts using the Langendorff technique. The bioavailability of compound 4j was determined in experimental mice. PMID:26792980

  13. A mimotope peptide of Aβ42 fibril-specific antibodies with Aβ42 fibrillation inhibitory activity induces anti-Aβ42 conformer antibody response by a displayed form on an M13 phage in mice.

    PubMed

    Tanaka, Koichi; Nishimura, Masaaki; Yamaguchi, Yuya; Hashiguchi, Shuhei; Takiguchi, Sho; Yamaguchi, Makoto; Tahara, Haruna; Gotanda, Takuma; Abe, Risa; Ito, Yuji; Sugimura, Kazuhisa

    2011-07-01

    In Alzheimer's disease (AD), amyloid-β (Aβ) peptides accumulate in the brain in different forms, including fibrils and oligomers. Recently, we established three distinct conformation-dependent human single-chain Fv (scFv) antibodies, including B6 scFv, which bound to Aβ42 fibril but not to soluble-form Aβ, inhibiting Aβ42 fibril formation. In this study, we determined the mimotopes of these antibodies and found a common mimotope sequence, B6-C15, using the Ph.D.-C7C phage library. The B6-C15 showed weak homology to the C-terminus of Aβ42 containing GXXXG dimerization motifs. We synthesized the peptide of B6-C15 fused with biotinylated TAT at the N-terminus (TAT-B6-C15) and characterized its biochemical features on an Aβ42-fibrillation reaction in vitro. We demonstrated that, first, TAT-B6-C15 inhibited Aβ42 fibril formation; secondly, TAT-B6-C15 bound to prefibril Aβ42 oligomers but not to monomers, trimers, tetramers, fibrils, or ultrasonicated fragments; thirdly, TAT-B6-C15 inhibited Aβ42-induced cytotoxicity against human SH-SY5Y neuroblastoma cells; and, fourthly, when mice were administered B6-C15-phages dissolved in phosphate-buffered saline, the anti-Aβ42 conformer IgG antibody response was induced. These results suggested that the B6-C15 peptide might provide unique opportunities to analyze the Aβ42 fibrillation pathway and develop a vaccine vehicle for Alzheimer's disease. PMID:21641049

  14. Advanced Colloids Experiment (ACE) Science Overview

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; Yunker, Peter; Lohr, Matthew; Gratale, Matthew; Lynch, Matthew; Kodger, Thomas; Piazza, Roberto; Buzzaccaro, Stefano; Cipelletti, Luca; Schall, Peter; Veen, Sandra; Wegdam, Gerhard; Lee, Chand-Soo; Choi, Chang-Hyung; Paul, Anna-Lisa; Ferl, Robert J.; Cohen, Jacob

    2013-01-01

    accessible with the availability of the Light Microscopy Module (LMM) on ISS. To meet these goals, the ACE experiment is being built-up in stages, with the availability of confocal microscopy being the ultimate objective. Supported by NASAs Physical Sciences Research Program, ESAESTEC, and the authors respective governments.

  15. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk.

    PubMed

    Chaves-López, Clemencia; Serio, Annalisa; Paparella, Antonello; Martuscelli, Maria; Corsetti, Aldo; Tofalo, Rosanna; Suzzi, Giovanna

    2014-09-01

    This study aimed at evaluating co-cultures of selected microorganisms for their proteolytic activity and capability to produce fermented milk enriched with ACE-inhibitory (ACEI) peptides. Selected yeasts (Torulaspora delbruekii KL66A, Galactomyces geotrichum KL20B, Pichia kudriavzevii KL84A and Kluyveromyces marxianus KL26A) and lactic acid bacteria strains (Lactobacillus plantarum LAT03, Lb. plantarum KLAT01 and the not virulent Enterococcus faecalis KE06) were screened as single cultures for their capacity of releasing ACEI peptides without producing bitter taste. Three strains cultures (yeast, Lb. plantarum and E. faecalis) were performed to evaluate the combined impact on microbial growth, lactic acid production, citric acid consumption, proteolysis, ACEI activity, and bitter taste after 36 h of fermentation at 28 °C. While G. geotrichum KL20B showed a strong stimulating effect on Lb. plantarum strains and the production of peptides with ACEI activity, the presence of T. delbruekii KL26A in the cultures was deleterious both to ACEI activity and product taste. The most effective combination was P. kudriavzevii KL84A, Lb. plantarum LAT3, E. faecalis KL06, which showed the highest ACEI activity (IC50 = 30.63 ± 1.11 μg ml(-1)) and gave no bitter taste for 7 days at 6 °C. Our results highlight the importance of choosing the strains combination carefully, to obtain a high yield of ACEI activity without bitter taste.

  16. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk.

    PubMed

    Chaves-López, Clemencia; Serio, Annalisa; Paparella, Antonello; Martuscelli, Maria; Corsetti, Aldo; Tofalo, Rosanna; Suzzi, Giovanna

    2014-09-01

    This study aimed at evaluating co-cultures of selected microorganisms for their proteolytic activity and capability to produce fermented milk enriched with ACE-inhibitory (ACEI) peptides. Selected yeasts (Torulaspora delbruekii KL66A, Galactomyces geotrichum KL20B, Pichia kudriavzevii KL84A and Kluyveromyces marxianus KL26A) and lactic acid bacteria strains (Lactobacillus plantarum LAT03, Lb. plantarum KLAT01 and the not virulent Enterococcus faecalis KE06) were screened as single cultures for their capacity of releasing ACEI peptides without producing bitter taste. Three strains cultures (yeast, Lb. plantarum and E. faecalis) were performed to evaluate the combined impact on microbial growth, lactic acid production, citric acid consumption, proteolysis, ACEI activity, and bitter taste after 36 h of fermentation at 28 °C. While G. geotrichum KL20B showed a strong stimulating effect on Lb. plantarum strains and the production of peptides with ACEI activity, the presence of T. delbruekii KL26A in the cultures was deleterious both to ACEI activity and product taste. The most effective combination was P. kudriavzevii KL84A, Lb. plantarum LAT3, E. faecalis KL06, which showed the highest ACEI activity (IC50 = 30.63 ± 1.11 μg ml(-1)) and gave no bitter taste for 7 days at 6 °C. Our results highlight the importance of choosing the strains combination carefully, to obtain a high yield of ACEI activity without bitter taste. PMID:24929726

  17. [Job satisfaction among the professionals of AceS Baixo Vouga II].

    PubMed

    Santana, Silvina; Cerdeira, José

    2011-12-01

    Job satisfaction is a measure of quality of life at work and is related to emotional states. The interest for this theme is increasing and, in the last years, many studies have attempted to demonstrate its relation with professional performance. Primary care professionals are in the first line of the Serviço Nacional de Saúde (SNS). Therefore, it is necessary that they feel satisfaction with their jobs, in order to perform the tasks with the quality required. Several factors seem to have impact in the satisfaction of these professionals, such as payment, promotion, recognition from supervisors and peers, physical conditions at work and available resources, opportunities for personal development, among others. Insatisfaction may lead to absentism and in the limit to job quit. The main objective of this work is to study job satisfaction among the professionals working at the health centers of ACeS Baixo Vouga II, namely, the relationship between job characteristics and job satisfaction and between job characteristics and considering job quit as a serious option. All the professionals working in the four health centers were inquired. Results show that job characteristics are defined by six dimensions: leadership and supervision, task characteristics and autonomy, payment, personal and professional development and promotion, peers and relations inside the organization and work environment. Globally, payment and opportunities for personal and professional development and promotion are perceived at low level by all the professional groups. Results also show that there are differences by gender and professional groups regarding job satisfaction and the will to quit job. Considering the specificity of the tasks performed by these professionals, measures should be taken in order to improve job satisfaction in the Portuguese health centers. PMID:22849951

  18. [Job satisfaction among the professionals of AceS Baixo Vouga II].

    PubMed

    Santana, Silvina; Cerdeira, José

    2011-12-01

    Job satisfaction is a measure of quality of life at work and is related to emotional states. The interest for this theme is increasing and, in the last years, many studies have attempted to demonstrate its relation with professional performance. Primary care professionals are in the first line of the Serviço Nacional de Saúde (SNS). Therefore, it is necessary that they feel satisfaction with their jobs, in order to perform the tasks with the quality required. Several factors seem to have impact in the satisfaction of these professionals, such as payment, promotion, recognition from supervisors and peers, physical conditions at work and available resources, opportunities for personal development, among others. Insatisfaction may lead to absentism and in the limit to job quit. The main objective of this work is to study job satisfaction among the professionals working at the health centers of ACeS Baixo Vouga II, namely, the relationship between job characteristics and job satisfaction and between job characteristics and considering job quit as a serious option. All the professionals working in the four health centers were inquired. Results show that job characteristics are defined by six dimensions: leadership and supervision, task characteristics and autonomy, payment, personal and professional development and promotion, peers and relations inside the organization and work environment. Globally, payment and opportunities for personal and professional development and promotion are perceived at low level by all the professional groups. Results also show that there are differences by gender and professional groups regarding job satisfaction and the will to quit job. Considering the specificity of the tasks performed by these professionals, measures should be taken in order to improve job satisfaction in the Portuguese health centers.

  19. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis.

    PubMed

    Simões E Silva, Ana Cristina; Teixeira, Mauro Martins

    2016-05-01

    The Renin Angiotensin System (RAS) is a pivotal physiological regulator of heart and kidney homeostasis, but also plays an important role in the pathophysiology of heart and kidney diseases. Recently, new components of the RAS have been discovered, including angiotensin converting enzyme 2 (ACE2), Angiotensin(Ang)-(1-7), Mas receptor, Ang-(1-9) and Alamandine. These new components of RAS are formed by the hydrolysis of Ang I and Ang II and, in general, counteract the effects of Ang II. In experimental models of heart and renal diseases, Ang-(1-7), Ang-(1-9) and Alamandine produced vasodilation, inhibition of cell growth, anti-thrombotic, anti-inflammatory and anti-fibrotic effects. Recent pharmacological strategies have been proposed to potentiate the effects or to enhance the formation of Ang-(1-7) and Ang-(1-9), including ACE2 activators, Ang-(1-7) in hydroxypropyl β-cyclodextrin, cyclized form of Ang-(1-7) and nonpeptide synthetic Mas receptor agonists. Here, we review the role and effects of ACE2, ACE2 activators, Ang-(1-7) and synthetic Mas receptor agonists in the control of inflammation and fibrosis in cardiovascular and renal diseases and as counter-regulators of the ACE-Ang II-AT1 axis. We briefly comment on the therapeutic potential of the novel members of RAS, Ang-(1-9) and alamandine, and the interactions between classical RAS inhibitors and new players in heart and kidney diseases. PMID:26995300

  20. Deletion of the aceE gene (encoding a component of pyruvate dehydrogenase) attenuates Salmonella enterica serovar Enteritidis.

    PubMed

    Pang, Ervinna; Tien-Lin, Chang; Selvaraj, Madhan; Chang, Jason; Kwang, Jimmy

    2011-10-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major food-borne pathogen. From a transposon insertion mutant library created previously using S. Enteritidis 10/02, one of the mutants was identified to have a 50% lethal dose (LD(50) ) at least 100 times that of the parental strain in young chicks, with an attenuation in a poorly studied gene encoding a component of pyruvate dehydrogenase, namely the aceE gene. Evaluation of the in vitro virulence characteristics of the ΔaceE∷kan mutant revealed that it was less able to invade epithelial cells, less resistant to reactive oxygen intermediate, less able to survive within a chicken macrophage cell line and had a retarded growth rate compared with the parental strain. Young chicks vaccinated with 2 × 10(9) CFU of the ΔaceE∷kan mutant were protected from the subsequent challenge of the parental strain, with the mutant colonized in the liver and spleen in a shorter time than the group infected with the parental strain. In addition, compared with the parental strain, the ΔaceE∷kan mutant did not cause persistent eggshell contamination of vaccinated hens.

  1. Improved ACE-FTS observations of carbon tetrachloride (CCl4)

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy; Chipperfield, Martyn; Boone, Chris; Bernath, Peter

    2016-04-01

    The Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), on board the SCISAT satellite, has been recording solar occultation spectra through the Earth's atmosphere since 2004 and continues to take measurements with only minor loss in performance. ACE-FTS time series are available for a range of chlorine 'source' gases, including CCl3F (CFC-11), CCl2F2 (CFC-12), CHF2Cl (HCFC-22), CH3Cl and CCl4. Recently there has been much community interest in carbon tetrachloride (CCl4), a substance regulated by the Montreal Protocol because it leads to the catalytic destruction of stratospheric ozone. Estimated sources and sinks of CCl4 remain inconsistent with observations of its abundance. Satellite observations of CCl4 in the stratosphere are particularly useful in validating stratospheric loss (photolysis) rates; in fact the atmospheric loss of CCl4 is essentially all due to photolysis in the stratosphere. However, the latest ACE-FTS v3.5 CCl4 retrieval is biased high by ˜ 20-30%. A new ACE-FTS retrieval scheme utilising new laboratory spectroscopic measurements of CCl4 and improved microwindow selection has recently been developed. This improves upon the v3.5 retrieval and resolves the issue of the high bias; this new scheme will form the basis for the upcoming v4 processing version of ACE-FTS data. This presentation will outline the improvements made in the retrieval, and a subset of data will be compared with modelled CCl4 distributions from SLIMCAT, a state-of-the-art three-dimensional chemical transport model. The use of ACE-FTS data to evaluate the modelled stratospheric loss rate of CCl4 will also be discussed. The evaluated model, which also includes a treatment of surface soil and ocean sinks, will then be used to quantify current uncertainties in the global budget of CCl4.

  2. Hypotensive and Angiotensin-Converting Enzyme Inhibitory Activities of Eisenia fetida Extract in Spontaneously Hypertensive Rats

    PubMed Central

    Mao, Shumei; Li, Chengde

    2015-01-01

    Objectives. This study aimed to investigate the antihypertensive effects of an Eisenia fetida extract (EFE) and its possible mechanisms in spontaneously hypertensive rats (SHR rats). Methods. Sixteen-week-old SHR rats and Wistar-Kyoto rats (WKY rats) were used in this study. Rats were, respectively, given EFE (EFE group), captopril (captopril group), or phosphate-buffered saline (PBS) (normal control group and SHR group) for 4 weeks. ACE inhibitory activity of EFE in vitro was determined. The systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured using a Rat Tail-Cuff Blood Pressure System. Levels of angiotensin II (Ang II), aldosterone (Ald), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1α) in plasma were determined by radioimmunoassay, and serum nitric oxide (NO) concentration was measured by Griess reagent systems. Results. EFE had marked ACE inhibitory activity in vitro (IC50 = 2.5 mg/mL). After the 4-week drug management, SHR rats in EFE group and in captopril group had lower SBP and DBP, lower levels of Ang II and Ald, and higher levels of 6-keto-PGF1α and NO than the SHR rats in SHR group. Conclusion. These results indicate that EFE has hypotensive effects in SHR rats and its effects might be associated with its ACE inhibitory activity. PMID:26798397

  3. Performance Enhancement of the Automated Concrete Evaluation System (ACES)

    SciTech Connect

    Baumgart,C.W.; Cave,S.P.; Linder,K.E.

    2002-02-14

    The objective of this proposed research is to improve and expand the detection and analysis capabilities of the automated, concrete evaluation (ACE) system. MoDOT and Honeywell jointly developed this system. The focus of this proposed research will be on the following: Coordination of concrete imaging efforts with other states, Validation and testing of the ACE system on a broad range of concrete samples, and Identification and development of software and hardware enhancements. These enhancements will meet the needs of diverse users in the field of concrete materials, construction, and research.

  4. Rapakinin, an anti-hypertensive peptide derived from rapeseed protein, dilates mesenteric artery of spontaneously hypertensive rats via the prostaglandin IP receptor followed by CCK(1) receptor.

    PubMed

    Yamada, Yuko; Iwasaki, Masashi; Usui, Hachiro; Ohinata, Kousaku; Marczak, Ewa D; Lipkowski, Andrzej W; Yoshikawa, Masaaki

    2010-05-01

    The anti-hypertensive peptide Arg-Ile-Tyr, which was isolated based on its inhibitory activity (IC(50)=28microM) for angiotensin I-converting enzyme (ACE) from the subtilisin digest of rapeseed protein, exhibited vasorelaxing activity (EC(50)=5.1microM) in an endothelium-dependent manner in the mesenteric artery of spontaneously hypertensive rats (SHRs). We named the peptide rapakinin. ACE inhibitors are reported to induce nitric oxide (NO)-dependent vasorelaxation by elevating the endogenous bradykinin level; however, the vasorelaxation induced by 10microM of rapakinin was blocked only insignificantly by HOE140 or N(G)-nitro-l-arginine methyl ester (l-NAME), antagonists of bradykinin B(2) receptor and an inhibitor of NO synthase, respectively. On the other hand, the vasorelaxation induced by 10microM rapakinin was significantly blocked by indomethacin and CAY10441, a cyclooxygenase (COX) inhibitor and an antagonist of the IP receptor, respectively. The vasorelaxing activity of rapakinin was also blocked by lorglumide, an antagonist of the cholecystokinin (CCK) CCK(1) receptor, although rapakinin has no affinity for the IP and CCK(1) receptors. The vasorelaxation induced by 10microM iloprost, an IP receptor agonist, was also blocked by lorglumide, suggesting that CCK-CCK(1) receptor system is activated downstream of the PGI(2)-IP receptor system. The anti-hypertensive activity of rapakinin after oral administration in SHRs was also blocked by CAY10441 and lorglumide. These results suggest that the anti-hypertensive activity of rapakinin might be mediated mainly by the PGI(2)-IP receptor, followed by CCK-CCK(1) receptor-dependent vasorelaxation.

  5. Multifunctional cationic peptide fractions from flaxseed protein hydrolysates.

    PubMed

    Udenigwe, Chibuike C; Aluko, Rotimi E

    2012-03-01

    The aim of this work was to determine the multifunctional properties of flaxseed protein-derived cationic peptide fractions. Alcalase hydrolysis of flaxseed protein fractions liberated cationic peptides, which were separated into two major fractions (FI and FII) by chromatography using a cation-exchange column. Due to their cationic property, the peptide fractions bound and inactivated calmodulin (CaM, a negatively charged enzyme activator protein) with concomitant inhibition of CaM-dependent phosphodiesterase (CaMPDE); this activity was substantially reduced as CaM concentration increased. Enzyme kinetics studies showed competitive inhibition of CaMPDE by FI and FII with enzyme-inhibitor dissociation constants of 0.0202 and 0.0511 mg/ml, respectively. Only the FII peptides showed multifunctional activities by inhibiting CaMPDE, angiotensin converting enzyme (ACE) and renin. Separation of FII peptides by reverse phase HPLC resulted in eight fractions (FII-2 to FII-9) that inhibited the activities of CaMPDE, ACE, and renin but this multifunctional activity was more pronounced in FII-6. From LC-MS analysis, identified peptides present in FII fraction had molecular size range of 330-735 Da, which suggests potential for increased absorption. Potential peptide sequences were identified for each of the HPLC fractions and shown to contain either lysine or arginine as the positively charged amino acid residue. The multifunctional properties of the cationic peptide fractions can potentially enhance their use in targeting multiple symptoms of cardiovascular disease, considering that the excessive levels of CaM, CaMPDE, renin and ACE play important roles in enhancing progression and intensity of chronic human diseases. PMID:22327315

  6. Antimicrobial peptides

    PubMed Central

    2014-01-01

    With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity. PMID:24758244

  7. Peptide and non-peptide HIV fusion inhibitors.

    PubMed

    Jiang, Shibo; Zhao, Qian; Debnath, Asim K

    2002-01-01

    Fusion of the HIV envelope with the target cell membrane is a critical step of HIV entry into the target cell. The HIV envelope glycoprotein gp41 plays an important role in the fusion of viral and target cell membranes and serves as an attractive target for development of HIV fusion inhibitors. The extracellular domain of gp41 contains three important functional regions, i.e. fusion peptide (FP), N- and C-terminal heptad repeats (NHR and CHR, respectively). The FP region is composed of hydrophobic, glycine-rich residues that are essential for the initial penetration of the target cell membrane. NHR and CHR regions consist of hydrophobic residues, which have the tendency to form alpha-helical coiled coils. During the process of fusion of HIV or HIV-infected cells with uninfected cells, FP inserts into the target cell membrane and subsequently the NHR and CHR regions change conformations and associate with each other to form a fusion-active gp41 core. Peptides derived from NHR and CHR regions, designated N- and C-peptides, respectively, have potent inhibitory activity against HIV fusion by binding to the CHR and NHR regions, respectively, to prevent the formation of the fusion-active gp41 core. C-peptide may also bind to FP, thereby blocking its insertion into the target cell membrane. One of the C-peptides, T-20, which is in the phase III clinical trials, has potent in vivo activity against HIV infection and is expected to become the first peptide HIV fusion inhibitory drug in the near future. However, this peptide HIV fusion inhibitor lacks oral availability and is sensitive to the proteolytic digestion. Therefore, it is essential to develop small molecular non-peptide HIV fusion inhibitors having a mechanism of action similar to the C-peptides. One of the approaches in identifying the inhibitors is to use an immunological assay to screen chemical libraries for the compounds that potentially block the interaction between the NHR and CHR regions to form a fusion

  8. Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta).

    PubMed

    Wang, Ke-Ming; Kumar, Senthil; Cheng, Yi-Sheng; Venkatagiri, Shripathi; Yang, Ai-Hwa; Yeh, Kai-Wun

    2008-10-01

    Tarocystatin from Colocasia esculenta, a group-2 phytocystatin, is a defense protein against phytopathogenic nematodes and fungi. It is composed of a highly conserved N-terminal region, which is homological to group-1 cystatin, and a repetitive peptide at the C-terminus. The purified recombinant proteins of tarocystatin, such as full-length (FL), N-terminus (Nt) and C-terminus (Ct) peptides, were produced and their inhibitory activities against papain as well as their antifungal effects were investigated. Kinetic analysis revealed that FL peptide exhibited mixed type inhibition (K(ia) = 0.098 microM and K(ib) = 0.252 microM) and Nt peptide showed competitive inhibition (K(i) = 0.057 microM), whereas Ct peptide possessed weak papain activation properties. A shift in the inhibitory pattern from competitive inhibition of Nt peptide alone to mixed type inhibition of FL peptide implied that the Ct peptide has an regulatory effect on the function of FL peptide. Based on the inhibitory kinetics of FL (group-2) and Nt (group-1) peptides on papain activity, an inhibitory mechanism of group-2 phytocystatins and a regulatory mechanism of extended Ct peptide have each been proposed. By contrast, the antifungal activity of Nt peptide appeared to be greater than that of FL peptide, and the Ct peptide showed no effect on antifungal activity, indicating that the antifungal effect is not related to proteinase inhibitory activity. The results are valid for most phytocystatins with respect to the inhibitory mechanism against cysteine proteinase.

  9. Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta).

    PubMed

    Wang, Ke-Ming; Kumar, Senthil; Cheng, Yi-Sheng; Venkatagiri, Shripathi; Yang, Ai-Hwa; Yeh, Kai-Wun

    2008-10-01

    Tarocystatin from Colocasia esculenta, a group-2 phytocystatin, is a defense protein against phytopathogenic nematodes and fungi. It is composed of a highly conserved N-terminal region, which is homological to group-1 cystatin, and a repetitive peptide at the C-terminus. The purified recombinant proteins of tarocystatin, such as full-length (FL), N-terminus (Nt) and C-terminus (Ct) peptides, were produced and their inhibitory activities against papain as well as their antifungal effects were investigated. Kinetic analysis revealed that FL peptide exhibited mixed type inhibition (K(ia) = 0.098 microM and K(ib) = 0.252 microM) and Nt peptide showed competitive inhibition (K(i) = 0.057 microM), whereas Ct peptide possessed weak papain activation properties. A shift in the inhibitory pattern from competitive inhibition of Nt peptide alone to mixed type inhibition of FL peptide implied that the Ct peptide has an regulatory effect on the function of FL peptide. Based on the inhibitory kinetics of FL (group-2) and Nt (group-1) peptides on papain activity, an inhibitory mechanism of group-2 phytocystatins and a regulatory mechanism of extended Ct peptide have each been proposed. By contrast, the antifungal activity of Nt peptide appeared to be greater than that of FL peptide, and the Ct peptide showed no effect on antifungal activity, indicating that the antifungal effect is not related to proteinase inhibitory activity. The results are valid for most phytocystatins with respect to the inhibitory mechanism against cysteine proteinase. PMID:18785929

  10. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of...

  11. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of...

  12. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of...

  13. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of...

  14. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of...

  15. Young & ACE: Young Unemployed People and Adult and Community Education.

    ERIC Educational Resources Information Center

    Adult, Community, and Further Education Board, Melbourne (Australia).

    Pilot projects designed to increase the access of young unemployed Australians to adult and community education (ACE) were undertaken in one rural and one metropolitan adult, community and further education region with significant rates of unemployment among individuals aged 15-24 years. Two consortia were selected to conduct the pilot programs,…

  16. Linkages between ACE Vocational Provision and Mainstream VET.

    ERIC Educational Resources Information Center

    Saunders, John

    A study investigated linkages between adult community education (ACE) and mainstream vocational education and training (VET) in Australia, which enable people to move between the two sectors in their pursuit of vocational learning, and the ways in which linkages might be improved or new ones developed. The data from the study were derived from 69…

  17. The Economics of ACE Delivery. A Research Report.

    ERIC Educational Resources Information Center

    McIntyre, John; Brown, Tony; Ferrier, Fran

    The financial operations of providers of adult and community education (ACE) in New South Wales, Australia, were examined in a conceptual and empirical study. Enrollment data were analyzed and case studies of three community colleges and two community adult education centers in metropolitan, coastal, and rural communities were conducted. Four…

  18. POMB/ACE chemotherapy for mediastinal germ cell tumours.

    PubMed

    Bower, M; Brock, C; Holden, L; Nelstrop, A; Makey, A R; Rustin, G J; Newlands, E S

    1997-05-01

    Mediastinal germ cell tumours (MGCT) are rare and most published series reflect the experiences of individual institutions over many years. Since 1979, we have treated 16 men (12 non-seminomatous germ cell tumours and 4 seminomas) with newly diagnosed primary MGCT with POMB/ACE chemotherapy and elective surgical resection of residual masses. This approach yielded complete remissions in 15/16 (94%) patients. The median follow-up was 6.0 years and no relapses occurred more than 2 years after treatment. The 5 year overall survival in the non-seminomatous germ cell tumours (NSGCT) is 73% (95% confidence interval 43-90%). One patient with NSGCT developed drug-resistant disease and died without achieving remission and 2 patients died of relapsed disease. In addition, 4 patients with bulky and/or metastatic seminoma were treated with POMB/ACE. One died of treatment-related neutropenic sepsis in complete remission and one died of relapsed disease. Finally, 4 patients (2 NSGCT and 2 seminomas) referred at relapse were treated with POMB/ACE and one was successfully salvaged. The combination of POMB/ACE chemotherapy and surgery is effective management for MGCT producing high long-term survival rates.

  19. Identification of bioactive peptides in hypoallergenic infant milk formulas by capillary electrophoresis-mass spectrometry.

    PubMed

    Català-Clariana, Sergio; Benavente, Fernando; Giménez, Estela; Barbosa, José; Sanz-Nebot, Víctoria

    2010-12-17

    In this study, we use capillary electrophoresis-mass spectrometry (CE-MS) for the identification of bioactive peptides in hypoallergenic infant milk formulas (IF), which are complex bovine milk protein hydrolysates. A sample clean-up pretreatment with a citrate buffer containing dithiothreitol and urea followed by solid-phase extraction (SPE) with different reversed-phase commercial cartridges was investigated to achieve optimum detection sensitivity in CE-MS. SPE with C18, StrataX and Oasis HLB cartridges allowed detection of the largest number of low molecular mass components, but combination of C18 and StrataX results was enough to achieve an excellent coverage of the studied IF. The monoisotopic molecular mass values of the low molecular mass components obtained by capillary electrophoresis ion-trap mass spectrometry (CE-IT-MS) allowed the tentative identification of nine bioactive sequences. Only the identification of five of them could be confirmed when accurate mass measurements were performed by capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS), namely LKP, IPY, ALPM, PGPIHN and VAGTWY, which were reported to present angiotensin-converting enzyme (ACE) inhibitory and antimicrobial activity (only VAGTWY).

  20. Preparation of nanoliposome loaded with peanut peptide fraction: stability and bioavailability.

    PubMed

    Gong, Kui-Jie; Shi, Ai-Min; Liu, Hong-Zhi; Liu, Li; Hu, Hui; Yang, Ying; Adhikari, Benu; Wang, Qiang

    2016-04-01

    Nanoliposome loaded with peanut peptide fraction (PPF) prepared by high pressure microfluidization (HPM) treatment was investigated as well as its stability and bioavailability. PPF showed hydrophilicity character with a solubility of 97.50 ± 2.31 mg mL(-1) in aqueous solution. HPM treatment can prepare nanoliposome but decreased encapsulation efficiency (EE). A pressure of 120 MPa was the appropriate parameter where the particle size and EE of nanolipsome was 79.67 ± 1.85 nm and 65.12 ± 2.96%, respectively. Crude liposome and nanoliposome both showed good stability under different pH conditions, even at pH value of 2.0. Nanoliposome behaved better in vitro controlled release than crude liposome. Most important of all, nanoliposome had the highest angiotension converting enzyme (ACE) inhibitory activity after simulated gastrointestinal tract (GIT) digestion. Morphology of digested liposome proved that nanoliposome can keep relative integrity in structure although it suffered a lot of attack. PMID:27007221

  1. The N-Terminal Region of the Oenococcus oeni Bacteriophage fOg44 Lysin Behaves as a Bona Fide Signal Peptide in Escherichia coli and as a cis-Inhibitory Element, Preventing Lytic Activity on Oenococcal Cells

    PubMed Central

    São-José, Carlos; Parreira, Ricardo; Vieira, Graça; Santos, Mário A.

    2000-01-01

    The function of the N-terminal region of the Oenococcus oeni phage fOg44 lysin (Lys44) as an export signal was investigated. We observed that when induced in Escherichia coli, Lys44 was cleaved between residues 27 and 28 in a SecA-dependent manner. Lys44 processing could be blocked by a specific signal peptidase inhibitor and was severely reduced by modification of the cleavage site. The lethal effect of Lys44 expression observed in E. coli was ascribed to the presence of its N-terminal 27-residue sequence, as its deletion resulted in the production of a nontoxic, albeit active, product. We have further established that lytic activity in oenococcal cells was dependent on Lys44 processing. An active protein with the molecular mass expected for the cleaved enzyme was detected in extracts from O. oeni-infected cells. The temporal pattern of its appearance suggests that synthesis and export of Lys44 in the infected host progress along with phage maturation. Overall, these results provide, for the first time, experimental evidence for the presence of a signal peptide in a bacteriophage lysin. Database searches and alignment of protein sequences support the prediction that other known O. oeni and Lactococcus lactis phages also encode secretory lysins. The evolutionary significance of a putative phage lysis mechanism relying on secretory lytic enzymes is tentatively discussed, on the basis of host cell wall structure and autolytic capacity. PMID:11004183

  2. Influence of In Vitro IL-2 or IL-15 Alone or in Combination with Hsp 70 Derived 14-Mer Peptide (TKD) on the Expression of NK Cell Activatory and Inhibitory Receptors on Peripheral Blood T Cells, B Cells and NKT Cells

    PubMed Central

    Hromadnikova, Ilona; Li, Shuang; Kotlabova, Katerina; Dickinson, Anne M.

    2016-01-01

    Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450–463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment

  3. Influence of In Vitro IL-2 or IL-15 Alone or in Combination with Hsp 70 Derived 14-Mer Peptide (TKD) on the Expression of NK Cell Activatory and Inhibitory Receptors on Peripheral Blood T Cells, B Cells and NKT Cells.

    PubMed

    Hromadnikova, Ilona; Li, Shuang; Kotlabova, Katerina; Dickinson, Anne M

    2016-01-01

    Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450-463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment

  4. An inhibitory corticostriatal pathway

    PubMed Central

    Rock, Crystal; Zurita, Hector; Wilson, Charles; Apicella, Alfonso junior

    2016-01-01

    Anatomical and physiological studies have led to the assumption that the dorsal striatum receives exclusively excitatory afferents from the cortex. Here we test the hypothesis that the dorsal striatum receives also GABAergic projections from the cortex. We addressed this fundamental question by taking advantage of optogenetics and directly examining the functional effects of cortical GABAergic inputs to spiny projection neurons (SPNs) of the mouse auditory and motor cortex. We found that the cortex, via corticostriatal somatostatin neurons (CS-SOM), has a direct inhibitory influence on the output of the striatum SPNs. Our results describe a corticostriatal long-range inhibitory circuit (CS-SOM inhibitory projections → striatal SPNs) underlying the control of spike timing/generation in SPNs and attributes a specific function to a genetically defined type of cortical interneuron in corticostriatal communication. DOI: http://dx.doi.org/10.7554/eLife.15890.001 PMID:27159237

  5. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  6. ACE and platelet aggregation inhibitors from Tamarix hohenackeri Bunge (host plant of Herba Cistanches) growing in Xinjiang

    PubMed Central

    Xing, Yachao; Liao, Jing; Tang, Yingzhan; Zhang, Peng; Tan, Chengyu; Ni, Hui; Wu, Xueqin; Li, Ning; Jia, Xiaoguang

    2014-01-01

    Background: Tamarix hohenackeri Bunge is a salt cedar that grows widespread in the desert mountains in Xinjiang. T. hohenackeri has not been investigated earlier, although there are many reports of phytochemical work on other Tamarix species. Materials and Methods: To find out natural angiotensin-converting enzyme (ACE) inhibitor and platelet aggregation inhibitors, the bioactive extract (ethyl acetate [EtOAc] fraction) from the dried aerial parts of T. hohenackeri were investigated. The active fraction was purified by repeated column chromatography, including silica gel, Sephadex LH-20 column, medium-pressure liquid chromatography (MPLC) (polyamide column) and high-performance liquid chromatography (HPLC). The isolated major constituents were tested for their anti-platelet aggregation activity. Results: Bioassay-directed separation of the EtOAc fraction of the 70% ethanol extract from the air-dried aerial parts of T. hohenackeri led to the isolation of a new triterpenoid lactone (1), together with 13 known compounds (2-14). It was the first time to focus on screening bioactive constituents for this plant. The chemical structures were established on the basis of spectral data (ESI-MS and NMR). The results showed that the flavonoid compounds (7 and 8) and phenolic compounds (9, 10, 11, and 14) were potential ACE inhibitors. And the flavonoid compounds (5 and 7) showed significant anti-platelet aggregation activities. Conclusion: On the basis of the chemical and biological data, the material basis of ACE inhibitory activity for the active part was the phenolic constituents. However, the flavonoid compounds were responsible for the anti-platelet aggregation. The primary structure and activity relationship were also discussed respectively. PMID:24914275

  7. Engineered staphylococcal protein A's IgG-binding domain with cathepsin L inhibitory activity

    SciTech Connect

    Bratkovic, Tomaz . E-mail: tomaz.bratkovic@ffa.uni-lj.si; Berlec, Ales; Popovic, Tatjana; Lunder, Mojca; Kreft, Samo; Urleb, Uros; Strukelj, Borut

    2006-10-13

    Inhibitory peptide of papain-like cysteine proteases, affinity selected from a random disulfide constrained phage-displayed peptide library, was grafted to staphylococcal protein A's B domain. Scaffold protein was additionally modified in order to allow solvent exposed display of peptide loop. Correct folding of fusion proteins was confirmed by CD-spectroscopy and by the ability to bind the Fc-region of rabbit IgG, a characteristic of parent domain. The recombinant constructs inhibited cathepsin L with inhibitory constants in the low-micromolar range.

  8. Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme.

    PubMed

    Agata, Jun; Ura, Nobuyuki; Yoshida, Hideaki; Shinshi, Yasuyuki; Sasaki, Haruki; Hyakkoku, Masaya; Taniguchi, Shinya; Shimamoto, Kazuaki

    2006-11-01

    this anti-remodeling effect and the increase in nitrite/nitrate. These findings suggest that olmesartan may exhibit an ACE inhibitory action in addition to an Ang II receptor blocking action, prevent an increase in Ang II level, and protect cardiovascular remodeling through an increase in cardiac nitric oxide production and endogenous Ang-(1-7) via over-expression of ACE2. PMID:17345786

  9. Sulfated polysaccharides from common smooth hound: Extraction and assessment of anti-ACE, antioxidant and antibacterial activities.

    PubMed

    Abdelhedi, Ola; Nasri, Rim; Souissi, Nabil; Nasri, Moncef; Jridi, Mourad

    2016-11-01

    The present study investigates biological activities of sulfated polysaccharides (SPs) isolated from smooth hound by precipitation with cetylpyridinium chloride (SP1) or ethanol (SP2). SP1 showed the highest amounts of sulfated groups (10.2%) and proteins (7.84%) and high molecular weight sugars. Infrared spectroscopic analysis showed typical peaks of sulfated polysaccharides, particularly for the SP1 that was characterized by the presence of O=S=O groups and acetyl groups. Interestingly, SPs displayed important angiotensin I converting enzyme (ACE) inhibitory (IC50=1.04 and 0.75mg/ml for SP1 and SP2, respectively), antibacterial (Gram+ and Gram-) and antioxidant activities (reducing power, metal chelating activity, β-carotene bleaching inhibition and DNA nicking assay). Moreover, SPs fractionation by DEAE-cellulose column chromatography showed one peak during the buffer elution phase and three major fractions during the linear gradient of NaCl. The overall data suggested that SPs could be used as natural antioxidant, antimicrobial and anti-ACE ingredient to formulate functional foods. PMID:27516310

  10. Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS

    NASA Astrophysics Data System (ADS)

    Quinn, Patricia K.; Bates, Timothy S.

    2005-07-01

    Means and variability of aerosol chemical composition and optical properties are compared for the first and second Aerosol Characterization Experiments (ACE 1 and ACE 2), a cruise across the Atlantic (Aerosols99), the Indian Ocean Experiment (INDOEX), the Asian Aerosol Characterization Experiment (ACE Asia), the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX), and the New England Air Quality Study (NEAQS). These experiments were focused either on the remote marine atmosphere (ACE 1) or areas downwind of continental aerosol source regions including western Europe, North America, Africa, India, and Asia. Presented here are size-segregated concentrations of aerosol mass, sea salt, non-sea-salt (nss) SO4=, NH4+, NO3-, dust, organic carbon (OC), elemental carbon (EC), and nss K+, as well as mass ratios that are commonly used to identify aerosol sources and to assess aerosol processing (Cl- to Na+, OC to nss SO4=, EC to total carbon (TC), EC to nss SO4=, nss K+ to EC, Fe to Al, and Si to Al). Optical properties that are compared include size-segregated scattering, backscattering, and absorption coefficients, and single-scattering albedo at 550 nm. Size-segregated mass scattering and mass absorption efficiencies for the total aerosol and mass extinction efficiencies for the dominant chemical components also are compared. In addition, we present the contribution to light extinction by the dominant chemical components for each region. All data are based on shipboard measurements performed at a relative humidity of 55 ± 5%. Scattering coefficients and single-scattering albedos also are reported at ambient relative humidity (RH) using published values of f(RH). Finally, aerosol optical depths from each region are compared. Identical sampling protocols were used in all experiments in order to eliminate sampling biases and to make the data directly comparable. Major findings include (1) nss SO4= makes up only 16 to 46% of the submicron aerosol mass

  11. Kinins and peptide receptors.

    PubMed

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  12. Inhibitory effect of leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes involved in obesity and hypertension in vitro

    PubMed Central

    Irondi, Emmanuel Anyachukwu; Agboola, Samson Olalekan; Oboh, Ganiyu; Boligon, Aline Augusti

    2016-01-01

    Aim: To evaluate the phenolics composition and inhibitory effect of the leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes (pancreatic lipase [PL] and angiotensin 1-converting enzyme [ACE]) involved in obesity and hypertension in vitro. Materials and Methods: The phenolics (flavonoids and phenolic acids) were quantified using high-performance liquid chromatography coupled with diode array detection. PL and ACE inhibitory effects; DPPH* and ABTS*+ scavenging activities of the extracts were tested using spectrophotometric methods. Results: O. basilicum had the following major phenolics: Rutin, quercetin, and quercitrin (flavonoids); caffeic, chlorogenic, and gallic acids (phenolic acids); while O. gratissimum had the following major phenolics: Rutin, quercitrin, and luteolin (flavonoids); ellagic and chlorogenic acids (phenolic acids). “Extracts of both plants inhibited PL and ACE; scavenged DPPH* in a dose-dependent manner”. O. gratissimum extract was more potent in inhibiting PL (IC50: 20.69 µg/mL) and ACE (IC50: 29.44 µg/mL) than O. basilicum (IC50: 52.14 µg/mL and IC50: 64.99 µg/mL, against PL and ACE, respectively). O. gratissimum also scavenged DPPH* and ABTS*+ more than O. basilicum. Conclusion: O. basilicum and O. gratissimum leaves could be used as functional foods for the management of obesity and obesity-related hypertension. However, O. gratissimum may be more effective than O. basilicum. PMID:27757270

  13. Parallel Signal Processing and System Simulation using aCe

    NASA Technical Reports Server (NTRS)

    Dorband, John E.; Aburdene, Maurice F.

    2003-01-01

    Recently, networked and cluster computation have become very popular for both signal processing and system simulation. A new language is ideally suited for parallel signal processing applications and system simulation since it allows the programmer to explicitly express the computations that can be performed concurrently. In addition, the new C based parallel language (ace C) for architecture-adaptive programming allows programmers to implement algorithms and system simulation applications on parallel architectures by providing them with the assurance that future parallel architectures will be able to run their applications with a minimum of modification. In this paper, we will focus on some fundamental features of ace C and present a signal processing application (FFT).

  14. Curriculum innovation in an accelerated BSN program: the ACE Model.

    PubMed

    Suplee, Patricia D; Glasgow, Mary Ellen

    2008-01-01

    As the demand for registered nurses continues to rise, so too has the creation of accelerated baccalaureate nursing programs for second-degree students. This article describes an 11-month Accelerated Career Entry (ACE) Nursing Program's innovative curriculum design, which has a heavy emphasis on technology, professional socialization, and the use of a standardized patient experience as a form of summative evaluation. In addition, challenges of this program are presented. Since 2002, the ACE Program has graduated over 500 students with an average first-time NCLEX pass rate of 95-100%. Although the number of graduates from accelerated programs does not solve the severe nursing shortage, the contributions of these intelligent, assertive, pioneering graduates are important for health care.

  15. Possible Improvements of the ACE Diversity Interchange Methodology

    SciTech Connect

    Etingov, Pavel V.; Zhou, Ning; Makarov, Yuri V.; Ma, Jian; Guttromson, Ross T.; McManus, Bart; Loutan, Clyde

    2010-07-26

    North American Electric Reliability Corporation (NERC) grid is operated by about 131 balancing authorities (BA). Within each BA, operators are responsible for managing the unbalance (caused by both load and wind). As wind penetration levels increase, the challenges of managing power variation increases. Working independently, balancing area with limited regulating/load following generation and high wind power penetration faces significant challenges. The benefits of BA cooperation and consolidation increase when there is a significant wind energy penetration. To explore the benefits of BA cooperation, this paper investigates ACE sharing approach. A technology called ACE diversity interchange (ADI) is already in use in the western interconnection. A new methodology extending ADI is proposed in the paper. The proposed advanced ADI overcoming some limitations existing in conventional ADI. Simulations using real statistical data of CAISO and BPA have shown high performance of the proposed advanced ADI methodology.

  16. ACE-FTS instrument: activities in preparation for launch

    NASA Astrophysics Data System (ADS)

    Soucy, Marc-Andre; Walker, Kaley A.; Fortin, Serge; Deutsch, Christophe

    2003-11-01

    The Atmospheric Chemistry Experiment (ACE) is the mission selected by the Canadian Space Agency for its next science satellite, SCISAT-1. ACE consists of a suite of instruments in which the primary element is an infrared Fourier Transform Spectrometer (FTS) coupled with an auxiliary 2-channel visible (525 nm) and near infrared imager (1020 nm). A secondary instrument, MAESTRO, provides spectrographic data from the near ultra-violet to the near infrared, including the visible spectral range. In combination the instrument payload covers the spectral range from 0.25 to 13.3 micron. A comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols and temperature will be made by solar occultation from a satellite in low earth orbit. The ACE mission will measure and analyse the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere. A high inclination (74 degrees), low earth orbit (650 km) allows coverage of tropical, mid-latitude and polar regions. This paper presents the instrument-related activities in preparation for launch. In particular, activities related to the integration of instrument to spacecraft are presented as well as tests of the instrument on-board the SciSat-1 bus. Environmental qualification activities at spacecraft-level are described. An overview of the characterization and calibration campaign is presented. Activities for integration and verification at launch site are also covered. The latest status of the spacecraft is also presented.

  17. ACES: An Enabling Technology for Next Generation Space Transportation

    NASA Astrophysics Data System (ADS)

    Crocker, Andrew M.; Wuerl, Adam M.; Andrews, Jason E.; Andrews, Dana G.

    2004-02-01

    Andrews Space has developed the ``Alchemist'' Air Collection and Enrichment System (ACES), a dual-mode propulsion system that enables safe, economical launch systems that take off and land horizontally. Alchemist generates liquid oxygen through separation of atmospheric air using the refrigeration capacity of liquid hydrogen. The key benefit of Alchemist is that it minimizes vehicle takeoff weight. All internal and NASA-funded activities have shown that ACES, previously proposed for hypersonic combined cycle RLVs, is a higher payoff, lower-risk technology if LOX generation is performed while the vehicle cruises subsonically. Andrews Space has developed the Alchemist concept from a small system study to viable Next Generation launch system technology, conducting not only feasibility studies but also related hardware tests, and it has planned a detailed risk reduction program which employs an experienced, proven contractor team. Andrews also has participated in preliminary studies of an evolvable Next Generation vehicle architecture-enabled by Alchemist ACES-which could meet civil, military, and commercial space requirements within two decades.

  18. Spermidine Derivatives in Lulo (Solanum quitoense Lam.) Fruit: Sensory (Taste) versus Biofunctional (ACE-Inhibition) Properties.

    PubMed

    Forero, Diana Paola; Masatani, Chieko; Fujimoto, Yoshinori; Coy-Barrera, Ericsson; Peterson, Devin G; Osorio, Coralia

    2016-07-01

    The bitterness in lulo (Solanum quitoense Lam.) fruit is increased during processing (juicing or drying). To identify the bitter-active compounds, the ethanolic fruit pulp extract was subjected to RP-18 solid-phase extraction, and then sensory-guided fractionated by HPLC. Two spermidine derivatives, N(1),N(4),N(8)-tris(dihydrocaffeoyl)spermidine and N(1),N(8)-bis(dihydrocaffeoyl)spermidine, were isolated and their structures confirmed by analysis of their HPLC-ESI/MS and (1)H and (13)C NMR data. The N(1),N(4),N(8)-tris(dihydrocaffeoyl)spermidine was synthesized and used as an authentic sample to unequivocally confirm the structure of this compound and to quantitate it in both fresh and dried fruit. In silico analyses demonstrated that spermidine derivatives identified in lulo pulp exhibited a strong ACE-I (angiotensin I-converting enzyme) inhibitory activity. Subsequently, these results were confirmed by in vitro analyses and showed the potential use of lulo fruit pulp as an ingredient of functional foods related to the prevention of blood hypertension. PMID:27292771

  19. Spermidine Derivatives in Lulo (Solanum quitoense Lam.) Fruit: Sensory (Taste) versus Biofunctional (ACE-Inhibition) Properties.

    PubMed

    Forero, Diana Paola; Masatani, Chieko; Fujimoto, Yoshinori; Coy-Barrera, Ericsson; Peterson, Devin G; Osorio, Coralia

    2016-07-01

    The bitterness in lulo (Solanum quitoense Lam.) fruit is increased during processing (juicing or drying). To identify the bitter-active compounds, the ethanolic fruit pulp extract was subjected to RP-18 solid-phase extraction, and then sensory-guided fractionated by HPLC. Two spermidine derivatives, N(1),N(4),N(8)-tris(dihydrocaffeoyl)spermidine and N(1),N(8)-bis(dihydrocaffeoyl)spermidine, were isolated and their structures confirmed by analysis of their HPLC-ESI/MS and (1)H and (13)C NMR data. The N(1),N(4),N(8)-tris(dihydrocaffeoyl)spermidine was synthesized and used as an authentic sample to unequivocally confirm the structure of this compound and to quantitate it in both fresh and dried fruit. In silico analyses demonstrated that spermidine derivatives identified in lulo pulp exhibited a strong ACE-I (angiotensin I-converting enzyme) inhibitory activity. Subsequently, these results were confirmed by in vitro analyses and showed the potential use of lulo fruit pulp as an ingredient of functional foods related to the prevention of blood hypertension.

  20. Antimicrobial activity of polycationic peptides.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Del Prete, M S; Scalise, G

    1999-11-01

    The in vitro activity of six polycationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated against several clinical isolates of gram-positive and gram-negative aerobic bacteria, yeasts, Pneumocystis carinii and Cryptosporidium parvum, by using microbroth dilution methods. The peptides exhibited different antibacterial activities and rapid time-dependent killing. The gram-negative organisms were more susceptible to buforin II and cecropin P1, whereas buforin II and ranalexin were the most active compounds against the gram-positive strains. Similarly, ranalexin showed the highest activity against Candida spp., whereas magainin II exerted the highest anticryptococcal activity. Finally, the peptides showed high anti-Pneumocystis activity, whereas no compound had strong inhibitory effect on C. parvum. PMID:10612440

  1. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  2. RFamide peptides in agnathans and basal chordates.

    PubMed

    Osugi, Tomohiro; Son, You Lee; Ubuka, Takayoshi; Satake, Honoo; Tsutsui, Kazuyoshi

    2016-02-01

    Since a peptide with a C-terminal Arg-Phe-NH2 (RFamide peptide) was first identified in the ganglia of the venus clam in 1977, RFamide peptides have been found in the nervous system of both invertebrates and vertebrates. In vertebrates, the RFamide peptide family includes gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa), and kisspeptins (kiss1 and kiss2). They are involved in important functions such as the release of hormones, regulation of sexual or social behavior, pain transmission, reproduction, and feeding. In contrast to tetrapods and jawed fish, the information available on RFamide peptides in agnathans and basal chordates is limited, thus preventing further insights into the evolution of RFamide peptides in vertebrates. In this review, we focus on the previous research and recent advances in the studies on RFamide peptides in agnathans and basal chordates. In agnathans, the genes encoding GnIH, NPFF, and PrRP precursors and the mature peptides have been identified in lamprey (Petromyzon marinus) and hagfish (Paramyxine atami). Putative kiss1 and kiss2 genes have also been found in the genome database of lamprey. In basal chordates, namely, in amphioxus (Branchiostoma japonicum), a common ancestral form of GnIH and NPFF genes and their mature peptides, as well as the ortholog of the QRFP gene have been identified. The studies revealed that the number of orthologs of vertebrate RFamide peptides present in agnathans and basal chordates is greater than expected, suggesting that the vertebrate RFamide peptides might have emerged and expanded at an early stage of chordate evolution.

  3. User`s guide for the Augmented Computer Exercise for Inspection Training (ACE-IT) software

    SciTech Connect

    Dobranich, P.R.; Horak, K.E.; Hagan, D.; Evanko, D.; Nelson, J.; Ryder, C.; Hedlund, D.

    1997-09-01

    The on-site inspection provisions in many current and proposed arms control agreements require extensive preparation and training on the part of both the Inspection Teams (inspectors) and Inspected Parties (host). Current training techniques include table-top inspections and practice inspections. The Augmented Computer Exercise for Inspection Training (ACE-IT), an interactive computer training tool, increases the utility of table-top inspections. ACE-IT has been designed to provide training for challenge inspections under the Chemical Weapons Convention (CWC); however, this training tool can be modified for other inspection regimes. Although ACE-IT provides training from notification of an inspection through post-inspection activities, the primary emphasis of ACE-IT is in the inspection itself--particularly with the concept of managed access. ACE-IT also demonstrates how inspection provisions impact compliance determination and the protection of sensitive information. This User`s Guide describes the use of the ACE-IT training software.

  4. Extension of the ACE solar panels is tested in SAEF-II

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Extension of the solar panels is tested on the Advanced Composition Explorer (ACE) spacecraft in KSC's Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.

  5. The Pharmacogenetic Footprint of ACE Inhibition: A Population-Based Metabolomics Study

    PubMed Central

    Altmaier, Elisabeth; Menni, Cristina; Heier, Margit; Meisinger, Christa; Thorand, Barbara; Quell, Jan; Kobl, Michael; Römisch-Margl, Werner; Valdes, Ana M.; Mangino, Massimo; Waldenberger, Melanie; Strauch, Konstantin; Illig, Thomas; Adamski, Jerzy; Spector, Tim; Gieger, Christian; Suhre, Karsten; Kastenmüller, Gabi

    2016-01-01

    Angiotensin-I-converting enzyme (ACE) inhibitors are an important class of antihypertensives whose action on the human organism is still not fully understood. Although it is known that ACE especially cleaves COOH-terminal dipeptides from active polypeptides, the whole range of substrates and products is still unknown. When analyzing the action of ACE inhibitors, effects of genetic variation on metabolism need to be considered since genetic variance in the ACE gene locus was found to be associated with ACE-concentration in blood as well as with changes in the metabolic profiles of a general population. To investigate the interactions between genetic variance at the ACE-locus and the influence of ACE-therapy on the metabolic status we analyzed 517 metabolites in 1,361 participants from the KORA F4 study. We replicated our results in 1,964 individuals from TwinsUK. We observed differences in the concentration of five dipeptides and three ratios of di- and oligopeptides between ACE inhibitor users and non-users that were genotype dependent. Such changes in the concentration affected major homozygotes, and to a lesser extent heterozygotes, while minor homozygotes showed no or only small changes in the metabolite status. Two of these resulting dipeptides, namely aspartylphenylalanine and phenylalanylserine, showed significant associations with blood pressure which qualifies them—and perhaps also the other dipeptides—as readouts of ACE-activity. Since so far ACE activity measurement is substrate specific due to the usage of only one oligopeptide, taking several dipeptides as potential products of ACE into account may provide a broader picture of the ACE activity. PMID:27120469

  6. The Pharmacogenetic Footprint of ACE Inhibition: A Population-Based Metabolomics Study.

    PubMed

    Altmaier, Elisabeth; Menni, Cristina; Heier, Margit; Meisinger, Christa; Thorand, Barbara; Quell, Jan; Kobl, Michael; Römisch-Margl, Werner; Valdes, Ana M; Mangino, Massimo; Waldenberger, Melanie; Strauch, Konstantin; Illig, Thomas; Adamski, Jerzy; Spector, Tim; Gieger, Christian; Suhre, Karsten; Kastenmüller, Gabi

    2016-01-01

    Angiotensin-I-converting enzyme (ACE) inhibitors are an important class of antihypertensives whose action on the human organism is still not fully understood. Although it is known that ACE especially cleaves COOH-terminal dipeptides from active polypeptides, the whole range of substrates and products is still unknown. When analyzing the action of ACE inhibitors, effects of genetic variation on metabolism need to be considered since genetic variance in the ACE gene locus was found to be associated with ACE-concentration in blood as well as with changes in the metabolic profiles of a general population. To investigate the interactions between genetic variance at the ACE-locus and the influence of ACE-therapy on the metabolic status we analyzed 517 metabolites in 1,361 participants from the KORA F4 study. We replicated our results in 1,964 individuals from TwinsUK. We observed differences in the concentration of five dipeptides and three ratios of di- and oligopeptides between ACE inhibitor users and non-users that were genotype dependent. Such changes in the concentration affected major homozygotes, and to a lesser extent heterozygotes, while minor homozygotes showed no or only small changes in the metabolite status. Two of these resulting dipeptides, namely aspartylphenylalanine and phenylalanylserine, showed significant associations with blood pressure which qualifies them-and perhaps also the other dipeptides-as readouts of ACE-activity. Since so far ACE activity measurement is substrate specific due to the usage of only one oligopeptide, taking several dipeptides as potential products of ACE into account may provide a broader picture of the ACE activity. PMID:27120469

  7. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  8. Rediscovering ACE: Novel insights into the many roles of the angiotensin-converting enzyme

    PubMed Central

    Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Bernstein, Ellen A.; Janjulia, Tea; Taylor, Brian; Giani, Jorge F.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Shi, Peng D.; Fuchs, Sebastien; Bernstein, Kenneth E.

    2013-01-01

    Angiotensin converting enzyme (ACE) is best known for the catalytic conversion of angiotensin I to angiotensin II. However, the use of gene-targeting techniques has led to mouse models highlighting many other biochemical properties and actions of this enzyme. This review discusses recent studies examining the functional significance of ACE tissue-specific expression and the presence in ACE of two independent catalytic sites with distinct substrates and biological effects. It is these features which explain why ACE makes important contributions to many different physiological processes including renal development, blood pressure control, inflammation and immunity. PMID:23686164

  9. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery

    NASA Technical Reports Server (NTRS)

    Bai, J. P.; Amidon, G. L.

    1992-01-01

    The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

  10. Synthetic peptides.

    PubMed

    Francis, M J

    1996-01-01

    Efforts to produce more stable and defined vaccines have concentrated on studying, in detail, the immune response to many infectious diseases in order to identify the antigenic sites on the pathogens that are involved in stimulating protective immumty. Armed with this knowledge, it is possible to mimic such sites by producing short chains of amino acids (peptides) and to use these as the basis for novel vaccines. The earliest documented work on peptide immunization is actually for a plant virus, tobacco mosaic virus. In 1963, Anderer (1) demonstrated that rabbit antibodies to an isolated hexapeptide fragment from the virus-coat protein coupled to bovine serum albumm would neutralize the infectious vn-us in culture. Two years later, he used a synthetically produced copy of the same peptide to confirm this observation. This was pioneering work, and it was over 10 years before the next example of a peptide that elicited antivirus antibody appeared following work by Sela and his colleagues (2) on a virus, MS2 bacteriophage, which infects bacteria. The emergence of more accessible techniques for sequencing proteins in 1977, coupled with the ability to synthesize readily peptides already developed in 1963, heralded a decade of intensive research into experimental peptide vaccines. The first demonstration that peptides could elicit protective immunity in vivo, in addition to neutralizing activity in vitro, was obtained using a peptide from the VP1 coat protein of foot-and-mouth disease virus (FMDV) in 1982, with the guinea pig as a laboratory animal model (3, 4). PMID:21359696

  11. Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE)

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, T.; Wolff, M. A.; Strong, K.; Dupuy, E.; Walker, K. A.; Amekudzi, L. K.; Batchelor, R. L.; Bernath, P. F.; Berthet, G.; Blumenstock, T.; Boone, C. D.; Bramstedt, K.; Brogniez, C.; Brohede, S.; Burrows, J. P.; Catoire, V.; Dodion, J.; Drummond, J. R.; Dufour, D. G.; Funke, B.; Fussen, D.; Goutail, F.; Griffith, D. W. T.; Haley, C. S.; Hendrick, F.; Höpfner, M.; Huret, N.; Jones, N.; Kar, J.; Kramer, I.; Llewellyn, E. J.; López-Puertas, M.; Manney, G.; McElroy, C. T.; McLinden, C. A.; Melo, S.; Mikuteit, S.; Murtagh, D.; Nichitiu, F.; Notholt, J.; Nowlan, C.; Piccolo, C.; Pommereau, J.-P.; Randall, C.; Raspollini, P.; Ridolfi, M.; Richter, A.; Schneider, M.; Schrems, O.; Silicani, M.; Stiller, G. P.; Taylor, J.; Tétard, C.; Toohey, M.; Vanhellemont, F.; Warneke, T.; Zawodny, J. M.; Zou, J.

    2008-10-01

    Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE), using an infrared Fourier Transform Spectrometer (ACE-FTS) and (for NO2) an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation). In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY), stellar occultation measurements (GOMOS), limb measurements (MIPAS, OSIRIS), nadir measurements (SCIAMACHY), balloon-borne measurements (SPIRALE, SAOZ) and ground-based measurements (UV-VIS, FTIR). Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS and MAESTRO NO2 volume mixing ratio (VMR) profiles agree with the profiles from other satellite data sets to within about 20% between 25 and 40 km, with the exception of MIPAS ESA (for ACE-FTS) and SAGE II (for ACE-FTS (sunrise) and MAESTRO) and suggest a negative bias between 23 and 40 km of about 10%. MAESTRO reports larger VMR values than the ACE-FTS. In comparisons with HALOE, ACE-FTS NO VMRs typically (on average) agree to ±8% from 22 to 64 km and to +10% from 93 to 105 km, with maxima of 21% and 36%, respectively. Partial column comparisons for NO2 show that there is quite good agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.

  12. Short communication: Potential of Fresco-style cheese whey as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme inhibitory activities.

    PubMed

    Tarango-Hernández, S; Alarcón-Rojo, A D; Robles-Sánchez, M; Gutiérrez-Méndez, N; Rodríguez-Figueroa, J C

    2015-11-01

    Recently, traditional Mexican Fresco-style cheese production has been increasing, and the volume of cheese whey generated represents a problem. In this study, we investigated the chemical composition of Fresco-style cheese wheys and their potential as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme (ACE)-inhibitory activities. Three samples from Fresco, Panela, and Ranchero cheeses whey were physicochemically characterized. Water-soluble extracts were fractionated to obtain whey fractions with different molecular weights: 10-5, 5-3, 3-1 and <1 kDa. The results indicated differences in the lactose, protein, ash, and dry matter contents (% wt/wt) in the different Fresco-style cheese wheys. All whey fractions had antioxidant and ACE-inhibitory activities. The 10-5 kDa whey fraction of Ranchero cheese had the highest Trolox equivalent antioxidant capacity (0.62 ± 0.00 mM), and the 3-1 kDa Panela and Fresco cheese whey fractions showed the highest ACE-inhibitory activity (0.57 ± 0.02 and 0.59 ± 0.04 μg/mL 50%-inhibitory concentration values, respectively). These results suggest that Fresco-style cheese wheys may be a source of protein fractions with bioactivity, and thus could be useful ingredients in the manufacture of functional foods with increased nutritional value.

  13. Short communication: Potential of Fresco-style cheese whey as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme inhibitory activities.

    PubMed

    Tarango-Hernández, S; Alarcón-Rojo, A D; Robles-Sánchez, M; Gutiérrez-Méndez, N; Rodríguez-Figueroa, J C

    2015-11-01

    Recently, traditional Mexican Fresco-style cheese production has been increasing, and the volume of cheese whey generated represents a problem. In this study, we investigated the chemical composition of Fresco-style cheese wheys and their potential as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme (ACE)-inhibitory activities. Three samples from Fresco, Panela, and Ranchero cheeses whey were physicochemically characterized. Water-soluble extracts were fractionated to obtain whey fractions with different molecular weights: 10-5, 5-3, 3-1 and <1 kDa. The results indicated differences in the lactose, protein, ash, and dry matter contents (% wt/wt) in the different Fresco-style cheese wheys. All whey fractions had antioxidant and ACE-inhibitory activities. The 10-5 kDa whey fraction of Ranchero cheese had the highest Trolox equivalent antioxidant capacity (0.62 ± 0.00 mM), and the 3-1 kDa Panela and Fresco cheese whey fractions showed the highest ACE-inhibitory activity (0.57 ± 0.02 and 0.59 ± 0.04 μg/mL 50%-inhibitory concentration values, respectively). These results suggest that Fresco-style cheese wheys may be a source of protein fractions with bioactivity, and thus could be useful ingredients in the manufacture of functional foods with increased nutritional value. PMID:26364114

  14. Signatures of interchange reconnection: STEREO, ACE and Hinode observations combined

    NASA Astrophysics Data System (ADS)

    Baker, D.; Rouillard, A. P.; van Driel-Gesztelyi, L.; Démoulin, P.; Harra, L. K.; Lavraud, B.; Davies, J. A.; Opitz, A.; Luhmann, J. G.; Sauvaud, J.-A.; Galvin, A. B.

    2009-10-01

    Combining STEREO, ACE and Hinode observations has presented an opportunity to follow a filament eruption and coronal mass ejection (CME) on 17 October 2007 from an active region (AR) inside a coronal hole (CH) into the heliosphere. This particular combination of "open" and closed magnetic topologies provides an ideal scenario for interchange reconnection to take place. With Hinode and STEREO data we were able to identify the emergence time and type of structure seen in the in-situ data four days later. On the 21st, ACE observed in-situ the passage of an ICME with "open" magnetic topology. The magnetic field configuration of the source, a mature AR located inside an equatorial CH, has important implications for the solar and interplanetary signatures of the eruption. We interpret the formation of an "anemone" structure of the erupting AR and the passage in-situ of the ICME being disconnected at one leg, as manifested by uni-directional suprathermal electron flux in the ICME, to be a direct result of interchange reconnection between closed loops of the CME originating from the AR and "open" field lines of the surrounding CH.

  15. ACE: A distributed system to manage large data archives

    NASA Technical Reports Server (NTRS)

    Daily, Mike I.; Allen, Frank W.

    1993-01-01

    Competitive pressures in the oil and gas industry are requiring a much tighter integration of technical data into E and P business processes. The development of new systems to accommodate this business need must comprehend the significant numbers of large, complex data objects which the industry generates. The life cycle of the data objects is a four phase progression from data acquisition, to data processing, through data interpretation, and ending finally with data archival. In order to implement a cost effect system which provides an efficient conversion from data to information and allows effective use of this information, an organization must consider the technical data management requirements in all four phases. A set of technical issues which may differ in each phase must be addressed to insure an overall successful development strategy. The technical issues include standardized data formats and media for data acquisition, data management during processing, plus networks, applications software, and GUI's for interpretation of the processed data. Mass storage hardware and software is required to provide cost effective storage and retrieval during the latter three stages as well as long term archival. Mobil Oil Corporation's Exploration and Producing Technical Center (MEPTEC) has addressed the technical and cost issues of designing, building, and implementing an Advanced Computing Environment (ACE) to support the petroleum E and P function, which is critical to the corporation's continued success. Mobile views ACE as a cost effective solution which can give Mobile a competitive edge as well as a viable technical solution.

  16. Uncertainty quantification for accident management using ACE surrogates

    SciTech Connect

    Varuttamaseni, A.; Lee, J. C.; Youngblood, R. W.

    2012-07-01

    The alternating conditional expectation (ACE) regression method is used to generate RELAP5 surrogates which are then used to determine the distribution of the peak clad temperature (PCT) during the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed (F and B) operation in the Zion-1 nuclear power plant. The construction of the surrogates assumes conditional independence relations among key reactor parameters. The choice of parameters to model is based on the macroscopic balance statements governing the behavior of the reactor. The peak clad temperature is calculated based on the independent variables that are known to be important in determining the success of the F and B operation. The relationship between these independent variables and the plant parameters such as coolant pressure and temperature is represented by surrogates that are constructed based on 45 RELAP5 cases. The time-dependent PCT for different values of F and B parameters is calculated by sampling the independent variables from their probability distributions and propagating the information through two layers of surrogates. The results of our analysis show that the ACE surrogates are able to satisfactorily reproduce the behavior of the plant parameters even though a quasi-static assumption is primarily used in their construction. The PCT is found to be lower in cases where the F and B operation is initiated, compared to the case without F and B, regardless of the F and B parameters used. (authors)

  17. A variant peptide of buffalo colostrum β-lactoglobulin inhibits angiotensin I-converting enzyme activity.

    PubMed

    Rohit, A C; Sathisha, K; Aparna, H S

    2012-07-01

    β-lactoglobulin is a rich source of bioactive peptides. The LC-MS separated tryptic peptides of buffalo colostrum β-lactoglobulin (BLG-col) were computed based on MS-MS fragmentation for de novo sequencing. Among the selected peptides (P1-P8), a variant was detected with methionine at position 74 instead of glutamate. The sequences of two peptides were identical to hypocholesterolemic peptides whereas the remaining peptides were in accordance with buffalo milk β-lactoglobulin. Comparative sequence analysis of BLG-col to milk β-lactoglobulin was carried out using CLUSTALW2 and a molecular model for BLG-col was constructed (PMDB ID-PM0076812). The synthesized variant pentapeptide (IIAMK, m/z-576 Da) was found to inhibit angiotensin I-converting enzyme (ACE) with an IC(50) of 498 ± 2 μM, which was rationalized through docking simulations using Molgrow virtual docker. PMID:22541393

  18. Atrial Natriuretic Peptide Inhibits Spontaneous Contractile Activity of Lymph Nodes.

    PubMed

    Lobov, G I; Pan'kova, M N

    2016-06-01

    Atrial natriuretic peptide dose-dependently inhibited spontaneous phase and tonic activity of smooth muscle strips from the capsule of isolated bovine mesenteric lymph nodes. Pretreatment with L-NAME, diclofenac, and methylene blue had practically no effect on the peptide-induced relaxation responses. In contrast, glibenclamide significantly reduced the inhibitory effect of atrial natriuretic peptide. We suppose that the NO-dependent and cyclooxygenase signaling pathways are not involved in implementation of the inhibitory effects of atrial natriuretic peptide. ATP-sensitive K(+)-channels of the smooth muscle cell membrane are the last component in the signaling pathway leading to relaxation of smooth muscles of the lymph node capsule caused by atrial natriuretic peptide; activation of these channels leads to membrane hyperpolarization and smooth muscle relaxation. PMID:27383173

  19. Formative Evaluation of ACES Program: Findings from Surveys and Interviews Year One, Grades 11 and 12

    ERIC Educational Resources Information Center

    Wolanin, Natalie; Modarresi, Shahpar

    2015-01-01

    The Office of Shared Accountability (OSA) in Montgomery County (Maryland) Public Schools (MCPS) is conducting a multiyear evaluation of the Achieving Collegiate Excellence and Success (ACES) program. The ACES program is a collaboration between MCPS, Montgomery College (MC), and the Universities at Shady Grove (USG) to create a seamless pathway…

  20. Airspace Concept Evaluation System (ACES), Concept Simulations using Communication, Navigation and Surveillance (CNS) System Models

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don

    2006-01-01

    Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.

  1. Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE)

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, T.; Wolff, M. A.; Stong, K.; Dupuy, E.; Walker, K. A.; Amekudzi, L. K.; Batchelor, R. L.; Bernath, P. F.; Berthet, G.; Blumenstock, T.; Boone, C. D.; Bramstedt, K.; Brogniez, C.; Brohede, S.; Burrows, J. P.; Catoire, V.; Dodion, J.; Drummond, J. R.; Dufour, D. G.; Funke, B.; Fussen, D.; Goutail, F.; Griffith, D. W. T.; Haley, C. S.; Hendrick, F.; Höpfner, M.; Huret, N.; Jones, N.; Kar, J.; Kramer, I.; Llewellyn, E. J.; López-Puertas, M.; Manney, G.; McElroy, C. T.; McLinden, C. A.; Melo, S.; Mikuteit, S.; Murthag, D.; Nichitiu, F.; Notholt, J.; Nowlan, C.; Piccolo, C.; Pommereau, J.-P.; Randall, C.; Raspollini, P.; Ridolfi, M.; Richter, A.; Schneider, M.; Schrems, O.; Silicani, M.; Stiller, G. P.; Taylor, J.; Tétard, C.; Toohey, M.; Vanhellemont, F.; Warneke, T.; Zawodny, J. M.; Zou, J.

    2008-02-01

    Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE), using an infrared Fourier Transform Spectrometer, ACE-FTS, and an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation). In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY), stellar occultation measurements (GOMOS), limb measurements (MIPAS, OSIRIS), nadir measurements (SCIAMACHY), balloon measurements (SPIRALE, SAOZ) and ground-based measurements (UV-VIS, FTIR). Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS NO2 VMRs agree with the satellite data sets to within about 20% between 25 and 40 km, and suggest a negative bias between 23 and 40 km of about textminus10%. In comparisons with HALOE, ACE-FTS NO VMRs typically agree to ±8% from 22 to 64 km and to +10% from 93 to 105 km. Partial column comparisons for NO2 show that there is fair agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.

  2. Cutaneous allergy to insulin: could statins and ACE inhibitors play a role? A case report.

    PubMed

    Pitrola, D; MacIver, C; Mallipedhi, A; Udiawar, M; Price, D E; Stephens, J W

    2014-04-01

    Insulin allergy is rare. Both statins and angiotensin converting enzyme (ACE) inhibitors may cause local urticarial skin reactions and have been implicated to precipitate local reactions to insulin. We describe a case of a localised urticarial allergic reaction related to insulin use in a patient co-prescribed an ACE inhibitor and statin. PMID:24534533

  3. Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)

    NASA Technical Reports Server (NTRS)

    Qureshi, Rizwan Hamid; Hughes, Steven P.

    2014-01-01

    The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.

  4. 75 FR 64737 - Automated Commercial Environment (ACE): Announcement of a National Customs Automation Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... SECURITY U.S. Customs and Border Protection Automated Commercial Environment (ACE): Announcement of a... required advance ocean and rail data through the Automated Commercial Environment (ACE). This notice... application period for participation, outlines the development and evaluation methodology to be used,...

  5. 77 FR 20835 - National Customs Automation Program (NCAP) Test Concerning Automated Commercial Environment (ACE...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... Portal Accounts and Subsequent Revision Notices: 67 FR 21800 (May 1, 2002); 70 FR 5199 (February 1, 2005); 69 FR 5360 and 69 FR 5362 (February 4, 2004); 69 FR 54302 (September 8, 2004). ACE System of Records Notice: 71 FR 3109 (January 19, 2006). Terms/Conditions for Access to the ACE Portal and...

  6. 76 FR 34246 - Automated Commercial Environment (ACE); Announcement of National Customs Automation Program Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ..., 2003, CBP published a final rule in the Federal Register (68 FR 68140) to effectuate the provisions of... 27, 2006 (71 FR 62922), CBP designated the ACE Truck Manifest System as the approved system for... in which CBP had planned to require the use of ACE. See, 72 FR 53789, September 20, 2007....

  7. Absence of cell surface expression of human ACE leads to perinatal death.

    PubMed

    Michaud, Annie; Acharya, K Ravi; Masuyer, Geoffrey; Quenech'du, Nicole; Gribouval, Olivier; Morinière, Vincent; Gubler, Marie-Claire; Corvol, Pierre

    2014-03-15

    Renal tubular dysgenesis (RTD) is a recessive autosomal disease characterized most often by perinatal death. It is due to the inactivation of any of the major genes of the renin-angiotensin system (RAS), one of which is the angiotensin I-converting enzyme (ACE). ACE is present as a tissue-bound enzyme and circulates in plasma after its solubilization. In this report, we present the effect of different ACE mutations associated with RTD on ACE intracellular trafficking, secretion and enzymatic activity. One truncated mutant, R762X, responsible for neonatal death was found to be an enzymatically active, secreted form, not inserted in the plasma membrane. In contrast, another mutant, R1180P, was compatible with life after transient neonatal renal insufficiency. This mutant was located at the plasma membrane and rapidly secreted. These results highlight the importance of tissue-bound ACE versus circulating ACE and show that the total absence of cell surface expression of ACE is incompatible with life. In addition, two missense mutants (W594R and R828H) and two truncated mutants (Q1136X and G1145AX) were also studied. These mutants were neither inserted in the plasma membrane nor secreted. Finally, the structural implications of these ACE mutations were examined by molecular modelling, which suggested some important structural alterations such as disruption of intra-molecular non-covalent interactions (e.g. salt bridges).

  8. SCORE/ACE Counselor Handbook. Service Corps of Retired Executives. Active Corps of Executives.

    ERIC Educational Resources Information Center

    Landsverk, Arvel; And Others

    This counselor handbook is intended to help Service Corps of Retired Executives/Active Corps of Executives (SCORE/ACE) counselors to plan and conduct counseling services more effectively. Included in the introductory section are an overview of the SCORE/ACE counseling program, a discussion of what the counselor does, directions for completing…

  9. Education for 2001 and Beyond: Imperatives and Possibilities. Outcomes from the ACE "Education 2000" International Conference.

    ERIC Educational Resources Information Center

    Unicorn: Journal of the Australian College of Education, 2000

    2000-01-01

    This issue of "Unicorn," the journal of the Australian College of Education (ACE), contains extracts and summaries of 13 presentations given at the international ACE conference, "Education 2000: Priorities for the New Millennium." The papers not only address the five themes of the conference (priorities for learning, priorities for supporting…

  10. Communications, Navigation, and Surveillance Models in ACES: Design Implementation and Capabilities

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don; Satapathy, Goutam; Kumar, Anil; Khanna, Manu

    2006-01-01

    Presentation objectives include: a) Overview of the ACES/CNS System Models Design and Integration; b) Configuration Capabilities available for Models and Simulations using ACES with CNS Modeling; c) Descriptions of recently added, Enhanced CNS Simulation Capabilities; and d) General Concepts Ideas that Utilize CNS Modeling to Enhance Concept Evaluations.

  11. An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito

    PubMed Central

    Assogba, Benoît S.; Djogbénou, Luc S.; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène

    2015-01-01

    Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1R allele), is already present. Furthermore, a duplicated allele (ace-1D) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1D confers less resistance than ace-1R, the high fitness cost associated with ace-1R is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management. PMID:26434951

  12. The effect of saturation of ACE binding sites on the pharmacokinetics of enalaprilat in man.

    PubMed Central

    Wade, J R; Meredith, P A; Hughes, D M; Elliott, H L

    1992-01-01

    1. Eight healthy male volunteers received oral enalapril, 10 mg, in the presence and absence of pretreatment with captopril, 50 mg, twice daily for 5 days. 2. Enalaprilat pharmacokinetics were characterised after both doses of enalapril to investigate the effect of saturating ACE binding sites by pretreatment with captopril. 3. The pharmacokinetics of enalaprilat were best described by a one compartment model with zero order input incorporating saturable binding to plasma and tissue ACE. 4. Values of AUC (0.72 h) for enalaprilat were 419 +/- 97 and 450 +/- 87 ng ml-1 h in the presence and absence of captopril, respectively. The difference was not statistically significant nor were there any other differences in model parameters. 5. Induction of ACE by captopril resulting in an increase in the number of ACE binding sites, may have obscured any effect of captopril on the occupancy of ACE binding sites by enalapril. PMID:1312853

  13. Adolescent parents and their children: a multifaceted approach to prevention of adverse childhood experiences (ACE).

    PubMed

    Mayer, Lynn Milgram; Thursby, Ellen

    2012-01-01

    Childhood experiences can have long-term effects. Research shows that children who undergo adverse childhood experiences (ACE) often have negative health and mental health outcomes later in life. Children of adolescent parents with high ACE Scores are at greater risk of ACE. As such, an intergenerational approach to preventing ACE is proposed in this article, addressing the needs of both the adolescent parent and their children. A review of the literature indicates that a public health perspective can guide the development of a prevention model aimed at reducing the effects of ACE. The current article proposes a universal, multifaceted, and interdisciplinary prevention science model that has two targets: adolescent parents and their children. Schools and early childhood programs can be mobilized to offer community prevention strategies across realms to include the individual, community, provider, coalitions/networks, organizational practices, and policy/legislation. PMID:22970783

  14. Green asparagus (Asparagus officinalis) prevented hypertension by an inhibitory effect on angiotensin-converting enzyme activity in the kidney of spontaneously hypertensive rats.

    PubMed

    Sanae, Matsuda; Yasuo, Aoyagi

    2013-06-12

    Green asparagus (Asparagus officinalis) is known to be rich in functional components. In the present study, spontaneously hypertensive rats (SHR) were used to clarify whether green asparagus prevents hypertension by inhibition of angiotensin-converting enzyme (ACE) activity. Six-week-old male SHR were fed a diet with (AD group) or without (ND group) 5% asparagus for 10 weeks. Systolic blood pressure (SBP) (AD: 159 ± 4.8 mmHg, ND: 192 ± 14.7 mmHg), urinary protein excretion/creatinine excretion, and ACE activity in the kidney were significantly lower in the AD group compared with the ND group. Creatinine clearance was significantly higher in the AD group compared with the ND group. In addition, ACE inhibitory activity was observed in a boiling water extract of asparagus. The ACE inhibitor purified and isolated from asparagus was identified as 2″-hydroxynicotianamine. In conclusion, 2″-hydroxynicotianamine in asparagus may be one of the factors inhibiting ACE activity in the kidney, thus preventing hypertension and preserving renal function.

  15. Green asparagus (Asparagus officinalis) prevented hypertension by an inhibitory effect on angiotensin-converting enzyme activity in the kidney of spontaneously hypertensive rats.

    PubMed

    Sanae, Matsuda; Yasuo, Aoyagi

    2013-06-12

    Green asparagus (Asparagus officinalis) is known to be rich in functional components. In the present study, spontaneously hypertensive rats (SHR) were used to clarify whether green asparagus prevents hypertension by inhibition of angiotensin-converting enzyme (ACE) activity. Six-week-old male SHR were fed a diet with (AD group) or without (ND group) 5% asparagus for 10 weeks. Systolic blood pressure (SBP) (AD: 159 ± 4.8 mmHg, ND: 192 ± 14.7 mmHg), urinary protein excretion/creatinine excretion, and ACE activity in the kidney were significantly lower in the AD group compared with the ND group. Creatinine clearance was significantly higher in the AD group compared with the ND group. In addition, ACE inhibitory activity was observed in a boiling water extract of asparagus. The ACE inhibitor purified and isolated from asparagus was identified as 2″-hydroxynicotianamine. In conclusion, 2″-hydroxynicotianamine in asparagus may be one of the factors inhibiting ACE activity in the kidney, thus preventing hypertension and preserving renal function. PMID:23647085

  16. Inhibitory activity on type 2 diabetes and hypertension key-enzymes, and antioxidant capacity of Veronica persica phenolic-rich extracts.

    PubMed

    Sharifi-Rad, M; Tayeboon, G S; Sharifi-Rad, J; Iriti, M; Varoni, E M; Razazi, S

    2016-05-30

    Veronica genus (Plantaginaceae) is broadly distributed in different habitats. In this study, the inhibitory activity of free soluble and conjugated phenolic extracts of Veronica persica on key enzymes associated to type 2 diabetes (α-glucosidase and α-amylase) and hypertension (angiotensin I converting enzyme, ACE) was assessed, as well as their antioxidant power. Our results showed that both the extracts inhibited α-amylase, α-glucosidase and ACE in a dose-dependent manner. In particular, free phenolic extract significantly (P<0.05) inhibited α-glucosidase (IC50 532.97 µg/mL), whereas conjugated phenolic extract significantly (P<0.05) inhibited α-amylase (IC50 489.73 µg/mL) and ACE (290.06 µg/mL). The enzyme inhibitory activities of the extracts were not associated with their phenolic content. Anyway, the inhibition of α-amylase, α-glucosidase and ACE, along with the antioxidant capacity of the phenolic-rich extracts, could represent a putative mechanism through which V. persica exerts its antidiabetes and antihypertension effects.

  17. Polar Vortex Structure with ACE and OSIRIS Ozone Data

    NASA Astrophysics Data System (ADS)

    Evans, W. F.

    2005-12-01

    The polar vortex is the dominant feature of stratospheric wind field. The ACE instrument on SCISAT-1 can map ozone fields from 8 to 50 km in 16 days. The OSIRIS instrument on ODIN can map the ozone fields at 2 km intervals from 10 km to over 65 km on a daily basis. They can also provide aerosol maps at the lower levels. These can be used for dynamical studies such as vortex breakdown. Four years of ozone data from the OSIRIS instrument on ODIN have been processed using the Kerr three wavelength algorithm. The OSIRIS ozone data is on the web as orbital slices. TOMS like maps have been formed at 2 km intervals from 10 km to 42 km by mapping the OSIRIS ozone product onto polar map projections. This mapset allows investigations of the vertical structure and evolution of the vortex. The downward motion in the vortex is clearly demonstrated by aerosol maps which show a clean vortex due to the descent within the vortex. The Antarctic vortex and the Arctic vortex were investigated using the ACE profiles and the OSIRIS ozone product. OSIRIS data is available from Oct 1, 2001 to April 30, 2005 as maps at 2km intervals from 10 km to 42 km. An example is demonstrated using the split vortex event of September 25, 2002; the split extends from 14 km up to 42 km. However, the 10 km and 12 km levels showed no vortex during the split. There is a close relationship of vortex ozone with PV and hence to the vortex wind. These maps are used to study the vortex in the Arctic and the Antarctic. In particular, the vortex breakdown in the two hemispheres is compared. The ozone vortex extends up to 55 km at the wind null region. There are significant differences in the hemispheres in the vortex below 24 km. A comparison of the features of the Arctic and Antarctic vorticies was conducted. The Antarctic vortex usually extends from 10 km up to over 42 km whereas in the Arctic, the vortex is only obvious from 16 km to 42km. The main hemispheric differences seem to be in the lower stratosphere

  18. [Biologically active peptides derived from food proteins as the food components with cardioprotective properties].

    PubMed

    Iwaniak, Anna; Darewicz, Małgorzata; Minkiewicz, Piotr; Protasiewicz, Monika; Borawska, Justyna

    2014-06-01

    Food proteins are the source of peptides with many biological activities. One of them is their impact on blood circulatory system. This group of peptides includes the ones with the ability to reduce the blood pressure (inhibitors of angiotensin converting enzyme--ACE), antithrombotic, and to lower the cholesterol level. Among the above-mentioned peptides' bioactivities, the most of them act as the ACE inhibitors. Some of them are the functional food components and nutraceuticals and possess the status of food with special use. The main known source of antithrombotic and cholesterol lowering peptides are milk and soy proteins, respectively. However, the scientists make the efforts to find new alternative sources of peptides with the above-mentioned activities. It should be noted, that although the bioactive peptides are considered as the safe food components and thus be supportive in the cardiovascular diseases therapy, they cannot substitute the drugs. This review shows the characteristics of selected peptides with: blood pressure reducing, antithrombotic, and cholesterol level reducing activities. We focused on the sequences that were identified in food proteins as well as were tested on humans or animals.

  19. Tityus serrulatus Hypotensins: a new family of peptides from scorpion venom.

    PubMed

    Verano-Braga, T; Rocha-Resende, C; Silva, D M; Ianzer, D; Martin-Eauclaire, M F; Bougis, P E; de Lima, M E; Santos, R A S; Pimenta, A M C

    2008-07-01

    Using a proteomic approach, a new structural family of peptides was put in evidence in the venom of the yellow scorpion Tityus serrulatus. Tityus serrulatus Hypotensins (TsHpt) are random-coiled linear peptides and have a similar bradykinin-potentiating peptide (BPP) amino acid signature. TsHpt-I (2.7kDa), the first member of this family, was able to potentiate the hypotensive effects of bradykinin (BK) in normotensive rats. Using the C-terminal of this peptide as a template, a synthetic analog peptide (TsHpt-I([17-25])) was designed to held the BK-potentiating effect. A relevant hypotensive effect, independent on BK, was also observed on both TsHpt (native and synthetic). To better evaluate this hypotensive effect, we examined the vasorelaxation of aortic rings from male Wistar rats and the peptides were able to induce endothelium-dependent vasorelaxation dependent on NO release. Both TsHpt could not inhibit ACE activity. These peptides appear to exert their anti-hypertensive effect through NO-dependent and ACE-independent mechanisms. PMID:18445483

  20. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    This study evaluated the effects of sodium chloride reduction and its substitution with potassium chloride on Akawi cheese during storage for 30 d at 4 °C. Survival of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum) and starter bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), angiotensin-converting enzyme-inhibitory and antioxidant activities, and concentrations of standard amino acids as affected by storage in different brine solutions (10% NaCl, 7.5% NaCl, 7.5% NaCl+KCl [1:1], 5% NaCl, and 5% NaCl+KCl [1:1]) were investigated. Furthermore, viability of human colon cells and human colon cancer cells as affected by the extract showing improved peptide profiles, highest release of amino acids and antioxidant activity (that is, from cheese brined in 7.5% NaCl+KCl) was evaluated. Significant increase was observed in survival of probiotic bacteria in cheeses with low salt after 30 d. Calcium content decreased slightly during storage in all cheeses brined in various solutions. Further, no significant changes were observed in ACE-inhibitory activity and antioxidant activity of cheeses during storage. Interestingly, concentrations of 4 essential amino acids (phenylalanine, tryptophan, valine, and leucine) increased significantly during storage in brine solutions containing 7.5% total salt. Low concentration of cheese extract (100 μg/mL) significantly improved the growth of normal human colon cells, and reduced the growth of human colon cancer cells. Overall, the study revealed that cheese extracts from reduced-NaCl brine improved the growth of human colon cells, and the release of essential amino acids, but did not affect the activities of potential bioactive peptides.

  1. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    This study evaluated the effects of sodium chloride reduction and its substitution with potassium chloride on Akawi cheese during storage for 30 d at 4 °C. Survival of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum) and starter bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), angiotensin-converting enzyme-inhibitory and antioxidant activities, and concentrations of standard amino acids as affected by storage in different brine solutions (10% NaCl, 7.5% NaCl, 7.5% NaCl+KCl [1:1], 5% NaCl, and 5% NaCl+KCl [1:1]) were investigated. Furthermore, viability of human colon cells and human colon cancer cells as affected by the extract showing improved peptide profiles, highest release of amino acids and antioxidant activity (that is, from cheese brined in 7.5% NaCl+KCl) was evaluated. Significant increase was observed in survival of probiotic bacteria in cheeses with low salt after 30 d. Calcium content decreased slightly during storage in all cheeses brined in various solutions. Further, no significant changes were observed in ACE-inhibitory activity and antioxidant activity of cheeses during storage. Interestingly, concentrations of 4 essential amino acids (phenylalanine, tryptophan, valine, and leucine) increased significantly during storage in brine solutions containing 7.5% total salt. Low concentration of cheese extract (100 μg/mL) significantly improved the growth of normal human colon cells, and reduced the growth of human colon cancer cells. Overall, the study revealed that cheese extracts from reduced-NaCl brine improved the growth of human colon cells, and the release of essential amino acids, but did not affect the activities of potential bioactive peptides. PMID:26919457

  2. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; Leske, R. A.; Mewaldt, R. A.; Moskalenko, I. V.; Ogliore, R.; Stone, E. C.; Von Rosenvinge, T. T.; Wiedenback, M. E.

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  3. Statins, ACE inhibitors and ARBs in cardiovascular disease.

    PubMed

    Montecucco, Fabrizio; Mach, François

    2009-06-01

    Atherosclerotic cardiovascular disease (CVD) is the main cause of death in developed and developing countries. It is well accepted that several diseases - including hypertension, dyslipidemia and diabetes mellitus - increase CVD. More recently also chronic inflammatory diseases, such as rheumatoid arthritis, have been shown to accelerate CVD. This association further supports a responsible role for inflammatory processes in all stages of CVD pathophysiology. Clinically, CVD ranges through different acute and chronic syndromes with ischemic symptoms in distal tissues, including heart, cerebral region or peripheral arteries. Several treatments for reducing CVD are under investigation. In this review we focus on statins, angiotensin-converting-enzyme (ACE) inhibitors, and angiotensin-II receptor blockers (ARBs), updating therapeutic evidence from the last clinical trials with particular relevance to diabetic patients. PMID:19520311

  4. Risk-benefit ratio of angiotensin antagonists versus ACE inhibitors in end-stage renal disease.

    PubMed

    Sica, D A; Gehr, T W; Fernandez, A

    2000-05-01

    The effective treatment of hypertension is an extremely important consideration in patients with end-stage renal disease (ESRD). Virtually any drug class--with the possible exception of diuretics--can be used to treat hypertension in the patient with ESRD. Despite there being such a wide range of treatment options, drugs which interrupt the renin-angiotensin axis are generally suggested as agents of choice in this population, even though the evidence in support of their preferential use is quite scanty. ACE inhibitors, and more recently angiotensin antagonists, are the 2 drug classes most commonly employed to alter renin-angiotensin axis activity and therefore produce blood pressure control. ACE inhibitor use in patients with ESRD can sometimes prove an exacting proposition. ACE inhibitors are variably dialysed, with compounds such as catopril, enalapril, lisinopril and perindopril undergoing substantial cross-dialyser clearance during a standard dialysis session. This phenomenon makes the selection of a dose and the timing of administration for an ACE inhibitor a complex issue in patients with ESRD. Furthermore, ACE inhibitors are recognised as having a range of nonpressor effects that are pertinent to patients with ESRD. Such effects include their ability to decrease thirst drive and to decrease erythropoiesis. In addition, ACE inhibitors have a unique adverse effect profile. As is the case with their use in patients without renal failure, use of ACE inhibitors in patients with ESRD can be accompanied by cough and less frequently by angioneurotic oedema. In the ESRD population, ACE inhibitor use is also accompanied by so-called anaphylactoid dialyser reactions. Angiotensin antagonists are similar to ACE inhibitors in their mechanism of blood pressure lowering. Angiotensin antagonists are not dialysable and therefore can be distinguished from a number of the ACE inhibitors. In addition, the adverse effect profile for angiotensin antagonists is remarkably bland

  5. Tailoring elastase inhibition with synthetic peptides.

    PubMed

    Vasconcelos, Andreia; Azoia, Nuno G; Carvalho, Ana C; Gomes, Andreia C; Güebitz, Georg; Cavaco-Paulo, Artur

    2011-09-01

    Chronic wounds are the result of excessive amounts of tissue destructive proteases such as human neutrophil elastase (HNE). The high levels of this enzyme found on those types of wounds inactivate the endogenous inhibitor barrier thus, the search for new HNE inhibitors is required. This work presents two new HNE inhibitor peptides, which were synthesized based on the reactive-site loop of the Bowman-Birk inhibitor protein. The results obtained indicated that these new peptides are competitive inhibitors for HNE and, the inhibitory activity can be modulated by modifications introduced at the N- and C-terminal of the peptides. Furthermore, these peptides were also able to inhibit elastase from a human wound exudate while showing no cytotoxicity against human skin fibroblasts in vitro, greatly supporting their potential application in chronic wound treatment.

  6. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span.

    PubMed

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-02-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  7. Economic evaluation of the Annual Cycle Energy System (ACES). Volume II. Detailed results. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The energy effectiveness and the economic viability of the ACES concept are examined. ACES is studied in a variety of different applications and compared to a number of conventional systems. The different applications are studied in two groups: the class of building into which the ACES is incorporated and the climatic region in which the ACES is located. Buildings investigated include single-family and multi-family residences and a commercial office building. The application of ACES to each of these building types is studied in Minneapolis, Atlanta, and Philadelphia. The economic evaluation of the ACES is based on a comparison of the present worth of the ACES to the present worth of conventional systems; namely, electric resistance heating, electric air conditioning, and electric domestic water heating; air-to-air heat pump and electric domestic water heating; oil-fired furnace, electric air conditioning, and electric domestic water heating; and gas-fired furnace, electric air conditioning, and gas domestic water heating.

  8. Inhibitory effects of kiwifruit extract on human platelet aggregation and plasma angiotensin-converting enzyme activity.

    PubMed

    Dizdarevic, Lili L; Biswas, Dipankar; Uddin, M D Main; Jørgenesen, Aud; Falch, Eva; Bastani, Nasser E; Duttaroy, Asim K

    2014-01-01

    Previous human studies suggest that supplementation with kiwifruits lowers several cardiovascular risk factors such as platelet hyperactivity, blood pressure and plasma lipids. The cardiovascular health benefit of fruit and vegetables is usually attributed to the complex mixture of phytochemicals therein; however, kiwifruit's cardioprotective factors are not well studied. In this study, we investigated the effects of kiwifruit extract on human blood platelet aggregation and plasma angiotensin-converting enzyme (ACE) activity. A sugar-free, heat-stable aqueous extract with molecular mass less than 1000 Da was prepared from kiwifruits. Typically, 100 g kiwifruits produced 66.3 ± 5.8 mg (1.2 ± 0.1 mg CE) of sugar-free kiwifruit extract (KFE). KFE inhibited both human platelet aggregation and plasma ACE activity in a dose-dependent manner. KFE inhibited platelet aggregation in response to ADP, collagen and arachidonic acid, and inhibitory action was mediated in part by reducing TxA2 synthesis. The IC50 for ADP-induced platelet aggregation was 1.6 ± 0.2 mg/ml (29.0 ± 3.0 μg CE/ml), whereas IC50 for serum ACE was 0.6 ± 0.1 mg/ml (11.0 ± 1.2 μg CE/ml). Consuming 500 mg of KFE (9.0 mg CE) in 10 g margarine inhibited ex vivo platelet aggregation by 12.7%, 2 h after consumption by healthy volunteers (n = 9). All these data indicate that kiwifruit contains very potent antiplatelet and anti-ACE components. Consuming kiwifruits might be beneficial as both preventive and therapeutic regime in cardiovascular disease. PMID:24219176

  9. Inhibitory effects of kiwifruit extract on human platelet aggregation and plasma angiotensin-converting enzyme activity.

    PubMed

    Dizdarevic, Lili L; Biswas, Dipankar; Uddin, M D Main; Jørgenesen, Aud; Falch, Eva; Bastani, Nasser E; Duttaroy, Asim K

    2014-01-01

    Previous human studies suggest that supplementation with kiwifruits lowers several cardiovascular risk factors such as platelet hyperactivity, blood pressure and plasma lipids. The cardiovascular health benefit of fruit and vegetables is usually attributed to the complex mixture of phytochemicals therein; however, kiwifruit's cardioprotective factors are not well studied. In this study, we investigated the effects of kiwifruit extract on human blood platelet aggregation and plasma angiotensin-converting enzyme (ACE) activity. A sugar-free, heat-stable aqueous extract with molecular mass less than 1000 Da was prepared from kiwifruits. Typically, 100 g kiwifruits produced 66.3 ± 5.8 mg (1.2 ± 0.1 mg CE) of sugar-free kiwifruit extract (KFE). KFE inhibited both human platelet aggregation and plasma ACE activity in a dose-dependent manner. KFE inhibited platelet aggregation in response to ADP, collagen and arachidonic acid, and inhibitory action was mediated in part by reducing TxA2 synthesis. The IC50 for ADP-induced platelet aggregation was 1.6 ± 0.2 mg/ml (29.0 ± 3.0 μg CE/ml), whereas IC50 for serum ACE was 0.6 ± 0.1 mg/ml (11.0 ± 1.2 μg CE/ml). Consuming 500 mg of KFE (9.0 mg CE) in 10 g margarine inhibited ex vivo platelet aggregation by 12.7%, 2 h after consumption by healthy volunteers (n = 9). All these data indicate that kiwifruit contains very potent antiplatelet and anti-ACE components. Consuming kiwifruits might be beneficial as both preventive and therapeutic regime in cardiovascular disease.

  10. Antimicrobial peptides.

    PubMed

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  11. Antimicrobial Peptides

    PubMed Central

    Bahar, Ali Adem; Ren, Dacheng

    2013-01-01

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics). PMID:24287494

  12. Antimicrobial peptides.

    PubMed

    Bahar, Ali Adem; Ren, Dacheng

    2013-11-28

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill "superbugs" emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics).

  13. The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5' leader.

    PubMed Central

    Hall, L M; Spierer, P

    1986-01-01

    The Ace locus of Drosophila melanogaster has been mapped at the molecular level. cDNA clones from the locus have been isolated and their sequence determined, confirming that Ace forms the structural gene for acetylcholinesterase (AChE). The cDNAs have a 1950 nucleotide open reading frame from which the complete amino acid sequence of AChE has been deduced. The Drosophila enzyme is found to have extensive homology to the known sequence of Torpedo AChE. Ace cDNAs have an unusual structure with a long 5' leader and several short upstream open reading frames. Images Fig. 2. PMID:3024971

  14. Progress on the Multiphysics Capabilities of the Parallel Electromagnetic ACE3P Simulation Suite

    SciTech Connect

    Kononenko, Oleksiy

    2015-03-26

    ACE3P is a 3D parallel simulation suite that is being developed at SLAC National Accelerator Laboratory. Effectively utilizing supercomputer resources, ACE3P has become a key tool for the coupled electromagnetic, thermal and mechanical research and design of particle accelerators. Based on the existing finite-element infrastructure, a massively parallel eigensolver is developed for modal analysis of mechanical structures. It complements a set of the multiphysics tools in ACE3P and, in particular, can be used for the comprehensive study of microphonics in accelerating cavities ensuring the operational reliability of a particle accelerator.

  15. Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulase.

    PubMed

    Portnoy, Thomas; Margeot, Antoine; Seidl-Seiboth, Verena; Le Crom, Stéphane; Ben Chaabane, Fadhel; Linke, Rita; Seiboth, Bernhard; Kubicek, Christian P

    2011-02-01

    Due to its capacity to produce large amounts of cellulases, Trichoderma reesei is increasingly being investigated for second-generation biofuel production from lignocellulosic biomass. The induction mechanisms of T. reesei cellulases have been described recently, but the regulation of the genes involved in their transcription has not been studied thoroughly. Here we report the regulation of expression of the two activator genes xyr1 and ace2, and the corepressor gene ace1, during the induction of cellulase biosynthesis by the inducer lactose in T. reesei QM 9414, a strain producing low levels of cellulase (low producer). We show that all three genes are induced by lactose. xyr1 was also induced by d-galactose, but this induction was independent of d-galactose metabolism. Moreover, ace1 was carbon catabolite repressed, whereas full induction of xyr1 and ace2 in fact required CRE1. Significant differences in these regulatory patterns were observed in the high-producer strain RUT C30 and the hyperproducer strain T. reesei CL847. These observations suggest that a strongly elevated basal transcription level of xyr1 and reduced upregulation of ace1 by lactose may have been important for generating the hyperproducer strain and that thus, these genes are major control elements of cellulase production.

  16. ACES: The ASCENDS CarbonHawk Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Prasad, N. S.; Harrison, F. W.; Browell, E. V.; Ismail, S.; Dobler, J. T.; Moore, B.; Zaccheo, T.; Campbell, J.; Chen, S.; Cleckner, C. S.; DiJoseph, M.; Little, A.; Notari, A.; Refaat, T. F.; Rosenbaum, D.; Vanek, M. D.; Bender, J.; Braun, M.; Chavez-Pirson, A.; Neal, M.; Rayner, P. J.; Rosiewicz, A.; Shure, M.; Welch, W.

    2012-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center project funded by NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technologies being advanced are: (1) a high bandwidth detector, (2) a multi-aperture telescope assembly, (3) advanced algorithms for cloud and aerosol discrimination, and (4) high-efficiency, multiple-amplifier CO2 and O2 laser transmitters. The instrument architecture will be developed to operate on a high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. These technologies are viewed as critical towards developing an airborne simulator and eventual spaceborne instrument with lower size, mass, and power consumption, and improved performance. The detector effort will improve the existing detector subsystem by increasing its bandwidth to a goal of 5 MHz, reducing its overall mass from 18 lbs to <10 lbs, and stretching the duration of autonomous, service-free operation periods from 4 hrs to >24 hrs. The development goals are to permit higher laser modulation rates, which provides greater flexibility for implementing thin-cloud discrimination algorithms as well as improving range resolution and error reduction, and to enable long flights on a high-altitude unmanned aerial vehicle (UAV). The telescope development consists of a three-telescope design built for the constraints of the Global Hawk aircraft. This task addresses the ability of multiple smaller telescopes to provide equal or greater collection efficiency compared with a single larger telescope with a reduced impact on launch mass and cost. The telescope assembly also integrates fiber-coupled transmit collimators for all of the laser transmitters and fiber-coupled optical

  17. Angiotensin-converting enzyme inhibitory activity in Mexican Fresco cheese.

    PubMed

    Torres-Llanez, M J; González-Córdova, A F; Hernandez-Mendoza, A; Garcia, H S; Vallejo-Cordoba, B

    2011-08-01

    The objective of this study was to evaluate if Mexican Fresco cheese manufactured with specific lactic acid bacteria (LAB) presented angiotensin I-converting enzyme inhibitory (ACEI) activity. Water-soluble extracts (3 kDa) obtained from Mexican Fresco cheese prepared with specific LAB (Lactococcus, Lactobacillus, Enterococcus, and mixtures: Lactococcus-Lactobacillus and Lactococcus-Enterococcus) were evaluated for ACEI activity. Specific peptide fractions with high ACEI were analyzed using reverse phase-HPLC coupled to mass spectrometry for determination of amino acid sequence. Cheese containing Enterococcus faecium or a Lactococcus lactis ssp. lactis-Enterococcus faecium mixture showed the largest number of fractions with ACEI activity and the lowest half-maximal inhibitory concentration (IC(50); <10 μg/mL). Various ACEI peptides derived from β-casein [(f(193-205), f(193-207), and f(193-209)] and α(S1)-casein [f(1-15), f(1-22), f(14-23), and f(24-34)] were found. The Mexican Fresco cheese manufactured with specific LAB strains produced peptides with potential antihypertensive activity.

  18. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span

    PubMed Central

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-01-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabdtitis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  19. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span.

    PubMed

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-02-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  20. Atmospheric Chemistry Experiment (ACE) Measurements of Tropospheric and Stratospheric Chemistry and Long-Term Trends

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Bernath, Peter; Boone, Chris; Nassar, Ray

    2007-01-01

    We highlight chemistry and trend measurement results from the Atmospheric Chemistry Experiment (ACE) which is providing precise middle troposphere to the lower thermosphere measurements with a 0.02/cm resolution Fourier transform spectrometer covering 750-4400/cm

  1. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization

    PubMed Central

    Ting, Yi Tian; Harris, Paul W. R.; Batot, Gaelle; Brimble, Margaret A.; Baker, Edward N.; Young, Paul G.

    2016-01-01

    Bacterial type I signal peptidases (SPases) are membrane-anchored serine proteases that process the signal peptides of proteins exported via the Sec and Tat secretion systems. Despite their crucial importance for bacterial virulence and their attractiveness as drug targets, only one such enzyme, LepB from Escherichia coli, has been structurally characterized, and the transient nature of peptide binding has stymied attempts to directly visualize SPase–substrate complexes. Here, the crystal structure of SpsB, the type I signal peptidase from the Gram-positive pathogen Staphylococcus aureus, is reported, and a peptide-tethering strategy that exploits the use of carrier-driven crystallization is described. This enabled the determination of the crystal structures of three SpsB–peptide complexes, both with cleavable substrates and with an inhibitory peptide. SpsB–peptide interactions in these complexes are almost exclusively limited to the canonical signal-peptide motif Ala-X-Ala, for which clear specificity pockets are found. Minimal contacts are made outside this core, with the variable side chains of the peptides accommodated in shallow grooves or exposed faces. These results illustrate how high fidelity is retained despite broad sequence diversity, in a process that is vital for cell survival. PMID:26870377

  2. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues.

    PubMed

    Ochiai, Akihito; Tanaka, Seiya; Imai, Yuta; Yoshida, Hisashi; Kanaoka, Takumi; Tanaka, Takaaki; Taniguchi, Masayuki

    2016-06-01

    Tyrosinase, a rate-limiting enzyme in melanin biosynthesis, catalyzes the hydroxylation of l-tyrosine to 3,4-dihydroxy-l-phenylalanine (l-dopa) (monophenolase reaction) and the subsequent oxidation of l-dopa to l-dopaquinone (diphenolase reaction). Thus, tyrosinase inhibitors have been proposed as skin-lightening agents; however, many of the existing inhibitors cannot be widely used in the cosmetic industry due to their high cytotoxicity and instability. On the other hand, some tyrosinase inhibitory peptides have been reported as safe. In this study, we found that the peptide TH10, which has a similar sequence to the characterized inhibitory peptide P4, strongly inhibits the monophenolase reaction with a half-maximal inhibitory concentration of 102 μM. Seven of the ten amino acid residues in TH10 were identical to P4; however, TH10 possesses one N-terminal tyrosine, whereas P4 contains three tyrosine residues located at its N-terminus, center, and C-terminus. Subsequent analysis using sequence-shuffled variants indicated that the tyrosine residues located at the N-terminus and center of P4 have little to no contribution to its inhibitory activity. Furthermore, docking simulation analysis of these peptides with mushroom tyrosinase demonstrated that the active tyrosine residue was positioned close to copper ions, suggesting that TH10 and P4 bind to tyrosinase as a substrate analogue. PMID:26589783

  3. Crosstalk between ACE2 and PLGF regulates vascular permeability during acute lung injury

    PubMed Central

    Wang, Lantao; Li, Yong; Qin, Hao; Xing, Dong; Su, Jie; Hu, Zhenjie

    2016-01-01

    Angiotensin converting enzyme 2 (ACE2) treatment suppresses the severity of acute lung injury (ALI), through antagonizing hydrolyzing angiotensin II (AngII) and the ALI-induced apoptosis of pulmonary endothelial cells. Nevertheless, the effects of ACE2 on vessel permeability and its relationship with placental growth factor (PLGF) remain ill-defined. In the current study, we examined the relationship between ACE2 and PLGF in ALI model in mice. We used a previously published bleomycin method to induce ALI in mice, and treated the mice with ACE2. We analyzed the levels of PLGF in these mice. The mouse lung vessel permeability was determined by a fluorescence pharmacokinetic assay following i.v. injection of 62.5 µg/kg Visudyne. PLGF pump or soluble Flt-1 (sFlt-1) pump was given to augment or suppress PLGF effects, respectively. The long-term effects on lung function were determined by measurement of lung resistance using methacholine. We found that ACE2 treatment did not alter PLGF levels in lung, but antagonized the effects of PLGF on increases of lung vessel permeability. Ectogenic PLGF abolished the antagonizing effects of ACE2 on the vessel permeability against PLGF. On the other hand, suppression of PLGF signaling mimicked the effects of ACE2 on the vessel permeability against PLGF. The suppression of vessel permeability resulted in improvement of lung function after ALI. Thus, ACE2 may antagonize the PLGF-mediated increases in lung vessel permeability during ALI, resulting in improvement of lung function after ALI. PMID:27158411

  4. A prospective study of frequency and characteristics of cough during ACE inhibitor treatment.

    PubMed

    Sato, Atsuhisa; Fukuda, Seiichi

    2015-01-01

    Angiotensin converting enzyme (ACE) inhibitors are reportedly effective, and positively indicated in patients with chronic heart failure with decreased contractility, after myocardial infarction, after cerebrovascular disorders, and in those with chronic kidney disease. However, the biggest challenge to continuous use of ACE inhibitors is the adverse reaction of cough. Accordingly, in the present study, we investigated the present state and characteristics of ACE inhibitor-induced cough in patients with essential hypertension currently being treated with an ACE inhibitor for an average of 18 months, who could be regularly checked for cough. Subjects in this study were 176 patients overall (mean age 67 ± 11 years old), 90 men and 86 women. The adverse reaction of cough was observed in 20% of patients, and more frequently in women than in men. However, in 26 of the patients with cough, the cough either resolved naturally or completely disappeared while the treatment continued, after which patients could continue taking the medication. Specifically, ACE inhibitor treatment was eventually discontinued due to cough in 5.1% of patients. Cough occurred less frequently with concomitant calcium antagonists or diuretics than with ACE inhibitor monotherapy. Cough as an adverse reaction occurred at a low frequency when medication was taken at bedtime. We considered a number of measures to counteract cough, then in addition to starting the ACE inhibitor treatment as early as possible, it is important to devise ways for the ACE inhibitor treatment to be continued for as long as possible, through the adept use of these measures.

  5. Helping Students Process a Simulated Death Experience: Integration of an NLN ACE.S Evolving Case Study and the ELNEC Curriculum.

    PubMed

    Kopka, Judith A; Aschenbrenner, Ann P; Reynolds, Mary B

    2016-01-01

    The nursing literature supports the need for end-of-life (EOL) education, but the ability to provide quality clinical experience in this area is limited by the availability of patients and nursing instructors' and preceptors' comfort and expertise in teaching EOL care. Clinical simulation allows faculty to provide the same quality EOL experience to all students. This article discusses an effective teaching strategy integrating End-of-Life Nursing Education Consortium core content with National League for Nursing ACE.S unfolding case studies, clinical simulation, and social media. PMID:27405204

  6. GPS Antenna Characterization Experiment (ACE): Receiver Design and Initial Results

    NASA Technical Reports Server (NTRS)

    Martzen, Phillip; Highsmith, Dolan E.; Valdez, Jennifer E.; Parker, Joel J. K.; Moreau, Michael C.

    2015-01-01

    The GPS Antenna Characterization Experiment (ACE) is a research collaboration between Aerospace and NASA Goddard to characterize the gain patterns of the GPS L1 transmit antennas. High altitude GPS observations are collected at a ground station through a transponder-based or "bent-pipe" architecture where the GPS L1 RF spectrum is received at a platform in geosynchronous orbit and relayed to the ground for processing. The focus of this paper is the unique receiver algorithm design and implementation. The high-sensitivity GPS C/A-code receiver uses high fidelity code and carrier estimates and externally supplied GPS message bit data in a batch algorithm with settings for a 0 dB-Hz threshold. The resulting carrier-to-noise measurements are used in a GPS L1 transmit antenna pattern reconstruction. This paper shows initial transmit gain patterns averaged over each block of GPS satellites, including comparisons to available pre-flight gain measurements from the GPS vehicle contractors. These results provide never-before-seen assessments of the full, in-flight transmit gain patterns.

  7. Operation Heli-STAR - Atlanta Communications Experiment (ACE). Volume 9

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Operation Heli-STAR (Helicopter Short-Haul Transportation and Aviation Research) was established and operated in Atlanta, Georgia, during the period of the 1996 Centennial Olympic Games. Heli-STAR had three major thrusts: (1) the establishment and operation of a helicopter-based cargo transportation system, (2) the management of low-altitude air traffic in the airspace of an urban area, and (3) the collection and analysis of research and development data associated with items 1 and 2. Heli-STAR was a cooperative industry/government program that included parcel package shippers and couriers in the Atlanta area, the helicopter industry, aviation electronics manufacturers, the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA), and support contractors. Several detailed reports have been produced as a result of Operation Heli-STAR. These include four reports on acoustic measurements and associated analyses, and reports on the Heli-STAR tracking data including the data processing and retrieval system, the Heli-STAR cargo simulation, and the community response system. In addition, NASA's Advanced General Aviation Transport Experiments (AGATE) program has produced a report describing the Atlanta Communications Experiment (ACE) which produced the avionics and ground equipment using automatic dependent surveillance-broadcast (ADS-B) technology. This latter report is restricted to organizations belonging to NASA's AGATE industry consortium. A complete list of these reports is shown on the following page.

  8. ACE inhibitors could be therapeutic for antisocial personality disorder.

    PubMed

    Hobgood, Donna K

    2013-11-01

    Antisocial personality traits are an important topic for research. The societal cost of these behaviors encourages efforts at a better understanding of central nervous system causes. Catecholamine genes are being studied to facilitate this understanding, and some tentative findings are being reached about several of these genes. It seems that many genes play a role to produce antisocial behaviors so complexity of elucidating each gene is obvious. One conclusion that could be drawn from the current research findings is that DA2 like receptors (DRD2, DRD3, DRD4) with alleles that decrease neurotransmission are facilitatory of antisocial behaviors. DA2 like receptors cause neuronal firing to inhibit many peripheral functions through adenylyl cyclase inhibition. When these receptors are less active by genetically decreased density, lower affinity, or by low dopamine levels as final common pathways then inhibition is released and a state of disinhibition can be said to describe this state. Peripheral metabolism is increased and behavioral activation is noted. Renin is disinhibited in this setting thus allowing sympathetic nervous system activation. The fight or flight behaviors thus produced, in the extreme, would be the setting of antisocial behavior. Research validates this hypothesis. Understanding this final common pathway toward antisocial behavior should lead to better treatment for individuals with this pattern of behavior before they have caused harm to themselves and others. ACE inhibitors are well tolerated drugs used in the treatment of hypertension and heart failure and would also treat antisocial behavior disorders.

  9. First science observations with the ACES echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Reynolds, Robert O.; Lloyd-Hart, Michael

    2004-09-01

    The use of spectrographs with telescopes having high order adaptive optics (AO) systems offers the possibility of achieving near diffraction-limited spectral resolution with ground-based telescopes, as well as important advantages for instrument design. The use of an optical fiber to couple the instrument to the telescope affords additional advantages such as flexibility in the placement of the instrument and improved homogeneity of the input illumination function. In the case of Steward Observatory's Adaptively Coupled Echelle Spectrograph (ACES), the instrument is normally coupled to the telescope with an 8 micron diameter near single-mode optical fiber, although the instrument can be used at fixed focus locations without the fiber for telescopes so equipped. The use of a fiber coupler results in the phenomenon known as 'modal noise', where the transmission of multiple modes in the fiber leads to a wavelength-dependent variation in illumination that limits flat fielding precision. We have largely eliminated this effect through the use of an automated fiber stretcher device. We report here on improvements to the fiber feed optics and on interim observations made with the instrument at a conventional telescope not equipped with adaptive optics.

  10. ACE Observatory Control System - 16 years of remote intercontinental observing

    NASA Astrophysics Data System (ADS)

    Mack, Peter

    2011-03-01

    The ACE Observatory Control System has been used for remote control since 1995. The system was designed for use at isolated observatories with no-one present on the mountain-top. The software provides complete diagnostic feedback to the astronomer and is supplemented by live audio-visual. Accessories include environmental sensors (weather station, all-sky camera, constellation cameras), automated mirror covers and remote power control. This gives the astronomer the same experience as being present at the observatory. The system is installed on 30 telescopes and many of them are used for routine nightly intercontinental observations, such as Taejeon (S. Korea) to Mt. Lemmon (Arizona) and southeast USA to KPNO and CTIO. The system has fully integrated autoguider acquisition and science camera control. We describe the building blocks of the system and the accessories including automated mirror covers, weather station, all sky camera, remote power control and dome control. Future plans are presented for a fully autonomous platform-independent scheduler and robot for use on multiple telescopes.

  11. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  12. Technical manual for the Augmented Computer Exercise for Inspection Training (ACE-IT) software

    SciTech Connect

    Dobranich, P.R.; Horak, K.E.; Hagan, D.; Evanko, D.; Nelson, J.; Ryder, C.; Hedlund, D.

    1997-09-01

    The on-site inspection provisions in many current and proposed arms control agreements require extensive preparation and training on the part of both the Inspection Teams (inspectors) and Inspected Parties (host). Current training techniques include table-top inspections and practice inspections. The Augmented Computer Exercise for Inspection Training (ACE-IT), an interactive computer training tool, increases the utility of table-top inspections. ACE-IT has been designed to provide training for challenge inspections under the Chemical Weapons Convention (CWC); however, this training tool can be modified for other inspection regimes. Although ACE-IT provides training from notification of an inspection through post-inspection activities, the primary emphasis of ACE-IT is in the inspection itself--particularly with the concept of managed access. ACE-IT also demonstrates how inspection provisions impact compliance determination and the protection of sensitive information. This Technical Manual describes many of the technical aspects of the ACE-IT training software.

  13. Hamsters vaccinated with Ace-mep-7 DNA vaccine produced protective immunity against Ancylostoma ceylanicum infection.

    PubMed

    Wiśniewski, Marcin; Jaros, Sławomir; Bąska, Piotr; Cappello, Michael; Długosz, Ewa; Wędrychowicz, Halina

    2016-04-01

    Hookworms are intestinal nematodes that infect up to 740 million people, mostly in tropical and subtropical regions. Adult worms suck blood from damaged vessels in the gut mucosa, digesting hemoglobin using aspartic-, cysteine- and metalloproteases. Targeting aspartic hemoglobinases using drugs or vaccines is therefore a promising approach to ancylostomiasis control. Based on homology to metalloproteases from other hookworm species, we cloned the Ancylostoma ceylanicum metalloprotease 7 cDNA (Ace-mep-7). The corresponding Ace-MEP-7 protein has a predicted molecular mass of 98.8 kDa. The homology to metallopeptidases from other hookworm species and its predicted transmembrane region support the hypothesis that Ace-MEP-7 may be involved in hemoglobin digestion in the hookworm gastrointestinal tract, especially that our analyses show expression of Ace-mep-7 in the adult stage of the parasite. Immunization of Syrian golden hamsters with Ace-mep-7 cDNA resulted in 50% (p < 0.01) intestinal worm burden reduction. Additionally 78% (p < 0.05) egg count reduction in both sexes was observed. These results suggest that immunization with Ace-mep-7 may contribute to reduction in egg count released into the environment during the A. ceylanicum infection. PMID:26795262

  14. Exercise manual for the Augmented Computer Exercise for Inspection Training (ACE-IT) software

    SciTech Connect

    Dobranich, P.R.; Widney, T.W.; Goolsby, P.T.; Nelson, J.D.; Evanko, D.A.

    1997-09-01

    The on-site inspection provisions in many current and proposed arms control agreements require extensive preparation and training on the part of both the Inspected Party and the Inspection Team. Current training techniques include table-top inspections and practice inspections. The Augmented Computer Exercise for Inspection Training (ACE-IT), an interactive computer training tool, increases the utility of table-top inspections. ACE-IT has been designed to provide training for a hypothetical challenge inspection under the Chemical Weapons Convention (CWC); however, this training tool can be modified for other inspection regimes. Although ACE-IT provides training from notification of an inspection through post-inspection activities, the primary emphasis of ACE-IT is in the inspection itself--particularly with the concept of managed access. ACE-IT also demonstrates how inspection provisions impact compliance determination and the protection of sensitive information. The Exercise Manual supplements the ACE-IT software by providing general information on on-site inspections and detailed information for the CWC challenge inspection exercise. The detailed information includes the pre-inspection briefing, maps, list of sensitive items, medical records, and shipping records.

  15. Evaluation of renal function in elderly heart failure patients on ACE inhibitors

    PubMed Central

    Jolobe, O

    1999-01-01

    A total of 187 heart failure patients aged 65-92 years, with pretreatment serum creatinine levels below 200 µmol/l, were monitored for more than 12 months on angiotensin-converting enzyme (ACE) inhibitor therapy. Optimal ACE inhibitor dosage was found in 27% of patients, while a significant deterioration in renal function, characterised by >20% increase in serum creatinine to >200 µmol/l, occurred in 25 patients. This was most closely attributable to ACE inhibitor treatment per se (implying co-existence of bilateral renal artery stenosis) in only four cases, including one in whom renal deterioration was reproducible on inadvertent rechallenge. In the other 21, renal deterioration was attributable to diuretic-related blood volume depletion (two cases), nonsteroidal anti-inflammatory drugs (two cases), obstructive uropathy (two cases), preterminal renal shutdown (two cases), and the interaction between diuretic and ACE inhibitor dosage (including long-acting vs short-acting drugs) (13 cases). This study could serve as the basis for future comparisons of ACE-inhibitor-related renal deterioration when the entry requirement is optimal ACE inhibitor dosage.


Keywords: heart failure; elderly patients; angiotensin-converting enzyme inhibitors; renal deterioration PMID:10533630

  16. The Atmospheric Chemistry Experiment (ace): CO, CH_4 and N_2O Isotopologues

    NASA Astrophysics Data System (ADS)

    Bernath, Peter F.; Buzan, Eric M.; Beale, Christopher A.; Yousefi, Mahdi; Boone, Chris

    2016-06-01

    ACE (also known as SCISAT) is making a comprehensive set of simultaneous measurements of numerous trace gases, thin clouds, aerosols and temperature by solar occultation from a satellite in low earth orbit. A high inclination orbit gives ACE coverage of tropical, mid-latitudes and polar regions. The primary instrument is a high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating in the 750--4400 cm-1 region, which provides the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. Aerosols and clouds are being monitored through the extinction of solar radiation using two filtered imagers as well as by their infrared spectra. Although now in its thirteenth year, the ACE-FTS is still operating nominally. A short introduction and overview of the ACE mission will be presented (see http://www.ace.uwaterloo.ca for more information). This talk will focus on ACE observations of the CO, CH_4 and N_2O isotopologues, and comparisons with chemical transport models.

  17. C-Peptide Test

    MedlinePlus

    ... C-peptide is a useful marker of insulin production. The following are some purposes of C-peptide ... it nearly impossible to directly evaluate endogenous insulin production. In these cases, C-peptide measurement is a ...

  18. Increasing hydrophobicity of residues in an anti-HIV-1 Env peptide synergistically improves potency.

    PubMed

    Leung, Michael Y K; Cohen, Fredric S

    2011-04-20

    T-20/Fuzeon/Enfuvirtide (ENF), a peptide inhibitor of HIV-1 infection, targets the grooves created by heptad repeat 2 (HR2) of Env's coiled-coil, but mutants resistant to ENF emerge. In this study, ENF-resistant mutants--V38A, N43D, N43D/S138A, Q40H/L45M--were combined with modified inhibitory peptides to identify what we believe to be novel ways to improve peptide efficacy. V38A did not substantially reduce infectivity, but was relatively resistant to inhibitory peptides. N43D was more resistant to inhibitory peptides than wild-type, but infectivity was reduced. The additional mutation S138A (N43D/S138A) increased infectivity and further reduced peptide inhibitory potency. It is concluded that S138A increased binding of HR2/ENF into grooves and that S138A compensated for electrostatic repulsion between N43D and HR2. The six-helix bundle structure indicated that E148A should increase hydrophobic interactions between the coiled-coil and peptide. Importantly, the modifications S138A and E148A in the same peptide retained potency against ENF-escape mutants. The double mutant's increase in potency was greater than the increases from the sum of S138A and E148A individually, showing that these two altered residues synergistically contributed to peptide binding. Isothermal titration calorimetry established that hydrophobic substitutions at positions S138 and E148 improved potency of inhibitory peptides against escape mutants by increasing enthalpic release of energy upon peptide binding.

  19. Evolutionary origin of the structure and function of gonadotropin-inhibitory hormone: insights from lampreys.

    PubMed

    Osugi, Tomohiro; Daukss, Dana; Gazda, Kristen; Ubuka, Takayoshi; Kosugi, Takayoshi; Nozaki, Masumi; Sower, Stacia A; Tsutsui, Kazuyoshi

    2012-05-01

    Gonadotropin (GTH)-inhibitory hormone (GnIH) is a novel hypothalamic neuropeptide that inhibits GTH secretion in mammals and birds by acting on gonadotropes and GnRH neurons within the hypothalamic-pituitary-gonadal axis. GnIH and its orthologs that have an LPXRFamide (X = L or Q) motif at the C terminus (LPXRFamide peptides) have been identified in representative species of gnathostomes. However, the identity of an LPXRFamide peptide had yet to be identified in agnathans, the most ancient lineage of vertebrates, leaving open the question of the evolutionary origin of GnIH and its ancestral function(s). In this study, we identified an LPXRFamide peptide gene encoding three peptides (LPXRFa-1a, LPXRFa-1b, and LPXRFa-2) from the brain of sea lamprey by synteny analysis and cDNA cloning, and the mature peptides by immunoaffinity purification and mass spectrometry. The expression of lamprey LPXRFamide peptide precursor mRNA was localized in the brain and gonad by RT-PCR and in the hypothalamus by in situ hybridization. Immunohistochemistry showed appositions of lamprey LPXRFamide peptide immunoreactive fibers in close proximity to GnRH-III neurons, suggesting that lamprey LPXRFamide peptides act on GnRH-III neurons. In addition, lamprey LPXRFa-2 stimulated the expression of lamprey GnRH-III protein in the hypothalamus and GTHβ mRNA expression in the pituitary. Synteny and phylogenetic analyses suggest that the LPXRFamide peptide gene diverged from a common ancestral gene likely through gene duplication in the basal vertebrates. These results suggest that one ancestral function of LPXRFamide peptides may be stimulatory compared with the inhibitory function seen in later-evolved vertebrates (birds and mammals).

  20. Phage displayed peptide recognizing porcine aminopeptidase N is a potent small molecule inhibitor of PEDV entry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three phage-displayed peptides designated H, S and F that recognize porcine aminopeptidase N (pAPN), the cellular receptor of porcine transmissible gastroenteritis virus (TGEV) were able to inhibit cell infection by TGEV. These same peptides had no inhibitory effects on infection of Vero cells by po...

  1. Identification of new polymorphisms of the angiotensin I-converting enzyme (ACE) gene, and study of their relationship to plasma ACE levels by two-QTL segregation-linkage analysis

    SciTech Connect

    Villard, E.; Soubrier, F.; Tiret, L.; Rakotovao, R. Cambien, F.; Visvikis, S.

    1996-06-01

    Plasma angiotensin I-converting enzyme (ACE) levels are highly genetically determined. A previous segregation-linkage analysis suggested the existence of a functional mutation located within or close to the ACE locus, in almost complete linkage disequilibrium (LD) with the ACE insertion/deletion (I/D) polymorphism and accounting for half the ACE variance. In order to identify the functional variant at the molecular level, we compared ACE gene sequences between four subjects selected for having contrasted ACE levels and I/D genotypes. We identified 10 new polymorphisms, among which 8 were genotyped in 95 healthy nuclear families, in addition to the I/D polymorphism. These polymorphisms could be divided into two groups: five polymorphisms in the 5{prime} region and three in the coding sequence and the 3{prime} UTR. Within each group, polymorphisms were in nearly complete association, whereas polymorphisms from the two groups were in strong negative LD. After adjustment for the I/D polymorphism, all polymorphisms of the 5{prime} group remained significantly associated with ACE levels, which suggests the existence of two quantitative trait loci (QTL) acting additively on ACE levels. Segregation-linkage analyses including one or two ACE-linked QTLs in LD with two ACE markers were performed to test this hypothesis. The two QTLs and the two markers were assumed to be in complete LD. Results supported the existence of two ACE-linked QTLs, which would explain 38% and 49% of the ACE variance in parents and offspring, respectively. One of these QTLs might be the I/D polymorphism itself or the newly characterized 4656(CT){sub 2/3} polymorphism. The second QTL would have a frequency of {approximately}.20, which is incompatible with any of the yet-identified polymorphisms. More extensive sequencing and extended analyses in larger samples and in other populations will be necessary to characterize definitely the functional variants. 30 refs., 1 fig., 6 tabs.

  2. The latest developments in synthetic peptides with immunoregulatory activities.

    PubMed

    Zhou, Chun-lei; Lu, Rong; Lin, Gang; Yao, Zhi

    2011-02-01

    In the past few years, many researches have provided us with much data demonstrating the abilities of synthetic peptides to impact immune response in vitro and in vivo. These peptides were designed according to the structure of some important protein molecules which play a key role in immune response, so they act with specific targets. The class I and II MHC-derived peptides inhibit the TCR recognition of antigen peptide-MHC complex. Rationally designed CD80 and CD154-binding peptides block the interaction between cell surface costimulatory molecules on antigen-presenting cells (APCs) and T cells. Some peptides were designed to inhibit the activities of cell signal proteins, including JNK, NF-κB and NFAT. Some peptide antagonists competitively bind to important cytokines and inhibit their activities, such as TNF-α, TGF-β and IL-1β inhibitory peptides. Adhesion molecule ICAM-1 derived peptides block the T cell adhesion and activation. These immunoregulatory peptides showed therapeutic effect in several animal models, including collagen-induced arthritis (CIA), autoimmune cystitis model, murine skin transplant model and cardiac allograft model. These results give us important implications for the development of a novel therapy for immune mediated diseases. PMID:20979984

  3. Ribosome regulation by the nascent peptide.

    PubMed Central

    Lovett, P S; Rogers, E J

    1996-01-01

    Studies of bacterial and eukaryotic systems have identified two-gene operons in which the translation product of the upstream gene influences translation of the downstream gene. The upstream gene, referred to as a leader (gene) in bacterial systems or an upstream open reading frame (uORF) in eukaryotes, encodes a peptide that interferes with a function(s) of its translating ribosome. The peptides are therefore cis-acting negative regulators of translation. The inhibitory peptides typically consist of fewer than 25 residues and function prior to emergence from the ribosome. A biological role for this class of translation inhibitor is demonstrated in translation attenuation, a form or regulation that controls the inducible translation of the chloramphenicol resistance genes cat and cmlA in bacteria. Induction of cat or cmlA requires ribosome stalling at a particular codon in the leader region of the mRNA. Stalling destabilizes an adjacent, downstream mRNA secondary structure that normally sequesters the ribosome-binding site for the cat or cmlA coding regions. Genetic studies indicate that the nascent, leader-encoded peptide is the selector of the site of ribosome stalling in leader mRNA by cis interference with translation. Synthetic leader peptides inhibit ribosomal peptidyltransferase in vitro, leading to the prediction that this activity is the basis for stall site selection. Recent studies have shown that the leader peptides are rRNA-binding peptides with targets at the peptidyl transferase center of 23S rRNA. uORFs associated with several eukaryotic genes inhibit downstream translation. When inhibition depends on the specific codon sequence of the uORF, it has been proposed that the uORF-encoded nascent peptide prevents ribosome release from the mRNA at the uORF stop codon. This sets up a blockade to ribosome scanning which minimizes downstream translation. Segments within large proteins also appear to regulate ribosome activity in cis, although in most of the

  4. Brain stimulation and inhibitory control.

    PubMed

    Juan, Chi-Hung; Muggleton, Neil G

    2012-04-01

    Inhibitory control mechanisms are important in a range of behaviours to prevent execution of motor acts which, having been planned, are no longer necessary or appropriate. Examples of this can be seen in a range of sports, such as cricket and baseball, where the choice between execution and inhibition of a bat swing must be made in a very brief time window. Deficits in inhibitory control have been associated with problems in behavioural regulation in impulsive violence as well as a range of clinical disorders. The roles of various areas, including the frontal eye fields (FEF), the pre-supplementary motor area (pre-SMA) and the inferior frontal gyrus, in inhibitory control have been investigated using an inhibitory control task and both transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Typically effects on response inhibition but no effects on response generation have been seen. The contributions of these areas to performance seem to differ with, for example, pre-SMA being involved when the task is relatively novel whereas this is not the case for FEF. The findings from brain stimulation studies offer both insight into which areas are necessary for effective inhibitory control and recent extension of findings for the role of the inferior frontal gyrus illustrate how the specific functions by which these areas contribute may be further clarified. Future work, including making use of the temporal specificity of TMS and combination of TMS/tDCS with other neuroimaging techniques, may further clarify the nature and functions played by the network of areas involved in inhibitory control. PMID:22494830

  5. Brain stimulation and inhibitory control.

    PubMed

    Juan, Chi-Hung; Muggleton, Neil G

    2012-04-01

    Inhibitory control mechanisms are important in a range of behaviours to prevent execution of motor acts which, having been planned, are no longer necessary or appropriate. Examples of this can be seen in a range of sports, such as cricket and baseball, where the choice between execution and inhibition of a bat swing must be made in a very brief time window. Deficits in inhibitory control have been associated with problems in behavioural regulation in impulsive violence as well as a range of clinical disorders. The roles of various areas, including the frontal eye fields (FEF), the pre-supplementary motor area (pre-SMA) and the inferior frontal gyrus, in inhibitory control have been investigated using an inhibitory control task and both transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Typically effects on response inhibition but no effects on response generation have been seen. The contributions of these areas to performance seem to differ with, for example, pre-SMA being involved when the task is relatively novel whereas this is not the case for FEF. The findings from brain stimulation studies offer both insight into which areas are necessary for effective inhibitory control and recent extension of findings for the role of the inferior frontal gyrus illustrate how the specific functions by which these areas contribute may be further clarified. Future work, including making use of the temporal specificity of TMS and combination of TMS/tDCS with other neuroimaging techniques, may further clarify the nature and functions played by the network of areas involved in inhibitory control.

  6. The onboard imagers for the Canadian ACE SCISAT-1 mission

    NASA Astrophysics Data System (ADS)

    Gilbert, K. L.; Turnbull, D. N.; Walker, K. A.; Boone, C. D.; McLeod, S. D.; Butler, M.; Skelton, R.; Bernath, P. F.; Chateauneuf, F.; Soucy, M.-A.

    2007-06-01

    The Atmospheric Chemistry Experiment (ACE) onboard the Canadian Space Agency's SCISAT-1 satellite has been in orbit since August of 2003. Its broad objective is to study the problem of stratospheric ozone depletion, particularly in the Arctic. The main instruments are two spectrometers, one an infrared Fourier Transform Spectrometer and the other a dual optical spectrophotometer sensitive in the UV and visible. Also included are two filtered imagers used to measure altitude profiles of atmospheric extinction and detect thin clouds. The nominal center wavelengths of the filters are 525 nm for the visible (VIS) imager and 1020 nm for the near-infrared (NIR) imager. With the decommissioning of other satellite instruments used to monitor global aerosols [i.e., Stratospheric Aerosol and Gas Experiment II (SAGE II), SAGE III, Polar Ozone and Aerosol Measurement (POAM) III, Halogen Occultation Experiment (HALOE)], the imagers provide much needed continuity in this data record. The data product from the imagers is still, however, in a preliminary state. Funding restrictions in the prelaunch period were responsible for an incomplete characterization of the imagers' optics and electronics and prevented corrections being made for the problems found during testing. Postlaunch data analysis to correct for image artifacts is ongoing. A comparison with coincidental measurements from SAGE II shows that systematic errors from the preliminary analysis are within 5 and 20% for the VIS and NIR imagers, respectively, for uninverted profiles of optical depth. Despite the preliminary nature of the imager results, a paper describing the imagers and the initial operational data processing code is timely because the data are already being used.

  7. Inhibitory Control Predicts Grammatical Ability.

    PubMed

    Ibbotson, Paul; Kearvell-White, Jennifer

    2015-01-01

    We present evidence that individual variation in grammatical ability can be predicted by individual variation in inhibitory control. We tested 81 5-year-olds using two classic tests from linguistics and psychology (Past Tense and the Stroop). Inhibitory control was a better predicator of grammatical ability than either vocabulary or age. Our explanation is that giving the correct response in both tests requires using a common cognitive capacity to inhibit unwanted competition. The implications are that understanding the developmental trajectory of language acquisition can benefit from integrating the developmental trajectory of non-linguistic faculties, such as executive control.

  8. Inhibitory Control Predicts Grammatical Ability

    PubMed Central

    Ibbotson, Paul; Kearvell-White, Jennifer

    2015-01-01

    We present evidence that individual variation in grammatical ability can be predicted by individual variation in inhibitory control. We tested 81 5-year-olds using two classic tests from linguistics and psychology (Past Tense and the Stroop). Inhibitory control was a better predicator of grammatical ability than either vocabulary or age. Our explanation is that giving the correct response in both tests requires using a common cognitive capacity to inhibit unwanted competition. The implications are that understanding the developmental trajectory of language acquisition can benefit from integrating the developmental trajectory of non-linguistic faculties, such as executive control. PMID:26659926

  9. The Altus Cumulus Electrification Study (ACES): A UAV-based Investigation of Thunderstorms

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Arnold, James E. (Technical Monitor)

    2001-01-01

    The Altus Cumulus Electrification Study (ACES) is a NASA-sponsored and -led science investigation that utilizes an uninhabited aerial vehicle (UAV) to investigate thunderstorms in the vicinity of the NASA Kennedy Space Center, Florida. As part of NASA's UAV-based science demonstration program, ACES will provide a scientifically useful demonstration of the utility and promise of UAV platforms for Earth science and applications observations. ACES will employ the Altus 11 aircraft, built by General Atomics-Aeronautical Systems, Inc. By taking advantage of its slow flight speed (70 to 100 knots), long endurance, and high-altitude flight (up to 55,000 feet), the Altus will be flown near, and when possible, above (but never into) thunderstorms for long periods of time, allowing investigations to be conducted over entire storm life cycles. Key science objectives simultaneously addressed by ACES are to: (1) investigate lightning-storm relationships, (2) study storm electrical budgets, and (3) provide Lightning Imaging Sensor validation. The ACES payload, already developed and flown on Altus, includes electrical, magnetic, and optical sensors to remotely characterize the lightning activity and the electrical environment within and around thunderstorms. The ACES field campaign will be conducted during July 2002 with a goal of performing 8 to 10 UAV flights. Each flight will require about 4 to 5 hours on station at altitudes from 40,000 ft to 55,000 ft. The ACES team is comprised of scientists from the NASA Marshall Space Flight Center and NASA Goddard Space Flight Centers partnered with General Atomics and IDEA, LLC.

  10. Hypertension and ace gene insertion/deletion polymorphism in pediatric renal transplant patients.

    PubMed

    Serdaroglu, Erkin; Mir, Sevgi; Berdeli, Afig

    2005-10-01

    The objective of the present study was to define the risk factors for hypertension and to analyze the influence of insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) on hypertension in pediatric renal transplant recipients. Twenty-six pediatric renal transplant recipients with stable renal function and treated with the same immunosuppression protocol were included in the study. Their mean age was 12.5 +/- 3.3 yr and mean time after transplantation was 38.5 +/- 39.8 month. Twenty-four hour ambulatory blood pressure monitoring (ABPM) was performed by SpaceLabs (90207) device. The I/D polymorphism of the ACE was determined by PCR and ACE serum level was analyzed by colorimetric method. Hypertension was present in 15 patients (57.7%) by causal blood pressure measurements and 19 patients (73.1%) by ABPM. Twenty-two patients (84.6%) were found to be non-dipper and eight of them had reverse dipping. Only time after transplantation (38 +/- 31 vs. 79 +/-49 month, p = 0.016) and cyclosporin A trough plasma levels (206 +/-78 vs. 119 +/- 83 ng/mL, p = 0.020) influenced the presence of hypertension by multiple logistic regression analysis. The distribution of genotypes were II = 2 (7.7%), ID = 8 (30.8%), DD = 16 (61.5%). There was no effect of ACE gene I/D polymorphism or serum ACE levels on hypertension prevalence and circadian variability of blood pressures. Hypertension was related to the time after transplantation and cyclosporin A levels. The ACE gene I/D polymorphism and serum ACE levels did not influence the blood pressure values or circadian variability of blood pressure among pediatric renal transplant patients. PMID:16176418

  11. Structural and Functional Characterization of a Secreted Hookworm Macrophage Migration Inhibitory Factor (MIF) that Interacts with the Human MIF Receptor CD74

    SciTech Connect

    Cho,Y.; Jones, B.; Vermeire, J.; Leng, L.; DiFedele, L.; Harrison, L.; Xiong, H.; Kwong, Y.; Chen, Y.; et al

    2007-01-01

    Hookworms, parasitic nematodes that infect nearly one billion people worldwide, are a major cause of anemia and malnutrition. We hypothesize that hookworms actively manipulate the host immune response through the production of specific molecules designed to facilitate infection by larval stages and adult worm survival within the intestine. A full-length cDNA encoding a secreted orthologue of the human cytokine, Macrophage Migration Inhibitory Factor (MIF) has been cloned from the hookworm Ancylostoma ceylanicum. Elucidation of the three-dimensional crystal structure of recombinant AceMIF (rAceMIF) revealed an overall structural homology with significant differences in the tautomerase sites of the human and hookworm proteins. The relative bioactivities of human and hookworm MIF proteins were compared using in vitro assays of tautomerase activity, macrophage migration, and binding to MIF receptor CD74. The activity of rAceMIF was not inhibited by the ligand ISO-1, which was previously determined to be an inhibitor of the catalytic site of human MIF. These data define unique immunological, structural, and functional characteristics of AceMIF, thereby establishing the potential for selectively inhibiting the hookworm cytokine as a means of reducing parasite survival and disease pathogenesis.

  12. Structural and Functional Characterization of a Secreted Hookworm Macrophage Migration Inhibitory Factor (MIF) That Interacts with the Human MIF Receptor CD74*

    PubMed Central

    Cho, Yoonsang; Jones, Brian F.; Vermeire, Jon J.; Leng, Lin; DiFedele, Lisa; Harrison, Lisa M.; Xiong, Huabao; Kwong, Yuen-Kwan Amy; Chen, Yibang; Bucala, Richard; Lolis, Elias; Cappello, Michael

    2013-01-01

    Hookworms, parasitic nematodes that infect nearly one billion people worldwide, are a major cause of anemia and malnutrition. We hypothesize that hookworms actively manipulate the host immune response through the production of specific molecules designed to facilitate infection by larval stages and adult worm survival within the intestine. A full-length cDNA encoding a secreted orthologue of the human cytokine, Macro-phage Migration Inhibitory Factor (MIF) has been cloned from the hookworm Ancylostoma ceylanicum. Elucidation of the three-dimensional crystal structure of recombinant AceMIF (rAceMIF) revealed an overall structural homology with significant differences in the tautomerase sites of the human and hookworm proteins. The relative bioactivities of human and hookworm MIF proteins were compared using in vitro assays of tautomerase activity, macrophage migration, and binding to MIF receptor CD74. The activity of rAceMIF was not inhibited by the ligand ISO-1, which was previously determined to be an inhibitor of the catalytic site of human MIF. These data define unique immunological, structural, and functional characteristics of AceMIF, thereby establishing the potential for selectively inhibiting the hookworm cytokine as a means of reducing parasite survival and disease pathogenesis. PMID:17567581

  13. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity.

    PubMed

    Patel, Vaibhav B; Mori, Jun; McLean, Brent A; Basu, Ratnadeep; Das, Subhash K; Ramprasath, Tharmarajan; Parajuli, Nirmal; Penninger, Josef M; Grant, Maria B; Lopaschuk, Gary D; Oudit, Gavin Y

    2016-01-01

    Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance.

  14. Neprilysin and Natriuretic Peptide Regulation in Heart Failure.

    PubMed

    Bayes-Genis, Antoni; Morant-Talamante, Nuria; Lupón, Josep

    2016-08-01

    Neprilysin is acknowledged as a key player in neurohormonal regulation, a cornerstone of modern drug therapy in chronic heart failure. In the cardiovascular system, neprilysin cleaves numerous vasoactive peptides, some with mainly vasodilating effects (natriuretic peptides, adrenomedullin, bradykinin) and other with mainly vasoconstrictor effects (angiotensin I and II, endothelin-1). For decades, neprilysin has been an important biotarget. Academia and industry have combined active efforts to search for neprilysin inhibitors (NEPIs) that might be useful in clinical practice. NEPI monotherapy was initially tested with little success due to efficacy issues. Next, combination of NEPI and ACE-inhibiting activity agents were abandoned due to safety concerns. Recently, the combination of NEPI and ARB, also known as ARNI, has shown better than expected results in heart failure with reduced ejection fraction, and multitude of ongoing studies are set to prove its value across the heart failure spectrum. PMID:27260315

  15. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  16. Influence of metallocene substitution on the antibacterial activity of multivalent peptide conjugates.

    PubMed

    Hoffknecht, Barbara C; Prochnow, Pascal; Bandow, Julia E; Metzler-Nolte, Nils

    2016-07-01

    Peptide dendrimers and derivatisation of peptides with metallocenes showed promising results in the search for new antibacterial agents. The two concepts are combined in this work leading to multivalent, metallocene-containing peptide derivates. These new peptides were synthesised utilising microwave assisted, copper(I) catalyzed alkyne-azide cycloaddition (CuAAC, "click" chemistry). Twelve new peptide conjugates, containing either a ferrocenoyl group or a ruthenocenoyl group on so-called ultrashort (i.e. < 5 amino acids) peptides, and ranging from monovalent to trivalent conjugates, were synthesised and their antibacterial activity was investigated by minimal inhibitory concentration (MIC) assays on five different bacterial strains. The antibacterial activity was compared to the same peptide conjugates without metallocenes. The resulting MIC values showed a significant enhancement of the antibacterial activity of these peptide conjugates against Gram-positive bacteria by the metallocenoyl groups. Additionally, the compounds with two metallocenoyl groups presented the best antibacterial activities overall. PMID:26988572

  17. Inhibitory Control in Childhood Stuttering

    ERIC Educational Resources Information Center

    Eggers, Kurt; De Nil, Luc F.; Van den Bergh, Bea R. H.

    2013-01-01

    Purpose: The purpose of this study was to investigate whether previously reported parental questionnaire-based differences in inhibitory control (IC; Eggers, De Nil, & Van den Bergh, 2010) would be supported by direct measurement of IC using a computer task. Method: Participants were 30 children who stutter (CWS; mean age = 7;05 years) and 30…

  18. Progress in the preparation of peptide aldehydes via polymer supported IBX oxidation and scavenging by threonyl resin.

    PubMed

    Sorg, Gerhard; Thern, Bernd; Mader, Oliver; Rademann, Jörg; Jung, Günther

    2005-03-01

    Peptide aldehydes are of interest due to their inhibitory properties toward numerous classes of proteolytic enzymes such as caspases or the proteasome. A novel access to peptide aldehydes is described using a combination of solid phase peptide synthesis with polymer-assisted solution phase synthesis based on the oxidation of peptide alcohols with a mild and selective polymer-bound IBX derivative. The oxidation is followed by selective purification via scavenging the peptide aldehyde in a capture-release procedure using threonine attached to an aminomethyl resin. Peptide aldehydes are obtained in excellent purity and satisfying yield. The optical integrity of the C-terminal residue is conserved in a high degree. The procedures are compatible with the use of common side-chain protecting groups. The potential for using the method in parallel approaches is very advantageous. A small collection of new and known peptide aldehydes has been tested for inhibitory activity against caspases 1 and 3.

  19. Angiotensin-converting enzyme (ACE) genotypes and disability in hospitalized older patients.

    PubMed

    Seripa, Davide; Paroni, Giulia; Matera, Maria G; Gravina, Carolina; Scarcelli, Carlo; Corritore, Michele; D'Ambrosio, Luigi P; Urbano, Maria; D'Onofrio, Grazia; Copetti, Massimiliano; Kehoe, Patrick G; Panza, Francesco; Pilotto, Alberto

    2011-09-01

    The association between angiotensin-converting enzyme (ACE) genotypes and functional decline in older adults remains controversial. To assess if ACE gene variations influences functional abilities at older age, the present study explored the association between the common ACE insertion/deletion (I/D) polymorphism and disability measured with activities of daily living (ADL) in hospitalized older patients. We analyzed the frequency of the ACE genotypes (I/I, I/D, and D/D) in a population of 2,128 hospitalized older patients divided according to presence or absence of ADL disability. Logistic regression analysis adjusted for possible confounding factors, identified an association between the I/I genotype with ADL disability (OR=1.54, 95% CI 1.04-2.29). This association was significant in men (OR=2.01, 95% CI 1.07-3.78), but not in women (OR=1.36, 95% CI 0.82-2.25). These results suggested a possible role of the ACE polymorphism as a genetic marker for ADL disability in hospitalized older patients.

  20. Tissue ACE inhibition improves microcirculation in remote myocardium after coronary stenosis: MR imaging study in rats.

    PubMed

    Hiller, Karl-Heinz; Ruile, Philipp; Kraus, Günter; Bauer, Wolfgang R; Waller, Christiane

    2010-12-01

    ACE inhibition has been shown to improve left ventricular (LV) and myocardial blood flow. Previous data regarding changes in capillary density and angiogenesis during ACE inhibition are controversial. The aim of the following study was to determine myocardial microcirculation and heart function in the rat after coronary stenosis using non invasive MR imaging techniques. MR spin labeling and cine techniques have been performed in female Wistar rats 2weeks after coronary artery stenosis. In one group, animals were treated with quinapril in a dose of 6mg/kg/day. Perfusion, relative blood volume (RBV), LV mass and function were determined non-invasively 2weeks after treatment. Finally, fibrosis and capillary density were analyzed histologically. Additionally, hemodynamic measurements were realized in a further group in order to calculate systemic vascular resistance (SVR). Quinapril resulted in a significant increase in perfusion at rest in the remote and the poststenotic myocardium with improved systolic function and a decrease in SVR compared to the non treated control group. Additionally, maximum perfusion and RBV were slightly elevated whereas capillary density was unchanged among the groups. MRI allows for non-invasive quantification of functional microcirculation and heart function. In addition to the well known effect of ACE inhibition on systolic function, treatment with the tissue specific ACE inhibitor quinapril revealed an important microvascular improvement, especially at arteriolar level. These findings may support the use of tissue ACE inhibitors to improve cardiac microcirculation after ischemia.

  1. Tailored therapy of ACE inhibitors in stable coronary artery disease: pharmacogenetic profiling of treatment benefit.

    PubMed

    Brugts, Jasper J; Boersma, Eric; Simoons, Maarten L

    2010-08-01

    Angiotensin-converting enzyme (ACE) inhibitors are among the most commonly used drugs in stable coronary artery disease as these agents have been proven to be effective for reducing the risk of cardiovascular morbidity and mortality. As with other drugs, individual variation in treatment benefit is likely. Such heterogeneity could be used to target ACE-inhibitor therapy to those patients most likely to benefit from treatment. However, prior attempts to target ACE-inhibitor therapy to those patients who are most likely to benefit of such prophylactic treatment in secondary prevention using clinical characteristics or the level of baseline risk appeared not to be useful. A new approach of 'tailored therapy' could be to integrate more patient-specific characteristics, such as the genetic information of patients. Pharmacogenetic research of ACE inhibitors in coronary artery disease patients is at a formative stage, and studies are limited. The Perindopril Genetic association (PERGENE) study is a large pharmacogenetic substudy of the randomized placebo-controlled European trial On Reduction of Cardiac Events with Perindopril in Patients with Stable Coronary Artery disease (EUROPA) trial, aimed to assess the feasibility of pharmacogenetic profiling of ACE-inhibitor therapy by perindopril. This article summarizes the recent findings of the PERGENE study and pharmacogenetic research of the treatment benefit of perindopril in stable coronary artery disease. PMID:20712529

  2. ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model

    PubMed Central

    Lee, Seong-Jong; Han, Jong-Min; Lee, Jin-Seok; Son, Chang-Gue; Im, Hwi-Jin; Jo, Hyun-Kyung; Yoo, Ho-Ryong; Kim, Yoon-Sik; Seol, In-Chan

    2015-01-01

    The medicinal plants Artemisia iwayomogi (A. iwayomogi) and Curcuma longa (C. longa) radix have been used to treat metabolic abnormalities in traditional Korean medicine and traditional Chinese medicine (TKM and TCM). In this study we evaluated the effect of the water extract of a mixture of A. iwayomogi and C. longa (ACE) on high-fat diet-induced metabolic syndrome in a mouse model. Four groups of C57BL/6N male mice (except for the naive group) were fed a high-fat diet freely for 10 weeks. Among these, three groups (except the control group) were administered a high-fat diet supplemented with ACE (100 or 200 mg/kg) or curcumin (50 mg/kg). Body weight, accumulation of adipose tissues in abdomen and size of adipocytes, serum lipid profiles, hepatic steatosis, and oxidative stress markers were analyzed. ACE significantly reduced the body and peritoneal adipose tissue weights, serum lipid profiles (total cholesterol and triglycerides), glucose levels, hepatic lipid accumulation, and oxidative stress markers. ACE normalized lipid synthesis-associated gene expressions (peroxisome proliferator-activated receptor gamma, PPARγ; fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator-activated receptor alpha, PPARα). The results from this study suggest that ACE has the pharmaceutical potential reducing the metabolic abnormalities in an animal model. PMID:26508977

  3. High resolution critical habitat mapping and classification of tidal freshwater wetlands in the ACE Basin

    NASA Astrophysics Data System (ADS)

    Strickland, Melissa Anne

    In collaboration with the South Carolina Department of Natural Resources ACE Basin National Estuarine Research Reserve (ACE Basin NERR), the tidal freshwater ecosystems along the South Edisto River in the ACE Basin are being accurately mapped and classified using a LIDAR-Remote Sensing Fusion technique that integrates LAS LIDAR data into texture images and then merges the elevation textures and multispectral imagery for very high resolution mapping. This project discusses the development and refinement of an ArcGIS Toolbox capable of automating protocols and procedures for marsh delineation and microhabitat identification. The result is a high resolution habitat and land use map used for the identification of threatened habitat. Tidal freshwater wetlands are also a critical habitat for colonial wading birds and an accurate assessment of community diversity and acreage of this habitat type in the ACE Basin will support SCDNR's conservation and protection efforts. The maps developed by this study will be used to better monitor the freshwater/saltwater interface and establish a baseline for an ACE NERR monitoring program to track the rates and extent of alterations due to projected environmental stressors. Preliminary ground-truthing in the field will provide information about the accuracy of the mapping tool.

  4. The association between ace gene variation and aerobic capacity in winter endurance disciplines.

    PubMed

    Orysiak, J; Zmijewski, P; Klusiewicz, A; Kaliszewski, P; Malczewska-Lenczowska, J; Gajewski, J; Pokrywka, A

    2013-12-01

    The aim of the study was to examine the possible relationship between I/D polymorphism of ACE gene and selected indices of aerobic capacity among male and female athletes practising winter endurance sports. Sixty-six well-trained athletes (female n = 26, male n = 40), aged 18.4 ± 2.8 years, representing winter endurance sports (cross-country skiing, n = 48; biathlon, n = 8; Nordic combined, n = 10) participated in the study. Genotyping for ACE I/D polymorphism was performed using polymerase chain reaction. Maximal oxygen consumption (VO2max), maximal running velocity (Vmax) and running velocity at anaerobic threshold (VAT4) were determined in an incremental test to volitional exhaustion on a motorized treadmill. The ACE genotype had no significant effect on absolute VO2max, relative VO2max (divided by body mass or fat free body mass), VAT4 or Vmax. No interaction effect of gender x ACE genotype was found for each of the examined aerobic capacity indices. ACE gene variation was not found to be a determinant of aerobic capacity in either female or male Polish, well-trained endurance athletes participating in winter sports.

  5. Bioassay-guided preparative separation of angiotensin-converting enzyme inhibitory C-flavone glycosides from Desmodium styracifolium by recycling complexation high-speed counter-current chromatography.

    PubMed

    Zhang, Ying-Qi; Luo, Jian-Guang; Han, Chao; Xu, Jin-Fang; Kong, Ling-Yi

    2015-01-01

    A new strategy of the convergence of high-speed counter-current chromatography (HSCCC) and bioactive assay technique was developed for rapidly screening and separating the angiotensin-converting enzyme (ACE) inhibitors from the aerial parts of Desmodium styracifolium. Bioactivity-guided fractionation of the crude extract was first established to target the bioactive fractions based on HSCCC coupled with in vitro ACE inhibitory assay. Subsequently, the bioactive fractions were further separated by the recycling complexation HSCCC respectively, using 0.10 mol/L copper sulfate in the lower phase of two-phase solvent system composed of n-butanol/water (1:1, v/v). Five C-glycosylflavones, vicenin 2 (1), carlinoside (2), vicenin 1 (3), schaftoside (4) and vicenin 3 (5), were successfully obtained. Their chemical structures were identified using ESI-MS and NMR. All the isolates showed in vitro ACE inhibitory activity with the IC50 values between 33.62 and 58.37 μM. The results demonstrated that the established method was proposed as an excellent strategy to systematically screen and purify active compounds from traditional Chinese medicines.

  6. Arctic weather during the FIRE/ACE flights in 1998

    NASA Astrophysics Data System (ADS)

    Wylie, Donald P.

    2001-07-01

    The weather systems, cyclones and anticyclones, along with air trajectories and cloud forms, are compared to past studies of the Arctic to assess compatibility of the 4-month study of FIRE/ACE with past climatologies. The frequency and movement of cyclones (lows) and anticyclones (highs) followed the general eastward and northeastward directions indicated by past studies. Most cyclones (lows) came from eastern Siberia and the Bering Sea to the south and moved north across the Bering Straight or Alaska into the Arctic Ocean. They generally weakened in central pressure as they moved poleward. Anticyclones (highs) were most common in the eastern Beaufort Sea near Canada in June and July, as predicted from previous studies. However, many cyclones and anticyclones moved in westward directions, which is rare in other latitudes. Erratic changes in shape and intensity on a daily basis also were observed. The NOAA National Center for Environmental Prediction (NCEP) analysis generally reflected the SHEBA Ship WMO observations which it used. However, NCEP temperatures were biased warm by 1.0° to 1.5°C in April and early May. In July, when the surface temperatures were at the freezing/thawing point, the NCEP analysis changed to a cold bias of -1.0°C. Dew points had smaller biases except for July where they were biased cold by -1.4°C. Wind speeds had a -2 m/s low bias for the six windiest days. Surface barometric pressures had consistently low biases from -1.2 to -2.8 hPa in all four months. Air parcel historical trajectories were mainly from the south or from local anticyclonic gyres in the Beaufort Sea. Most air came to the SHEBA ship from the North Pacific Ocean or from Alaska and Canada and occasionally from eastern Siberia. Very few trajectories traced back across the pole to Europe and central Asia. Cloud cover was high, as expected, from 69 to 86% of the time. Satellite data also indicate frequent stratus, altostratus, and cirrus clouds (occurring 61% of the time

  7. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.

    PubMed

    Xiao, Y; Karttunen, M; Jalkanen, J; Mussi, M C M; Liao, Y; Grohe, B; Lagugné-Labarthet, F; Siqueira, W L

    2015-08-01

    In our recent studies, we have shown that in vivo-acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo-acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P < 0.05). MD simulations showed a strong affinity and fast adsorption to hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease.

  8. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.

    PubMed

    Xiao, Y; Karttunen, M; Jalkanen, J; Mussi, M C M; Liao, Y; Grohe, B; Lagugné-Labarthet, F; Siqueira, W L

    2015-08-01

    In our recent studies, we have shown that in vivo-acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo-acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P < 0.05). MD simulations showed a strong affinity and fast adsorption to hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease. PMID:26116492

  9. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  10. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV.

    PubMed

    Mojica, Luis; Chen, Karen; de Mejía, Elvira González

    2015-01-01

    The objective of this research was to determine the bioactive properties of the released peptides from commercially available precook common beans (Phaseolus vulgaris). Bioactive properties and peptide profiles were evaluated in protein hydrolysates of raw and commercially precooked common beans. Five varieties (Black, Pinto, Red, Navy, and Great Northern) were selected for protein extraction, protein and peptide molecular mass profiles, and peptide sequences. Potential bioactivities of hydrolysates, including antioxidant capacity and inhibition of α-amylase, α-glucosidase, dipeptidyl peptidase-IV (DPP-IV), and angiotensin converting enzyme I (ACE) were analyzed after digestion with pepsin/pancreatin. Hydrolysates from Navy beans were the most potent inhibitors of DPP-IV with no statistical differences between precooked and raw (IC50 = 0.093 and 0.095 mg protein/mL, respectively). α-Amylase inhibition was higher for raw Red, Navy and Great Northern beans (36%, 31%, 27% relative to acarbose (rel ac)/mg protein, respectively). α-Glucosidase inhibition among all bean hydrolysates did not show significant differences; however, inhibition values were above 40% rel ac/mg protein. IC50 values for ACE were not significantly different among all bean hydrolysates (range 0.20 to 0.34 mg protein/mL), except for Red bean that presented higher IC50 values. Peptide molecular mass profile ranged from 500 to 3000 Da. A total of 11 and 17 biologically active peptide sequences were identified in raw and precooked beans, respectively. Peptide sequences YAGGS and YAAGS from raw Great Northern and precooked Pinto showed similar amino acid sequences and same potential ACE inhibition activity. Processing did not affect the bioactive properties of released peptides from precooked beans. Commercially precooked beans could contribute to the intake of bioactive peptides and promote health.

  11. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure.

    PubMed

    Patel, Vaibhav B; Zhong, Jiu-Chang; Grant, Maria B; Oudit, Gavin Y

    2016-04-15

    Heart failure (HF) remains the most common cause of death and disability, and a major economic burden, in industrialized nations. Physiological, pharmacological, and clinical studies have demonstrated that activation of the renin-angiotensin system is a key mediator of HF progression. Angiotensin-converting enzyme 2 (ACE2), a homolog of ACE, is a monocarboxypeptidase that converts angiotensin II into angiotensin 1-7 (Ang 1-7) which, by virtue of its actions on the Mas receptor, opposes the molecular and cellular effects of angiotensin II. ACE2 is widely expressed in cardiomyocytes, cardiofibroblasts, and coronary endothelial cells. Recent preclinical translational studies confirmed a critical counter-regulatory role of ACE2/Ang 1-7 axis on the activated renin-angiotensin system that results in HF with preserved ejection fraction. Although loss of ACE2 enhances susceptibility to HF, increasing ACE2 level prevents and reverses the HF phenotype. ACE2 and Ang 1-7 have emerged as a key protective pathway against HF with reduced and preserved ejection fraction. Recombinant human ACE2 has been tested in phase I and II clinical trials without adverse effects while lowering and increasing plasma angiotensin II and Ang 1-7 levels, respectively. This review discusses the transcriptional and post-transcriptional regulation of ACE2 and the role of the ACE2/Ang 1-7 axis in cardiac physiology and in the pathophysiology of HF. The pharmacological and therapeutic potential of enhancing ACE2/Ang 1-7 action as a novel therapy for HF is highlighted.

  12. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: role of epigenetic histone modifications.

    PubMed

    Tikoo, Kulbhushan; Patel, Gaurang; Kumar, Sandeep; Karpe, Pinakin Arun; Sanghavi, Maitri; Malek, Vajir; Srinivasan, K

    2015-02-01

    Growing body of evidence points out the crucial role of ACE2 in preventing atherosclerosis. However, data on how atherosclerosis affects ACE2 expression in heart and kidney remains unknown. Atherosclerosis was induced by feeding New Zealand White rabbits with high cholesterol diet (HCD - 2%) for 12 weeks and atorvastatin was administered (5mg/kg/day p.o) in last 3 weeks. ACE2 mRNA and protein expression was assessed by Western blotting and real time PCR. HCD fed rabbits developed atherosclerosis as confirmed by increase in plasma total cholesterol, LDL and triglycerides as well as formation atherosclerotic plaques in arch of aorta. The ACE2 protein but not mRNA expression was reduced in heart and kidney of HCD rabbits. Interestingly, atorvastatin increased the ACE2 protein expression in heart and kidney of HCD rabbits. However, atorvastatin increased ACE2 mRNA in heart but not in kidney of HCD rabbits. Atorvastatin increased the occupancy of histone H3 acetylation (H3-Ac) mark on ACE2 promoter region in heart of HCD rabbits indicating direct or indirect epigenetic up-regulation of ACE2 by atorvastatin. Further, atorvastatin suppressed Ang II-induced contractile responses and enhanced AT2 receptor mediated relaxant responses in atherosclerotic aorta. We propose that atherosclerosis is associated with reduced ACE2 expression in heart and kidney. We also show an unexplored potential of atorvastatin to up-regulate ACE2 via epigenetic histone modifications. Our data suggest a novel way of replenishing ACE2 expression for preventing not only atherosclerosis but also other cardiovascular disorders. PMID:25482567

  13. The Delta II with ACE aboard is prepared for liftoff from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Boeing Delta II expendable launch vehicle carrying the Advanced Composition Explorer (ACE) undergoes final preparations for liftoff in the predawn hours of Aug. 25, 1997, at Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. The first launch attempt on Aug. 24 was scrubbed by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. ACE with its combination of nine sensors and instruments will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology.

  14. Role of Serratia marcescens ACE2 on diesel degradation and its influence on corrosion.

    PubMed

    Rajasekar, Aruliah; Babu, Thambidurai Ganesh; Pandian, Shunmugiah Thevar Karutha; Maruthamuthu, Sundaram; Palaniswamy, Narayanan; Rajendran, Annamalai

    2007-09-01

    A facultative anaerobic species Serratia marcescens ACE2 isolated from the corrosion products of diesel transporting pipeline in North West, India was identified by 16S rDNA sequence analysis. The role of Serratia marcesens ACE2 on biodegradation of diesel and its influence on the corrosion of API 5LX steel has been elucidated. The degrading strain ACE2 is involved in the process of corrosion of steel API 5LX and also utilizes the diesel as an organic source. The quantitative biodegradation efficiency (BE) of diesel was 58%, calculated by gas-chromatography-mass spectrum analysis. On the basis of gas-chromatography-mass spectrum (GC-MS), Fourier Transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD), the involvement of Serratia marcescens on degradation and corrosion has been investigated. This basic study will be useful for the development of new approaches for detection, monitoring and control of microbial corrosion.

  15. Serum ACE Level in Sarcoidosis Patients with Typical and Atypical HRCT Manifestation

    PubMed Central

    Kahkouee, Shahram; Samadi, Katayoon; Alai, Ali; Abedini, Atefeh; Rezaiian, Lida

    2016-01-01

    Summary Background Sarcoidosis is an inflammatory disease that affects multiple organs. Before widespread use of computed tomography (CT), the severity of sarcoidosis was assessed based on chest X-ray abnormalities. HRCT can distinguish between active inflammatory changes and irreversible fibrosis. In this study, we analyzed different ACE levels in 148 patients diagnosed with sarcoidosis. Material/Methods We categorized these patients based on their HRCT results into four groups: 1) patients diagnosed with chronic disease; 2) patients diagnosed with non-chronic disease; 3) patients who exhibited typical HRCT changes; and 4) patients who exhibited atypical HRCT changes. Afterward the mean ACE level of each group was calculated and compared. Result The HRCT scans of chronic sarcoidosis patients tended to show more atypical sarcoidosis patterns. Moreover, there was a reverse correlation between chronicity and ACE level (P-value <0.05). Conclusions HRCT is another modality which would be useful when the diagnosis of sarcoidosis is not definite. PMID:27733890

  16. SIGACE Code for Generating High-Temperature ACE Files; Validation and Benchmarking

    NASA Astrophysics Data System (ADS)

    Sharma, Amit R.; Ganesan, S.; Trkov, A.

    2005-05-01

    A code named SIGACE has been developed as a tool for MCNP users within the scope of a research contract awarded by the Nuclear Data Section of the International Atomic Energy Agency (IAEA) (Ref: 302-F4-IND-11566 B5-IND-29641). A new recipe has been evolved for generating high-temperature ACE files for use with the MCNP code. Under this scheme the low-temperature ACE file is first converted to an ENDF formatted file using the ACELST code and then Doppler broadened, essentially limited to the data in the resolved resonance region, to any desired higher temperature using SIGMA1. The SIGACE code then generates a high-temperature ACE file for use with the MCNP code. A thinning routine has also been introduced in the SIGACE code for reducing the size of the ACE files. The SIGACE code and the recipe for generating ACE files at higher temperatures has been applied to the SEFOR fast reactor benchmark problem (sodium-cooled fast reactor benchmark described in ENDF-202/BNL-19302, 1974 document). The calculated Doppler coefficient is in good agreement with the experimental value. A similar calculation using ACE files generated directly with the NJOY system also agrees with our SIGACE computed results. The SIGACE code and the recipe is further applied to study the numerical benchmark configuration of selected idealized PWR pin cell configurations with five different fuel enrichments as reported by Mosteller and Eisenhart. The SIGACE code that has been tested with several FENDL/MC files will be available, free of cost, upon request, from the Nuclear Data Section of the IAEA.

  17. PAPR reduction in FBMC using an ACE-based linear programming optimization

    NASA Astrophysics Data System (ADS)

    van der Neut, Nuan; Maharaj, Bodhaswar TJ; de Lange, Frederick; González, Gustavo J.; Gregorio, Fernando; Cousseau, Juan

    2014-12-01

    This paper presents four novel techniques for peak-to-average power ratio (PAPR) reduction in filter bank multicarrier (FBMC) modulation systems. The approach extends on current PAPR reduction active constellation extension (ACE) methods, as used in orthogonal frequency division multiplexing (OFDM), to an FBMC implementation as the main contribution. The four techniques introduced can be split up into two: linear programming optimization ACE-based techniques and smart gradient-project (SGP) ACE techniques. The linear programming (LP)-based techniques compensate for the symbol overlaps by utilizing a frame-based approach and provide a theoretical upper bound on achievable performance for the overlapping ACE techniques. The overlapping ACE techniques on the other hand can handle symbol by symbol processing. Furthermore, as a result of FBMC properties, the proposed techniques do not require side information transmission. The PAPR performance of the techniques is shown to match, or in some cases improve, on current PAPR techniques for FBMC. Initial analysis of the computational complexity of the SGP techniques indicates that the complexity issues with PAPR reduction in FBMC implementations can be addressed. The out-of-band interference introduced by the techniques is investigated. As a result, it is shown that the interference can be compensated for, whilst still maintaining decent PAPR performance. Additional results are also provided by means of a study of the PAPR reduction of the proposed techniques at a fixed clipping probability. The bit error rate (BER) degradation is investigated to ensure that the trade-off in terms of BER degradation is not too severe. As illustrated by exhaustive simulations, the SGP ACE-based technique proposed are ideal candidates for practical implementation in systems employing the low-complexity polyphase implementation of FBMC modulators. The methods are shown to offer significant PAPR reduction and increase the feasibility of FBMC as

  18. Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men?

    PubMed Central

    Leung, J.; Zhang, Y. F.; Bauer, D.; Ensrud, K. E.; Barrett-Connor, E.; Leung, P. C.

    2013-01-01

    Summary In a prospective cohort study of 5,995 older American men (MrOS), users of angiotensin-converting enzyme (ACE) inhibitors had a small but significant increase in bone loss at the hip over 4 years after adjustment for confounders. Use of angiotensin II AT1 receptor blockers (ARB) was not significantly associated with bone loss. Introduction Experimental evidence suggests that angiotensin II promotes bone loss by its effects on osteoblasts. It is therefore plausible that ACE inhibitor and ARB may reduce rates of bone loss. The objective of this study is to examine the independent effects of ACE inhibitor and ARB on bone loss in older men. Methods Out of 5,995 American men (87.2%) aged ≥65 years, 5,229 were followed up for an average of 4.6 years in a prospective six-center cohort study—The Osteoporotic Fractures in Men Study (MrOS). Bone mineral densities (BMD) at total hip, femoral neck, and trochanter were measured by Hologic densitometer (QDR 4500) at baseline and year 4. Results Out of 3,494 eligible subjects with complete data, 1,166 and 433 subjects reported use of ACE inhibitors and ARBs, respectively. When compared with nonusers, continuous use of ACE inhibitors was associated with a small (0.004 g/cm2) but significant increase in the average rate of BMD loss at total hip and trochanter over 4 years after adjustment for confounders. Use of ARB was not significantly associated with bone loss. Conclusion Use of ACE inhibitors but not ARB may marginally increase bone loss in older men. PMID:22080379

  19. Antihypertensive treatment in renal transplant patients--is there a role for ACE inhibitors?

    PubMed

    Hausberg, M; Kosch, M; Hohage, H; Suwelack, B; Barenbrock, M; Kisters, K; Rahn, K H

    2001-01-01

    During the past two decades great progress was achieved with regards to short-term kidney graft survival. However, long-term graft survival did not improve similarly. Many factors contribute to chronic graft nephropathy eventually resulting in late graft loss, among these arterial hypertension is of major importance. In patients with chronic renal disease of diabetic and non-diabetic origin, angiotensin converting enzyme inhibitors have been convincingly shown to slow the progression of renal failure. The achieved nephroprotection correlates with the reduction of proteinuria by ACE inhibitor treatment. Also in renal transplant patients, ACE inhibitors have been shown unequivocally to reduce urinary protein excretion. The prevention of hyperfiltration, particular in the context of a reduced number of functional nephrons in patients with chronic graft nephropathy, could be important to prolong graft survival after renal transplantation. Moreover, ACE inhibitors may exert beneficial effects on immunologic processes contributing to chronic graft nephropathy. Many studies published in the last decade show convincingly that ACE inhibitors are safe and effective for the treatment of hypertension in renal allograft recipients. However, no data exist so far showing that ACE inhibitors are superior to other antihypertensive drugs in renal transplant patients and that they prolong graft survival. Studies investigating this issue are warranted. Apart from effects on the graft, ACE inhibitors may improve alterations of the cardiovascular system generally observed in renal transplant patients, such as structural alterations of large arteries, left ventricular hypertrophy, disturbed mechanical vessel wall properties and endothelial dysfunction. Therefore, angiotensin converting enzyme inhibitors could reduce cardiovascular morbidity and mortality in kidney transplant patients.

  20. The Altus Cumulus Electrification Study (ACES): A UAV-Based Science Demonstration

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Croskey, C. L.; Desch, M. D.; Farrell, W. M.; Goldberg, R. A.; Houser, J. G.; Kim, H. S.; Mach, D. M.; Mitchell, J. D.; Stoneburner, J. C.

    2003-01-01

    The Altus Cumulus Electrification Study (ACES) is an unmanned aerial vehicle (UAV)- based project that investigated thunderstorms in the vicinity of the Florida Everglades in August 2002. ACES was conducted to investigate storm electrical activity and its relationship to storm morphology, and to validate satellite-based lightning measurements. In addition, as part of the NASA sponsored UAV-based science demonstration program, this project provided a scientifically useful demonstration of the utility and promise of UAV platforms for Earth science and applications observations. ACES employed the Altus II aircraft, built by General Atomics - Aeronautical Systems, Inc. Key science objectives simultaneously addressed by ACES are to: (1) investigate lightning-storm relationships, (2) study storm electrical budgets, and provide Lightning Imaging Sensor validation. The ACES payload included electrical, magnetic, and optical sensors to remotely characterize the lightning activity and the electrical environment within and around thunderstorms. ACES contributed important electrical and optical measurements not available from other sources. Also, the high altitude vantage point of the UAV observing platform (up to 55,000 feet) provided cloud-top perspective. By taking advantage of its slow flight speed (70 to 100 knots), long endurance, and high altitude flight, the Altus was flown near, and when possible, over (but never into) thunderstorms for long periods of time that allowed investigations to be conducted over entire storm life cycles. An innovative real time weather system was used to identify and vector the aircraft to selected thunderstorms and safely fly around these storms, while, at the same time monitor the weather near our base of operations. In addition, concurrent ground-based observations that included radar (Miami and Key West WSRBD, NASA NPOL), satellite imagery, and lightning (NALDN and Los Alamos EDOT) enable the UAV measurements to be more completely

  1. A cladistic model of ACE sequence variation with implications for myocardial infarction, Alzheimer disease and obesity.

    PubMed

    Katzov, Hagit; Bennet, Anna M; Kehoe, Patrick; Wiman, Björn; Gatz, Margaret; Blennow, Kaj; Lenhard, Boris; Pedersen, Nancy L; de Faire, Ulf; Prince, Jonathan A

    2004-11-01

    Sequence variation in ACE, which encodes angiotensin I converting enzyme, contributes to a large proportion of variability in plasma ACE levels, but the extent to which this impacts upon human disease is unresolved. Most efforts to associate ACE with other heritable traits have involved a single Alu insertion/deletion polymorphism, despite the probable existence of other functional sequence variants with effects that may not be consistently detectable by solely typing the Alu indel. Here, utilizing single nucleotide polymorphisms (SNPs) that differentiate major ACE clades in European populations, we demonstrate a number of significant phenotype associations across more than 4000 Swedish individuals. In a systematic analysis of metabolic phenotypes, effects were detected upon several traits, including fasting plasma glucose levels, insulin levels and measures of obesity (P-values ranging from 0.046 to 8.4 x 10(-6)). Extending cladistic models to the study of myocardial infarction and Alzheimer disease, significant associations were observed with greater effect sizes than those typically obtained in large-scale meta-analyses based on the Alu indel. Population frequencies of ACE genotypes were also found to change with age, congruent with previous data suggesting effects upon longevity. Clade models consistently outperformed those based upon single markers, reinforcing the importance of taking into consideration the possible confounding effects of allelic heterogeneity in this genomic region. Utilizing computational tools, potential functional variants are highlighted that may underlie phenotypic variability, which is discussed along with the broader implications these results may have for studies attempting to link variation in ACE to human disease.

  2. SIGACE Code for Generating High-Temperature ACE Files; Validation and Benchmarking

    SciTech Connect

    Sharma, Amit R.; Ganesan, S.; Trkov, A.

    2005-05-24

    A code named SIGACE has been developed as a tool for MCNP users within the scope of a research contract awarded by the Nuclear Data Section of the International Atomic Energy Agency (IAEA) (Ref: 302-F4-IND-11566 B5-IND-29641). A new recipe has been evolved for generating high-temperature ACE files for use with the MCNP code. Under this scheme the low-temperature ACE file is first converted to an ENDF formatted file using the ACELST code and then Doppler broadened, essentially limited to the data in the resolved resonance region, to any desired higher temperature using SIGMA1. The SIGACE code then generates a high-temperature ACE file for use with the MCNP code. A thinning routine has also been introduced in the SIGACE code for reducing the size of the ACE files. The SIGACE code and the recipe for generating ACE files at higher temperatures has been applied to the SEFOR fast reactor benchmark problem (sodium-cooled fast reactor benchmark described in ENDF-202/BNL-19302, 1974 document). The calculated Doppler coefficient is in good agreement with the experimental value. A similar calculation using ACE files generated directly with the NJOY system also agrees with our SIGACE computed results. The SIGACE code and the recipe is further applied to study the numerical benchmark configuration of selected idealized PWR pin cell configurations with five different fuel enrichments as reported by Mosteller and Eisenhart. The SIGACE code that has been tested with several FENDL/MC files will be available, free of cost, upon request, from the Nuclear Data Section of the IAEA.

  3. Adaptive coherence estimator (ACE) for explosive hazard detection using wideband electromagnetic induction (WEMI)

    NASA Astrophysics Data System (ADS)

    Alvey, Brendan; Zare, Alina; Cook, Matthew; Ho, Dominic K. C.

    2016-05-01

    The adaptive coherence estimator (ACE) estimates the squared cosine of the angle between a known target vector and a sample vector in a transformed coordinate space. The space is transformed according to an estimation of the background statistics, which directly effects the performance of the statistic as a target detector. In this paper, the ACE detection statistic is used to detect buried explosive hazards with data from a Wideband Electromagnetic Induction (WEMI) sensor. Target signatures are based on a dictionary defined using a Discrete Spectrum of Relaxation Frequencies (DSRF) model. Results are summarized as a receiver operator curve (ROC) and compared to other leading methods.

  4. Experimental demonstration of a classical approach for flexible structure control - The ACES testbed

    NASA Technical Reports Server (NTRS)

    Wie, Bong

    1991-01-01

    This paper describes the results of an active structural control experiment performed for the Advanced Control Evaluation for Structures (ACES) testbed at NASA-Marshall as part of the NASA Control-Structure Interaction Guest Investigator Program. The experimental results successfully demonstrate the effectiveness of a 'dipole' concept for line-of-sight control of a pointing system mounted on a flexible structure. The simplicity and effectiveness of a classical 'single-loop-at-a-time' approach for the active structural control design for a complex structure, such as the ACES testbed, are demonstrated.

  5. VizieR Online Data Catalog: SP_Ace derived data from stellar spectra (Boeche+, 2016)

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Grebel, E. K.

    2015-11-01

    SP_Ace is a software designed to derive stellar parameters and elemental abundances from stellar spectra. In this tables we report the stellar parameters Teff, logg, [M/H], and chemical abundances [El/H] for ten elements derived with the software SP_Ace from spectra of the ELODIE spectral library (Prugniel et al., 2007, Cat. III/251), the benchmark stars (Jofre et al., 2014, Cat. J/A+A/564/A133), and the S4N library (Allende Prieto et al., 2004, Cat. J/A+A/420/183) degraded to spectral resolution R=12,000 and S/N=100. (3 data files).

  6. Comparison of ARAC calculations with surface and airborne measurements for the ACE field trials

    SciTech Connect

    Foster, K.T.; Pobanz, B.

    1996-11-01

    These Atmospheric Collection Equipment (ACE) trials were sponsored by the Air Force Technical Applications Center (AFTAC) for the purpose of investigating specific tracer monitoring methods and equipment. Three different tracers (sulfur hexafluoride and two particulate tracers) were released simultaneously for each experiment. This document provides a brief summary of the sulfur hexafluoride modeling results for three of the remaining four ACE trials (the tracer plume from the fifth trial was not located by the monitoring teams and provided no tracer measurements for model comparison). This summary is followed by a discussion of model results for the two particulate tracers which were co-released with sulfur hexafluoride.

  7. Kidney scintigraphy after ACE inhibition in the diagnosis of renovascular hypertension

    SciTech Connect

    Ghione, S.; Fommei, E.; Palombo, C.; Giaconi, S.; Mantovanelli, A.; Ragazzini, A.; Palla, L.

    1986-01-01

    Suppression of the renin-angiotensin system (RAS) by angiotensin converting enzyme (ACE) inhibition may induce renal failure in patients with bilateral renal artery stenosis. Recent scintigraphic studies with the glomerular tracer technetium-99m-diethylenetriaminepenta-acetate (99m-Tc DTPA) indicate that in patients with unilateral renal artery stenosis, glomerular filtration rate (GFR) may be markedly reduced in the affected kidney after inhibition of ACE. This finding reflects the important role of the RAS in maintaining GFR (by increasing postglomerular resistance) in states of low renal perfusion pressure. Preliminary observations suggest that this scintigraphic test might be useful in the detection of renovascular hypertension.

  8. Angiotensin-converting enzyme (ACE-I/D) polymorphism frequency in Brazilian soccer players.

    PubMed

    Coelho, Daniel Barbosa; Pimenta, Eduardo; Rosse, Izinara Cruz; Veneroso, Christiano; Pussieldi, Guilherme; Becker, Lenice Kapes; Carvalho, Maria-Raquel; Silami-Garcia, Emerson

    2016-06-01

    This study aimed to analyze the angiotensin-converting enzyme (ACE-I/D) allelic and genotypic frequencies in Brazilian soccer players of different ages. The study group comprised 353 players from first-division clubs in the under (U)-14, U-15, U-17, U-20, and professional categories. The allelic and genotypic frequencies did not differ significantly in any of the categories between the group of players and the control group. This was the first study of ACE-I/D polymorphism in Brazilian soccer players. PMID:27232187

  9. BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Momordica charantia is a perennial plant with reported health benefits. BG-4, a novel peptide from Momordica charantia, was isolated, purified and characterized. The trypsin inhibitory activity of BG-4 is 8.6 times higher than purified soybean trypsin inhibitor. The high trypsin inhibitory activity ...

  10. Dipeptidase-inactivated tACE action in vivo: selective inhibition of sperm-zona pellucida binding in the mouse.

    PubMed

    Deguchi, Eishi; Tani, Taeko; Watanabe, Hitomi; Yamada, Shuichi; Kondoh, Gen

    2007-11-01

    The angiotensin-converting enzyme (ACE) plays a crucial role in male fertilization and is a key regulator of blood pressure. Testicular ACE (tACE), the germinal specific isozyme expressed on different promoters, exclusively carries out the role of ACE in fertility, although the site and mode of action are not well known. To investigate the contribution of tACE in fertilization, we produced transgenic mouse lines carrying a dipeptidase-inactivated mutant. Although the transgenic mice showed normal blood pressure, kidney morphology, and fertility, reduced fertilization was observed after in vitro fertilization (IVF). The sperm-zona pellucida (ZP) binding was exclusively impaired in these lines in a manner similar to that observed in an Ace knockout mouse. The dipeptidase activity was reduced in epididymal ingredients but not in the testis. Furthermore, direct application of mutant protein did not suppress sperm-ZP binding of intact sperm during IVF, implying that the dipeptidase-inactivated mutant affects sperm modification in the epididymis for ZP binding. Our results indicate that the dipeptidase-inactivated tACE acts in vivo, suggesting that tACE contributes to fertilization as a dipeptidase at least in the epididymis.

  11. Does Education Plus Action Lead to Leadership on Climate? Preliminary Results from the ACE Leadership Development Longitudinal Survey Project

    NASA Astrophysics Data System (ADS)

    Anderson, R. K.; Qusba, L.; Lappe, M.; Flora, J. A.

    2014-12-01

    Through education and leadership development, Alliance for Climate Education (ACE) is building a generation of confident and capable youth driving climate solutions now throughout their lives. In 2011-12, a random sample of 2,800 high school students across the country was surveyed before and after seeing the ACE Assembly on climate science and solutions. The survey showed that the ACE Assembly resulted in a 27% increase in climate science knowledge scores, with 59% of students increasing their intentions to take action on climate and a doubling of the number of students talking to parents and peers about climate change. Students were also compared to the Global Warming's Six Americas classification of Americans' views on climate. Following the ACE Assembly, 60% of students were alarmed or concerned about climate change. Building off these results, in 2014 ACE began to assess the results of its leadership development program that follows the ACE Assembly. The goal of this survey project is to measure ACE's long-term impact on students' college and career pathways, civic engagement and climate action. Preliminary results show that a majority of students in ACE's leadership development program are alarmed about global warming and are having conversations about global warming. A majority of these students also feel confident in their ability to lead a climate-related campaign in their school and community. These students will continue to be surveyed through 2015.

  12. Validating the ACE Model for Evaluating Student Performance Using a Teaching-Learning Process Based on Computational Modeling Systems

    ERIC Educational Resources Information Center

    Louzada, Alexandre Neves; Elia, Marcos da Fonseca; Sampaio, Fábio Ferrentini; Vidal, Andre Luiz Pestana

    2014-01-01

    The aim of this work is to adapt and test, in a Brazilian public school, the ACE model proposed by Borkulo for evaluating student performance as a teaching-learning process based on computational modeling systems. The ACE model is based on different types of reasoning involving three dimensions. In addition to adapting the model and introducing…

  13. High-affinity Cyclic Peptide Matriptase Inhibitors*

    PubMed Central

    Quimbar, Pedro; Malik, Uru; Sommerhoff, Christian P.; Kaas, Quentin; Chan, Lai Y.; Huang, Yen-Hua; Grundhuber, Maresa; Dunse, Kerry; Craik, David J.; Anderson, Marilyn A.; Daly, Norelle L.

    2013-01-01

    The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase. PMID:23548907

  14. What is the impact of the ACE gene insertion/deletion (I/D) polymorphism on the clinical effectiveness and adverse events of ACE inhibitors? – Protocol of a systematic review

    PubMed Central

    Scharplatz, M; Puhan, MA; Steurer, J; Bachmann, LM

    2004-01-01

    Background The Angiotensin Converting Enzyme (ACE) insertion/deletion (I/D) polymorphism has received much attention in pharmacogenetic research because observed variations in response to ACE inhibitors might be associated with this polymorphism. Pharmacogenetic testing raises the hope to individualise ACE inhibitor therapy in order to optimise its effectiveness and to reduce adverse effects for genetically different subgroups. However, the extent of its effect modification in patients treated with ACE inhibitors remains inconclusive. Therefore our objective is to quantify the effect modification of the insertion/deletion polymorphism of the angiotensin converting enzyme gene on any surrogate and clinically relevant parameters in patients with cardiovascular diseases, diabetes, renal transplantation and/or renal failure. Methods Systematic Review. We will perform literature searches in six electronic databases to identify randomised controlled trials comparing the effectiveness and occurrence of adverse events of ACE inhibitor therapy against placebo or any active treatment stratified by the I/D gene polymorphism. In addition, authors of trials, experts in pharmacogenetics and pharmaceutical companies will be contacted for further published or unpublished data. Hand searching will be accomplished by reviewing the reference lists of all included studies. The methodological quality of included papers will be assessed. Data analyses will be performed in clinically and methodologically cogent subgroups. The results of the quantitative assessment will be pooled statistically where appropriate to produce an estimate of the differences in the effect of ACE inhibitors observed between the three ACE genotypes. Discussion This protocol describes a strategy to quantify the effect modification of the ACE polymorphism on ACE inhibitors in relevant clinical domains using meta-epidemiological research methods. The results may provide evidence for the usefulness of pharmacogenetic

  15. Antioxidant capacity and angiotensin I converting enzyme inhibitory activity of a melon concentrate rich in superoxide dismutase.

    PubMed

    Carillon, Julie; Del Rio, Daniele; Teissèdre, Pierre-Louis; Cristol, Jean-Paul; Lacan, Dominique; Rouanet, Jean-Max

    2012-12-01

    Antioxidant capacity and angiotensin 1-converting enzyme (ACE) inhibitory activity of a melon concentrate rich in superoxide dismutase (SOD-MC) were investigated in vitro. The total antioxidant capacity (TAC) was measured by the Trolox equivalent antioxidant capacity assay (TEAC), the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assay, and the ferric reducing antioxidant power assay (FRAP). The ability of the extract to scavenge three specific reactive oxygen species (superoxide radical anion (O(2)(-)), hydroxyl radical (HO()) and hydrogen peroxide (H(2)O(2))) was also investigated in order to better evaluate its antioxidant properties. Even if the measures of TAC were relatively low, results clearly established an antioxidant potential of SOD-MC that exhibited the highest radical-scavenging activity towards O(2)(-), with a IC(50) 12-fold lower than that of H(2)O(2) or HO(). This lets hypothesis that the antioxidant potential of SOD-MC could be mainly due to its high level of SOD. Moreover, for the first time, an ACE inhibitory activity of SOD-MC (IC(50)=2.4±0.1mg/mL) was demonstrated, showing that its use as a functional food ingredient with potential preventive benefits in the context of hypertension may have important public health implications and should be carefully considered.

  16. Angiotensin-converting enzyme inhibitory activity and antioxidant properties of Nepeta crassifolia Boiss & Buhse and Nepeta binaludensis Jamzad.

    PubMed

    Tundis, Rosa; Nadjafi, Farsad; Menichini, Francesco

    2013-04-01

    This article reports phytochemical and biological studies on Nepeta binaludensis and Nepeta crassifolia. Both species were investigated for their angiotensin-converting enzyme (ACE) inhibitory activity and antioxidant properties through three in vitro models [2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assay]. Aerial parts were extracted with methanol and partitioned between water and subsequently n-hexane, ethyl acetate and n-butanol. N. binaludensis methanol extract exerted significantly higher reducing power (1.9 μM Fe(II)/g) than did the positive control butylhydroxytoluene (63.2 μM Fe(II)/g) in FRAP assay. The highest DPPH radical scavenging activity was found for N. crassifolia, with IC50 values of 9.6 and 12.1 µg/mL for ethyl acetate and n-butanol fractions, respectively. n-Butanol fraction of both species showed the highest ACE inhibitory activity, with IC50 values of 59.3 and 81.7 µg/mL for N. binaludensis and N. crassifolia, respectively. Phytochemical investigations resulted in the isolation of ursolic acid, oleanolic acid, apigenin, luteolin and ixoroside. Apigenin-7-O-glucoside, 8-hydroxycirsimaritin and cirsimaritin were furthermore identified in N. crassifolia ethyl acetate-soluble fraction. Nepetanudoside B was isolated from the n-butanol fraction of N. binaludensis.

  17. Angiotensin-converting enzyme inhibitory activity and antioxidant properties of Nepeta crassifolia Boiss & Buhse and Nepeta binaludensis Jamzad.

    PubMed

    Tundis, Rosa; Nadjafi, Farsad; Menichini, Francesco

    2013-04-01

    This article reports phytochemical and biological studies on Nepeta binaludensis and Nepeta crassifolia. Both species were investigated for their angiotensin-converting enzyme (ACE) inhibitory activity and antioxidant properties through three in vitro models [2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assay]. Aerial parts were extracted with methanol and partitioned between water and subsequently n-hexane, ethyl acetate and n-butanol. N. binaludensis methanol extract exerted significantly higher reducing power (1.9 μM Fe(II)/g) than did the positive control butylhydroxytoluene (63.2 μM Fe(II)/g) in FRAP assay. The highest DPPH radical scavenging activity was found for N. crassifolia, with IC50 values of 9.6 and 12.1 µg/mL for ethyl acetate and n-butanol fractions, respectively. n-Butanol fraction of both species showed the highest ACE inhibitory activity, with IC50 values of 59.3 and 81.7 µg/mL for N. binaludensis and N. crassifolia, respectively. Phytochemical investigations resulted in the isolation of ursolic acid, oleanolic acid, apigenin, luteolin and ixoroside. Apigenin-7-O-glucoside, 8-hydroxycirsimaritin and cirsimaritin were furthermore identified in N. crassifolia ethyl acetate-soluble fraction. Nepetanudoside B was isolated from the n-butanol fraction of N. binaludensis. PMID:22693035

  18. Long Term Missions at the Sun-Earth Libration Point L1: ACE, SOHO, and WIND

    NASA Technical Reports Server (NTRS)

    Roberts, Craig E.

    2011-01-01

    Three heliophysics missions -- the Advanced Composition Explorer (ACE), Solar Heliospheric Observatory (SOHO), and the Global Geoscience WIND -- have been orbiting the Sun-Earth interior libration point L1 continuously since 1997, 1996, and 2004, respectively. ACE and WIND (both NASA missions) and SOHO (an ESA-NASA joint mission) are all operated from the NASA Goddard Space Flight Center (GSFC). While ACE and SOHO have been dedicated libration point orbiters since their launches, WIND has had also a remarkable 10-year career flying a deep-space, multiple lunar-flyby trajectory prior to 2004. That era featured 36 targeted lunar flybys with excursions to both L1 and L2 before its final insertion in L1 orbit. A figure depicts the orbits of the three spacecraft, showing projections of the orbits onto the orthographic planes of a solar rotating ecliptic frame of reference. The SOHO orbit is a quasi-periodic halo orbit, where the frequencies of the in-plane and out-of-plane motions are practically equal. Such an orbit is seen to repeat itself with a period of approximately 178 days. For ACE and WIND, the frequencies of the in-plane and out-of-plane motions are unequal, giving rise to the characteristic Lissajous motion. ACE's orbit is of moderately small amplitude, whereas WIND's orbit is a large-amplitude Lissajous of dimensions close to those of the SOHO halo orbit. As motion about the collinear points is inherently unstable, stationkeeping maneuvers are necessary to prevent orbital decay and eventual escape from the L1 region. Though the three spacecraft are dissimilar (SOHO is a 3-axis stabilized Sun pointer, WIND is a spin-stabilized ecliptic pole pointer, and ACE is also spin-stabilized with its spin axis maintained between 4 and 20 degrees of the Sun), the stationkeeping technique for the three is fundamentally the same. The technique consists of correcting the energy of the orbit via a delta-V directed parallel or anti-parallel to the Spacecraft-to-Sun line. SOHO