Science.gov

Sample records for ace science center

  1. Informational webinar for EPA STAR RFA on "Air, Climate and Energy (ACE) Centers: Science Supporting Solutions"

    EPA Science Inventory

    The purpose of this webinar presentation is to discuss the application process and required elements for the Air, Climate and Energy (ACE) Centers: Science Supporting Solutions RFA. EPA is seeking research on the development of sound science to systematically inform policy makers...

  2. Enhancing the ACE control center for the multiple uses of spacecraft integration and test and mission and science operations

    NASA Technical Reports Server (NTRS)

    Snow, Frank; Garrard, Thomas L.; Steck, Jane A.; Maury, Jesse L.

    1996-01-01

    In relation to the mandate to reduce space mission development and operations costs, the advanced composition explorer (ACE) will use a version of the Transportable Payload Operations Control Center (TPOCC) for its mission operations. It was determined during the phase B of the ACE project that a potential existed for substantial savings if the adaptation of the TPOCC for the ACE mission operations could include its adaptation for use as the primary component in the ground support equipment for the integration and testing of the ACE spacecraft, and for use as the basic component in the ACE science center. The implementation of this approach required the enhancement of the TPOCC requirements, changes in the development schedule and changes in the allocation and activities of the personnel responsible for the development of ACE operations. It is discussed how these issues, and the problems that arose, were addressed.

  3. ACE

    NASA Technical Reports Server (NTRS)

    Lumia, R.

    1999-01-01

    This document describes the progress made during the fourth year of the Center for Autonomous Control Engineering (ACE). We currently support 30 graduate students, 52 undergraduate students, 9 faculty members, and 4 staff members. Progress will be divided into two categories. The first category explores progress for ACE in general. The second describes the results of each specific project supported within ACE.

  4. Advanced Colloids Experiment (ACE) Science Overview

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; Yunker, Peter; Lohr, Matthew; Gratale, Matthew; Lynch, Matthew; Kodger, Thomas; Piazza, Roberto; Buzzaccaro, Stefano; Cipelletti, Luca; Schall, Peter; Veen, Sandra; Wegdam, Gerhard; Lee, Chand-Soo; Choi, Chang-Hyung; Paul, Anna-Lisa; Ferl, Robert J.; Cohen, Jacob

    2013-01-01

    accessible with the availability of the Light Microscopy Module (LMM) on ISS. To meet these goals, the ACE experiment is being built-up in stages, with the availability of confocal microscopy being the ultimate objective. Supported by NASAs Physical Sciences Research Program, ESAESTEC, and the authors respective governments.

  5. Science Center and Attitude

    ERIC Educational Resources Information Center

    Daneshamooz, Saeed; Alamolhodaei, Hassan; Darvishian, Saeed; Daneshamooz, Soniya

    2013-01-01

    The project team gathered data with the assistance of Recreational and Cultural Organization of Mashhad Municipality, Organization of Mashhad Municipality and Science and Astronomy Science Center of Mashhad Municipality, Khorasan Razavi, Islamic Republic of Iran. This paper discusses the effect of science center on attitude of students who visit…

  6. Forensic Science Center

    SciTech Connect

    Andresen, B.; Grant, P.M.

    1994-03-01

    Since 1991, the Laboratory's Forensic Science Center has focused a comprehensive range of analytical expertise on issues related to non proliferation, counterterrorism, and domestic law enforcement. During this short period, LLNL's singular combination of human and technological resources has made the Center among the best of its kind in the world. The Forensic Science Center houses a variety of state-of-the-art analytical tools ranging from gas chromatograph/mass spectrometers to ultratrace DNA detection techniques. The Center's multidisciplinary staff provides expertise in organic and inorganic analytical chemistry, nuclear science, biochemistry, and genetics useful for supporting law enforcement and for verifying compliance with international treaties and agreements.

  7. Science Center Goes Underground

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    A unique underground science center at Bluffton College, designed to save energy and preserve trees, rolling landscape, and other environmental features of the campus, is under construction in Bluffton, Ohio. (Author)

  8. Science and Technology Centers.

    ERIC Educational Resources Information Center

    Danilov, Victor J.

    Science and technology centers, which are relative newcomers to the museum field, differ from traditional museums in a number of respects. They are concerned with furthering public understanding and appreciation of the physical and biological sciences, engineering, technology, and health and seek to accomplish this goal by making museums both…

  9. Simple Machine Science Centers

    ERIC Educational Resources Information Center

    Chessin, Debby

    2007-01-01

    Science centers can engage students; accommodate different learning styles and individual interests; help students become independent and confident learners; and encourage social skills among students. In this article, the author worked with third-grade students as they completed activities at learning centers during a week-long unit on simple…

  10. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  11. The Altus Cumulus Electrification Study (ACES): A UAV-Based Science Demonstration

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Croskey, C. L.; Desch, M. D.; Farrell, W. M.; Goldberg, R. A.; Houser, J. G.; Kim, H. S.; Mach, D. M.; Mitchell, J. D.; Stoneburner, J. C.

    2003-01-01

    The Altus Cumulus Electrification Study (ACES) is an unmanned aerial vehicle (UAV)- based project that investigated thunderstorms in the vicinity of the Florida Everglades in August 2002. ACES was conducted to investigate storm electrical activity and its relationship to storm morphology, and to validate satellite-based lightning measurements. In addition, as part of the NASA sponsored UAV-based science demonstration program, this project provided a scientifically useful demonstration of the utility and promise of UAV platforms for Earth science and applications observations. ACES employed the Altus II aircraft, built by General Atomics - Aeronautical Systems, Inc. Key science objectives simultaneously addressed by ACES are to: (1) investigate lightning-storm relationships, (2) study storm electrical budgets, and provide Lightning Imaging Sensor validation. The ACES payload included electrical, magnetic, and optical sensors to remotely characterize the lightning activity and the electrical environment within and around thunderstorms. ACES contributed important electrical and optical measurements not available from other sources. Also, the high altitude vantage point of the UAV observing platform (up to 55,000 feet) provided cloud-top perspective. By taking advantage of its slow flight speed (70 to 100 knots), long endurance, and high altitude flight, the Altus was flown near, and when possible, over (but never into) thunderstorms for long periods of time that allowed investigations to be conducted over entire storm life cycles. An innovative real time weather system was used to identify and vector the aircraft to selected thunderstorms and safely fly around these storms, while, at the same time monitor the weather near our base of operations. In addition, concurrent ground-based observations that included radar (Miami and Key West WSRBD, NASA NPOL), satellite imagery, and lightning (NALDN and Los Alamos EDOT) enable the UAV measurements to be more completely

  12. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  13. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  14. Interferometry science center

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.

    2002-01-01

    The Interferometry Science Center (ISC) is operated jointly by Caltech and JPL and is part of NASA's Navigator Program. The ISC has been created to facilitate the timely and successful execution of scientific investigations within the Navigator program, particularly those that rely on observations from NASA's interferometer projects. Currently, ISC is expected to provide full life cycle support for the Keck Interferometer, the Starlight mission, the Space Interferometry Mission, and the Terrestrial Planet Finder Mission. The nature and goals of ISc will be described.

  15. Design and implementation of robust decentralized control laws for the ACES structure at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Phillips, Douglas J.; Hyland, David C.

    1990-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line-of-sight accuracy. In order for these concepts to become operational it is imperative that the benefits of active vibration control be practically demonstrated in ground based experiments. The results of the experiment successfully demonstrate active vibration control for a flexible structure. The testbed is the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues.

  16. The ACEE program and basic composites research at Langley Research Center (1975 to 1986): Summary and bibliography

    NASA Technical Reports Server (NTRS)

    Dow, Marvin B.

    1987-01-01

    Composites research conducted at the Langley Research Center during the period from 1975 to 1986 is described, and an annotated bibliography of over 600 documents (with their abstracts) is presented. The research includes Langley basic technology and the composite primary structures element of the NASA Aircraft Energy Efficiency (ACEE) Program. The basic technology documents cited in the bibliography are grouped according to the research activity such as design and analysis, fatigue and fracture, and damage tolerance. The ACEE documents cover development of composite structures for transport aircraft.

  17. Supernova Science Center

    SciTech Connect

    S. E. Woosley

    2008-05-05

    The Supernova Science Center (SNSC) was founded in 2001 to carry out theoretical and computational research leading to a better understanding of supernovae and related transients. The SNSC, a four-institutional collaboration, included scientists from LANL, LLNL, the University of Arizona (UA), and the University of California at Santa Cruz (UCSC). Intitially, the SNSC was funded for three years of operation, but in 2004 an opportunity was provided to submit a renewal proposal for two years. That proposal was funded and subsequently, at UCSC, a one year no-cost extension was granted. The total operational time of the SNSC was thus July 15, 2001 - July 15, 2007. This document summarizes the research and findings of the SNSC and provides a cummulative publication list.

  18. ROSAT Science Data Center

    NASA Technical Reports Server (NTRS)

    Murray, Stephen; Pisarski, Ryszard L. (Technical Monitor)

    2001-01-01

    This report provides a summary of the Smithsonian Astrophysical Observatory (SAO) ROSAT SCIENCE DATA CENTER (RSDC) activities for the recent years of our contract. Details have already been reported in the monthly reports. The SAO was responsible for the High Resolution Imager (HRI) detector on ROSAT. We also provided and supported the HRI standard analysis software used in the pipeline processing (SASS). Working with our colleagues at the Max Planck in Garching Germany (MPE), we fixed bugs and provided enhancements. The last major effort in this area was the port from VMS/VAX to VMS/ALPHA architecture. In 1998, a timing bug was found in the HRI standard processing system which degraded the positional accuracy because events accessed incorrect aspect solutions. The bug was fixed and we developed off-line correction routines and provided them to the community. The Post Reduction Off-line Software (PROS) package was developed by SAO and runs in the IRAF environment. Although in recent years PROS was not a contractual responsibility of the RSDC, we continued to maintain the system and provided new capabilities such as the ability to deal with simulated AXAF data in preparation for the NASA call for proposals for Chandra. Our most recent activities in this area included the debugging necessary for newer versions of IRAF which broke some of our software. At SAO we have an operating version of PROS and hope to release a patch even though almost all functionality that was lost was subsequently recovered via an IRAF patch (i.e. most of our problems were caused by an IRAF bug).

  19. Science and Literacy Centers

    ERIC Educational Resources Information Center

    Van Meeteren, Beth Dykstra; Escalada, Lawrence T.

    2010-01-01

    In recent years, science has taken a backseat to reading and mathematics in many primary classrooms. Imaginative teachers have coped with this loss of science time by creatively integrating science topics into reading instructional materials (Douglas, Klentschy, and Worth 2006). In this article, the author describes an effective physical science…

  20. Natural Science Centers: Directory.

    ERIC Educational Resources Information Center

    Natural Science for Youth Foundation, Roswell, GA.

    A nature center is defined as an organized and permanent nonprofit institution which is essentially educational, scientific, and cultural in purpose with professional staff, and open to the public on some regular schedule. A nature center manages and interprets its lands, native plants and animals and facilities to promote an understanding of…

  1. Science: The Neglected Learning Center.

    ERIC Educational Resources Information Center

    Diffily, Deborah

    2001-01-01

    Explores how teachers and caregivers can incorporate science activities in learning centers. Suggestions include rethinking what science means in early childhood programs, offering interesting materials for exploration, and following children's interests. Presents activity ideas and materials lists for chemistry in the water table, fruit and…

  2. The ASI Science Data Center

    NASA Astrophysics Data System (ADS)

    Gendre, B.; Giommi, P.

    2010-12-01

    The ASI Science Data Center (ASDC, www.asdc.asi.it), a facility of the Italian Space Agency (ASI) is a multi-mission science operations, data processing and data archiving center that provides support to several scientific space missions. At the moment the ASDC has significant responsibilities for a number of high-energy astronomy/astroparticle satellites (e.g. Swift, AGILE, Fermi, NuSTAR and AMS) and supports at different level other missions like, Herschel and Planck. The ASDC was established in 2000 based on the experience built with the management of the BeppoSAX Science Data Center. It is located at the ESA site of ESRIN in Frascati, near Rome (Italy).

  3. Remote Science Operation Center research

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1986-01-01

    Progress in the following areas is discussed: the design, planning and operation of a remote science payload operations control center; design and planning of a data link via satellite; and the design and prototyping of an advanced workstation environment for multi-media (3-D computer aided design/computer aided engineering, voice, video, text) communications and operations.

  4. E-Learning and Virtual Science Centers

    ERIC Educational Resources Information Center

    Hin, Leo Tan Wee, Ed.; Subramaniam, R., Ed.

    2005-01-01

    "E-Learning and Virtual Science Centers" addresses an aspect of Web-based education that has not attracted sufficient attention in the international research literature--that of virtual science centers, the cyberspace annex of traditional science centers. It is the first book to be published on the rapidly advancing field of science education.…

  5. The Japanese science education centers.

    PubMed

    Glass, B

    1966-10-14

    These six Japanese science education centers signify a sweeping reform of elementary and secondary school science teaching. They achieve their striking results because they are established on a permanent, local basis and are supported mainly by the local boards of education. They have avoided control by pedagogues and specialists in "education." Instead, they are operated by trained scientists and experienced school teachers who work together to devise programs specially suited to the needs of their teachers. With small and practicable steps, the teachers improve their understanding of methods which they can readily test in their own classrooms rooms and laboratories. The laboratory equipment in the science education centers is only slightly superior to that which the teachers have in their own schools, but superior enough to make them desire to improve their own facilities. Major facilities, such as x-ray machines, electron microscopes, telescopes (15-cm), and machine shops, as well as good working collections of minerals and fossils, and adequate greenhouses, permit the teachers to work with more expensive equipment, to gain a firsthand knowledge of its operation, and to bring groups of students to the center to observe what such instruments make possible. The use of American experimental course content improvement programs is widespread. Every science education center I visited is using PSSC, CHEMS, CBA, BSCS, or ESCP materials and studying the philosophy of these programs. Yet no center is entirely dependent on these programs, but uses them critically to supplement and improve its own courses. The emphasis is on good laboratory and field teaching as a basis for understanding scientific methods and concepts. Science as investigation and inquiry, instead of treatment solely as an authoritative body of facts, is coming into its own. The few defects of the science education centers of Japan inhere in the educational situation itself. The centers are at present

  6. AXAF Science Center: User Support

    NASA Astrophysics Data System (ADS)

    Wilkes, B. J.

    1997-05-01

    The purpose of the AXAF Science Center (ASC) is to provide the support required by the science community to realize fully the potential of the Advanced X-ray Astrophysics Facility (AXAF). We maintain expertise on all aspects of the AXAF mission from submitting a proposal to the receipt and analysis of data by a guest observer. We interface with the observers and the operations center (co-located in Cambridge) in the planning and scheduling of observations and with the instrument teams on the calibration and status of the detectors. We will develop, export and support portable analysis software to allow users to analyse their own data. The User Support Group is the main interface between the ASC and the astronomical community. The facilities provided by the ASC to help potential guest observers will be reviewed in this presentation, including how to: learn about the satellite and instruments, plan observations, access our help-desk.

  7. The Northeast Climate Science Center

    NASA Astrophysics Data System (ADS)

    Ratnaswamy, M. J.; Palmer, R. N.; Morelli, T.; Staudinger, M.; Holland, A. R.

    2013-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. Recognizing the critical threats, unique climate challenges, and expansive and diverse nature of the northeast region, the University of Massachusetts Amherst, College of Menominee Nation, Columbia University, Marine Biological Laboratory, University of Minnesota, University of Missouri Columbia, and University of Wisconsin-Madison have formed a consortium to host the NE CSC. This partnership with the U.S. Geological Survey climate science center network provides wide-reaching expertise, resources, and established professional collaborations in both climate science and natural and cultural resources management. This interdisciplinary approach is needed for successfully meeting the regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach throughout the northeast region. Thus, the NE CSC conducts research, both through its general funds and its annual competitive award process, that responds to the needs of natural resource management partners that exist, in part or whole, within the NE CSC bounds. This domain includes the North Atlantic, Upper Midwest and Great Lakes, Eastern Tallgrass and Big Rivers, and Appalachian Landscape Conservation Cooperatives (LCCs), among other management stakeholders. For example, researchers are developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; conducting a Designing Sustainable Landscapes project to assess the capability of current and potential future landscapes in the Northeast to provide integral ecosystems and suitable habitat for a suite of

  8. The MAVEN Science Data Center

    NASA Astrophysics Data System (ADS)

    De Wolfe, A. W.; Dorey, M.; Larsen, K. W.; Christofferson, R.; Lindholm, D. M.

    2014-12-01

    The Mars Atmospheric and Volatile Evolution (MAVEN) mission will enter Mars orbit in September 2014. MAVEN's science data is hosted at the Science Data Center at the Laboratory for Atmospheric & Space Physics (LASP), where we use many different technologies to provide the MAVEN team with access to the data while keeping the data secure. The internal SDC software is written in Python, and provides data access to the team via Flask web services. Our website contains applications built with Highcharts, AngularJS, D3.js, and PostgreSQL to access and visualize data and metadata, allowing the team to preview the science data, see variations in data volume over the mission, search a timeline of mission events and perform complex queries to discover science data. In case of emergency, our data is backed up locally and archived in Amazon Glacier. This presentation will summarize the benefits of the various technologies we've chosen and the lessons we've learned along the way.

  9. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  10. The LIGO Open Science Center

    NASA Astrophysics Data System (ADS)

    Vallisneri, Michele; Kanner, Jonah; Williams, Roy; Weinstein, Alan; Stephens, Branson

    2015-05-01

    The LIGO Open Science Center (LOSC) fulfills LIGO's commitment to release, archive, and serve LIGO data in a broadly accessible way to the scientific community and to the public, and to provide the information and tools necessary to understand and use the data. In August 2014, the LOSC published the full dataset from Initial LIGO's “S5” run at design sensitivity, the first such large-scale release and a valuable testbed to explore the use of LIGO data by non-LIGO researchers and by the public, and to help teach gravitational-wave data analysis to students across the world. In addition to serving the S5 data, the LOSC web portal (losc.ligo.org) now offers documentation, data-location and data-quality queries, tutorials and example code, and more. We review the mission and plans of the LOSC, focusing on the S5 data release.

  11. About the Atmospheric Science Data Center (ASDC)

    Atmospheric Science Data Center

    2016-06-03

    The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for the processing, archival, and distribution of NASA Earth science data in the areas of radiation budget, clouds, aerosols, and ... Earth Observing System (EOS) as part of NASA's Earth Science enterprise and the U.S. Global Change Research Program , and is ...

  12. Teaching Science. A Lesson Centering on Gravity.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1995-01-01

    Presents activities to teach students the science concept known variably as center of gravity, center of mass, center of balance, or balance point. Gives examples of activities for the exploration phase of study, concept introduction phase, and concept application phase. (TJQ)

  13. Joint Interdisciplinary Earth Science Information Center

    NASA Technical Reports Server (NTRS)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  14. Fort Collins Science Center: Invasive Species Science

    USGS Publications Warehouse

    Stohlgren, Tom

    2004-01-01

    FORT is also the administrative home of the National Institute of Invasive Species Science, a growing consortium of partnerships between government and private organizations established by the U.S. Geological Survey (USGS) and its many cooperators. The Institute was formed to develop cooperative approaches for invasive species science that meet the urgent needs of land managers and the public. Its mission is to work with others to coordinate data and research from many sources to predict and reduce the effects of harmful nonnative plants, animals, and diseases in natural areas and throughout the United States, with a strategic approach to information management, research, modeling, technical assistance, and outreach. The Institute research team will develop local-, regional-, and national- scale maps of invasive species and identify priority invasive species, vulnerable habitats, and pathways of invasion. County-level and point data on occurrence will be linked to plot-level and site-level information on species abundance and spread. FORT scientists and Institute partners are working to integrate remote sensing data and GIS-based predictive models to track the spread of invasive species across the country. This information will be linked to control and restoration efforts to evaluate their cost-effectiveness. Understanding both successes and failures will advance the science of invasive species containment and control as well as restoration of habitats and native biodiversity.

  15. Center for Aeronautics and Space Information Sciences

    NASA Technical Reports Server (NTRS)

    Flynn, Michael J.

    1992-01-01

    This report summarizes the research done during 1991/92 under the Center for Aeronautics and Space Information Science (CASIS) program. The topics covered are computer architecture, networking, and neural nets.

  16. The Stocker AstroScience Center at Florida International University

    NASA Astrophysics Data System (ADS)

    Webb, James R.

    2014-01-01

    The new Stocker AstroScience Center located on the MMC campus at Florida International University in Miami Florida represents a unique facility for STEM education that arose from a combination of private, State and university funding. The building, completed in the fall of 2013, contains some unique spaces designed not only to educate, but also to inspire students interested in science and space exploration. The observatory consists of a 4-story building (3 floors) with a 24” ACE automated telescope in an Ash dome, and an observing platform above surrounding buildings. Some of the unique features of the observatory include an entrance/exhibition hall with a 6-ft glass tile floor mural linking the Florida climate to space travel, a state-of-the art telescope control that looks like a starship bridge, and displays such as “Music from the universe”. The observatory will also be the focus of our extensive public outreach program that is entering its 20 year.

  17. FDP - CENTER FOR ENVIRONMENTAL SCIENCE

    EPA Science Inventory

    The suite of instruments that supported the research described here, collectively called the “Urban Atmosphere Observatory” (UAO), was located on the roof of the Geophysical Science Building on the campus of the University of Chicago. The following sensors operated at UAO dur...

  18. The Goddard Earth Sciences and Technology Center (GEST Center)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following is a technical report of the progress made under Cooperative Agreement NCC5494, the Goddard Earth Sciences and Technology Center (GEST). The period covered by this report is October 1, 2001 through December 31, 2001. GEST is a consortium of scientists and engineers, led by the University of Maryland, Baltimore County (UMBC), to conduct scientific research in Earth and information sciences and related technologies in collaboration with the NASA Goddard Space Flight Center (GSFC). GEST was established through a cooperative agreement signed May 11, 2000, following a competitive procurement process initiated by GSFC.

  19. Extreme Ultraviolet Explorer Science Operation Center

    NASA Technical Reports Server (NTRS)

    Wong, G. S.; Kronberg, F. A.; Meriwether, H. D.; Wong, L. S.; Grassi, C. L.

    1993-01-01

    The EUVE Science Operations Center (ESOC) is a satellite payload operations center for the Extreme Ultraviolet Explorer project, located on the Berkeley campus of the University of California. The ESOC has the primary responsibility for commanding the EUVE telescopes and monitoring their telemetry. The ESOC is one of a very few university-based satellite operations facilities operating with NASA. This article describes the history, operation, and advantages of the ESOC as an on-campus operations center.

  20. NAS Panel endorses science center concept

    NASA Astrophysics Data System (ADS)

    Science and technology centers, as proposed by President Ronald Reagan in his January 1987 State of the Union message, could make “significant contributions to science and to the nation's economic competitiveness,” according to a new report by a National Academy of Sciences (NAS) panel. What will be necessary to realize these contributions, the panel cautioned, are proper management, adequate resources, and, “above all, the selection of programs for which the centers are the most effective form of organization.”NSF plans to support science and technology centers, beginning October 1, 1988, which is the start of fiscal year 1988. NSF requested guidance from the NAS panel in implementing the program. Although other government agencies will participate in the program, NSF will play the primary role.

  1. The GLAST LAT Instrument Science Operations Center

    NASA Astrophysics Data System (ADS)

    Cameron, Robert A.; Silva, E. do Couto e.; Dubois, R.; LAT ISOC, GLAST

    2006-09-01

    Operations support and science data processing for the Large Area Telescope (LAT) instrument on the Gamma-ray Large Area Space Telescope (GLAST) will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in cooperation with other GLAST mission ground system elements and supports the science activities of the LAT collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command sequences for the LAT, maintaining and updating embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the LAT configuration and calibration, and applying event reconstruction processing to downlinked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process the large volume of LAT event data and generate science products to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at GSFC. Science operations in the ISOC will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources. We describe the use of collaboration-wide data challenges to test and exercise LAT data processing before launch.

  2. The GLAST LAT Instrument Science Operations Center

    NASA Astrophysics Data System (ADS)

    Cameron, Robert A.; LAT ISOC, GLAST

    2006-12-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. The major science instrument on GLAST is the Large Area Telescope (LAT). Operations support and science data processing for the LAT instrument on GLAST will be performed by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in cooperation with other GLAST mission ground system elements and supports the science research activities of the LAT collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining and updating embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configration of the LAT and its calibration, and applying event reconstruction processing to downlinked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process the large volume of LAT event data and generate science products to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at GSFC. Science operations in the ISOC will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources. We describe the use of collaboration-wide data challenges and service challenges to test and exercise LAT data processing and science operations before launch. This work is supported by Stanford University and the Stanford Linear Accelerator Center (SLAC) under DoE contract number DE-AC03-76SFO0515. Non-US sources of funding also support the efforts of GLAST LAT collaborators in France, Italy, Japan, and Sweden.

  3. Molecular Science Research Center 1992 annual report

    SciTech Connect

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  4. Science for What Public? Addressing Equity in American Science Museums and Science Centers

    ERIC Educational Resources Information Center

    Feinstein, Noah Weeth; Meshoulam, David

    2014-01-01

    Science museums and science centers exist (in large part) to bring science to the public. But what public do they serve? The challenge of equity is embodied by the gulf that separates a museum's actual public and the more diverse publics that comprise our society. Yet despite growing scholarly interest in museums and science centers, few…

  5. The GLAST LAT Instrument Science Operations Center

    NASA Astrophysics Data System (ADS)

    Cameron, Robert A.

    2007-07-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. Operations support and science data processing for the Large Area Telescope (LAT) instrument on GLAST will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in conjunction with other GLAST mission ground system elements and supports the research activities of the LAT scientific collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configuration of the LAT and its calibration, and applying event reconstruction processing to down-linked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process LAT event data and generate science products, to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at NASA/GSFC. ISOC science operations will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources.

  6. Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)

    NASA Technical Reports Server (NTRS)

    Qureshi, Rizwan Hamid; Hughes, Steven P.

    2014-01-01

    The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.

  7. Communications among data and science centers

    NASA Technical Reports Server (NTRS)

    Green, James L.

    1990-01-01

    The ability to electronically access and query the contents of remote computer archives is of singular importance in space and earth sciences; the present evaluation of such on-line information networks' development status foresees swift expansion of their data capabilities and complexity, in view of the volumes of data that will continue to be generated by NASA missions. The U.S.'s National Space Science Data Center (NSSDC) manages NASA's largest science computer network, the Space Physics Analysis Network; a comprehensive account is given of the structure of NSSDC international access through BITNET, and of connections to the NSSDC available in the Americas via the International X.25 network.

  8. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    SciTech Connect

    Nelson, Ronald Owen; Wender, Steve

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  9. Science Communication Fellowship Program at the Pacific Science Center

    NASA Astrophysics Data System (ADS)

    Harnett, E. M.; Vukajlovich, D.; Fitzwater, S.; Selvakumar, M.

    2011-12-01

    With funding from an NSF Informal Science Education grant, the Pacific Science Center in Seattle, Washington began the Science Communication Fellowship program in 2009 as part of the Portal to the Public initiative. The purpose of the Science Communication Fellowship program is to train scientists and engineers to communicate more effectively with the general public regarding their research and to assist with the development of hands-on activities that can be used by the scientists and engineers for outreach activities. The program came out of a collaboration to develop a model for effectively communicating current science research at informal science education organizations. The program model has undergone in-depth research and evaluation to assess its effectiveness and impact. To become Science Communication Fellows, researchers participate in four three-hour professional development sessions, where they learn communication techniques through role-playing and hands-on activities. The workshops are supplemented with additional one-on-one meetings with Science Center staff to help the new Fellows develop activities for use at outreach events. These activities are then used by the Fellows at public events that highlight current research taking place in the region. To date over 80 scientists and engineers have gone through the training sessions to become Science Communication Fellows. The Pacific Science Center holds approximately 12 events a year in which Fellows can facilitate their activity. Public programs range from small, monthly programs to large, annual Research Weekends. Funding for this program continues through support from NIH, IMLS, NSF, and NASA grants. For more information, please contact the current program administrator Dana Vukajlovich at DVukajlovich@pacsci.org.

  10. Goddard Earth Sciences and Technology Center (GEST)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This document summarizes the activities of the Goddard Earth Sciences and Technology Center (GEST), a consortium of scientists and engineers led by the University of Maryland, Baltimore County (UMBC), during the contract reporting period. Topics covered include: new programs, eligibility and selection criteria, Goddard Coastal Research Graduate Fellowship Program and staffing changes.

  11. Fernbank Science Center Forest Teacher's Guide-1967.

    ERIC Educational Resources Information Center

    Cherry, Jim; And Others

    This guide is designed primarily to familiarize teachers with the types of programs available through the Fernback Science Center. Instructional programs involving the use of the Fernbank Forest are outlined. Programs for secondary students include Plant Taxonomy, Field Ecology, Winter Taxonomy of Plants, and Climax Forest Succession. Elementary…

  12. ACE blood test

    MedlinePlus

    ... to help diagnose and monitor a disorder called sarcoidosis . People with sarcoidosis may have their ACE level tested regularly to ... normal ACE level may be a sign of sarcoidosis. ACE levels may rise or fall as sarcoidosis ...

  13. Students build glovebox at Space Science Center

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  14. The Lederman Science Center:. Past, Present, Future

    NASA Astrophysics Data System (ADS)

    Bardeen, Marjorie G.

    2012-08-01

    For 30 years, Fermilab has offered K-12 education programs, building bridges between the Lab and the community. The Lederman Science Center is our home. We host field trips and tours, visit schools, offer classes and professional development workshops, host special events, support internships and have a strong web presence. We develop programs based on identified needs, offer programs with peer-leaders and improve programs from participant feedback. For some we create interest; for others we build understanding and develop relationships, engaging participants in scientific exploration. We explain how we created the Center, its programs, and what the future holds.

  15. The Lederman Science Center: Past, Present, Future

    SciTech Connect

    Bardeen, Marjorie G.; /Fermilab

    2011-11-01

    For 30 years, Fermilab has offered K-12 education programs, building bridges between the Lab and the community. The Lederman Science Center is our home. We host field trips and tours, visit schools, offer classes and professional development workshops, host special events, support internships and have a strong web presence. We develop programs based on identified needs, offer programs with peer-leaders and improve programs from participant feedback. For some we create interest; for others we build understanding and develop relationships, engaging participants in scientific exploration. We explain how we created the Center, its programs, and what the future holds.

  16. Space Science and Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Space Science a t Marshall Space Flight Center is diverse and very interesting. It ranges from high energy astrophysics to astrobiology, from solar physics to space weather to dusty plasmas. I will present some of the more interesting investigations regarding auroral physics, what it takes to build a space camera, and laboratory investigations of dust. There will be time for questions and answers at the conclusion.

  17. Bioenergy Science Center KnowledgeBase

    DOE Data Explorer

    Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

    The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

  18. The Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Lowndes, Douglas

    2005-03-01

    The Center for Nanophase Materials Sciences (CNMS) located at Oak Ridge National Laboratory (ORNL) will be the first DOE Nanoscale Science Research Center to begin operation, with construction to be completed in April 2005 and initial operations in October 2005. The CNMS' scientific program has been developed through workshops with the national community, with the goal of creating a highly collaborative research environment to accelerate discovery and drive technological advances. Research at the CNMS is organized under seven Scientific Themes selected to address challenges to understanding and to exploit particular ORNL strengths (see http://cnms.ornl.govhttp://cnms.ornl.gov). These include extensive synthesis and characterization capabilities for soft, hard, nanostructured, magnetic and catalytic materials and their composites; neutron scattering at the Spallation Neutron Source and High Flux Isotope Reactor; computational nanoscience in the CNMS' Nanomaterials Theory Institute and utilizing facilities and expertise of the Center for Computational Sciences and the new Leadership Scientific Computing Facility at ORNL; a new CNMS Nanofabrication Research Laboratory; and a suite of unique and state-of-the-art instruments to be made reliably available to the national community for imaging, manipulation, and properties measurements on nanoscale materials in controlled environments. The new research facilities will be described together with the planned operation of the user research program, the latter illustrated by the current ``jump start'' user program that utilizes existing ORNL/CNMS facilities.

  19. The Altus Cumulus Electrification Study (ACES): A UAV-based Investigation of Thunderstorms

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Arnold, James E. (Technical Monitor)

    2001-01-01

    The Altus Cumulus Electrification Study (ACES) is a NASA-sponsored and -led science investigation that utilizes an uninhabited aerial vehicle (UAV) to investigate thunderstorms in the vicinity of the NASA Kennedy Space Center, Florida. As part of NASA's UAV-based science demonstration program, ACES will provide a scientifically useful demonstration of the utility and promise of UAV platforms for Earth science and applications observations. ACES will employ the Altus 11 aircraft, built by General Atomics-Aeronautical Systems, Inc. By taking advantage of its slow flight speed (70 to 100 knots), long endurance, and high-altitude flight (up to 55,000 feet), the Altus will be flown near, and when possible, above (but never into) thunderstorms for long periods of time, allowing investigations to be conducted over entire storm life cycles. Key science objectives simultaneously addressed by ACES are to: (1) investigate lightning-storm relationships, (2) study storm electrical budgets, and (3) provide Lightning Imaging Sensor validation. The ACES payload, already developed and flown on Altus, includes electrical, magnetic, and optical sensors to remotely characterize the lightning activity and the electrical environment within and around thunderstorms. The ACES field campaign will be conducted during July 2002 with a goal of performing 8 to 10 UAV flights. Each flight will require about 4 to 5 hours on station at altitudes from 40,000 ft to 55,000 ft. The ACES team is comprised of scientists from the NASA Marshall Space Flight Center and NASA Goddard Space Flight Centers partnered with General Atomics and IDEA, LLC.

  20. Technical activities 1980: Center for Materials Science

    NASA Astrophysics Data System (ADS)

    Wachtman, J. B., Jr.; Hoffman, J. D.

    1980-10-01

    Part of the National Measurement Laboratory, one of the principal laboratories comprising the National Bureau of Standards, the Materials Science Center is organized in six divisions, each having responsibility in different areas of materials science appropriate to the major classes of materials metals, polymers, and ceramics and glass. These Divisions vary in their balance between theory and experiments, between direct standards work and research, and in their orientation toward industrial and Government needs and the needs of other components of the scientific and technical community. Achievements reported relate to signal processing and imaging; fracture theory; conformational changes in polymers; chemical stability and corrosion; fracture deformation; polymer science and standards; metallurgy and alloys; ceramics, glass, and solid state; and reactor radiation.

  1. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  2. Understanding and Engagement in Places of Science Experience: Science Museums, Science Centers, Zoos, and Aquariums

    ERIC Educational Resources Information Center

    Schwan, Stephan; Grajal, Alejandro; Lewalter, Doris

    2014-01-01

    Science museums, science centers, zoos, and aquariums (MCZAs) constitute major settings of science learning with unique characteristics of informal science education. Emphasis will be given to the analysis of four specific characteristics of MCZAs that seem relevant for educational research and practice, namely, conditions of mixed motives and…

  3. JPL Earth Science Center Visualization Multitouch Table

    NASA Astrophysics Data System (ADS)

    Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.

    2014-12-01

    JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.

  4. Creating Communicative Scientists: A Collaboration between a Science Center, College and Science Industry

    ERIC Educational Resources Information Center

    Wadman, Melissa; Driscoll, Wendy deProphetis; Kurzawa, Elizabeth

    2009-01-01

    Many science centers have partnerships with schools, universities or scientific industry. This article will describe a unique collaborative project between Liberty Science Center, Wagner College, and Picatinny Center (a government research center) that has college interns working with and learning from science center staff and real scientists in a…

  5. Suborbital Science Program: Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  6. Molecular Science Research Center, 1991 annual report

    SciTech Connect

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  7. Plasma Display at the Liberty Science Center

    NASA Astrophysics Data System (ADS)

    Bruder, Dan; Gilligan, Nick; Tarman, Lisa; Ferris, Pamella; Morgan, James; Delooper, John; Zwicker, Andrew

    2009-11-01

    The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey -- New York City region. PPPL in collaboration with the LSC has had a display at the center since 2007 More than 1.5 million visitors have come to the museum since the plasma display has been introduced. The plasma display has had significant use during that time frame. During the summer of 2009 a redesigned plasma exhibit was created by a student teacher-team using the lessons learned from the existing exhibit. The display includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma and see how plasma can be used for fusion research. The goal of the display is to allow an individual to see a plasma and understand the potential benefits of fusion energy.

  8. A Computer Learning Center for Environmental Sciences

    NASA Technical Reports Server (NTRS)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  9. The AMPTE IRM Science Data Center

    NASA Technical Reports Server (NTRS)

    Bauer, O. H.; Baumjohann, W.; Edwards, J.; Graeter, K.; Hoefner, H.; Klecker, B.; Muehlhaueser, K.-H.; Drexler, M.; Guckenbiehl, F.; Hansen, C.

    1985-01-01

    The creation of artificial ion clouds is a major aspect of the AMPTE program. The IRM Science Data center supports real-time decision for a release with real-time scientific data processing and display including model calculations of ion trajectories. Additionally, survey plots and summary data records are generated in near real time thus allowing to start the data analysis as early as possible. For detailed analyses, interactive programs were developed so that physical parameters of all IRM experiments can be combined to produce common spectra or line plots.

  10. ACE inhibitors

    MedlinePlus

    ... Clinical Cardiology; American Heart Association Council on Nutrition, Physical Activity, and Metabolism; American Heart Association Interdisciplinary Council on Quality of Care and Outcomes Research. State of the science: promoting self-care in persons with heart failure: ...

  11. AGILE Data Center and AGILE science highlights

    NASA Astrophysics Data System (ADS)

    Pittori, C.

    2013-06-01

    AGILE is a scientific mission of the Italian Space Agency (ASI) with INFN, INAF e CIFS participation, devoted to gamma-ray astrophysics. The satellite is in orbit since April 23rd, 2007. Gamma-ray astrophysics above 100 MeV is an exciting field of astronomical sciences that has received a strong impulse in recent years. Despite the small size and budget, AGILE produced several important scientific results, among which the unexpected discovery of strong and rapid gamma-ray flares from the Crab Nebula. This discovery won to the AGILE PI and the AGILE Team the prestigious Bruno Rossi Prize for 2012, an international recognition in the field of high energy astrophysics. We present here the AGILE data center main activities, and we give an overview of the AGILE scientific highlights after 5 years of operations.

  12. Fort Collins Science Center Ecosystem Dynamics Branch

    USGS Publications Warehouse

    Wilson, Jim; Melcher, C.; Bowen, Z.

    2009-01-01

    Complex natural resource issues require understanding a web of interactions among ecosystem components that are (1) interdisciplinary, encompassing physical, chemical, and biological processes; (2) spatially complex, involving movements of animals, water, and airborne materials across a range of landscapes and jurisdictions; and (3) temporally complex, occurring over days, weeks, or years, sometimes involving response lags to alteration or exhibiting large natural variation. Scientists in the Ecosystem Dynamics Branch of the U.S. Geological Survey, Fort Collins Science Center, investigate a diversity of these complex natural resource questions at the landscape and systems levels. This Fact Sheet describes the work of the Ecosystems Dynamics Branch, which is focused on energy and land use, climate change and long-term integrated assessments, herbivore-ecosystem interactions, fire and post-fire restoration, and environmental flows and river restoration.

  13. The National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An overview is presented of the services offered by the National Space Science Data Center (NSSDC). The NSSDC was established by the National Aeronautics and Space Administration (NASA) over 20 years ago to be the long-term archive for data from its space missions. NSSDC's goal is to provide the research community with data and attendant services in the most efficient, economical, and useful manner possible now and in the future. The organization is dedicated to getting the most scientific value out of NASA's initial investment in its missions. Each service available to scientists through the world is discussed. Also a contact person is identified for each service in case more information in needed.

  14. Interior's Climate Science Centers: Focus or Fail

    NASA Astrophysics Data System (ADS)

    Udall, B.

    2012-12-01

    After a whirlwind two years of impressive and critical infrastructure building, the Department of Interior's Climate Science Centers are now in a position to either succeed or fail. The CSCs have a number of difficult structural problems including too many constituencies relative to the available resources, an uneasy relationship among many of the constituencies including the DOI agencies themselves, a need to do science in a new, difficult and non-traditional way, and a short timeframe to produce useful products. The CSCs have built a broad and impressive network of scientists and stakeholders. These entities include science providers of the universities and the USGS, and decision makers from the states, tribes, DOI land managers and other federal agencies and NGOs. Rather than try to support all of these constituencies the CSCs would be better served by refocusing on a core mission of supporting DOI climate related decision making. The CSCs were designed to service the climate science needs of DOI agencies, many of which lost their scientific capabilities in the 1990s due to a well-intentioned but ultimately harmful re-organization at DOI involving the now defunct National Biological Survey. Many of these agencies would like to have their own scientists, have an uneasy relationship with the nominal DOI science provider, the USGS, and don't communicate effectively among themselves. The CSCs must not succumb to pursuing science in either the traditional mode of the USGS or in the traditional mode of the universities, or worse, both of them. These scientific partners will need to be flexible, learn how to collaborate and should expect to see fewer resources. Useful CSC processes and outputs should start with the recommendations of the 2009 NRC Report Informing Decisions in a Changing Climate: (1) begin with users' needs; (2) give priority to process over products; (3) link information producers and users; (4) build connections across disciplines and organizations

  15. NASA Center for Computational Sciences: History and Resources

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  16. Kepler Science Operations Center Pipeline Framework

    NASA Technical Reports Server (NTRS)

    Klaus, Todd C.; McCauliff, Sean; Cote, Miles T.; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Middour, Christopher; Caldwell, Douglas A.; Jenkins, Jon M.

    2010-01-01

    The Kepler mission is designed to continuously monitor up to 170,000 stars at a 30 minute cadence for 3.5 years searching for Earth-size planets. The data are processed at the Science Operations Center (SOC) at NASA Ames Research Center. Because of the large volume of data and the memory and CPU-intensive nature of the analysis, significant computing hardware is required. We have developed generic pipeline framework software that is used to distribute and synchronize the processing across a cluster of CPUs and to manage the resulting products. The framework is written in Java and is therefore platform-independent, and scales from a single, standalone workstation (for development and research on small data sets) to a full cluster of homogeneous or heterogeneous hardware with minimal configuration changes. A plug-in architecture provides customized control of the unit of work without the need to modify the framework itself. Distributed transaction services provide for atomic storage of pipeline products for a unit of work across a relational database and the custom Kepler DB. Generic parameter management and data accountability services are provided to record the parameter values, software versions, and other meta-data used for each pipeline execution. A graphical console allows for the configuration, execution, and monitoring of pipelines. An alert and metrics subsystem is used to monitor the health and performance of the pipeline. The framework was developed for the Kepler project based on Kepler requirements, but the framework itself is generic and could be used for a variety of applications where these features are needed.

  17. Advanced control evaluation for structures (ACES) programs

    NASA Technical Reports Server (NTRS)

    Pearson, Jerome; Waites, Henry

    1988-01-01

    The ACES programs are a series of past, present, and future activities at the Marshall Space Flight Center (MSFC) Ground facility for Large Space Structure Control Verification (GF/LSSCV). The main objectives of the ACES programs are to implement control techniques on a series of complex dynamical systems, to determine the control/structure interaction for the control techniques, and to provide a national facility in which dynamics and control verification can be effected. The focus is on these objectives and how they are implemented under various engineering and economic constraints. Future plans that will be effected in upcoming ACES programs are considered.

  18. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At

  19. Prior Experiences Shaping Family Science Conversations at a Nature Center

    ERIC Educational Resources Information Center

    McClain, Lucy R.; Zimmerman, Heather Toomey

    2014-01-01

    Using families as the analytical focus, this study informs the field of informal science education with a focus on the role of prior experiences in family science conversations during nature walks at an outdoor-based nature center. Through video-based research, the team analyzed 16 families during walks at a nature center. Each family's prior…

  20. Science Centers in the Electronic Age: Are We Doomed?

    ERIC Educational Resources Information Center

    Russell, Robert L., Ed.; West, Robert M., Ed.

    1996-01-01

    This issue is a debate-discussion concerning science centers in the electronic age. The articles are based on presentations made at the Science Center World Congress (1st, Heureka, Finland, June 13-17, 1996). The four articles are: (1) "Lessons from Laboratorio dell'Immaginario Scientifico" (Andrea Bandelli); (2) "The Doom-Shaped Thing in the…

  1. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200

  2. Life Science Learning Center, Los Angeles Valley College.

    ERIC Educational Resources Information Center

    Samuels, Edward

    A description is provided of Los Angeles Valley College's Life Science Learning Center (LSLC), which provides: (1) a resource center addressed to the individualized learning needs of students served by the Biology Department; (2) a learning environment enabling students to proceed in self-paced, activity-centered, concept-oriented experiences in…

  3. The National Climate Change and Wildlife Science Center and Department of the Interior Climate Science Centers annual report for 2014

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2015-01-01

    The National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) had another exciting year in 2014. The NCCWSC moved toward focusing their science funding on several high priority areas and, along with the CSCs, gained new agency partners; contributed to various workshops, meetings, publications, student activities, and Tribal/indigenous activities; increased outreach; and more. 

  4. National Space Science Data Center Information Model

    NASA Astrophysics Data System (ADS)

    Bell, E. V.; McCaslin, P.; Grayzeck, E.; McLaughlin, S. A.; Kodis, J. M.; Morgan, T. H.; Williams, D. R.; Russell, J. L.

    2013-12-01

    The National Space Science Data Center (NSSDC) was established by NASA in 1964 to provide for the preservation and dissemination of scientific data from NASA missions. It has evolved to support distributed, active archives that were established in the Planetary, Astrophysics, and Heliophysics disciplines through a series of Memoranda of Understanding. The disciplines took over responsibility for working with new projects to acquire and distribute data for community researchers while the NSSDC remained vital as a deep archive. Since 2000, NSSDC has been using the Archive Information Package to preserve data over the long term. As part of its effort to streamline the ingest of data into the deep archive, the NSSDC developed and implemented a data model of desired and required metadata in XML. This process, in use for roughly five years now, has been successfully used to support the identification and ingest of data into the NSSDC archive, most notably those data from the Planetary Data System (PDS) submitted under PDS3. A series of software packages (X-ware) were developed to handle the submission of data from the PDS nodes utilizing a volume structure. An XML submission manifest is generated at the PDS provider site prior to delivery to NSSDC. The manifest ensures the fidelity of PDS data delivered to NSSDC. Preservation metadata is captured in an XML object when NSSDC archives the data. With the recent adoption by the PDS of the XML-based PDS4 data model, there is an opportunity for the NSSDC to provide additional services to the PDS such as the preservation, tracking, and restoration of individual products (e.g., a specific data file or document), which was unfeasible in the previous PDS3 system. The NSSDC is modifying and further streamlining its data ingest process to take advantage of the PDS4 model, an important consideration given the ever-increasing amount of data being generated and archived by orbiting missions at the Moon and Mars, other active projects

  5. Comparing Career Options: Academic, Science Centers, and Industry

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.

    2004-12-01

    The Employment Committee did a survey at the Atlanta AAS meeting, asking for input regarding topics for future employment sessions. The survey results indicated strong interest in more information about career paths. Thus, the Employment Committee is sponsoring a panel to present, discuss and contrast the three most common career directions that early-career astronomers consider: academic, science centers and industry. There also will be time for Q&A from the audience. The panelists: Academic - Vicky Kalogera, Northwestern; Science center - Deborah Levine, Spitzer Science Center; and Industry - John Miles, Lockheed-Martin.

  6. General relativistic observables for the ACES experiment

    NASA Astrophysics Data System (ADS)

    Turyshev, Slava G.; Yu, Nan; Toth, Viktor T.

    2016-02-01

    We develop a high-precision model for relativistic observables of the Atomic Clock Ensemble in Space (ACES) experiment on the International Space Station (ISS). We develop all relativistic coordinate transformations that are needed to describe the motion of ACES in Earth orbit and to compute observable quantities. We analyze the accuracy of the required model as it applies to the proper-to-coordinate time transformations, light-time equation, and spacecraft equations of motion. We consider various sources of nongravitational noise and their effects on ACES. We estimate the accuracy of orbit reconstruction that is needed to satisfy the ACES science objectives. Based on our analysis, we derive models for the relativistic observables of ACES, which also account for the contribution of atmospheric drag on the clock rate. We include the Earth's oblateness coefficient J2 and the effects of major nongravitational forces on the orbit of the ISS. We demonstrate that the ACES reference frame is pseudoinertial at the level of accuracy required by the experiment. We construct a Doppler-canceled science observable representing the gravitational redshift. We derive accuracy requirements for ISS navigation. The improved model is accurate up to <1 ps and ˜4 ×1 0-17 for time and frequency transfers, correspondingly. These limits are determined by the higher-order harmonics in Earth's gravitational potential.

  7. Marketing ACE in Victoria.

    ERIC Educational Resources Information Center

    2001

    This publication presents options raised through various forums for marketing adult and community education (ACE) in Victoria, Australia, and suggested strategies. After an introduction (chapter 1), chapters 2 and 3 provide a broad view of the current situation for marketing ACE. Chapter 2 discusses general issues in the current position--ACE…

  8. Advanced Colloids Experiment (ACE-T1)

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ron; Brown, Dan; Eustace, John

    2015-01-01

    Increment 45 - 46 Science Symposium presentation of Advanced Colloids Experiment (ACE-T1) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  9. Advanced Colloids Experiment (ACE-H-2)

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ron; Chmiel, Alan J.; Eustace, John; LaBarbera, Melissa

    2015-01-01

    Increment 43 - 44 Science Symposium presentation of Advanced Colloids Experiment (ACE-H-2) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  10. Information Sciences: Information Centers and Special Libraries. Vol. II.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    The bibliography is a compilation of annotated references on information sciences: information centers and special libraries and is volume II in a four-volume set on information sciences. It is a revision to the unlimited references in two earlier bibliographies, AD-829 001 and AD-829 002. Volume II includes references on technical information…

  11. Measuring the Impact of a Science Center on Its Community

    ERIC Educational Resources Information Center

    Falk, John H.; Needham, Mark D.

    2011-01-01

    A range of sources support science learning, including the formal education system, libraries, museums, nature and Science Centers, aquariums and zoos, botanical gardens and arboretums, television programs, film and video, newspapers, radio, books and magazines, the Internet, community and health organizations, environmental organizations, and…

  12. The Aerosol/Cloud/Ecosystems Mission (ACE)

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  13. Ames Research Center life sciences payload

    NASA Technical Reports Server (NTRS)

    Callahan, P. X.; Tremor, J. W.

    1982-01-01

    In response to a recognized need for an in-flight animal housing facility to support Spacelab life sciences investigators, a rack and system compatible Research Animal Holding Facility (RAHF) has been developed. A series of ground tests is planned to insure its satisfactory performance under certain simulated conditions of flight exposure and use. However, even under the best conditions of simulation, confidence gained in ground testing will not approach that resulting from actual spaceflight operation. The Spacelab Mission 3 provides an opportunity to perform an inflight Verification Test (VT) of the RAHF. Lessons learned from the RAHF-VT and baseline performance data will be invaluable in preparation for subsequent dedicated life sciences missions.

  14. Sharing science with the public at a national research center

    NASA Astrophysics Data System (ADS)

    Johnson, R.; Foster, S.; Carbone, L.; Henderson, S.; Munoz, R.; Ward, D.

    2003-04-01

    The growing consensus that improving science education and public science literacy requires the focused efforts of a wide spectrum of specialists, including scientists, provides the opportunity for national research centers to develop programs that seek to uniquely bring their science to educators and the public. At the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, we have developed a multifaceted program for science education and outreach designed to bring our science to these audiences in a way that builds on our specialized expertise. Education and outreach activities at NCAR include numerous opportunities to engage with the public in informal settings. Our exhibit and tour program offers topically focused interactive activities and opportunities to learn about the science underway at the laboratory. We also hold an annual festival for children and families and lectures for the public through which science principles and content are communicated by hands-on activities, dramatic demonstrations, and rich visual media. Our web sites provide extensive resources including interactives and activities that enable students, educators, and the public to learn on their own about our science. Central to all of these informal science activities is the participation of lab scientists and staff, whose personal enthusiasm and science expertise enriches all aspects of the program for the public.

  15. ACE blood test

    MedlinePlus

    Serum angiotensin-converting enzyme; SACE ... Chernecky CC, Berger BJ. Angiotensin-converting enzyme (ACE) - blood. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:138-139.

  16. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  17. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  18. Fort Collins Science Center: Ecosystem Dynamics

    USGS Publications Warehouse

    Bowen, Zack

    2004-01-01

    Current studies fall into five general areas. Herbivore-Ecosystem Interactions examines the efficacy of multiple controls on selected herbivore populations and cascading effects through predator-herbivore-plant-soil linkages. Riparian Ecology is concerned with interactions among streamflow, fluvial geomorphology, and riparian vegetation. Integrated Fire Science focuses on the effects of fire on plant and animal communities at multiple scales, and on the interactions between post-fire plant, runoff, and erosion processes. Reference Ecosystems comprises long-term, place-based studies of ecosystem biogeochemistry. Finally, Integrated Assessments is investigating how to synthesize multiple ecosystem stressors and responses over complex landscapes in ways that are useful for management and planning.

  19. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  20. Modern Data Center Services Supporting Science

    NASA Astrophysics Data System (ADS)

    Varner, J. D.; Cartwright, J.; McLean, S. J.; Boucher, J.; Neufeld, D.; LaRocque, J.; Fischman, D.; McQuinn, E.; Fugett, C.

    2011-12-01

    The National Oceanic and Atmospheric Administration's National Geophysical Data Center (NGDC) World Data Center for Geophysics and Marine Geology provides scientific stewardship, products and services for geophysical data, including bathymetry, gravity, magnetics, seismic reflection, data derived from sediment and rock samples, as well as historical natural hazards data (tsunamis, earthquakes, and volcanoes). Although NGDC has long made many of its datasets available through map and other web services, it has now developed a second generation of services to improve the discovery and access to data. These new services use off-the-shelf commercial and open source software, and take advantage of modern JavaScript and web application frameworks. Services are accessible using both RESTful and SOAP queries as well as Open Geospatial Consortium (OGC) standard protocols such as WMS, WFS, WCS, and KML. These new map services (implemented using ESRI ArcGIS Server) are finer-grained than their predecessors, feature improved cartography, and offer dramatic speed improvements through the use of map caches. Using standards-based interfaces allows customers to incorporate the services without having to coordinate with the provider. Providing fine-grained services increases flexibility for customers building custom applications. The Integrated Ocean and Coastal Mapping program and Coastal and Marine Spatial Planning program are two examples of national initiatives that require common data inventories from multiple sources and benefit from these modern data services. NGDC is also consuming its own services, providing a set of new browser-based mapping applications which allow the user to quickly visualize and search for data. One example is a new interactive mapping application to search and display information about historical natural hazards. NGDC continues to increase the amount of its data holdings that are accessible and is augmenting the capabilities with modern web

  1. University / Science Center Exhibit Development Collaboration: Strategies and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Raddick, M. J.; Carliles, S.; Bartelme, L.; Patterson, J.

    2008-06-01

    Through funding from the NSF's Internship in Public Science Education (IPSE) program, Johns Hopkins University (JHU) and the Maryland Science Center (MSC) have worked together to create an exhibit based on JHU's research with the Sloan Digital Sky Survey, a project to map the universe. The exhibit is a kiosk-based interactive presentation that connects to online data about the sky. It is currently displayed in SpaceLink, an area at the MSC that focuses on current events and research in astronomy. The person primarily responsible for the exhibit was a graduate student in computer science in the JHU Physics and Astronomy department. He worked with an EPO professional in the department and two members of the MSC's planetarium and exhibit staff to plan the exhibit. The team also worked with a coordinator in the JHU chemistry department, and an external evaluator. Along with increased public understanding of science, our goal was to create and evaluate a sustainable partnership between a research university and a local science center. We are producing an evaluation report discussing our collaboration and detailing lessons learned. We hope that our experience can be a model for other university / science center collaborations in the future. Some lessons that we have learned in our development effort are: start all design decisions with learning goals and objectives, write goals with evaluation in mind, focus on the process of science, and do not underestimate the challenges of working with the web as part of the exhibit technology.

  2. Molecular Science Research Center annual report

    SciTech Connect

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  3. A New Center for Science Education at UC Berkeley's Space Sciences Laboratory

    NASA Astrophysics Data System (ADS)

    Hawkins, I.

    1998-01-01

    The Space Sciences Laboratory at UC Berkeley has established a new Center for Science Education through the Laboratory's Senior Fellow program. The Center has a two-fold mission: (1) science education research through collaborations with UCB Graduate School of Education faculty, and (2) education and outreach projects that bring NASA research to the K-14 and general public communities. The Center is the host of two major education and outreach programs funded by NASA - The Sun-Earth Connection Education Forum (SECEF) and the Science Education Gateway (SEGway) Project. The SECEF - a collaborative between UC Berkeley and NASA's Goddard Space Flight Center - is one of four Forums that have been funded through the Office of Space Science as part of their Education Ecosystem. SEGway is a partnership between science research centers, science museums, and teachers, for the purpose of developing Internet-based, inquiry activities for the K-12 classroom that tap NASA remote sensing data. We will describe the Center for Science Education's history and vision, as well as summarize our core programs.

  4. Fort Collins Science Center: Policy Analysis and Science Assistance

    USGS Publications Warehouse

    Lamb, Berton L.

    2004-01-01

    PASA's mission is to integrate biological, social, and economic research so that resource managers can use the resulting information to make informed decisions and resolve resource management conflicts. PASA scientists pursue and conduct scientific analyses that help agencies and Native American tribes to (1) identify impending policy controversies and areas where social and natural science research is needed to address future policy questions; (2) develop methods and approaches to assist researchers in preparing scientific evidence; (3) assess habitat alteration in a manner consistent with policy needs; and (4) evaluate policy options. Branch scientists also evaluate policy options (e.g., effects of different land treatments, fish and wildlife management practices, or visitor/recreation management practices) in response to specific questions faced by policymakers and managers.

  5. Sun-Earth Connection Education and the Maryland Science Center

    NASA Astrophysics Data System (ADS)

    O'Leary, J.; Mendez, F.; Thieman, J.; Lewis, E.; Cline, T.; Angrum, A.

    2003-04-01

    Since 1999 the Maryland Science Center (MSC), working in collaboration with scientists and education specialists from NASA's Sun-Earth Connection Education Forum and missions, has developed and implemented cutting edge science events, products, and activities for informal science education groups to use centered on the theme of the science of the Sun and how it affects the Earth and the other planets. Solar eclipse camp-ins, Teachers' Thursdays monthly seminars for educators, distance learning presentations for teachers, Davis Planetarium Show, Sun-Earth Days 2001 and 2002, Science Persons of the Month appearances, and the Space Weather exhibit are among the many activities coordinated by these groups. Future Sun-Earth activities in 2003 include: Live from the Aurora program in which 6th grade students interview solar scientists in Alaska, Teachers' Thursday for February 2003, Sun-Earth Day in March, 2003, and coordination of events and activities for informal science education groups to use leading up to the June 2004 transit of Venus. MSC's SpaceLink Update Center already hosts daily updates on Sun-related research and discoveries such as the latest results from the Voyager and Ulysses missions. The monthly Science Person series includes solar science staff. MSC's Observatory also hosts weekly Sungazing days, where museum and observatory visitors view the Sun through white light and hydrogen-alpha filters. Images of the Sun are sent via video link to both SpaceLink and the Davis Planetarium at MSC, and school visitors participate in graded programs that explore the Sun and tie into local and national science standards and curriculum needs.

  6. The MMS Science Data Center. Operations, Capabilities, and Data Availability.

    NASA Astrophysics Data System (ADS)

    Larsen, Kristopher; Pankratz, Chris; Giles, Barbara; Kokkonen, Kim; Putnam, Brian; Schafer, Corey; Baker, Dan; Burch, Jim

    2016-04-01

    On September 1, 2015 the Magnetospheric MultiScale (MMS) constellation of satellites completed their six-month commissioning period and began collecting data under nominal conditions. Science operations for the mission are conducted at the Science Operations Center (SOC) at the Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA. The Science Data Center (SDC) is a component of the SOC responsible for the data production, management, distribution, archiving, and visualization of the data from the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package on board the spacecraft. The mission collects several gigabytes of particle and field data per day, but the constraints on download volumes require efficient tools to manage the selection, transmission, and analysis of data to determine the highest value science data to downlink. This is the Scientist-in-the-Loop (SITL) program and is a critical piece of the MMS science data operations. As of March 2016, MMS science data is available to the entire science community. This includes both the survey data as well as the ultra-high resolution burst data downlinked through the SITL process. This presentation will explain the data and demonstrate the tools available to the community via the SDC so as to encourage as many scientists as possible to look at the wealth of magnetospheric data being produced and made available from MMS.

  7. Visitor empowerment and the authority of science: Exploring institutionalized tensions in a science center

    NASA Astrophysics Data System (ADS)

    Loomis, Molly

    This research explored the relationships among societal, organizational, and visitor assumptions about learning in a science center. The study combined a sociocultural theory of learning with a constructivist theory of organizations to examine empirical links among the history of the Exploratorium (founded in 1969 and located in San Francisco, California), its organizational practices, and family activity at its exhibits. The study focused on three perspectives on science learning in a science center: (1) the societal perspective, which traced assumptions about science learning to the history of science centers; (2) the organizational perspective, which documented the ways that assumptions about science learning were manifested in historic museum exhibits; and (3) the family perspective, which documented the assumptions about science learning that characterized family activity at historic exhibits. All three perspectives uncovered a tension between the goals of supporting public empowerment on the one hand and preserving scientific authority on the other. Findings revealed this tension to be grounded in the social context of the organization's development, where ideas about promoting democracy and preserving the authority of science intersected. The tension was manifested in museum exhibits, which had as their task addressing the dual purposes of supporting all visitors, while also supporting committed visitors. The tension was also evident in the activity of families, who echoed sentiments about potential for their own empowerment but deferred to scientific authority. The study draws on critiques of a hidden curriculum in schools in order to explore the relationship between empowerment and authority in science centers, specifically as they are conveyed in the explicit and underlying missions of the Exploratorium. Findings suggest the need for science centers to engage in ongoing critical reflection and also lend empirical justification to the need for science

  8. Fort Collins Science Center: Fiscal Year 2007 Accomplishments

    USGS Publications Warehouse

    Wilson, J.T.

    2008-01-01

    In Fiscal Year 2007 (FY07), the U.S. Geological Survey (USGS) Fort Collins Science Center (FORT) continued research vital to U.S. Department of the Interior science and management needs and associated USGS programmatic goals. FORT work also supported the science needs of other government agencies as well as private cooperators. Specifically, FORT scientific research and technical assistance focused on client and partner needs and goals in the areas of biological information management, fisheries and aquatic systems, invasive species, status and trends of biological resources, terrestrial ecosystems, and wildlife resources. In addition, FORT's 5-year strategic plan was refined to incorporate focus areas identified in the USGS strategic science plan, including ecosystem-landscape analysis, global climate change, and energy and mineral resource development. As a consequence, several science projects initiated in FY07 were either entirely new research dor amplifications of existing work. Highlights of FORT project accomplishments are described below under the USGS science program with which each task is most closely associated. The work of FORT's 6 branches (Aquatic Systems and Technology Applications, Ecosystem Dynamics, Information Science, Invasive Species Science, Policy Analysis and Science Assistance, and Species and Habitats of Federal Interest) often involves major partnerships with other agencies or cooperation with other USGS disciplines (Geology, Geography, Water Resources) and the Geospatial Information Office.

  9. Education and public outreach at the SIRTF science center

    NASA Technical Reports Server (NTRS)

    Daou, D.

    2002-01-01

    Communicating the world of infrared astronomy to the public is the main vocation of the Education and Public Outreach Office of the SIRTF Science Center; but certainly not its only goal. In the past few years we have created a wide variety of educational products that explains the infrared as well as the multi-wavelength universe.

  10. Collection and Collaboration: Science in Michigan Middle School Media Centers

    ERIC Educational Resources Information Center

    Mardis, Marcia; Hoffman, Ellen

    2007-01-01

    In many ways, science classrooms and school library media centers are parallel universes struggling with their own reform issues and with documenting their own positive impacts. As the trend toward data-driven decisions grows in the school setting, it is increasingly important for every component of the learning environment to have demonstrable…

  11. 77 FR 5493 - Southwest Fisheries Science Center; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... INFORMATION: The COAST uses high-precision acoustic sampling to efficiently map the distributions of... management as well as evaluating the performance of marine protected areas. Special Accommodations This... National Oceanic and Atmospheric Administration RIN 0648-XA978 Southwest Fisheries Science Center;...

  12. Students-Exhibits Interaction at a Science Center

    ERIC Educational Resources Information Center

    Botelho, Agostinho; Morais, Ana M.

    2006-01-01

    In this study we investigate students' learning during their interaction with two exhibits at a science center. Specifically, we analyze both students' procedures when interacting with exhibits and their understanding of the scientific concepts presented therein. Bernstein's theory of pedagogic discourse (1990, 2000) provided the sociological…

  13. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental Science Information Center (ESIC). 950.6 Section 950.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA...

  14. Family Sense-Making Practices in Science Center Conversations

    ERIC Educational Resources Information Center

    Zimmerman, Heather Toomey; Reeve, Suzanne; Bell, Philip

    2010-01-01

    In this paper, we examine the interactional ways that families make meaning from biological exhibits during a visit to an interactive science center. To understand the museum visits from the perspectives of the families, we use ethnographic and discourse analytic methods, including pre- and postvisit interviews, videotaped observations of the…

  15. Satellite Situation Center data system for magnetospheric science planning

    NASA Technical Reports Server (NTRS)

    Aist-Sagara, L.; Cooper, J. F.; McGuire, R. E.; Parthasarathy, R.; Peredo, M.

    1995-01-01

    Critical problems in planning coordinated observation campaigns for magnetospheric science include the need to predict time intervals when one or more observing satellites or ground stations will be connected along magnetic field lines to other observation sites, or when such sites will be located within magnetospheric regions of common interest. The Satellite Situation Center (SSC) was created at the National Space Science Data Center (NSSDC) during the International Magnetospheric Study in the 1970s to address these problems. The SSC Data System has evolved since that era to support potentially complex queries by SSC staff and has now been opened to NASA Science Internet access via the NSSDC On-line Data Information System (NODIS). The SSC software, ephemeris data base, and access modes are described for the Version 2.1 release in 1993.

  16. CAISE: A NSF Resource Center for Informal Science Education

    NASA Astrophysics Data System (ADS)

    Dickow, Benjamin

    2012-01-01

    Informal science education (ISE) is playing an increasingly important role in how and where the public engages with science. A growing body of research is showing that people learn the majority of their science knowledge outside of school (Falk & Dierking, 2010). The ISE field includes a wide variety of sources, including the internet, TV programs, magazines, hobby clubs and museums. These experiences touch large numbers of people throughout their lifetimes. If you would like to share your research with the public, ISE can be an effective conduit for meaningful science communication. However, because the ISE field is so diverse, it can be overwhelming with its multiple entry points. If you already are part of an ISE initiative, knowing how to access the most useful resources easily can also be daunting. CAISE, the Center for Advancement of Informal Science Education, is a resource center for the ISE field funded by the National Science Foundation (NSF). CAISE can help connect you to the knowledge and people of ISE, through its website, products and in-person convenings. The proposed CAISE presentation will outline the diversity of the field and concisely present data that will make the case for the impact of ISE. We will focus on examples of successful programs that connect science with the public and that bring together AAS's science research community with practitioners and researchers within ISE. Pathways to various ISE resources in the form of current CAISE initiatives will be described as well. The presentation will include an interview section in which a CAISE staff member will ask questions of a scientist involved in an ISE initiative in order to detail one example of how ISE can be a valuable tool for engaging the public in science. Time for audience Q&A also will be included in the session.

  17. The NOAA Center in Atmospheric Sciences (NCAS) at Howard University

    NASA Astrophysics Data System (ADS)

    Strachan, M. D.; Morris, V. R.

    2003-12-01

    The National Oceanic and Atmospheric Administration (NOAA) of the Department of Commerce established the NOAA Center for Atmospheric Sciences (NCAS), a Cooperative Science Center, in fall 2001 to support the development of quality education to students at minority serving institutions while meeting the prescribed goals of NOAA and the nation. NCAS was established to research some of the critical environmental conditions occurring nationally and globally, and to provide opportunities and programs for students to pursue careers in atmospheric, environmental, and oceanic sciences and remote sensing. A primary goal is to increase the number of highly qualified, well trained graduates in the fields of NOAA related atmospheric sciences. NCAS is led by Howard University, in collaboration with three partners - Jackson State University, the University of Texas at El Paso, and the University of Puerto Rico at Mayaguez. This presentation will highlight the activities and accomplishments in research, education, and outreach of NCAS over its first two years of existence. The primary benefactor of NCAS has been the Howard University Program in Atmospheric Sciences (HUPAS), a comprehensive graduate program in atmospheric sciences with core focus areas of atmospheric chemistry, atmospheric physics, and geophysical fluid dynamics.

  18. Growth of a Science Center: The Center for Science and Mathematics Education (CESAME) at Stony Brook University

    ERIC Educational Resources Information Center

    Gafney, Leo; Bynum, R. David; Sheppard, Keith

    2015-01-01

    This report describes the origin and development of CESAME (The Center for Science and Mathematics Education) at Stony Brook University. The analysis identifies key ingredients in areas of personnel, funding, organizational structures, educational priorities, collaboration, and institutionalization. After a discussion of relevant issues in…

  19. Better Broader Impacts through National Science Foundation Centers

    NASA Astrophysics Data System (ADS)

    Campbell, K. M.

    2010-12-01

    National Science Foundation Science and Technology Centers (STCs) play a leading role in developing and evaluating “Better Broader Impacts”; best practices for recruiting a broad spectrum of American students into STEM fields and for educating these future professionals, as well as their families, teachers and the general public. With staff devoted full time to Broader Impacts activities, over the ten year life of a Center, STCs are able to address both a broad range of audiences and a broad range of topics. Along with other NSF funded centers, such as Centers for Ocean Sciences Education Excellence, Engineering Research Centers and Materials Research Science and Engineering Centers, STCs develop both models and materials that individual researchers can adopt, as well as, in some cases, direct opportunities for individual researchers to offer their disciplinary research expertise to existing center Broader Impacts Programs. The National Center for Earth-surface Dynamics is an STC headquartered at the University of Minnesota. NCED’s disciplinary research spans the physical, biological and engineering issues associated with developing an integrative, quantitative and predictive understanding of rivers and river basins. Funded in 2002, we have had the opportunity to partner with individuals and institutions ranging from formal to informal education and from science museums to Tribal and women’s colleges. We have developed simple table top physical models, complete museum exhibitions, 3D paper maps and interactive computer based visualizations, all of which have helped us communicate with this wide variety of learners. Many of these materials themselves or plans to construct them are available online; in many cases they have also been formally evaluated. We have also listened to the formal and informal educators with whom we partner, from whom we have learned a great deal about how to design Broader Impacts activities and programs. Using NCED as a case study

  20. ACES--Today and Tomorrow.

    ERIC Educational Resources Information Center

    Hackney, Harold

    1991-01-01

    Presents text of Presidential Address delivered March 24, 1991, at the Association for Counselor Education and Supervision (ACES) luncheon, part of the American Association for Counseling and Development Convention held in Reno, Nevada. Comments on past, present, and future of ACES, particularly on future challenges and role of ACES. (ABL)

  1. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  2. The Kepler Science Operations Center Pipeline Framework Extensions

    NASA Technical Reports Server (NTRS)

    Klaus, Todd C.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Chandrasekaran, Hema; Bryson, Stephen T.; Middour, Christopher; Caldwell, Douglas A.; Jenkins, Jon M.

    2010-01-01

    The Kepler Science Operations Center (SOC) is responsible for several aspects of the Kepler Mission, including managing targets, generating on-board data compression tables, monitoring photometer health and status, processing the science data, and exporting the pipeline products to the mission archive. We describe how the generic pipeline framework software developed for Kepler is extended to achieve these goals, including pipeline configurations for processing science data and other support roles, and custom unit of work generators that control how the Kepler data are partitioned and distributed across the computing cluster. We describe the interface between the Java software that manages the retrieval and storage of the data for a given unit of work and the MATLAB algorithms that process these data. The data for each unit of work are packaged into a single file that contains everything needed by the science algorithms, allowing these files to be used to debug and evolve the algorithms offline.

  3. Photometric Analysis in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.

  4. The Centers for Ocean Science Education Excellence (COSEE) initiative

    NASA Astrophysics Data System (ADS)

    Cook, S.; Rom, E.

    2003-04-01

    Seven regional Centers for Ocean Science Education Excellence have recently been established to promote the integration of ocean science research into high-quality education programs aimed at both formal and informal audiences throughout the United States. The regional Centers include two complementary partnerships in California, a New England regional effort, a Mid-Atlantic partnership, a Southeastern collaborative, a Florida initiative and a central Gulf of Mexico alliance. A Central Coordinating Office in Washington DC will help the group develop into a cohesive and focused national network. Initial funding has been provided by the National Science Foundation with complementary support from the Office of Naval Research and multiple units within the National Oceanographic and Atmospheric Administration (specifically the National Ocean Service, the Office of Ocean Exploration and the National SeaGrant Office). Under an umbrella of common goals and objectives, the first cohort of Centers in the COSEE network is remarkably diverse in terms of geography, organizational structure and programmatic focus. NSF’s presentation will describe these partnerships, the different approaches that are being taken by the individual Centers and the expectations that NSF has for the network as a whole.

  5. New Center Links Earth, Space, and Information Sciences

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    2004-05-01

    Broad-based geoscience instruction melding the Earth, space, and information technology sciences has been identified as an effective way to take advantage of the new jobs created by technological innovations in natural resources management. Based on this paradigm, the University of Hyderabad in India is developing a Centre of Earth and Space Sciences that will be linked to the university's super-computing facility. The proposed center will provide the basic science underpinnings for the Earth, space, and information technology sciences; develop new methodologies for the utilization of natural resources such as water, soils, sediments, minerals, and biota; mitigate the adverse consequences of natural hazards; and design innovative ways of incorporating scientific information into the legislative and administrative processes. For these reasons, the ethos and the innovatively designed management structure of the center would be of particular relevance to the developing countries. India holds 17% of the world's human population, and 30% of its farm animals, but only about 2% of the planet's water resources. Water will hence constitute the core concern of the center, because ecologically sustainable, socially equitable, and economically viable management of water resources of the country holds the key to the quality of life (drinking water, sanitation, and health), food security, and industrial development of the country. The center will be focused on interdisciplinary basic and pure applied research that is relevant to the practical needs of India as a developing country. These include, for example, climate prediction, since India is heavily dependent on the monsoon system, and satellite remote sensing of soil moisture, since agriculture is still a principal source of livelihood in India. The center will perform research and development in areas such as data assimilation and validation, and identification of new sensors to be mounted on the Indian meteorological

  6. Informal science educators network project Association of Science-Technology Centers Incorporated. Final report

    SciTech Connect

    1997-05-09

    Funding from the Department of Energy and the Annenberg/CPB Math and Science Project have helped the Association of Science-technology Centers Incorporated (ASTC) to establish and sustain an on-line community of informal science educators nationwide. The Project, called the Informal Science Educators Network Project (ISEN), is composed primarily of informal science educators and exhibit developers from science centers, museums, zoos, aquariums, botanical gardens, parks, and nature centers. Although museum-based professionals represent the majority of subscribers to ISEN, also involved are some classroom teachers and teacher educators from colleges and universities. Common to all ISEN participants is a commitment to school and science education reform. Specifically, funding from the Department of Energy helped to boot strap the effort, providing Barrier Reduction Vouchers to 123 educators that enabled them participate in ISEN. Among the major accomplishments of the Project are these: (1) assistance to 123 informal science educators to attend Internet training sessions held in connection with the Project and/or purchase hardware and software that linked them to the Internet; (2) Internet training for 153 informal science educators; (3) development of a listserv which currently has over 180 subscribers--an all-time high; (4) opportunity to participate in four web chats involving informal science educators with noted researchers; (5) development of two sites on the World Wide Web linking informal science educators to Internet resources; (6) creation of an on-line collection of over 40 articles related to inquiry-based teaching and science education reform. In order to continue the momentum of the Project, ASTC has requested from the Annenberg/CPB Math and Science project a no/cost extension through December 1997.

  7. 75 FR 36666 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... National Park Service Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center... to repatriate cultural items in the possession of the Rochester Museum & Science Center, Rochester... Arts & Science (now Rochester Museum & Science Center), with the intent of both giving employment...

  8. NASA's astrophysics archives at the National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  9. NOAA Interdisciplinary Scientific Environmental Technology Cooperative Science Center

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon

    2008-10-01

    ISETCS is led by North Carolina Agricultural & Technical State University in collaboration with thirty one scientists and engineers in nine academic departments in seven academic partnering institutions. The focus of the ISET Cooperative Science Center (ISETCSC) is to conduct research on sensor science and sensor technology for oceanic and atmospheric applications; perform analysis of global observing systems that include numerical and physical research and analysis of hurricanes; and, develop information technology tools for data fusion, data mining and geospatial modeling and analysis. In collaboration with Keith Schimmel and Abdollah Homaifar, North Carolina A&T State University; Frederick Semazzi, North Carolina State University; and Samir Ahmed, City University of New York.

  10. Center for Advanced Signal and Imaging Sciences Workshop 2004

    SciTech Connect

    McClellan, J H; Carrano, C; Poyneer, L; Palmer, D; Baker, K; Chen, D; London, R; Weinert, G; Brase, J; Paglieroni, D; Lopez, A; Grant, C W; Wright, W; Burke, M; Miller, W O; DeTeresa, S; White, D; Toeppen, J; Haugen, P; Kamath, C; Nguyen, T; Manay, S; Newsam, S; Cantu-Paz, E; Pao, H; Chang, J; Chambers, D; Leach, R; Paulson, C; Romero, C E; Spiridon, A; Vigars, M; Welsh, P; Zumstein, J; Romero, K; Oppenheim, A; Harris, D B; Dowla, F; Brown, C G; Clark, G A; Ong, M M; Clance, T J; Kegelmeyer, l M; Benzuijen, M; Bliss, E; Burkhart, S; Conder, A; Daveler, S; Ferguson, W; Glenn, S; Liebman, J; Norton, M; Prasad, R; Salmon, T; Kegelmeyer, L M; Hafiz, O; Cheung, S; Fodor, I; Aufderheide, M B; Bary, A; Martz, Jr., H E; Burke, M W; Benson, S; Fisher, K A; Quarry, M J

    2004-11-15

    Welcome to the Eleventh Annual C.A.S.I.S. Workshop, a yearly event at the Lawrence Livermore National Laboratory, presented by the Center for Advanced Signal & Image Sciences, or CASIS, and sponsored by the LLNL Engineering Directorate. Every November for the last 10 years we have convened a diverse set of engineering and scientific talent to share their work in signal processing, imaging, communications, controls, along with associated fields of mathematics, statistics, and computing sciences. This year is no exception, with sessions in Adaptive Optics, Applied Imaging, Scientific Data Mining, Electromagnetic Image and Signal Processing, Applied Signal Processing, National Ignition Facility (NIF) Imaging, and Nondestructive Characterization.

  11. Fermi Science Support Center Data Servers and Archive

    NASA Astrophysics Data System (ADS)

    Reustle, Alexander; FSSC, LAT Collaboration

    2016-01-01

    The Fermi Science Support Center (FSSC) provides the scientific community with access to Fermi data and other products. The Gamma-Ray Burst Monitor (GBM) data is stored at NASA's High Energy Astrophysics Science Archive Research Center (HEASARC) and is accessible through their searchable Browse web interface. The Large Area Telescope (LAT) data is distributed through a custom FSSC interface where users can request all photons detected from a region on the sky over a specified time and energy range. Through its website the FSSC also provides planning and scheduling products, such as long and short term observing timelines, spacecraft position and attitude histories, and exposure maps. We present an overview of the different data products provided by the FSSC, how they can be accessed, and statistics on the archive usage since launch.

  12. Image science and image-quality research in the Optical Sciences Center

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Myers, Kyle J.

    2014-09-01

    This paper reviews the history of research into imaging and image quality at the Optical Sciences Center (OSC), with emphasis on the period 1970-1990. The work of various students in the areas of psychophysical studies of human observers of images; mathematical model observers; image simulation and analysis, and the application of these methods to radiology and nuclear medicine is summarized. The rapid progress in computational power, at OSC and elsewhere, which enabled the steady advances in imaging and the emergence of a science of imaging, is also traced. The implications of these advances to ongoing research and the current Image Science curriculum at the College of Optical Sciences are discussed.

  13. National Space Science Data Center (NSSDC) Data Listing

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Satellite and nonsatellite data available from the National Space Science Data Center are listed. The Satellite Data listing includes the spacecraft name, launch date, and an alphabetical list of experiments. The Non-Satellite Data listing contains ground based data, models, computer routines, and composite spacecraft data. The data set name, data form code, quantity of data, and the time space covered are included in the data sets of both listings where appropriate. Geodetic tracking data sets are also included.

  14. The potential roles of science centers in climate change adaptation

    NASA Astrophysics Data System (ADS)

    Hamilton, P.

    2012-12-01

    The overwhelming consensus amongst climatologists is that anthropogenic climate change is underway, but leading climate scientists also anticipate that over the next 20 years research may only modestly reduce the uncertainty about where, when and by how much climate will change. Uncertainty presents not only scientific challenges but social, political and economic quandaries as well. Both scientific and educational communities understand that climate change will test the resilience of societies especially because of the uncertainties regarding the timing, nature and severity of climate change. Thus the need is great for civic conversations regarding climate change adaptation. What roles might science centers play in helping their audiences and communities make decisions about climate change adaptation despite less-than-perfect knowledge? And how might informal and formal education work together on this task? This session will begin with a review of some initial efforts by selected science centers and their partners to engage their audiences in and help their communities grapple with climate change adaptation. It then will conclude with an audience discussion about potential future efforts by science centers both individually and in collaboration with formal education institutions to elevate public and policymaker awareness and appreciation of the need for climate change adaptation.

  15. The MMS Science Data Center: Operations, Capabilities, and Resource.

    NASA Astrophysics Data System (ADS)

    Larsen, K. W.; Pankratz, C. K.; Giles, B. L.; Kokkonen, K.; Putnam, B.; Schafer, C.; Baker, D. N.

    2015-12-01

    The Magnetospheric MultiScale (MMS) constellation of satellites completed their six month commissioning period in August, 2015 and began science operations. Science operations for the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package occur at the Laboratory for Atmospheric and Space Physics (LASP). The Science Data Center (SDC) at LASP is responsible for the data production, management, distribution, and archiving of the data received. The mission will collect several gigabytes per day of particles and field data. Management of these data requires effective selection, transmission, analysis, and storage of data in the ground segment of the mission, including efficient distribution paths to enable the science community to answer the key questions regarding magnetic reconnection. Due to the constraints on download volume, this includes the Scientist-in-the-Loop program that identifies high-value science data needed to answer the outstanding questions of magnetic reconnection. Of particular interest to the community is the tools and associated website we have developed to provide convenient access to the data, first by the mission science team and, beginning March 1, 2016, by the entire community. This presentation will demonstrate the data and tools available to the community via the SDC and discuss the technologies we chose and lessons learned.

  16. Science Data Center concepts for moderate-sized NASA missions

    NASA Technical Reports Server (NTRS)

    Price, R.; Han, D.; Pedelty, J.

    1991-01-01

    The paper describes the approaches taken by the NASA Science Data Operations Center to the concepts for two future NASA moderate-sized missions, the Orbiting Solar Laboratory (OSL) and the Tropical Rainfall Measuring Mission (TRMM). The OSL space science mission will be a free-flying spacecraft with a complement of science instruments, placed in a high-inclination, sun synchronous orbit to allow continuous study of the sun for extended periods. The TRMM is planned to be a free-flying satellite for measuring tropical rainfall and its variations. Both missions will produce 'standard' data products for the benefit of their communities, and both depend upon their own scientific community to provide algorithms for generating the standard data products.

  17. Research briefs of the Physical and Chemical Sciences Center

    SciTech Connect

    Vook, F.L.; Smith, W.L.

    1993-12-31

    As Sandia National Laboratories and the Physical and Chemical Sciences Center develop an increasingly diverse set of customers, research partners, and Cooperative Research and Development Agreements (CRADA`s) with industry, there is a need for providing more concise information describing their technical achievements and capabilities. This publication, Research Briefs, is designed to inform the present and potential partners in research and technology advancement. Their research emphasizes semiconductor physics, electronic materials, surface physics and chemistry, plasma and chemical processing sciences, lasers and optics, vision science, ion-solid interactions and defect physics, and advanced materials physics. The specific programs they pursue are driven by the research goals which are greatly influenced by interactions with the government and industrial customers.

  18. Common Requirements For Data Center Data Providers: Lessons Learned From the NEAR Science Data Center

    NASA Astrophysics Data System (ADS)

    Holland, D. B.

    2003-12-01

    There are common requirements for data centers serving as data providers, which greatly influence the capabilities of a virtual observatory. The NEAR Science Data Center (SDC) provided all of the common data distribution and archive services for the science teams and Mission Operations and subsystem engineering teams for the Near Earth Asteroid Rendezvous mission. Lessons learned in determining and meeting these requirements will be presented. The SDC was able to meet the NEAR mission's requirements to minimize costs while maintaining high quality, by combining the software development and operational costs for providing these services. The SDC provided core services for telemetry data handling at launch and then extended these services during the cruise to Eros, to include science, engineering and supporting data products, from all spacecraft data sets. Mission Operations will be described from SDC user's view. These include the major products and services provided to the Science teams, Mission Operations Center, engineering teams and pubic network data users through the course of the mission.

  19. An ACE diagnosis.

    PubMed

    Nasher, Omar; Gupta, Anindya

    2013-01-01

    Gaucher's disease is not commonly considered in the differential diagnosis of adult patients with hepatosplenomegaly and increased serum ACE. A 19-year-old girl presented with recurrent epigastric and left hypochondrial pain over a period of 9 years, associated with episodes of nausea and diarrhoea. She was extensively investigated and found to have splenomegaly and raised serum ACE. A screen for haematological disorders was negative. She reported an insect bite during an overseas holiday preceding her symptoms. She was therefore also screened for infectious causes of hepatosplenomegaly but without success. Later on in life, she reported joint pain and discomfort. Sarcoidosis was thought to be the putative cause on more than one occasion. However, the presence of splenomegaly and her relatively young age, led the rheumatologist to the correct diagnosis. PMID:23417380

  20. An ACE diagnosis

    PubMed Central

    Nasher, Omar; Gupta, Anindya

    2013-01-01

    Gaucher's disease is not commonly considered in the differential diagnosis of adult patients with hepatosplenomegaly and increased serum ACE. A 19-year-old girl presented with recurrent epigastric and left hypochondrial pain over a period of 9 years, associated with episodes of nausea and diarrhoea. She was extensively investigated and found to have splenomegaly and raised serum ACE. A screen for haematological disorders was negative. She reported an insect bite during an overseas holiday preceding her symptoms. She was therefore also screened for infectious causes of hepatosplenomegaly but without success. Later on in life, she reported joint pain and discomfort. Sarcoidosis was thought to be the putative cause on more than one occasion. However, the presence of splenomegaly and her relatively young age, led the rheumatologist to the correct diagnosis. PMID:23417380

  1. ACE observations of magnetic waves arising from newborn interstellar pickup helium ions

    NASA Astrophysics Data System (ADS)

    Argall, Matthew R.; Fisher, Meghan K.; Joyce, Colin J.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Schwadron, Nathan A.; Skoug, Ruth M.

    2015-11-01

    We report low-frequency magnetic waves that were observed by the Advanced Composition Explorer (ACE) spacecraft on day of year 180 of 1999 with characteristics consistent with the predictions of waves excited by newborn interstellar pickup He+ ions. This event was found by examining daily spectrograms of MAG data, a new data product that is now available to the community via the ACE Science Center. The event shown here is one of approximately 20 similar events that will be analyzed in future studies. This event is fairly typical of those we have found so far. The waves exist at spacecraft-frame frequencies between the He+ cyclotron frequency and approximately twice the H+ cyclotron frequency. Fluctuations are transverse to the mean magnetic field, are noncompressive, circularly polarized, have field-aligned minimum variance directions, and are left-hand polarized in the spacecraft frame as predicted by theory. The event lasts for just under 1 h.

  2. 76 FR 63615 - Environmental Science Center Microbiology Laboratory; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Environmental Science Center Microbiology Laboratory; Notice of Public Meeting AGENCY... discussions which will be held at the EPA Environmental Science Center Microbiology Laboratory. DATES:...

  3. NASA/Ames Research Center's science and applications aircraft program

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1991-01-01

    NASA-Ames Research Center operates a fleet of seven Science and Applications Aircraft, namely the C-141/Kuiper Airborne Observatory (KAO), DC-8, C-130, Lear Jet, and three ER-2s. These aircraft are used to satisfy two major objectives, each of equal importance. The first is to acquire remote and in-situ scientific data in astronomy, astrophysics, earth sciences, ocean processes, atmospheric physics, meteorology, materials processing and life sciences. The second major objective is to expedite the development of sensors and their attendant algorithms for ultimate use in space and to simulate from an aircraft, the data to be acquired from spaceborne sensors. NASA-Ames Science and Applications Aircraft are recognized as national and international facilities. They have performed and will continue to perform, operational missions from bases in the United States and worldwide. Historically, twice as many investigators have requested flight time than could be accommodated. This situation remains true today and is expected to increase in the years ahead. A major advantage of the existing fleet of aircraft is their ability to cover a large expanse of the earth's ecosystem from the surface to the lower stratosphere over large distances and time aloft. Their large payload capability allows a number of scientists to use multi-investigator sensor suites to permit simultaneous and complementary data gathering. In-flight changes to the sensors or data systems have greatly reduced the time required to optimize the development of new instruments. It is doubtful that spaceborne systems will ever totally replace the need for airborne science aircraft. The operations philosophy and capabilities exist at NASA-Ames Research Center.

  4. Climate Change Adaptation Science Activities at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Lulla, Kamlesh

    2012-01-01

    The Johnson Space Center (JSC), located in the southeast metropolitan region of Houston, TX is the prime NASA center for human spaceflight operations and astronaut training, but it also houses the unique collection of returned extraterrestrial samples, including lunar samples from the Apollo missions. The Center's location adjacent to Clear Lake and the Clear Creek watershed, an estuary of Galveston Bay, puts it at direct annual risk from hurricanes, but also from a number of other climate-related hazards including drought, floods, sea level rise, heat waves, and high wind events all assigned Threat Levels of 2 or 3 in the most recent NASA Center Disaster/Risk Matrix produced by the Climate Adaptation Science Investigator Working Group. Based on prior CASI workshops at other NASA centers, it is recognized that JSC is highly vulnerable to climate-change related hazards and has a need for adaptation strategies. We will present an overview of prior CASI-related work at JSC, including publication of a climate change and adaptation informational data brochure, and a Resilience and Adaptation to Climate Risks Workshop that was held at JSC in early March 2012. Major outcomes of that workshop that form a basis for work going forward are 1) a realization that JSC is embedded in a regional environmental and social context, and that potential climate change effects and adaptation strategies will not, and should not, be constrained by the Center fence line; 2) a desire to coordinate data collection and adaptation planning activities with interested stakeholders to form a regional climate change adaptation center that could facilitate interaction with CASI; 3) recognition that there is a wide array of basic data (remotely sensed, in situ, GIS/mapping, and historical) available through JSC and other stakeholders, but this data is not yet centrally accessible for planning purposes.

  5. A phenomenological investigation of science center exhibition developers' expertise development

    NASA Astrophysics Data System (ADS)

    Young, Denise L.

    The purpose of this study was to examine the exhibition developer role in the context of United States (U.S.) science centers, and more specifically, to investigate the way science center exhibition developers build their professional expertise. This research investigated how successfully practicing exhibition developers described their current practices, how they learned to be exhibition developers, and what factors were the most important to the developers in building their professional expertise. Qualitative data was gathered from 10 currently practicing exhibition developers from three science centers: the Exploratorium, San Francisco, California; the Field Museum, Chicago, Illinois; and the Science Museum of Minnesota, St. Paul, Minnesota. In-depth, semistructured interviews were used to collect the data. The study embraced aspects of the phenomenological tradition and sought to derive a holistic understanding of the position and how expertise was built for it. The data were methodically coded and organized into themes prior to analysis. The data analysis found that the position consisted of numerous and varied activities, but the developers' primary roles were advocating for the visitor, storytelling, and mediating information and ideas. They conducted these activities in the context of a team and relied on an established exhibition planning process to guide their work. Developers described a process of learning exhibition development that was experiential in nature. Learning through daily practice was key, though they also consulted with mentors and relied on visitor studies to gauge the effectiveness of their work. They were adept at integrating prior knowledge gained from many aspects of their lives into their practice. The developers described several internal factors that contributed to their expertise development including the desire to help others, a natural curiosity about the world, a commitment to learning, and the ability to accept critique. They

  6. DREAM Center for Lunar Science: Three Year Summary Report

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Killen, R. M.; Delory, G. T.

    2012-12-01

    In early 2009, the Dynamic Response of the Environment At the Moon (DREAM) lunar science center became a supporting team of NASA's Lunar Science Institute specifically to study the solar-lunar connection and understand the response of the lunar plasma, exosphere, dust, and surface environments to solar variations. We especially emphasize the effect extreme events like solar storms and impacts have on the plasma-surface-gas dynamic system. One of the center's hallmark contribution is the solar storm - lunar atmosphere modeling (SSLAM) study that cross-integrated a large number of the center's models to determine the effect a strong solar storm has at the Moon. The results from this intramural event will be described herein. A number of other key studies were performed, including a unique ground-based observation of the LCROSS impact-generated sodium plume, LADEE dust and atmosphere expectation studies, ARTEMIS data and model synthesis, polar crater ambipolar modeling, dust transport simulations, and focused studies on the formation and distribution of lunar water. DREAM successfully advanced the understanding of the solar-driven lunar environment from the Apollo era, through the Altair era, to the new flexible era of exploration.

  7. Unique life sciences research facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  8. Basic and Applied Science Research at the Los Alamos Neutron Science Center

    SciTech Connect

    Lisowski, Paul W.

    2005-05-24

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science using four experimental areas. LANSCE has two areas that provide neutrons generated by the 800-MeV proton beam striking tungsten target systems. A third area uses the proton beam for radiography. The fourth area uses 100 MeV protons to produce medical radioisotopes. This paper describes the four LANSCE experimental areas, gives nuclear science highlights of the past operating period, and discusses plans for the future.

  9. 77 FR 19699 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... National Park Service Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center... & Science Center, in consultation with the appropriate Indian tribe, has determined that the cultural items... Rochester Museum & Science Center. DATES: Representatives of any Indian tribe that believes it has...

  10. 75 FR 25290 - Notice of Intent To Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... Rochester Museum & Science Center acquired from various sources 10 medicine faces made by members of the... National Park Service Notice of Intent To Repatriate Cultural Items: Rochester Museum & Science Center... to repatriate cultural items in the possession of the Rochester Museum & Science Center,...

  11. 77 FR 19698 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... and 1984, the Rochester Museum & Science Center acquired 36 medicine faces made by members of the... & Science Center) purchased one 19th century wooden medicine face (27.81.463/AE 1171) from the Opdyke estate.... In 1984, the Rochester Museum & Science Center purchased one 20th century cornhusk medicine face...

  12. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  13. Windowsill Science Centers: Turn Your Classroom Windowsill into the Perfect Lab for Easy-To-Do Science Investigations!

    ERIC Educational Resources Information Center

    Kepler, Lynne

    Favorite science topics like seeds and plants, evaporation, light and shadow, and animal observation are the subjects of the eight windowsill science centers included in this book. Each of the science centers includes a discussion of the process skills that students will use, several hands-on activities, explanation of key concepts and vocabulary,…

  14. Challenges for Data Archival Centers in Evolving Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Cook, R. B.; Gu, L.; Santhana Vannan, S. K.; Beaty, T.

    2015-12-01

    Environmental science has entered into a big data era as enormous data about the Earth environment are continuously collected through field and airborne missions, remote sensing observations, model simulations, sensor networks, etc. An open-access and open-management data infrastructure for data-intensive science is a major grand challenge in global environmental research (BERAC, 2010). Such an infrastructure, as exemplified in EOSDIS, GEOSS, and NSF EarthCube, will provide a complete lifecycle of environmental data and ensures that data will smoothly flow among different phases of collection, preservation, integration, and analysis. Data archival centers, as the data integration units closest to data providers, serve as the source power to compile and integrate heterogeneous environmental data into this global infrastructure. This presentation discusses the interoperability challenges and practices of geosciences from the aspect of data archival centers, based on the operational experiences of the NASA-sponsored Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) and related environmental data management activities. Specifically, we will discuss the challenges to 1) encourage and help scientists to more actively share data with the broader scientific community, so that valuable environmental data, especially those dark data collected by individual scientists in small independent projects, can be shared and integrated into the infrastructure to tackle big science questions; 2) curate heterogeneous multi-disciplinary data, focusing on the key aspects of identification, format, metadata, data quality, and semantics to make them ready to be plugged into a global data infrastructure. We will highlight data curation practices at the ORNL DAAC for global campaigns such as BOREAS, LBA, SAFARI 2000; and 3) enhance the capabilities to more effectively and efficiently expose and deliver "big" environmental data to broad range of users and systems

  15. 2003 research briefs : Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2003-08-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems and Materials Modeling and Computational Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  16. 2005 Research Briefs : Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2005-05-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  17. Life Sciences Division and Center for Human Genome Studies 1994

    SciTech Connect

    Cram, L.S.; Stafford, C.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  18. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  19. Operational status of the Los Alamos neutron science center (LANSCE)

    SciTech Connect

    Jones, Kevin W; Erickson, John L; Schoenberg, Kurt F

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources; the thermal and cold source for the Manuel Lujan Jr. Neutron Scattering Center, the Weapons Neutron Research (WNR) high-energy neutron source, and a pulsed Ultra-Cold Neutron Source. These three sources are the foundation of strong and productive multi-disciplinary research programs that serve a diverse and robust user community. The facility also provides multiplexed beams for the production of medical radioisotopes and proton radiography of dynamic events. The recent operating history of these sources will be reviewed and plans for performance improvement will be discussed, together with the underlying drivers for the proposed LANSCE Refurbishment project. The details of this latter project are presented in a separate contribution.

  20. Molecular genetics at the Fort Collins Science Center

    USGS Publications Warehouse

    Oyler-McCance, S.J.; Stevens, P.D.

    2011-01-01

    The Fort Collins Science Center operates a molecular genetic and systematics research facility (FORT Molecular Ecology Laboratory) that uses molecular genetic tools to provide genetic information needed to inform natural resource management decisions. For many wildlife species, the data generated have become increasingly important in the development of their long-term management strategies, leading to a better understanding of species diversity, population dynamics and ecology, and future conservation and management needs. The Molecular Ecology Lab serves Federal research and resource management agencies by developing scientifically rigorous research programs using nuclear, mitochondrial and chloroplast DNA to help address many of today's conservation biology and natural resource management issues.

  1. National Center for Manufacturing Sciences: Environmentally conscious manufacturing

    NASA Technical Reports Server (NTRS)

    Vinton, Clare

    1995-01-01

    The purpose of this presentation is to share the results and some of the thinking of the Environmentally Conscious Manufacturing - Strategic Initiative Group (ECM-SIG) at the National Center for Manufacturing Sciences (NCMS). NCMS is a consortium of more than 185 North American Manufacturing organizations comprised of about 75 percent for profit manufacturing companies and about 25 percent nonprofit organizations that support manufacturing activities. NCMS conducts collaborative R&D programs designed to improve global competitiveness of its members and other North American manufacturers to address common issues that are important to manufacturing industries. NCMS is an industry driven organization whose agenda is established by industry with input from appropriate government agencies.

  2. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Klotzsche, M. (Compiler)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.

  3. Optical Sciences Center/College of Optical Sciences: 50 years of excellence

    NASA Astrophysics Data System (ADS)

    Wyant, James C.

    2014-09-01

    Aden B. Meinel established the University of Arizona Optical Sciences Center, now known as the College of Optical Sciences, in 1964 to fulfill a national need for more highly trained engineers and physicists in the optical sciences. Throughout its 50-year history, OSC has grown and evolved in response to industrial demand. It now includes a worldclass faculty and an international student body, and its academic programs offer more than 100 graduate and undergraduate courses, an ABET-accredited undergraduate optical sciences and engineering degree program, and outstanding M.S. and Ph.D. graduate programs with extensive distance learning options. Its graduates are in great demand and are employed by national and international governments, businesses and universities. This paper will describe the formation of OSC and its 50 years of excellence.

  4. Florida Integrated Science Center (FISC) Coral Reef Research

    USGS Publications Warehouse

    Poore, D.Z.

    2008-01-01

    Coral reefs provide important ecosystem services such as shoreline protection and the support of lucrative industries including fisheries and tourism. Such ecosystem services are being compromised as reefs decline due to coral disease, climate change, overfishing, and pollution. There is a need for focused, integrated science to understand the complex ecological interactions and effects of these many stressors and to provide information that will effectively guide policies and best management practices to preserve and restore these important resources. The U.S. Geological Survey Florida Integrated Science Center (USGS-FISC) is conducting a coordinated Coral Reef Research Project beginning in 2009. Specific research topics are aimed at addressing priorities identified in the 'Strategic Science for Coral Ecosystems 2007-2011' document (U.S. Geological Survey, 2007). Planned research will include a blend of historical, monitoring, and process studies aimed at improving our understanding of the development, current status and function, and likely future changes in coral ecosystems. Topics such as habitat characterization and distribution, coral disease, and trends in biogenic calcification are major themes of understanding reef structure, ecological integrity, and responses to global change.

  5. Presearch Data Conditioning in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Twicken, Joseph D.; Chandrasekaran, Hema; Jenkins, Jon M.; Gunter, Jay P.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Presearch Data Conditioning (PDC) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this component are to correct systematic and other errors, remove excess flux due to aperture crowding, and condition the raw flux light curves for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) targets across the focal plane array. Long cadence corrected flux light curves are subjected to a transiting planet search in a subsequent pipeline module. We discuss the science algorithms for long and short cadence PDC: identification and correction of unexplained (i.e., unrelated to known anomalies) discontinuities; systematic error correction; and excess flux removal. We discuss the propagation of uncertainties from raw to corrected flux. Finally, we present examples of raw and corrected flux time series for flight data to illustrate PDC performance. Corrected flux light curves produced by PDC are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and will be made available to the general public in accordance with the NASA/Kepler data release policy.

  6. National Survey of ACE Programs.

    ERIC Educational Resources Information Center

    Constantino, Ernesto A.

    In 1987-88, a national survey was conducted to determine the adult/continuing education (ACE) policies and practices of large, urban community colleges. Questionnaires were mailed to ACE deans at 74 colleges, requesting information about program characteristics, funding sources, personnel, curriculum review, and marketing and publicity. Study…

  7. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    USGS Publications Warehouse

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  8. Actionable Science Lessons Emerging from the Department of Interior Climate Science Center Network

    NASA Astrophysics Data System (ADS)

    McMahon, G.; Meadow, A. M.; Mikels-Carrasco, J.

    2015-12-01

    The DOI Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS) has recommended that co-production of actionable science be the core programmatic focus of the Climate Science Center enterprise. Efforts by the Southeast Climate Science Center suggest that the complexity of many climate adaptation decision problems (many stakeholders that can influence implementation of a decision; the problems that can be viewed at many scales in space and time; dynamic objectives with competing values; complex, non-linear systems) complicates development of research-based information that scientists and non-scientists view as comprehensible, trustworthy, legitimate, and accurate. Going forward, organizers of actionable science efforts should consider inclusion of a broad set of stakeholders, beyond formal decisionmakers, and ensure that sufficient resources are available to explore the interests and values of this broader group. Co-produced research endeavors should foster agency and collaboration across a wide range of stakeholders. We recognize that stakeholder agency may be constrained by scientific or political power structures that limit the ability to initiate discussion, make claims, and call things into question. Co-production efforts may need to be preceded by more descriptive assessments that summarize existing climate science in ways that stakeholders can understand and link with their concerns. Such efforts can build rapport and trust among scientists and non-scientists, and may help stakeholders and scientists alike to frame adaptation decision problems amenable to a co-production effort. Finally, university and government researchers operate within an evaluation structure that rewards researcher-driven science that, at the extreme, "throws information over the fence" in the hope that information users will make better decisions. Research evaluation processes must reward more consultative, collaborative, and collegial research approaches if

  9. DOI Climate Science Centers--Regional science to address management priorities

    USGS Publications Warehouse

    O'Malley, Robin

    2012-01-01

    Our Nation's lands, waters, and ecosystems and the living and cultural resources they contain face myriad challenges from invasive species, the effects of changing land and water use, habitat fragmentation and degradation, and other influences. These challenges are compounded by increasing influences from a changing climate—higher temperatures, increasing droughts, floods, and wildfires, and overall increasing variability in weather and climate. The Department of the Interior (DOI) has established eight regional Climate Science Centers (CSC) (fig. 1) that will provide scientific information and tools to natural and cultural resource managers as they plan for conserving these resources in a changing world. The U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) is managing the CSCs on behalf of the DOI.

  10. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    NASA Astrophysics Data System (ADS)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  11. The National Space Science Data Center: An operational perspective

    NASA Technical Reports Server (NTRS)

    Blitstein, Ronald; Green, James L.

    1991-01-01

    The National Space Science Data Center (NSSDC) manages over 110,000 data tapes with over 4,000 data sets. The size of the digital archive is approximately 6,000 GBytes and is expected to grow to more than 28,000 GBytes by 1995. The NSSDC is involved in several initiatives to better serve the scientific community and improve the management of current and future data holdings. These initiatives address the need to manage data to ensure ready access by the user and manage the media to ensure continuing accessibility and integrity of the data. An operational view of the NSSDC, outlining current policies and procedures that have been implemented to ensure the effective use of available resources to support service and mission goals, and maintain compliance with prescribed data management directives is presented.

  12. The National Space Science Data Center: An operational perspective

    NASA Technical Reports Server (NTRS)

    Blitstein, Ronald; Green, James L.

    1992-01-01

    The National Space Science Data Center (NSSDC) manages over 110,000 data tapes with over 4,000 data sets. The size of the digital archive is approximately 6,000 GBytes and is expected to grow to more than 28,000 GBytes by 1995. The NSSDC is involved in several initiatives to better serve the scientific community and improve the management of current and future data holdings. These initiatives address the need to manage data to ensure ready access by the user and manage the media to ensure continuing accessibility and integrity of the data. This paper will present an operational view of the NSSDC, outlining current policies and procedures that were implemented to ensure the effective use of available resources to support service and mission goals, and maintain compliance with prescribed data management directives.

  13. ATHENA: Remote Sensing Science Center for Cultural Heritage in Cyprus

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Cuca, Branka; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-04-01

    The Cultural Heritage (CH) sector, especially those of monuments and sites has always been facing a number of challenges from environmental pressure, pollution, human intervention from tourism to destruction by terrorism.Within this context, CH professionals are seeking to improve currently used methodologies, in order to better understand, protect and valorise the common European past and common identity. "ATHENA" H2020-TWINN-2015 project will seek to improve and expand the capabilities of the Cyprus University of Technology, involving professionals dealing with remote sensing technologies for supporting CH sector from the National Research Center of Italy (CNR) and German Aerospace Centre (DLR). The ATHENA centre will be devoted to the development, introduction and systematic use of advanced remote sensing science and technologies in the field of archaeology, built cultural heritage, their multi-temporal analysis and interpretation and the distant monitoring of their natural and anthropogenic environment in the area of Eastern Mediterranean.

  14. Enriching Students' Education Using Interactive Workstations at a Salt Mine Turned Science Center

    ERIC Educational Resources Information Center

    Meissner, Barbara; Bogner, Franz

    2011-01-01

    Although teachers in principle are prepared to make use of science centers, such excursions often fail to facilitate learning processes. Therefore, it is necessary to improve the link between science centers and schools. The design and evaluation of valuable outreach projects may enhance students' out-of-school science learning. In our study, we…

  15. National Climate Change and Wildlife Science Center project accomplishments: highlights

    USGS Publications Warehouse

    Holl, Sally

    2011-01-01

    The National Climate Change and Wildlife Science Center (NCCWSC) has invested more than $20M since 2008 to put cutting-edge climate science research in the hands of resource managers across the Nation. With NCCWSC support, more than 25 cooperative research initiatives led by U.S. Geological Survey (USGS) researchers and technical staff are advancing our understanding of habitats and species to provide guidance to managers in the face of a changing climate. Projects focus on quantifying and predicting interactions between climate, habitats, species, and other natural resources such as water. Spatial scales of the projects range from the continent of North America, to a regional scale such as the Pacific Northwest United States, to a landscape scale such as the Florida Everglades. Time scales range from the outset of the 20th century to the end of the 21st century. Projects often lead to workshops, presentations, publications and the creation of new websites, computer models, and data visualization tools. Partnership-building is also a key focus of the NCCWSC-supported projects. New and on-going cooperative partnerships have been forged and strengthened with resource managers and scientists at Federal, tribal, state, local, academic, and non-governmental organizations. USGS scientists work closely with resource managers to produce timely and relevant results that can assist managers and policy makers in current resource management decisions. This fact sheet highlights accomplishments of five NCCWSC projects.

  16. Data Validation in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Wu, Hayley; Twicken, Joseph D.; Tenenbaum, Peter; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Allen, Christopher; Chandrasekaran, Hema; Jenkins, Jon M.; Caldwell, Douglas A.; Wohler, Bill; Girouard, Forrest; McCauliff, Sean; Cote, Miles T.; Klaus, Todd C.

    2010-01-01

    We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed. Keywords: photometry, data validation, Kepler, Earth-size planets

  17. Data validation in the Kepler Science Operations Center pipeline

    NASA Astrophysics Data System (ADS)

    Wu, Hayley; Twicken, Joseph D.; Tenenbaum, Peter; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Allen, Christopher; Chandrasekaran, Hema; Jenkins, Jon M.; Caldwell, Douglas A.; Wohler, Bill; Girouard, Forrest; McCauliff, Sean; Cote, Miles T.; Klaus, Todd C.

    2010-07-01

    We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed.

  18. Coverage of Team Science by Public Information Officers: Content Analysis of Press Releases about the National Science Foundation Science and Technology Centers

    ERIC Educational Resources Information Center

    Graube, Marita; Clark, Fiona; Illman, Deborah L.

    2010-01-01

    This study examines the content of press releases from the National Science Foundation (NSF) Science and Technology Centers (STCs) to determine how public information officers (PIOs) presented the outcomes of centers to journalists and the public. A total of 68 press releases were analyzed for type of news covered, visibility of centers and their…

  19. Los Alamos Neutron Science Center (LANSCE) accelerator timing system upgrade

    SciTech Connect

    Rybarcyk, L.J.; Shelley, F.E. Jr.

    1997-10-01

    The Los Alamos Neutron Science Center (LANSCE) 800 MeV proton linear accelerator (linac) operates at a maximum repetition rate of twice the AC power line frequency, i.e. 120 Hz. The start of each machine cycle occurs a fixed delay after each zero-crossing of the AC line voltage. Fluctuations in the AC line frequency and phase are therefore present on all linac timing signals. Proper beam acceleration along the linac requires that the timing signals remain well synchronized to the AC line. For neutron chopper spectrometers, e.g., PHAROS at the Manuel Lujan Jr. Neutron Scattering Center, accurate neutron energy selection requires that precise synchronization be maintained between the beam-on-target arrival time and the neutron chopper rotor position. This is most easily accomplished when the chopper is synchronized to a stable, fixed frequency signal. A new zero-crossing circuit which employs a Phase-Locked Loop (PLL) has been developed to increase the phase and frequency stability of the linac timing signals and thereby improve neutron chopper performance while simultaneously maintaining proper linac operation. Results of timing signal data analysis and modeling and a description of the PLL circuit are presented.

  20. HEASARC - The High Energy Astrophysics Science Archive Research Center

    NASA Technical Reports Server (NTRS)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  1. Science Outreach at NASA's Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  2. Science Outreach at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lebo, George

    2002-01-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  3. Climate Science Centers: Growing Federal and Academic Expertise in the Nation's Interests

    NASA Astrophysics Data System (ADS)

    Ryker, S. J.

    2014-12-01

    The U.S. Department of the Interior's (Interior) natural and cultural resource managers face increasingly complex challenges exacerbated by climate change. In 2009, under Secretarial Order 3289, Interior created eight regional Climate Science Centers managed by the U.S. Geological Survey's (USGS) National Climate Change and Wildlife Science Center and in partnership with universities. Secretarial Order 3289 provides a framework to coordinate climate change science and adaptation efforts across Interior and to integrate science and resource management expertise from Federal, State, Tribal, private, non-profit, and academic partners. In addition to broad research expertise, these Federal/university partnerships provide opportunities to develop a next generation of climate science professionals. These include opportunities to increase the climate science knowledge base of students and practicing professionals; build students' skills in working across the boundary between research and implementation; facilitate networking among researchers, students, and professionals for the application of research to on-the-ground issues; and support the science pipeline in climate-related fields through structured, intensive professional development. In 2013, Climate Science Centers supported approximately 10 undergraduates, 60 graduate students, and 26 postdoctoral researchers. Additional students trained by Climate Science Center-affiliated faculty also contribute valuable time and expertise, and are effectively part of the Climate Science Center network. The Climate Science Centers' education and training efforts have also reached a number of high school students interested in STEM careers, and professionals in natural and cultural resource management. The Climate Science Centers are coordinating to build on each other's successful education and training efforts. Early successes include several intensive education experiences, such as the Alaska Climate Science Center's Girls on

  4. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    NASA Astrophysics Data System (ADS)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning

  5. Multi-Level Evaluation of Cooperative Research Centers: Bridging between the Triple Helix and the Science of Team Science

    ERIC Educational Resources Information Center

    Gray, Denis O.; Sundstrom, Eric

    2010-01-01

    Two emergent conceptual models for fostering the development of innovative technology through applied science at Cooperative Research Centers (CRCs)--the Triple Helix and the science of team science--have proved highly productive in stimulating research into how the innovation process works. Although the two arenas for fostering innovation have…

  6. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    ERIC Educational Resources Information Center

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  7. Transit Model Fitting in the Kepler Science Operations Center Pipeline

    NASA Astrophysics Data System (ADS)

    Li, Jie; Burke, C. J.; Jenkins, J. M.; Quintana, E. V.; Rowe, J. F.; Seader, S. E.; Tenenbaum, P.; Twicken, J. D.

    2012-05-01

    We describe the algorithm and performance of the transit model fitting of the Kepler Science Operations Center (SOC) Pipeline. Light curves of long cadence targets are subjected to the Transiting Planet Search (TPS) component of the Kepler SOC Pipeline. Those targets for which a Threshold Crossing Event (TCE) is generated in the transit search are subsequently processed in the Data Validation (DV) component. The light curves may span one or more Kepler observing quarters, and data may not be available for any given target in all quarters. Transit model parameters are fitted in DV to transit-like signatures in the light curves of target stars with TCEs. The fitted parameters are used to generate a predicted light curve based on the transit model. The residual flux time series of the target star, with the predicted light curve removed, is fed back to TPS to search for additional TCEs. The iterative process of transit model fitting and transiting planet search continues until no TCE is generated from the residual flux time series or a planet candidate limit is reached. The transit model includes five parameters to be fitted: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. The initial values of the fit parameters are determined from the TCE values provided by TPS. A limb darkening model is included in the transit model to generate the predicted light curve. The transit model fitting results are used in the diagnostic tests in DV, such as the centroid motion test, eclipsing binary discrimination tests, etc., which helps to validate planet candidates and identify false positive detections. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.

  8. The Joseph Priestley Science Center, A Feasibility Study of a Proposed Supplementary Science Center for the Lower Delaware Valley.

    ERIC Educational Resources Information Center

    Cox, Donald W.

    Public school science instruction, research in science curriculum development, and inservice training for science teachers is planned for one central facility. Concentrated natural science courses using science equipment not ordinarily available in schools will be offered to all pupils, 4th through 12th grade, of Philadelphia area school systems.…

  9. Contemplating Synergistic Algorithms for the NASA ACE Mission

    NASA Technical Reports Server (NTRS)

    Mace, Gerald G.; Starr, David O.; Marchand, Roger; Ackerman, Steven A.; Platnick, Steven E.; Fridlind, Ann; Cooper, Steven; Vane, Deborah G.; Stephens, Graeme L.

    2013-01-01

    ACE is a proposed Tier 2 NASA Decadal Survey mission that will focus on clouds, aerosols, and precipitation as well as ocean ecosystems. The primary objective of the clouds component of this mission is to advance our ability to predict changes to the Earth's hydrological cycle and energy balance in response to climate forcings by generating observational constraints on future science questions, especially those associated with the effects of aerosol on clouds and precipitation. ACE will continue and extend the measurement heritage that began with the A-Train and that will continue through Earthcare. ACE planning efforts have identified several data streams that can contribute significantly to characterizing the properties of clouds and precipitation and the physical processes that force these properties. These include dual frequency Doppler radar, high spectral resolution lidar, polarimetric visible imagers, passive microwave and submillimeter wave radiometry. While all these data streams are technologically feasible, their total cost is substantial and likely prohibitive. It is, therefore, necessary to critically evaluate their contributions to the ACE science goals. We have begun developing algorithms to explore this trade space. Specifically, we will describe our early exploratory algorithms that take as input the set of potential ACE-like data streams and evaluate critically to what extent each data stream influences the error in a specific cloud quantity retrieval.

  10. The Wilkins Institute for Science Education: A science-centered magnet school

    NASA Astrophysics Data System (ADS)

    Wilkins, Gary Dean

    The problem that this study addressed is that excellent science instruction is not consistently provided by traditional public schools. This study utilized a review of the literature, interviews, surveys, and focus groups. This study provides the basis for the proposed design of a school that can be the solution to the problem. Conducted in 1995, the Third International Mathematics and Science Study (TIMSS) showed that our efforts to improve U.S. education have had some successes, but overall have been ineffective in raising U.S. performance from a middle-of-the-pack position. At the end of secondary schooling, which in the U.S. is 12 th grade, U.S. performance was among the lowest in both science and math, including our most advanced students (National Center for Educational Statistics, 2001). For this research project I surveyed 412 students and 218 parents or guardians. I conducted interviews and focus groups with 10 participants who were science teachers or educators, and 10 participants who were scientists. The surveys presented 12 factors, believed to be valued as part of an excellent science education, which were security, social activities, sports, computers, reading and writing, hands-on equipment, industry support, and cafeteria. The survey participants rated each factor from most to least important. The focus groups and the interviews covered science education in general, as well as these same 12 topics. Students and parents agreed that qualified instructors is the item that is most important to provide quality science instruction. Students and parents disagreed most on the item reading and writing, which students ranked 9th, but parents ranked 2nd, a difference of 7 rankings. Considering only the item that was ranked number 1, students identified sports most often as most important, but parents disagreed and ranked this 8th, a difference of 7 ranks. After this dissertation is completed, it is my intent to benefit students with the implementation of the

  11. St. Petersburg Coastal and Marine Science Center's Core Archive Portal

    USGS Publications Warehouse

    Reich, Chris; Streubert, Matt; Dwyer, Brendan; Godbout, Meg; Muslic, Adis; Umberger, Dan

    2012-01-01

    This Web site contains information on rock cores archived at the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC). Archived cores consist of 3- to 4-inch-diameter coral cores, 1- to 2-inch-diameter rock cores, and a few unlabeled loose coral and rock samples. This document - and specifically the archive Web site portal - is intended to be a 'living' document that will be updated continually as additional cores are collected and archived. This document may also contain future references and links to a catalog of sediment cores. Sediment cores will include vibracores, pushcores, and other loose sediment samples collected for research purposes. This document will: (1) serve as a database for locating core material currently archived at the USGS SPCMSC facility; (2) provide a protocol for entry of new core material into the archive system; and, (3) set the procedures necessary for checking out core material for scientific purposes. Core material may be loaned to other governmental agencies, academia, or non-governmental organizations at the discretion of the USGS SPCMSC curator.

  12. Person-centered pain management - science and art.

    PubMed

    Braš, Marijana; Đorđević, Veljko; Janjanin, Mladen

    2013-06-01

    We are witnessing an unprecedented development of the medical science, which promises to revolutionize health care and improve patients' health outcomes. However, the core of the medical profession has always been and will be the relationship between the doctor and the patient, and communication is the most widely used clinical skill in medical practice. When we talk about different forms of communication in medicine, we must never forget the importance of communication through art. Although one of the simplest, art is the most effective way to approach the patient and produce the effect that no other means of communication can achieve. Person-centered pain management takes into account psychological, physical, social, and spiritual aspects of health and disease. Art should be used as a therapeutic technique for people who suffer from pain, as well as a means of raising public awareness of this problem. Art can also be one of the best forms of educating medical professionals and others involved in treatment and decision-making on pain. PMID:23771762

  13. Optical metrology at the Optical Sciences Center: an historical review

    NASA Astrophysics Data System (ADS)

    Creath, Katherine; Parks, Robert E.

    2014-10-01

    The Optical Sciences Center (OSC) begun as a graduate-level applied optics teaching institution to support the US space effort. The making of optics representative of those used in other space programs was deemed essential. This led to the need for optical metrology: at first Hartmann tests, but almost immediately to interferometric tests using the newly invented HeNe laser. Not only were new types of interferometers needed, but the whole infrastructure that went with testing, fringe location methods, aberration removal software and contour map generation to aid the opticians during polishing needed to be developed. Over the last half century more rapid and precise methods of interferogram data reduction, surface roughness measurement, and methods of instrument calibration to separate errors from those in the optic have been pioneered at OSC. Other areas of research included null lens design and the writing of lens design software that led into the design of computer generated holograms for asphere testing. More recently work has been done on the reduction of speckle noise in interferograms, methods to test large convex aspheres, and a return to slope measuring tests to increase the dynamic range of the types of aspheric surfaces amenable to optical testing including free-form surfaces. This paper documents the history of the development of optical testing projects at OSC and highlights the contributions some of the individuals associated with new methods of testing and the infrastructure needed to support the testing. We conclude with comments about the future trends optical metrology.

  14. Semantic Data Access Services at NASA's Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Huffer, E.; Hertz, J.; Kusterer, J.

    2012-12-01

    The corpus of Earth Science data products at the Atmospheric Science Data Center at NASA's Langley Research Center comprises a widely heterogeneous set of products, even among those whose subject matter is very similar. Two distinct data products may both contain data on the same parameter, for instance, solar irradiance; but the instruments used, and the circumstances under which the data were collected and processed, may differ significantly. Understanding the differences is critical to using the data effectively. Data distribution services must be able to provide prospective users with enough information to allow them to meaningfully compare and evaluate the data products offered. Semantic technologies - ontologies, triple stores, reasoners, linked data - offer functionality for addressing this issue. Ontologies can provide robust, high-fidelity domain models that serve as common schema for discovering, evaluating, comparing and integrating data from disparate products. Reasoning engines and triple stores can leverage ontologies to support intelligent search applications that allow users to discover, query, retrieve, and easily reformat data from a broad spectrum of sources. We argue that because of the extremely complex nature of scientific data, data distribution systems should wholeheartedly embrace semantic technologies in order to make their data accessible to a broad array of prospective end users, and to ensure that the data they provide will be clearly understood and used appropriately by consumers. Toward this end, we propose a distribution system in which formal ontological models that accurately and comprehensively represent the ASDC's data domain, and fully leverage the expressivity and inferential capabilities of first order logic, are used to generate graph-based representations of the relevant relationships among data sets, observational systems, metadata files, and geospatial, temporal and scientific parameters to help prospective data consumers

  15. The National Centers for Ocean Sciences Education Excellence Network: Building Bridges Between Ocean Scientists and Science Education

    NASA Astrophysics Data System (ADS)

    Scowcroft, G.; Hotaling, L. A.

    2009-12-01

    Since 2002 the National Centers for Ocean Sciences Education Excellence (COSEE) Network, funded by the National Science Foundation with support from the National Oceanic and Atmospheric Administration, has worked to increase the understanding of the ocean and its relevance to society. The Network is currently comprised of twelve Centers located throughout the United States and a Central Coordinating Office. COSEE focuses on innovative activities that transform and broaden participation in the ocean science education enterprise. A key player in the national ocean literacy movement, COSEE’s objectives are to develop partnerships between ocean scientists and educators and foster communication and coordination among ocean science education programs nationwide. COSEE has grown into the nation's most comprehensive ocean science and education network with over 200 partners, including universities and research institutions, community colleges, school districts, informal science education institutions, and state/federal agencies. Each Center is a consortium of one or more ocean science research institutions, informal science education organizations, and formal education entities. The mission of the National COSEE Network is to engage scientists and educators to transform ocean sciences education. Center activities include the development of catalytic partnerships among diverse institutions, the integration of ocean science research into high-quality educational materials, and the establishment of pathways that enable ocean scientists to interact with educators, students, and the public. In addition to the work and projects implemented locally and regionally by the Centers, Network-level efforts occur across Centers, such as the national promotion of Ocean Literacy Principals and encouragement of our nation’s youth to pursue ocean related areers. This presentation will offer several examples of how the National COSEE Network is playing an important and evolving role in

  16. A Phenomenological Investigation of Science Center Exhibition Developers' Expertise Development

    ERIC Educational Resources Information Center

    Young, Denise L.

    2012-01-01

    The purpose of this study was to examine the exhibition developer role in the context of United States (U.S.) science centers, and more specifically, to investigate the way science center exhibition developers build their professional expertise. This research investigated how successfully practicing exhibition developers described their current…

  17. 77 FR 31329 - Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... National Oceanic and Atmospheric Administration Northeast Fisheries Science Center, Woods, Hole, MA; Public... Science Center will sponsor a workshop to address the stock structure of cod in the Gulf of Maine, Georges... issues may not be the subject of formal action during this meeting. Action will be restricted to...

  18. A Center for Academic Excellence in Mathematics, Science, and Computer Learning. Final Report.

    ERIC Educational Resources Information Center

    McIntyre, Patrick J.; Walton, Karen Doyle

    This is a report of a model resource center for science and mathematics teachers which is committed to developing excellence in mathematics, science, and computer learning. Long-range goals of the center include: providing inservice workshops to 500 or more teachers per year on campus; an equivalent amount of instruction off-campus; to provide…

  19. An Exploration of Hispanic Mothers' Culturally Sustaining Experiences at an Informal Science Center

    ERIC Educational Resources Information Center

    Weiland, Ingrid

    2015-01-01

    Science education reform focuses on learner-centered instruction within contexts that support learners' sociocultural experiences. The purpose of this study was to explore Hispanic mothers' experiences as accompanying adults at an informal science center within the context of culturally sustaining experiences, which include the fluidity…

  20. 75 FR 23801 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... National Park Service Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center... to repatriate cultural items in the possession of the Rochester Museum & Science Center, Rochester... two small wooden medicine faces from Alvin Dewey, Rochester, NY. On March 25, 1922, Alvin...

  1. REACTOR DOSIMETRY STUDY OF THE RHODE ISLAND NUCLEAR SCIENCE CENTER.

    SciTech Connect

    HOLDEN, N.E.,; RECINIELLO, R.N.; HU, J.-P.

    2005-05-08

    The Rhode Island Nuclear Science Center (RINSC), located on the Narragansett Bay Campus of the University of Rhode Island, is a state-owned and US NRC-licensed nuclear facility constructed for educational and industrial applications. The main building of RINSC houses a two-megawatt (2 MW) thermal power critical reactor immersed in demineralized water within a shielded tank. As its original design in 1958 by the Rhode Island Atomic Energy Commission focused on the teaching and research use of the facility, only a minimum of 3.85 kg fissile uranium-235 was maintained in the fuel elements to allow the reactor to reach a critical state. In 1986 when RINSC was temporarily shutdown to start US DOE-directed core conversion project for national security reasons, all the U-Al based Highly-Enriched Uranium (HEU, 93% uranium-235 in the total uranium) fuel elements were replaced by the newly developed U{sub 3}Si{sub 2}-Al based Low Enriched Uranium (LEU, {le}20% uranium-235 in the total uranium) elements. The reactor first went critical after the core conversion was achieved in 1993, and feasibility study on the core upgrade to accommodate Boron Neutron-Captured Therapy (BNCT) was completed in 2000 [3]. The 2-MW critical reactor at RINSC which includes six beam tubes, a thermal column, a gamma-ray experimental station and two pneumatic tubes has been extensive utilized as neutron-and-photon dual source for nuclear-specific research in areas of material science, fundamental physics, biochemistry, and radiation therapy. After the core conversion along with several major system upgrade (e.g. a new 3-MW cooling tower, a large secondary piping system, a set of digitized power-level instrument), the reactor has become more compact and thus more effective to generate high beam flux in both the in-core and ex-core regions for advance research. If not limited by the manpower and operating budget in recent years, the RINSC built ''in concrete'' structure and control systems should have

  2. Searching for the Center on the Mathematics-Science Continuum.

    ERIC Educational Resources Information Center

    Roebuck, Kay I.; Warden, Melissa A.

    1998-01-01

    The history of mathematics and science integration in American schools is a continuum which runs from math for math's sake to science for science's sake. While examples of the integration of process skills are common, integration of content is not. Presents two lessons developed around radioactive decay and efficiency. Suggests that changes in…

  3. Treating Science Anxiety in a University Counseling Center.

    ERIC Educational Resources Information Center

    Greenburg, Sharon L.; Mallow, Jeffry V.

    1982-01-01

    Describes the development of a science anxiety clinic. Discusses the primary psychological components of the clinic including cognitive restructuring, systematic desensitization, and multimodal behavior therapy. Presents two components of science learning: study skills and science classroom interaction. Summarizes implications for counselors. (RC)

  4. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information...

  5. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information...

  6. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information...

  7. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information...

  8. Center for Excellence in Ocean Sciences Education recommended

    NASA Astrophysics Data System (ADS)

    McManus, Dean A.; Walker, Sharon

    2000-10-01

    The natural interdisciplinary context of the ocean sciences has not been used to promote science education integrated across scientific disciplines at all levels, in alignment with the reforms of science education. Moreover, the innate human interest in the ocean has not been used to integrate science—as it should be—with the arts, humanities, and social sciences in the curriculum. In this failure, the ocean sciences have failed to help the public understand the role of the ocean in the quality of life and the nation's economic development and defense. In the past,several opportunities for education coordinated beyond individual efforts have been lost. Ocean sciences research results have not been adequately integrated into educational materials that could engage students' imaginations for a lifetime of experiential science learning.

  9. Institutionalization in Action: Interactive Science Center Interactivity and Materiality from the Family Perspective

    ERIC Educational Resources Information Center

    Crain, Rhiannon Lorraine

    2009-01-01

    Interactive science centers are unique players in the science education community, but their positioning as both authorities on science and providers of "free choice" learning presents learning researchers with a problematic contradiction rooted in the complexities of trying to be both "scientific" and "education" organizations. Using insight from…

  10. JSC, NASA Lead Center: Overview of Human Space Life Sciences Programs Office (HSLSPO)

    NASA Technical Reports Server (NTRS)

    Stegemoeller, Charles

    1999-01-01

    An overview of the Human Space Life Sciences Programs Office (HSLSPO) presents the following topics in viewgraph form: Agency structure, objectives of the HSLSPO lead center implementation plan, HSLSPO relationship to Johnson Space Center (JSC) as lead center, HSLSPO programs and projects, biomedical research and countermeasures, HSLSPO relationship to the International Space Station (ISS), and BR&C ISS flight research content.

  11. ACE to Ulysses Coherences

    NASA Astrophysics Data System (ADS)

    Thomson, D. J.; Maclennan, C. G.; Lanzerotti, L. J.

    2006-12-01

    The EPAM charged particle instrument on ACE is the backup for the HISCALE instrument on Ulysses making the two ideally suited for spatial coherence studies over large heliosphere distances. Fluxes of low-energy ( ~50 - 200 keV) electrons are detected in eight spatial sectors on both spacecraft. A spherical harmonic description of the particle flux as a function of time using only the l=0 and l=1 degree coefficients describes most of the observed flux. Here we concentrate on the three l=1 coefficients for the 60--100 kev electrons.Between the two spacecraft these result in nine coherence estimates that are all typically moderately coherent, but the fact that the different coefficients at each spacecraft are also coherent with each other makes interpretation difficult. To avoid this difficulty we estimated the canonical coherences between the two groups of three series. This, in effect, chooses an optimum coordinate system at each spacecraft and for each frequency and estimates the coherence in this frame. Using one--minute data, we find that the canonical coherences are generally larger at high frequencies (3 mHz and above) than they are at low frequencies. This appears to be generally true and does not depend particularly on time, range, etc. However, if the data segment is chosen too long, say > 30 days with 1--minute sampling, the coherence at high frequencies drops. This may be because the spatial and temporal features of the mode are confounded, or possibly because the solar modes p--modes are known to change frequency with solar activity, so do not appear coherent on long blocks.The coherences are not smooth functions of frequency, but have a bimodal distribution particularly in the 100 μHz to 5 mHz range. Classifying the data at frequencies where the canonical coherences are high in terms of apparent polarization and orientation, we note two major families of modes that appear to be organized by the Parker spiral. The magnetic field data on the two

  12. Science at NASA field centers: Findings and recommendations on the scope, strength and interactions of science and science-related technology programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Great achievements by NASA and other space agencies have shown us what opportunities lie in the opening of the space frontier. A broad and vigorous science program in NASA is vital to full U.S. exploitation of these new opportunities. Today, science in NASA Centers is characterized by its breadth, relevance, and excellence. The NASA in-house science program and its links to university programs constitute a vitally important national resource. Maintaining excellence as a foundation for the future is a fundamental responsibility of NASA, one that requires constant attention and effort. This report by the NASA Center Science Assessment Team documents the current state of science within NASA and recommends actions to maintain a healthy program. NASA scientists have always played key roles in planning, guiding, and conducting national programs in space science. The review of Center science programs is intended to ensure that both NASA and the nation can depend on their continuing contribution in these roles.

  13. Center forTelehealth and Cybermedicine Research, University of New Mexico Health Sciences Center: a model of a telehealth program within an academic medical center.

    PubMed

    Alverson, Dale C; Dion, Denise; Migliorati, Margaret; Rodriguez, Adrian; Byun, Hannah W; Effertz, Glen; Duffy, Veronica; Monge, Benjamin

    2013-05-01

    An overview of the Center for Telehealth and Cybermedicine Research at the University of New Mexico Health Sciences Center was presented along with several other national and international programs as part of the of a symposium-workshop on telehealth, "Sustaining and Realizing the Promise of Telemedicine," held at the University of Michigan Health System in Ann Arbor, MI, May 18-19, 2012 and hosted by the University of Michigan Telemedicine Resource Center and its Director, Rashid Bashshur. This article describes our Center, its business plan, and a view to the future. PMID:23317516

  14. U.S. Department of the Interior Southeast Climate Science Center Science and Operational Plan

    USGS Publications Warehouse

    Jones, Sonya A.; Dalton, Melinda S.

    2012-01-01

    Climate change challenges many of the basic assumptions routinely used by conservation planners and managers, including the identification and prioritization of areas for conservation based on current environmental conditions and the assumption those conditions could be controlled by management actions. Climate change will likely alter important ecosystem drivers (temperature, precipitation, and sea-level rise) and make it difficult, if not impossible, to maintain current environmental conditions into the future. Additionally, the potential for future conservation of non-conservation lands may be affected by climate change, which further complicates resource planning. Potential changes to ecosystem drivers, as a result of climate change, highlight the need to develop and adapt effective conservation strategies to cope with the effects of climate and landscape change. The U.S. Congress, recognized the potential effects of climate change and authorized the creation of the U.S. Geological Survey National Climate Change and Wildlife Science Center (NCCWSC) in 2008. The directive of the NCCWSC is to produce science that supports resource-management agencies as they anticipate and adapt to the effects of climate change on fish, wildlife, and their habitats. On September 14, 2009, U.S. Department of the Interior (DOI) Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010), which expanded the mandate of the NCCWSC to address climate-change-related impacts on all DOI resources. Secretarial Order 3289 "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources," established the foundation of two partner-based conservation science entities: Climate Science Centers (CSC) and their primary partners, Landscape Conservation Cooperatives (LCC). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase the understanding of climate change, and to coordinate an effective response

  15. A cross-case analysis of three Native Science Field Centers

    NASA Astrophysics Data System (ADS)

    Augare, Helen J.; Davíd-Chavez, Dominique M.; Groenke, Frederick I.; Little Plume-Weatherwax, Melissa; Lone Fight, Lisa; Meier, Gene; Quiver-Gaddie, Helene; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; St. Pierre, Nate; Valdez, Shelly; Wippert, Rachel

    2015-12-01

    Native Science Field Centers (NSFCs) were created to engage youth and adults in environmental science activities through the integration of traditional Native ways of knowing (understanding about the natural world based on centuries of observation including philosophy, worldview, cosmology, and belief systems of Indigenous peoples), Native languages, and Western science concepts. This paper focuses on the Blackfeet Native Science Field Center, the Lakota Native Science Field Center, and the Wind River Native Science Field Center. One of the long-term, overarching goals of these NSFCs was to stimulate the interest of Native American students in ways that encouraged them to pursue academic and career paths in science, technology, engineering, and mathematics (STEM) fields. A great deal can be learned from the experiences of the NSFCs in terms of effective educational strategies, as well as advantages and challenges in blending Native ways of knowing and Western scientific knowledge in an informal science education setting. Hopa Mountain—a Bozeman, Montana-based nonprofit—partnered with the Blackfeet Community College on the Blackfeet Reservation, Fremont County School District #21 on the Wind River Reservation, and Oglala Lakota College on the Pine Ridge Reservation to cooperatively establish the Native Science Field Centers. This paper presents a profile of each NSFC and highlights their program components and accomplishments.

  16. NASA Johnson Space Center Life Sciences Data System

    NASA Technical Reports Server (NTRS)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  17. Adolescent parents and their children: a multifaceted approach to prevention of adverse childhood experiences (ACE).

    PubMed

    Mayer, Lynn Milgram; Thursby, Ellen

    2012-01-01

    Childhood experiences can have long-term effects. Research shows that children who undergo adverse childhood experiences (ACE) often have negative health and mental health outcomes later in life. Children of adolescent parents with high ACE Scores are at greater risk of ACE. As such, an intergenerational approach to preventing ACE is proposed in this article, addressing the needs of both the adolescent parent and their children. A review of the literature indicates that a public health perspective can guide the development of a prevention model aimed at reducing the effects of ACE. The current article proposes a universal, multifaceted, and interdisciplinary prevention science model that has two targets: adolescent parents and their children. Schools and early childhood programs can be mobilized to offer community prevention strategies across realms to include the individual, community, provider, coalitions/networks, organizational practices, and policy/legislation. PMID:22970783

  18. Focus of international biotech center shift to science

    SciTech Connect

    O'Sullivan, D.A.

    1985-04-15

    The first meeting of the panel of scientific advisors for the International Center for Genetic Engineering and Biotechnology endorsed the underlying principles of the ICGEB. These principles are that it should strive to be a center of excellence and that it should engage in research, training and the development of technology directly related to the interests and needs of developing countries it is meant to serve. The recruitment of an outstanding scientific staff is central to the establishment of ICGEB as a center of excellence.

  19. 34 CFR 645.14 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Science Centers provide and how are they organized? 645.14 Section 645.14 Education Regulations of the... Program? § 645.14 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive...

  20. 34 CFR 645.14 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Science Centers provide and how are they organized? 645.14 Section 645.14 Education Regulations of the... Program? § 645.14 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive...

  1. 34 CFR 645.14 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Science Centers provide and how are they organized? 645.14 Section 645.14 Education Regulations of the... Program? § 645.14 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive...

  2. 34 CFR 645.14 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Science Centers provide and how are they organized? 645.14 Section 645.14 Education Regulations of the... Program? § 645.14 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive...

  3. Hatfield Marine Science Center Dynamic Revetment Project DSL permit #45455-FP, Monitoring Report February, 2013

    EPA Science Inventory

    A Dynamic Revetment (gravel beach) was installed in November, 2011 on the shoreline along the northeastern edge of the Hatfield Marine Science Center (HMSC) to mitigate erosion that threatened HMSC critical infrastructure. Shoreline topographic and biological monitoring was init...

  4. Hatfield Marine Science Center Dynamic Revetment Project DSL permit #45455-FP, Monitoring Report February 2012

    EPA Science Inventory

    A Dynamic Revetment (gravel beach) was installed in November, 2011 on the shoreline along the northeastern edge of the Hatfield Marine Science Center (HMSC) to mitigate erosion that threatened HMSC critical infrastructure. Shoreline topographic and biological monitoring was init...

  5. Planetary GIS at the U.S. Geological Survey Astrogeology Science Center

    NASA Astrophysics Data System (ADS)

    Hare, T. M.; Skinner, J. A.; Fortezzo, C. M.; Gaddis, L. R.

    2015-06-01

    For the past 51 years, the USGS Astrogeology Science Center has been a resource for planetary geoscience, cartography, and remote sensing. In more recent years, we have supported GIS for planetary data integration, geologic mapping and analysis.

  6. Educational Outreach at the MIT Plasma Science and Fusion Center

    NASA Astrophysics Data System (ADS)

    Rivenberg, Paul; Thomas, Paul

    2006-10-01

    At the MIT PSFC, student and staff volunteers work together to increase the public's knowledge of fusion science and plasma technology. Seeking to generate excitement in young people about science and engineering, the PSFC hosts a number of educational outreach activities throughout the year, including Middle and High School Outreach Days. The PSFC also has an in-school science demonstration program on the theme of magnetism. The Mr. Magnet Program, headed by Mr. Paul Thomas, has been bringing lively demonstrations on magnetism into local elementary and middle schools for 15 years. This year Mr. Magnet presented the program to nearly 30,000 students at over 67 schools and other events, reaching kindergartners through college freshmen. In addition to his program on magnetism, he is offering an interactive lecture about plasma to high schools. The "Traveling Plasma Lab" encourages students to learn more about plasma science while having fun investigating plasma properties using actual laboratory techniques and equipment. Beyond the classroom, Paul Thomas has provided technical training for Boston Museum of Science staff in preparation for the opening of a Star Wars exhibit. His hands-on demos have also been filmed by the History Channel for a one-hour program about Magnetism, which aired in June 2006.

  7. 75 FR 57967 - Science Advisory Board to the National Center for Toxicological Research Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... HUMAN SERVICES Food and Drug Administration Science Advisory Board to the National Center for... least one portion of the meeting will be closed to the public. Name of Committee: Science Advisory Board... make every effort to accommodate persons with physical disabilities or special needs. If you...

  8. The Center for the Arts and Sciences: 1991-92 Student Survey. Evaluation Report.

    ERIC Educational Resources Information Center

    Saginaw Public Schools, MI. Dept. of Evaluation Services.

    Findings of a study that examined the situation in which minority students in an advanced arts and sciences high school program received low or failing grades are presented in this paper. Students who had been good students in their home schools received low or failing grades in the mathematics and science program at the Center for the Arts and…

  9. Center of Excellence in Space Data and Information Science, Year 9

    NASA Technical Reports Server (NTRS)

    Yesha, Yelena

    1997-01-01

    This report summarizes the range of computer science related activities undertaken by CESDIS(Center of Excellence in Space Data and Information Sciences) for NASA in the twelve months from July 1, 1996 through June 30, 1997. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists.

  10. 76 FR 44593 - Identifying the Center for Drug Evaluation and Research's Science and Research Needs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ...The Food and Drug Administration (FDA) is announcing the availability of a draft report entitled ``Identifying CDER's Science and Research Needs.'' This document identifies current priorities in regulatory science related to the mission of the Center for Drug Evaluation and Research (CDER), and will guide strategic planning of internal research efforts. Through external communication of the......

  11. Distributed Expertise in a Science Center: Social and Intellectual Role-Taking by Families

    ERIC Educational Resources Information Center

    Zimmerman, Heather Toomey; Reeve, Suzanne; Bell, Philip

    2008-01-01

    This research project examines the way that children and parents talk about science outside of school and, specifically, how they show distributed expertise about biological topics during visits to a science center. We adopt a theoretical framework that looks at learning on three interweaving planes: individual, social, and cultural (tools,…

  12. Scientific involvement in Skylab by the Space Sciences Laboratory of the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Winkler, C. E. (Editor)

    1973-01-01

    The involvement of the Marshall Space Flight Center's Space Sciences Laboratory in the Skylab program from the early feasibility studies through the analysis and publication of flight scientific and technical results is described. This includes mission operations support, the Apollo telescope mount, materials science/manufacturing in space, optical contamination, environmental and thermal criteria, and several corollary measurements and experiments.

  13. 78 FR 77687 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... HUMAN SERVICES Food and Drug Administration Science Advisory Board to the National Center for... least one portion of the meeting will be closed to the public. Name of Committee: Science Advisory Board..., the SAB will hear an update from each of NCTR's research Division's the Office of ]...

  14. Institutional History of an Interactive Science Center: The Founding and Development of the Exploratorium

    ERIC Educational Resources Information Center

    Ogawa, Rodney T.; Loomis, Molly; Crain, Rhiannon

    2009-01-01

    This study examines the historical conditions that fostered significant reform in science education. To understand these conditions, we employ a framework drawn from the new institutionalism in organization theory to study the founding and early development of the Exploratorium--a prominent science center that greatly impacted the field of science…

  15. Use of Learner-Centered Instruction in College Science and Mathematics Classrooms.

    ERIC Educational Resources Information Center

    Walczyk, Jeffrey J.; Ramsey, Linda L.

    2003-01-01

    Reports results of a survey developed to assess the use of learner-centered techniques in undergraduate science and mathematics classrooms. Reveals that learner-centered techniques are used infrequently, but when used, they are applied to all aspects of teaching. Suggests that federal funding has been slightly effective in promoting its use. (KHR)

  16. Data and spatial studies of the USGS Texas Water Science Center

    USGS Publications Warehouse

    Burley, Thomas E.

    2014-01-01

    Hydrologists, geographers, geophysicists, and geologists with the U.S. Geological Survey (USGS) Texas Water Science Center (TXWSC) work in the USGS Water Mission Area on a diverse range of projects built on a foundation of spatial data. The TXWSC has developed sophisticated data and spatial-studies-related capabilities that are an integral part of the projects undertaken by the Center.

  17. Connecting Science Notebooking to the Elementary Library Media Center

    ERIC Educational Resources Information Center

    Fontichiaro, Kristin; Buczynski, Sandy

    2009-01-01

    The term "inquiry" can be viewed from two perspectives. Inquiry refers to the abilities students develop when designing and conducting investigations and the understanding they gain through this process about the nature of science. Inquiry also refers to teaching and learning strategies that enable students to master content concepts. Library…

  18. A Model Marine Science Laboratory, North Kitsap Marine Environmental Center.

    ERIC Educational Resources Information Center

    Driscoll, Andrew L.; And Others

    The project had two overall goals: (1) to establish and maintain a model marine science facility to be used as a teaching station and a base for research; and (2) to increase student and public awareness about the oceans and the important role they will play in man's future. The project served all the school districts in Kitsap County (Washington)…

  19. National Space Science Data Center and World Data Center A for Rockets and Satellites - Ionospheric data holdings and services

    NASA Technical Reports Server (NTRS)

    Bilitza, D.; King, J. H.

    1988-01-01

    The activities and services of the National Space Science data Center (NSSDC) and the World Data Center A for Rockets and Satellites (WDC-A-R and S) are described with special emphasis on ionospheric physics. The present catalog/archive system is explained and future developments are indicated. In addition to the basic data acquisition, archiving, and dissemination functions, ongoing activities include the Central Online Data Directory (CODD), the Coordinated Data Analysis Workshopps (CDAW), the Space Physics Analysis Network (SPAN), advanced data management systems (CD/DIS, NCDS, PLDS), and publication of the NSSDC News, the SPACEWARN Bulletin, and several NSSD reports.

  20. Advanced Collaborative Emissions Study (ACES)

    SciTech Connect

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  1. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    NASA Astrophysics Data System (ADS)

    Madsen, Martin John

    2011-10-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic knowledge of key scientific concepts," and second, "an understanding of the process of science."2 In preparing to teach our course for non-science students, I found that the majority of textbooks and courses focus on the first component. However, I wanted a lab-centered course that would give students hands-on practice doing science. I describe in this article a course I designed and implemented at Wabash College that focused on teaching students "the process of science." The course was titled "Adventures in Physics: Mythbusters" and was based loosely on the popular Discovery Channel show "MythBusters."3

  2. Earth System Science Education Centered on Natural Climate Variability

    NASA Astrophysics Data System (ADS)

    Ramirez, P. C.; Ladochy, S.; Patzert, W. C.; Willis, J. K.

    2009-12-01

    Several new courses and many educational activities related to climate change are available to teachers and students of all grade levels. However, not all new discoveries in climate research have reached the science education community. In particular, effective learning tools explaining natural climate change are scarce. For example, the Pacific Decadal Oscillation (PDO) is a main cause of natural climate variability spanning decades. While most educators are familiar with the shorter-temporal events impacting climate, El Niño and La Niña, very little has trickled into the climate change curriculum on the PDO. We have developed two online educational modules, using an Earth system science approach, on the PDO and its role in climate change and variability. The first concentrates on the discovery of the PDO through records of salmon catch in the Pacific Northwest and Alaska. We present the connection between salmon abundance in the North Pacific to changing sea surface temperature patterns associated with the PDO. The connection between sea surface temperatures and salmon abundance led to the discovery of the PDO. Our activity also lets students explore the role of salmon in the economy and culture of the Pacific Northwest and Alaska and the environmental requirements for salmon survival. The second module is based on the climate of southern California and how changes in the Pacific Ocean , such as the PDO and ENSO (El Niño-Southern Oscillation), influence regional climate variability. PDO and ENSO signals are evident in the long-term temperature and precipitation record of southern California. Students are guided in the module to discover the relationships between Pacific Ocean conditions and southern California climate variability. The module also provides information establishing the relationship between climate change and variability and the state's water, energy, agriculture, wildfires and forestry, air quality and health issues. Both modules will be

  3. Center of Excellence in Space Data and Information Sciences

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1997 through June 30, 1998. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix E (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.

  4. Center of Excellence in Space Data and Information Sciences

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1996 through June 30, 1997. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry,and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix D (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.

  5. Education Outreach at MIT Plasma Science and Fusion Center

    NASA Astrophysics Data System (ADS)

    Censabella, V.; Rivenberg, P.

    1999-11-01

    Outreach at the MIT PSFC consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PSFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. The PSFC maintains a Home Page on the World Widee Web, which can be reached at http://psfc.mit.edu.

  6. Center of Excellence in Space Data and Information Sciences

    NASA Technical Reports Server (NTRS)

    Yesha, Yelena

    1999-01-01

    This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1998 through June 30, 1999. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix F (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.

  7. Science Teacher Learning of MBL-Supported Student-Centered Science Education in the Context of Secondary Education in Tanzania

    NASA Astrophysics Data System (ADS)

    Voogt, Joke; Tilya, Frank; van den Akker, Jan

    2009-10-01

    Science teachers from secondary schools in Tanzania were offered an in-service arrangement to prepare them for the integration of technology in a student-centered approach to science teaching. The in-service arrangement consisted of workshops in which educative curriculum materials were used to prepare teachers for student-centered education and for the use and application of Microcomputer Based Laboratories (MBL)—a specific technology application for facilitating experiments in science education. Quantitative and qualitative data were collected to study whether the in-service arrangement impacted teacher learning. Teacher learning was determined by three indicators: (1) the ability to conduct MBL-supported student centered science lessons, (2) teachers' reflection on those lessons and (3) students' perceptions of the classroom environment. The results of the research indicate that the teachers' were able to integrate MBL in their science lessons at an acceptable level and that they were able to create a classroom environment which was appreciated by their students as more investigative and open-ended.

  8. Education Outreach at MIT Plasma Science Fusion Center

    NASA Astrophysics Data System (ADS)

    Censabella, V.; Nachtrieb, R.; Rivenberg, P.

    1998-11-01

    Outreach at the MIT PSFC consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PSFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. Included in this year's presentation will be a live demo of a compressed-air bottle rocket (really a one-liter plastic soda bottle) for use in high school science classrooms that researchers at the Cambridge Physics Outlet (a PSFC spin-off company) have developed. To prepare the rocket for launch, the bottle is filled with compressed air at pressures up to 80 psi and the end is plugged. The rocket is released when the plug is pulled. The gas escapes at supersonic velocities and accelerates the bottle at over 1000 m/s^2. The velocity of the bottle is measured at many locations along its ``trajectory". A simple thermodynamic model predicts performance in excellent agreement with observation. The PSFC maintains a Home Page on the World Wide Web, which can be reached at http://pfc.mit.edu.

  9. Fredrickson Park: From Toxic Hazard to Community Science Education Center

    NASA Astrophysics Data System (ADS)

    Craft, R. P.; Warren, J.; Bridges, P. J.; Gilot, G.; St. Clair, P.; Sakimoto, P. J.

    2008-06-01

    Fredrickson Park is an on-going venture, the result of collaborative planning and development in South Bend, Indiana. This city park lies within a low-income residential neighborhood not far from the University of Notre Dame and until recently was a casual dump, an eye-sore, and a toxic hazard. Through a unique coalition of community organizations, the area has been converted to a prairie-ecosystem park available for community use, has become the home of the administrative offices of the Boy Scouts of America-LaSalle Council, and is the pilot site for curriculum-based field trips for children in the South Bend Community Schools with Notre Dame, Saint Mary's, and Indiana University-South Bend students assisting. Priority plans include enhanced nature and physical fitness trails with expanded earth and space science inquiry stations for school, Scout, and community use. In addition, a scale model of the Solar System is planned to start at the park and extend into the heart of the city. Fredrickson Park is a community success serving South Bend students and families through formal and informal science education.

  10. The Arecibo Remote Command Center: Students Doing Science

    NASA Astrophysics Data System (ADS)

    Miller, Andy; Jenet, F. A.; Rodriguez-Zermeno, A.; Stovall, K.

    2010-01-01

    The University of Texas-Brownsville (UTB) is home to the Center for Gravitational Wave Astronomy (CGWA) which is, in turn, the home of the Arecibo Remote Command Center (ARCC). The ARCC is a virtual control room where researchers and undergraduate students--with the assistance of local high school students--control in real time the Arecibo Observatory--the world's largest single dish radio telescope. This poster presents a general outline of ARCC programs and recent accomplishments. Several notable accomplishments include: 1) the direct involvement of high school students in the PALFA pulsar search project at the Arecibo Observatory; 2) ARCC Scholars (undergraduate physics majors at UTB) led observations for a significant percentage of PALFA observing runs; 3) a summer astronomy academy for local high school students was held for the fifth consecutive year; 4) a second cohort of ARCC Scholars brings to ten the number of undergraduate physics majors specializing in astrophysics at UTB; 5) two members of the second cohort of ARCC Scholars, along with four summer academy high school students, attended the Pulsar Search Collaboratory program at the Green Bank Observatory; 6) specialized astrophysics programs are being expanded into a number of local high schools to stimulate interest in astrophysics research.

  11. Tribal engagement strategy of the South Central Climate Science Center, 2014

    USGS Publications Warehouse

    Andrews, William J.; Taylor, April; Winton, Kimberly T.

    2014-01-01

    The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.

  12. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    SciTech Connect

    Hules, J.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  13. The Pre-Instructors in Math and Science (PIMAS) Program at the University of Arizona’s Flandrau Science Center

    NASA Astrophysics Data System (ADS)

    Brissenden, G.; Slater, T. F.; Colodner, D.; Johnson, S.

    2003-12-01

    The Pre-Instructors in Math and Science (PIMAS) Program at the University of Arizona's Flandrau Science Center offers high school students the opportunity to explore careers in science teaching through on-the-job training in informal science teaching, both at Flandrau and in the community. The goal of the PIMAS program is to encourage these students to consider pursuing science teaching careers as they transition from high school to college. Students become members of the Flandrau Science Center staff, learning how to present several astronomy demonstrations. These demonstrations include: A Journey to Pluto, Robots on Mars, and Constructing the Seasons. Students also learn how to host star parties. They then offer these presentations at Flandrau on Saturdays and public viewing nights. During the Fall semester, students have the opportunity to learn about best practices in informal science education. They participate, as peers, in the U of A's Science Teachers Colloquium Series. They meet with astronomers, planetary scientists, engineers, and amateur astronomers to learn more about the science behind the demonstrations they are learning. In the Spring semester, students take what they've learned "on the road." They plan and execute Space Nights for their communities-at their schools, their siblings' schools, their churches, their scouting troupes, etc. We believe that by letting the students go into their own communities, they have a greater sense of ownership and pride in these events. The PIMAS Program is now entering its third year. We present both our successes and our lessons learned, as well as what the PIMAS students have to say about the program. We greatly appreciate, and acknowledge, the support of the Arizona Teacher Education Coalition, which is funded by the US Department of Education.

  14. A guide to the National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This is the second edition of a document that was published to acquaint space and Earth research scientists with an overview of the services offered by the NSSDC. As previously stated, the NSSDC was established by NASA to be the long term archive for data from its space missions. However, the NSSDC has evolved into an organization that provides a multitude of services for scientists throughout the world. Brief articles are presented which discuss these services. At the end of each article is the name, address, and telephone number of the person to contact for additional information. Online Information and Data Systems, Electronic Access, Offline Data Archive, Value Added Services, Mass Storage Activities, and Computer Science Research are all detailed.

  15. “Not Designed for Us”: How Science Museums and Science Centers Socially Exclude Low-Income, Minority Ethnic Groups

    PubMed Central

    Dawson, Emily

    2014-01-01

    This paper explores how people from low-income, minority ethnic groups perceive and experience exclusion from informal science education (ISE) institutions, such as museums and science centers. Drawing on qualitative data from four focus groups, 32 interviews, four accompanied visits to ISE institutions, and field notes, this paper presents an analysis of exclusion from science learning opportunities during visits alongside participants’ attitudes, expectations, and conclusions about participation in ISE. Participants came from four community groups in central London: a Sierra Leonean group (n = 21), a Latin American group (n = 18), a Somali group (n = 6), and an Asian group (n = 13). Using a theoretical framework based on the work of Bourdieu, the analysis suggests ISE practices were grounded in expectations about visitors’ scientific knowledge, language skills, and finances in ways that were problematic for participants and excluded them from science learning opportunities. It is argued that ISE practices reinforced participants preexisting sense that museums and science centers were “not for us.” The paper concludes with a discussion of the findings in relation to previous research on participation in ISE and the potential for developing more inclusive informal science learning opportunities. PMID:25574059

  16. ACE VET Linkages: Provider, Student and Industry Views.

    ERIC Educational Resources Information Center

    Saunders, John

    In recent years, Australia's system of adult and community education (ACE) has broadened to include vocational learning as well as the hobby, enrichment, and personal development traditionally provided by ACE in the past. A study examined the views of ACE providers, ACE students, and industry organizations regarding ACE vocational education and…

  17. 34 CFR 645.13 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in mathematics and science, including hands-on experience in laboratories, in computer facilities... Science Centers provide and how are they organized? 645.13 Section 645.13 Education Regulations of the... Program? § 645.13 What additional services do Upward Bound Math and Science Centers provide and how...

  18. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    SciTech Connect

    Hurd, Alan J; Rhyne, James J; Lewis, Paul S

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  19. Teachers' professional development needs and current practices at the Alexander Science Center School

    NASA Astrophysics Data System (ADS)

    Gargus, Gerald Vincent

    This investigation represents an in-depth understanding of teacher professional development at the Alexander Science Center School, a dependent charter museum school established through a partnership between the California Science Center and Los Angeles Unified School District. Three methods of data collection were used. A survey was distributed and collected from the school's teachers, resulting in a prioritized list of teacher professional development needs, as well as a summary of teachers' opinions about the school's existing professional development program. In addition, six key stakeholders in the school's professional development program were interviewed for the study. Finally, documents related to the school's professional development program were analyzed. Data collected from the interviews and documents were used to develop an understand various components of the Alexander Science Center School's professional development program. Teachers identified seven areas that had a high-priority for future professional development including developing skills far working with below-grade-level students, improving the analytical skills of student in mathematics, working with English Language Learners, improving students' overall reading ability levels, developing teachers' content-area knowledge for science, integrating science across the curriculum, and incorporating hands-on activity-based learning strategies to teach science. Professional development needs identified by Alexander Science Center School teachers were categorized based on their focus on content knowledge, pedagogical content knowledge, or curricular knowledge. Analysis of data collected through interviews and documents revealed that the Alexander Science Center School's professional development program consisted of six venues for providing professional development for teachers including weekly "banked time" sessions taking place within the standard school day, grade-level meetings, teacher support

  20. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  1. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  2. Forging Educational Partnerships Between Science Centers and Ocean, Earth and Atmospheric Scientists

    NASA Astrophysics Data System (ADS)

    Miller, M. K.

    2006-12-01

    When most people think about science education, they usually consider classrooms as ideal venues for communicating and disseminating knowledge. But most learning that we humans engage in happens outside of the classroom and after we finish our formal education. That is where informal science education picks up the ball. The forums for these learning opportunities are diverse: museum exhibits, the Web, documentaries, and after school settings are becoming increasingly important as venues to keep up with the ever changing world of science. . The Exploratorium and other science centers act as transformers between the world of science and the public. As such they are ideal partners for scientists who would like to reach a large and diverse audience of families, adults, teens, and teachers. In this session, Senior Science Producer Mary Miller will discuss the ways that the Exploratorium engages working scientists in helping the museum-going public and Web audiences understand the process and results of scientific research.

  3. ACE inhibition reduces infarction in normotensive but not hypertensive rats: correlation with cortical ACE activity

    PubMed Central

    Porritt, Michelle J; Chen, Michelle; Rewell, Sarah S J; Dean, Rachael G; Burrell, Louise M; Howells, David W

    2010-01-01

    Angiotensin-converting enzyme (ACE) inhibition can reduce stroke risk by up to 43% in humans and reduce the associated disability, and hence understanding the mechanism of improvement is important. In animals and humans, these effects may be independent of the blood pressure-lowering effects of ACE inhibition. Normotensive (Wistar–Kyoto (WKY)) and hypertensive (spontaneously hypertensive rat (SHR)) animals were treated with the ACE inhibitors ramipril or lisinopril for 7 or 42 days before 2 hours of transient middle cerebral artery occlusion (MCAo). Blood pressure, serum ACE, and blood glucose levels were measured and stroke infarct volume was recorded 24 hours after stroke. Despite greater reductions in blood pressure, infarct size was not improved by ACE inhibition in hypertensive animals. Short-term ACE inhibition produced only a modest reduction in blood pressure, but WKY rats showed marked reductions in infarct volume. Long-term ACE inhibition had additional reductions in blood pressure; however, infarct volumes in WKY rats did not improve further but worsened. WKY rats differed from SHR in having marked cortical ACE activity that was highly sensitive to ACE inhibition. The beneficial effects of ACE inhibition on infarct volume in normotensive rats do not correlate with changes in blood pressure. However, WKY rats have ACE inhibitor-sensitive cortical ACE activity that is lacking in the SHR. PMID:20407464

  4. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    SciTech Connect

    Parkin, D.M.; Boring, A.M.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  5. Science-Ready Data Production in the DKIST Data Center

    NASA Astrophysics Data System (ADS)

    Reardon, Kevin; Berukoff, Steven; Hays, Tony; Spiess, DJ; Watson, Fraser

    2015-08-01

    The NSO's new flagship solar observatory, the four-meter Daniel K. Inouye Solar Telescope is under construction on Halekalala, Hawaii and slated for first light in 2019. The facility will operate an initial suite of five complementary spectroscopic and polarimetric instruments, with up to 11 detectors running simultaneously at typical cadences of 5-30 frames per second, or more. The instruments will generate data of notable volume, dimensionality, cardinality, and diversity. The facility is expected to record several hundred million images per year, for a total data volume in excess of 4 petabytes.Beyond the crucial informatics infrastructure necessary to transport, store, and curate this deluge of data, there are significant challenges in developing the robust calibration workflows that can autonomously process the range of data to generate science-ready datasets for a heterogeneous and growing community. Efforts will be made to improve our ability to compensate for the effects of the Earth's atmosphere, to identify and assess instrument and facility contributions to the measured signal, and to use of quality and fitness-of-use metrics to characterize and advertise datasets.In this talk, we will provide an overview of the methods and tools we are using to define and evaluate the calibration workflows. We will review the type of datasets that may be made available to scientists at the time of the initial operations of DKIST, as well as the potential mechanisms for the search and delivery of those data products. We will also suggest some of the likely secondary data products that could possibly be developed successively in collaboration with the community.

  6. ACES: The ASCENDS CarbonHawk Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Prasad, N. S.; Harrison, F. W.; Browell, E. V.; Ismail, S.; Dobler, J. T.; Moore, B.; Zaccheo, T.; Campbell, J.; Chen, S.; Cleckner, C. S.; DiJoseph, M.; Little, A.; Notari, A.; Refaat, T. F.; Rosenbaum, D.; Vanek, M. D.; Bender, J.; Braun, M.; Chavez-Pirson, A.; Neal, M.; Rayner, P. J.; Rosiewicz, A.; Shure, M.; Welch, W.

    2012-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center project funded by NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technologies being advanced are: (1) a high bandwidth detector, (2) a multi-aperture telescope assembly, (3) advanced algorithms for cloud and aerosol discrimination, and (4) high-efficiency, multiple-amplifier CO2 and O2 laser transmitters. The instrument architecture will be developed to operate on a high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. These technologies are viewed as critical towards developing an airborne simulator and eventual spaceborne instrument with lower size, mass, and power consumption, and improved performance. The detector effort will improve the existing detector subsystem by increasing its bandwidth to a goal of 5 MHz, reducing its overall mass from 18 lbs to <10 lbs, and stretching the duration of autonomous, service-free operation periods from 4 hrs to >24 hrs. The development goals are to permit higher laser modulation rates, which provides greater flexibility for implementing thin-cloud discrimination algorithms as well as improving range resolution and error reduction, and to enable long flights on a high-altitude unmanned aerial vehicle (UAV). The telescope development consists of a three-telescope design built for the constraints of the Global Hawk aircraft. This task addresses the ability of multiple smaller telescopes to provide equal or greater collection efficiency compared with a single larger telescope with a reduced impact on launch mass and cost. The telescope assembly also integrates fiber-coupled transmit collimators for all of the laser transmitters and fiber-coupled optical

  7. Data Serving Climate Simulation Science at the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen M.

    2011-01-01

    The NASA Center for Climate Simulation (NCCS) provides high performance computational resources, a multi-petabyte archive, and data services in support of climate simulation research and other NASA-sponsored science. This talk describes the NCCS's data-centric architecture and processing, which are evolving in anticipation of researchers' growing requirements for higher resolution simulations and increased data sharing among NCCS users and the external science community.

  8. Global Data Assembly Center (GDAC) Report to the GHRSST Science Team

    NASA Technical Reports Server (NTRS)

    Armstrong, Edward; Vazquez, Jorge; Bingham, Andy; Gierach, Michelle; Huang, Thomas; Chen, Cynthia; Finch, Chris; Thompson, Charles

    2013-01-01

    In 2012-2013 the Global Data Assembly Center (GDAC) at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) continued its role as the primary clearinghouse and access node for operational GHRSST data streams, as well as its collaborative role with the NOAA Long Term Stewardship and Reanalysis Facility (LTSRF) for archiving. Our presentation reported on our data management activities and infrastructure improvements since the last science team meeting in 2012.

  9. 2011 Year in review--Earth Resources Observation and Science Center

    USGS Publications Warehouse

    Johnson, Rebecca, (compiler)

    2012-01-01

    The USGS Earth Resources Observation and Science (EROS) Center's 2011 Year in Review is an annual report recounting the broad scope of the Center's 2011 accomplishments. The report covers preparations for the Landsat Data Continuity Mission (LDCM) launch, the ever-increasing use of free Landsat data, monitoring the effects of natural hazards, and more to emphasize the importance of innovation in using satellite data to study change over time.

  10. Does Education Plus Action Lead to Leadership on Climate? Preliminary Results from the ACE Leadership Development Longitudinal Survey Project

    NASA Astrophysics Data System (ADS)

    Anderson, R. K.; Qusba, L.; Lappe, M.; Flora, J. A.

    2014-12-01

    Through education and leadership development, Alliance for Climate Education (ACE) is building a generation of confident and capable youth driving climate solutions now throughout their lives. In 2011-12, a random sample of 2,800 high school students across the country was surveyed before and after seeing the ACE Assembly on climate science and solutions. The survey showed that the ACE Assembly resulted in a 27% increase in climate science knowledge scores, with 59% of students increasing their intentions to take action on climate and a doubling of the number of students talking to parents and peers about climate change. Students were also compared to the Global Warming's Six Americas classification of Americans' views on climate. Following the ACE Assembly, 60% of students were alarmed or concerned about climate change. Building off these results, in 2014 ACE began to assess the results of its leadership development program that follows the ACE Assembly. The goal of this survey project is to measure ACE's long-term impact on students' college and career pathways, civic engagement and climate action. Preliminary results show that a majority of students in ACE's leadership development program are alarmed about global warming and are having conversations about global warming. A majority of these students also feel confident in their ability to lead a climate-related campaign in their school and community. These students will continue to be surveyed through 2015.

  11. [Job satisfaction among the professionals of AceS Baixo Vouga II].

    PubMed

    Santana, Silvina; Cerdeira, José

    2011-12-01

    Job satisfaction is a measure of quality of life at work and is related to emotional states. The interest for this theme is increasing and, in the last years, many studies have attempted to demonstrate its relation with professional performance. Primary care professionals are in the first line of the Serviço Nacional de Saúde (SNS). Therefore, it is necessary that they feel satisfaction with their jobs, in order to perform the tasks with the quality required. Several factors seem to have impact in the satisfaction of these professionals, such as payment, promotion, recognition from supervisors and peers, physical conditions at work and available resources, opportunities for personal development, among others. Insatisfaction may lead to absentism and in the limit to job quit. The main objective of this work is to study job satisfaction among the professionals working at the health centers of ACeS Baixo Vouga II, namely, the relationship between job characteristics and job satisfaction and between job characteristics and considering job quit as a serious option. All the professionals working in the four health centers were inquired. Results show that job characteristics are defined by six dimensions: leadership and supervision, task characteristics and autonomy, payment, personal and professional development and promotion, peers and relations inside the organization and work environment. Globally, payment and opportunities for personal and professional development and promotion are perceived at low level by all the professional groups. Results also show that there are differences by gender and professional groups regarding job satisfaction and the will to quit job. Considering the specificity of the tasks performed by these professionals, measures should be taken in order to improve job satisfaction in the Portuguese health centers. PMID:22849951

  12. The effect of playing a science center-based mobile game: Affective outcomes and gender differences

    NASA Astrophysics Data System (ADS)

    Atwood-Blaine, Dana

    Situated in a hands-on science center, The Great STEM Caper was a collaborative mobile game built on the ARIS platform that was designed to engage 5th-9th grade players in NGSS science and engineering practices while they interacted with various exhibits. Same gender partners sharing one iPad would search for QR codes placed at specific exhibits; scanning a code within the game would launch a challenge for that exhibit. The primary hypothesis was that in- game victories would be equivalent to "mastery experiences" as described by Bandura (1997) and would result in increased science self-efficacy. Gender differences in gameplay behaviors and perceptions were also studied. The study included two groups, one that played the game during their visit and one that explored the science center in the traditional way. The Motivation to Learn Science Questionnaire was administered to participants in both groups both before and after their visit to the science center. Participants wore head-mounted GoPro cameras to record their interactions within the physical and social environment. No differences in affective outcomes were found between the game and comparison groups or between boys and girls in the game group. The MLSQ was unable to measure any significant change in science self-efficacy, interest and enjoyment of science, or overall motivation to learn science in either group. However, girls outperformed boys on every measure of game achievement. Lazzaro's (2004) four types of fun were found to be a good fit for describing the gender differences in game perceptions and behaviors. Girls tended to enjoy hard fun and collaborative people fun while boys enjoyed easy fun and competitive people fun. While boys associated game achievement with enjoyment and victory, girls perceived their game achievement as difficult, rather than enjoyable or victorious.

  13. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    NASA Astrophysics Data System (ADS)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  14. Potential interaction and potential investigation of science center exhibits and visitors' interest

    NASA Astrophysics Data System (ADS)

    Busque, Laurier

    This research consisted of studying the characteristics of interaction and investigation potential present in museum or science center exhibits. Categories (strong and weak) for the characteristics of interaction potential and investigation potential were established. Fifteen exhibits were chosen from the Museum of Science (Ottawa) and from two science centers (Sudbury and Toronto); these were representative of the established characteristics and categories. A test was constructed that measured the interest in an exhibit in a museum or a science center. The final analysis of the test (20 items) reflects a coefficient of homogeneity (Cronbach alpha) of 0.97 (n = 278). In terms of the characteristics of interaction potential and investigation potential, a significant difference among the ranks of interest was not found once they were regrouped under the categories of strong and weak. The hypothesis of a relationship between the interaction potential and visitors' interest in an exhibit in a museum or science center and the hypothesis of a relationship between the investigation potential and the interest aroused were both rejected. In regards to the interaction potential, median ranks of interest in exhibits of 8.6 for the strong category and of 7.5 for the weak category were observed. In terms of the investigation potential, median ranks of interest of 7.0 for the strong category and of 9.1 for the weak category were observed. In the case of investigation potential, even if the difference is not significant, there is an indication that the strong investigation potential seems to have the effect of creating disinterest in the presentation of an exhibit in a museum or in a science center. In the context of new museum and science centers, the view of developing exhibits which are primarily objects which stimulate interest must be maintained. If this is done with exhibits that arc interactive and have an investigative approach, it is necessary for those in charge of

  15. Storage and network bandwidth requirements through the year 2000 for the NASA Center for Computational Sciences

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen

    1996-01-01

    The data storage and retrieval demands of space and Earth sciences researchers have made the NASA Center for Computational Sciences (NCCS) Mass Data Storage and Delivery System (MDSDS) one of the world's most active Convex UniTree systems. Science researchers formed the NCCS's Computer Environments and Research Requirements Committee (CERRC) to relate their projected supercomputing and mass storage requirements through the year 2000. Using the CERRC guidelines and observations of current usage, some detailed projections of requirements for MDSDS network bandwidth and mass storage capacity and performance are presented.

  16. Department of Energy Nanoscale Science Research Centers: Approach to Nanomaterial ES&H

    SciTech Connect

    None, None

    2008-05-12

    The following non-mandatory guidance is intended for the Nanoscale Science Research Centers (NSRCs) funded by the Basic Energy Sciences program office under the U.S. Department of Energy's Office of Science. It describes practices thought appropriate to the management of environmental, safety and health (ES&H) concerns associated with laboratory-scale operations involving the design, synthesis, or characterization of engineered nanomaterials, In general, it is intended to apply to precursors, intermediates, and wastes used during, or resulting from synthesizing such nanomaterials. In general, it is not intended to apply to materials for which an occupational exposure limit has been established.

  17. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    NASA Technical Reports Server (NTRS)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  18. The National Space Science Data Center guide to international rocket data

    NASA Technical Reports Server (NTRS)

    Dubach, L. L.

    1972-01-01

    Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.

  19. ACE program/UNIX user manual

    SciTech Connect

    Feng-Berman, S.K.

    1993-01-12

    This report the following: How to use the ace program ; Introduction to the ace program; Online command; Define a macro file; Macro commands; Counters and MCA; Counters usage; Counters database; Feedback Counter Database; MCA functions and macro command; X window Interclient Communication; and How to get around in UNIX

  20. ACE program/UNIX user manual

    SciTech Connect

    Feng-Berman, S.K.

    1993-01-12

    This report the following: How to use the ace program?; Introduction to the ace program; Online command; Define a macro file; Macro commands; Counters and MCA; Counters usage; Counters database; Feedback Counter Database; MCA functions and macro command; X window Interclient Communication; and How to get around in UNIX?

  1. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    NASA Astrophysics Data System (ADS)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  2. A Podiatric Medical Residency Program in an Academic Health Science Center

    ERIC Educational Resources Information Center

    Bogy, Louis T.; And Others

    1977-01-01

    The podiatric medical residency program in the Health Science Center at San Antonio provides an intensive exposure for the newly graduated podiatrist to practice in a multidisciplinary environment. Residents become more familiar with general medical and surgical diseases and disorders as well as podiatric pathology. (LBH)

  3. The Center for Arts and Sciences, Tulsa, Oklahoma. Final Performance Report for Javits Grant.

    ERIC Educational Resources Information Center

    Hollingsworth, Patricia

    This final report describes activities and accomplishments of the Center for Arts and Sciences in Tulsa, Oklahoma, a program designed to bring early intervention services to young, rural, economically disadvantaged, and/or minority gifted students through a series of year-long teacher training events that also included involvement with parents,…

  4. 77 FR 57569 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a...

  5. The Center for the Arts and Sciences Follow-Up Study of 1991 Graduates. Evaluation Report.

    ERIC Educational Resources Information Center

    Saginaw Public Schools, MI. Dept. of Evaluation Services.

    Findings of a follow-up study that examined the experiences of 1991 high school graduates of the Center for the Arts and Sciences (CAS) program in Saginaw, Michigan, are presented in this paper. A survey mailed to 33 graduates received 16 responses. Findings indicate that all respondents were enrolled in a school, college, or training program. The…

  6. 78 FR 50069 - National Center for Advancing Translational Sciences; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Advancing Translational Sciences; Notice of Meetings Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of meetings of...

  7. 77 FR 29673 - National Center for Advancing Translational Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Advancing Translational Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of...

  8. Hatfield Marine Science Center Dynamic Revetment Project DSL Permit # 45455-FP. Monitoring Report. February, 2014.

    EPA Science Inventory

    Stabilization of the Yaquina Bay shoreline along the northeastern edge of the Hatfield Marine Science Center (HMSC) campus became necessary to halt erosion that threatened both HMSC critical infrastructure (seawater storage tank) and public access to the HMSC Nature Trail. A Dyn...

  9. Hatfield Marine Science Center Dynamic Revetment Project DSL Permit # 45455-FP. Monitoring Report. February, 2016

    EPA Science Inventory

    Stabilization of the Yaquina Bay shoreline along the northeastern edge of the Hatfield Marine Science Center (HMSC) campus became necessary to halt erosion that threatened both HMSC critical infrastructure (seawater storage tank) and public access to the HMSC Nature Trail. A Dyn...

  10. Hatfield Marine Science Center Dynamic Revetment Project DSL permit # 45455-FP, Monitoring Report February, 2015

    EPA Science Inventory

    Stabilization of the Yaquina Bay shoreline along the northeastern edge of the Hatfield Marine Science Center (HMSC) campus became necessary to halt erosion that threatened both HMSC critical infrastructure (seawater storage tank) and public access to the HMSC Nature Trail. A Dyn...

  11. The Hamovitch Research Center: An Experiment in Collective Responsibility for Advancing Science in the Human Services

    ERIC Educational Resources Information Center

    Flynn, Marilyn; Brekke, John S.; Soydan, Haluk

    2008-01-01

    Research centers in schools of social work are growing in number and scope. In this article the authors argue that this increase is in line with the growing recognition that research and science are critical components of the mission of the social work profession. The authors examine the purposes and various models for establishing research…

  12. Patterns in Parent-Child Conversations about Animals at a Marine Science Center

    ERIC Educational Resources Information Center

    Rigney, Jennifer C.; Callanan, Maureen A.

    2011-01-01

    Parent-child conversations are a potential source of children's developing understanding of the biological domain. We investigated patterns in parent-child conversations that may inform children about biological domain boundaries. At a marine science center exhibit, we compared parent-child talk about typical sea animals with faces (fish) with…

  13. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  14. Math and Science Training in California: The Response of the Teacher Education and Computer Centers.

    ERIC Educational Resources Information Center

    Padia, William L.; Brandes, Barbara G.

    Fifteen Teacher Education and Computer Centers (TEC) were funded by the California State Legislature to provide staff development services to teachers and administrators in all areas of the curriculum, but especially in mathematics, science, technology, and other curriculum areas in which there are significant shortages of teachers. This paper…

  15. 78 FR 50102 - Notice of Inventory Completion: Rochester Museum & Science Center, Rochester, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... National Park Service Notice of Inventory Completion: Rochester Museum & Science Center, Rochester, NY... has completed an inventory of associated funerary objects, in consultation with the appropriate Indian... (NAGPRA), 25 U.S.C. 3003, of the completion of an inventory of associated funerary objects under...

  16. 78 FR 8546 - National Center for Advancing Translational Sciences (NCATS) and National Human Genome Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ...The National Center for Advancing Translational Sciences (NCATS) and the National Human Genome Research Institute (NHGRI), the National Institutes of Health (NIH), are seeking Cooperative Research and Development Agreement (CRADA) partners to collaborate in the final stages of lead optimization, evaluation and preclinical development of a novel selective series of non-inhibitory chaperones of......

  17. 77 FR 37422 - National Center for Advancing Translational Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Advancing Translational Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of...

  18. 77 FR 59937 - National Center for Advancing Translational Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Advancing Translational Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of...

  19. 78 FR 24223 - National Center for Advancing Translational Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Advancing Translational Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of...

  20. A Report on the Design and Construction of the University of Massachusetts Computer Science Center.

    ERIC Educational Resources Information Center

    Massachusetts State Office of the Inspector General, Boston.

    This report describes a review conducted by the Massachusetts Office of the Inspector General on the construction of the Computer Science and Development Center at the University of Massachusetts, Amherst. The office initiated the review after hearing concerns about the management of the project, including its delayed completion and substantial…

  1. Science and Mathematics Books for Elementary and Secondary Schools, A Bibliography from the Educational Materials Center.

    ERIC Educational Resources Information Center

    Watt, Lois B.; And Others

    This is an annotated bibliography of science and mathematics textbooks and juvenile trade books received in the Educational Materials Center between January, 1969 and February, 1970. The contents are divided into two major sections: Juvenile Literature, and Textbooks for Elementary and Secondary Schools. The first section includes only those books…

  2. The Bridge. A Newsletter of the Center for Education in the Social Sciences.

    ERIC Educational Resources Information Center

    Colorado Univ., Boulder. Center for Education in the Social Sciences.

    This newsletter focuses on brief descriptions of current projects which are directed toward meeting the stated goals of the Center for Education in the Social Sciences, University of Colorado (CESSUC). These activities include: Urban Problems Course, Summer Resource Personnel Workshop, Protocol Materials Development Project, Academic Year…

  3. 78 FR 50108 - Notice of Intent To Repatriate Cultural Item: Rochester Museum & Science Center, Rochester, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ...The Rochester Museum & Science Center, in consultation with the appropriate Indian tribes or Native Hawaiian organizations, has determined that the cultural item listed in this notice meets the definition of a sacred object and an object of cultural patrimony. Lineal descendants or representatives of any Indian tribe or Native Hawaiian organization not identified in this notice that wish to......

  4. The University of Wisconsin Space Science and Engineering Center Absolute Radiance Interferometer (ARI)

    NASA Astrophysics Data System (ADS)

    Taylor, Joe K.; Revercomb, Henry E.; Buijs, Henry; Grandmont, Frederic J.; Gero, P. Jonathon; Best, Fred A.; Tobin, David C.; Knuteson, Robert O.; LaPorte, Daniel D.; Cline, Richard; Schwarz, Mark; Wong, Jeff

    2010-11-01

    A summary of the development of the Absolute Radiance Interferometer (ARI) at the University of Wisconsin Space Science and Engineering Center (UW-SSEC) will be presented. At the heart of the sensor is the ABB CLARREO Interferometer Test-Bed (CITB), based directly on the ABB Generic Flight Interferometer (GFI). This effort is funded under the NASA Instrument Incubator Program (IIP).

  5. Trend of knowledge production of research centers in the field of medical sciences in iran.

    PubMed

    Falahat, K; Eftekhari, Mb; Habibi, E; Djalalinia, Sh; Peykari, N; Owlia, P; Malekafzali, H; Ghanei, M; Mojarrab, Sh

    2013-01-01

    Establishment of medical research centers at universities and health-related organizations and annually evaluation of their research activities was one of the strategic policies which followed by governmental organization in last decade in order to strengthening the connections between health research system and health system. The aim of this study is to scrutinize the role of medical research centers in medical science production in Iran. This study is a cross sectional which has been performed based on existing reports on national scientometrics and evaluation results of research performance of medical research centers between years 2001 to 2010. During last decade number of medical research centers increased from 53 in 2001 to 359 in 2010. Simultaneous scientific output of medical research centers has been increased especially articles indexed in ISI (web of science). Proper policy implementation in the field of health research system during last decades led to improving capacity building and growth knowledge production of medical science in recent years in Iran. The process embedding research into the health systems requires planning up until research products improves health outcomes and health equity in country. PMID:23865017

  6. Alternative funding for academic medicine: experience at a Canadian Health Sciences Center.

    PubMed

    Rosenbaum, Paul; Shortt, S E D; Walker, D M C

    2004-03-01

    In 1994 the School of Medicine of Queen's University in Kingston, Ontario, its clinical teachers, and the three principal teaching hospitals initiated a new approach to funding, the Alternative Funding Plan, a pragmatic response to the inability of fee-for-service billing by clinical faculty to subsidize the academic mission of the health sciences center. The center was funded to provide a package of service and academic deliverables (outputs), rather than on the basis of payment for physician clinical activity (inputs). The new plan required a new governance structure representing stakeholders and raised a number of important issues: how to reconcile the preservation of physician professional autonomy with corporate responsibilities; how to gather requisite information so as to equitably allocate resources; and how to report to the Ontario Ministry of Health and Long-term Care in order to demonstrate accountability. In subsequent iterations of the agreement it was necessary to address issues of flexibility resulting from locked-in funding levels and to devise meaningful performance measures for departments and the center as a whole. The authors conclude that the Alternative Funding Plan represents a successful innovation in funding for an academic health sciences center in that it has created financial stability, as well as modest positive effects for education and research. The Ontario government hopes to replicate the model at the province's other four health sciences centers, and it may have applicability in any jurisdiction in which the costs of medical education outstrip the capacity of faculty clinical earnings. PMID:14985191

  7. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    NASA Technical Reports Server (NTRS)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  8. Using science centers to expose the general public to the microworld

    SciTech Connect

    Malamud, E. |

    1994-08-01

    Despite the remarkable progress in the past decades in understanding our Universe, we particle physicists have failed to communicate the wonder, excitement, and beauty of these discoveries to the general public. I am sure all agree there is a need, if our support from public funds is to continue at anywhere approximating the present level, for us collectively to educate and inform the general public of what we are doing and why. Informal science education and especially science and technology centers can play an important role in efforts to raise public awareness of particle physics in particular and of basic research in general. Science Centers are a natural avenue for particle physicists to use to communicate with and gain support from the general public.

  9. Islamic World Science Citation Center (ISC): Evaluating Scholary Journals Based on Citation Analysis

    PubMed Central

    Mehrad, Jaffar; Arastoopoor, Sholeh

    2012-01-01

    Introduction: Citation analysis is currently one of the most widely used metrics for analyzing the scientific contribution in different fields. The Islamic World Science Citation Center (ISC) aims at promoting technical cooperation among Muslim scientists and their respected centers based on these theories. It also facilitates the accessibility of knowledge and research contribution among them. This paper aims at revealing some of the outmost features of ISC databases, in order to give a fairly clear view of what it is and what are its products. The paper consists of three major parts. After an introduction about the Islamic World Science Citation Center, the paper deals with major tools and products of ISC. In the third part ISCs’ journal Submission system is presented as an automatic means, by which users can upload journals’ papers into the respected databases. Conclusion: Some complementary remarks have been made regarding the current state of ISC and its future plans. PMID:23322953

  10. Turning Visitors into Citizens: Using Social Science for Civic Engagement in Informal Science Education Centers

    ERIC Educational Resources Information Center

    Bunten, Alexis; Arvizu, Shannon

    2013-01-01

    How can museums and other informal learning institutions cultivate greater civic engagement among the visiting public around important social issues? This case study of the National Network of Ocean and Climate Change Interpreters' (NNOCCI) professional learning community illustrates how insights from the social sciences can be productively…

  11. Associations of Middle School Student Science Achievement and Attitudes about Science with Student-Reported Frequency of Teacher Lecture Demonstrations and Student-Centered Learning

    ERIC Educational Resources Information Center

    Odom, Arthur Louis; Bell, Clare Valerie

    2015-01-01

    The purpose of this study was to examine the association of middle school student science achievement and attitudes about science with student-reported frequency of teacher lecture demonstrations and student-centered learning. The student sample was composed of 602 seventh- and eighth-grade students enrolled in middle school science. Multiple…

  12. The Research Agenda of the National Center for Science Teaching and Learning: External Influences on Science Education. NCSTL Monograph Series, #1.

    ERIC Educational Resources Information Center

    Klapper, Michael H.; And Others

    This document explores the mission, goals, and underlying philosophy of the National Center for Science Teaching and Learning (NCSTL). The reform of the U.S. educational system, especially in the area of science education, will require a thorough examination of noncurricular, external factors affecting science education. In order to bring about…

  13. Advanced technology needs for a global change science program: Perspective of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Swissler, Thomas J.

    1991-01-01

    The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.

  14. 75 FR 23800 - Notice of Intent to Repatriate a Cultural Item: Rochester Museum & Science Center, Rochester, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... National Park Service Notice of Intent to Repatriate a Cultural Item: Rochester Museum & Science Center... to repatriate one cultural item in the possession of the Rochester Museum & Science Center, Rochester... large wooden medicine face (AE 9499/ 61.334.1) from the Rochester Museum Association that previously...

  15. 75 FR 23799 - Notice of Intent to Repatriate a Cultural Item: Rochester Museum & Science Center, Rochester, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... National Park Service Notice of Intent to Repatriate a Cultural Item: Rochester Museum & Science Center... to repatriate one cultural item in the possession of the Rochester Museum & Science Center, Rochester... small red stone medicine face (82.54.1). It appears to be a contemporary piece and was donated to...

  16. Support of Herschel Key Programme Teams at the NASA Herschel Science Center

    NASA Astrophysics Data System (ADS)

    Shupe, David L.; Appleton, P. N.; Ardila, D.; Bhattacharya, B.; Mei, Y.; Morris, P.; Rector, J.; NHSC Team

    2010-01-01

    The first science data from the Herschel Space Observatory were distributed to Key Programme teams in September 2009. This poster describes a number of resources that have been developed by the NASA Herschel Science Center (NHSC) to support the first users of the observatory. The NHSC webpages and Helpdesk serve as the starting point for information and queries from the US community. Details about the use of the Herschel Common Science Software can be looked up in the Helpdesk Knowledgebase. The capability of real-time remote support through desktop sharing has been implemented. The NHSC continues to host workshops on data analysis and observation planning. Key Programme teams have been provided Wiki sites upon request for their team's private use and for sharing information with other teams. A secure data storage area is in place for troubleshooting purposes and for use by visitors. The NHSC draws upon close working relationships with Instrument Control Centers and the Herschel Science Center in Madrid in order to have the necessary expertise on hand to assist Herschel observers, including both Key Programme teams and respondents to upcoming open time proposal calls.

  17. ACE-FTS instrument: activities in preparation for launch

    NASA Astrophysics Data System (ADS)

    Soucy, Marc-Andre; Walker, Kaley A.; Fortin, Serge; Deutsch, Christophe

    2003-11-01

    The Atmospheric Chemistry Experiment (ACE) is the mission selected by the Canadian Space Agency for its next science satellite, SCISAT-1. ACE consists of a suite of instruments in which the primary element is an infrared Fourier Transform Spectrometer (FTS) coupled with an auxiliary 2-channel visible (525 nm) and near infrared imager (1020 nm). A secondary instrument, MAESTRO, provides spectrographic data from the near ultra-violet to the near infrared, including the visible spectral range. In combination the instrument payload covers the spectral range from 0.25 to 13.3 micron. A comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols and temperature will be made by solar occultation from a satellite in low earth orbit. The ACE mission will measure and analyse the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere. A high inclination (74 degrees), low earth orbit (650 km) allows coverage of tropical, mid-latitude and polar regions. This paper presents the instrument-related activities in preparation for launch. In particular, activities related to the integration of instrument to spacecraft are presented as well as tests of the instrument on-board the SciSat-1 bus. Environmental qualification activities at spacecraft-level are described. An overview of the characterization and calibration campaign is presented. Activities for integration and verification at launch site are also covered. The latest status of the spacecraft is also presented.

  18. Northwest Climate Science Center: Integrating Regional Research, Conservation and Natural Resource Management

    NASA Astrophysics Data System (ADS)

    Mote, P.; Bisbal, G.

    2012-12-01

    The Northwest Climate Science Center (NW CSC) was established in 2010, among the first three of eight regional Climate Science Centers created by the Department of the Interior (DOI). The NW CSC is supported by an academic consortium (Oregon State University, University of Idaho, and the University of Washington), which has the capacity to generate and coordinate decision-relevant science related to climate, thus serving stakeholders across the Pacific Northwest region. The NW CSC has overlapping boundaries with three Landscape Conservation Cooperatives (LCCs): the Great Northern, the Great Basin, and the North Pacific. Collaboration between the NW CSC and these three LCCs addresses the highest priority regional climate science needs of Northwest natural and cultural resource managers. Early in 2012, the NW CSC released its first Strategic Plan for the period 2012-2015. The plan offers a practical blueprint for operation and describes five core services that the NW CSC provides to the Northwest community. These core services emphasize (a) bringing together the regional resource management and science communities to calibrate priorities and ensure efficient integration of climate science resources and tools when addressing practical issues of regional significance; (b) developing and implementing a stakeholder-driven science agenda which highlights the NW CSC's regional leadership in generating scenarios of the future environment of the NW; (c) supporting and training graduate students at the three consortium universities, including through an annual 'Climate science boot camp'; (d) providing a platform for effective climate-change-related communication among scientists, resource managers, and the general public; and (e) national leadership in data management and climate scenario development.

  19. Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.

  20. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  1. Teacher perceptions of the Centers for Ocean Sciences Education Excellence: Central Gulf of Mexico program

    NASA Astrophysics Data System (ADS)

    Sempier, Tracie Tingle

    The 12 Centers for Ocean Sciences Education Excellence (COSEE) are funded by the National Science Foundation and are designed to promote creative ways of disseminating marine science research and its importance to the public. The focus of this study is the COSEE Central Gulf of Mexico program which encourages active partnerships between research scientists and teachers. In these collaborative partnerships, teachers and scientists work together to create educational products and disseminate best practices in ocean sciences education. The purpose of this study was to determine whether the lesson plans and curricula created through the Centers for Ocean Sciences Education Excellence: Central Gulf of Mexico program (COSEE:CGOM), which are the products of this collaboration, were being used effectively in the classroom. The study addressed issues such as teacher perceptions of collaboration with scientists, effectiveness of COSEE:CGOM curriculum implementation in producing more ocean literate students, and teachers' varying views concerning how to successfully implement new COSEE:CGOM knowledge and concepts into their classrooms in order to improve student scientific understanding. In addition, the study examined frequency of use of COSEE:CGOM lesson plans and identified predictor variables that can produce a model for understanding factors hindering or enhancing lesson plan use. Further, participant perceptions of using peer-teaching as a method for disseminating COSEE:CGOM information in their districts were addressed.

  2. Activities of the Center of Excellence for Radioactive Ion Beam Studies for Stewardship Science

    NASA Astrophysics Data System (ADS)

    Cizewski, J. A.

    2006-10-01

    The Center of Excellence for Radioactive Ion Beam Studies for Stewardship Science is a consortium of universities, Oak Ridge Associated Universities, and Oak Ridge National Laboratory, led by Rutgers University. The purpose of this project, funded by the NNSA/DP Academic Alliance for Stewardship Science program, is to use radioactive ion beams to study low-energy nuclear reactions of importance to stewardship science, as well as to prepare future researchers in applied nuclear science. These studies are enabled by the plethora of unstable accelerated beams available at the Holifield Radioactive Ion Beam Facility at Oak Ridge. The initial measurements use neutron-rich beams of uranium fission fragments to study the neutron-transfer (d,p) reaction, a possible surrogate of neutron capture reactions. We also develop new radioactive ion beams of interest to nuclear structure, nuclear astrophysics, and stewardship science. This talk will present an overview of the activities of the Center and the available facilities, describe initial results of a (d,p) reaction with a fission fragment beam, and outline activities proposed for the near term. In collaboration with H.K. Carter, ORAU.

  3. Exhibits and More: How Scientists Can Partner with Aquariums and Science Centers

    NASA Astrophysics Data System (ADS)

    Spitzer, B.

    2004-12-01

    Informal science institutions include science museums, aquariums, zoos, nature centers and other institutions that offer the public opportunities for free-choice, voluntary, and self-directed learning. Less than 20% of our lives is spent in formal schooling, and even among schoolchildren only 20% of their waking hours are spent in the classroom. Informal science institutions can have a significant impact on what the public knows, believes, and cares about. These institutions reach very large audiences, and are considered trusted information sources by the general public. Informal science institutions offer a wide range of learning opportunities including exhibits, films, professional development for teachers, educational programs for children and adults, field trips, publications, websites, and more. Many informal learning centers are experienced in working with scientists as content experts, welcome their participation, make efficient use of their time, and are skilled at translating science for the general public. Several case studies will illustrate successful models for scientists engaging in development of exhibits, films, programs, and educational materials.

  4. SANs and Large Scale Data Migration at the NASA Center for Computational Sciences

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen M.

    2004-01-01

    Evolution and migration are a way of life for provisioners of high-performance mass storage systems that serve high-end computers used by climate and Earth and space science researchers: the compute engines come and go, but the data remains. At the NASA Center for Computational Sciences (NCCS), disk and tape SANs are deployed to provide high-speed I/O for the compute engines and the hierarchical storage management systems. Along with gigabit Ethernet, they also enable the NCCS's latest significant migration: the transparent transfer of 300 Til3 of legacy HSM data into the new Sun SAM-QFS cluster.

  5. Microarray Transcriptomics Data from the BioEnergy Science Center (BESC)

    DOE Data Explorer

    The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. BESC's approach to improve accessibility to the sugars within biomass involves 1) designing plant cell walls for rapid deconstruction and 2) developing multitalented microbes for converting plant biomass into biofuels in a single step (consolidated bioprocessing). Addressing the roadblock of biomass recalcitrance will require a multiscale understanding of plant cell walls from biosynthesis to deconstruction pathways. This integrated understanding would generate models, theories and finally processes that will be used to understand and overcome biomass recalcitrance.

  6. ESTREAMS and EarthScapes: Integrating Teacher Professional Development Into a Science and Technology Center

    NASA Astrophysics Data System (ADS)

    Campbell, K.; Dalbotten, D.

    2004-12-01

    The National Center for Earth-surface Dynamics (NCED) has developed three inter-locking programs to integrate Teacher Professional Development into the Center. These programs address teachers at two stages of professional development: post-baccalaureate pre-service teachers enrolled in masters programs and in-service teachers. Formal and informal methods are used to involve teachers in NCED research and in NCED's informal public education programs, exhibits and outdoor park at the Science Museum of Minnesota. This session will present the methods we are developing and our results to date. It will also introduce materials we currently make available through our online Education Portal.

  7. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    NASA Astrophysics Data System (ADS)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  8. Science discourse in a middle-grade classroom attempting learning community-centered science instruction

    NASA Astrophysics Data System (ADS)

    Templin, Mark Arnold

    This dissertation focuses on the development of students' scientific literacy discourse in a middle grade science classroom as the teacher attempted to establish a learning community. Instructional design features included a change in teacher and students' roles such that authority over many classroom decisions was shared and students were encouraged to design their own investigations within the context of extended learning projects. The study followed the progress of two groups of four students, representing diversity in academic performance, gender, and ethnicity, over the course of four months. Target group discourse was recorded once every other school day and then transcribed. Accompanying field notes were written. Classroom artifacts, including a complete set of daily lesson plans, instructional materials, and student products, were collected. The interpretive framework, which highlighted different discourse practices and the instructional moves that supported them, evolved during data analysis as it was repeatedly tried out against the empirical materials through stages of data reduction, display, conclusion drawing, and verification. Analysis of the teacher's practice indicated that he initiated and maintained a classroom learning community by encouraging students to (a) think about their thinking by responding to questions that promoted such reflection; (b) share their reflections and other written products with each other and revise them through peer review; (c) decide for themselves which science content was relevant to their investigations; (d) share problem solving strategies; and (e) debate the meaning of terms so that a common understanding of science concepts could be developed. The teacher modeled and asked questions to promote these reflective and collaborative practices, successively withdrawing his active involvement in group dialogue as the term progressed. Analysis of students' discourse indicated that students increasingly developed

  9. Identity Development in Pre-Service Teachers Who Are Explainers in a Science Center: Dialectically Developing Theory and Praxis

    ERIC Educational Resources Information Center

    Gupta, Preeti

    2009-01-01

    This dissertation investigates how teaching in a hands-on science center contributes to re/shaping one's teaching identity. Situated at the New York Hall of Science (NYHS) in Queens, New York, my research approach is to conduct a critical ethnography where the focus is on improving the teaching and learning of science for all involved. In…

  10. Center for Nuclear Medicine Research in Alzheimer`s Disease Health Sciences Center, West Virginia University. Environmental Assessment

    SciTech Connect

    Not Available

    1994-04-01

    The Environmental Assessment (EA) of the Center for Nuclear Medicine Research in Alzheimer`s Disease (CNMR) at the Health Sciences Center, at West Virginia University in Morgantown, West Virginia for the construction and operation was prepared by DOE. The EA documents analysis of the environmental and socioeconomic impacts that might occur as a result of these actions, and characterizes potential impacts on the environment. In the EA, DOE presents its evaluation of potential impacts of construction and operation of the CNMR on health and safety of both workers and the public, as well as on the external environment. Construction impacts include the effects of erosion, waste disposal, air emissions, noise, and construction traffic and parking. Operational impacts include the effects of waste generation (domestic, sanitary, hazardous, medical/biological, radioactive and mixed wastes), radiation exposures, air emissions (radioactive, criteria, and air toxics), noise, and new workers. No sensitive resources (wetlands, special sources of groundwater, protected species) exist in the area of project effect.

  11. State University of New York Health Science Center at Syracuse Leasing Practices. Report No. 95-S-80.

    ERIC Educational Resources Information Center

    New York State Office of the Comptroller, Albany.

    This document presents results of an audit of the leasing practices of the State University of New York (SUNY) Health Science Center at Syracuse covering the period April 1, 1993 through June 30, 1995. The audit investigated whether the Center and the Center's Clinical Practice Management Plan members engage in appropriate and economic leasing…

  12. The Evolution of the Del Mod System's Science and Mathematics Resource Centers, 1971-1976, Final Report, Volume II.

    ERIC Educational Resources Information Center

    Richardson, Sarah

    This report describes the creation, funding, promotion, and evaluation of the three resource centers and the instrument repair center of the Del Mod System. Included in the document are descriptions of the three science-mathematics resource centers at the University of Delaware, Delaware State College, and Delaware Technical and Community College.…

  13. A 5-year scientometric analysis of research centers affiliated to Tehran University of Medical Sciences

    PubMed Central

    Yazdani, Kamran; Rahimi-Movaghar, Afarin; Nedjat, Saharnaz; Ghalichi, Leila; Khalili, Malahat

    2015-01-01

    Background: Since Tehran University of Medical Sciences (TUMS) has the oldest and highest number of research centers among all Iranian medical universities, this study was conducted to evaluate scientific output of research centers affiliated to Tehran University of Medical Sciences (TUMS) using scientometric indices and the affecting factors. Moreover, a number of scientometric indicators were introduced. Methods: This cross-sectional study was performed to evaluate a 5-year scientific performance of research centers of TUMS. Data were collected through questionnaires, annual evaluation reports of the Ministry of Health, and also from Scopus database. We used appropriate measures of central tendency and variation for descriptive analyses. Moreover, uni-and multi-variable linear regression were used to evaluate the effect of independent factors on the scientific output of the centers. Results: The medians of the numbers of papers and books during a 5-year period were 150.5 and 2.5 respectively. The median of the "articles per researcher" was 19.1. Based on multiple linear regression, younger age centers (p=0.001), having a separate budget line (p=0.016), and number of research personnel (p<0.001) had a direct significant correlation with the number of articles while real properties had a reverse significant correlation with it (p=0.004). Conclusion: The results can help policy makers and research managers to allocate sufficient resources to improve current situation of the centers. Newly adopted and effective scientometric indices are is suggested to be used to evaluate scientific outputs and functions of these centers. PMID:26157724

  14. Front end evaluation research results. Communications and concept planning: Hatfield Marine Science Center

    NASA Technical Reports Server (NTRS)

    Falk, John H.; Holland, Dana

    1994-01-01

    An evaluation for the renovation of the existing visitor center at the Hatfield Marine Sciences Center (HMSC) was undertaken, in conjunction with the communications planning phase of the project. The outcome is expected to be the development of a communications plan and selection of concepts for visitors' interpretive experience. In the course of the evaluation, data were collected from 140 visitors to HMSC using both a questionnaire and face to face semi-structured interviews. Major results of the evaluation covered: 1, reasons for attending the HMSC; 2, visitor expectations; 3, visitors's knowledge of general science and of marine life and environments; 4, visitors' level of interest and attitudes toward exhibit themes; 5, issue areas of greatest interest; and 6, research areas of greatest interest.Visitors to t he HMSC had a strong orientation toward seeing and closely interacting with marine life and environments.

  15. FIRE_ACE_ER2_MAS

    Atmospheric Science Data Center

    2015-10-28

    ... First ISCCP Regional Experiment (FIRE) Arctic Cloud Experiment (ACE) NASA ER-2 Moderate Resolution Imaging ... SSFR Location:  Northern Alaska Arctic Ocean Spatial Coverage:  Fairbanks, Alaska and the surrounding ...

  16. Operational status and life extension plans for the Los Alamos Neutron Science Center (LANSCE)

    SciTech Connect

    Garnett, Robert W; Gulley, Mark S; Jones, Kevin W; Erickson, John L

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources, a proton radiography facility and a medical and research isotope production facility. The recent operating history of the facility, including both achievements and challenges, will be reviewed. Plans for performance improvement will be discussed, together with the underlying drivers for the ongoing LANSCE Risk Mitigation project. The details of this latter project will also be discussed.

  17. Operational Status and Life Extension Plans for the Los Alamos Neutron Science Center (LANSCE)

    SciTech Connect

    Erickson, John L.; Rees, Daniel E.

    2011-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources, a proton radiography facility and a medical and research isotope production facility. The recent operating history of the facility, including both achievements and challenges, will be reviewed. Plans for performance improvement will be discussed, together with the underlying drivers for the ongoing LANSCE Linac Risk Mitigation (LRM) project. The details of this latter project will also be discussed.

  18. University Reactor Conversion Lessons Learned Workshop for Texas A&M University Nuclear Science Center Reactor

    SciTech Connect

    Eric C. Woolstenhulme; Dana M. Meyer

    2007-04-01

    The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the Texas A&M University Nuclear Science Center (TAMU NSC) TRIGA Reactor Conversion so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges. This workshop was held in conjunction with a similar workshop for the University of Florida Reactor Conversion. Some of the generic lessons from that workshop are included in this report for completeness.

  19. The Process of Science Communications at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  20. Assessing the Value of Team Science A Study Comparing Center- and Investigator-Initiated Grants

    PubMed Central

    Hall, Kara L.; Stokols, Daniel; Stipelman, Brooke A.; Vogel, Amanda L.; Feng, Annie; Masimore, Beth; Morgan, Glen; Moser, Richard P.; Marcus, Stephen E.; Berrigan, David

    2013-01-01

    Background Large cross-disciplinary scientific teams are becoming increasingly prominent in the conduct of research. Purpose This paper reports on a quasi-experimental longitudinal study conducted to compare bibliometric indicators of scientific collaboration, productivity, and impact of center-based transdisciplinary team science initiatives and traditional investigator-initiated grants in the same field. Methods All grants began between 1994 and 2004 and up to 10 years of publication data were collected for each grant. Publication information was compiled and analyzed during the spring and summer of 2010. Results Following an initial lag period, the transdisciplinary research center grants had higher overall publication rates than the investigator-initiated R01 (NIH Research Project Grant Program) grants. There were relatively uniform publication rates across the research center grants compared to dramatically dispersed publication rates among the R01 grants. On average, publications produced by the research center grants had greater numbers of coauthors but similar journal impact factors compared with publications produced by the R01 grants. Conclusions The lag in productivity among the transdisciplinary center grants was offset by their overall higher publication rates and average number of coauthors per publication, relative to investigator-initiated grants, over the 10-year comparison period. The findings suggest that transdisciplinary center grants create benefits for both scientific productivity and collaboration. (Am J Prev Med 2012;42(2):157–163) Published by Elsevier Inc. on behalf of American Journal of Preventive Medicine PMID:22261212

  1. Using and Distributing Spaceflight Data: The Johnson Space Center Life Sciences Data Archive

    NASA Technical Reports Server (NTRS)

    Cardenas, J. A.; Buckey, J. C.; Turner, J. N.; White, T. S.; Havelka,J. A.

    1995-01-01

    Life sciences data collected before, during and after spaceflight are valuable and often irreplaceable. The Johnson Space Center Life is hard to find, and much of the data (e.g. Sciences Data Archive has been designed to provide researchers, engineers, managers and educators interactive access to information about and data from human spaceflight experiments. The archive system consists of a Data Acquisition System, Database Management System, CD-ROM Mastering System and Catalog Information System (CIS). The catalog information system is the heart of the archive. The CIS provides detailed experiment descriptions (both written and as QuickTime movies), hardware descriptions, hardware images, documents, and data. An initial evaluation of the archive at a scientific meeting showed that 88% of those who evaluated the catalog want to use the system when completed. The majority of the evaluators found the archive flexible, satisfying and easy to use. We conclude that the data archive effectively provides key life sciences data to interested users.

  2. Assessment of Translational and Interdisciplinary Clinical Research at an Oklahoma Health Sciences Center

    PubMed Central

    Dao, Hanh Dung; Kota, Pravina; James, Judith A.; Stoner, Julie A.; Akins, Darrin R.

    2015-01-01

    Purpose In response to National Institutes of Health initiatives to improve translation of basic science discoveries we surveyed faculty to assess patterns of and barriers to translational research in Oklahoma. Methods An online survey was administered to University of Oklahoma Health Sciences Center, College of Medicine faculty, which included demographic and research questions. Results Responses were received from 126 faculty members (24%). Two-thirds spent ≥20% time on research; among these, 90% conduct clinical and translational research. Identifying funding; recruiting research staff and participants; preparing reports and agreements; and protecting research time were commonly perceived as at least moderate barriers to conducting research. While respondents largely collaborated within their discipline, clinical investigators were more likely than basic science investigators to engage in interdisciplinary research. Conclusion While engagement in translational research is common, specific barriers impact the research process. This could be improved through an expanded interdisciplinary collaboration and research support structure. PMID:26242016

  3. Physical and Chemical Sciences Center: Research briefs. Volume 9-94

    SciTech Connect

    Vook, F.L.; Samara, G.A.

    1994-12-31

    As Sandia National Laboratories and the Physical and Chemical Sciences Center develop an increasingly diverse set of customers, research partners, and Cooperative Research and Development Agreements (CRADA`s) with industry, there is a need for providing more concise information describing the technical achievements and capabilities. This publication, Research Briefs, is designed to inform the present and potential partners in research and technology advancement. The research emphasizes semiconductor physics, electronic materials, surface physics and chemistry, plasma and chemical processing sciences, lasers and optics, vision science, ion-solid interactions and defect physics, and advanced materials physics. The specific programs pursued are driven by the research goals which are greatly influenced by interactions with the government and industrial customers.

  4. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  5. Solar-terrestrial models at the National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    Bilitza, D.

    1991-01-01

    The National Space Science Data Center (NSSDC) and World Data Center A for Rockets and Satellites (WDC-A-R&S) has a long record of participation in the worldwide efforts to establish and improve empirical models for the different regions of the solar-terrestrial environment. The center maintains a unique archive of solar-terrestrial models and related applications software, described in a recently published models catalog. The software packages are distributed on tape, diskette, and on-line on the Space Physics Analysis Network (SPAN). Four of the most frequently requested models (IRI, MSIS/CIRA, IGRF, AE-8/AP-8) can also be accessed and run on the NSSDC Online Documentation and Information Service (NODIS) account, which can be reached from any SPAN node.

  6. An overview of the National Space Science data Center Standard Information Retrieval System (SIRS)

    NASA Technical Reports Server (NTRS)

    Shapiro, A.; Blecher, S.; Verson, E. E.; King, M. L. (Editor)

    1974-01-01

    A general overview is given of the National Space Science Data Center (NSSDC) Standard Information Retrieval System. A description, in general terms, the information system that contains the data files and the software system that processes and manipulates the files maintained at the Data Center. Emphasis is placed on providing users with an overview of the capabilities and uses of the NSSDC Standard Information Retrieval System (SIRS). Examples given are taken from the files at the Data Center. Detailed information about NSSDC data files is documented in a set of File Users Guides, with one user's guide prepared for each file processed by SIRS. Detailed information about SIRS is presented in the SIRS Users Guide.

  7. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect

    2010-07-01

    production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  8. Technology advancement for the ASCENDS mission using the ASCENDS CarbonHawk Experiment Simulator (ACES)

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Antill, C.; Browell, E. V.; Campbell, J. F.; CHEN, S.; Cleckner, C.; Dijoseph, M. S.; Harrison, F. W.; Ismail, S.; Lin, B.; Meadows, B. L.; Mills, C.; Nehrir, A. R.; Notari, A.; Prasad, N. S.; Kooi, S. A.; Vitullo, N.; Dobler, J. T.; Bender, J.; Blume, N.; Braun, M.; Horney, S.; McGregor, D.; Neal, M.; Shure, M.; Zaccheo, T.; Moore, B.; Crowell, S.; Rayner, P. J.; Welch, W.

    2013-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center project funded by NASA's Earth Science Technology Office that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technologies being advanced are: (1) multiple transmitter and telescope-aperture operations, (2) high-efficiency CO2 laser transmitters, (3) a high bandwidth detector and transimpedance amplifier (TIA), and (4) advanced algorithms for cloud and aerosol discrimination. The instrument architecture is being developed for ACES to operate on a high-altitude aircraft, and it will be directly scalable to meet the ASCENDS mission requirements. The above technologies are critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. This design employs several laser transmitters and telescope-apertures to demonstrate column CO2 retrievals with alignment of multiple laser beams in the far-field. ACES will transmit five laser beams: three from commercial lasers operating near 1.57-microns, and two from the Exelis atmospheric oxygen (O2) fiber laser amplifier system operating near 1.26-microns. The Master Oscillator Power Amplifier at 1.57-microns measures CO2 column concentrations using an Integrated-Path Differential Absorption (IPDA) lidar approach. O2 column amounts needed for calculating the CO2 mixing ratio will be retrieved using the Exelis laser system with a similar IPDA approach. The three aperture telescope design was built to meet the constraints of the Global Hawk high-altitude unmanned aerial vehicle (UAV). This assembly integrates fiber-coupled transmit collimators for all of the laser transmitters and fiber-coupled optical signals from the three telescopes to the aft optics and detector package. The detector

  9. The Sharjah Center for Astronomy and Space Sciences (SCASS 2015): Concept and Resources

    NASA Astrophysics Data System (ADS)

    Naimiy, Hamid M. K. Al

    2015-08-01

    The Sharjah Center for Astronomy and Space Sciences (SCASS) was launched this year 2015 at the University of Sharjah in the UAE. The center will serve to enrich research in the fields of astronomy and space sciences, promote these fields at all educational levels, and encourage community involvement in these sciences. SCASS consists of:The Planetarium: Contains a semi-circle display screen (18 meters in diameter) installed at an angle of 10° which displays high-definition images using an advanced digital display system consisting of seven (7) high-performance light-display channels. The Planetarium Theatre offers a 200-seat capacity with seats placed at highly calculated angles. The Planetarium also contains an enormous star display (Star Ball - 10 million stars) located in the heart of the celestial dome theatre.The Sharjah Astronomy Observatory: A small optical observatory consisting of a reflector telescope 45 centimeters in diameter to observe the galaxies, stars and planets. Connected to it is a refractor telescope of 20 centimeters in diameter to observe the sun and moon with highly developed astronomical devices, including a digital camera (CCD) and a high-resolution Echelle Spectrograph with auto-giving and remote calibration ports.Astronomy, space and physics educational displays for various age groups include:An advanced space display that allows for viewing the universe during four (4) different time periods as seen by:1) The naked eye; 2) Galileo; 3) Spectrographic technology; and 4) The space technology of today.A space technology display that includes space discoveries since the launching of the first satellite in 1940s until now.The Design Concept for the Center (450,000 sq. meters) was originated by HH Sheikh Sultan bin Mohammed Al Qasimi, Ruler of Sharjah, and depicts the dome as representing the sun in the middle of the center surrounded by planetary bodies in orbit to form the solar system as seen in the sky.

  10. Regional Aerosol Optical Depth Characteristics from Satellite Observations: ACE-1, TARFOX and ACE-2 Results

    NASA Technical Reports Server (NTRS)

    Durkee, P. A.; Nielsen, K. E.; Smith, P. J.; Russell, P. B.; Schmid, B.; Livingston, J. M.; Holben, B. N.; Tomasi, C.; Vitale, V.; Collins, D.

    1999-01-01

    Analysis of the aerosol properties during 3 recent international field campaigns ACE-1, TARFOX and ACE-2 are described using satellite retrievals from NOAA AVHRR data. Validation of the satellite retrieval procedure is performed with airborne, shipboard, and land-based sunphotometry during ACE-2. The intercomparison between satellite and surface optical depths has a correlation coefficient of 0.93 for 630 nm wavelength and 0.92 for 860 nm wavelength, The standard error of estimate is 0.025 for 630 nm wavelength and 0.023 for 860 nm wavelength. Regional aerosol properties are examined in composite analysis of aerosol optical properties from the ACE-1, TARFOX and ACE-2 regions. ACE-1 and ACE-2 regions have strong modes in the distribution of optical depth around 0.1, but the ACE-2 tails toward higher values yielding an average of 0.16 consistent with pollution and dust aerosol intrusions. The TARFOX region has a noticeable mode of 0.2, but has significant spread of aerosol optical depth values consistent with the varied continental aerosol constituents off the eastern North American Coast.

  11. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  12. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    SciTech Connect

    Longshore, A.; Salgado, K.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  13. Classification of Gaia16ace as type Ia supernova near maximum

    NASA Astrophysics Data System (ADS)

    Piascik, A. S.; Steele, I. A.

    2016-02-01

    We conducted a spectroscopic observation of transient Gaia16ace at 2016-02-11T02:56:31 UT. The transient was discovered by the Gaia Photometric Science survey on 2016-02-03T22:43:39 UT at position RA=13:48:32.33 DEC=-02:03:33.6.

  14. Lessons learned from the introduction of autonomous monitoring to the EUVE science operations center

    NASA Technical Reports Server (NTRS)

    Lewis, M.; Girouard, F.; Kronberg, F.; Ringrose, P.; Abedini, A.; Biroscak, D.; Morgan, T.; Malina, R. F.

    1995-01-01

    The University of California at Berkeley's (UCB) Center for Extreme Ultraviolet Astrophysics (CEA), in conjunction with NASA's Ames Research Center (ARC), has implemented an autonomous monitoring system in the Extreme Ultraviolet Explorer (EUVE) science operations center (ESOC). The implementation was driven by a need to reduce operations costs and has allowed the ESOC to move from continuous, three-shift, human-tended monitoring of the science payload to a one-shift operation in which the off shifts are monitored by an autonomous anomaly detection system. This system includes Eworks, an artificial intelligence (AI) payload telemetry monitoring package based on RTworks, and Epage, an automatic paging system to notify ESOC personnel of detected anomalies. In this age of shrinking NASA budgets, the lessons learned on the EUVE project are useful to other NASA missions looking for ways to reduce their operations budgets. The process of knowledge capture, from the payload controllers for implementation in an expert system, is directly applicable to any mission considering a transition to autonomous monitoring in their control center. The collaboration with ARC demonstrates how a project with limited programming resources can expand the breadth of its goals without incurring the high cost of hiring additional, dedicated programmers. This dispersal of expertise across NASA centers allows future missions to easily access experts for collaborative efforts of their own. Even the criterion used to choose an expert system has widespread impacts on the implementation, including the completion time and the final cost. In this paper we discuss, from inception to completion, the areas where our experiences in moving from three shifts to one shift may offer insights for other NASA missions.

  15. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect

    2009-07-01

    is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and

  16. Plasma Physics/Fusion Energy Education at the Liberty Science Center

    NASA Astrophysics Data System (ADS)

    Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff

    2007-11-01

    The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.

  17. Archival policies and collections database for the Woods Hole Science Center's marine sediment samples

    USGS Publications Warehouse

    Buczkowski, Brian J.; Kelsey, Sarah A.

    2007-01-01

    The Woods Hole Science Center of the U.S. Geological Survey (USGS) has been an active member of the Woods Hole research community, Woods Hole, Massachusetts, for over 40 years. In that time there have been many projects that involved the collection of sediment samples conducted by USGS scientists and technicians for the research and study of seabed environments and processes. These samples were collected at sea or near shore and then brought back to the Woods Hole Science Center (WHSC) for analysis. While at the center, samples are stored in ambient temperature, refrigerated and freezing conditions ranging from +2º Celsius to -18º Celsius, depending on the best mode of preparation for the study being conducted or the duration of storage planned for the samples. Recently, storage methods and available storage space have become a major concern at the WHSC. The core and sediment archive program described herein has been initiated to set standards for the management, methods, and duration of sample storage. A need has arisen to maintain organizational consistency and define storage protocol. This handbook serves as a reference and guide to all parties interested in using and accessing the WHSC's sample archive and also defines all the steps necessary to construct and maintain an organized collection of geological samples. It answers many questions as to the way in which the archive functions.

  18. Earth System Data Microsets for Education From the Atmospheric Sciences Data Center

    NASA Astrophysics Data System (ADS)

    Phelps, C. S.; Chambers, L. H.; Oots, P. C.; Moore, S. W.; Lorentz, K. E.; Dalton, A. J.

    2004-12-01

    The Atmospheric Sciences Data Center (ASDC) at NASA's Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. Scientists have been analyzing the extensive data to discover and quantify the complex interactions and feedbacks in the Earth system, communicating conclusions frequently with colleagues, policy makers and the general public. NASA's Science Mission Directorate aims to stimulate public interest in the understanding of these Earth system science findings and to encourage young scholars to consider careers in science, technology, engineering and mathematics. However, barriers still exist to the use of actual satellite observations in the classroom to energize the educational process. NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities at all levels of formal and informal education by reducing the ASDC data holdings to `microsets' that will be easily accessible and explored by the K-12 and the citizen scientist communities. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. Teacher workshops will be held each summer for five years to help teachers learn about incorporating the microsets in their curriculum. Additionally, a Live Access Server (LAS) has been populated with ASDC data holdings such that users can create custom microsets for desired time series, parameters and geographical regions. Currently, parameters from the Clouds and the Earth's Radiant Energy System (CERES), the Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud

  19. Comparison of ARAC calculations with surface and airborne measurements for the ACE field trials

    SciTech Connect

    Foster, K.T.; Pobanz, B.

    1996-11-01

    These Atmospheric Collection Equipment (ACE) trials were sponsored by the Air Force Technical Applications Center (AFTAC) for the purpose of investigating specific tracer monitoring methods and equipment. Three different tracers (sulfur hexafluoride and two particulate tracers) were released simultaneously for each experiment. This document provides a brief summary of the sulfur hexafluoride modeling results for three of the remaining four ACE trials (the tracer plume from the fifth trial was not located by the monitoring teams and provided no tracer measurements for model comparison). This summary is followed by a discussion of model results for the two particulate tracers which were co-released with sulfur hexafluoride.

  20. Ramping up for Success: Reflections on Developing Inter- and Intra- Institutional Parnerships From Three Science and Technology Centers

    NASA Astrophysics Data System (ADS)

    Green, V. L.; Aguilar, C.; Bruno, B.

    2008-05-01

    National Science Foundation Science and Technology Centers are charged with the task of conducting cutting- edge scientific research encompassing a truly interdisciplinary and collaborative approach, with partners from a variety of university, industry, agency, and educational partners. Establishing relationships, understanding resources, and developing innovative approaches to commonly articulated goals presents challenges and opportunities. The ability to assess progress and implement changes mid-stream is imperative to Center success, requiring Center management to effectively identify and negotiate cultural, logistical, and structural barriers among institutional partners. Interesting collaborations between STC's become possible as inner partnerships coalesce and mature. Three Science and Technology Centers in the ocean and atmospheric science disciplines established in 2006 reflect on the ramp-up process, discussing lessons learned, perceived best practices, and recent successful initiatives, focusing on Education and Diversity Programs.

  1. Surface water quality-assurance plan, U.S. Geological Survey, Kentucky Water Science Center, water year 2006

    USGS Publications Warehouse

    Griffin, Michael S.

    2006-01-01

    This Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the Kentucky Water Science Center for activities related to the collection, processing, storage, analysis, and publication of surface-water data.

  2. Heidegger in the Hands-on Science and Technology Center: Philosophical Reflections on Learning in Informal Settings.

    ERIC Educational Resources Information Center

    Walton, Richard

    2000-01-01

    Uses interactive science and technology centers as an example of the application of Heidegger's ideas about technology. Discuses Heidegger's concerns about uncritical acceptance of technology. (Contains 27 references.) (SK)

  3. Value-added Data Services at the Goddard Earth Sciences Data and Information Services Center

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.; Alcott, Gary T.; Kempler, Steven J.; Lynnes, Christopher S.; Vollmer, Bruce E.

    2004-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in addition to serving the Earth Science community as one of the major Distributed Active Archives Centers (DAACs), provides much more than just data. Among the value-added services available to general users are subsetting data spatially and/or by parameter, online analysis (to avoid downloading unnecessarily all the data), and assistance in obtaining data from other centers. Services available to data producers and high-volume users include consulting on building new products with standard formats and metadata and construction of data management systems. A particularly useful service is data processing at the DISC (i.e., close to the input data) with the users algorithm. This can take a number of different forms: as a configuration-managed algorithm within the main processing stream; as a stand-alone program next to the on-line data storage; as build-it-yourself code within the Near-Archive Data Mining (NADM) system; or as an on-the-fly analysis with simple algorithms embedded into the web-based tools. Partnerships between the GES DISC and scientists, both producers and users, allow the scientists to concentrate on science, while the GES DISC handles the data management, e.g., formats, integration, and data processing. The existing data management infrastructure at the GES DISC supports a wide spectrum of options: from simple data support to sophisticated on-line analysis tools, producing economies of scale and rapid time-to-deploy. At the same time, such partnerships allow the GES DISC to serve the user community more efficiently and to better prioritize on-line holdings. Several examples of successful partnerships are described in the presentation.

  4. An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Gleason, J. L.; Little, M. M.

    2013-12-01

    NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.

  5. The Real Astronomy Experience: Making the IVO Effective for International Planetaria and Science Centers

    NASA Astrophysics Data System (ADS)

    Pennypacker, Carl

    The Real Astronomy Experience, or RAE, is a new exhibit just beginning development in the late fall of 2002, hopefully to be funded by the US National Science Foundation. RAE will allow public visitors in science centers, museums, and planetaria to operate and acquire images from a either a remote telescope in the southern hemisphere or from IVO data bases. RAE can operate from Europe and North America during daylight at the exhibit site. This project will be implemented also by international Global Hands-On Universe ("GHOU") collaborators. Greater international success will be facilitated by other GHOU nations joining the collaboration to build a viable network of small, inexpensive telescopes, and federating their data bases for the IVO.

  6. Maryland Summer Center for Space Science - A Collaboration Between Scientists and Maryland Teachers

    NASA Astrophysics Data System (ADS)

    Beisser, K. B.; Fox, N. J.

    2001-12-01

    JHU/APL hosts the Maryland Summer Center for Space Science for 6th and 7th graders. Students learned to harness the power of technology and keep pace with the expanding knowledge of space science. Students experienced the process involved in planning/launching a simulated space mission, including design/fabrication of instrumentation for a spacecraft. They were part of a Mission Team that built a spacecraft scale model complete with instrumentation as a NASA Discovery Program mission. Students also created logos, poster sessions, budgets, E/PO plans, and even gave a full mission overview oral presentation to their peers. JHU/APL offered an exciting environment for this study of applications in space. Students interacted with scientists, engineers, and program management. They examined instruments, visited test facilities, mission operations and clean room facilities. Two week program, G/T students, Maryland State Department of Education.

  7. Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)

    DOE Data Explorer

    The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

  8. Overview of Data Discovery and Access at the Atmospheric Science Data Center (ASDC)

    NASA Astrophysics Data System (ADS)

    Rinsland, P. L.; Little, M. M.; Kusterer, J.; Tisdale, M.; Johnson, C. J.; Quam, B. M.

    2013-12-01

    The Atmospheric Science Data Center (ASDC), in its role as an Earth Observing System Data and Information System (EOSDIS) Distributed Active Archive Center (DAAC) has made substantial improvements to the ways in which data is delivered. The architecture and services have been developed in response to both emerging customer needs to support multiple paths for access and associated technologies. Consideration of user interfaces and automated machine to machine methods will be described. This presentation provides an overview of the approach and how the various elements of data, metadata, and documentation are provided to the access methods at the ASDC. These include recently refreshed conventional ordering tools, Esri and Open-source GIS products, and piloting efforts to optimize Open-source Project for a Network Data Access Protocol (OPeNDAP), Hadoop, and Integrated Rule Oriented Data Systems (iRODS).

  9. Ambulatory Research and Education Center Oregon Health Science University. Environmental Assesment

    SciTech Connect

    Not Available

    1994-03-21

    DOE has prepared an Environmental Assessment (EA) (DOE/EA-0921) evaluating the proposed construction and operation of the Ambulatory Research and Education Center (AREC), which would be located on the top seven floors of the existing NeuroSensory Research Center (NRC) on the campus of the Oregon Health Sciences University (OHSU) at Portland, Oregon. The proposed action would combine activities scattered across the campus into a central facility. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC 4321 et seq. Therefore, an environmental impact statement (EIS) is not required and the Department is issuing this Finding of No Significant Impact (FONSI).

  10. Bayesian Research at the NASA Ames Research Center,Computational Sciences Division

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.

    2003-01-01

    NASA Ames Research Center is one of NASA s oldest centers, having started out as part of the National Advisory Committee on Aeronautics, (NACA). The site, about 40 miles south of San Francisco, still houses many wind tunnels and other aviation related departments. In recent years, with the growing realization that space exploration is heavily dependent on computing and data analysis, its focus has turned more towards Information Technology. The Computational Sciences Division has expanded rapidly as a result. In this article, I will give a brief overview of some of the past and present projects with a Bayesian content. Much more than is described here goes on with the Division. The web pages at http://ic.arc. nasa.gov give more information on these, and the other Division projects.

  11. Community Coordinated Modeling Center Support of Science Needs for Integrated Data Environment

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Maddox, M.

    2007-01-01

    Space science models are essential component of integrated data environment. Space science models are indispensable tools to facilitate effective use of wide variety of distributed scientific sources and to place multi-point local measurements into global context. The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the- art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. The majority of models residing at CCMC are comprehensive computationally intensive physics-based models. To allow the models to be driven by data relevant to particular events, the CCMC developed an online data file generation tool that automatically downloads data from data providers and transforms them to required format. CCMC provides a tailored web-based visualization interface for the model output, as well as the capability to download simulations output in portable standard format with comprehensive metadata and user-friendly model output analysis library of routines that can be called from any C supporting language. CCMC is developing data interpolation tools that enable to present model output in the same format as observations. CCMC invite community comments and suggestions to better address science needs for the integrated data environment.

  12. Immersing Southeastern Louisiana Middle School Students in Physics at the LIGO Livingston Science Education Center

    NASA Astrophysics Data System (ADS)

    Stuver, Amber

    2010-03-01

    The LIGO Science Education Center (SEC) is located adjacent to the LIGO Livingston Observatory and brings the excitement of gravitational wave science to Southeastern Louisiana. While the SEC offers programs targeted for middle school students, we also offer programs for students through post-secondary levels, teacher professional development and the public. Programs are LIGO related inquiry based activities and include guided investigations in our classroom and free exploration of the more than 40 hands on exhibits in our exhibit hall (most built by the Exploratorium). Students also get to visit the working LIGO observatory to interact with scientists and to see the science concepts they are learning in action. The LIGO SEC is the result of the unique collaboration between a museum (The Exploratorium), science laboratory (LIGO), university (Southern University-Baton Rouge) and local education agencies (LaSIP and LaGEAR-UP) to scaffold this outreach. The SEC also serves as a test bed for educational research through collaboration with a Tulane University psychology faculty member. New initiatives of the SEC include developing programs of repeated engagement with teachers through professional development and with students through field trips in order to undertake longitudinal studies on the impact of the informal education environment.

  13. Seasonal comparisons of retrieved temperature and water vapour between ACE-FTS and COSMIC.

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin; Toon, Geoff; Boone, Chris; Strong, Kim

    2015-04-01

    Motivated by the selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars, we developed new algorithms for retrieving vertical profiles of temperature and pressure from spectra. We present temperature retrieval results from remote sensing spectra collected by the Canadian Space Agency's (CSA) Atmospheric Chemistry Experiment (ACE), which recently celebrated its tenth year in orbit. ACE utilizes a high-resolution (0.02 cm-1) Fourier Transform Spectrometer (FTS) operating between 750-4400 cm-1 in limb-scanning mode using the sun as a light source (solar occultation). We compare our retrieved profiles to those of the ACE Science Team and the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). COSMIC is a group of six small satellites that use signals from GPS satellites to measure water vapour pressure an temperature via radio occultation. We have collected five sets of zonal and seasonal coincidences with a tight criteria of 150 km and 1 hour. Retrieved H2O profiles from both satellites will also be presented for these data sets. Compared to ACE, we can achieve T differences between 1 and 5 K below 50 km, perform less well between 50 and 100 km. Compared to COSMIC, available below 40 km, we perform similarly, while the ACE retrievals are in close agreement.

  14. The new library building at the University of Texas Health Science Center at San Antonio.

    PubMed Central

    Kronick, D A; Bowden, V M; Olivier, E R

    1985-01-01

    The new University of Texas Health Science Center at San Antonio Library opened in June 1983, replacing the 1968 library building. Planning a new library building provides an opportunity for the staff to rethink their philosophy of service. Of paramount concern and importance is the need to convey this philosophy to the architects. This paper describes the planning process and the building's external features, interior layouts, and accommodations for technology. Details of the move to the building are considered and various aspects of the building are reviewed. Images PMID:3995205

  15. Mass Storage System Upgrades at the NASA Center for Computational Sciences

    NASA Technical Reports Server (NTRS)

    Tarshish, Adina; Salmon, Ellen; Macie, Medora; Saletta, Marty

    2000-01-01

    The NASA Center for Computational Sciences (NCCS) provides supercomputing and mass storage services to over 1200 Earth and space scientists. During the past two years, the mass storage system at the NCCS went through a great deal of changes both major and minor. Tape drives, silo control software, and the mass storage software itself were upgraded, and the mass storage platform was upgraded twice. Some of these upgrades were aimed at achieving year-2000 compliance, while others were simply upgrades to newer and better technologies. In this paper we will describe these upgrades.

  16. FITS Data Conversion Efforts at the Compton Observatory Science Support Center

    NASA Astrophysics Data System (ADS)

    Jennings, D. G.; Jordan, J. M.; McGlynn, T. A.; Ruggiero, N. G.; Serlemitsos, T. A.

    1993-01-01

    The Compton Gamma Ray Observatory (CGRO) is an active satellite consisting of four gamma ray telescopes. Each telescope is maintained by an independent team of investigators, and each team has devised separate data formats to handle the needs of their particular instrument. As mandated by NASA, the Compton Observatory Science Support Center (COSSC) intends to archive and distribute data from all four CGRO instruments in FITS. This paper describes the problems encountered in transcribing large amounts of data into a standard FITS form, the capabilities of the COSSC-built conversion software designed to perform the transformations and the ToFU conversion tools on which this software is based.

  17. Evaluation of a data warehouse in an academic health sciences center.

    PubMed Central

    Schubart, J. R.; Einbinder, J. S.

    1999-01-01

    A data warehouse can provide significant benefits to a health care organization if successfully designed and implemented. The Clinical Data Repository (CDR) at the University of Virginia Health Sciences Center improves access to needed data for clinical research and effective decision making at many levels of the organization. We conducted an evaluation of the CDR using a survey questionnaire and interviews of key executive leaders. Our results suggest factors that influence the initial decision to use an information resource, examine the impact of communication channels, and highlight key issues that determine the continued use and ultimate success of a healthcare data warehouse. PMID:10566432

  18. Having Fun with Physics at the MIT Plasma Science and Fusion Center

    NASA Astrophysics Data System (ADS)

    Rivenberg, P.; Thomas, P.; Censabella, V.; Granville, J.; Nachtrieb, R.; Gangadhara, S.

    1997-11-01

    MIT Plasma Science and Fusion Center staff and students are convinced that students learn best not by studying but by doing. This was the impetus behind a group of MIT graduate students who created Cambridge Physics Outlet, a PSFC spin-off company dedicated to creating hands-on experiments. The same impulse fostered the award-winning Mr. Magnet Program, a traveling presentation which uses a hands-on strategy to engage elementary school children. A number of ingenious experiments will be demonstrated. The PSFC maintains a Home Page on the World Wide Web, which can be reached at HTTP://PFC.MIT.EDU.

  19. New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)

    SciTech Connect

    Morris, C. L.; Brown, E. N.; Agee, C.; Bernert, T.; Bourke, M. A. M.; Burkett, M. W.; Buttler, W. T.; Byler, D. D.; Chen, C. F.; Clarke, A. J.; Cooley, J. C.; Gibbs, P. J.; Imhoff, S. D.; Jones, R.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Murray, M. M.; Olinger, C. T.; Oro, D. M.; Nedrow, P.; Saunders, A.; Terrones, G.; Trouw, F.; Tupa, D.; Vogan, W.; Winkler, B.; Wang, Z.; Zellner, M. B.

    2015-12-30

    An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recent experiments will be reviewed and concepts for new techniques are introduced.

  20. The Delta II with ACE aboard is prepared for liftoff from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Boeing Delta II expendable launch vehicle carrying the Advanced Composition Explorer (ACE) undergoes final preparations for liftoff in the predawn hours of Aug. 25, 1997, at Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. The first launch attempt on Aug. 24 was scrubbed by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. ACE with its combination of nine sensors and instruments will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology.

  1. Neurosurgery at All India Institute of Medical Sciences, a center of excellence: A success story.

    PubMed

    Singh, Manmohan; Sawarkar, Dattaraj; Sharma, Bhawani S

    2015-01-01

    The department of neurosurgery at All India Institute of Medical Sciences (AIIMS) started its humble beginning in 1965. With the untiring and selfless hard work of Prof. P N Tandon and Prof. A K Banerji, the department progressed over time to become a center of excellence in the subcontinent. To establish a neurosciences center at AIIMS was an uphill task, which was accomplished with great efforts. The department has established itself as one of the highest centers of learning in the country with its vast infrastructure and diversity in all fields of neurosurgery. AIIMS, New Delhi was established by an act of the parliament in 1956. It was started with a grant from the Government of New Zealand under the "Colombo Plan." It was the vision of Rajkumari Amrita Kaur, the first Health Minister of India, that led to the establishment of a medical institute of international repute in India. AIIMS, New Delhi is an autonomous institute and is governed by the AIIMS Act, 1956. The department of neurosurgery at AIIMS was started in March 1965 with Prof. P.N. Tandon as the Head of the Department. Prof. A.K. Banerji joined him a few months later. The Department celebrated its golden jubilee in the year 2015, and has tremendously grown in stature from its humble beginnings to being a center of excellence with world-wide recognition. PMID:26238896

  2. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    NASA Astrophysics Data System (ADS)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  3. Preparing Teachers to Use Problem-Centered, Inquiry-Based Science: Lessons from a Four-Year Professional Development Project

    ERIC Educational Resources Information Center

    Lehman, James D.; George, Melissa; Buchanan, Peggy; Rush, Michael

    2006-01-01

    Calls for reform in science education stress the need for inquiry-based, integrative methods that provide students with opportunities to solve authentic problems. Project INSITE, a four-year professional development effort in Indiana, was designed to help teachers integrate problem-centered science methods in their classrooms. This approach was…

  4. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  5. End-to-end remote sensing at the Science and Technology Laboratory of John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick; Rickman, Douglas; Smith, Eric

    1991-01-01

    The Science and Technology Laboratory (STL) of Stennis Space Center (SSC) was developing an expertise in remote sensing for more than a decade. Capabilities at SSC/STL include all major areas of the field. STL includes the Sensor Development Laboratory (SDL), Image Processing Center, a Learjet 23 flight platform, and on-staff scientific investigators.

  6. Creative Pedagogy: A Qualitative Study of Immersive Learning at the Center for Information and Communication Sciences (CICS)

    ERIC Educational Resources Information Center

    Olorunda, Olufunmilola Olufunmilayo

    2009-01-01

    The Center for Information and Communication Sciences graduate program commenced at Ball State University in 1986 with a specific focus to train graduate students to be leaders in the Information and Communication Technology (ICT) industry. The Center is the manifestation of a vision birthed out of creativity and resourcefulness. This study…

  7. Needs assessment of science teachers in secondary schools in Kumasi, Ghana: A basis for in-service education training programs at the Science Resource Centers

    NASA Astrophysics Data System (ADS)

    Gyamfi, Alexander

    The purpose of this study was twofold. First, it identified the priority needs common to all science teachers in secondary schools in Kumasi, Ghana. Second, it investigated the relationship existing between the identified priority needs and the teacher demographic variables (type of school, teacher qualification, teaching experience, subject discipline, and sex of teacher) to be used as a basis for implementing in-service education training programs at the Science Resource Centers in Kumasi Ghana. An adapted version of the Moore Assessment Profile (MAP) survey instrument and a set of open-ended questions were used to collect data from the science teachers. The researcher handed out one hundred and fifty questionnaire packets, and all one hundred and fifty (100%) were collected within a period of six weeks. The data were analyzed using descriptive statistics, content analysis, and inferential statistics. The descriptive statistics reported the frequency of responses, and it was used to calculate the Need Index (N) of the identified needs of teachers. Sixteen top-priority needs were identified, and the needs were arranged in a hierarchical order according to the magnitude of the Need Index (0.000 ≤ N ≤ 1.000). Content analysis was used to analyze the responses to the open-ended questions. One-way analysis of variance (ANOVA) was used to test the null hypotheses of the study on each of the sixteen identified top-priority needs and the teacher demographic variables. The findings of this study were as follows: (1) The science teachers identified needs related to "more effective use of instructional materials" as a crucial area for in-service training. (2) Host and Satellite schools exhibited significant difference on procuring supplementary science books for students. Subject discipline of teachers exhibited significant differences on utilizing the library and its facilities by students, obtaining information on where to get help on effective science teaching

  8. Earth Science Data Archive and Access at the NASA/Goddard Space Flight Center Distributed Active Archive Center (DAAC)

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    1999-01-01

    The Goddard Distributed Active Archive Center (DAAC), as an integral part of the Earth Observing System Data and Information System (EOSDIS), is the official source of data for several important earth remote sensing missions. These include the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) launched in August 1997, the Tropical Rainfall Measuring Mission (TRMM) launched in November 1997, and the Moderate Resolution Imaging Spectroradiometer (MODIS) scheduled for launch in mid 1999 as part of the EOS AM-1 instrumentation package. The data generated from these missions supports a host of users in the hydrological, land biosphere and oceanographic research and applications communities. The volume and nature of the data present unique challenges to an Earth science data archive and distribution system such as the DAAC. The DAAC system receives, archives and distributes a large number of standard data products on a daily basis, including data files that have been reprocessed with updated calibration data or improved analytical algorithms. A World Wide Web interface is provided allowing interactive data selection and automatic data subscriptions as distribution options. The DAAC also creates customized and value-added data products, which allow additional user flexibility and reduced data volume. Another significant part of our overall mission is to provide ancillary data support services and archive support for worldwide field campaigns designed to validate the results from the various satellite-derived measurements. In addition to direct data services, accompanying documentation, WWW links to related resources, support for EOSDIS data formats, and informed response to inquiries are routinely provided to users. The current GDAAC WWW search and order system is being restructured to provide users with a simplified, hierarchical access to data. Data Browsers have been developed for several data sets to aid users in ordering data. These Browsers allow users to specify

  9. Remarks on KERMA Factors in ACE files

    NASA Astrophysics Data System (ADS)

    Konno, C.; Ochiai, K.; Takakura, K.; Sato, S.

    2014-04-01

    Some neutron KERMA factors in ACE files are negative and extremely large if nuclear data libraries do not keep energy-balance. The status of neutron KERMA factors in the official ACE file of ENDF/B-VII.1 is examined. As a result, it is found out that neutron KERMA factors of nuclei more than 200 in ENDF/B-VII.1 have some problems. Effects of the inadequate KERMA factor are also investigated, which are large for neutron heat while those are small for total (neutron + gamma) heat. Users who use only neutron KERMA factors should check if the factors are adequate or not before they use the factors.

  10. Oak Ridge National Laboratory`s (ORNL) ecological and physical science study center: A hands-on science program for K-12 students

    SciTech Connect

    Bradshaw, S.P.

    1994-12-31

    In our tenth year of educational service and outreach, Oak Ridge National Laboratory`s Ecological and Physical Science Study Center (EPSSC) provides hands-on, inquiry-based science activities for area students and teachers. Established in 1984, the EPSSC now hosts over 20,000 student visits. Designed to foster a positive attitude towards science, each unit includes activities which reinforce the science concept being explored. Outdoor science units provide field experience at the Department of Energy`s Oak Ridge National Environmental Research Park and outreach programs are offered on-site in area schools. Other programs are offered as extensions of the EPSSC core programs, including on-site student science camps, all-girl programs, outreach science camps, student competitions, teacher in-service presentations and teacher workshops.

  11. The Community Coordinated Modeling Center - An Evolving Cyberinfrastructure for the Space Science Community

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Kuznetsova, M. M.; Pulkkinen, A. A.; Rastaetter, L.; Mays, M. L.; MacNeice, P. J.; Zheng, Y.; Chulaki, A.; Shim, J. S.; Collado-Vega, Y. M.; Mendoza, A. M. M.; Taktakishvili, A.; Mullinix, R.; Boblitt, J.; Bakshi, S. S.; Patel, K.; Pembroke, A. D.

    2015-12-01

    The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center was established in 2000 as an essential element of the National Space Weather Program and was designed to be a long-term & flexible solution to the Research-to-Operations (R2O) transition problem. Over its 15-year existence, the CCMC has changed how state-of-the-art space weather models are utilized in research, and has also facilitated the transition of many research models into operational environments. The CCMC currently hosts a large and expanding collection of physics-based space weather models that have been developed by the international research community, and has amassed a peta-byte of model simulation output that represents advances in space weather modeling and space science research for the past 15 years.The ability of the CCMC to engage the international research community and support community challenges, campaigns, studies, and general research is vital to its success - so a flexible cyberinfrastructure that facilitates data discovery and interoperability with external systems is a necessity. There are many challenges associated with supporting a large number of disparate, physics-based models and the computational infrastructure to support them. This paper will highlight the CCMC's past, present, and future computational infrastructure, and showcase several examples of how the CCMC continues to support many self-organized efforts in the space science community.

  12. Faculty development to improve teaching at a health sciences center: a needs assessment.

    PubMed

    Scarbecz, Mark; Russell, Cynthia K; Shreve, Robert G; Robinson, Melissa M; Scheid, Cheryl R

    2011-02-01

    There has been increasing interest at health science centers in improving the education of health professionals by offering faculty development activities. In 2007-08, as part of an effort to expand education-related faculty development offerings on campus, the University of Tennessee Health Science Center surveyed faculty members in an effort to identify faculty development activities that would be of interest. Factor analysis of survey data indicated that faculty interests in the areas of teaching and learning can be grouped into six dimensions: development of educational goals and objectives, the use of innovative teaching techniques, clinical teaching, improving traditional teaching skills, addressing teaching challenges, and facilitating participation. There were significant differences in the level of interest in education-related faculty development activities by academic rank and by the college of appointment. Full professors expressed somewhat less interest in faculty development activities than faculty members of lower ranks. Faculty members in the Colleges of Medicine and Dentistry expressed somewhat greater interest in faculty development to improve traditional teaching skills. The policy implications of the survey results are discussed, including the need for faculty development activities that target the needs of specific faculty groups. PMID:21293037

  13. Research Subject Advocacy: Program Implementation and Evaluation at Clinical and Translational Science Award Centers

    PubMed Central

    Kost, Rhonda G.; Reider, Carson; Stephens, Julie; Schuff, Kathryn G.

    2012-01-01

    Purpose In 2000, the National Center for Research Resources mandated that General Research Centers create a Research Subject Advocate (RSA) position. In 2008, the Clinical and Translational Science Award (CTSA) consortium endorsed a new advocacy model based on four RSA Best Practice Functions. The authors surveyed CTSA centers to learn about their implementation of programs to fulfill the RSA functions. Method In 2010, the RSA taskforce developed a two-part online survey to examine leadership, organizational structure, governance, scope, collaboration and integration, and funding and evaluation of RSA activities implemented at CTSA centers. Results Respondents from 45 RSA programs at 43 CTSA centers completed the survey. Senior university or CTSA officials led all programs. Ninety-six percent (43/45) of programs were funded by a CTSA core. Eighty percent (36/45) designated an individual “RSA.” Ninety-eight percent (44/45) provided diverse services either in collaboration with or complementary to other departments, including development of Data and Safety Monitoring Plans (16/45, 36%), informed consent observation (10/45, 22%), training responsive to audit findings (12/45, 27%), and direct advocacy services to participants (11/45, 24%). Eighty-six percent (24/28) reported qualitative evaluation methods for these activities. Conclusions RSA programs conduct both collaborative and unique research protection activities. This survey, an initial step in developing a more robust mechanism for evaluating RSA programs, collected valuable feedback. The authors recommend defining and developing outcome-based evaluation measures that take the heterogeneity of the individual RSA programs into account while advancing their value and effectiveness in protecting human research subject participants. PMID:22836849

  14. The National Space Science and Technology Center's Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Cox, G. N.; Denson, R. L.

    2004-12-01

    The objective of the National Space Science and Technology Center's (NSSTC) Education and Public Outreach program (EPO) is to support K-20 education by coalescing academic, government, and business constituents awareness, implementing best business/education practices, and providing stewardship over funds and programs that promote a symbiotic relationship among these entities, specifically in the area of K-20 Science, Technology, Engineering, and Mathematics (STEM) education. NSSTC EPO Program's long-term objective is to showcase its effective community-based integrated stakeholder model in support of STEM education and to expand its influence across the Southeast region for scaling ultimately across the United States. The Education and Public Outreach program (EPO) is coordinated by a supporting arm of the NSSTC Administrative Council called the EPO Council (EPOC). The EPOC is funded through federal, state, and private grants, donations, and in-kind contributions. It is comprised of representatives of NSSTC Research Centers, both educators and scientists from the Alabama Space Science and Technology Alliance (SSTA) member institutions, the Alabama Space Grant Consortium and the NASA Marshall Space Flight Center's (MSFC) Education Office. Through its affiliation with MSFC and the SSTA - a consortium of Alabama's research universities that comprise the NSSTC, EPO fosters the education and development of the next generation of Alabama scientists and engineers by coordinating activities at the K-20 level in cooperation with the Alabama Department of Education, the Alabama Commission on Higher Education, and Alabama's businesses and industries. The EPO program's primary objective is to be Alabama's premiere organization in uniting academia, government, and private industry by way of providing its support to the State and Federal Departments of Education involved in systemic STEM education reform, workforce development, and innovative uses of technology. The NSSTC EPO

  15. NRAO welcomes new Head of the North American ALMA Science Center

    NASA Astrophysics Data System (ADS)

    2008-09-01

    The National Radio Astronomy Observatory (NRAO) has announced the appointment of Dr. Carol Jean Lonsdale as the Observatory's new Assistant Director for the North American ALMA Science Center (NAASC). As NAASC head, Lonsdale will lead the team that will enable North American astronomers to exploit the capabilities of the Atacama Large Millimeter/submillimeter Array (ALMA), a powerful new international astronomical facility under construction in the high-altitude Atacama Desert of northeastern Chile. Dr. Carol Lonsdale Dr. Carol Lonsdale CREDIT: NRAO/AUI/NSF "With ALMA, our understanding of such crucial processes as the formation of galaxies, stars, and planetary systems is going to take a giant leap. I look forward to leading the people here at NRAO who are working to make ALMA accessible to a wide range of science users," said Lonsdale. Lonsdale comes to NRAO with an extensive background in overseeing large astronomical projects. She has held senior positions at the Infrared Processing and Analysis Center (IPAC) of the California Institute of Technology, where she served as Senior Research Scientist, Head of Science Staff, and Manager of the Wide-Field Infrared Explorer and Infrared Science Archive. She has been a science team member on the Infrared-Red Astronomy Satellite, Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and other missions. "Carol brings a new dimension to the NAASC, with broad experience in user support of space infrared missions at IPAC and world-class scientific leadership in the study of star forming galaxies," said Christopher Carilli, who headed the NAASC prior to his new appointment as NRAO Chief Scientist. When completed in 2012, ALMA will be an array of at least 66 high-precision radio telescopes that will image faint millimeter- and submillimeter-wavelength light emitted by cold objects in the Universe, such as molecular clouds where stars are forming. It will also study warmer objects in the early Universe whose infrared

  16. Organizational Factors that Influence Information Technology Diffusion in Academic Health Sciences Centers

    PubMed Central

    Ash, Joan

    1997-01-01

    Abstract Objective: To identify the organizational factors which influence the diffusion of end user online literature searching, the computer-based patient record, and electronic mail systems in academic health sciences centers in the United States. Design: A total of 1335 individuals working in informatics and library areas at 67 academic health sciences centers in the U.S. were surveyed. Multivariate techniques were used to evaluate the relationship between the set of six organizational factors and two measures of innovation diffusion. Measurements: A Guttman-like scale was developed to measure infusion, or depth or sophistication, of each of the three innovations at each institution. Diffusion was measured by a question previously developed for another study. Six independent variables were measured via five formerly developed scales and one new one. Results: The overall response rate was 41%. The set of organizational variables produced significant results in the diffusion of each of the three innovations, with individual variables influencing diffusion to varying degrees. The same set produced significant results in relation to infusion only for online searching. There was little or no correlation between infusion and diffusion for each innovation. Conclusion: Organizational attributes are important predictors for diffusion of information technology innovations. Individual variables differ in their effect on each innovation. The set of attributes seems less able to predict infusion. It is recommended that both infusion and diffusion be measured in future studies because there is little relation between them. It is further recommended that individuals charged with implementing information technology in the health sciences receive training in managing organizational issues. PMID:9067876

  17. Regional Collaborations to Combat Climate Change: The Climate Science Centers as Strategies for Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Morelli, T. L.; Palmer, R. N.

    2014-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. The consortium approach taken by the CSCs allows the academic side of the Centers to gather expertise across departments, disciplines, and even institutions. This interdisciplinary approach is needed for successfully meeting regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach. Partnership with the federal government facilitates interactions with the key on-the-ground stakeholders who are able to operationalize the results and conclusions of that research, monitor the progress of management actions, and provide feedback to refine future methodology and decisions as new information on climate impacts is discovered. For example, NE CSC researchers are analyzing the effect of climate change on the timing and volume of seasonal and annual streamflows and the concomitant effects on ecological and cultural resources; developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; studying the effects of changes in the frequency and magnitude of drought and stream temperature on brook trout habitats, spatial distribution and population persistence; and conducting assessments of northeastern regional climate projections and high-resolution downscaling. Project methods are being developed in collaboration with stakeholders and results are being shared broadly with federal, state, and other partners to implement and refine effective and adaptive management actions.

  18. Using the contextual model of learning to understand visitor learning from a science center exhibition

    NASA Astrophysics Data System (ADS)

    Falk, John; Storksdieck, Martin

    2005-09-01

    Falk and Dierking's Contextual Model of Learning was used as a theoretical construct for investigating learning within a free-choice setting. A review of previous research identified key variables fundamental to free-choice science learning. The study sought to answer two questions: (1) How do specific independent variables individually contribute to learning outcomes when not studied in isolation? and (2) Does the Contextual Model of Learning provide a useful framework for understanding learning from museums? A repeated measure design including interviews and observational and behavioral measures was used with a random sample of 217 adult visitors to a life science exhibition at a major science center. The data supported the contention that variables such as prior knowledge, interest, motivation, choice and control, within and between group social interaction, orientation, advance organizers, architecture, and exhibition design affect visitor learning. All of these factors were shown to individually influence learning outcomes, but no single factor was capable of adequately explaining visitor learning outcomes across all visitors. The framework provided by the Contextual Model of Learning proved useful for understanding how complex combinations of factors influenced visitor learning. These effects were clearerest when visitors were segmented by entry conditions such as prior knowledge and interest.

  19. Training for life science experiments in space at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  20. Scientific Benefits of Space Science Models Archiving at Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Kuznetsova, Maria M.; Berrios, David; Chulaki, Anna; Hesse, Michael; MacNeice, Peter J.; Maddox, Marlo M.; Pulkkinen, Antti; Rastaetter, Lutz; Taktakishvili, Aleksandre

    2009-01-01

    The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. CCMC provides a web-based Run-on-Request system, by which the interested scientist can request simulations for a broad range of space science problems. To allow the models to be driven by data relevant to particular events CCMC developed a tool that automatically downloads data from data archives and transform them to required formats. CCMC also provides a tailored web-based visualization interface for the model output, as well as the capability to download the simulation output in portable format. CCMC offers a variety of visualization and output analysis tools to aid scientists in interpretation of simulation results. During eight years since the Run-on-request system became available the CCMC archived the results of almost 3000 runs that are covering significant space weather events and time intervals of interest identified by the community. The simulation results archived at CCMC also include a library of general purpose runs with modeled conditions that are used for education and research. Archiving results of simulations performed in support of several Modeling Challenges helps to evaluate the progress in space weather modeling over time. We will highlight the scientific benefits of CCMC space science model archive and discuss plans for further development of advanced methods to interact with simulation results.

  1. Renal ACE immunohistochemical localization in NIDDM patients with nephropathy.

    PubMed

    Mizuiri, S; Yoshikawa, H; Tanegashima, M; Miyagi, M; Kobayashi, M; Sakai, K; Hayashi, I; Aikawa, A; Ohara, T; Hasegawa, A

    1998-02-01

    A role of renal angiotensin-converting enzyme (ACE) in diabetic nephropathy has been suggested. Immunohistochemical localization of ACE was studied in 20 non-insulin-dependent diabetes mellitus patients with diabetic nephropathy and 17 healthy kidney transplant donors, with ACE gene insertion/deletion (I/D) polymorphism also examined in the latter. Immunohistochemical studies indicated that ACE staining was significantly (P < 0.01) enhanced in glomeruli and slightly decreased in proximal tubules in diabetic patients. Glomeruli positive for ACE immunostaining were observed in 23.5% of the healthy subjects and in 80% of the diabetic patients. All patients with nodular lesions had ACE-positive glomeruli and showed significantly (P < 0.01) more intense glomerular ACE immunostaining than patients without nodular lesions. Among healthy controls, subjects with the DD genotype had ACE-positive glomeruli more frequently and tended to show slightly increased intensity on proximal tubule ACE immunostaining compared with subjects with other genotypes. These observations suggest that increased ACE localization in glomeruli is likely to be one of the factors in the increased renin-angiotensin system activity in glomeruli in patients with diabetic nephropathy. There is a possibility that ACE gene I/D polymorphism may be related to renal ACE immunohistochemical localization. PMID:9469501

  2. Developing Communities: Serving ACE through Tertiary Education

    ERIC Educational Resources Information Center

    Sofo, Francesco

    2011-01-01

    Purpose: The purpose of this paper is to review the focus and practice of Adult and Community Education (ACE) as well as its conceptualization and delivery and to suggest parameters for an approach based on excellence, a balanced scorecard and performance to meet community needs. Design/methodology/approach: The review examines key aspects of the…

  3. Ace the Verbal on the SAT

    ERIC Educational Resources Information Center

    Meierding, Loren

    2005-01-01

    Many students are not accepted in to certain colleges and universities because of low SAT scores. Loren Meierding has written Ace the Verbal on the SAT to help students with minimal preparation do well by improving their vocabulary and use better techniques for finding the answers to the questions. This book provides strategies needed to score…

  4. ACE: A distributed system to manage large data archives

    NASA Technical Reports Server (NTRS)

    Daily, Mike I.; Allen, Frank W.

    1993-01-01

    Competitive pressures in the oil and gas industry are requiring a much tighter integration of technical data into E and P business processes. The development of new systems to accommodate this business need must comprehend the significant numbers of large, complex data objects which the industry generates. The life cycle of the data objects is a four phase progression from data acquisition, to data processing, through data interpretation, and ending finally with data archival. In order to implement a cost effect system which provides an efficient conversion from data to information and allows effective use of this information, an organization must consider the technical data management requirements in all four phases. A set of technical issues which may differ in each phase must be addressed to insure an overall successful development strategy. The technical issues include standardized data formats and media for data acquisition, data management during processing, plus networks, applications software, and GUI's for interpretation of the processed data. Mass storage hardware and software is required to provide cost effective storage and retrieval during the latter three stages as well as long term archival. Mobil Oil Corporation's Exploration and Producing Technical Center (MEPTEC) has addressed the technical and cost issues of designing, building, and implementing an Advanced Computing Environment (ACE) to support the petroleum E and P function, which is critical to the corporation's continued success. Mobile views ACE as a cost effective solution which can give Mobile a competitive edge as well as a viable technical solution.

  5. Web Services Implementations at Land Process and Goddard Earth Sciences Distributed Active Archive Centers

    NASA Astrophysics Data System (ADS)

    Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.

    2007-12-01

    NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.

  6. Building Petascale Cyberinfrastructure and Science Support for Solar Physics: Approach of the DKIST Data Center

    NASA Astrophysics Data System (ADS)

    Berukoff, Steven; Reardon, Kevin; Hays, Tony; Spiess, DJ; Watson, Fraser

    2015-08-01

    When construction is complete in 2019, the Daniel K. Inouye Solar Telescope will be the most-capable large aperture, high-resolution, multi-instrument solar physics facility in the world. The telescope is designed as a four-meter off-axis Gregorian, with a rotating Coude laboratory designed to simultaneously house and support five first-light imaging and spectropolarimetric instruments. At current design, the facility and its instruments will generate data volumes of 5 PB, produce 108 images, and 107-109 metadata elements annually. This data will not only forge new understanding of solar phenomena at high resolution, but enhance participation in solar physics and further grow a small but vibrant international community.The DKIST Data Center is being designed to store, curate, and process this flood of information, while augmenting its value by providing association of science data and metadata to its acquisition and processing provenance. In early Operations, the Data Center will produce, by autonomous, semi-automatic, and manual means, quality-controlled and -assured calibrated data sets, closely linked to facility and instrument performance during the Operations lifecycle. These data sets will be made available to the community openly and freely, and software and algorithms made available through community repositories like Github for further collaboration and improvement.We discuss the current design and approach of the DKIST Data Center, describing the development cycle, early technology analysis and prototyping, and the roadmap ahead. In this budget-conscious era, a key design criterion is elasticity, the ability of the built system to adapt to changing work volumes, types, and the shifting scientific landscape, without undue cost or operational impact. We discuss our deep iterative development approach, the underappreciated challenges of calibrating ground-based solar data, the crucial integration of the Data Center within the larger Operations lifecycle, and

  7. A-Train Data for Assessing Air Quality From the Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Hunt, L. A.

    2008-05-01

    A-Train Data for Assessing Air Quality from the Atmospheric Science Data Center The Atmospheric Science Data Center at NASA Langley Research Center is the archive and distribution center for data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Tropospheric Emission Spectrometer (TES) instruments. CALIPSO was launched into a sun-synchronous orbit on April 28, 2006, where it joined the A-Train constellation of four other Earth-orbiting satellites: Aqua, Aura, CloudSat and Parasol. The primary objective of CALIPSO's three-year mission is to make a global survey of the vertical structure of aerosols and clouds, and their physical properties. CALIPSO comprises three instruments, the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP), the Imaging Infrared Radiometer (IIR), and the Wide Field Camera (WFC). CALIOP is a two-wavelength, polarization- sensitive lidar that provides information about the composition of clouds, the abundance and sizes of aerosols, and the altitudes of cloud and aerosol layers. The IIR measures outgoing radiation at three wavelengths in the thermal infrared window (8.65 mm, 10.6 mm, and 12.0 mm) to determine cloud emissivity and particle size. The high resolution, nadir-viewing WFC images the region around the lidar and IIR measurements in a single spectral channel (645 nm), which is matched to Band 1 of the MODIS instrument on the Aqua satellite in the A- Train, to provide context for the data from the other instruments. CALIPSO Level 2 products include an aerosol extinction profile product, an aerosol layer product and a vertical feature mask product that includes aerosol type information. TES flies on Aura, the third of NASA's Earth Observing System spacecraft, on July 15, 2004. The primary objective of TES is to make global, three-dimensional measurements of ozone and other chemical species involved in its formation and destruction. The NASA Langley Atmospheric Science Data Center (ASDC) is the

  8. Authentic K-12 Science Projects at the NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Moore, S. W.; Sepulveda, R.

    2006-05-01

    The North Central Regional Educational Library (NCREL) has the following to say about authentic learning: "Students are presented with problem-solving activities that incorporate authentic, real-life questions and issues in a format that encourages collaborative effort, dialogue with informed expert sources, and generalization to broader ideas and application" An education team within the Science Directorate at NASA Langley Research Center has been developing education projects with these attributes of authentic learning since 1996. Currently, three projects are underway. The Students' Cloud Observations On-Line (S'COOL) Project, begun in December 1996, involves K-12 students in making ground truth observations of clouds at the time that a NASA earth-observing satellite passes overhead. The students report data through an on-line form, and can later visualize their data along with the corresponding satellite retrieved cloud properties. Students are invited to take an active part in the validation effort for cloud retrievals, analyzing the data and reporting any findings of interest to the Clouds and the Earth's Radiant Energy System (CERES) science team. The team made a connection with the GLOBE program in 2002, helping to define a protocol for student observation of contrails as part of the existing cloud protocol. These protocols involve students in observing parameters of interest for on-going scientific activities; while the GLOBE program provides a forum for dialog between students, educators, and scientists. In 2004, the team launched the Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs (MY NASA DATA) project. The goal of this project is to remove the barriers that prevent the K-12 and citizen science communities from making use of the large volume of Earth System Science data that NASA has collected and archived. This allows students to select a problem of real-life importance, and to explore it using high

  9. The effect of student-centered and teacher-centered instruction with and without conceptual advocacy on biology students' misconceptions, achievement, attitudes toward science, and cognitive retention

    NASA Astrophysics Data System (ADS)

    Gallop, Roger Graham

    The purpose of this study was to investigate the effect of student-centered and teacher-centered instructional strategies with and without conceptual advocacy (CA) on ninth-grade biology students' misconceptions (MIS), biology achievement (ACH), attitudes toward science (ATT), and cognitive retention of scientific method and measurement, spontaneous generation, and characteristics of living things. Students were purposively selected using intact classes and assigned to one of four treatment groups (i.e., student-centered instruction without CA, student-centered instruction with CA, teacher-centered instruction with CA, and teacher-centered instruction without CA). A modified quasi-experimental design was used in which students were not matched in the conventional sense but instead, groups were shown to be equivalent on the dependent measure via a pretest. A 5-day treatment implementation period addressed science conceptions under investigation. The treatment period was based on the number of class periods teachers at the target school actually spend teaching the biological concepts under investigation using traditional instruction. At the end of the treatment period, students were posttested using the Concepts in Biology instrument and Science Questionnaire. Eight weeks after the posttest, these instruments were administered again as a delayed posttest to determine cognitive retention of the correct biological conceptions and attitudes toward science. MANCOVA and follow-up univariate ANCOVA results indicated that student-centered instruction without CA (i.e., Group 1) did not have a significant effect on students' MIS, ACH, and ATT (F = .029, p = .8658; F = .002, p =.9688, F = .292, p = .5897, respectively). On the other hand, student-centered instruction with CA (i.e., Group 2) had a significant effect on students' MIS and ACH (F =10.33, p = .0016 and F = 10.17, p = .0017, respectively), but did not on ATT (F = .433, p = .5117). Teacher-centered instruction with

  10. Increasing Discoverability and Accessibility of NASA Atmospheric Science Data Center (ASDC) Data Products with GIS Technology

    NASA Astrophysics Data System (ADS)

    Ross, A.; Tisdale, B.; Tisdale, M.; Northup, E. A.; Kusterer, J.

    2014-12-01

    NASA's Atmospheric Science Data Center (ASDC) is utilizing Geographic Information System (GIS) technology that can increase data discoverability and accessibility of ASDC data to the GIS user community. Data products have had compatibility issues, limiting their use in open source as well as commercial tools, such as Esri's ArcGIS Platform. The ASDC is working in collaboration with ESDIS, Esri, The HDF Group, and George Mason University (GMU) to identify and address these compatibility issues. Once addressed, web services can be created on top of the data sets and accessed through desktop, mobile, and web based GIS tools. These services include the Open Geospatial Consortium (OGC) Web Mapping Service, OGC Web Coverage Service, and Image Service. Exposing services through desktop, mobile, and web based GIS tools is expected to yield a greater usage of NASA ASDC data as well as new analysis utilizing GIS tools for an increased understanding in the areas of the earth's radiation budget, clouds, aerosols, and tropospheric chemistry.

  11. FITS data conversion efforts at the Compton Observatory Science Support Center

    NASA Technical Reports Server (NTRS)

    Jennings, D. G.; Jordan, J. M.; Mcglynn, T. A.; Ruggiero, N. G.; Serlemitsos, T. A.

    1992-01-01

    The Compton Gamma Ray Observatory (CGRO) is an active, earth orbiting satellite consisting of four gamma-ray telescopes. Each telescope is maintained by an independent principal investigator (PI) team, and each PI team has devised separate data formats to handle the needs of their particular instrument. As mandated by NASA, the Compton Observatory Science Support Center (COSSC) intends to archive and distribute PI data to the public in FITS (Flexible Image Transport System) format. To accomplish this task, we at COSSC have been developing a set of general purpose software tools that facilitate the transformation of non-FITS formatted data into FITS format. These tools, known as ToFU (To FITS Utilities), serve as the kernel of our CGRO data conversion software. This presentation describes the problems encountered in transcribing large amounts of data into a standard FITS form and the capabilities of the COSSC-built conversion software designed to perform the transformations.

  12. The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel

    SciTech Connect

    Tehan, Terry

    2000-09-27

    The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.

  13. Marshall Space Flight Center Engineering Directorate Overview: Launching the Future of Science and Exploration

    NASA Technical Reports Server (NTRS)

    Miley, Steven C.

    2009-01-01

    The Marshall Small Business Association (MSBA) serves as a central point of contact to inform and educate small businesses interested in pursuing contracting and subcontracting opportunities at the Marshall Space Flight Center. The MSBA meets quarterly to provide industry with information about how to do business with Marshall and to share specific information about Marshall s mission, which allows private businesses to envision how they might contribute. For the February 19 meeting, the Engineering Directorate will give an overview of its unique capabilities and how it is organized to provide maximum support for the programs and projects resident at Marshall, for example, the Space Shuttle Propulsion Office, Ares Projects Office, and Science and Mission Systems Office. This briefing provides a top-level summary of the work conducted by Marshall s largest organization, while explaining how resources are deployed to perform the volume of work under Marshall s purview.

  14. New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)

    DOE PAGESBeta

    Morris, C. L.; Brown, E. N.; Agee, C.; Bernert, T.; Bourke, M. A. M.; Burkett, M. W.; Buttler, W. T.; Byler, D. D.; Chen, C. F.; Clarke, A. J.; et al

    2015-12-30

    An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recentmore » experiments will be reviewed and concepts for new techniques are introduced.« less

  15. Current nanoscience and nanoengineering at the Center for Nanoscale Science and Engineering

    NASA Astrophysics Data System (ADS)

    Hermann, A. M.; Singh, R. S.; Singh, V. P.

    2006-07-01

    The Center for Nanoscale Science and Engineering (CeNSE) at the University of Kentucky is a multidisciplinary group of faculty, students, and staff, with a shared vision and cutting-edge research facilities to study and develop materials and devices at the nanoscale. Current research projects at CeNSE span a number of diverse nanoscience thrusts in bio- engineering and medicine (nanosensors and nanoelectrodes, nanoparticle-based drug delivery), electronics (nanolithography, molecular electronics, nanotube FETs), nanotemplates for electronics and gas sensors (functionalization of carbon nanotubes, aligned carbon nanotube structures for gate-keeping, e-beam lithography with nanoscale precision), and nano--optoelectronics (nanoscale photonics for laser communications, quantum confinement in photovoltaic devices, and nanostructured displays). This paper provides glimpses of this research and future directions.

  16. Science center connections: What understandings do students retain after a field trip?

    NASA Astrophysics Data System (ADS)

    Morris, Naomi

    Studies have indicated that while gaining knowledge is part of the primary goal of environmental education, forming emotional links is an important factor in creating long-lasting impressions of environmental experiences, and ultimately, responsible environmental behavior. In this study the cognitive and emotional connections students make and how these connections change over time were assessed for a program presented at the Campbell Creek Science Center (CCSC) in Anchorage, Alaska. 45 fourth grade students were surveyed two different times over the course of two months. The results indicate that the average content scores students achieved were significantly lower two months later, compared to immediately after attending the program. Contrastingly attitudinal/emotional connections were observed to persist on average over the same period of time. Based on these observations, educators would do well to incorporate opportunities for emotional connections in EE programs; doing so may help achieve the goal of promoting stewardship behaviors in their audiences.

  17. THE COLLEGE AND UNIVERSITY SCIENCE CENTER, REPORT FROM A WORKSHOP SPONSORED BY EDUCATIONAL EXECUTIVE'S OVERVIEW MAGAZINE AND PERKINS AND WILL, ARCHITECTS, NEW YORK CITY, OCTOBER 26, 1961.

    ERIC Educational Resources Information Center

    SHAW, ARCHIBALD

    THIS IS A REPORT OF A DAY'S WORKSHOP ON THE COLLEGE SCIENCE CENTER, WITH A GROUP OF ARCHITECTS, COLLEGE ADMINISTRATORS, AND FACULTY. THE EMPHASIS WAS ON A DISCUSSION OF THE CONSOLIDATION OR CENTRALIZATION OF SCIENCE FACILITIES ON THE LIBERAL ARTS CAMPUS. SPECIFIC TOPICS INCLUDED--(1) WHY BUILD A SCIENCE CENTER, (2) BRIDGING OVER SUBJECT…

  18. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    NASA Technical Reports Server (NTRS)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  19. Increasing Student Success in Large Survey Science Courses via Supplemental Instruction in Learning Centers

    NASA Astrophysics Data System (ADS)

    Hooper, Eric Jon; Nossal, S.; Watson, L.; Timbie, P.

    2010-05-01

    Large introductory astronomy and physics survey courses can be very challenging and stressful. The University of Wisconsin-Madison Physics Learning Center (PLC) reaches about 10 percent of the students in four introductory physics courses, algebra and calculus based versions of both classical mechanics and electromagnetism. Participants include those potentially most vulnerable to experiencing isolation and hence to having difficulty finding study partners as well as students struggling with the course. They receive specially written tutorials, conceptual summaries, and practice problems; exam reviews; and most importantly, membership in small groups of 3 - 8 students which meet twice per week in a hybrid of traditional teaching and tutoring. Almost all students who regularly participate in the PLC earn at least a "C,” with many earning higher grades. The PLC works closely with other campus programs which seek to increase the participation and enhance the success of underrepresented minorities, first generation college students, and students from lower-income circumstances; and it is well received by students, departmental faculty, and University administration. The PLC staff includes physics education specialists and research scientists with a passion for education. However, the bulk of the teaching is conducted by undergraduates who are majoring in physics, astronomy, mathematics, engineering, and secondary science teaching (many have multiple majors). The staff train these enthusiastic students, denoted Peer Mentor Tutors (PMTs) in general pedagogy and mentoring strategies, as well as the specifics of teaching the physics covered in the course. The PMTs are among the best undergraduates at the university. While currently there is no UW-Madison learning center for astronomy courses, establishing one is a possible future direction. The introductory astronomy courses cater to non-science majors and consequently are less quantitative. However, the basic structure

  20. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.

    2007-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models

  1. The Centers for Ocean Science Education Excellence: Partnering with Community Colleges to Enhance Ocean Education and Broaden Participation.

    NASA Astrophysics Data System (ADS)

    Hodder, J.

    2011-12-01

    The Centers for Ocean Science Education Excellence (COSEE) have developed collaborations between research scientists and educators to transform ocean sciences education. Several COSEE centers have worked with the two-year college (2YC) community to enhance the 2YC faculty's capacity to deliver high-quality educational programs in the ocean sciences, integrate ocean research into 2YC educational materials, and enable ocean researchers to gain a better understanding of the capacity and culture of the 2YC community. In addition, COSEE-Pacific Partnerships has developed the Promoting Research Investigations in the Marine Environment (PRIME) internship program, based at west coast marine laboratories, to provide community college students with opportunities to work with ocean research scientists. This presentation will highlight some of the programs developed by COSEE centers and discuss the impact of these activities on scientists, community college faculty and students.

  2. Satellite and earth science data management activities at the U.S. geological survey's EROS data center

    USGS Publications Warehouse

    Carneggie, David M.; Metz, Gary G.; Draeger, William C.; Thompson, Ralph J.

    1991-01-01

    The U.S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center, the national archive for Landsat data, has 20 years of experience in acquiring, archiving, processing, and distributing Landsat and earth science data. The Center is expanding its satellite and earth science data management activities to support the U.S. Global Change Research Program and the National Aeronautics and Space Administration (NASA) Earth Observing System Program. The Center's current and future data management activities focus on land data and include: satellite and earth science data set acquisition, development and archiving; data set preservation, maintenance and conversion to more durable and accessible archive medium; development of an advanced Land Data Information System; development of enhanced data packaging and distribution mechanisms; and data processing, reprocessing, and product generation systems.

  3. Guidelines for submitting data to the National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The mission of the National Space Science Data Center (NSSDC) is to disseminate space science data for further analysis beyond that provided by the principal investigators (PIs) or team leaders (TLs) and their coworkers. Consequently, the NSSDC is responsible for the acquisition, organization, storage, retrieval, announcement, and distribution of scientific data obtained mainly from satellites and spacecraft. Any scientist may acquired data from the NSSDC and use them in further studies, either alone or in conjunction with data from ground-based or spacecraft experiments. With the responsibility for archiving data is the concomitant responsibility for distributing the documentation necessary to make those data usable. Since the group most knowledgeable about a particular experiment and its data is the PI or TL and his coworkers, and since the NSSDC cannot possibly supply the qualified personnel needed to write this documentation comprehensively, it is the responsibility of the PI or TL to provide the essential documentation. The NSSDC will support this effort by defining what is needed, by reviewing what is provided, and by reproducing and distributing the resulting documentation with the data. For a high-use data set, the NSSDC may publish the documentation as a Data Users Note; for a low-use data set, the NSSDC may distribute a Xerox, microfilm, or microfiche copy of the documentation.

  4. Siachen Science Center: A concept for cooperation at the top of the world

    SciTech Connect

    Biringer, K.L.

    1998-03-01

    India and Pakistan have engaged in a long-running military dispute in the Siachen Glacier region of the northern Kashmir since 1984. In recent years, several unsuccessful attempts have been made to end the conflict. Despite continuing hostilities, there remains a strong interest in resolving the dispute and eliminating the human and financial costs associated with maintaining troops on the highest battlefield in the world. One resolution to the problem could be the establishment of a scientific research center in the region. The military forces in the region would be replaced with scientists and engineers from both countries who would advance knowledge in science and engineering by operating a high-altitude research station for the study of basic sciences, engineering, and human physiology. The high altitude, remote location, and unique geology would provide an unprecedented opportunity for ground-breaking research. The paper discusses options for such research and precedents, such as the Antarctic Treaty, for research in other hostile environments. 7 figs.

  5. Classroom Activities: Simple Strategies to Incorporate Student-Centered Activities within Undergraduate Science Lectures

    PubMed Central

    Lom, Barbara

    2012-01-01

    The traditional science lecture, where an instructor delivers a carefully crafted monolog to a large audience of students who passively receive the information, has been a popular mode of instruction for centuries. Recent evidence on the science of teaching and learning indicates that learner-centered, active teaching strategies can be more effective learning tools than traditional lectures. Yet most colleges and universities retain lectures as their central instructional method. This article highlights several simple collaborative teaching techniques that can be readily deployed within traditional lecture frameworks to promote active learning. Specifically, this article briefly introduces the techniques of: reader’s theatre, think-pair-share, roundtable, jigsaw, in-class quizzes, and minute papers. Each technique is broadly applicable well beyond neuroscience courses and easily modifiable to serve an instructor’s specific pedagogical goals. The benefits of each technique are described along with specific examples of how each technique might be deployed within a traditional lecture to create more active learning experiences. PMID:23494568

  6. Center for Integrated Nanotechnologies (CINT) : science-base for future integrated systems.

    SciTech Connect

    Michalske, Terry A.

    2003-09-01

    The National Nanotechnology Initiative (NNI), first announced in 1999 has grown into a major U. S. investment involving twenty federal agencies. As a lead federal agency, the Department of Energy (DOE) is developing a network of Nanoscale Science and Research Centers (NSRC). NSRCs will be highly collaborative national user facilities associated with DOE National Laboratories where university, laboratory, and industrial researchers can work together to advance nanoscience and technology. The Center for Integrated Nanotechnologies (CINT), which is operated jointly by Sandia National Laboratories and Alamos National Laboratory, has a unique technical vision focused on integrating scientific disciplines and expertise across multiple length scales going all the way from the nano world to the world around us. It is often said that nanotechnology has the potential to change almost everything we do. However, this prophecy will only come to pass when we learn to couple nanoscale functions into the macroscale world. Obviously coupling the nano- and micro-length scales is an important piece of this challenge and one can site many examples where the performance of existing microdevices has been improved by adding nanotechnology. Examples include low friction coatings for MEMS and compact light sources for ChemLab spectrometers. While this approach has produced significant benefit, we believe that the true potential will be realized only when device architectures are designed 'from the nanoscale up', allowing nanoscale function to drive microscale performance.

  7. Center of Excellence for Geospatial Information Science research plan 2013-18

    USGS Publications Warehouse

    Usery, E. Lynn

    2013-01-01

    The U.S. Geological Survey Center of Excellence for Geospatial Information Science (CEGIS) was created in 2006 and since that time has provided research primarily in support of The National Map. The presentations and publications of the CEGIS researchers document the research accomplishments that include advances in electronic topographic map design, generalization, data integration, map projections, sea level rise modeling, geospatial semantics, ontology, user-centered design, volunteer geographic information, and parallel and grid computing for geospatial data from The National Map. A research plan spanning 2013–18 has been developed extending the accomplishments of the CEGIS researchers and documenting new research areas that are anticipated to support The National Map of the future. In addition to extending the 2006–12 research areas, the CEGIS research plan for 2013–18 includes new research areas in data models, geospatial semantics, high-performance computing, volunteered geographic information, crowdsourcing, social media, data integration, and multiscale representations to support the Three-Dimensional Elevation Program (3DEP) and The National Map of the future of the U.S. Geological Survey.

  8. Suggested Minimum Data Set for Speech Therapy Centers Affiliated to Tabriz University of Medical Sciences

    PubMed Central

    Damanabi, Shahla; Abdolnejad, Shawbo; Karimi, Gelavizh

    2015-01-01

    Background: The minimum data considered as a conceptual framework, based on the achievement of effectiveness indicators and it ensures to access of precise and clear health data. The aims of the present study were identified and proposed a data element set of speech therapy centers affiliated with Tabriz University of Medical Sciences. Material and Methods: This study that was cross – sectional type, performed in 9 speech therapy clinic from medical university in 2014. Firstly, the minimum data elements set evaluated using the check list in these centers. Using the findings from the first step and survey of internal and external documentation forms, designed a questionnaire containing a minimum data speech therapy files and it shared between 36 Speech therapy experts using 5 options of Likert scale. Validity of questionnaire was examined through its validity and reliability of content by retest. For data analysis, data processing was performed using descriptive statistics by SPSS21 software. Results: The minimum data set for speech therapy were divided into two categories: clinical and administrative data. The Name and surname, date of birth, gender, address, telephone number, date of admission and the number of treatments, the patient’s complaint, the time of occurrence of injury or disorder, reason and age of disease considered as the most important elements for management data and health history. For the most important elements of clinical information were selected Short-term and long-term aims and development of speech history. Conclusion: The design and implementation of suitable data collection of speech therapy for gathering of data, we recommended planning for the control and prevention of speech disorders to providing high quality and good care of patient in speech therapy centers. PMID:26483600

  9. Information Technology in Science (ITS) Center for Teaching and Learning Environment Design Experiment Study for the Development of New Generation Leaders in Science Education

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; Schroeder, C.; Brody, S.; Cahill, T.; Kenimer, A.; Loving, C.; Schielack, J.

    2003-12-01

    The ITS Center for Teaching and Learning is a five-year NSF-funded collaborative effort to engage scientists and university and school or district-based science educators in the use of information technology to improve science teaching and learning at all levels. One assumption is that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology in science classrooms has been shown to help achieve this objective. As a design study that is -working toward a greater understanding of a -learning ecology", the research related to the creation and refinement of the ITS Centeres collaborative environment for professional development is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. This presentation will discuss the results of the formative evaluation process that has moved the ITS Centeres collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). In particular, we will focus on the development of the ITS Centeres Project Teams, which create learning experiences over two summers focused on the exploration of science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the K-16

  10. The creation and early implementation of a high speed fiber optic network for a university health sciences center.

    PubMed Central

    Schueler, J. D.; Mitchell, J. A.; Forbes, S. M.; Neely, R. C.; Goodman, R. J.; Branson, D. K.

    1991-01-01

    In late 1989 the University of Missouri Health Sciences Center began the process of creating an extensive fiber optic network throughout its facilities, with the intent to provide networked computer access to anyone in the Center desiring such access, regardless of geographic location or organizational affiliation. A committee representing all disciplines within the Center produced and, in conjunction with independent consultants, approved a comprehensive design for the network. Installation of network backbone components commenced in the second half of 1990 and was completed in early 1991. As the network entered its initial phases of operation, the first realities of this important new resource began to manifest themselves as enhanced functional capacity in the Health Sciences Center. This paper describes the development of the network, with emphasis on its design criteria, installation, early operation, and management. Also included are discussions on its organizational impact and its evolving significance as a medical community resource. PMID:1807660

  11. ACES-PHARAO : Microwave link data processing

    NASA Astrophysics Data System (ADS)

    Meynadier, F.; Delva, P.; Le Poncin-Lafitte, C.; Laurent, P.; Wolf, P.

    2011-12-01

    The Atomic Clocks Ensemble in Space (PHARAO-ACES mission, te{Salomon2007}), which will be installed on board the International Space Station , uses a dedicated two-way microwave link in order to compare the timescale generated on board with those provided by many ground stations disseminated on the Earth. Phase accuracy and stability of this long range link will have a key role in the success of the PHARAO-ACES experiment. The SYRTE is heavily involved in the design and the development of the data processing software : from theoretical modelling and numerical simulations to the development of a software prototype. Our team is working on a wide range of problems that need to be solved in order to achieve high accuracy in (almost) real time. In this poster we present some key aspects of the measurement, as well as the current status of the software's development.

  12. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2015

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2016-01-01

    2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network. The DOI CSCs and USGS NCCWSC continued their mission of providing the science, data, and tools that are needed for on-the-ground decision making by natural and cultural resource managers to address the effects of climate change on fish, wildlife, ecosystems, and communities. Our many accomplishments in 2015 included initiating a national effort to understand the influence of drought on wildlife and ecosystems; providing numerous opportunities for students and early career researchers to expand their networks and learn more about climate change effects; and working with tribes and indigenous communities to expand their knowledge of and preparation for the impacts of climate change on important resources and traditional ways of living. Here we illustrate some of these 2015 activities from across the CSCs and NCCWSC.

  13. Three-dimensional presentation of the earth and planets in classrooms and science centers with a spherical screen

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.; Odagi, Y.; Nishi, N.; Miyazaki, S.; Ichikawa, H.

    2012-12-01

    Educational programs have been developed for the earth and planetary science using a three-dimensional presentation system of the Earth and planets with a spherical screen. They have been used in classrooms of universities, high schools, elementary schools, and science centers. Two-dimensional map is a standard tool to present the data of the Earth and planets. However the distortion of the shape is inevitable especially for the map of wide areas. Three-dimensional presentation of the Earth, such as globes, is an only way to avoid this distortion. There are several projects to present the earth and planetary science results in three-dimension digitally, such as Science on a sphere (SOS) by NOAA, and Geo-cosmos by the National Museum of Emerging Science and Innovation (Miraikan), Japan. These projects are relatively large-scale in instruments and cost, and difficult to use in classrooms and small-scale science centers. Therefore we developed a portable, scalable and affordable system of the three-dimensional presentation of the Earth and planets, Dagik Earth. This system uses a spherical screen and a PC projector. Several educational programs have been developed using Dagik Earth under collaboration of the researchers of the earth and planetary science and science education, school teachers, and curators of science centers, and used in schools and museums in Japan, Taiwan and other countries. It helps learners to achieve the proper cognition of the shape and size of the phenomena on the Earth and planets. Current status and future development of the project will be introduced in the presentation.

  14. Delivering Climate Science for the Nation's Fish, Wildlife, and Ecosystems: The U.S. Geological Survey National Climate Change and Wildlife Science Center

    USGS Publications Warehouse

    Beard, T. Douglas, Jr.

    2011-01-01

    Changes to the Earth's climate-temperature, precipitation, and other important aspects of climate-pose significant challenges to our Nation's natural resources now and will continue to do so. Managers of land, water, and living resources need to understand the impacts of climate change-which will exacerbate ongoing stresses such as habitat fragmentation and invasive species-so they can design effective response strategies. In 2008 Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS); this center was formed to address challenges resulting from climate change and to empower natural resource managers with rigorous scientific information and effective tools for decision-making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has invested over $20M in cutting-edge climate change research and is now leading the effort to establish eight regional Department of the Interior (DOI) Climate Science Centers (CSCs).

  15. Delivering climate science about the Nation's fish, wildlife, and ecosystems: the U.S. Geological Survey National Climate Change and Wildlife Science Center

    USGS Publications Warehouse

    Varela-Acevedo, Elda

    2014-01-01

    Changes to the Earth’s climate—temperature, precipitation, and other climate variables—pose significant challenges to our Nation’s natural resources. Managers of land, water, and living resources require an understanding of the impacts of climate change—which exacerbate ongoing stresses such as habitat alteration and invasive species—in order to design effective response strategies. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to address environmental challenges resulting from climate and land-use change and to provide natural resource managers with rigorous scientific information and effective tools for decision making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has established eight regional Department of the Interior (DOI) Climate Science Centers (CSCs) and has invested over $93 million (through fiscal year 2013) in cutting-edge climate change research.

  16. A qualitative evaluation of the 2005-2011 National Academic Centers of Excellence in Youth Violence Prevention Program.

    PubMed

    Holland, Kristin M; Vivolo-Kantor, Alana M; Dela Cruz, Jason; Massetti, Greta M; Mahendra, Reshma

    2015-12-01

    The Centers for Disease Control and Prevention's Division of Violence Prevention (DVP) funded eight National Academic Centers of Excellence (ACEs) in Youth Violence Prevention from 2005 to 2010 and two Urban Partnership Academic Centers of Excellence (UPACEs) in Youth Violence Prevention from 2006 to 2011. The ACEs and UPACEs constitute DVP's 2005-2011 ACE Program. ACE Program goals include partnering with communities to promote youth violence (YV) prevention and fostering connections between research and community practice. This article describes a qualitative evaluation of the 2005-2011 ACE Program using an innovative approach for collecting and analyzing data from multiple large research centers via a web-based Information System (ACE-IS). The ACE-IS was established as an efficient mechanism to collect and document ACE research and programmatic activities. Performance indicators for the ACE Program were established in an ACE Program logic model. Data on performance indicators were collected through the ACE-IS biannually. Data assessed Centers' ability to develop, implement, and evaluate YV prevention activities. Performance indicator data demonstrate substantial progress on Centers' research in YV risk and protective factors, community partnerships, and other accomplishments. Findings provide important lessons learned, illustrate progress made by the Centers, and point to new directions for YV prevention research and programmatic efforts. PMID:26319174

  17. Human Recombinant ACE2 Reduces the Progression of Diabetic Nephropathy

    PubMed Central

    Oudit, Gavin Y.; Liu, George C.; Zhong, JiuChang; Basu, Ratnadeep; Chow, Fung L.; Zhou, Joyce; Loibner, Hans; Janzek, Evelyne; Schuster, Manfred; Penninger, Josef M.; Herzenberg, Andrew M.; Kassiri, Zamaneh; Scholey, James W.

    2010-01-01

    OBJECTIVE Diabetic nephropathy is one of the most common causes of end-stage renal failure. Inhibition of ACE2 function accelerates diabetic kidney injury, whereas renal ACE2 is downregulated in diabetic nephropathy. We examined the ability of human recombinant ACE2 (hrACE2) to slow the progression of diabetic kidney injury. RESEARCH DESIGN AND METHODS Male 12-week-old diabetic Akita mice (Ins2WT/C96Y) and control C57BL/6J mice (Ins2WT/WT) were injected daily with placebo or with rhACE2 (2 mg/kg, i.p.) for 4 weeks. Albumin excretion, gene expression, histomorphometry, NADPH oxidase activity, and peptide levels were examined. The effect of hrACE2 on high glucose and angiotensin II (ANG II)–induced changes was also examined in cultured mesangial cells. RESULTS Treatment with hrACE2 increased plasma ACE2 activity, normalized blood pressure, and reduced the urinary albumin excretion in Akita Ins2WT/C96Y mice in association with a decreased glomerular mesangial matrix expansion and normalization of increased α-smooth muscle actin and collagen III expression. Human recombinant ACE2 increased ANG 1–7 levels, lowered ANG II levels, and reduced NADPH oxidase activity. mRNA levels for p47phox and NOX2 and protein levels for protein kinase Cα (PKCα) and PKCβ1 were also normalized by treatment with hrACE2. In vitro, hrACE2 attenuated both high glucose and ANG II–induced oxidative stress and NADPH oxidase activity. CONCLUSIONS Treatment with hrACE2 attenuates diabetic kidney injury in the Akita mouse in association with a reduction in blood pressure and a decrease in NADPH oxidase activity. In vitro studies show that the protective effect of hrACE2 is due to reduction in ANG II and an increase in ANG 1–7 signaling. PMID:19934006

  18. Experiences in Bridging the Gap Between Science and Decision Making at NASAs GSFC Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Kempler, S.; Teng, W.; Friedl, L.; Lynnes, C.

    2008-12-01

    In recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA has implemented the 'Decision Support Through Earth Science Research Results' program to solicit "proposals that develop and demonstrate innovative and practicable applications of NASA Earth science observations and research"that focus on improving decision making activities", as stated in the NASA ROSES-2008, A.18 solicitation. This very successful program has yielded several monitoring, surveillance, and decision support systems through collaborations with benefiting organizations in the areas of agriculture, air quality, disaster management, ecosystems, public health, water resources, and aviation weather. The Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations gaining much experience in the formulation, management, development, and implementation of decision support systems utilizing NASA Earth science data. Coupling this experience with the GES DISC's total understanding and vast experience regarding Earth science missions and resulting data and information, including data structures, data usability and interpretation, data interoperability, and information management systems, the GES DISC is in the unique position to more readily identify challenges that come with bringing science data to decision makers. These challenges consist of those that can be met within typical science data usage frameworks, as well as those challenges that arise when utilizing science data for previously unplanned applications, such as decision support systems. The purpose of this presentation is to share GES DISC decision support system project experiences in regards to system sustainability, required data quality (versus timeliness), data provider understanding how

  19. Experiences in Bridging the Gap between Science and Decision Making at NASA's GSFC Earth Science Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Teng, Bill; Friedl, Lawrence; Lynnes, Chris; Leptoukh, Gregory

    2008-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet s natural environment, NASA has implemented the Decision Support Through Earth Science Research Results program (NASA ROSES solicitations). a) This successful program has yielded several monitoring, surveillance, and decision support systems through collaborations with benefiting organizations. b) The Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations gaining much experience in the formulation, management, development, and implementation of decision support systems utilizing NASA Earth science data. c) In addition, GES DISC s understanding of Earth science missions and resulting data and information, including data structures, data usability and interpretation, data interoperability, and information management systems, enables the GES DISC to identify challenges that come with bringing science data to decision makers. d) The purpose of this presentation is to share GES DISC decision support system project experiences in regards to system sustainability, required data quality (versus timeliness), data provider understanding of how decisions are made, and the data receivers willingness to use new types of information to make decisions, as well as other topics. In addition, defining metrics that really evaluate success will be exemplified.

  20. Data-driven Ontology Development: A Case Study at NASA's Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Hertz, J.; Huffer, E.; Kusterer, J.

    2012-12-01

    Well-founded ontologies are key to enabling transformative semantic technologies and accelerating scientific research. One example is semantically enabled search and discovery, making scientific data accessible and more understandable by accurately modeling a complex domain. The ontology creation process remains a challenge for many anxious to pursue semantic technologies. The key may be that the creation process -- whether formal, community-based, automated or semi-automated -- should encompass not only a foundational core and supplemental resources but also a focus on the purpose or mission the ontology is created to support. Are there tools or processes to de-mystify, assess or enhance the resulting ontology? We suggest that comparison and analysis of a domain-focused ontology can be made using text engineering tools for information extraction, tokenizers, named entity transducers and others. The results are analyzed to ensure the ontology reflects the core purpose of the domain's mission and that the ontology integrates and describes the supporting data in the language of the domain - how the science is analyzed and discussed among all users of the data. Commonalities and relationships among domain resources describing the Clouds and Earth's Radiant Energy (CERES) Bi-Directional Scan (BDS) datasets from NASA's Atmospheric Science Data Center are compared. The domain resources include: a formal ontology created for CERES; scientific works such as papers, conference proceedings and notes; information extracted from the datasets (i.e., header metadata); and BDS scientific documentation (Algorithm Theoretical Basis Documents, collection guides, data quality summaries and others). These resources are analyzed using the open source software General Architecture for Text Engineering, a mature framework for computational tasks involving human language.

  1. Space data management at the NSSDC (National Space Sciences Data Center): Applications for data compression

    NASA Technical Reports Server (NTRS)

    Green, James L.

    1989-01-01

    The National Space Science Data Center (NSSDC), established in 1966, is the largest archive for processed data from NASA's space and Earth science missions. The NSSDC manages over 120,000 data tapes with over 4,000 data sets. The size of the digital archive is approximately 6,000 gigabytes with all of this data in its original uncompressed form. By 1995 the NSSDC digital archive is expected to more than quadruple in size reaching over 28,000 gigabytes. The NSSDC digital archive is expected to more than quadruple in size reaching over 28,000 gigabytes. The NSSDC is beginning several thrusts allowing it to better serve the scientific community and keep up with managing the ever increasing volumes of data. These thrusts involve managing larger and larger amounts of information and data online, employing mass storage techniques, and the use of low rate communications networks to move requested data to remote sites in the United States, Europe and Canada. The success of these thrusts, combined with the tremendous volume of data expected to be archived at the NSSDC, clearly indicates that innovative storage and data management solutions must be sought and implemented. Although not presently used, data compression techniques may be a very important tool for managing a large fraction or all of the NSSDC archive in the future. Some future applications would consist of compressing online data in order to have more data readily available, compress requested data that must be moved over low rate ground networks, and compress all the digital data in the NSSDC archive for a cost effective backup that would be used only in the event of a disaster.

  2. Adding to the mix: integrating ELSI into a National Nanoscale Science and Technology Center.

    PubMed

    Bjornstad, David J; Wolfe, Amy K

    2011-12-01

    This paper describes issues associated with integrating the study of Ethical, Legal and Social Issues (ELSI) into ongoing scientific and technical research and describes an approach adopted by the authors for their own work with the center for nanophase materials sciences (CNMS) at the Oak Ridge national laboratory (ORNL). Four key questions are considered: (a) What is ELSI and how should it identify and address topics of interest for the CNMS? (b) What advantages accrue to incorporating ELSI into the CNMS? (c) How should the integration of ELSI into the CNMS take place? (d) How should one judge the effectiveness of the activity? We conclude that ELSI research is not a monolithic body of knowledge, but should be adapted to the question at hand. Our approach focuses on junctures in the R&D continuum at which key decisions occur, avoids topics of a purely ethical nature or advocacy, and seeks to gather data in ways that permit testing the validity of generalization. Integrating ELSI into the CNMS allows dealing with topics firmly grounded in science, offers concrete examples of potential downstream applications and provides access to the scientists using the CNMS and their insights and observations. As well, integration provides the opportunity for R&D managers to benefit from ELSI insights and the potential to modify R&D agendas. Successful integration is dependent on the particular ELSI question set that drives the project. In this case questions sought to identify key choices, information of value to scientists, institutional attributes, key attributes of the CNMS culture, and alternatives for communicating results. The opportunity to consult with scientists on ELSI implications is offered, but not promoted. Finally, ELSI effectiveness is judged by observing the use to which research products are put within the CNMS, ORNL, and the community of external scholars. PMID:22068631

  3. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi

    2011-01-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  4. State University of New York, Health Science Center at Stony Brook: Clinical Practice Management Plan. Report 94-S-34.

    ERIC Educational Resources Information Center

    New York State Office of the Comptroller, Albany. Div. of Management Audit.

    An evaluation was done of the use of funds generated by clinical practices at the Clinical Practice Management Plan of the State University of New York (SUNY) Health Science Center (HSC) at Stony Brook. The audit looked at compliance with Board of Trustee policies regarding: (1) whether 5 percent of the gross receipts from clinical practices were…

  5. 77 FR 51564 - Notice of Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ...The Herrett Center for Arts and Science, College of Southern Idaho, has completed an inventory of human remains and associated funerary objects in consultation with the appropriate Indian tribes, and has determined that there is a cultural affiliation between the human remains and associated funerary object and present-day Indian tribes. Representatives of any Indian tribe that believes itself......

  6. Who Is Watching and Who Is Playing: Parental Engagement with Children at a Hands-On Science Center

    ERIC Educational Resources Information Center

    Nadelson, Louis S.

    2013-01-01

    Family interactions are common phenomenon at visits to science centers and natural history museums. Through interactions the family can support each other as the members individually and collectively learn from their visits. Interaction is particularly important between child(ren) and parent, which may be facilitated by media provided to parents.…

  7. The Experimental Teaching Reform in Biochemistry and Molecular Biology for Undergraduate Students in Peking University Health Science Center

    ERIC Educational Resources Information Center

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and…

  8. Literature and the Sea. Proceedings of a Conference Held at the Marine Science Center, Newport, Oregon, May 8, 1976.

    ERIC Educational Resources Information Center

    Astro, Richard, Ed.

    This document is a collection of eight papers presented at a conference held at the Marine Science Center, Newport, Oregon, May 8, 1976. The conference concluded a course offered jointly by the School of Oceanography and the Department of English at Oregon State University. The conference had two purposes: (1) focus on the relationship between…

  9. State University of New York Health Science Center at Syracuse: Clinical Practice Management Plan. Report 93-S-54.

    ERIC Educational Resources Information Center

    New York State Office of the Comptroller, Albany. Div. of Management Audit.

    This audit report addresses the compliance of the Clinical Practice Management Plan at the Health Science Center (HSC) at Syracuse with policies established by the State University of New York (SUNY) Board of Trustees. An executive summary highlights the scope of the audit, audit observations and conclusions, and comments of SUNY officials. An…

  10. The Student Actions Coding Sheet (SACS): An Instrument for Illuminating the Shifts toward Student-Centered Science Classrooms

    ERIC Educational Resources Information Center

    Erdogan, Ibrahim; Campbell, Todd; Abd-Hamid, Nor Hashidah

    2011-01-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3)…

  11. State University of New York Health Science Center at Brooklyn: Clinical Practice Management Plan. Report 93-S-82.

    ERIC Educational Resources Information Center

    New York State Office of the Comptroller, Albany. Div. of Management Audit.

    This audit report addresses the compliance of the Clinical Practice Management Plan at the Health Science Center (HSC) at Brooklyn with policies established by the State University of New York (SUNY) Board of Trustees. An executive summary highlights the scope of the audit, audit observations and conclusions, and comments of SUNY officials. An…

  12. Long Term Missions at the Sun-Earth Libration Point L1: ACE, SOHO, and WIND

    NASA Technical Reports Server (NTRS)

    Roberts, Craig E.

    2011-01-01

    Three heliophysics missions -- the Advanced Composition Explorer (ACE), Solar Heliospheric Observatory (SOHO), and the Global Geoscience WIND -- have been orbiting the Sun-Earth interior libration point L1 continuously since 1997, 1996, and 2004, respectively. ACE and WIND (both NASA missions) and SOHO (an ESA-NASA joint mission) are all operated from the NASA Goddard Space Flight Center (GSFC). While ACE and SOHO have been dedicated libration point orbiters since their launches, WIND has had also a remarkable 10-year career flying a deep-space, multiple lunar-flyby trajectory prior to 2004. That era featured 36 targeted lunar flybys with excursions to both L1 and L2 before its final insertion in L1 orbit. A figure depicts the orbits of the three spacecraft, showing projections of the orbits onto the orthographic planes of a solar rotating ecliptic frame of reference. The SOHO orbit is a quasi-periodic halo orbit, where the frequencies of the in-plane and out-of-plane motions are practically equal. Such an orbit is seen to repeat itself with a period of approximately 178 days. For ACE and WIND, the frequencies of the in-plane and out-of-plane motions are unequal, giving rise to the characteristic Lissajous motion. ACE's orbit is of moderately small amplitude, whereas WIND's orbit is a large-amplitude Lissajous of dimensions close to those of the SOHO halo orbit. As motion about the collinear points is inherently unstable, stationkeeping maneuvers are necessary to prevent orbital decay and eventual escape from the L1 region. Though the three spacecraft are dissimilar (SOHO is a 3-axis stabilized Sun pointer, WIND is a spin-stabilized ecliptic pole pointer, and ACE is also spin-stabilized with its spin axis maintained between 4 and 20 degrees of the Sun), the stationkeeping technique for the three is fundamentally the same. The technique consists of correcting the energy of the orbit via a delta-V directed parallel or anti-parallel to the Spacecraft-to-Sun line. SOHO

  13. Bombs, Bosons and Beer Cans-Research at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Pynn, Roger

    1997-04-01

    The neutron scattering community is justifiably proud of the contributions it has made to basic research in many areas of science. Information obtained using neutrons has contributed strongly to our basic understanding of phenomena in diverse systems of interest to physicists, chemists and biologists - think, for example, of how little we would know about excitations in quantum fluids, the spin-density-wave state of chromium, electronic back-donation in the bonding of organometallic compounds, or the conformation of proteins and DNA in nucleosomes without neutron scattering. However, illustrious as this history of neutron scattering may be, it is not the only type of contribution neutrons have made to our modern scientific and technological enterprise. Increasingly in recent years, we have witnessed the application of neutrons to later parts of the R&D cycle, to problems that have been called ''strategic research'' and even in areas that are ''applied research'' or ''product development''. The purpose of my talk at this meeting is to illustrate this aspect of research at spallation neutron sources, using examples of work that has been done at the Los Alamos Neutron Science Center (LANSCE). Some of this work is driven by the fact that our principal funding agency, the Office of Defense Programs within the U.S. Department of Energy, has a need to master the science behind technologies relevant to nuclear weapons. Even so, most of the examples I have picked are equally relevant to the industrial sector and several would not shame even the most devout proponent of ''pure'' research. To demonstrate the breadth of the research performed at LANSCE, I will describe examples of recent experiments in the following areas: materials texture; temperature and particle velocity measurement in reacting high explosives; radiographic imaging with protons; chemical bonding in metal-dihydride complexes; and the structure of thin adhesive layers. LANSCE operates a user program and

  14. Science, humanism, judgement, ethics: person-centered medicine as an emergent model of modern clinical practice.

    PubMed

    Miles, Andrew

    2013-01-01

    The Medical University of Plovdiv (MUP) has as its motto 'Committed to humanity". But what does humanity in modern medicine mean? Is it possible to practise a form of medicine that is without humanity? In the current article, it is argued that modern medicine is increasingly being practised in a de-personalised fashion, where the patient is understood not as a unique human individual, a person, but rather as a subject or an object and more in the manner of a complex biological machine. Medicine has, it is contended, become distracted from its duty to care, comfort and console as well as to ameliorate, attenuate and cure and that the rapid development of medicine's scientific knowledge is, paradoxically, principally causative. Signal occurrences in the 'patient as a person' movement are reviewed, together with the emergence of the evidence-based medicine (EBM) and patient-centered care (PCC) movements. The characteristics of a model of medicine evolving in response to medicine's current deficiencies--person-centered healthcare (PCH)--are noted and described. In seeking to apply science with humanism, via clinical judgement, within an ethical framework, it is contended that PCH will prove to be far more responsive to the needs of the individual patient and his/her personal circumstances than current models of practice, so that neither a reductive anatomico-pathological, disease-centric model of illness (EBM), nor an aggressive patient-directed, consumerist form of care (PCC) is allowed continued dominance within modern healthcare systems. In conclusion, it is argued that PCH will enable affordable advances in biomedicine and technology to be delivered to patients within a humanistic framework of clinical practice that recognises the patient as a person and which takes full account of his/her stories, values, preferences, goals, aspirations, fears, worries, hopes, cultural context and which responds to his/her psychological, emotional, spiritual and social necessities

  15. Increasing Access to Atmospheric Science Research at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Bethea, K. L.; LaPan, J. C.

    2013-12-01

    The Science Directorate (SD) at NASA's Langley Research Center conducts cutting edge research in fundamental atmospheric science topics including radiation and climate, air quality, active remote sensing, and upper atmospheric composition. These topics matter to the public, as they improve our understanding of our home planet. Thus, we have had ongoing efforts to improve public access to the results of our research. These efforts have accelerated with the release of the February OSTP memo. Our efforts can be grouped in two main categories: 1. Visual presentation techniques to improve science understanding: For fundamental concepts such as the Earth's energy budget, we have worked to display information in a more "digestible" way for lay audiences with more pictures and fewer words. These audiences are iPad-lovers and TV-watchers with shorter attention spans than audiences of the past. They are also educators and students who need a basic understanding of a concept delivered briefly to fit into busy classroom schedules. We seek to reach them with a quick, visual message packed with important information. This presentation will share several examples of visual techniques, such as infographics (e.g., a history of lidar at Langley and a timeline of atmospheric research, ozone garden diagrams (http://science-edu.larc.nasa.gov/ozonegarden/ozone-cycle.php); history of lidar at LaRC; DISCOVER-AQ maps. It will also share examples of animations and interactive graphics (DISCOVER-AQ); and customized presentations (e.g., to explain the energy budget or to give a general overview of research). One of the challenges we face is a required culture shift between the way scientists traditionally share knowledge with each other and the way these public audiences ingest knowledge. A cross-disciplinary communications team in SD is crucial to bridge that gap. 2. Lay research summaries to make research more accessible: Peer-reviewed publications are a primary product of the SD, with more

  16. LOS ALAMOS NEUTRON SCIENCE CENTER CONTRIBUTIONS TO THE DEVELOPMENT OF FUTURE POWER REACTORS

    SciTech Connect

    GAVRON, VICTOR I.; HILL, TONY S.; PITCHER, ERIC J.; TOVESSON, FREDERIK K.

    2007-01-09

    The Los Alamos Neutron Science Center (LANSCE) is a large spallation neutron complex centered around an 800 MeV high-currently proton accelerator. Existing facilities include a highly-moderated neutron facility (Lujan Center) where neutrons between thermal and keV energies are produced, and the Weapons Neutron Research Center (WNR), where a bare spallation target produces neutrons between 0.1 and several hundred MeV.The LANSCE facility offers a unique capability to provide high precision nuclear data over a large energy region, including that for fast reactor systems. In an ongoing experimental program the fission and capture cross sections are being measured for a number of minor actinides relevant for Generation-IV reactors and transmutation technology. Fission experiments makes use of both the highly moderated spallation neutron spectrum at the Lujan Center, and the unmoderated high energy spectrum at WNR. By combininb measurements at these two facilities the differential fission cross section is measured relative to the {sup 235}U(n,f) standard from subthermal energies up to about 200 MeV. An elaborate data acquisition system is designed to deal with all the different types of background present when spanning 10 energy decades. The first isotope to be measured was {sup 237}Np, and the results were used to improve the current ENDF/B-VII evaluation. Partial results have also been obtained for {sup 240}Pu and {sup 242}Pu, and the final results are expected shortly. Capture cross sections are measured at LANSCE using the Detector for Advanced Neutron Capture Experiments (DANCE). This unique instrument is highly efficient in detecting radiative capture events, and can thus handle radioactive samples of half-lives as low as 100 years. A number of capture cross sections important to fast reaction applications have been measured with DANCE. The first measurement was on {sup 237}Np(n,{gamma}), and the results have been submitted for publication. Other capture

  17. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-fiscal year 2010 annual report

    USGS Publications Warehouse

    Nelson, Janice S.

    2011-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. The work of the Center is shaped by the earth sciences, the missions of our stakeholders, and implemented through strong program and project management, and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote-sensing-based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet, and where possible exceed, the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2010. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by EROS staff or by visiting our web site at http://eros.usgs.gov. We welcome comments and follow-up questions on any aspect of this Annual Report and invite any of our customers or partners to contact us at their convenience. To

  18. Upgrades to the ultracold neutron source at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Pattie, Robert; LANL-nEDM Collaboration

    2015-10-01

    The spallation-driven solid deutrium-based ultracold neutron (UCN) source at the Los Alamos Neutron Science Center (LANSCE) has provided a facility for precision measurements of fundamental symmetries via the decay observables from neutron beta decay for nearly a decade. In preparation for a new room temperature neutron electric dipole moment (nEDM) experiment and to increase the statistical sensitivity of all experiments using the source an effort to increase the UCN output is underway. The ultimate goal is to provide a density of 100 UCN/cc or greater in the nEDM storage cell. This upgrade includes redesign of the cold neutron moderator and UCN converter geometries, improved coupling and coating of the UCN transport system through the biological shielding, optimization of beam timing structure, and increase of the proton beam current. We will present the results of the MCNP and UCN transport simulations that led to the new design, which will be installed spring 2016, and UCN guide tests performed at LANSCE and the Institut Laue-Langevin to study the UCN transport properties of a new nickel-based guide coating.

  19. Filtered fast neutron irradiation system using Texas A&M University Nuclear Science Center Reactor

    NASA Astrophysics Data System (ADS)

    Jang, S. Y.; Kim, C. H.; Reece, W. D.; Braby, L. A.

    2004-09-01

    A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). For a realistic modeling of the NSCR, the irradiation cell, and the FNIS, this study used the Monte Carlo N-Particle (MCNP) code and a set of high-temperature ENDF/B-VI continuous neutron cross-section data. Sensitivity analysis was performed to find the characteristics of the FNIS as a function of the thickness of the lead-bismuth alloy. A paired ion chamber system was constructed with a tissue-equivalent plastic (A-150) and propane gas for total dose monitoring and with graphite and argon for gamma dose monitoring. This study, in addition, tested the Monte Carlo modeling of the FNIS system, as well as the performance of the system by comparing the calculated results with experimental measurements using activation foils and paired ion chambers.

  20. Mentor training within academic health centers with Clinical and Translational Science Awards.

    PubMed

    Abedin, Zainab; Rebello, Tahilia J; Richards, Boyd F; Pincus, Harold Alan

    2013-10-01

    Multiple studies highlight the benefits of effective mentoring in academic medicine. Thus, we sought to quantify and characterize the mentoring practices at academic health centers (AHCs) with Clinical and Translational Science Awards (CTSA). Here we report findings pertaining specifically to mentor training at the level of the KL2 mentored award program, and at the broader institutional level. We found only four AHCs did not provide any form of training. One-time orientation was most prevalent at the KL2 level, whereas formal face-to-face training was most prevalent at the institutional level. Despite differences in format usage, there was general consensus at both the KL2 and institutional level about the topics of focus of face-to-face training sessions. Lower-resource training formats utilized at the KL2 level may reveal a preference for preselection of qualified mentors, while institutional selection of resource-heavy formats may be an attempt to raise the mentoring qualifications of the academic community as a whole. The present work fits into the expanding landscape of academic mentoring literature and sets the framework for future longitudinal, outcome studies focused on identifying the most efficient strategies to develop effective mentors. PMID:24127925

  1. Realizing the potential of the CUAHSI Water Data Center to advance Earth Science

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Seul, M.; Pollak, J.; Couch, A.

    2015-12-01

    The CUAHSI Water Data Center has developed a cloud-based system for data publication, discovery and access. Key features of this system are a semantically enabled catalog to discover data across more than 100 different services and delivery of data and metadata in a standard format. While this represents a significant technical achievement, the purpose of this system is to support data reanalysis for advancing science. A new web-based client, HydroClient, improves access to the data from previous clients. This client is envisioned as the first step in a workflow that can involve visualization and analysis using web-processing services, followed by download to local computers for further analysis. The release of the WaterML library in the R package CRAN repository is an initial attempt at linking the WDC services in a larger analysis workflow. We are seeking community input on other resources required to make the WDC services more valuable in scientific research and education.

  2. SPIDER: A new instrument for fission fragment research at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Tovesson, Fredrik; Arnold, Charles; Blakeley, Rick; Hecht, Adam; Laptev, Alexander; Mader, Drew; Meierbachtol, Krista; Snyder, Lucas; White, Morgan

    2013-12-01

    The study of fission fragment yields and how they behave as a function of excitation energy provides insight into the process in which they are formed. Fission yields are also important for nuclear applications, as they can be used as a diagnostic tool. A new instrument, SPIDER (Spectrometer for Ion DEtermination in fission Research), is being developed for measuring fission yields as a function of incident neutron energy at the Los Alamos Neutron Science Center. The instrument employs a time-of-flight mass spectrometry method in which the velocity and kinetic energy of the fragments are measured in order to determine their mass. Additionally, by using Bragg peak spectroscopy, the charge of the fragments can be identified. A prototype instrument has been developed and preliminary results indicate that ˜ 1 mass unit resolution is feasible using this approach. A larger detector array is currently being designed, and will be used at study fission yields from thermal neutron energies up to at least 20 MeV.

  3. Curriculum in aerospace science and technology in cooperation with NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Garner-Gilchrist, Cathine

    1988-01-01

    A curriculum was written to show teachers how to best use the many resources that are available at the Teacher Resource Center (TRC). This curriculum packet was written using teaching units that teachers in both the elementary and middle schools can use to help students better understand some of the research that has been conducted at NASA and will be conducted in the future. The units are written with certain standards. Each unit contains: (1) specific objectives, using the Virginia standards of learning; (2) the materials that are available from the TRC; (3) many activities that teachers can use in a variety of ways; and (4) specific strategies for measuring the objectives to determine if the students mastered the knowledge, concepts or skills that were taught. The curriculum packet contains specific units on several topics. They are: (1) Careers in Aerospece Science and Technology; (2) The History of Flight; (3) The History of Satellites; (4) The History of the Manned Space Projects and the Future of the Future of the Space Program; (5) The Solar System; and (6) The History of Rockets.

  4. Klystron Modulator Design for the Los Alamos Neutron Science Center Accelerator

    SciTech Connect

    Reass, William A.; Baca, David M.; Partridge, Edward R.; Rees, Daniel E.

    2012-06-22

    This paper will describe the design of the 44 modulator systems that will be installed to upgrade the Los Alamos Neutron Science Center (LANSCE) accelerator RF system. The klystrons can operate up to 86 kV with a nominal 32 Amp beam current with a 120 Hz repetition rate and 15% duty cycle. The klystrons are a mod-anode design. The modulator is designed with analog feedback control to ensure the klystron beam current is flat-top regulated. To achieve fast switching while maintaining linear feedback control, a grid-clamp, totem-pole modulator configuration is used with an 'on' deck and an 'off' deck. The on and off deck modulators are of identical design and utilize a cascode connected planar triode, cathode driven with a high speed MOSFET. The derived feedback is connected to the planar triode grid to enable the flat-top control. Although modern design approaches suggest solid state designs may be considered, the planar triode (Eimac Y-847B) is very cost effective, is easy to integrate with the existing hardware, and provides a simplified linear feedback control mechanism. The design is very compact and fault tolerant. This paper will review the complete electrical design, operational performance, and system characterization as applied to the LANSCE installation.

  5. Adherence to balance tolerance limits at the Upper Mississippi Science Center, La Crosse, Wisconsin.

    USGS Publications Warehouse

    Myers, C.T.; Kennedy, D.M.

    1998-01-01

    Verification of balance accuracy entails applying a series of standard masses to a balance prior to use and recording the measured values. The recorded values for each standard should have lower and upper weight limits or tolerances that are accepted as verification of balance accuracy under normal operating conditions. Balance logbooks for seven analytical balances at the Upper Mississippi Science Center were checked over a 3.5-year period to determine if the recorded weights were within the established tolerance limits. A total of 9435 measurements were checked. There were 14 instances in which the balance malfunctioned and operators recorded a rationale in the balance logbook. Sixty-three recording errors were found. Twenty-eight operators were responsible for two types of recording errors: Measurements of weights were recorded outside of the tolerance limit but not acknowledged as an error by the operator (n = 40); and measurements were recorded with the wrong number of decimal places (n = 23). The adherence rate for following tolerance limits was 99.3%. To ensure the continued adherence to tolerance limits, the quality-assurance unit revised standard operating procedures to require more frequent review of balance logbooks.

  6. Decision support system development at the Upper Midwest Environmental Sciences Center

    USGS Publications Warehouse

    Fox, Timothy J.; Nelson, J. C.; Rohweder, Jason J.

    2014-01-01

    A Decision Support System (DSS) can be defined in many ways. The working definition used by the U.S. Geological Survey Upper Midwest Environmental Sciences Center (UMESC) is, “A spatially based computer application or data that assists a researcher or manager in making decisions.” This is quite a broad definition—and it needs to be, because the possibilities for types of DSSs are limited only by the user group and the developer’s imagination. There is no one DSS; the types of DSSs are as diverse as the problems they help solve. This diversity requires that DSSs be built in a variety of ways, using the most appropriate methods and tools for the individual application. The skills of potential DSS users vary widely as well, further necessitating multiple approaches to DSS development. Some small, highly trained user groups may want a powerful modeling tool with extensive functionality at the expense of ease of use. Other user groups less familiar with geographic information system (GIS) and spatial data may want an easy-to-use application for a nontechnical audience. UMESC has been developing DSSs for almost 20 years. Our DSS developers offer our partners a wide variety of technical skills and development options, ranging from the most simple Web page or small application to complex modeling application development.

  7. Virtual microscopy in medical research: Open European Nephrology Science Center (OpEN.SC)

    NASA Astrophysics Data System (ADS)

    Schrader, Thomas; Beil, Michael; Schmidt, Danilo; Dietel, Manfred; Lindemann, Gabriela

    2007-03-01

    The amount and heterogeneity of data in biomedical research, notably in transnational research, requires new methods for the collection, presentation and analysis of information. Important data from laboratory experiments as well as patient trials are available as images. Thus, the integration and processing of image data represent a crucial component of information systems in biomedical research. The Charité Medical School in Berlin has established a new information service center for kidney diseases and transplantation (Open European Nephrology Science Centre - OpEN.SC) together with the German Research Agency (DFG). The aims of this project are (i) to improve the availability of raw data, (ii) to establish an infrastructure for clinical trials, (iii) to monitor the occurrence of rare disease patterns and (iv) to establish a quality assurance system. Major diagnostic procedures in medicine are based on the processing and analysis of image data. In diagnostic pathology, the availability of automated slide scanners provide the opportunity to digitize entire microscopic slides. The processing, presentation and analysis of these image data are called virtual microscopy. The integration of this new technology into the OpEN.SC system and the link to other heterogeneous data of individual patients represent a major technological challenge. Thus, new ways in communication between clinical and scientific partners have to be established and will be promoted by the project. The technological basis of the repository are web services for a scalable and adaptable system. HL7 and DICOM are considered the main medical standards of communication.

  8. The Excitement and Wonder of Teaching Science: What Pre-Service Teachers Learn from Facilitating Family Science Night Centers

    ERIC Educational Resources Information Center

    Harlow, Danielle B.

    2012-01-01

    In this study, pre-service teachers facilitated stations at a family science night as a context to learn to identify, assess, and use children's science ideas. Assessment is already difficult in K-12 classrooms. Assessing learning in informal learning environments adds the complication that participation is largely voluntary. As such, controlling…

  9. The Excitement and Wonder of Teaching Science: What Pre-service Teachers Learn from Facilitating Family Science Night Centers

    NASA Astrophysics Data System (ADS)

    Harlow, Danielle B.

    2012-02-01

    In this study, pre-service teachers facilitated stations at a family science night as a context to learn to identify, assess, and use children's science ideas. Assessment is already difficult in K-12 classrooms. Assessing learning in informal learning environments adds the complication that participation is largely voluntary. As such, controlling the learners' participation to systematically assess learning is counter to the intents of informal environments. The pre-service teachers in this study experienced success at teaching science and developed understandings about children's science ideas. Data included reflective postings, class discussions, observations, artifacts, and photographs. The findings contribute to understanding the value of multiple learning contexts in teacher preparation and lead to implications about leveraging informal science contexts for educating teachers.

  10. Science Education Outreach Activities in the Fusion Energy Division of UCSD’s Center for Energy Research*

    NASA Astrophysics Data System (ADS)

    Moyer, R. A.; Stewart, P.; van Fleet, J.

    2001-10-01

    Since 1995, the Fusion Energy Division of the Center for Energy Research at UCSD has been engaged in a variety of volunteer activities in science education outreach. FED staff have developed demonstration tools on energy and plasma science which are used effectively with middle and high school students as well as teacher/student groups at: the APS DPP Plasma Expos and the San Diego Co. Educational Technology Fair. These demonstration tools have proven effective in communicating with elementary students at community science and technology exhibits at the Reuban H. Fleet Science Center (San Diego) and in elementary school classes. UCSD scientists have also participated as team members of the GA Fusion Group’s programs: "Scientist in the Classroom" , and the two Plasma Institutes for in-service science teachers. In the coming year, we plan to: 1) expand the "Scientist in the Classroom" to home-schooled children in San Diego; 2) participate in local elementary school Family Science Nights; and 3) assist in training a new group of future San Diego Unified School District ninth grade physics teachers.

  11. NINR Centers of Excellence: A logic model for sustainability, leveraging resources and collaboration to accelerate cross-disciplinary science

    PubMed Central

    Dorsey, Susan G.; Schiffman, Rachel; Redeker, Nancy S.; Heitkemper, Margaret; McCloskey, Donna Jo; Weglicki, Linda S.; Grady, Patricia A.

    2014-01-01

    The NINR Centers of Excellence program is a catalyst enabling institutions to develop infrastructure and administrative support for creating cross-disciplinary teams that bring multiple strategies and expertise to bear on common areas of science. Centers are increasingly collaborative with campus partners and reflect an integrated team approach to advance science and promote the development of scientists in these areas. The purpose of this paper is to present a NINR Logic Model for Center Sustainability. The components of the logic model were derived from the presentations and robust discussions at the 2013 NINR Center Directors’ meeting focused on best practices for leveraging resources and collaboration as methods to promote center sustainability. Collaboration through development and implementation of cross-disciplinary research teams is critical to accelerate the generation of new knowledge for solving fundamental health problems. Sustainability of centers as a long-term outcome beyond the initial funding can be enhanced by thoughtful planning of inputs, activities, and leveraging resources across multiple levels. PMID:25085328

  12. The solar array is installed on ACE in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Applied Physics Laboratory engineers and technicians from Johns Hopkins University assist in leveling and orienting the Advanced Composition Explorer (ACE) as it is seated on a platform for solar array installation in KSC's Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory has six high-resolution particle detection sensors and three monitoring instruments. The collecting power of instrumentation aboard ACE is at least 100 times more sensitive than anything previously flown to collect similar data by NASA.

  13. Unraveling the Pivotal Role of Bradykinin in ACE Inhibitor Activity.

    PubMed

    Taddei, Stefano; Bortolotto, L

    2016-10-01

    Historically, the first described effect of an angiotensin converting enzyme (ACE) inhibitor was an increased activity of bradykinin, one of the substrates of ACE. However, in the subsequent years, molecular models describing the mechanism of action of ACE inhibitors in decreasing blood pressure and cardiovascular risk have focused mostly on the renin-angiotensin system. Nonetheless, over the last 20 years, the importance of bradykinin in regulating vasodilation, natriuresis, oxidative stress, fibrinolysis, inflammation, and apoptosis has become clearer. The affinity of ACE appears to be higher for bradykinin than for angiotensin I, thereby suggesting that ACE inhibitors may be more effective inhibitors of bradykinin degradation than of angiotensin II production. Data describing the effect of ACE inhibition on bradykinin signaling support the hypothesis that the most cardioprotective benefits attributed to ACE inhibition may be due to increased bradykinin signaling rather than to decreased angiotensin II signaling, especially when high dosages of ACE inhibitors are considered. In particular, modulation of bradykinin in the endothelium appears to be a major target of ACE inhibition. These new mechanistic concepts may lead to further development of strategies enhancing the bradykinin signaling. PMID:27260014

  14. Climate Science Centers: An "Existence Theorem" for a Federal-University Partnership to Develop Actionable and Needs-Driven Science Agendas

    NASA Astrophysics Data System (ADS)

    Moore, B., III

    2014-12-01

    Climate Science Centers: An "Existence Theorem" for a Federal-University Partnership to Develop Actionable and Needs-Driven Science Agendas. Berrien Moore III (University of Oklahoma) The South Central Climate Science Center (CSC) is one of eight regional centers established by the Department of the Interior (DoI) under Secretarial Order 3289 to address the impacts of climate change on America's water, land, and other natural and cultural resources. Under DoI leadership and funding, these CSCs will provide scientific information tools and techniques to study impacts of climate change synthesize and integrate climate change impact data develop tools that the DoI managers and partners can use when managing the DOI's land, water, fish and wildlife, and cultural heritage resources (emphasis added) The network of Climate Science Centers will provide decision makers with the science, tools, and information they need to address the impacts of climate variability and change on their areas of responsibility. Note from Webster, a tool is a device for doing work; it makes outcomes more realizable and more cost effective, and, in a word, better. Prior to the existence of CSCs, the university and federal scientific world certainly contained a large "set" of scientists with considerable strength in the physical, biological, natural, and social sciences to address the complexities and interdisciplinary nature of the challenges in the areas of climate variability, change, impacts, and adaptation. However, this set of scientists were hardly an integrated community let alone a focused team, but rather a collection of distinguished researchers, educators, and practitioners that were working with disparate though at times linked objectives, and they were rarely aligning themselves formally to an overarching strategic pathway. In addition, data, models, research results, tools, and products were generally somewhat "disconnected" from the broad range of stakeholders. I should note also

  15. Review of the ACE-FTS measurements and recent results for the troposphere and UTLS

    NASA Astrophysics Data System (ADS)

    Bernath, Peter

    . Walker and K. Strong. A mission overview and status report will be presented. Science results for a few selected topics including the detection of organics such as methanol and formaldehyde in the troposphere, and ACE measurements of species such as NO2 in the troposphere and UTLS region will be discussed.

  16. Multiphysics Applications of ACE3P

    SciTech Connect

    K.H. Lee, C. Ko, Z. Li, C.-K. Ng, L. Xiao, G. Cheng, H. Wang

    2012-07-01

    The TEM3P module of ACE3P, a parallel finite-element electromagnetic code suite from SLAC, focuses on the multiphysics simulation capabilities, including thermal and mechanical analysis for accelerator applications. In this pa- per, thermal analysis of coupler feedthroughs to supercon- ducting rf (SRF) cavities will be presented. For the realistic simulation, internal boundary condition is implemented to capture RF heating effects on the surface shared by a di- electric and a conductor. The multiphysics simulation with TEM3P matched the measurement within 0.4%.

  17. The Center for Informal Learning and Schools' Informal Learning Certificate (ILC) Program: Professional Development and Community for Informal Science Educators Working with Schools. An Evaluation Report

    ERIC Educational Resources Information Center

    Smith, Anita; Helms, Jenifer V.; St. John, Mark

    2007-01-01

    Inverness Research Associates served as external evaluators for the Center for Informal Learning and Schools (CILS) from its inception in 2002 as a National Science Foundation (NSF)-funded Center for Learning and Teaching. One of the programs that CILS developed was the Informal Learning Certificate (ILC) for informal science educators (mostly…

  18. The grand experiment, a historical account of a museum/school partnership: The Alexander Science Center School of Los Angeles

    NASA Astrophysics Data System (ADS)

    Heughins, Andrew R.

    This study tells the history of The Alexander Science Center School, a museum/school partnership between the Los Angeles Unified School District and the California Science Center created with the goal of becoming a national model in elementary science education. To provide a background to the development of the school, this study explores the definition of what constitutes a museum school, including the existence of a formal partnership between a school district and a museum and systemic change in the partner institutions leading to a marriage of formal and informal learning styles. In addition, the literature review explores the unique models of museum/school partnerships developed in the United States. The history of the Alexander Science Center School is told in a narrative style using documentation from the schools development and through interviews with individuals who played key roles, from the schools inception through its opening. The study covers the initiation of concept, architectural design, formation of the partnership, and development of the curriculum. The study also identifies the roadblocks encountered in the schools development and makes recommendations for school districts and institutions seeking to create future museum school projects. In addition, a comparison is made other recently studied museum schools to provide a context for the school's historical and programmatic development.

  19. TRANSIT MODEL FITTING IN THE KEPLER SCIENCE OPERATIONS CENTER PIPELINE: NEW FEATURES AND PERFORMANCE

    NASA Astrophysics Data System (ADS)

    Li, Jie; Burke, C. J.; Jenkins, J. M.; Quintana, E. V.; Rowe, J. F.; Seader, S. E.; Tenenbaum, P.; Twicken, J. D.

    2013-10-01

    We describe new transit model fitting features and performance of the latest release (9.1, July 2013) of the Kepler Science Operations Center (SOC) Pipeline. The targets for which a Threshold Crossing Event (TCE) is generated in the Transiting Planet Search (TPS) component of the pipeline are subsequently processed in the Data Validation (DV) component. Transit model parameters are fitted in DV to transit-like signatures in the light curves of the targets with TCEs. The transit model fitting results are used in diagnostic tests in DV, which help to validate planet candidates and identify false positive detections. The standard transit model includes five fit parameters: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. Light curves for many targets do not contain enough information to uniquely determine the impact parameter, which results in poor convergence performance of the fitter. In the latest release of the Kepler SOC pipeline, a reduced parameter fit is included in DV: the impact parameter is set to a fixed value and the four remaining parameters are fitted. The standard transit model fit is implemented after a series of reduced parameter fits in which the impact parameter is varied between 0 and 1. Initial values for the standard transit model fit parameters are determined by the reduced parameter fit with the minimum chi-square metric. With reduced parameter fits, the robustness of the transit model fit is improved significantly. Diagnostic plots of the chi-square metrics and reduced parameter fit results illustrate how the fitted parameters vary as a function of impact parameter. Essentially, a family of transiting planet characteristics is determined in DV for each Pipeline TCE. Transit model fitting performance of release 9.1 of the Kepler SOC pipeline is demonstrated with the results of the processing of 16 quarters of flight data

  20. Report on the Global Data Assembly Center (GDAC) to the 12th GHRSST Science Team Meeting

    NASA Technical Reports Server (NTRS)

    Armstrong, Edward M.; Bingham, Andrew; Vazquez, Jorge; Thompson, Charles; Huang, Thomas; Finch, Chris

    2011-01-01

    In 2010/2011 the Global Data Assembly Center (GDAC) at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) continued its role as the primary clearinghouse and access node for operational Group for High Resolution Sea Surface Temperature (GHRSST) datastreams, as well as its collaborative role with the NOAA Long Term Stewardship and Reanalysis Facility (LTSRF) for archiving. Here we report on our data management activities and infrastructure improvements since the last science team meeting in June 2010.These include the implementation of all GHRSST datastreams in the new PO.DAAC Data Management and Archive System (DMAS) for more reliable and timely data access. GHRSST dataset metadata are now stored in a new database that has made the maintenance and quality improvement of metadata fields more straightforward. A content management system for a revised suite of PO.DAAC web pages allows dynamic access to a subset of these metadata fields for enhanced dataset description as well as discovery through a faceted search mechanism from the perspective of the user. From the discovery and metadata standpoint the GDAC has also implemented the NASA version of the OpenSearch protocol for searching for GHRSST granules and developed a web service to generate ISO 19115-2 compliant metadata records. Furthermore, the GDAC has continued to implement a new suite of tools and services for GHRSST datastreams including a Level 2 subsetter known as Dataminer, a revised POET Level 3/4 subsetter and visualization tool, a Google Earth interface to selected daily global Level 2 and Level 4 data, and experimented with a THREDDS catalog of GHRSST data collections. Finally we will summarize the expanding user and data statistics, and other metrics that we have collected over the last year demonstrating the broad user community and applications that the GHRSST project continues to serve via the GDAC distribution mechanisms. This report also serves by extension to summarize the

  1. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Limaye, A. S.

    2011-12-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula's "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA's National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA's SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT's experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  2. Angiotensin-converting enzyme levels and activity in Alzheimer's disease: differences in brain and CSF ACE and association with ACE1 genotypes

    PubMed Central

    Miners, Scott; Ashby, Emma; Baig, Shabnam; Harrison, Rachel; Tayler, Hannah; Speedy, Elizabeth; Prince, Jonathan A; Love, Seth; Kehoe, Patrick G

    2009-01-01

    Angiotensin-converting enzyme (ACE) has been implicated in Alzheimer's disease (AD): ACE1 variations influence plasma ACE and risk of AD, and ACE is increased in AD brain. We measured frontal ACE level and activity in 89 AD and 51 control brains, and post-mortem CSF from 101 cases and 19 controls. Neuron-specific enolase (NSE) level and Braak stage were used to indicate neuronal preservation and disease progression. We genotyped the common ACE insertion/deletion polymorphism, rs4343, rs1800764 and rs4921. ACE activity was elevated in AD and correlated with Braak stage. Crude ACE levels were unchanged but adjustment for NSE suggested increased neuronal ACE production with Braak stage. Exposing SH-SY-5Y neurons to oligomeric Aβ1-42 increased ACE level and activity, suggesting Aβ may upregulate ACE in AD. In CSF, ACE level but not activity was reduced in AD. ACE1 genotype did not predict ACE level or activity in brain or CSF. ACE activity and neuronal production increase in AD brain, possibly in response to Aβ. Peripheral measurements do not reflect ACE activity in the brain. PMID:19956428

  3. Characterization of angiotensin converting enzyme (ACE) in the testis and assessment of the in vivo effects of the ACE inhibitor perindopril

    SciTech Connect

    Jackson, B.; Cubela, R.B.; Sakaguchi, K.; Johnston, C.I.

    1988-07-01

    Angiotensin converting enzyme (ACE) was characterized by radioligand studies utilizing the potent ACE inhibitor 351A, a derivative of lisinopril. Ligand binding characteristics were similar for ACE derived from testis, lung, and kidney, despite known differences in structure between ACe from these sources. This observation suggests that the ACE active enzymatic site is similar in different tissues. The effect of the orally active ACE inhibitor perindopril was studied ex vivo in tissues of the rat after oral gavage. Radioligand bound to tissue ACE was reduced after perindopril treatment, in tissue homogenates of lung and kidney, but not testis. Autoradiographs of radioligand binding to tissue sections obtained ex vivo after oral perindopril showed inhibition of ACE in the aorta, lung, and kidney, but did not reveal any inhibition of ACE in the testis. ACE in small vessels of the testis was inhibited as in the aorta, while at the same time testicular ACE was unaffected. ACE in rat testis appears to have a similar enzymatic binding site to ACE from the lung and kidney. Perindopril inhibited ACE in the lung and kidney but did not affect ACE in the testis, suggesting the drug is limited in testicular penetration by the blood-testis barrier. This may explain the lack of any reports of adverse effects of ACE inhibitors on testicular function.

  4. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2011-11-03

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  5. Patterns of biomedical science production in a sub-Saharan research center

    PubMed Central

    2012-01-01

    Background Research activities in sub-Saharan Africa may be limited to delegated tasks due to the strong control from Western collaborators, which could lead to scientific production of little value in terms of its impact on social and economic innovation in less developed areas. However, the current contexts of international biomedical research including the development of public-private partnerships and research institutions in Africa suggest that scientific activities are growing in sub-Saharan Africa. This study aims to describe the patterns of clinical research activities at a sub-Saharan biomedical research center. Methods In-depth interviews were conducted with a core group of researchers at the Medical Research Unit of the Albert Schweitzer Hospital from June 2009 to February 2010 in Lambaréné, Gabon. Scientific activities running at the MRU as well as the implementation of ethical and regulatory standards were covered by the interview sessions. Results The framework of clinical research includes transnational studies and research initiated locally. In transnational collaborations, a sub-Saharan research institution may be limited to producing confirmatory and late-stage data with little impact on economic and social innovation. However, ethical and regulatory guidelines are being implemented taking into consideration the local contexts. Similarly, the scientific content of studies designed by researchers at the MRU, if local needs are taken into account, may potentially contribute to a scientific production with long-term value on social and economic innovation in sub-Saharan Africa. Conclusion Further research questions and methods in social sciences should comprehensively address the construction of scientific content with the social, economic and cultural contexts surrounding research activities. PMID:22448691

  6. The University of Wisconsin Space Science and Engineering Center Absolute Radiance Interferometer (ARI)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Buijs, H.; Grandmont, F. J.; Gero, P. J.; Best, F. A.; Tobin, D. C.; Knuteson, R. O.; Laporte, D. D.

    2010-12-01

    NASA has selected CLARREO, a climate mission recommended by the 2007 Decadal Survey of the US National Research Council, as a potential new mission starting in 2010. CLARREO (Climate Absolute Radiance and Refractivity Observatory) will measure spectrally resolved radiance from the earth and atmospheric bending of GPS signals related to atmospheric structure (refractivity) as benchmark measurements of long-term climate change trends. To reduce the time to unequivocally resolve climate trends, IR radiance spectra and GPS refractivity were selected as quantities with high information content that can be measured with high calibration accuracy referenced to international standards provided on orbit (SI-traceable measurements). For the infrared radiance spectra, a brightness temperature accuracy of 0.1 K 3-sigma, confirmed on orbit is practical. The challenge in the IR FTS sensor development for CLARREO is to achieve ultra-high accuracy (0.1 K 3-sigma) with a design that can be flight qualified, has long design life, and is reasonably small and affordable. In this area, our approach is to make use of components with strong spaceflight heritage (direct analogs with high TRL) combined into a functional package for detailed performance testing. A summary of the development of the Absolute Radiance Interferometer (ARI) at the University of Wisconsin Space Science and Engineering Center (UW-SSEC) will be presented. At the heart of the sensor is the ABB CLARREO Interferometer Test-Bed (CITB), based directly on the ABB Generic Flight Interferometer (GFI). This effort is funded under the NASA Instrument Incubator Program (IIP).

  7. Attitudes of Science. A Program for a Student-Centered Seminar.

    ERIC Educational Resources Information Center

    Whaley, Donald L.; Surratt, Sharon L.

    It has been found that the primary difference between the superior and average undergraduate psychology student was not in the command of factual materials, but in familiarity with the philosophy of science. The better students were more able to separate science form non-science, and to critically evaluate materials presented to them. This book…

  8. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    ERIC Educational Resources Information Center

    Madsen, Martin John

    2011-01-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic…

  9. Science as the Center of a Coherent, Integrated Early Childhood Curriculum

    ERIC Educational Resources Information Center

    French, Lucia

    2004-01-01

    This article describes the ScienceStart! Curriculum, an early childhood curriculum that takes coherently organized science content as the hub of an integrated approach. ScienceStart! maps onto the typical preschool day and may be adapted for use in full-day or half-day preschool programs. It is designed to support the important developmental…

  10. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  11. ACE: A Collaborative School Consultation Program for Secondary School Teachers

    ERIC Educational Resources Information Center

    Couture, Caroline; Massé, Line

    2014-01-01

    This article presents a description of ACE (Accompagnement collaboratif des enseignants (Collaborative teacher accompaniment)), a new program designed to guide secondary school teachers in integrating students with behavioral problems in their classrooms. ACE proposes collaborative accompaniment inspired by behavioral and mental health…

  12. An Inclusive ACE. Broadening Participation in Adult and Community Education.

    ERIC Educational Resources Information Center

    Alt, Merilyn; Beatty, Dianne

    A project identified strategies to increase participation by community members who traditionally have not used adult and community education (ACE) in Australia. Methodology included a focus group, literature research, and interviews with 70 people. Government-supported ACE was seen as having a broad role in supporting lifelong learning. ACE…

  13. ACE and AGTR1 polymorphisms in elite rhythmic gymnastics.

    PubMed

    Di Cagno, Alessandra; Sapere, Nadia; Piazza, Marina; Aquino, Giovanna; Iuliano, Enzo; Intrieri, Mariano; Calcagno, Giuseppe

    2013-02-01

    In the angiotensin-converting enzyme (ACE) gene, Alu deletion, in intron 16, is associated with higher concentrations of ACE serum activity and this may be associated with elite sprint and power performance. The Alu insertion is associated with lower ACE levels and this could lead to endurance performance. Moreover, recent studies have identified a single-nucleotide polymorphism of the angiotensin type 1 receptor gene AGTR1, which seems to be related to ACE activity. The aim of this study was to examine the involvement of the ACE and the AGTR1 gene polymorphisms in 28 Italian elite rhythmic gymnasts (age range 21 ± 7.6 years), and compare them to 23 middle level rhythmic gymnasts (age range 17 ± 10.9 years). The ACE D allele was significantly more frequent in elite athletes than in the control population (χ(2)=4.07, p=0.04). Comparisons between the middle level and elite athletes revealed significant differences (p<0.0001) for the ACE DD genotype (OR=6.48, 95% confidence interval=1.48-28.34), which was more frequent in elite athletes. There were no significant differences in the AGTR1 A/C genotype or allele distributions between the middle level and elite athletes. In conclusion, the ACE D allele genotype could be a contributing factor to high-performance rhythmic gymnastics that should be considered in athlete development and could help to identify which skills should be trained for talent promotion. PMID:23145508

  14. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.

    2006-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course (http://www.cacosee.net/collegecourse) from COSEE California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project will leverage these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort will be one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course derived from COS that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach to informal

  15. Educating Youth About Health and Science Using a Partnership Between an Academic Medical Center and Community-based Science Museum

    PubMed Central

    Griest, Susan; Howarth, Linda C.; Beemsterboer, Phyllis; Cameron, William; Carney, Patricia A.

    2009-01-01

    Declining student interest and scholastic abilities in the sciences are concerns for the health professions. Additionally, the National Institutes of Health is committed to promoting more research on health behaviors among US youth, where one of the most striking contemporary issues is obesity. This paper reports findings on the impact of a partnership between Oregon Health and Science University (OHSU) and the Oregon Museum of Science and Industry linked to a 17-week exhibition of BodyWorlds3 and designed to inform rural underserved youth about science and health research. Self-administered survey measures included health knowledge, attitudes, intended health behaviors, and interest in the health professions. Four hundred four surveys (88% of participants) were included in analyses. Ninety percent or more found both the Body-Worlds (n = 404) and OHSU (n = 239) exhibits interesting. Dental care habits showed the highest level of intended behavior change (Dental = 45%, Exercise = 34%, Eating = 30%). Overall, females and middle school students were more likely than male and high school students, respectively, to state an intention to change exercise, eating and dental care habits. Females and high school students were more likely to have considered a career in health or science prior to their exhibit visit and, following the exhibit, were more likely to report that this intention had been reinforced. About 6% of those who had not previously considered a career in health or science (n = 225) reported being more likely to do so after viewing the exhibits. In conclusion, high quality experiential learning best created by community-academic partnerships appears to have the ability to stimulate interest and influence intentions to change health behaviors among middle and high school students. PMID:19350372

  16. Quality-Assurance Plan for Water-Quality Activities of the U.S. Geological Survey Montana Water Science Center

    USGS Publications Warehouse

    Lambing, John H., (compiler)

    2006-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), a quality-assurance plan has been created for use by the USGS Montana Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the USGS Montana Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures presented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and ground-water activities and suspended-sediment analysis.

  17. The solar array is installed on ACE in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Applied Physics Laboratory engineers and technicians from Johns Hopkins University install solar array panels on the Advanced Composition Explorer (ACE) in KSC's Spacecraft Assembly and Encapsulation Facility-II. The panel on which they are working is identical to the panel (one of four) seen in the foreground on the ACE spacecraft. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low- energy particles of solar origin and high-energy galactic particles for a better understanding of the formation and evolution of the solar system as well as the astrophysical processes involved. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun. The collecting power of instrumentation aboard ACE is at least 100 times more sensitive than anything previously flown to collect similar data by NASA.

  18. An overview of the use of Open Source in the NASA Langley Atmospheric Science Data Center Archive Next Generation system

    NASA Astrophysics Data System (ADS)

    Dye, R. A.; Perez, J.; Piatko, P. J.; Coogan, S. P.; Parker, L.

    2012-12-01

    The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for the archive and distribution of Earth science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry. Over the past several years the ASDC has developed and implemented the Archive Next Generation (ANGe) system, a state-of-the-art data ingest, archival, and distribution system to serve the atmospheric sciences data provider and user communities. ANGe employs Open Source technologies including the JBoss Application Server, a PostGIS-enabled PostgreSQL database system to store geospatial metadata, modules from the GeoTools Open Source Java GIS Toolkit including the Java Topology Suite (JTS) and GeoAPI libraries, and other libraries such as the Spring framework. ANGe was developed using a suite of several Open Source tools comprised of Eclipse, Ant, Subversion and Jenkins. ANGe is also deployed into an operational environment that leverages Open Source technologies from the Linux Operating system to tools such as Ganglia for monitoring. This presentation provides an overview of ANGe with a focus on the Open Source technologies employed in the implementation and deployment of the system. The ASDC is part of Langley's Science Directorate. The Data Center was established in 1991 to support NASA's Earth Observing System and the U.S. Global Change Research Program. It is unique among NASA data centers in the size of its archive, cutting edge computing technology, and full range of data services. For more information regarding ASDC data holdings, documentation, tools and services, visit http://eosweb.larc.nasa.gov.

  19. A critical review of the life sciences project management at Ames Research Center for the Spacelab Mission development test 3

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.; Wilhelm, J. M.; Tanner, T. A.; Sieber, J. E.; Burgenbauch, S. F.

    1979-01-01

    A management study was initiated by ARC (Ames Research Center) to specify Spacelab Mission Development Test 3 activities and problems. This report documents the problems encountered and provides conclusions and recommendations to project management for current and future ARC life sciences projects. An executive summary of the conclusions and recommendations is provided. The report also addresses broader issues relevant to the conduct of future scientific missions under the constraints imposed by the space environment.

  20. Desert Dust Layers Over Polluted Marine Boundary Layers: ACE-2 Measurements and ACE-Asia Plans

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Schmid, B.; Livingston, J. M.; Redemann, J.; Bergstrom, R. W.; Condon, Estelle P. (Technical Monitor)

    2000-01-01

    Aerosols in ACE-Asia are expected to have some commonalties with those in ACE-2, along with important differences. Among the commonalities are occurrences of desert dust layers over polluted marine boundary layers. Differences include the nature of the dust (yellowish in the East Asia desert outflow, vs. reddish-brown in the Sahara Outflow measured in ACE-2) and the composition of boundary-layer aerosols (e.g., more absorbing, soot and organic aerosol in-the Asian plume, caused by coal and biomass burning, with limited controls). In this paper we present ACE-2 measurements and analyses as a guide to our plans for ACE-2 Asia. The measurements include: (1) Vertical profiles of aerosol optical depth and extinction (380-1558 nm), and of water vapor column and concentration, from the surface through the elevated desert dust, measured by the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14); (2) Comparisons of airborne and shipborne sunphotometer optical depths to satellite-retrieved values, with and without desert dust; (3) Comparisons between airborne Sunphotometer optical depth and extinction spectra and those derived from coincident airborne in situ measurements of aerosol size distribution, scattering and absorption; (4) Comparisons between size distributions measured in situ and retrieved from sunphotometer optical depth spectra; (5) Comparisons between aerosol single scattering albedo values obtained by several techniques, using various combinations of measurements of backscatter, extinction, size distribution, scattering, absorption, and radiative flux. We show how analyses of these data can be used to address questions important to ACE-Asia, such as: (1) How do dust and other absorbing aerosols affect the accuracy of satellite optical depth retrievals? How important are asphericity effects? (2) How important are supermicron dust and seasalt aerosols to overall aerosol optical depth and radiative forcing? How well are these aerosols sampled by aircraft