Science.gov

Sample records for acellular bone matrix

  1. Evaluation of tissue-engineered bone constructs using rabbit fetal osteoblasts on acellular bovine cancellous bone matrix

    PubMed Central

    Rashmi; Pathak, Rekha; Amarpal; Aithal, H. P.; Kinjavdekar, P.; Pawde, A. M.; Tiwari, A. K.; Sangeetha, P.; Tamilmahan, P.; Manzoor, A. B.

    2017-01-01

    Aim: The aim of this study was to generate composite bone graft and investigate the rabbit fetal osteoblasts adhesion, proliferation and penetration on acellular matrices of cancellous bone. Materials and Methods: Acellular cancellous bone was prepared and developed as in the previous study with little modification. These matrices were decellularized by rapid freeze and thaw cycle. To remove the cell debris, they were then treated with hydrogen peroxide (3%) and ethanol to remove antigenic cellular and nuclear materials from the scaffold. Primary osteoblast cells were harvested from 20 to 22 days old rabbit fetal long and calvarial bone. These cells were cultured and characterized using a specific marker. The third passaged fetal osteoblast cells were then seeded on the scaffold and incubated for 14 days. The growth pattern of the cells was observed. Scanning electron microscope and hematoxylin and eosin staining were used to investigate cells proliferation. Results: The cells were found to be growing well on the surface of the scaffold and were also present in good numbers with the matrix filopodial extensions upto inside of the core of the tissue. Conclusion: Thus, a viable composite scaffold of bone could be developed which has a great potential in the field of bone tissue engineering. PMID:28344398

  2. Human acellular dermal matrix grafts for rhinoplasty.

    PubMed

    Sherris, David A; Oriel, Brad S

    2011-09-01

    Rhinoplasty often relies on graft material for structural support in the form of cartilage, bone grafts, or fascia. In addition, pliable grafts are often helpful for contouring and can function as a barrier. Unfortunately, grafts carry the disadvantage of requiring an additional donor site, with associated complications. Human acellular dermal matrix (ADM) biological implants offer an exciting alternative for structural support and nonstructural implantation in rhinoplasty procedures. To examine the efficacy of ADM placement in rhinoplasty and septoplasty, the authors report the results from a series of 51 patients. In this series, there were no cases of infection, skin discoloration, seroma formation, septal perforation, significant resorption, extrusion, or other complications related to ADM placement. Therefore, the authors believe that ADM offers a safe and effective alternative to traditional grafting methods for functional and aesthetic rhinoplasty.

  3. Data from acellular human heart matrix.

    PubMed

    Sánchez, Pedro L; Fernández-Santos, M Eugenia; Espinosa, M Angeles; González-Nicolas, M Angeles; Acebes, Judith R; Costanza, Salvatore; Moscoso, Isabel; Rodríguez, Hugo; García, Julio; Romero, Jesús; Kren, Stefan M; Bermejo, Javier; Yotti, Raquel; Del Villar, Candelas Pérez; Sanz-Ruiz, Ricardo; Elizaga, Jaime; Taylor, Doris A; Fernández-Avilés, Francisco

    2016-09-01

    Perfusion decellularization of cadaveric hearts removes cells and generates a cell-free extracellular matrix scaffold containing acellular vascular conduits, which are theoretically sufficient to perfuse and support tissue-engineered heart constructs. This article contains additional data of our experience decellularizing and testing structural integrity and composition of a large series of human hearts, "Acellular human heart matrix: a critical step toward whole heat grafts" (Sanchez et al., 2015) [1]. Here we provide the information about the heart decellularization technique, the valve competence evaluation of the decellularized scaffolds, the integrity evaluation of epicardial and myocardial coronary circulation, the pressure volume measurements, the primers used to assess cardiac muscle gene expression and, the characteristics of donors, donor hearts, scaffolds and perfusion decellularization process.

  4. Effects of Acellular Amniotic Membrane Matrix and Bone Marrow-Derived Mesenchymal Stem Cells in Improving Random Skin Flap Survival in Rats

    PubMed Central

    Chehelcheraghi, Farzaneh; Eimani, Hossein; Homayoonsadraie, Seyed; Torkaman, Giti; Amini, Abdollah; Alavi Majd, Hamid; Shemshadi, Hashem

    2016-01-01

    Background The necrotic skin flap represents a great challenge in plastic and reconstructive surgery. In this study, we evaluated the effect of bioscaffolds, acellular amniotic membranes (AAMs), and bone marrow-derived mesenchymal stem cells (BM-MSCs) on random skin flap (RSF) survival in rats by applying a cell-free extracellular matrix scaffold as a supportive component for the growth and proliferation of BM-MSCs on RSFs. AAM matrix scaffolds were created by incubating AMs in ethylenediaminetetraacetic acid 0.05% at 37°C, and cell scrapers were used. Objectives The aim of the present study was to assess the effect of AAM as a scaffold in TE, and combined with transplanted BM-MSCs, on the survival of RSFs and on the biomechanical parameters of the incision-wound flap margins 7 days after flap elevation. Materials and Methods BM-MSCs and AAMs were transplanted into subcutaneous tissue in the flap area. On the 7th postoperative day, the surviving flap areas were measured using digital imaging software, and the flap tissue was collected for evaluation. Forty rats were randomly divided into four groups of 10 each: group 1 received an AAM injection; group 2 underwent BM-MSC transplantation; group 3 received both AAM injection + BM-MSC transplantation; and group 4 was the control group, receiving only saline. Results The survival area in the AAM/BM-MSC group was significantly higher than in the control group (18.49 ± 1.58 versus 7.51 ± 2.42, P < 0.05). The biomechanical assessment showed no significant differences between the experimental groups and the control group (P > 0.05), and there was no correlation with flap survival. Conclusions Our findings showed that the treatment of flaps with BM-MSC and AAM transplantations significantly promoted flap survival compared to a control group. The viability of the flap was improved by combining BM-MSCs with AAM matrix scaffolds. PMID:27621924

  5. Evaluation of lymphangiogenesis in acellular dermal matrix

    PubMed Central

    Cherubino, Mario; Pellegatta, Igor; Tamborini, Federico; Cerati, Michele; Sessa, Fausto; Valdatta, Luigi

    2014-01-01

    Introduction: Much attention has been directed towards understanding the phenomena of angiogenesis and lymphangiogenesis in wound healing. Thanks to the manifold dermal substitute available nowadays, wound treatment has improved greatly. Many studies have been published about angiogenesis and cell invasion in INTEGRA®. On the other hand, the development of the lymphatic network in acellular dermal matrix (ADM) is a more obscure matter. In this article, we aim to characterize the different phases of host cell invasion in ADM. Special attention was given to lymphangiogenic aspects. Materials and Methods: Among 57 rats selected to analyse the role of ADM in lymphangiogenesis, we created four groups. We performed an excision procedure on both thighs of these rats: On the left one we did not perform any action except repairing the borders of the wound; while on the right one we used INTEGRA® implant. The excision biopsy was performed at four different times: First group after 7 days, second after 14 days, third after 21 days and fourth after 28 days. For our microscopic evaluation, we used the classical staining technique of haematoxylin and eosin and a semi-quantitative method in order to evaluate cellularity counts. To assess angiogenesis and lymphangiogenesis development we employed PROX-1 Ab and CD31/PECAM for immunohistochemical analysis. Results: We found remarkable wound contraction in defects that healed by secondary intention while minor wound contraction was observed in defects treated with ADM. At day 7, optical microscopy revealed a more plentiful cellularity in the granulation tissue compared with the dermal regeneration matrix. The immunohistochemical process highlighted vascular and lymphatic cells in both groups. After 14 days a high grade of fibrosis was noticeable in the non-treated group. At day 21, both lymphatic and vascular endothelial cells were better developed in the group with a dermal matrix application. At day 28, lymphatic endothelial

  6. Human acellular dermal wound matrix: evidence and experience.

    PubMed

    Kirsner, Robert S; Bohn, Greg; Driver, Vickie R; Mills, Joseph L; Nanney, Lillian B; Williams, Marie L; Wu, Stephanie C

    2015-12-01

    A chronic wound fails to complete an orderly and timely reparative process and places patients at increased risk for wound complications that negatively impact quality of life and require greater health care expenditure. The role of extracellular matrix (ECM) is critical in normal and chronic wound repair. Not only is ECM the largest component of the dermal skin layer, but also ECM proteins provide structure and cell signalling that are necessary for successful tissue repair. Chronic wounds are characterised by their inflammatory and proteolytic environment, which degrades the ECM. Human acellular dermal matrices, which provide an ECM scaffold, therefore, are being used to treat chronic wounds. The ideal human acellular dermal wound matrix (HADWM) would support regenerative healing, providing a structure that could be repopulated by the body's cells. Experienced wound care investigators and clinicians discussed the function of ECM, the evidence related to a specific HADWM (Graftjacket(®) regenerative tissue matrix, Wright Medical Technology, Inc., licensed by KCI USA, Inc., San Antonio, TX), and their clinical experience with this scaffold. This article distills these discussions into an evidence-based and practical overview for treating chronic lower extremity wounds with this HADWM.

  7. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    PubMed

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity.

  8. Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold

    PubMed Central

    Feng, Yuping; Wang, Jiao; Ling, Shixin; Li, Zhuo; Li, Mingsheng; Li, Qiongyi; Ma, Zongren; Yu, Sijiu

    2014-01-01

    The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined specific neuronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuronal-specific proteins, including βIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differentiation medium differentiated into a multilayered neural network-like structure with long nerve fibers that was composed of several parallel microfibers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sectioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve. PMID:25598779

  9. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    PubMed

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  10. Wound healing effect of acellular artificial dermis containing extracellular matrix secreted by human skin fibroblasts.

    PubMed

    Seo, Young-Kwon; Song, Kye-Yong; Kim, Young-Jin; Park, Jung-Keug

    2007-07-01

    In this study, an acellular artificial dermis, composed of human collagen and glycosaminoglycan (GAG) secreted by cultured human fibroblasts on a bovine collagen sponge, was developed. Much of the newly secreted extracellular matrix (ECM) remained after the cell removal process. The main theme of this study focused on the matrix, rather than the viable cell components of the skin, as the major dermal deficit in the wound. Both the acellular artificial and bioartificial dermises, containing viable cells with ECM, were significantly less soluble than the collagen sponge, and the relative GAG content in the bioartificial and acellular artificial dermises was approximately 115-120% of the chondroitin-6-sulfate (CS) content found in the collagen sponge. In the group receiving the collagen sponge, the wound area gradually decreased to approximately 10% of its original area, while in the groups receiving the bioartificial and acellular artificial dermises, the wound area also gradually decreased to approximately 60 and 50%, respectively, of the original size over the 5 weeks after grafting. Both the bioartificial and acellular artificial dermises formed thicker, denser collagen fibers; more new blood vessel formation was observed in both cases. The basement membrane of the regenerated epidermal-dermal junction was thicker and more linear in the acellular artificial dermis graft than in the collagen sponge graft. In conclusion, the wound healing effects of acellular artificial dermis are no less than those of the bioartificial dermis, and much better than the collagen sponge graft with respect to wound contraction, angiogenesis, collagen formation, and basement membrane repair.

  11. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering.

    PubMed

    Horst, Maya; Milleret, Vincent; Noetzli, Sarah; Gobet, Rita; Sulser, Tullio; Eberli, Daniel

    2017-04-01

    Poly(lactic-co-glycolic acid) (PLGA) based biomaterials for soft tissue engineering have inherent disadvantages, such as a relative rigidity and a limited variability in the mechanical properties and degradation rates. In this study, a novel electrospun biomaterial based on degradable polyesterurethane (PEU) (DegraPol(®) ) was investigated for potential use for bladder engineering in vitro and in vivo. Hybrid microfibrous PEU and PLGA scaffolds were produced by direct electrospinning of the polymer onto a bladder acellular matrix. The scaffold morphology of the scaffold was analyzed, and the biological performance was tested in vitro and in vivo using a rat cystoplasty model. Anatomical and functional outcomes after implantation were analyzed macroscopically, histologically and by cystometry, respectively. Scanning electron microscopy analysis showed that PEU samples had a lower porosity (p < 0.001) and were slightly thinner (p = 0.009) than the PGLA samples. Proliferation and survival of the seeded smooth muscle cells in vitro were comparable on PEU and PLGA scaffolds. After 8 weeks in vivo, the PEU scaffolds exhibited no shrinkage. However, cystometry of the reconstructed bladders exhibited a slightly greater functional bladder capacity in the PLGA group. Morphometric analyses revealed significantly better tissue healing (p < 0.05) and, in particular, better smooth muscle regeneration, as well as a lower rate of inflammatory responses at 8 weeks in the PEU group. Collectively, the results indicated that PEU-hybrid scaffolds promote bladder tissue formation with excellent tissue integration and a low inflammatory reaction in vivo. PEU is a promising biomaterial, particularly with regard to functional tissue engineering of the bladder and other hollow organs. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 658-667, 2017.

  12. Angiogenic response induced by acellular femoral matrix in vivo

    PubMed Central

    Conconi, Maria Teresa; Nico, Beatrice; Rebuffat, Piera; Crivellato, Enrico; Parnigotto, Pier Paolo; Nussdorfer, Gastone G; Ribatti, Domenico

    2005-01-01

    We investigated the angiogenic response induced by acellular femoral matrices implanted in vivo on to the chick embryo chorioallantoic membrane (CAM), a useful model for such investigation. The results showed that acellular matrices were able to induce a strong angiogenic response, comparable with that of fibroblast growth factor-2 (FGF-2), a well-known angiogenic cytokine. The angiogenic response was further increased when exogenous FGF-2 or transforming growth factor beta-1 (TGF-β1) was added to the matrices and inhibited by the addition of anti-FGF-2 or anti-TGF-β1 antibodies. The response may be considered to be dependent on a direct angiogenic effect exerted by the matrices, and also in part by the presence of FGF-2 and TGF-β1 in the acellular matrices. PMID:16011546

  13. Management of gingival recession with acellular dermal matrix graft: A clinical study

    PubMed Central

    Balaji, V. R.; Ramakrishnan, T.; Manikandan, D.; Lambodharan, R.; Karthikeyan, B.; Niazi, Thanvir Mohammed; Ulaganathan, G.

    2016-01-01

    Aims and Objectives: Obtaining root coverage has become an important part of periodontal therapy. The aims of this studyare to evaluate the clinical efficacy of acellular dermal matrix graft in the coverage of denuded roots and also to examine the change in the width of keratinized gingiva. Materials and Methods: A total of 20 sites with more than or equal to 2 mm of recession depth were taken into the study, for treatment with acellular dermal matrix graft. The clinical parameters such as recession depth, recession width, width of keratinized gingiva, probing pocket depth (PD), and clinical attachment level (CAL) were measured at the baseline, 8th week, and at the end of the study (16th week). The defects were treated with a coronally positioned pedicle graft combined with acellular dermal matrix graft. Results: Out of 20 sites treated with acellular dermal matrix graft, seven sites showed complete root coverage (100%), and the mean root coverage obtained was 73.39%. There was a statistically significant reduction in recession depth, recession width, and probing PD. There was also a statistically significant increase in width of keratinized gingiva and also gain in CAL. The postoperative results were both clinically and statistically significant (P < 0.0001). Conclusion: The results of this study were esthetically acceptable to the patients and clinically acceptable in all cases. From this study, it may be concluded that acellular dermal matrix graft is an excellent substitute for autogenous graft in coverage of denuded roots. PMID:27829749

  14. A new material for tissue engineered vagina reconstruction: Acellular porcine vagina matrix.

    PubMed

    Zhang, Jing-Kun; Du, Run-Xuan; Zhang, Lin; Li, Ya-Nan; Zhang, Ming-le; Zhao, Shuo; Huang, Xiang-Hua; Xu, Yan-Fang

    2017-03-10

    Acellular matrix materials have been widely used to repair various tissues and organs. According to the plastic principle, when a part of the body is lost, it should be replaced with a similar material. Therefore, the use of a homologous organ-specific acellular vaginal tissue in vagina reconstruction repair surgery may show good results. However, the acellular vagina matrix (AVM) form large vertebrates is difficult to isolate. In this study, we described a multi-step method to prepare porcine AVM and evaluated the efficacy of acellularization. We also investigated the biomechanical properties, biological activity elements and biocompatibility of the porcine AVM. We then used this material to reconstruct a rat vagina and performed further morphologic and functional analyses. Small intestinal submucosa (SIS), which is a commonly used acellular matrix material, was used in a control group. Histological examination, DNA content analysis and agarose gel electrophoresis revealed that the decellularization procedure was effective. The AVM had acceptable biomechanical properties and sufficient growth factor production (VEGF, FGF, TGF-β1 and PDGF-BB) compared with that of the SIS. Subcutaneous transplantation in rats showed that the AVM had good biocompatibility. The tissue-engineered vagina using the AVM more resembled normal-appearing tissue than did that using SIS following morphologic and functional analyses. The AVM has great potential for application in vaginal reconstructive surgery. This article is protected by copyright. All rights reserved.

  15. Comparison of structural, architectural and mechanical aspects of cellular and acellular bone in two teleost fish.

    PubMed

    Cohen, Liat; Dean, Mason; Shipov, Anna; Atkins, Ayelet; Monsonego-Ornan, Efrat; Shahar, Ron

    2012-06-01

    The histological diversity of the skeletal tissues of fishes is impressive compared with that of other vertebrate groups, yet our understanding of the functional consequences of this diversity is limited. In particular, although it has been known since the mid-1800s that a large number of fish species possess acellular bones, the mechanical advantages and consequences of this structural characteristic - and therefore the nature of the evolution of this feature - remain unclear. Although several studies have examined the material properties of fish bone, these have used a variety of techniques and there have been no direct contrasts of acellular and cellular bone. We report on a comparison of the structural and mechanical properties of the ribs and opercula between two freshwater fish - the common carp Cyprinus carpio (a fish with cellular bone) and the tilapia Oreochromis aureus (a fish with acellular bone). We used light microscopy to show that the bones in both fish species exhibit poor blood supply and possess discrete tissue zones, with visible layering suggesting differences in the underlying collagen architecture. We performed identical micromechanical testing protocols on samples of the two bone types to determine the mechanical properties of the bone material of opercula and ribs. Our data support the consensus of literature values, indicating that Young's moduli of cellular and acellular bones are in the same range, and lower than Young's moduli of the bones of mammals and birds. Despite these similarities in mechanical properties between the bone tissues of the fish species tested here, cellular bone had significantly lower mineral content than acellular bone; furthermore, the percentage ash content and bone mineral density values (derived from micro-CT scans) show that the bone of these fishes is less mineralized than amniote bone. Although we cannot generalize from our data to the numerous remaining teleost species, the results presented here suggest

  16. Co-Graft of Acellular Dermal Matrix and Autogenous Microskin in a Child with Extensive Burns

    PubMed Central

    Chen, X.L.; Xia, Z.F.; Fang, L.S.; Wang, Y.J.; Wang, C.H.

    2008-01-01

    Summary A 6-yr-old boy was the victim of a burns accident in a public bathhouse. The burns involved the face, neck, upper and lower extremities, anterior and posterior trunk, and both buttocks, covering 72% of the total body surface area (TBSA). The lesions in the lower extremities and parts of the right upper extremity were deep partial-thickness, comprising 40% TBSA. On day 5 post-burn, the lesions in both lower extremities were excised to the extent of the fascia under general anaesthesia. Meshed J1 Jayya Acellular Dermis®, a kind of acellular allodermal (ADM) matrix, was then placed on the left knee joint. The right knee joint served as control. The wounds in both lower extremities were then overlaid with microskin autografting. At 19 days post-application, the lesions in both lower extremities had almost completely resurfaced. Follow-up at six months revealed well-healed and stable skin of acellular ADM and microskin autografts on the left knee. However, the skin of the right knee was unstable and there was a chronic residual ulcer. Both legs showed some significant hypertrophic scars. The left knee joint (acellular ADM grafted site) showed mild contractures, while the right knee joint developed a significant contracture. The "skin" of the co-graft covered site appeared thicker and more elastic. The movement range of the left knee joint was much larger than that of the right knee joint. These results suggest that co-graft of acellular dermal matrix and autogenous microskin may be an effective way to repair this functional site in children with extensive burns and to improve the functional and cosmetic results. PMID:21991120

  17. Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering.

    PubMed

    Du, Liqun; Wu, Xinyi

    2011-07-01

    Our aim was to produce a natural, acellular matrix from porcine cornea for use as a scaffold in developing a tissue-engineered cornea replacement. Full-thickness, intact porcine corneas were decellularized by immersion in 0.5% (wt/vol) sodium dodecyl sulfate. The resulting acellular matrices were then characterized and examined specifically for completeness of the decellularization process. Histological analyses of decellularized corneal stromas showed that complete cell and α-Gal removal was achieved, while the major structural proteins including collagen type I and IV, laminin, and fibronectin were retained. DAPI staining did not detect any residual DNA within the matrix, and the DNA contents, which reflect the presence of cellular materials, were significantly diminished in the decellularized cornea. The collagen content of the decellularized cornea was well maintained compared with native tissues. Uniaxial tensile testing indicated that decellularization did not significantly compromise the ultimate tensile strength of the tissue (P > 0.05). In vitro cytotoxicity assays using rabbit corneal fibroblast cultures excluded the presence of soluble toxins in the biomaterial. In vivo implantation to rabbit interlamellar stromal pockets showed good biocompability. In summary, a full-thickness natural acellular matrix retaining the major structural components and strength of the cornea has been successfully developed. The matrix is biocompatible with cornea-derived cells and has potential for use in corneal transplantation and tissue-engineering applications.

  18. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix

    PubMed Central

    Ye, Ken; Traianedes, Kathy; Choong, Peter F. M.; Myers, Damian E.

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell–matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair. PMID:26858950

  19. Calcification preceding new bone formation induced by demineralized bone matrix gelatin.

    PubMed

    Yamashita, K; Takagi, T

    1992-03-01

    Demineralized bone matrix gelatin (BMG) was implanted into the skeletal muscle of Sprague-Dawley (S.D.) rats, and histological changes were examined 3, 5, 7, 10 and 15 days later. Before bone formation, a specific calcification process was found in most of the BMG from day 5 and 7 after implantation. The heterotopic calcified sites were not always consistent with the sites of the alkaline phosphatase activity. It was considered that this calcification progresses without any cellular components, and we distinguished this type of calcification as "acellular mineral deposition" from the calcification which occurs in new bone formation. This "acellular mineral deposition" was first observed as small spherical calcified deposits in the BMG on day 7 after implantation; these deposits then gradually grew and fused with each other. Some multinucleated cells appeared near the site of calcification on day 7 after implantation, but osteoblasts or osteoblast-like cells were scarcely observed around the calcified deposits in BMG until day 7. Vascularization was often observed near the "acellular mineral deposition" and the new bone formation. Fourier transform infrared spectroscopy showed that the calcified deposits in BMG were composed of hydroxyapatite, carbonateapatite and other calcium phosphate components, and that the first two components became prominent with time. It is believed that the "acellular mineral deposition" is due to the deposition of calcium and phosphate into the BMG by a process of heterogenic nucleation that does not involve osteoblasts or matrix vesicles. Bone formation induced by the BMG occurred after the "acellular mineral deposition." The experimental calcification shown in this paper seems a useful model for the study of biocalcification.

  20. Adaptive bone formation in acellular vertebrae of sea bass (Dicentrarchus labrax L.).

    PubMed

    Kranenbarg, Sander; van Cleynenbreugel, Tim; Schipper, Henk; van Leeuwen, Johan

    2005-09-01

    Mammalian bone is an active tissue in which osteoblasts and osteoclasts balance bone mass. This process of adaptive modelling and remodelling is probably regulated by strain-sensing osteocytes. Bone of advanced teleosts is acellular yet, despite the lack of osteocytes, it is capable of an adaptive response to physical stimuli. Strenuous exercise is known to induce lordosis. Lordosis is a ventrad curvature of the vertebral column, and the affected vertebrae show an increase in bone formation. The effects of lordosis on the strain distribution in sea bass (Dicentrarchus labrax L.) vertebrae are assessed using finite element modelling. The response of the local tissue is analyzed spatially and ontogenetically in terms of bone volume. Lordotic vertebrae show a significantly increased strain energy due to the increased load compared with normal vertebrae when loaded in compression. High strain regions are found in the vertebral centrum and parasagittal ridges. The increase in strain energy is attenuated by a change in architecture due to the increased bone formation. The increased bone formation is seen mainly at the articular surfaces of the vertebrae, although some extra bone is formed in the vertebral centrum. Regions in which the highest strains are found do not spatially correlate with regions in which the most extensive bone apposition occurs in lordotic vertebrae of sea bass. Mammalian-like strain-regulated bone modelling is probably not the guiding mechanism in adaptive bone modelling of acellular sea bass vertebrae. Chondroidal ossification is found at the articular surfaces where it mediates a rapid adaptive response, potentially attenuating high stresses on the dorsal zygapophyses.

  1. Histological differences between invasive ductal carcinoma with a large central acellular zone and matrix-producing carcinoma of the breast.

    PubMed

    Sasaki, Yuka; Tsuda, Hitoshi; Ueda, Shigeto; Asakawa, Hideki; Seki, Kunihiko; Murata, Tetsuya; Kuriki, Ken; Tamai, Seiichi; Matsubara, Osamu

    2009-06-01

    Carcinoma with a large central acellular zone (central acellular carcinoma, CAC) and matrix-producing carcinoma (MPC) have been recently noted as basal-like-type breast cancers, but the two entities are often confused. To clarify their histological differences, the histopathological sections of 15 CAC and seven MPC were examined and the following features were compared by reviewing slides: (i) mode of invasion; (ii) alteration of cancer cell adhesion in the transitional area between cellular and acellular zones; (iii) staining of the stromal matrix; (iv) lymphocyte infiltration; and (v) tumor grade. Complete agreement was required between two observers for the assessments of these features. All CAC had relatively sharp margins but showed infiltrative growth accompanied by eosinophilic intercellular matrix. In CAC there was abrupt transition between peripheral cellular and central acellular zones without alteration of cancer cell adhesion. In contrast, all MPC showed expansive growth with a well circumscribed margin, accompanied by basophilic and myxoid intercellular matrix. In MPC there was gradual transition from cellular to acellular areas with gradual loss of cancer cell adhesion. Histological grade 3 and peripheral lymphocyte infiltration were common features. It is suggested that CAC and MPC are histologically distinct entities, and that the aforementioned features are helpful for differential diagnosis.

  2. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study.

    PubMed

    Cheng, Hai-Ling Margaret; Loai, Yasir; Beaumont, Marine; Farhat, Walid A

    2010-08-01

    Bladder acellular matrices (ACMs) derived from natural tissue are gaining increasing attention for their role in tissue engineering and regeneration. Unlike conventional scaffolds based on biodegradable polymers or gels, ACMs possess native biomechanical and many acquired biologic properties. Efforts to optimize ACM-based scaffolds are ongoing and would be greatly assisted by a noninvasive means to characterize scaffold properties and monitor interaction with cells. MRI is well suited to this role, but research with MRI for scaffold characterization has been limited. This study presents initial results from quantitative MRI measurements for bladder ACM characterization and investigates the effects of incorporating hyaluronic acid, a natural biomaterial useful in tissue-engineering and regeneration. Measured MR relaxation times (T(1), T(2)) and diffusion coefficient were consistent with increased water uptake and glycosaminoglycan content observed on biochemistry in hyaluronic acid ACMs. Multicomponent MRI provided greater specificity, with diffusion data showing an acellular environment and T(2) components distinguishing the separate effects of increased glycosaminoglycans and hydration. These results suggest that quantitative MRI may provide useful information on matrix composition and structure, which is valuable in guiding further development using bladder ACMs for organ regeneration and in strategies involving the use of hyaluronic acid.

  3. Acellular Bone Marrow Extracts Significantly Enhance Engraftment Levels of Human Hematopoietic Stem Cells in Mouse Xeno-Transplantation Models

    PubMed Central

    Zibara, Kazem; Hamdan, Rima; Dib, Leila; Sindet-Pedersen, Steen; Kharfan-Dabaja, Mohamed; Bazarbachi, Ali; El-Sabban, Marwan

    2012-01-01

    Hematopoietic stem cells (HSC) derived from cord blood (CB), bone marrow (BM), or mobilized peripheral blood (PBSC) can differentiate into multiple lineages such as lymphoid, myeloid, erythroid cells and platelets. The local microenvironment is critical to the differentiation of HSCs and to the preservation of their phenotype in vivo. This microenvironment comprises a physical support supplied by the organ matrix as well as tissue specific cytokines, chemokines and growth factors. We investigated the effects of acellular bovine bone marrow extracts (BME) on HSC in vitro and in vivo. We observed a significant increase in the number of myeloid and erythroid colonies in CB mononuclear cells (MNC) or CB CD34+ cells cultured in methylcellulose media supplemented with BME. Similarly, in xeno-transplantation experiments, pretreatment with BME during ex-vivo culture of HSCs induced a significant increase in HSC engraftment in vivo. Indeed, we observed both an increase in the number of differentiated myeloid, lymphoid and erythroid cells and an acceleration of engraftment. These results were obtained using CB MNCs, BM MNCs or CD34+ cells, transplanted in immuno-compromised mice (NOD/SCID or NSG). These findings establish the basis for exploring the use of BME in the expansion of CB HSC prior to HSC Transplantation. This study stresses the importance of the mechanical structure and soluble mediators present in the surrounding niche for the proper activity and differentiation of stem cells. PMID:22768336

  4. Biopolymer gel matrix as acellular scaffold for enhanced dermal tissue regeneration.

    PubMed

    Judith, Rangasamy; Nithya, Mariappan; Rose, Chellan; Mandal, Asit Baran

    2012-07-01

    Biological grafts have drawbacks such as donor scarcity, disease transmission, tissue infection, while the scaffolds of either collagen or chitosan fabrics fail to become part of the tissue at the wound site, though they favor the formation of connective tissue matrix. This study developed a novel composite consisting of the combination of atelocollagen and chitosan in order to provide a biodegradable molecular matrix in gel form as a biomimetic surface for cell attachment, to promote the wound healing in excision wounds. We found that the topical application of biopolymer composite on the wound promoted cell proliferation, migration and collagen deposition overtime. The enhanced cellular activity in the collagen-chitosan treated wound tissue was also assed by increased levels of Platelet derived growth factor (PDGF) and Nerve growth factor (NGF) associated with elevated levels of antioxidants and decreased level of lipid peroxidation. The acellular matrix-like topical application material is designed to guide the eventual re-establishment of an anatomically normal skin. The results of this study demonstrate the feasibility of multi-cell regeneration on a molecular system that mimics tissue engineering in vivo.

  5. Acellular dermal matrix slings in tissue expander breast reconstruction: are there substantial benefits?

    PubMed

    Collis, George N; TerKonda, Sarvam P; Waldorf, James C; Perdikis, Galen

    2012-05-01

    Acellular dermal matrix (ADM) slings in breast reconstruction are increasingly used but are not yet validated. This study compares immediate, expander-based breast reconstruction with and without the use of inferolateral ADM slings. There were 63 patients (106 breasts) in the ADM group and 42 patients (68 breasts) in the control group. Initial intraoperative fill volumes were significantly greater in the ADM group, median 69% full (250 mL) versus 50% full (180 mL; P < 0.001). However, the number of days to complete expansion between the 2 groups was similar. One less office visit was required to complete the fills in the ADM group (P < 0.01). Drains were removed 3 days later in the ADM group (P < 0.01). Overall complication rate was greater in the ADM group (18.9% vs. 7.4%, P < 0.05), with a slightly higher percentage of expanders requiring removal due to infection in the ADM group (5.7% vs. 4.4%, P = NS). This study suggests inferolateral ADM slings in expander-based breast reconstruction allow for significantly increased initial fill volumes and may offer an aesthetic advantage; however, its use is costly and increases complications.

  6. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix.

    PubMed

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua

    2016-07-01

    The objective of this study was to extract and characterize an advanced collagen aggregate (Ag-col) from porcine acellular dermal matrix (pADM). Based on histological examination, scanning electron microscopy (SEM) and atomic force microscope (AFM), Ag-col was composed of the D-periodic cross-striated collagen fibrils and thick collagen fiber bundles with uneven diameters and non-orientated arrangement. Fourier transform infrared (FTIR) spectra of pADM, Ag-col and Col were similar and revealed the presence of the triple helix. Circular dichroism (CD) analysis exhibited a slightly higher content of α-helix but inappreciably less amount of random coil structure in Ag-col compared to Col. Moreover, imino acid contents of pADM, Ag-col and Col were 222.43, 218.30 and 190.01 residues/1000 residues, respectively. From zeta potential analysis, a net charge of zero was found at pH 6.45 and 6.11 for Ag-col and Col, respectively. Differential scanning calorimetry (DSC) study suggested that the Td of Ag-col was 20°C higher than that of Col as expected, and dynamic mechanical analysis (DMA) indicated that Ag-col possessed a higher storage modulus but similar loss factor compared to Col. Therefore, the collagen aggregate from pADM could serve as a better alternative source of collagens for further applications in food and biological industries.

  7. The histocompatibility research of hair follicle stem cells with bladder acellular matrix

    PubMed Central

    Li, Jia; Wang, Wenguang; Li, Jiuzhi; Rexiati, Mulati; An, Henqing; Wang, Feng; Wang, Yujie

    2016-01-01

    Abstract Background: Hair follicle stem cells (HFSCs) were reported to have multidirectional differentiation ability and could be differentiated into melanocytes, keratin cells, smooth muscle cells, and neurons. However, the functionality of HFSCs in bladder tissue regeneration is unknown. Methods: This study was conducted to build HFSCs vs bladder acellular matrix (BAM) complexes (HFSCs–BAM complexes) in vitro and evaluated whether HFSCs have well biocompatibility with BAM. HFSCs were separated from SD rats. BAM scaffold was prepared from the submucosa of rabbit bladder tissue. Afterwards, HFSCs were inoculated on BAM. Results: HFSCs–BAM complexes grew rapidly through inverted microscope observation. Cell growth curve showed the proliferation was in stagnate phase at 7th and 8th day. Cytotoxicity assay showed the toxicity grading of BAM was 0 or 1. Scanning electron microscopy, HE staining, and masson staining showed that cells have germinated on the surface of scaffold. Conclusion: The results provide evidence that HFSCs–BAM complexes have well biocompatibility and accumulate important experimental basis for clinical applying of tissue engineering bladder. PMID:27828841

  8. Subcutaneous Implant-based Breast Reconstruction with Acellular Dermal Matrix/Mesh: A Systematic Review

    PubMed Central

    Salibian, Ara A.; Frey, Jordan D.; Choi, Mihye

    2016-01-01

    Background: The availability of acellular dermal matrix (ADM) and synthetic mesh products has prompted plastic surgeons to revisit subcutaneous implant-based breast reconstruction. The literature is limited, however, with regards to evidence on patient selection, techniques, and outcomes. Methods: A systematic review of the Medline and Cochrane databases was performed for original studies reporting breast reconstruction with ADM or mesh, and subcutaneous implant placement. Studies were analyzed for level of evidence, inclusion/exclusion criteria for subcutaneous reconstruction, reconstruction characteristics, and outcomes. Results: Six studies (186 reconstructions) were identified for review. The majority of studies (66.7%) were level IV evidence case series. Eighty percent of studies had contraindications for subcutaneous reconstruction, most commonly preoperative radiation, high body mass index, and active smoking. Forty percent of studies commenting on patient selection assessed mastectomy flap perfusion for subcutaneous reconstruction. Forty-five percent of reconstructions were direct-to-implant, 33.3% 2-stage, and 21.5% single-stage adjustable implant, with ADM utilized in 60.2% of reconstructions versus mesh. Pooled complication rates included: major infection 1.2%, seroma 2.9%, hematoma 2.3%, full nipple-areola complex necrosis 1.1%, partial nipple-areola complex necrosis 4.5%, major flap necrosis 1.8%, wound healing complication 2.3%, explantation 4.1%, and grade III/IV capsular contracture 1.2%. Conclusions: Pooled short-term complication rates in subcutaneous alloplastic breast reconstruction with ADM or mesh are low in preliminary studies with selective patient populations, though techniques and outcomes are variable across studies. Larger comparative studies and better-defined selection criteria and outcomes reporting are needed to develop appropriate indications for performing subcutaneous implant-based reconstruction. PMID:27975034

  9. Plastic Surgery and Acellular Dermal Matrix: Highlighting Trends from 1999 to 2013

    PubMed Central

    Daar, David A; Gandy, Jessica R; Clark, Emily G; Mowlds, Donald S; Paydar, Keyianoosh Z; Wirth, Garrett A

    2016-01-01

    The last decade has ushered in a rapidly expanding global discussion regarding acellular dermal matrix (ADM) applications, economic analyses, technical considerations, benefits, and risks, with recent emphasis on ADM use in breast surgery. This study aims to evaluate global trends in ADM research using bibliometric analysis. The top nine Plastic Surgery journals were determined by impact factor (IF). Each issue of the nine journals between 1999 and 2013 was accessed to compile a database of articles discussing ADM. Publications were further classified by IF, authors’ geographic location, study design, and level of evidence (LOE, I-V). Productivity index and productivity share were calculated for each region. In total, 256 ADM articles were accessed. The annual global publication volume increased significantly by 4.2 (0.87) articles per year (p<0.001), with a mean productivity index of 36.3 (59.0). The mean impact factor of the nine journals increased significantly from 0.61 (0.11) to 2.47 (0.99) from 1993 to 2013 (p<0.001). Despite this increase in the global ADM literature, the majority of research was of weaker LOE (level I: 2.29% and level II: 9.17%). USA contributed the most research (87%), followed by Asia (4.76%) and Western Europe (4.71%). USA contributed the greatest volume of research. Regarding clinical application of ADM, the majority of publications focused on ADM use in breast surgery, specifically breast reconstruction (154 articles, 60.2%). The majority of research was of lower LOE; thus, efforts should be made to strengthen the body of literature, particularly with regard to cost analysis. PMID:27579264

  10. Acellular Dermal Matrix as a Core Strut for Projection in Nipple Reconstruction: Approaches for Three Different Methods of Breast Reconstruction

    PubMed Central

    Park, Gui-Yong; Cho, Hee-Eun; Lee, Byung-Il; Park, Seung-Ha

    2016-01-01

    Background The objective of this paper was to describe a novel technique for improving the maintenance of nipple projection in primary nipple reconstruction by using acellular dermal matrix as a strut in one of three different configurations, according to the method of prior breast reconstruction. The struts were designed to best fill the different types of dead spaces in nipple reconstruction depending on the breast reconstruction method. Methods A total of 50 primary nipple reconstructions were performed between May 2012 and May 2015. The prior breast reconstruction methods were latissimus dorsi (LD) flap (28 cases), transverse rectus abdominis myocutaneous (TRAM) flap (10 cases), or tissue expander/implant (12 cases). The nipple reconstruction technique involved the use of local flaps, including the C-V flap or star flap. A 1×2-cm acellular dermal matrix was placed into the core with O-, I-, and L-shaped struts for prior LD, TRAM, and expander/implant methods, respectively. The projection of the reconstructed nipple was measured at the time of surgery and at 3, 6, and 9 months postoperatively. Results The nine-month average maintenance of nipple projection was 73.0%±9.67% for the LD flap group using an O-strut, 72.0%±11.53% for the TRAM flap group using an I-strut, and 69.0%±10.82% for the tissue expander/implant group using an L-strut. There were no cases of infection, wound dehiscence, or flap necrosis. Conclusions The application of an acellular dermal matrix with a different kind of strut for each of 3 breast reconstruction methods is an effective addition to current techniques for improving the maintenance of long-term projection in primary nipple reconstruction. PMID:27689049

  11. Application of bladder acellular matrix in urinary bladder regeneration: the state of the art and future directions.

    PubMed

    Pokrywczynska, Marta; Gubanska, Iga; Drewa, Gerard; Drewa, Tomasz

    2015-01-01

    Construction of the urinary bladder de novo using tissue engineering technologies is the "holy grail" of reconstructive urology. The search for the ideal biomaterial for urinary bladder reconstruction has been ongoing for decades. One of the most promising biomaterials for this purpose seems to be bladder acellular matrix (BAM). In this review we determine the most important factors, which may affect biological and physical properties of BAM and its regeneration potential in tissue engineered urinary bladder. We also point out the directions in modification of BAM, which include incorporation of exogenous growth factors into the BAM structure. Finally, we discuss the results of the urinary bladder regeneration with cell seeded BAM.

  12. Delayed primary closure of contaminated abdominal wall defects with non-crosslinked porcine acellular dermal matrix compared with conventional staged repair: a retrospective study

    PubMed Central

    2014-01-01

    Introduction Synthetic mesh has been used traditionally to repair abdominal wall defects, but its use is limited in the case of bacterial contamination. New biological materials are now being used successfully for delayed primary closure of contaminated abdominal wall defects. The costs of biological materials may prevent surgeons from using them. We compared the conventional staged repair of contaminated abdominal wall defects with a single-stage procedure using a non-crosslinked porcine acellular dermal matrix. Methods A total of 14 cases with Grade 3 contaminated abdominal wall defects underwent delayed primary closure of the abdomen using a non-crosslinked porcine acellular dermal matrix (Strattice™ Reconstructive Tissue Matrix, LifeCell Corp., Branchburg, NJ, USA). The results were compared with a group of 14 patients who had received conventional treatment for the repair of contaminated abdominal wall defects comprising a staged repair during two separate hospital admissions employing synthetic mesh. Treatment modalities, outcomes, and costs were compared. Results In all cases treated with delayed primary closure employing non-crosslinked porcine acellular dermal matrix, there were no complications related to its use. Two patients died due to unrelated events. Although treatment costs were estimated to be similar in the two groups, the patients treated with porcine acellular dermal matrix spent less time as an inpatient than those receiving conventional two-stage repair. Conclusions Delayed primary closure of contaminated abdominal wall defects using a non-crosslinked porcine acellular dermal matrix may be a suitable alternative to conventional staged repair. In our patients, it resulted in early restoration of abdominal wall function and shorter hospitalization. The costs for treating contaminated abdominal wall defects using porcine acellular dermal matrix during a single hospital admission were not higher than costs for conventional two-stage repair

  13. Alternatives to Acellular Dermal Matrix: Utilization of a Gore DualMesh Sling as a Cost-Conscious Adjunct for Breast Reconstruction

    PubMed Central

    Butterworth, James; Petty, Paul

    2017-01-01

    Objective: This study seeks an alternative to acellular dermal matrix in 2-staged breast reconstruction while minimizing cost. It was hypothesized that use of a Gore DualMesh would allow for similar intraoperative tissue expander fill volumes, time to second-stage reconstruction, and number of postoperative fills compared with acellular dermal matrix at only a fraction of the expense. Methods: Retrospective analysis comparing Gore DualMesh (59 breasts, 34 patients), acellular dermal matrix (13 breasts, 8 patients), and total muscle coverage (25 breasts, 14 patients) for postmastectomy breast reconstruction was performed. Time to second-stage reconstruction, number of expansions, and relative initial fill volumes were compared between the 3 groups. Secondarily, complication rates were also considered, including seroma, infection, expander/implant explantation, removal of mesh, and capsular contracture. Statistical analysis was performed utilizing the Fisher exact test and the χ2 test for categorical variables and the Mann-Whitney U test for continuous variables. Results: Relative initial fill volumes, number of expansions, and time to second-stage reconstruction showed no statistical difference between the acellular dermal matrix and Gore DualMesh groups (P = .494, P = .146, and P = .539, respectively). Furthermore, the Gore DualMesh group underwent significantly fewer fills (P < .001) and had a higher relative initial fill volume (P < .001) than the total muscle coverage group. The additional cost per breast as a result of including DualMesh was on average $385 versus $4287 for acellular dermal matrix. Complication rates were similar between all 3 groups without statistically significant differences. Conclusions: Gore DualMesh represents a safe alternative to acellular dermal matrix for breast reconstruction with similar aesthetic results in certain patients at a fraction of the cost. PMID:28261372

  14. Capsular contracture in implant based breast reconstruction—the effect of porcine acellular dermal matrix

    PubMed Central

    Ho-Asjoe, Mark; Junge, Klaus; Farhadi, Jian

    2017-01-01

    Background Irradiation of implant-based breast reconstructions (BR) is known to increase capsular contracture (CC) rates on average by 4-fold over non-irradiated reconstructions. The use of acellular dermal matrix (ADM) has been associated with lower CC rates in non-irradiated reconstructions (0-3%). Experimental and clinical studies suggest that ADM may also reduce CC rates in irradiated breasts. The aim of this study was to evaluate CC rates in non-irradiated and irradiated one- and two-stage BRs performed with the assistance of porcine ADM (PADM). Methods A single centre, retrospective, cohort study was designed from December 2008 to October 2012. A total of 200 immediate implant-based BRs were performed using PADM for inferior pole reinforcement. We included non-irradiated BR with a minimum follow up of 6 month from primary surgery (one stage) or from explantation of expander and implantation of the definitive implant (two stage). Of the postoperatively irradiated BR we included patients with 1 year or more follow up time from termination of radiotherapy. CC was graded using the conventional Spear-Baker classification and modified version for irradiated BR. According to the literature Grade III and IV CC were defined as clinically significant CC. Results Of 200 BRs with PADM, 122 were included in this study (84 non-irradiated and 38 irradiated). Sixty-five BR were one stage and 57 were two stage BR. Grade III/IV CC was remarkable low in non-irradiated (6%) and irradiated BR (13%). There was a non-significant trend to increased Grade III and IV CC in irradiated BR vs. non-irradiated BR (13% vs. 6%, P=0.216). In this study follow up time (P<0.001) and the stage of ADM reconstruction (two vs. one stage, P=0.022) were significant risk factors for occurrence of grade III/IV CC on univariate analysis and remained significant for the follow up time (P=0.013) and remarkable for the stages (P=0.093) in multivariate analysis. Conclusions Our data support the current

  15. Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects: biomechanics and validation of mathematical models

    PubMed Central

    Li, Ya-jun; Zhao, Bao-lin; Lv, Hao-ze; Qin, Zhi-gang; Luo, Min

    2016-01-01

    We hypothesized that a chemically extracted acellular allogeneic nerve graft used in combination with bone marrow mesenchymal stem cell transplantation would be an effective treatment for long-segment sciatic nerve defects. To test this, we established rabbit models of 30 mm sciatic nerve defects, and treated them using either an autograft or a chemically decellularized allogeneic nerve graft with or without simultaneous transplantation of bone marrow mesenchymal stem cells. We compared the tensile properties, electrophysiological function and morphology of the damaged nerve in each group. Sciatic nerves repaired by the allogeneic nerve graft combined with stem cell transplantation showed better recovery than those repaired by the acellular allogeneic nerve graft alone, and produced similar results to those observed with the autograft. These findings confirm that a chemically extracted acellular allogeneic nerve graft combined with transplantation of bone marrow mesenchymal stem cells is an effective method of repairing long-segment sciatic nerve defects. PMID:27651781

  16. Decellularized bone matrix grafts for calvaria regeneration

    PubMed Central

    Lee, Dong Joon; Diachina, Shannon; Lee, Yan Ting; Zhao, Lixing; Zou, Rui; Tang, Na; Han, Han; Chen, Xin; Ko, Ching-Chang

    2016-01-01

    Decellularization is a promising new method to prepare natural matrices for tissue regeneration. Successful decellularization has been reported using various tissues including skin, tendon, and cartilage, though studies using hard tissue such as bone are lacking. In this study, we aimed to define the optimal experimental parameters to decellularize natural bone matrix using 0.5% sodium dodecyl sulfate and 0.1% NH4OH. Then, the effects of decellularized bone matrix on rat mesenchymal stem cell proliferation, osteogenic gene expression, and osteogenic differentiations in a two-dimensional culture system were investigated. Decellularized bone was also evaluated with regard to cytotoxicity, biochemical, and mechanical characteristics in vitro. Evidence of complete decellularization was shown through hematoxylin and eosin staining and DNA measurements. Decellularized bone matrix displayed a cytocompatible property, conserved structure, mechanical strength, and mineral content comparable to natural bone. To study new bone formation, implantation of decellularized bone matrix particles seeded with rat mesenchymal stem cells was conducted using an orthotopic in vivo model. After 3 months post-implantation into a critical-sized defect in rat calvaria, new bone was formed around decellularized bone matrix particles and also merged with new bone between decellularized bone matrix particles. New bone formation was analyzed with micro computed tomography, mineral apposition rate, and histomorphometry. Decellularized bone matrix stimulated mesenchymal stem cell proliferation and osteogenic differentiation in vitro and in vivo, achieving effective bone regeneration and thereby serving as a promising biological bone graft. PMID:28228929

  17. A dynamic distention protocol for whole-organ bladder decellularization: histological and biomechanical characterization of the acellular matrix.

    PubMed

    Consolo, F; Brizzola, S; Tremolada, G; Grieco, V; Riva, F; Acocella, F; Fiore, G B; Soncini, M

    2016-02-01

    A combined physical-chemical protocol for whole full-thickness bladder decellularization is proposed, based on organ cyclic distention through repeated infusion/withdrawal of the decellularization agents through the urethra. The dynamic decellularization was intended to enhance cell removal efficiency, facilitating the delivery of detergents within the inner layers of the tissue and the removal of cell debris. The use of mild chemical detergents (hypotonic solution and non-ionic detergent) was employed to limit adverse effects upon matrix 3D ultrastructure. Inspection of the presence of residual DNA and RNA was carried out on decellularized matrices to verify effective cell removal. Histological investigation was focused on assessing the retention of adequate structural and functional components that regulate the biomechanical behaviour of the acellular tissue. Biomechanical properties were evaluated through uniaxial tensile loading tests of tissue strips and through ex vivo filling cystometry to evaluate the whole-organ mechanical response to a physiological-like loading state. According to our results, a dynamic decellularization protocol of 17 h duration with a 5 ml/min detergent infusion flow rate revealed higher DNA removal efficiency than standard static decellularization, resulting in residual DNA content < 50 ng/mg dry tissue weight. Furthermore, the collagen network and elastic fibres distribution were preserved in the acellular ECM, which exhibited suitable biomechanical properties in the perspective of its future use as an implant for bladder augmentation.

  18. Clinical application and long-term follow-up study of porcine acellular dermal matrix combined with autoskin grafting.

    PubMed

    Jiong, Chen; Jiake, Chai; Chunmao, Han; Yingen, Pan; Qiuhe, Wu; Zhouxi, Fang; Xiangsheng, Feng

    2010-01-01

    The purpose of this study was to investigate the clinical effects of porcine acellular dermal matrix combined with autoskin grafting on full-thickness skin defects using long-term clinical follow-up study and histologic examination. One hundred fifty-two patients with deep burn or trauma hospitalized from February 2000 to July 2003 were repaired with porcine acellular dermal matrix and split-thickness autoskin graft. Take rate of the grafts was calculated on 1 week after operation. Scar hyperplasia was examined on 1, 3, 6, and 12 months after operation. At the same time, the contracture rates of grafted areas were also calculated. Skin biopsy was performed on five patients for histologic examination, as well as transmission electron microscopy 78 months after operation. The take rate of grafts of 116 patients (76.3%) was 100%, and the take rate of the rest of the patients (36 patients, 23.7%) was more than 95%. No one needed skin transplantation for the second time. One hundred twenty-seven patients were followed up on 1 month after operation; grafts showed mild contraction. There was slight cicatricle at skin junction with tender texture. There was no obvious pruritus and blister. One hundred one patients were followed up on 3 months after operation. The graft contraction showed obvious relief with good articular function. Eighty-two patients were followed up on 6 months after operation. The color and texture of the grafts were similar to normal skin without obvious cicatricial hyperplasia. Fifty-eight patients were followed up on 12 months after operation. The grafts were similar to normal skin without obvious rejection. There were no significant differences between the contracture rates at 3, 6, and 12 months and 1 month after the second surgery. Sixteen patients were followed up on 78 months after operation. The appearance of grafts was slightly dry compared with normal skin. Tissue structure of grafts was similar to normal skin with sweat gland-like structure

  19. Acellular human heart matrix: A critical step toward whole heart grafts.

    PubMed

    Sánchez, Pedro L; Fernández-Santos, M Eugenia; Costanza, Salvatore; Climent, Andreu M; Moscoso, Isabel; Gonzalez-Nicolas, M Angeles; Sanz-Ruiz, Ricardo; Rodríguez, Hugo; Kren, Stefan M; Garrido, Gregorio; Escalante, Jose L; Bermejo, Javier; Elizaga, Jaime; Menarguez, Javier; Yotti, Raquel; Pérez del Villar, Candelas; Espinosa, M Angeles; Guillem, María S; Willerson, James T; Bernad, Antonio; Matesanz, Rafael; Taylor, Doris A; Fernández-Avilés, Francisco

    2015-08-01

    The best definitive treatment option for end-stage heart failure currently is transplantation, which is limited by donor availability and immunorejection. Generating an autologous bioartificial heart could overcome these limitations. Here, we have decellularized a human heart, preserving its 3-dimensional architecture and vascularity, and recellularized the decellularized extracellular matrix (dECM). We decellularized 39 human hearts with sodium-dodecyl-sulfate for 4-8 days. Cell removal and architectural integrity were determined anatomically, functionally, and histologically. To assess cytocompatibility, we cultured human cardiac-progenitor cells (hCPC), bone-marrow mesenchymal cells (hMSCs), human endothelial cells (HUVECs), and H9c1 and HL-1 cardiomyocytes in vitro on dECM ventricles up to 21 days. Cell survival, gene expression, organization and/or electrical coupling were analyzed and compared to conventional 2-dimensional cultures. Decellularization removed cells but preserved the 3-dimensional cardiac macro and microstructure and the native vascular network in a perfusable state. Cell survival was observed on dECM for 21 days. hCPCs and hMSCs expressed cardiocyte genes but did not adopt cardiocyte morphology or organization; HUVECs formed a lining of endocardium and vasculature; differentiated cardiomyocytes organized into nascent muscle bundles and displayed mature calcium dynamics and electrical coupling in recellularized dECM. In summary, decellularization of human hearts provides a biocompatible scaffold that retains 3-dimensional architecture and vascularity and that can be recellularized with parenchymal and vascular cells. dECM promotes cardiocyte gene expression in stem cells and organizes existing cardiomyocytes into nascent muscle showing electrical coupling. These findings represent a first step toward manufacturing human heart grafts or matrix components for treating cardiovascular disease.

  20. Does Acellular Dermal Matrix Thickness Affect Complication Rate in Tissue Expander Based Breast Reconstruction?

    PubMed Central

    2016-01-01

    Background. While the benefits of using acellular dermal matrices (ADMs) in breast reconstruction are well described, their use has been associated with additional complications. The purpose of this study was to determine if ADM thickness affects complications in breast reconstruction. Methods. A retrospective chart review was performed including all tissue expander based breast reconstructions with AlloDerm (LifeCell, Branchburg, NJ) over 4 years. We evaluated preoperative characteristics and assessed postoperative complications including seroma, hematoma, infection, skin necrosis, and need for reintervention. We reviewed ADM thickness and time to Jackson-Pratt (JP) drain removal. Results. Fifty-five patients underwent 77 ADM-associated tissue expander based breast reconstructions, with average age of 48.1 years and average BMI of 25.9. Average ADM thickness was 1.21 mm. We found higher complication rates in the thick ADM group. Significant associations were found between smokers and skin necrosis (p < 0.0001) and seroma and prolonged JP drainage (p = 0.0004); radiated reconstructed breasts were more likely to suffer infections (p = 0.0085), and elevated BMI is a significant predictor for increased infection rate (p = 0.0037). Conclusion. We found a trend toward increased complication rates with thicker ADMs. In the future, larger prospective studies evaluating thickness may provide more information. PMID:27190645

  1. Human keratinocyte growth and differentiation on acellular porcine dermal matrix in relation to wound healing potential.

    PubMed

    Zajicek, Robert; Mandys, Vaclav; Mestak, Ondrej; Sevcik, Jan; Königova, Radana; Matouskova, Eva

    2012-01-01

    A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7-10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs), CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing.

  2. Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study

    PubMed Central

    Ferrando, Pietro Maria; Balmativola, Davide; Cambieri, Irene; Scalzo, Maria Stella; Bergallo, Massimiliano; Annaratone, Laura; Casarin, Stefania; Fumagalli, Mara; Stella, Maurizio; Sapino, Anna; Castagnoli, Carlotta

    2016-01-01

    Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco’s Modified Eagle’s Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties. PMID:26918526

  3. Acellular Dermal Matrix in Reconstructive Breast Surgery: Survey of Current Practice among Plastic Surgeons

    PubMed Central

    Ibrahim, Ahmed M. S.; Koolen, Pieter G. L.; Ashraf, Azra A.; Kim, Kuylhee; Mureau, Marc A. M.; Lee, Bernard T.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) in plastic surgery have become increasingly popular particularly for breast reconstruction. Despite their advantages, questions exist regarding their association with a possible increased incidence of complications. We describe a collective experience of plastic surgeons’ use of ADMs in reconstructive breast surgery using an internet-based survey. Methods: Members of the American Society of Plastic Surgeons were recruited through voluntary, anonymous participation in an online survey. The web-based survey garnered information about participant demographics and their experience with ADM use in breast reconstruction procedures. After responses were collected, all data were anonymously processed. Results: Data were ascertained through 365 physician responses of which 99% (n = 361) completed the survey. The majority of participants were men (84.5%) between 51 and 60 years (37.4%); 84.2% used ADM in breast reconstruction, including radiated patients (79.7%). ADM use was not favored for nipple reconstruction (81.5%); 94.6% of participants used drains, and 87.8% administered antibiotics postoperatively. The most common complications were seroma (70.9%) and infection (16%), although 57.4% claimed anecdotally that overall complication rate was unchanged after incorporating ADM into their practice. High cost was a deterrent for ADM use (37.5%). Conclusions: Plastic surgeons currently use ADM in breast reconstruction for both immediate and staged procedures. Of those responding, a majority of plastic surgeons will incorporate drains and use postoperative antibiotics for more than 48 hours. PMID:25973359

  4. A New Approach to Minimize Acellular Dermal Matrix Use in Prosthesis-based Breast Reconstruction

    PubMed Central

    Hadad, Ivan; Liu, Allen S.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) are often used to improve lower-pole contour, as well as allow for single-stage reconstruction, but numerous studies have shown an increased complication rate using ADM. As such, our group has developed a minimal-ADM-use technique to lower complications while effectively recreating lower-pole contour. Methods: A total of 380 postmastectomy prosthesis-based breast reconstructions were performed in 265 patients by a single surgeon. One hundred eight reconstructions were performed using the traditional ADM technique, with a large piece of ADM along the entire inferior and lateral borders. Two hundred twenty-five reconstructions were performed with the minimal-use technique, patching only the lateral area of the reconstruction. Thirty-five reconstructions were performed without the use of any ADM for high-risk reconstructions, most often in morbidly obese patients. Results: Comparing the traditional technique with the minimal-use technique, the seroma rate dropped from 3% to 0%. The rate of infection and reconstruction loss fell from 9% to 1%. Upon greatly reducing or eliminating the use of ADM use in obese patients, the seroma rate decreased from 15.4% to 5.7%, and the reconstruction loss rate decreased from 38% to 9%. Conclusions: This article describes a new surgical approach to minimize the amount of ADM necessary to create an aesthetically pleasing breast reconstruction. We believe that this approach helps avoid the complications of seroma, infection, and loss of the reconstruction. In certain obese patients, total avoidance of ADM may be the better choice. PMID:26301161

  5. The Effect of Sterile Acellular Dermal Matrix Use on Complication Rates in Implant-Based Immediate Breast Reconstructions

    PubMed Central

    Park, Youngsoo; Choi, Kyoung Wook; Chung, Kyu-Jin; Kim, Tae Gon; Kim, Yong-Ha

    2016-01-01

    Background The use of acellular dermal matrix (ADM) in implant-based immediate breast reconstruction has been increasing. The current ADMs available for breast reconstruction are offered as aseptic or sterile. No published studies have compared aseptic and sterile ADM in implant-based immediate breast reconstruction. The authors performed a retrospective study to evaluate the outcomes of aseptic versus sterile ADM in implant-based immediate breast reconstruction. Methods Implant-based immediate breast reconstructions with ADM conducted between April 2013 and January 2016 were included. The patients were divided into 2 groups: the aseptic ADM (AlloDerm) group and the sterile ADM (MegaDerm) group. Archived records were reviewed for demographic data and postoperative complication types and frequencies. The complications included were infection, flap necrosis, capsular contracture, seroma, hematoma, and explantation for any cause. Results Twenty patients were reconstructed with aseptic ADM, and 68 patients with sterile ADM. Rates of infection (15.0% vs. 10.3%), flap necrosis (5.0% vs. 7.4%), capsular contracture (20.0% vs. 14.7%), seroma (10.0% vs. 14.7%), hematoma (0% vs. 1.5%), and explantation (10.0% vs. 8.8%) were not significantly different in the 2 groups. Conclusions Sterile ADM did not provide better results regarding infectious complications than aseptic ADM in implant-based immediate breast reconstruction. PMID:27896182

  6. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells.

    PubMed

    Chang, Chih-Hung; Chen, Chia-Chun; Liao, Cheng-Hao; Lin, Feng-Huei; Hsu, Yuan-Ming; Fang, Hsu-Wei

    2014-07-01

    In our previous study, we found that cartilage fragments from osteoarthritic knee promoted chondrogenesis of mesenchymal stem cells. In this study, we further transformed the cartilage tissues into acellular cartilage matrix (ACM) and explored the feasibility of using ACM as a biological scaffold. Nonworn parts of cartilage tissues were obtained during total knee arthroplasty (TKA) surgery and were successfully fabricated into ACM powders. The ACM powders and human synovium-derived mesenchymal stem cells (SMSCs) were mixed into collagen gel for in vitro culture. Histological results showed a synergistic effect of ACM powders and chondrogenic growth factors in the formation of engineered cartilage. The findings of real-time polymerase chain reaction (PCR) suggested that ACM powders had the potential of promoting type II collagen gene expression in the growth factors-absent environment. Moreover, with growth factors induction, the ACM powders could reduce the hypertrophy in chondrogenesis of SMSCs. In summary, ACM powders could serve as a functional scaffold that benefited the chondrogenesis of SMSCs for cartilage tissue engineering.

  7. Xenogenic (porcine) acellular dermal matrix promotes growth of granulation tissues in the wound healing of Fournier gangrene.

    PubMed

    Zhang, Zhaoxin; Lv, Lei; Mamat, Masut; Chen, Zhao; Zhou, Zhitao; Liu, Lihua; Wang, Zhizhong

    2015-01-01

    This article investigates the application values of Xenogenic (porcine) acellular dermal matrix (XADM) in preparation of a Fournier gangrene wound bed. Thirty-six consecutive cases of patients with Fournier gangrene between 2002 and 2012 were enrolled in our department of our hospital. The patients were divided into two groups according to different methods of wound bed preparation after surgical débridement, including the experimental group (17 cases) and the control group (19 cases). The wounds in the experimental group were covered with XADM after surgical wound débridement, whereas the wounds were cleaned with hydrogen peroxide and sodium hypochlorite solution (one time/day) in the control group. The wound bed preparation time and hospital stay were then compared in the two groups. The wound preparation time was 13.64 ± 1.46 days and hospitalization period was 26.06 ± 0.83 days in the experimental XADM group. In the control group, the wound bed preparation time and hospitalization period were 22.37 ± 1.38 and 38.11 ± 5.60 days, respectively. The results showed statistical differences between these two groups. When used in wound débridement after Fournier gangrene, XADM protects interecological organizations, promotes the growth of granulation tissues, and maximally retains function and morphology of the perineum and penis.

  8. Ectopic bone formation in rapidly fabricated acellular injectable dense collagen-Bioglass hybrid scaffolds via gel aspiration-ejection.

    PubMed

    Miri, Amir K; Muja, Naser; Kamranpour, Neysan O; Lepry, William C; Boccaccini, Aldo R; Clarke, Susan A; Nazhat, Showan N

    2016-04-01

    Gel aspiration-ejection (GAE) has recently been introduced as an effective technique for the rapid production of injectable dense collagen (IDC) gel scaffolds with tunable collagen fibrillar densities (CFDs) and microstructures. Herein, a GAE system was applied for the advanced production and delivery of IDC and IDC-Bioglass(®) (IDC-BG) hybrid gel scaffolds for potential bone tissue engineering applications. The efficacy of GAE in generating mineralizable IDC-BG gels (from an initial 75-25 collagen-BG ratio) produced through needle gauge numbers 8G (3.4 mm diameter and 6 wt% CFD) and 14G (1.6 mm diameter and 14 wt% CFD) was investigated. Second harmonic generation (SHG) imaging of as-made gels revealed an increase in collagen fibril alignment with needle gauge number. In vitro mineralization of IDC-BG gels was confirmed where carbonated hydroxyapatite was detected as early as day 1 in simulated body fluid, which progressively increased up to day 14. In vivo mineralization of, and host response to, acellular IDC and IDC-BG gel scaffolds were further investigated following subcutaneous injection in adult rats. Mineralization, neovascularization and cell infiltration into the scaffolds was enhanced by the addition of BG and at day 21 post injection, there was evidence of remodelling of granulation tissue into woven bone-like tissue in IDC-BG. SHG imaging of explanted scaffolds indicated collagen fibril remodelling through cell infiltration and mineralization over time. In sum, the results suggest that IDC-BG hybrid gels have osteoinductive properties and potentially offer a novel therapeutic approach for procedures requiring the injectable delivery of a malleable and dynamic bone graft that mineralizes under physiological conditions.

  9. Management of a Giant Omphalocele with Non–Cross-Linked Intact Porcine-Derived Acellular Dermal Matrix (Strattice) Combined with Vacuum Therapy

    PubMed Central

    Travassos, Daisy Vieira; van Eerde, Albertien M.; Kramer, William L.M.

    2015-01-01

    The management of giant omphaloceles at our department is primarily conservative. However, management can be challenging if the omphalocele is ruptured or the sac has to be removed. We report a case in which a giant omphalocele in a newborn female patient was managed by covering the abdominal defect with non–cross-linked intact porcine-derived acellular dermal matrix (Strattice reconstructive tissue matrix, LifeCell Corp., Branchburg, New Jersey, United States) sutured to the fascia combined with vacuum therapy. PMID:26788448

  10. Effectiveness of an acellular synthetic matrix in the treatment of hard-to-heal leg ulcers.

    PubMed

    Harding, Keith; Aldons, Pat; Edwards, Helen; Stacey, Michael; Finlayson, Kathleen; Gibb, Michelle; Jenkins, Liz; Shooter, Gary; Lonkhuyzen, Derek Van; Lynam, Emily; Heinrichs, Eva-Lisa; Upton, Zee

    2014-04-01

    Hard-to-heal leg ulcers are a major cause of morbidity in the elderly population. Despite improvements in wound care, some wounds will not heal and they present a significant challenge for patients and health care providers. A multi-centre cohort study was conducted to evaluate the effectiveness and safety of a synthetic, extracellular matrix protein as an adjunct to standard care in the treatment of hard-to-heal venous or mixed leg ulcers. Primary effectiveness criteria were (i) reduction in wound size evaluated by percentage change in wound area and (ii) healing assessed by number of patients healed by end of the 12 week study. Pain reduction was assessed as a secondary effectiveness criteria using VAS. A total of 45 patients completed the study and no difference was observed between cohorts for treatment frequency. Healing was achieved in 35·6% and wound size decreased in 93·3% of patients. Median wound area percentage reduction was 70·8%. Over 50% of patients reported pain on first visit and 87·0% of these reported no pain at the end of the study. Median time to first reporting of no pain was 14 days after treatment initiation. The authors consider the extracellular synthetic matrix protein an effective and safe adjunct to standard care in the treatment of hard-to-heal leg ulcers.

  11. Dentin Matrix Proteins in Bone Tissue Engineering.

    PubMed

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dentin and bone are mineralized tissue matrices comprised of collagen fibrils and reinforced with oriented crystalline hydroxyapatite. Although both tissues perform different functionalities, they are assembled and orchestrated by mesenchymal cells that synthesize both collagenous and noncollagenous proteins albeit in different proportions. The dentin matrix proteins (DMPs) have been studied in great detail in recent years due to its inherent calcium binding properties in the extracellular matrix resulting in tissue calcification. Recent studies have shown that these proteins can serve both as intracellular signaling proteins leading to induction of stem cell differentiation and also function as nucleating proteins in the extracellular matrix. These properties make the DMPs attractive candidates for bone and dentin tissue regeneration. This chapter will provide an overview of the DMPs, their functionality and their proven and possible applications with respect to bone tissue engineering.

  12. SEPARATION OF NEWLY FORMED BONE FROM OLDER COMPACT BONE REVEALS CLEAR COMPOSITIONAL DIFFERENCES IN BONE MATRIX

    PubMed Central

    Midura, Ronald J.; Midura, Sharon B.; Su, Xiaowei; Gorski, Jeffrey P.

    2011-01-01

    In long bone diaphyses, woven bone forms first and then transitions into a more mineralized compact bone tissue. Prior evidence suggests that the non-collagenous protein composition of woven bone may be distinct from that of more mature bone tissue, particularly with respect to a diverse group of phosphorylated, extracellular matrix proteins. To critically test this hypothesis, we developed an in situ approach to isolate newly formed bone from more mature bone within the same long bone, and combine this anatomical approach with Western blotting to make relative comparisons of 7 phosphorylated matrix proteins important for bone physiology and biomineralization. Interestingly, 75 kDa bone sialoprotein (BSP), 63 kDa osteopontin, and the 75 kDa form of bone acidic glycoprotein-75 (BAG-75) were enriched in primary bone as opposed to more mature cortical bone, while osteonectin, fetuin A, matrix extracellular phosphoglycoprotein (MEPE) and dentin matrix protein-1 (DMP-1) appeared to be equally distributed between these two bone tissue compartments. Analyses also revealed the presence of larger sized forms of osteopontin (and to a lesser degree BSP) mostly in newly formed bone, while larger forms of BAG-75 were mostly detected in more mature cortical bone. Smaller sized forms of DMP-1 and BAG-75 were detected in both newly formed and more mature bone tissue extracts, and they are likely the result of proteolytic processing in vivo. Intact DMP-1 (97 kDa) was only detected in unmineralized matrix extracts. These findings indicate that newly formed bone exhibits a non-collagenous matrix protein composition distinct from that of more mature compact bone even within the same long bone, and suggest that the temporal fate of individual non-collagenous proteins is variable in growing bone. PMID:21958842

  13. Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: a noninferiority study.

    PubMed

    Baldursson, Baldur Tumi; Kjartansson, Hilmar; Konrádsdóttir, Fífa; Gudnason, Palmar; Sigurjonsson, Gudmundur F; Lund, Sigrún Helga

    2015-03-01

    A novel product, the fish skin acellular dermal matrix (ADM) has recently been introduced into the family of biological materials for the treatment of wounds. Hitherto, these products have been produced from the organs of livestock. A noninferiority test was used to compare the effect of fish skin ADM against porcine small-intestine submucosa extracellular matrix in the healing of 162 full-thickness 4-mm wounds on the forearm of 81 volunteers. The fish skin product was noninferior at the primary end point, healing at 28 days. Furthermore, the wounds treated with fish skin acellular matrix healed significantly faster. These results might give the fish skin ADM an advantage because of its environmental neutrality when compared with livestock-derived products. The study results on these acute full-thickness wounds might apply for diabetic foot ulcers and other chronic full-thickness wounds, and the shorter healing time for the fish skin-treated group could influence treatment decisions. To test the autoimmune reactivity of the fish skin, the participants were tested with the following ELISA (enzyme-linked immunosorbent assay) tests: RF, ANA, ENA, anti ds-DNA, ANCA, anti-CCP, and anticollagen I and II. These showed no reactivity. The results demonstrate the claims of safety and efficacy of fish skin ADM for wound care.

  14. Molecular examination of bone marrow stromal cells and chondroitinase ABC-assisted acellular nerve allograft for peripheral nerve regeneration

    PubMed Central

    Wang, Ying; Jia, Hua; Li, Wen-Yuan; Guan, Li-Xin; Deng, Lingxiao; Liu, Yan-Cui; Liu, Gui-Bo

    2016-01-01

    The present study aimed to evaluate the molecular mechanisms underlying combinatorial bone marrow stromal cell (BMSC) transplantation and chondroitinase ABC (Ch-ABC) therapy in a model of acellular nerve allograft (ANA) repair of the sciatic nerve gap in rats. Sprague Dawley rats (n=24) were used as nerve donors and Wistar rats (n=48) were randomly divided into the following groups: Group I, Dulbecco's modified Eagle's medium (DMEM) control group (ANA treated with DMEM only); Group II, Ch-ABC group (ANA treated with Ch-ABC only); Group III, BMSC group (ANA seeded with BMSCs only); Group IV, Ch-ABC + BMSCs group (Ch-ABC treated ANA then seeded with BMSCs). After 8 weeks, the expression of nerve growth factor, brain-derived neurotrophic factor and vascular endothelial growth factor in the regenerated tissues were detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Axonal regeneration, motor neuron protection and functional recovery were examined by immunohistochemistry, horseradish peroxidase retrograde neural tracing and electrophysiological and tibialis anterior muscle recovery analyses. It was observed that combination therapy enhances the growth response of the donor nerve locally as well as distally, at the level of the spinal cord motoneuron and the target muscle organ. This phenomenon is likely due to the propagation of retrograde and anterograde transport of growth signals sourced from the graft site. Collectively, growth improvement on the donor nerve, target muscle and motoneuron ultimately contribute to efficacious axonal regeneration and functional recovery. Thorough investigation of molecular peripheral nerve injury combinatorial strategies are required for the optimization of efficacious therapy and full functional recovery following ANA. PMID:27698684

  15. Biomimetically enhanced demineralized bone matrix for bone regenerative applications

    PubMed Central

    Ravindran, Sriram; Huang, Chun-Chieh; Gajendrareddy, Praveen; Narayanan, Raghuvaran

    2015-01-01

    Demineralized bone matrix (DBM) is one of the most widely used bone graft materials in dentistry. However, the ability of DBM to reliably and predictably induce bone regeneration has always been a cause for concern. The quality of DBM varies greatly depending on several donor dependent factors and also manufacturing techniques. In order to standardize the quality and to enable reliable and predictable bone regeneration, we have generated a biomimetically-enhanced version of DBM (BE-DBM) using clinical grade commercial DBM as a control. We have generated the BE-DBM by incorporating a cell-derived pro-osteogenic extracellular matrix (ECM) within clinical grade DBM. In the present study, we have characterized the BE-DBM and evaluated its ability to induce osteogenic differentiation of human marrow derived stromal cells (HMSCs) with respect to clinical grade commercial DBM. Our results indicate that the BE-DBM contains significantly more pro-osteogenic factors than DBM and enhances HMSC differentiation and mineralized matrix formation in vitro and in vivo. Based on our results, we envision that the BE-DBM has the potential to replace DBM as the bone graft material of choice. PMID:26557093

  16. Relevant In Vitro Predictors of Human Acellular Dermal Matrix-Associated Inflammation and Capsule Formation in a Nonhuman Primate Subcutaneous Tissue Expander Model.

    PubMed

    Sandor, Maryellen; Leamy, Patrick; Assan, Pearl; Hoonjan, Amardeep; Huang, Li-Ting; Edwards, Marianne; Zuo, Wenqi; Li, Hui; Xu, Hui

    2017-01-01

    Objective: Benchtop methods were evaluated for preclinical inflammation/capsule formation correlation following implantation of human acellular dermal matrices. Methods: Dermal matrices were compared with native dermis for structure (histology, scanning electron microscopy), collagen solubility (hydroxyproline), enzymatic susceptibility (collagenase), and thermal stability (differential scanning calorimetry). Results were compared with implantation outcomes in a primate tissue expander model. Results: Native dermis, electron beam-sterilized, and freeze-dried human acellular dermal matrices had equivalent morphology, acid-soluble collagen (60.5% ± 6.3%, 65.3% ± 3.2%, and 63.3% ± 2.4%, respectively), and collagenase resistance. Implant results showed minimal inflammation/matrix degradation, lack of capsule formation, insignificant elastic modulus change (57.65 ± 20.24 MPa out-of-package/44.84 ± 23.87 MPa in vivo), and low antibody induction (2- to 8-fold increase) for electron beam-sterilized matrix. Similar results for freeze-dried dermal matrix were previously observed. γ-Irradiated, γ-irradiated/freeze-dried, and ethanol-stored dermal matrices were statistically different from native dermis for acid-soluble collagen (82.4% ± 5.8%, 72.2% ± 6.2%, and 76.8% ± 5.0%, respectively) and collagenase digestion rate, indicating matrix damage. γ-Irradiated matrix-implanted animals demonstrated elevated inflammatory response, foreign body giant cells, capsule formation at the tissue expander junction, and robust matrix metalloproteinase-1 staining with significant elastic modulus decrease (37.43 ± 7.52 MPa out-of-package/19.58 ± 1.16 MPa in vivo). Antibody increase (32- to 128-fold) was observed 6 to 10 weeks following γ-irradiated matrix implantation. Ethanol-stored dermal matrix elicited an acute antibody response (4- to 128-fold increase, 2-4 weeks) and macrophage-concentrated synovial-like hyperplasia at the tissue expander junction, moderate matrix

  17. Relevant In Vitro Predictors of Human Acellular Dermal Matrix-Associated Inflammation and Capsule Formation in a Nonhuman Primate Subcutaneous Tissue Expander Model

    PubMed Central

    Leamy, Patrick; Assan, Pearl; Hoonjan, Amardeep; Huang, Li-Ting; Edwards, Marianne; Zuo, Wenqi; Li, Hui; Xu, Hui

    2017-01-01

    Objective: Benchtop methods were evaluated for preclinical inflammation/capsule formation correlation following implantation of human acellular dermal matrices. Methods: Dermal matrices were compared with native dermis for structure (histology, scanning electron microscopy), collagen solubility (hydroxyproline), enzymatic susceptibility (collagenase), and thermal stability (differential scanning calorimetry). Results were compared with implantation outcomes in a primate tissue expander model. Results: Native dermis, electron beam–sterilized, and freeze-dried human acellular dermal matrices had equivalent morphology, acid-soluble collagen (60.5% ± 6.3%, 65.3% ± 3.2%, and 63.3% ± 2.4%, respectively), and collagenase resistance. Implant results showed minimal inflammation/matrix degradation, lack of capsule formation, insignificant elastic modulus change (57.65 ± 20.24 MPa out-of-package/44.84 ± 23.87 MPa in vivo), and low antibody induction (2- to 8-fold increase) for electron beam–sterilized matrix. Similar results for freeze-dried dermal matrix were previously observed. γ-Irradiated, γ-irradiated/freeze-dried, and ethanol-stored dermal matrices were statistically different from native dermis for acid-soluble collagen (82.4% ± 5.8%, 72.2% ± 6.2%, and 76.8% ± 5.0%, respectively) and collagenase digestion rate, indicating matrix damage. γ-Irradiated matrix-implanted animals demonstrated elevated inflammatory response, foreign body giant cells, capsule formation at the tissue expander junction, and robust matrix metalloproteinase-1 staining with significant elastic modulus decrease (37.43 ± 7.52 MPa out-of-package/19.58 ± 1.16 MPa in vivo). Antibody increase (32- to 128-fold) was observed 6 to 10 weeks following γ-irradiated matrix implantation. Ethanol-stored dermal matrix elicited an acute antibody response (4- to 128-fold increase, 2-4 weeks) and macrophage-concentrated synovial-like hyperplasia at the tissue expander junction, moderate matrix

  18. Nerve Wrapping of the Sciatic Nerve With Acellular Dermal Matrix in Chronic Complete Proximal Hamstring Ruptures and Ischial Apophyseal Avulsion Fractures

    PubMed Central

    Haus, Brian M.; Arora, Danny; Upton, Joseph; Micheli, Lyle J.

    2016-01-01

    Background: Patients with chronic injuries of the proximal hamstring can develop significant impairment because of weakness of the hamstring muscles, sciatic nerve compression from scar formation, or myositis ossificans. Purpose: To describe the surgical outcomes of patients with chronic injury of the proximal hamstrings who were treated with hamstring repair and sciatic neurolysis supplemented with nerve wrapping with acellular dermal matrix. Study Design: Retrospective case series; Level of evidence, 4. Methods: Fifteen consecutive patients with a diagnosis of chronic complete proximal hamstring rupture or chronic ischial tuberosity apophyseal avulsion fracture (mean age, 39.67 years; range, 14-69 years) were treated with proximal hamstring repair and sciatic neurolysis supplemented with nerve wrapping with acellular dermal matrix. Nine patients had preoperative sciatica, and 6 did not. Retrospective chart review recorded clinical outcomes measured by the degree of pain relief, the rate of return to activities, and associated postoperative complications. Results: All 15 patients were followed in the postoperative period for an average of 16.6 months. Postoperatively, there were 4 cases of transient sciatic nerve neurapraxia. Four patients (26%) required postoperative betamethasone sodium phosphate (Celestone Soluspan) injectable suspension USP 6 mg/mL. Among the 9 patients with preoperative sciatica, 6 (66%) had a good or excellent outcome and were able to return to their respective activities/sports; 3 (33%) had persistent chronic pain. One of these had persistent sciatic neuropathy that required 2 surgical reexplorations and scar excision after development of recurrent extraneural scar formation. Among the 6 without preoperative sciatica, 100% had a good or excellent outcomes and 83% returned to their respective activities/sports. Better outcomes were observed in younger patients, as the 3 cases of persistent chronic sciatic pain were in patients older than 45

  19. Local antibiotic delivery with demineralized bone matrix.

    PubMed

    Lewis, Christine S; Supronowicz, Peter R; Zhukauskas, Rasa M; Gill, Elise; Cobb, Ronald R

    2012-03-01

    A method of care for these infected nonunions is prolonged intravenous systemic antibiotic treatment and implantation of methyl methacrylate antibiotic carrier beads to delivery high local doses of antibiotics. This method requires a second surgery to remove the beads once the infection has cleared. Recent studies have investigated the use of biodegradable materials that have been impregnated with antibiotics as tools to treat bone infections. In the present study, human demineralized bone matrix (DBM) was investigated for its ability to be loaded with an antibiotic. The data presented herein demonstrates that this osteoinductive and biodegradable material can be loaded with gentamicin and release clinically relevant levels of the drug for at least 13 days in vitro. This study also demonstrates that the antibiotic loaded onto the graft has no adverse effects on the osteoinductive nature of the DBM as measured in vitro and in vivo. This bone void filler may represent a promising option for local antibiotic delivery in orthopedic applications.

  20. Human acellular dermal matrix allograft: A randomized, controlled human trial for the long-term evaluation of patients with extensive burns.

    PubMed

    Li, Xueyong; Meng, Xianghai; Wang, Xiaolin; Li, Yuejun; Li, Wangzhou; Lv, Xiaoxing; Xu, Xiaoli; Lei, Zhanjun; Li, Jinqing

    2015-06-01

    The potential of acellular dermal matrix (ADM) to improve cosmetic and functional outcomes has been demonstrated; however, there have been few clinical comparative studies assessing the long-term morphological, histological and functional changes after ADM placement. This study was designed to retrospectively evaluate the long-term outcomes of the cograft acellular dermal matrix with autologous thin split-thickness skin for the coverage of wounds in extensively burned patients. Thirty burn patients treated with a composite graft of ADM with autologous split-thickness skin from January 2007 to December 2009 were enrolled in this study. Another group of thirty patients who received only an autogenous split-thickness skin implant served as the control. Our study revealed that the collagen in the dermis treated with ADM were ordered, and the proportion of collagen III/I was much higher in the control group than in the ADM group. The basement membrane was prominent and continuous. Meanwhile, the VBSS (Vancouver Burn Skin Score) was used to evaluate skin quality, which shows a significant differences between the two group (P<0.001). Then the functional level was evaluated by the BI (Barthel Index), and the ADM group was much better than the control group (P=0.005). Based on these results, we concluded that the composite graft of ADM with autologous thin split-thickness skin was suitable for repairing the defects in functional areas after a burn. This technique might facilitate wound management with acceptable esthetic outcomes, good functional recovery and less scar hyperplasia at the donor site.

  1. Repair of articular cartilage defects by tissue-engineered cartilage constructed with adipose-derived stem cells and acellular cartilaginous matrix in rabbits.

    PubMed

    Wang, Z J; An, R Z; Zhao, J Y; Zhang, Q; Yang, J; Wang, J B; Wen, G Y; Yuan, X H; Qi, X W; Li, S J; Ye, X C

    2014-06-18

    After injury, inflammation, or degeneration, articular cartilage has limited self-repair ability. We aimed to explore the feasibility of repair of articular cartilage defects with tissue-engineered cartilage constructed by acellular cartilage matrices (ACMs) seeded with adipose-derived stem cells (ADSCs). The ADSCs were isolated from 3-month-old New Zealand albino rabbit by using collagenase and cultured and amplified in vitro. Fresh cartilage isolated from adult New Zealand albino rabbit were freeze-dried for 12 h and treated with Triton X-100, DNase, and RNase to obtain ACMs. ADSCs were seeded in the acellular cartilaginous matrix at 2x10(7)/mL, and cultured in chondrogenic differentiation medium for 2 weeks to construct tissue-engineered cartilage. Twenty-four New Zealand white rabbits were randomly divided into A, B, and C groups. Engineered cartilage was transplanted into cartilage defect position of rabbits in group A, group B obtained ACMs, and group C did not receive any transplants. The rabbits were sacrificed in week 12. The restored tissue was evaluated using macroscopy, histology, immunohistochemistry, and transmission electron microscopy (TEM). In the tissue-engineered cartilage group (group A), articular cartilage defects of the rabbits were filled with chondrocyte-like tissue with smooth surface. Immunohistochemistry showed type II-collagen expression and Alcian blue staining was positive. TEM showed chondrocytes in the recesses, with plenty of secretary matrix particles. In the scaffold group (group B), the defect was filled with fibrous tissue. No repaired tissue was found in the blank group (group C). Tissue-engineered cartilage using ACM seeded with ADSCs can help repair articular cartilage defects in rabbits.

  2. Evaluation of the Antimicrobial Efficacy of a Novel Rifampin/Minocycline-Coated, Noncrosslinked Porcine Acellular Dermal Matrix Compared With Uncoated Scaffolds for Soft Tissue Repair.

    PubMed

    Majumder, Arnab; Scott, Jeffrey R; Novitsky, Yuri W

    2016-10-01

    Background Despite meticulous aseptic technique and systemic antibiotics, bacterial colonization of mesh remains a critical issue in hernia repair. A novel minocycline/rifampin tyrosine-coated, noncrosslinked porcine acellular dermal matrix (XenMatrix AB) was developed to protect the device from microbial colonization for up to 7 days. The objective of this study was to evaluate the in vitro and in vivo antimicrobial efficacy of this device against clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli. Methods XenMatrix AB was compared with 5 existing uncoated soft tissue repair devices using in vitro methods of zone of inhibition (ZOI) and scanning electron microscopy (SEM) at 24 hours following inoculation with MRSA or E coli These devices were also evaluated at 7 days following dorsal implantation and inoculation with MRSA or E coli (60 male New Zealand white rabbits, n = 10 per group) for viable colony-forming units (CFU), abscess formation and histopathologic response, respectively. Results In vitro studies demonstrated a median ZOI of 36 mm for MRSA and 16 mm for E coli for XenMatrix AB, while all uncoated devices showed no inhibition of bacterial growth (0 mm). SEM also demonstrated no visual evidence of MRSA or E coli colonization on the surface of XenMatrix AB compared with colonization of all other uncoated devices. In vivo XenMatrix AB demonstrated complete inhibition of bacterial colonization, no abscess formation, and a reduced inflammatory response compared with uncoated devices. Conclusion We demonstrated that XenMatrix AB possesses potent in vitro and in vivo antimicrobial efficacy against clinically isolated MRSA and E coli compared with uncoated devices.

  3. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    PubMed Central

    Pot, Michiel W.; Gonzales, Veronica K.; Buma, Pieter; IntHout, Joanna

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular biomaterials significantly

  4. Preservation of micro-architecture and angiogenic potential in a pulmonary acellular matrix obtained using intermittent intra-tracheal flow of detergent enzymatic treatment

    PubMed Central

    Maghsoudlou, Panagiotis; Georgiades, Fanourios; Tyraskis, Athanasios; Totonelli, Giorgia; Loukogeorgakis, Stavros P.; Orlando, Giuseppe; Shangaris, Panicos; Lange, Peggy; Delalande, Jean-Marie; Burns, Alan J.; Cenedese, Angelo; Sebire, Neil J.; Turmaine, Mark; Guest, Brogan N.; Alcorn, John F.; Atala, Anthony; Birchall, Martin A.; Elliott, Martin J.; Eaton, Simon; Pierro, Agostino; Gilbert, Thomas W.; De Coppi, Paolo

    2013-01-01

    Tissue engineering of autologous lung tissue aims to become a therapeutic alternative to transplantation. Efforts published so far in creating scaffolds have used harsh decellularization techniques that damage the extracellular matrix (ECM), deplete its components and take up to 5 weeks to perform. The aim of this study was to create a lung natural acellular scaffold using a method that will reduce the time of production and better preserve scaffold architecture and ECM components. Decellularization of rat lungs via the intratracheal route removed most of the nuclear material when compared to the other entry points. An intermittent inflation approach that mimics lung respiration yielded an acellular scaffold in a shorter time with an improved preservation of pulmonary micro-architecture. Electron microscopy demonstrated the maintenance of an intact alveolar network, with no evidence of collapse or tearing. Pulsatile dye injection via the vasculature indicated an intact capillary network in the scaffold. Morphometry analysis demonstrated a significant increase in alveolar fractional volume, with alveolar size analysis confirming that alveolar dimensions were maintained. Biomechanical testing of the scaffolds indicated an increase in resistance and elastance when compared to fresh lungs. Staining and quantification for ECM components showed a presence of collagen, elastin, GAG and laminin. The intratracheal intermittent decellularization methodology could be translated to sheep lungs, demonstrating a preservation of ECM components, alveolar and vascular architecture. Decellularization treatment and methodology preserves lung architecture and ECM whilst reducing the production time to 3 h. Cell seeding and in vivo experiments are necessary to proceed towards clinical translation. PMID:23727263

  5. Recent advances in acellular regenerative tissue scaffolds.

    PubMed

    Protzman, Nicole M; Brigido, Stephen A

    2015-01-01

    The management of chronic wounds is a considerable challenge for foot and ankle surgeons. The well-established tenets of adequate vascular supply, debridement with eradication of infection, and offloading must be employed in the management of all extremity wounds. Regenerative scaffolds are a viable means of reestablishing a favorable wound environment. The matrix facilitates cell migration, chemoattraction, angiogenesis, wound bed granulation, and expedited wound closure. Although studies have demonstrated success with acellular matrices, a multimodal approach should always be employed to improve healing success. Negative pressure wound therapy, compression, offloading, and antibiotics are advocated to improve outcomes. Acellular graft selection requires a multifactorial analysis, taking into consideration the specific patient and wound characteristics as well as the differences between acellular matrices. Patient age, comorbidities, activity level, and ability to comply with protocol as well as wound etiology, duration, depth, surface area, exudate, bacterial burden, location, vascular status, ischemic status, and presentation are all critical components. To effectively choose a matrix, the clinician must have a comprehensive understanding of the products available and the data validating their use. The mechanisms by which the acellular matrix accelerates wound healing and increases the likelihood of wound healing continue to be investigated. However, it is clear that these acellular biologic tissue scaffolds are incorporating into the host tissue, with resultant revascularization and cellular repopulation. Moving forward, additional investigations examining the effectiveness of acellular biologic tissue scaffolds to improve healing in complex, nondiabetic wounds are warranted.

  6. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo.

    PubMed

    Dennis, S Connor; Berkland, Cory J; Bonewald, Lynda F; Detamore, Michael S

    2015-06-01

    Autologous bone grafting (ABG) remains entrenched as the gold standard of treatment in bone regenerative surgery. Consequently, many marginally successful bone tissue engineering strategies have focused on mimicking portions of ABG's "ideal" osteoconductive, osteoinductive, and osteogenic composition resembling the late reparative stage extracellular matrix (ECM) in bone fracture repair, also known as the "hard" or "bony" callus. An alternative, less common approach that has emerged in the last decade harnesses endochondral (EC) ossification through developmental engineering principles, which acknowledges that the molecular and cellular mechanisms involved in developmental skeletogenesis, specifically EC ossification, are closely paralleled during native bone healing. EC ossification naturally occurs during the majority of bone fractures and, thus, can potentially be utilized to enhance bone regeneration for nearly any orthopedic indication, especially in avascular critical-sized defects where hypoxic conditions favor initial chondrogenesis instead of direct intramembranous ossification. The body's native EC ossification response, however, is not capable of regenerating critical-sized defects without intervention. We propose that an underexplored potential exists to regenerate bone through the native EC ossification response by utilizing strategies which mimic the initial inflammatory or fibrocartilaginous ECM (i.e., "pro-" or "soft" callus) observed in the early reparative stage of bone fracture repair. To date, the majority of strategies utilizing this approach rely on clinically burdensome in vitro cell expansion protocols. This review will focus on the confluence of two evolving areas, (1) native ECM biomaterials and (2) developmental engineering, which will attempt to overcome the technical, business, and regulatory challenges that persist in the area of bone regeneration. Significant attention will be given to native "raw" materials and ECM-based designs that

  7. Endochondral Ossification for Enhancing Bone Regeneration: Converging Native Extracellular Matrix Biomaterials and Developmental Engineering In Vivo

    PubMed Central

    Dennis, S. Connor; Berkland, Cory J.; Bonewald, Lynda F.

    2015-01-01

    Autologous bone grafting (ABG) remains entrenched as the gold standard of treatment in bone regenerative surgery. Consequently, many marginally successful bone tissue engineering strategies have focused on mimicking portions of ABG's “ideal” osteoconductive, osteoinductive, and osteogenic composition resembling the late reparative stage extracellular matrix (ECM) in bone fracture repair, also known as the “hard” or “bony” callus. An alternative, less common approach that has emerged in the last decade harnesses endochondral (EC) ossification through developmental engineering principles, which acknowledges that the molecular and cellular mechanisms involved in developmental skeletogenesis, specifically EC ossification, are closely paralleled during native bone healing. EC ossification naturally occurs during the majority of bone fractures and, thus, can potentially be utilized to enhance bone regeneration for nearly any orthopedic indication, especially in avascular critical-sized defects where hypoxic conditions favor initial chondrogenesis instead of direct intramembranous ossification. The body's native EC ossification response, however, is not capable of regenerating critical-sized defects without intervention. We propose that an underexplored potential exists to regenerate bone through the native EC ossification response by utilizing strategies which mimic the initial inflammatory or fibrocartilaginous ECM (i.e., “pro-” or “soft” callus) observed in the early reparative stage of bone fracture repair. To date, the majority of strategies utilizing this approach rely on clinically burdensome in vitro cell expansion protocols. This review will focus on the confluence of two evolving areas, (1) native ECM biomaterials and (2) developmental engineering, which will attempt to overcome the technical, business, and regulatory challenges that persist in the area of bone regeneration. Significant attention will be given to native “raw” materials

  8. A strategy to quantitate global phosphorylation of bone matrix proteins.

    PubMed

    Sroga, Grażyna E; Vashishth, Deepak

    2016-04-15

    Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured "in bulk" are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials.

  9. Enhanced Ex Vivo Expansion of Human Hematopoietic Progenitors on Native and Spin Coated Acellular Matrices Prepared from Bone Marrow Stromal Cells

    PubMed Central

    Wasnik, Samiksha; Kantipudi, Suma; Kirkland, Mark A.; Pande, Gopal

    2016-01-01

    The extracellular microenvironment in bone marrow (BM) is known to regulate the growth and differentiation of hematopoietic stem and progenitor cells (HSPC). We have developed cell-free matrices from a BM stromal cell line (HS-5), which can be used as substrates either in native form or as tissue engineered coatings, for the enhanced ex vivo expansion of umbilical cord blood (UCB) derived HSPC. The physicochemical properties (surface roughness, thickness, and uniformity) of native and spin coated acellular matrices (ACM) were studied using scanning and atomic force microscopy (SEM and AFM). Lineage-specific expansion of HSPC, grown on these substrates, was evaluated by immunophenotypic (flow cytometry) and functional (colony forming) assays. Our results show that the most efficient expansion of lineage-specific HSPC occurred on spin coated ACM. Our method provides an improved protocol for ex vivo HSPC expansion and it offers a system to study the in vivo roles of specific molecules in the hematopoietic niche that influence HSPC expansion. PMID:26981135

  10. Imagistic evaluation of matrix bone interface

    NASA Astrophysics Data System (ADS)

    NegruÅ£iu, Meda L.; Sinescu, Cosmin; Manescu, Adrian; Topalǎ, Florin I.; Hoinoiu, Bogdan; MǎrcǎuÅ£eanu, Corina; Duma, Virgil; Bradu, Adrian; Podoleanu, Adrian G.

    2014-01-01

    The problematic elements of bone regenerative materials are represented by their quality control methods. The defects repaired by bone grafting material were evaluated by en face optical coherence tomography and by synchrotron radiation micro-CT. The images obtained by efOCT show defects in some of the investigated samples, at the bone interface with different osteoconductive bone substitutes and we were able to detect gaps as small as 50 μm. After the common synchrotron radiation micro-CT investigations, the slides were reconstructed and the 3D model was obtained. Along with the possibility of navigating inside the structure, one big advantage of this technique was pointed out: the remaining regenerative materials can be separated from the normal bone and the new bone can be visualized. Optical coherence tomography can be performed in vivo and can provide a qualitative and quantitative evaluation of the bone augmentation procedure.

  11. Repair of long bone defects with demineralized bone matrix and autogenous bone composite

    PubMed Central

    Ozdemir, Mehmet T; Kir, Mustafa Ç

    2011-01-01

    Background: Repair of diaphyseal bone defects is a challenging problem for orthopedic surgeons. In large bone defects the quantity of harvested autogenous bone may not be sufficient to fill the gap and then the use of synthetic or allogenic grafts along with autogenous bone becomes mandatory to achieve compact filling. Finding the optimal graft mixture for treatment of large diaphyseal defects is an important goal in contemporary orthopedics and this was the main focus of this study. The aim of this study is to investigate the efficacy of demineralized bone matrix (DBM) and autogenous cancellous bone (ACB) graft composite in a rabbit bilateral ulna segmental defect model. Materials and Methods: Twenty-seven adult female rabbits were divided into five groups. A two-centimeter piece of long bone on the midshaft of the ulna was osteotomized and removed from the rabbits’ forearms. In group 1 (n=7) the defects were treated with ACB, in group 2 (n=7) with DBM, and in group 3 (n=7) with ACB and DBM in the ratio of 1:1. Groups 4 and 5, with three rabbits in each group, were the negative and positive controls, respectively. Twelve weeks after implantation the rabbits were sacrificed and union was evaluated with radiograph (Faxitron), dual-energy x-ray absorptiometry (DEXA), and histological methods (decalcified sectioning). Results: Union rates and the volume of new bone in the different groups were as follows: group 1 - 92.8% union and 78.6% new bone; group 2 - 72.2% union and 63.6% new bone; and group 3 - 100% union and 100% new bone. DEXA results (bone mineral density [BMD]) were as follows: group 1 - 0.164 g/cm2, group 2 - 0.138 g/cm2, and group 3 - 0.194 g/cm2. Conclusions: DBM serves as a graft extender or enhancer for autogenous graft and decreases the need of autogenous bone graft in the treatment of bone defects. In this study, the DBM and ACB composite facilitated the healing process. The union rate was better with the combination than with the use of any one of

  12. Bone matrix hypermineralization in prolyl-3 hydroxylase 1 deficient mice.

    PubMed

    Fratzl-Zelman, Nadja; Bächinger, Hans-Peter; Vranka, Janice A; Roschger, Paul; Klaushofer, Klaus; Rauch, Frank

    2016-04-01

    Lack of prolyl 3-hydroxylase 1 (P3H1) due to mutations in P3H1 results in severe forms of recessive osteogenesis imperfecta. In the present study, we investigated the bone tissue characteristics of P3H1 null mice. Histomorphometric analyses of cancellous bone in the proximal tibia and lumbar vertebra in 1-month and 3-month old mice demonstrated that P3H1 deficient mice had low trabecular bone volume and low mineral apposition rate, but normal osteoid maturation time and normal osteoblast and osteoclast surfaces. Quantitative backscattered electron imaging revealed that the bone mineralization density distribution was shifted towards higher values, indicating hypermineralization of bone matrix. It thus appears that P3H1 deficiency leads to decreased deposition of extracellular matrix by osteoblasts and increased incorporation of mineral into the matrix.

  13. A comparative evaluation of the effectiveness of subpedicle acellular dermal matrix allograft with subepithelial connective tissue graft in the treatment of isolated marginal tissue recession: A clinical study

    PubMed Central

    Shori, Tony; Kolte, Abhay; Kher, Vishal; Dharamthok, Swarup; Shrirao, Tushar

    2013-01-01

    Introduction: The most common problem encountered in our day to day practice is exposed root surface or a tooth getting long. The main indication for root coverage procedures are esthetics and/or cosmetic demands followed by the management of root hypersensitivity, root caries or when it hampers proper plaque removal. Over the years, various techniques have been used to achieve root coverage. Aim and Objectives: The aim of this study was to compare the effectiveness of subpedicle acellular dermal matrix allograft (ADMA) with subepithelial connective tissue graft (SCTG) in the treatment of isolated marginal tissue recession. Materials and Methods: Twenty systemically healthy patients aged between 18 to 50 years (mean age29.7±4.35 years) with a recession defect on the labial and the buccal surfaces of any teeth were selected for the study. Ten patients received the test treatment (ADMA), ten patients received the control treatment (SCTG). Clinical recordings assessed at baseline, three months and six months post surgery, included Plaque index (PI), Papillary bleeding index (PBI), Gingival recession (REC), Probing pocket depth (PPD), Clinical attachment level (CAL) and Width of keratinized gingival (WKG). Results: Test group (ADMA) showed 86.93% mean root coverage while control group (SCTG) showed 84.72% at six months post surgery. Mean increase in the width of keratinized gingiva was significantly greater in the SCTG group (3.3±0.48mm) compared to ADMA group (2.4±0.51mm). Conclusion: Both the treatment produced a significant reduction in gingival recession and probing pocket depth and significant gain in clinical attachment level and width of keratinised gingiva. PMID:23633778

  14. A single-arm trial indirect comparison investigation: a proof-of-concept method to predict venous leg ulcer healing time for a new acellular synthetic matrix matched to standard care control.

    PubMed

    Shannon, Ronald; Nelson, Andrea

    2016-11-20

    To compare data on time to healing from two separate cohorts: one treated with a new acellular synthetic matrix plus standard care (SC) and one matched from four large UK pragmatic, randomised controlled trials [venous leg ulcer (VLU) evidence network]. We introduce a new proof-of-concept strategy to a VLU clinical evidence network, propensity score matching and sensitivity analysis to predict the feasibility of the new acellular synthetic matrix plus SC for success in future randomised, controlled clinical trials. Prospective data on chronic VLUs from a safety and effectiveness study on an acellular synthetic matrix conducted in one wound centre in the UK (17 patients) and three wound centres in Australia (36 patients) were compared retrospectively to propensity score-matched data from patients with comparable leg ulcer disease aetiology, age, baseline ulcer area, ulcer duration, multi-layer compression bandaging and majority of care completed in specialist wound centres (average of 1 visit per week), with the outcome measures at comparable follow-up periods from patients enrolled in four prospective, multicentre, pragmatic, randomised studies of venous ulcers in the UK (the comparison group; VLU evidence network). Analysis using Kaplan-Meier survival curves showed a mean healing time of 73·1 days for ASM plus SC (ASM) treated ulcers in comparison with 83·5 days for comparison group ulcers treated with SC alone (Log rank test, χ(2) 5·779, P = 0·016) within 12 weeks. Sensitivity analysis indicates that an unobserved covariate would have to change the odds of healing for SC by a factor of 1·1 to impact the baseline results. Results from this study predict a significant effect on healing time when using a new ASM as an adjunct to SC in the treatment of non-healing venous ulcers in the UK, but results are sensitive to unobserved covariates that may be important in healing time comparison.

  15. Effect of Extracellular Matrix Membrane on Bone Formation in a Rabbit Tibial Defect Model

    PubMed Central

    Kim, Sungtae; Kim, Se Won; Lee, Jong Ho

    2016-01-01

    Absorbable extracellular matrix (ECM) membrane has recently been used as a barrier membrane (BM) in guided tissue regeneration (GTR) and guided bone regeneration (GBR). Absorbable BMs are mostly based on collagen, which is more biocompatible than synthetic materials. However, implanted absorbable BMs can be rapidly degraded by enzymes in vivo. In a previous study, to delay degradation time, collagen fibers were treated with cross-linking agents. These compounds prevented the enzymatic degradation of BMs. However, cross-linked BMs can exhibit delayed tissue integration. In addition, the remaining cross-linker could induce inflammation. Here, we attempted to overcome these problems using a natural ECM membrane. The membrane consisted of freshly harvested porcine pericardium that was stripped from cells and immunoreagents by a cleaning process. Acellular porcine pericardium (APP) showed a bilayer structure with a smooth upper surface and a significantly coarser bottom layer. APP is an ECM with a thin layer (0.18–0.35 mm) but with excellent mechanical properties. Tensile strength of APP was 14.15 ± 2.24 MPa. In in vivo experiments, APP was transplanted into rabbit tibia. The biocompatible material was retained for up to 3 months without the need for cross-linking. Therefore, we conclude that APP could support osteogenesis as a BM for up to 3 months. PMID:27047963

  16. Heterotopic new bone formation causes resorption of the inductive bone matrix

    SciTech Connect

    Nilsson, O.S.; Persson, P.E.; Ekelund, A. )

    1990-08-01

    The bone matrix of growing rats was labeled by multiple injections of 3H-proline, and demineralized bone matrix (DBM) was prepared. The DBM was allotransplanted heterotopically into growing rats. New bone formation was induced in and around the implants. The new bone formation was accompanied by a decrease in the content of 3H; 20 and 30 days after implantation, 72% and 46%, respectively, of the activity remained in the implants. Daily injections of indomethacin (2 mg/kg) inhibited calcium uptake by about 20% at 20 and 30 days and inhibited the release of 3H from the DBM to a similar degree. Heterotopic bone induction by DBM is accompanied by matrix resorption, and inhibition of the new bone formation decreases the resorption of DBM.

  17. The Multi Centre Canadian Acellular Dermal Matrix Trial (MCCAT): study protocol for a randomized controlled trial in implant-based breast reconstruction

    PubMed Central

    2013-01-01

    Background The two-stage tissue expander/implant (TE/I) reconstruction is currently the gold standard method of implant-based immediate breast reconstruction in North America. Recently, however, there have been numerous case series describing the use of one-stage direct to implant reconstruction with the aid of acellular dermal matrix (ADM). In order to rigorously investigate the novel application of ADM in one-stage implant reconstruction, we are currently conducting a multicentre randomized controlled trial (RCT) designed to evaluate the impact on patient satisfaction and quality of life (QOL) compared to the two-stage TE/I technique. Methods/designs The MCCAT study is a multicenter Canadian ADM trial designed as a two-arm parallel superiority trial that will compare ADM-facilitated one-stage implant reconstruction compared to two-stage TE/I reconstruction following skin-sparing mastectomy (SSM) or nipple-sparing mastectomy (NSM) at 2 weeks, 6 months, and 12 months. The source population will be members of the mastectomy cohort with stage T0 to TII disease, proficient in English, over the age of 18 years, and planning to undergo SSM or NSM with immediate implant breast reconstruction. Stratified randomization will maintain a balanced distribution of important prognostic factors (study site and unilateral versus bilateral procedures). The primary outcome is patient satisfaction and QOL as measured by the validated and procedure-specific BREAST-Q. Secondary outcomes include short- and long-term complications, long-term aesthetic outcomes using five standardized photographs graded by three independent blinded observers, and a cost effectiveness analysis. Discussion There is tremendous interest in using ADM in implant breast reconstruction, particularly in the setting of one-stage direct to implant reconstruction where it was previously not possible without the intermediary use of a temporary tissue expander (TE). This unique advantage has led many patients and

  18. Long-term in vitro degradation of PDLLA/bioglass bone scaffolds in acellular simulated body fluid.

    PubMed

    Blaker, J J; Nazhat, S N; Maquet, V; Boccaccini, A R

    2011-02-01

    The long-term (600days) in vitro degradation of highly porous poly(D,L-lactide) (PDLLA)/Bioglass-filled composite foams developed for bone tissue engineering scaffolds has been investigated in simulated body fluid (SBF). Foams of ∼93% porosity were produced by thermally induced phase separation (TIPS). The degradation profile for foams of neat PDLLA and the influence of Bioglass addition were comprehensively assessed in terms of changes in dimensional stability, pore morphology, weight loss, molecular weight and mechanical properties (dry and wet states). It is shown that the degradation process proceeded in several stages: (a) a quasi-stable stage, where water absorption and plasticization occurred together with weight loss due to Bioglass particle loss and dissolution, resulting in decreased wet mechanical properties; (b) a stage showing a slight increase in the wet mechanical properties and a moderate decrease in dimensions, with the properties remaining moderately constant until the onset of significant weight loss, whilst molecular weight continued to decrease; (c) an end stage of massive weight loss, disruption of the pore structure and the formation of blisters and embrittlement of the scaffold (evident on handling). The findings from this long-term in vitro degradation investigation underpin studies that have been and continue to be performed on highly porous poly(α-hydroxyesters) scaffolds filled with bioactive glasses for bone tissue engineering applications.

  19. Spine fusion using cell matrix composites enriched in bone marrow-derived cells.

    PubMed

    Muschler, George F; Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2003-02-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal fusion model and cancellous bone matrix was used to compare an enriched cellular composite bone graft alone, bone matrix plus bone marrow clot, and an enriched bone matrix composite graft plus bone marrow clot. Union score, quantitative computed tomography, and mechanical testing were used to define outcome. The union score for the enriched bone matrix plus bone marrow clot composite was superior to the enriched bone matrix alone and the bone matrix plus bone marrow clot. The enriched bone matrix plus bone marrow clot composite also was superior to the enriched bone matrix alone in fusion volume and in fusion area. These data confirm that the addition of a bone marrow clot to an enriched cell-matrix composite graft results in significant improvement in graft performance. Enriched composite grafts prepared using this strategy provide a rapid, simple, safe, and inexpensive method for intraoperative concentration and delivery of bone marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting.

  20. Effects of hyperglycemia on bone metabolism and bone matrix in goldfish scales.

    PubMed

    Kitamura, Kei-Ichiro; Andoh, Tadashi; Okesaku, Wakana; Tazaki, Yuya; Ogai, Kazuhiro; Sugitani, Kayo; Kobayashi, Isao; Suzuki, Nobuo; Chen, Wenxi; Ikegame, Mika; Hattori, Atsuhiko

    2017-01-01

    Increased risk of fracture associated with type 2 diabetes has been a topic of recent concern. Fracture risk is related to a decrease in bone strength, which can be affected by bone metabolism and the quality of the bone. To investigate the cause of the increased fracture rate in patients with diabetes through analyses of bone metabolism and bone matrix protein properties, we used goldfish scales as a bone model for hyperglycemia. Using the scales of seven alloxan-treated and seven vehicle-treated control goldfish, we assessed bone metabolism by analyzing the activity of marker enzymes and mRNA expression of marker genes, and we measured the change in molecular weight of scale matrix proteins with SDS-PAGE. After only a 2-week exposure to hyperglycemia, the molecular weight of α- and β-fractions of bone matrix collagen proteins changed incrementally in the regenerating scales of hyperglycemic goldfish compared with those of euglycemic goldfish. In addition, the relative ratio of the γ-fraction significantly increased, and a δ-fraction appeared after adding glyceraldehyde-a candidate for the formation of advanced glycation end products in diabetes-to isolated type 1 collagen in vitro. The enzymatic activity and mRNA expression of osteoblast and osteoclast markers were not significantly different between hyperglycemic and euglycemic goldfish scales. These results indicate that hyperglycemia is likely to affect bone quality through glycation of matrix collagen from an early stage of hyperglycemia. Therefore, non-enzymatic glycation of collagen fibers in bone matrix may lead to the deterioration of bone quality from the onset of diabetes.

  1. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering.

    PubMed

    Won, Jong-Eun; Yun, Ye-Rang; Jang, Jun-Hyeog; Yang, Sung-Hee; Kim, Joong-Hyun; Chrzanowski, Wojciech; Wall, Ivan B; Knowles, Jonathan C; Kim, Hae-Won

    2015-07-01

    Biomaterial surface design with biomimetic proteins holds great promise for successful regeneration of tissues including bone. Here we report a novel proteinaceous hybrid matrix mimicking bone extracellular matrix that has multifunctional capacity to promote stem cell adhesion and osteogenesis with excellent stability. Osteocalcin-fibronectin fusion protein holding collagen binding domain was networked with fibrillar collagen, featuring bone extracellular matrix mimic, to provide multifunctional and structurally-stable biomatrices. The hybrid protein, integrated homogeneously with collagen fibrillar networks, preserved structural stability over a month. Biological efficacy of the hybrid matrix was proven onto tethered surface of biopolymer porous scaffolds. Mesenchymal stem cells quickly anchored to the hybrid matrix, forming focal adhesions, and substantially conformed to cytoskeletal extensions, benefited from the fibronectin adhesive domains. Cells achieved high proliferative capacity to reach confluence rapidly and switched to a mature and osteogenic phenotype more effectively, resulting in greater osteogenic matrix syntheses and mineralization, driven by the engineered osteocalcin. The hybrid biomimetic matrix significantly improved in vivo bone formation in calvarial defects over 6 weeks. Based on the series of stimulated biological responses in vitro and in vivo the novel hybrid proteinaceous composition will be potentially useful as stem cell interfacing matrices for osteogenesis and bone regeneration.

  2. Alveolar Ridge Preservation Using Xenogeneic Collagen Matrix and Bone Allograft

    PubMed Central

    Parashis, Andreas O.; Kalaitzakis, Charalampos J.; Tatakis, Dimitris N.; Tosios, Konstantinos

    2014-01-01

    Alveolar ridge preservation (ARP) has been shown to prevent postextraction bone loss. The aim of this report is to highlight the clinical, radiographic, and histological outcomes following use of a bilayer xenogeneic collagen matrix (XCM) in combination with freeze-dried bone allograft (FDBA) for ARP. Nine patients were treated after extraction of 18 teeth. Following minimal flap elevation and atraumatic extraction, sockets were filled with FDBA. The XCM was adapted to cover the defect and 2-3 mm of adjacent bone and flaps were repositioned. Healing was uneventful in all cases, the XCM remained in place, and any matrix exposure was devoid of further complications. Exposed matrix portions were slowly vascularized and replaced by mature keratinized tissue within 2-3 months. Radiographic and clinical assessment indicated adequate volume of bone for implant placement, with all planned implants placed in acceptable positions. When fixed partial dentures were placed, restorations fulfilled aesthetic demands without requiring further augmentation procedures. Histological and immunohistochemical analysis from 9 sites (4 patients) indicated normal mucosa with complete incorporation of the matrix and absence of inflammatory response. The XCM + FDBA combination resulted in minimal complications and desirable soft and hard tissue therapeutic outcomes, suggesting the feasibility of this approach for ARP. PMID:25328523

  3. Bone Matrix Osteonectin Limits Prostate Cancer Cell Growth and Survival

    PubMed Central

    Kapinas, Kristina; Lowther, Katie M.; Kessler, Catherine B.; Tilbury, Karissa; Lieberman, Jay R.; Tirnauer, Jennifer S.; Campagnola, Paul; Delany, Anne M.

    2012-01-01

    There is considerable interest in understanding prostate cancer metastasis to bone and the interaction of these cells with the bone microenvironment. Osteonectin/SPARC/BM-40 is a collagen binding matricellular protein that is enriched in bone. Its expression is increased in prostate cancer metastases, and it stimulates the migration of prostate carcinoma cells. However, the presence of osteonectin in cancer cells and the stroma may limit prostate tumor development and progression. To determine how bone matrix osteonectin affects the behavior of prostate cancer cells, we modeled prostate cancer cell-bone interactions using the human prostate cancer cell line PC-3, and mineralized matrices synthesized by wild type and osteonectin-null osteoblasts in vitro. We developed this in vitro system because the structural complexity of collagen matrices in vivo is not mimicked by reconstituted collagen scaffolds or by more complex substrates, like basement membrane extracts. Second harmonic generation imaging demonstrated that the wild type matrices had thick collagen fibers organized into longitudinal bundles, whereas osteonectin-null matrices had thinner fibers in random networks. Importantly, a mouse model of prostate cancer metastases to bone showed a collagen fiber phenotype similar to the wild type matrix synthesized in vitro. When PC-3 cells were grown on the wild type matrices, they displayed decreased cell proliferation, increased cell spreading, and decreased resistance to radiation-induced cell death, compared to cells grown on osteonectin-null matrix. Our data support the idea that osteonectin can suppress prostate cancer pathogenesis, expanding this concept to the microenvironment of skeletal metastases. PMID:22525512

  4. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...

  5. Reconstruction of the abdominal wall by using a combination of the human acellular dermal matrix implant and an interpositional omentum flap after extensive tumor resection in patients with abdominal wall neoplasm: A preliminary result

    PubMed Central

    Gu, Yan; Tang, Rui; Gong, Ding-Quan; Qian, Yun-Liang

    2008-01-01

    AIM: To present our trial using a combination of the human acellular dermal matrix (HADM) implant and an interpositional omentum flap to repair giant abdominal wall defects after extensive tumor resection. METHODS: Between February and October of 2007, three patients with giant defects of the abdominal wall after extensive tumor resection underwent reconstruction with a combination of HADM and omentum flap. Postoperative morbidities and signs of herniation were monitored. RESULTS: The abdominal wall reconstruction was successful in these three patients, there was no severe morbidity and no signs of herniation in the follow-up period. CONCLUSION: The combination of HADM and omentum flap offers a new, safe and effective alternative to traditional forms in the repair of giant abdominal wall defects. Further analysis of the long-term outcome and more cases are needed to assess the reliability of this technique. PMID:18205267

  6. Bone regeneration after demineralized bone matrix and castor oil (Ricinus communis) polyurethane implantation.

    PubMed

    Leite, Fábio Renato Manzolli; Ramalho, Lizeti Toledo de Oliveira

    2008-01-01

    Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial.

  7. Physicomechanical properties of the extracellular matrix of a demineralized bone

    NASA Astrophysics Data System (ADS)

    Kirilova, I. A.; Sharkeev, Yu. P.; Nikolaev, S. V.; Podorozhnaya, V. T.; Uvarkin, P. V.; Ratushnyak, A. S.; Chebodaeva, V. V.

    2016-08-01

    The article describes the results of a study of physicomechanical properties of a demineralized bone matrix of human cancellous and compact bones. A demineralized cancellous bone was shown to have the best characteristics of a porous system for colonization of matrices by cells. The ultimate stress and elasticity modulus of samples of demineralized femoral heads isolated in primary hip replacement was demonstrated to vary in wide ranges. The elasticity modulus ranged from 50 to 250 MPa, and the tensile strength varied from 1.1 to 5.5 MPa. Microhardness measurements by the recovered indentation method were not possible because of the viscoelastic properties of a bone material. To study the piezoelectric properties of samples, a measuring system was developed that comprised a measuring chamber with contact electrodes, a system for controlled sample loading, an amplifier-converter unit, and signal recording and processing software. The measurement results were used to determine the dependence of the signal amplitude on the dynamic deformation characteristics. The findings are discussed in terms of the relationship between the mechanical and electrical properties and the structure of the organic bone component.

  8. Remineralized Bone Matrix (RBM) as a Scaffold for Bone Tissue Engineering

    PubMed Central

    Soicher, Matthew A.; Christiansen, Blaine A.; Stover, Susan M.; Leach, J. Kent; Yellowley, Clare E.; Griffiths, Leigh G.; Fyhrie, David P.

    2014-01-01

    There is a need for improved biomaterials for use in treating non-healing bone defects. A number of natural and synthetic biomaterials have been used for the regeneration of bone tissue with mixed results. One approach is to modify native tissue via decellularization or other treatment for use as natural scaffolding for tissue repair. In this study, our goal was to improve on our previously published alternating solution immersion (ASI) method to fabricate a robust, biocompatible, and mechanically competent biomaterial from natural demineralized bone matrix (DBM). The improved method includes an antigen removal (AR) treatment step which improves mineralization and stiffness while removing unwanted proteins. The chemistry of the mineral in the remineralized bone matrix (RBM) was consistent with dicalcium phosphate dihydrate (brushite), a material used clinically in bone healing applications. Mass spectrometry identified proteins removed from the matrix with AR treatment to include α-2 HS-glycoprotein and osteopontin, non-collagenous proteins (NCPs) and known inhibitors of biomineralization. Additionally, the RBM supported the survival, proliferation, and differentiation of human mesenchymal stromal cells (MSCs) in vitro as well or better than other widely used biomaterials including DBM and PLG scaffolds. DNA content increased more than 10-fold on RBM compared to DBM and PLG; likewise, osteogenic gene expression was significantly increased after 1 and 2 weeks. We demonstrated that ASI remineralization has the capacity to fabricate mechanically stiff and biocompatible RBM, a suitable biomaterial for cell culture applications. PMID:24616346

  9. The effect of carrier type on bone regeneration of demineralized bone matrix in vivo.

    PubMed

    Tavakol, Shima; Khoshzaban, Ahad; Azami, Mahmoud; Kashani, Iraj Ragerdi; Tavakol, Hani; Yazdanifar, Mahbube; Sorkhabadi, Seyed Mahdi Rezayat

    2013-11-01

    Demineralized bone matrix (DBM) is a bone substitute biomaterial used as an excellent grafting material. Some factors such as carrier type might affect the healing potential of this material. The background data discuss the present status of the field: Albumin as a main protein in blood and carboxymethyl cellulose (CMC) were applied frequently in the DBM gels. We investigated the bone-repairing properties of 2 DBMs with different carriers. Bone regeneration in 3 groups of rat calvaria treated with DBM from the Iranian Tissue Bank Research and Preparation Center, DBM from Hans Biomed Corporation, and an empty cavity was studied. Albumin and CMC as carriers were used. The results of bone regeneration in the samples after 1, 4, and 8 weeks of implantation were compared. The block of the histologic samples was stained with hematoxylin and eosin, and the percentage area of bone formation was calculated using the histomorphometry method. The results of in vivo tests showed a significantly stronger new regenerated bone occupation in the DBM with albumin carrier compared with the one with CMC 8 weeks after the implantation. The 2 types of DBM had a significant difference in bone regeneration. This difference is attributed to the type of carriers. Albumin could improve mineralization and bioactivity compared with CMC.

  10. Enhanced release of bone morphogenetic proteins from demineralized bone matrix by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Sung, Nak-Yun; Choi, Jong-il

    2015-06-01

    Gamma irradiation is a useful method for sterilizing demineralized bone matrix (DBM), but its effect on the osteoinductivity of DBM is still controversial. In this study, the osteoinductive activity of gamma-irradiated DBM was examined using a mouse myoblastic cell line (C2C12). DBM was extracted from adult bovine bone and was irradiated at a dose of 25 kGy using a 60cobalt gamma-irradiator. Cell proliferation with DBM was not affected by gamma-irradiation, but alkaline phosphatase and osteocalcin productions were significantly increased in C2C12 cell groups treated with gamma-irradiated DBM. It was reasoned that bone morphogenetic proteins were more efficiently released from gamma-irradiated DBM than from the non-irradiated control. This result suggests the effectiveness of radiation sterilization of bone implants

  11. Biochemical changes in the collagenous matrix of osteoporotic avian bone.

    PubMed Central

    Knott, L; Whitehead, C C; Fleming, R H; Bailey, A J

    1995-01-01

    No detailed biochemical analysis has been carried out of the compositional changes in the collagen matrix of avian bone in relation to increased bone fragility in osteoporosis. We have shown that osteoporosis in avian bone is certainly not just a simple loss of apatite and collagen, but involves significant changes in the biochemistry of the collagen molecule and consequently in the physical properties of the fibre. The decreased mechanical strength and the change in the thermal stability can be directly related to changes in post-translational modifications, i.e. lysine hydroxylation and the intermolecular cross-link profile. The increased hydroxylation and change in cross-linking are consistent with increased turnover of the collagen, possibly in an attempt to initiate a repair mechanism which, in fact, leads to an acceleration in the increase in fragility of the bone. Clearly there are post-translational modifications of the newly synthesized collagen in avian osteoporosis, and these changes may play a role in the pathogenesis of the disease. Images Figure 1 PMID:7575401

  12. Bovine bone matrix/poly(l-lactic-co-ε-caprolactone)/gelatin hybrid scaffold (SmartBone(®)) for maxillary sinus augmentation: A histologic study on bone regeneration.

    PubMed

    D'Alessandro, Delfo; Perale, Giuseppe; Milazzo, Mario; Moscato, Stefania; Stefanini, Cesare; Pertici, Gianni; Danti, Serena

    2016-10-18

    The ideal scaffold for bone regeneration is required to be highly porous, non-immunogenic, biostable until the new tissue formation, bioresorbable and osteoconductive. This study aimed at investigating the process of new bone formation in patients treated with granular SmartBone(®) for sinus augmentation, providing an extensive histologic analysis. Five biopsies were collected at 4-9 months post SmartBone(®) implantation and processed for histochemistry and immunohistochemistry. Histomorphometric analysis was performed. Bone-particle conductivity index (BPCi) was used to assess SmartBone(®) osteoconductivity. At 4 months, SmartBone(®) (12%) and new bone (43.9%) were both present and surrounded by vascularized connective tissue (37.2%). New bone was grown on SmartBone(®) (BPCi=0.22). At 6 months, SmartBone(®) was almost completely resorbed (0.5%) and new bone was massively present (80.8%). At 7 and 9 months, new bone accounted for a large volume fraction (79.3% and 67.4%, respectively) and SmartBone(®) was resorbed (0.5% and 0%, respectively). Well-oriented lamellae and bone scars, typical of mature bone, were observed. In all the biopsies, bone matrix biomolecules and active osteoblasts were visible. The absence of inflammatory cells confirmed SmartBone(®) biocompatibility and non-immunogenicity. These data indicate that SmartBone(®) is osteoconductive, promotes fast bone regeneration, leading to mature bone formation in about 7 months.

  13. Periosteal Sharpey's fibers: a novel bone matrix regulatory system?

    PubMed

    Aaron, Jean E

    2012-01-01

    Sharpey's "perforating" fibers (SF) are well known skeletally in tooth anchorage. Elsewhere they provide anchorage for the periosteum and are less well documented. Immunohistochemistry has transformed their potential significance by identifying their collagen type III (CIII) content and enabling their mapping in domains as permeating arrays of fibers (5-25 μ thick), protected from osteoclastic resorption by their poor mineralization. As periosteal extensions they are crucial in early skeletal development and central to intramembranous bone healing, providing unique microanatomical avenues for musculoskeletal exchange, their composition (e.g., collagen type VI, elastin, tenascin) combined with a multiaxial pattern of insertion suggesting a role more complex than attachment alone would justify. A proportion permeate the cortex to the endosteum (and beyond), fusing into a CIII-rich osteoid layer (<2 μ thick) encompassing all resting surfaces, and with which they apparently integrate into a PERIOSTEAL-SHARPEY FIBER-ENDOSTEUM (PSE) structural continuum. This intraosseous system behaves in favor of bone loss or gain depending upon extraneous stimuli (i.e., like Frost's hypothetical "mechanostat"). Thus, the birefringent fibers are sensitive to humoral factors (e.g., estrogen causes retraction, rat femur model), physical activity (e.g., running causes expansion, rat model), aging (e.g., causes fragmentation, pig mandible model), and pathology (e.g., atrophied in osteoporosis, hypertrophied in osteoarthritis, human proximal femur), and with encroaching mineral particles hardening the usually soft parts. In this way the unobtrusive periosteal SF network may regulate bone status, perhaps even contributing to predictable "hotspots" of trabecular disconnection, particularly at sites of tension prone to fatigue, and with the network deteriorating significantly before bone matrix loss.

  14. Deficiency in acellular cementum and periodontal attachment in bsp null mice.

    PubMed

    Foster, B L; Soenjaya, Y; Nociti, F H; Holm, E; Zerfas, P M; Wimer, H F; Holdsworth, D W; Aubin, J E; Hunter, G K; Goldberg, H A; Somerman, M J

    2013-02-01

    Bone sialoprotein (BSP) is an extracellular matrix protein found in mineralized tissues of the skeleton and dentition. BSP is multifunctional, affecting cell attachment and signaling through an RGD integrin-binding region, and acting as a positive regulator for mineral precipitation by nucleating hydroxyapatite crystals. BSP is present in cementum, the hard tissue covering the tooth root that anchors periodontal ligament (PDL) attachment. To test our hypothesis that BSP plays an important role in cementogenesis, we analyzed tooth development in a Bsp null ((-/-)) mouse model. Developmental analysis by histology, histochemistry, and SEM revealed a significant reduction in acellular cementum formation on Bsp (-/-) mouse molar and incisor roots, and the cementum deposited appeared hypomineralized. Structural defects in cementum-PDL interfaces in Bsp (-/-) mice caused PDL detachment, likely contributing to the high incidence of incisor malocclusion. Loss of BSP caused progressively disorganized PDL and significantly increased epithelial down-growth with aging. Bsp (-/-) mice displayed extensive root and alveolar bone resorption, mediated by increased RANKL and the presence of osteoclasts. Results collected here suggest that BSP plays a non-redundant role in acellular cementum formation, likely involved in initiating mineralization on the root surface. Through its importance to cementum integrity, BSP is essential for periodontal function.

  15. Deficiency in Acellular Cementum and Periodontal Attachment in Bsp Null Mice

    PubMed Central

    Foster, B.L.; Soenjaya, Y.; Nociti, F.H.; Holm, E.; Zerfas, P.M.; Wimer, H.F.; Holdsworth, D.W.; Aubin, J.E.; Hunter, G.K.; Goldberg, H.A.; Somerman, M.J.

    2012-01-01

    Bone sialoprotein (BSP) is an extracellular matrix protein found in mineralized tissues of the skeleton and dentition. BSP is multifunctional, affecting cell attachment and signaling through an RGD integrin-binding region, and acting as a positive regulator for mineral precipitation by nucleating hydroxyapatite crystals. BSP is present in cementum, the hard tissue covering the tooth root that anchors periodontal ligament (PDL) attachment. To test our hypothesis that BSP plays an important role in cementogenesis, we analyzed tooth development in a Bsp null (-/-) mouse model. Developmental analysis by histology, histochemistry, and SEM revealed a significant reduction in acellular cementum formation on Bsp-/- mouse molar and incisor roots, and the cementum deposited appeared hypomineralized. Structural defects in cementum-PDL interfaces in Bsp-/- mice caused PDL detachment, likely contributing to the high incidence of incisor malocclusion. Loss of BSP caused progressively disorganized PDL and significantly increased epithelial down-growth with aging. Bsp-/- mice displayed extensive root and alveolar bone resorption, mediated by increased RANKL and the presence of osteoclasts. Results collected here suggest that BSP plays a non-redundant role in acellular cementum formation, likely involved in initiating mineralization on the root surface. Through its importance to cementum integrity, BSP is essential for periodontal function. PMID:23183644

  16. Demineralized Bone Matrix Injection in Consolidation Phase Enhances Bone Regeneration in Distraction Osteogenesis via Endochondral Bone Formation

    PubMed Central

    Kim, Ji-Beom; Seo, Sang Gyo; Kim, Eo Jin; Kim, Ji Hye; Yoo, Won Joon; Cho, Tae-Joon; Choi, In Ho

    2015-01-01

    Background Distraction osteogenesis (DO) is a promising tool for bone and tissue regeneration. However, prolonged healing time remains a major problem. Various materials including cells, cytokines, and growth factors have been used in an attempt to enhance bone formation. We examined the effect of percutaneous injection of demineralized bone matrix (DBM) during the consolidation phase on bone regeneration after distraction. Methods The immature rabbit tibial DO model (20 mm length-gain) was used. Twenty-eight animals received DBM 100 mg percutaneously at the end of distraction. Another 22 animals were left without further procedure (control). Plain radiographs were taken every week. Postmortem bone dual-energy X-ray absorptiometry and micro-computed tomography (micro-CT) studies were performed at the third and sixth weeks of the consolidation period and histological analysis was performed. Results The regenerate bone mineral density was higher in the DBM group when compared with that in the saline injection control group at the third week postdistraction. Quantitative analysis using micro-CT revealed larger trabecular bone volume, higher trabecular number, and less trabecular separation in the DBM group than in the saline injection control group. Cross-sectional area and cortical thickness at the sixth week postdistraction, assessed using micro-CT, were greater in the regenerates of the DBM group compared with the control group. Histological evaluation revealed higher trabecular bone volume and trabecular number in the regenerate of the DBM group. New bone formation was apparently enhanced, via endochondral ossification, at the site and in the vicinity of the injected DBM. DBM was absorbed slowly, but it remained until the sixth postoperative week after injection. Conclusions DBM administration into the distraction gap at the end of the distraction period resulted in a significantly greater regenerate bone area, trabecular number, and cortical thickness in the

  17. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.

    PubMed

    Chen, Zhuoyue; Song, Yue; Zhang, Jing; Liu, Wei; Cui, Jihong; Li, Hongmin; Chen, Fulin

    2017-03-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration.

  18. Complications of acellular dermal matrices in breast surgery.

    PubMed

    Israeli, Ron

    2012-11-01

    Acellular dermal matrices have been used in breast surgery for a decade. They are widely used in implant-based breast reconstruction to provide coverage of the inferolateral aspects of the prosthesis. Numerous benefits have been reported with this approach including improved fold control, better support and control of the implant pocket with concomitant reduced risk of malposition, and improved lower pole expansion. Seroma, infection, mastectomy skin necrosis, and expander/implant loss are the most commonly reported complications with this approach, and the incidences vary widely among studies. Patient selection and adherence to established intraoperative technique principles related to acellular dermal matrix use are both critical to minimizing the risk of complications. Acellular dermal matrices are also being used in aesthetic breast surgery, revision breast surgery, and nipple reconstruction, but clinical experience is limited. This article reviews the complications associated with the use of matrices in breast surgery from the published literature.

  19. Influence of irradiation on the osteoinductive potential of demineralized bone matrix.

    PubMed

    Wientroub, S; Reddi, A H

    1988-04-01

    Samples of demineralized bone matrix (DBM) were exposed to graduated doses of radiation (1-15 Megarad) (Mrad) utilizing a linear accelerator and then implanted into the thoracic region of Long-Evans rats. Subcutaneous implantation of DBM into allogenic rats induces endochondral bone. In response to matrix implantation, a cascade of events ensues; mesenchymal cell proliferation on day 3 postimplantation, chondrogenesis on day 7, calcification of the cartilagenous matrix and chondrolysis on day 9, and osteogenesis on day 11 resulting in formation of an ossicle containing active hemopoietic tissue. Bone formation was assessed by measuring alkaline phosphatase activity, the rate of mineralization was determined by measuring 45Ca incorporation to bone mineral, and 40Ca content measured the extent of mineralization; acid phosphatase activity was used as a parameter for bone resorption. The dose of radiation (2.5 Mrad) currently used by bone banks for sterilization of bone tissue did not destroy the bone induction properties of DBM. Furthermore, radiation of 3-5 Mrad even enhanced bone induction, insofar as it produced more bone at the same interval of time than was obtained from unirradiated control samples. None of the radiation doses used in these experiments abolished bone induction, although the response induced by matrix irradiated with doses higher than 5 Mrad was delayed.

  20. Bisphosphonate Treatment Modifies Canine Bone Mineral and Matrix Properties and their Heterogeneity

    PubMed Central

    Gourion-Arsiquaud, Samuel; Allen, Matthew R.; Burr, David B.; Vashishth, Deepak; Tang, Simon Y.; Boskey, Adele L.

    2009-01-01

    Bone loss and alterations in bone quality are major causes leading to bone fragility in postmenopausal women. Although bisphosphonates are well known to reduce bone turnover and prevent bone loss in postmenopausal osteoporosis, their effects on other bone properties are not fully characterized. Changes in bone mineral and matrix properties may contribute to the anti-fracture efficacy observed with bisphosphonate treatments. The aim of this work was to analyze the effect of a one-year treatment with either alendronate or risedronate, at low and high doses, on spatially resolved bone material and compositional properties that could contribute to the fracture efficacy of these agents. Distal tibias from thirty normal beagles that had been treated daily for one year with oral doses of vehicle (Veh), alendronate (Aln) at 0.2 or 1 mg/kg, and risedronate (Ris) at 0.1 or 0.5 mg/kg were analyzed by Fourier Transform Infrared imaging (FTIRI) to assess the changes in both mineral and matrix properties in discrete bone areas. The widths at half maximum of the pixel histograms for each FTIRI parameter were used to assess the heterogeneity of the bone tissue. Aln and Ris increased the mineral content and the collagen maturity mainly in cancellous bone and at the endocortical surface. Significant differences were observed in the mineral content and in the hydroxyapatite crystallinity distribution in bone tissue, which can contribute to reduced ductility and micro-crack accumulation. No significant differences were observed between low and high dose nor between Aln and Ris treatments. These results show that pharmacologic suppression of bone turnover increases the mineral and matrix bone tissue maturity in normal cancellous and endocortical bone areas where bone turnover is higher. These positive effects for decreased fracture risk are also associated with a loss of bone heterogeneity that could be one factor contributing to increased bone tissue brittleness and micro

  1. Bone Union Rate Following Instrumented Posterolateral Lumbar Fusion: Comparison between Demineralized Bone Matrix versus Hydroxyapatite

    PubMed Central

    Nam, Woo Dong

    2016-01-01

    Study Design Retrospective study. Purpose To compare the union rate of posterolateral lumbar fusion (PLF) using demineralized bone matrix (DBM) versus hydroxyapatite (HA) as bone graft extender. Overview of Literature To our knowledge, there has been no clinical trial to compare the outcomes of DBM versus HA as a graft material for PLF. Methods We analyzed prospectively collected data from consecutive 79 patients who underwent instrumented PLF. Patients who received DBM were assigned to group B (n=38), and patients who received HA were assigned into group C (n=41). The primary study outcome was fusion rate assessed with radiographs. The secondary outcomes included pain intensity using a visual analogue scale, functional outcome using Oswestry disability index score, laboratory tests of inflammatory profiles and infection rate. Results One year postoperatively, bone fusion was achieved in 73% in group B and 58% in group C without significant difference between the groups (p=0.15). There were no differences between the groups with respect to secondary outcomes. Conclusions DBM would provide noninferior outcomes compared to the HA as a fusion material for PLF, and could be a notable alternative. PMID:27994793

  2. The effect of enamel matrix proteins and deproteinized bovine bone mineral on heterotopic bone formation.

    PubMed

    Donos, Nikolaos; Kostopoulos, Lambros; Tonetti, Maurizio; Karring, Thorkild; Lang, Niklaus P

    2006-08-01

    To evaluate the osteoinductive potential of deproteinized bovine bone mineral (DBBM) and an enamel matrix derivative (EMD) in the muscle of rats. Sixteen rats were used in this study. The animals were divided in three groups. Group A: a pouch was created in one of the pectoralis profundis muscles of the thorax of the rats and DBBM particles (Bio-Oss) were placed into the pouch. Healing: 60 days. Group B: a small pouch was created on both pectoralis profundis muscles at each side of the thorax midline. In one side, a mixture of EMD (Emdogain) mixed with DBBM was placed into one of the pouches, whereas in the contralateral side of the thorax the pouch was implanted with DBBM mixed with the propylene glycol alginate (PGA--carrier for enamel matrix proteins of EMD). Healing: 60 days. Group C: the same procedure as group B, but with a healing period of 120 days. Qualitative histological analysis of the results was performed. At 60 days, the histological appearance of the DBBM particles implanted alone was similar to that of the particles implanted together with EMD or PGA at both 60 and 120 days. The DBBM particles were encapsulated into a connective tissue stroma and an inflammatory infiltrate. At 120 days, the DBBM particles implanted together with EMD or PGA exhibited the presence of resorption lacunae in some cases. Intramuscular bone formation was not encountered in any group. The implantation of DBBM particles alone, combined with EMD or its carrier (PGA) failed to exhibit extraskeletal, bone-inductive properties.

  3. Effects of demineralized bone matrix and a 'Ricinus communis' polymer on bone regeneration: a histological study in rabbit calvaria.

    PubMed

    Laureano Filho, José R; Andrade, Emanuel S S; Albergaria-Barbosa, José R; Camargo, Igor B; Garcia, Robson R

    2009-09-01

    The aim of the present study was to histologically analyze the effects of bovine and human demineralized bone matrix and a Ricinus communis polymer on the bone regeneration process. Two surgical bone defects were created in rabbit calvaria, one on the right and the other on the left side of the parietal suture. Eighteen rabbits were divided into three groups. In Group I, the experimental defect was treated with bovine demineralized bone matrix, Group II with human demineralized bone matrix, and in Group III, the experimental cavity was treated with polyurethane resin derived from Ricinus communis oil. The control defects were filled with the animals' own blood. The animals were sacrificed after 7 and 15 weeks. Histological analysis revealed that in all groups (control and experimental), bone regeneration increased with time. The least time required for bone regeneration was noted in the control group, with a substantial decrease in the thickness of the defect. All materials proved to be biologically compatible, but polyurethane resorbed more slowly and demonstrated considerably better results than the demineralized bone matrices.

  4. Cogels of Hyaluronic Acid and Acellular Matrix for Cultivation of Adipose-Derived Stem Cells: Potential Application for Vocal Fold Tissue Engineering

    PubMed Central

    Wang, Rongguang; Yang, Shiming

    2016-01-01

    Stem cells based tissue engineering has been one of the potential promising therapies in the research on the repair of tissue diseases including the vocal fold. Decellularized extracellular matrix (DCM) as a promising scaffold has be used widely in tissue engineering; however, it remained to be an important issue in vocal fold regeneration. Here, we applied the hydrogels (hyaluronic acid [HA], HA-collagen [HA-Col], and HA-DCM) to determine the effects of hydrogel on the growth and differentiation of human adipose-derived stem cells (hADSCs) into superficial lamina propria fibroblasts. hADSCs were isolated and characterized by fluorescence-activated cell sorting. The results indicated that HA-DCM hydrogel enhanced cell proliferation and prolonged cell morphology significantly compared to HA and HA-Col hydrogel. Importantly, the differentiation of hADSCs into fibroblasts was also promoted by cogels of HA-Col and HA-DCM significantly. The differentiation of hADSCs towards superficial lamina propria fibroblasts was accelerated by the secretion of HGF, IL-8, and VEGF, the decorin and elastin expression, and the synthesis of chondroitin sulfate significantly. Therefore, the cogel of HA-DCM hydrogel was shown to be outstanding in apparent stimulation of hADSCs proliferation and differentiation to vocal fold fibroblasts through secretion of important growth factors and synthesis of extracellular matrix. PMID:27981051

  5. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  6. Extracellular Vesicle-functionalized Decalcified Bone Matrix Scaffolds with Enhanced Pro-angiogenic and Pro-bone Regeneration Activities

    PubMed Central

    Xie, Hui; Wang, Zhenxing; Zhang, Liming; Lei, Qian; Zhao, Aiqi; Wang, Hongxiang; Li, Qiubai; Cao, Yilin; Jie Zhang, Wen; Chen, Zhichao

    2017-01-01

    Vascularization is crucial for bone regeneration after the transplantation of tissue-engineered bone grafts in the clinical setting. Growing evidence suggests that mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are potently pro-angiogenic both in vitro and in vivo. In the current study, we fabricated a novel EV-functionalized scaffold with enhanced pro-angiogenic and pro-bone regeneration activities by coating decalcified bone matrix (DBM) with MSC-derived EVs. EVs were harvested from rat bone marrow-derived MSCs and the pro-angiogenic potential of EVs was investigated in vitro. DBM scaffolds were then coated with EVs, and the modification was verified by scanning electron microscopy and confocal microscopy. Next, the pro-angiogenic and pro-bone regeneration activities of EV-modified scaffolds were evaluated in a subcutaneous bone formation model in nude mice. Micro-computed tomography scanning analysis showed that EV-modified scaffolds with seeded cells enhanced bone formation. Enhanced bone formation was confirmed by histological analysis. Immunohistochemical staining for CD31 proved that EV-modified scaffolds promoted vascularization in the grafts, thereby enhancing bone regeneration. This novel scaffold modification method provides a promising way to promote vascularization, which is essential for bone tissue engineering. PMID:28367979

  7. Age-Related Effects of Advanced Glycation End Products (Ages) in Bone Matrix on Osteoclastic Resorption.

    PubMed

    Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2015-12-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.

  8. Demineralized bone matrix used for direct pulp capping in rats

    PubMed Central

    Wang, Junlan; Zhu, Xuefang; Yang, Yanjing; Mei, Yufeng

    2017-01-01

    Objectives To evaluate the wound healing process following direct pulp capping with demineralized bone matrix (DBM) and calcium hydroxide (Ca(OH)2). Methods Fifty 8-weeks-old SPF Wistar male rats were divided into two groups: one was the DBM treated group, and the other was the Ca(OH)2 treated group. Pulpotomy was performed on the maxillary first molar of one side of each rat, and the another side was left as the blank control. Rats were sacrificed after each observation period (1, 3, 7, 14 and 28 days) and specimen slices were made. Hematoxylin-Eosin (HE) staining was used for observing the changes of pulp tissue, and immunohistochemical staining was used for observing the expression of reparative dentinogenesis-related factors runt transcription factor 2 (Runx2), type I collagen (COL I), osteocalcin (OCN) and dentin sialoprotein (DSP). Results Inflammatory cell infiltration (ICI) and pulp tissue disorganization (PTD) could be observed in both the DBM and Ca(OH)2 groups at all observation periods. The DBM group showed slighter ICI on 1 and 28 days and milder PTD on 28 days, with a significant difference (P<0.05). Reparative dentin formation (RDF) could initially be observed on 14 days postoperatively, and the DBM group showed more regular and thinner RDF with significant differences on 14 and 28 days compared with the Ca(OH)2 group (P<0.05). In both groups, the expression of Runx2, COL I, DSP and OCN were positive. Generally, the expression of these four factors in the DBM group was stronger than the Ca(OH)2 group on the same observation periods. Conclusions DBM had the ability of inducing odontoblast differentiation and promoting dentinogenesis. DBM could initiate physiologic wound healing in pulp and had the ability to promote reparative dentin formation. Consequently, DBM may be an acceptable alternative for direct pulp capping. PMID:28253279

  9. Outcomes of Demineralized Bone Matrix Enriched with Concentrated Bone Marrow Aspirate in Lumbar Fusion

    PubMed Central

    Eckardt, Mark A.; Hamamoto, Jason T.; Plotkin, Benjamin; Daubs, Michael D.; Wang, Jeffrey C.

    2016-01-01

    Background Multiple studies have demonstrated that a significant amount of variability exists in various demineralized bone matrix (DBM) formulations, which casts doubts on its reliability in consistently promoting fusion. Bone marrow aspirate (BMA) is a cellular based graft that contains mesenchymal stem cells (MSCs) and growth factors can confer osteogenic and osteoinductive potential to DBM. The goal of this study was to describe the outcome of DBM enriched with concentrated BMA in patients undergoing combined lumbar interbody and posterolateral fusion. Methods Eighty patients with a minimum of 12 months of follow-up were evaluated. Fusion and rates of complication were evaluated. Functional outcomes were assessed based on the modified Odom’s criteria. Multiple logistic regression analysis was used to examine the effects of independent variables on fusion outcome. Results The overall rate of solid fusion (i.e patients with both solid posterolateral and interbody fusion) was 81.3% (65/80). Specifically, the radiographic evidence of solid posterolateral and interbody fusions were 81.3% (65/80) and 92.5% (74/80), respectively. Seven (8.75%) patients developed hardware-related complications, 2 (2.5%) patients developed a postoperative infection and 2 (2.5%) patients developed clinical pseudarthrosis. Charlson comorbidity index (CCI) scores of 3 and 4 were associated with non-solid unions (CCI-3, p = 0.048; CCI-4, p = 0.03). Excellent or good outcomes were achieved in 58 (72.5%) patients. Conclusions Patients undergoing lumbar fusion using an enriched bone graft containing concentrated BMA added to DBM can achieve successful fusion with relatively low complications and good functional outcomes. Despite these findings, more studies with higher level of evidence are needed to better understand the efficacy of this promising graft option. PMID:27909656

  10. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  11. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties.

    PubMed

    Day, J S; Ding, M; Bednarz, P; van der Linden, J C; Mashiba, T; Hirano, T; Johnston, C C; Burr, D B; Hvid, I; Sumner, D R; Weinans, H

    2004-05-01

    Bisphosphonates are emerging as an important treatment for osteoporosis. But whether the reduced fracture risk associated with bisphosphonate treatment is due to increased bone mass, improved trabecular architecture and/or increased secondary mineralization of the calcified matrix remains unclear. We examined the effects of bisphosphonates on both the trabecular architecture and matrix properties of canine trabecular bone. Thirty-six beagles were divided into a control group and two treatment groups, one receiving risedronate and the other alendronate at 5-6 times the clinical dose for osteoporosis treatment. After one year, the dogs were killed, and samples from the first lumbar vertebrae were examined using a combination of micro-computed tomography, finite element modeling, and mechanical testing. By combining these methods, we examined the treatment effects on the calcified matrix and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified matrix density, and increased microdamage. We could not detect any change in the effective Young's modulus of the calcified matrix in the bisphosphonate treated groups. The observed increase in apparent Young's modulus was due to increased bone mass and altered trabecular architecture rather than changes in the calcified matrix modulus. We hypothesize that the expected increase in the Young's modulus of the calcified matrix due to the increased calcified matrix density was counteracted by the accumulation of microdamage.

  12. [Plastic repair using the demineralized matrix of flat allogeneic bone in an operation for ventral hernia].

    PubMed

    Isaĭchev, B A; Chikaleva, V I

    1990-11-01

    Investigations were performed in experiments on 36 dogs. Clinico-morphological results of plasty of artificial defects of the anterior abdominal wall by demineralized matrix of a flat allogeneic bone have shown good taking by tissues. In clinic the demineralized matrix of flat allogeneic bone (scapula, skull fornix) was used in ventral hernias in 36 patients. No recurrent hernias were noted in these patients within 20 months after operation.

  13. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE PAGES

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; ...

    2016-05-26

    The G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bending stiffness,more » and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  14. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    SciTech Connect

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; Almer, Jonathan D.; Miller, Lisa; Johnson, Mark L.; Summer, D. Rick

    2016-05-26

    The G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bending stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.

  15. Demineralized Bone Matrix Scaffolds Modified by CBD-SDF-1α Promote Bone Regeneration via Recruiting Endogenous Stem Cells.

    PubMed

    Shi, Jiajia; Sun, Jie; Zhang, Wen; Liang, Hui; Shi, Qin; Li, Xiaoran; Chen, Yanyan; Zhuang, Yan; Dai, Jianwu

    2016-10-07

    The reconstruction of bone usually depends on substitute transplantation, which has drawbacks including the limited bone substitutes available, comorbidity, immune rejection, and limited endogenous bone regeneration. Here, we constructed a functionalized bone substitute by combining application of the demineralized bone matrix (DBM) and collagen-binding stromal-cell-derived factor-1α (CBD-SDF-1α). DBM was a poriferous and biodegradable bone substitute, derived from bovine bone and consisting mainly of collagen. CBD-SDF-1α could bind to collagen and be controllably released from the DBM to mobilize stem cells. In a rat femur defect model, CBD-SDF-1α-modified DBM scaffolds could efficiently mobilize CD34(+) and c-kit(+) endogenous stem cells homing to the injured site at 3 days after implantation. According to the data from micro-CT, CBD-SDF-1α-modified DBM scaffolds could help the bone defects rejoin with mineralization accumulated and bone volume expanded. Interestingly, osteoprotegerin (OPG) and osteopontin (OPN) were highly expressed in CBD-SDF-1α group at an early time after implantation, while osteocalcin (OCN) was more expanded. H&E and Masson's trichrome staining showed that the CBD-SDF-1α-modified DBM scaffold group had more osteoblasts and that the bone defect rejoined earlier. The ultimate strength of the regenerated bone was investigated by three-point bending, showing that the CBD-SDF-1α group had superior strength. In conclusion, CBD-SDF-1α-modified DBM scaffolds could promote bone regeneration by recruiting endogenous stem cells.

  16. Connexin37 deficiency alters organic bone matrix, cortical bone geometry, and increases Wnt/β-catenin signaling.

    PubMed

    Pacheco-Costa, Rafael; Kadakia, Jay R; Atkinson, Emily G; Wallace, Joseph M; Plotkin, Lilian I; Reginato, Rejane D

    2017-04-01

    Deletion of connexin (Cx) 37 in mice leads to increased cancellous bone mass due to defective osteoclast differentiation. Paradoxically; however, Cx37-deficient mice exhibit reduced cortical thickness accompanied by higher bone strength, suggesting a contribution of Cx37 to bone matrix composition. Thus, we investigated whether global deletion of Cx37 alters the composition of organic bone extracellular matrix. Five-month-old Cx37(-/-) mice exhibited increased marrow cavity area, and periosteal and endocortical bone surface resulting in higher total area in tibia compared to Cx37(+/+) control mice. Deletion of Cx37 increased genes involved in collagen maturation (loxl3 and loxl4) and glycosaminoglycans- (chsy1, chpf and has3) proteoglycans- associated genes (biglycan and decorin). In addition, expression of type II collagen assessed by immunostaining was increased by 82% whereas collagen maturity by picrosirius-polarizarion tended to be reduced (p=0.071). Expression of glycosaminoglycans by histochemistry was decreased, whereas immunostaining revealed that biglycan was unchanged and decorin was slightly increased in Cx37(-/-) bone sections. Consistent with these in vivo findings, MLO-Y4 osteocytic cells silenced for Cx37 gene exhibited increased mRNA levels for collagen synthesis (col1a1 and col3a1) and collagen maturation (lox, loxl1 and loxl2 genes). Furthermore, mechanistic studies showed Wnt/β-catenin activation in MLO-Y4 osteocytic cells, L5 vertebra, and authentic calvaria-derived osteocytes isolated by fluorescent-activated cell sorter. Our findings demonstrate that altered profile of the bone matrix components in Cx37-deficient mice acts in favor of higher resistance to fracture in long bones.

  17. Human Bone Matrix Changes During Deep Saturation Dives

    DTIC Science & Technology

    2008-08-08

    agreement notwithstanding, much remains unknown about its pathogenesis, prevention, and treatment . DON is currently disqualifying for U.S. Navy divers...recourse for symptomatic treatment is surgical joint replacement.7 The principal mechanism of bone injury is generally accepted to be bubble formation...urine concentrations of Ntx have been demonstrated in bone diseases such as osteoporosis, primary hyperthyroidism , and Paget’s disease. Also

  18. Comparative Host Response of 2 Human Acellular Dermal Matrices in a Primate Implant Model

    PubMed Central

    Sandor, Maryellen; Singh, Devinder; Silverman, Ronald P.; Xu, Hui; De Deyne, Patrick G.

    2014-01-01

    Objective: We examined the differences in capsule formation between 2 commercially available human acellular dermal matrices in a nonhuman primate model. Methods: Primates were implanted dorsally with a subcutaneously placed tissue expander and randomized into 3 groups, receiving skin coverage only, coverage with non-irradiated freeze-dried human acellular dermal matrix, or coverage with gamma-irradiated human acellular dermal matrix. After 9 weeks, soft tissue around the tissue expander was excised and evaluated qualitatively and quantitatively to assess extent of inflammation (CD68 antibodies and interleukin-6 levels), degradation and fibrosis (matrix metalloproteinase-1 and procollagen-1 staining), and mechanical (tensile) strength. Results: Histological evaluation of tissue around the tissue expander indicated differences in host response, suggesting capsule presence in the gamma-irradiated matrix group but not the freeze-dried matrix group. The extent of local inflammation was much higher in the gamma-irradiated matrix group which demonstrated mean (standard deviation) localized interleukin-6 concentration of 67.3 (53.6) vs 16.3 (6.7) pg/mg protein in the non-irradiated matrix group. There was robust degradation and fibrotic response in the gamma-irradiated matrix group versus the freeze-dried matrix group. Mechanical testing indicated mean (standard deviation) ultimate tensile strength of 12.0 (7.1) N in the gamma-irradiated matrix group versus 99.3 (48.8) N in the freeze-dried matrix group. Conclusions: Enclosure of a tissue expander with human acellular dermal matrix untreated by gamma irradiation led to minimal inflammation and minimal evidence of fibrosis/capsule around the tissue expander compared with robust capsule formation around the tissue expander that was covered by a gamma-irradiated human acellular dermal matrix. PMID:24570768

  19. [The role of fetus decalcified bone matrix (FDBM) in inducing pure titanium-bone implant integration].

    PubMed

    Zou, L; Zhang, D; Wang, W

    1998-05-01

    Because of its high biological compatibility, titanium has been a good biomaterial. The implanted artificial bone made from titanium can contact with the vital and mature osseous tissue directly within 3-6 months, the so-called osteointergration. In order to promote the process of osteointergration, FDBM of rabbit was prepared and was combined with pure titanium so as to speed up osteointergration. The study focused on bone density, bone intergration rate, new bone growth rate around the pure titanium, and the Ca2+ and PO(4)3- density of titanium-bone interface. A control group of pure titanium inplant without FDBM was set up. The results showed FDBM had no antigenicity. It could induce and speed up the new bone formation at titanium-bone interface. The titanium-bone intergration time was within 2 months. It was suggested that there were more bone morphogenesis protein (BMP) or other bone induction and bone formation factors in brephobone than that in child and adult bone. As a kind of bone induction material, FDBM was easy prepared, cheap in price, easy to storage, no antigenicity and obvious bone-inductive function.

  20. IN SITU ACCUMULATION OF ADVANCED GLYCATION ENDPRODUCTS (AGES) IN BONE MATRIX AND ITS CORRELATION WITH OSTEOCLASTIC BONE RESORPTION

    PubMed Central

    Dong, X. Neil; Qin, An; Xu, Jiake; Wang, Xiaodu

    2011-01-01

    Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6 years old), middle-aged (51±3 years old) and elderly (76±4 years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360 nm and emission wave length 470±40 nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process. PMID:21530698

  1. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.

    PubMed

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-10-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.

  2. Demineralized Bone Matrix (DBM) as a Bone Void Filler in Lumbar Interbody Fusion: A Prospective Pilot Study of Simultaneous DBM and Autologous Bone Grafts

    PubMed Central

    Kim, Bum-Joon; Kim, Se-Hoon; Lee, Haebin; Lee, Seung-Hwan; Kim, Won-Hyung; Jin, Sung-Won

    2017-01-01

    Objective Solid bone fusion is an essential process in spinal stabilization surgery. Recently, as several minimally invasive spinal surgeries have developed, a need of artificial bone substitutes such as demineralized bone matrix (DBM), has arisen. We investigated the in vivo bone growth rate of DBM as a bone void filler compared to a local autologous bone grafts. Methods From April 2014 to August 2015, 20 patients with a one or two-level spinal stenosis were included. A posterior lumbar interbody fusion using two cages and pedicle screw fixation was performed for every patient, and each cage was packed with autologous local bone and DBM. Clinical outcomes were assessed using the Numeric Rating Scale (NRS) of leg pain and back pain and the Korean Oswestry Disability Index (K-ODI). Clinical outcome parameters and range of motion (ROM) of the operated level were collected preoperatively and at 3 months, 6 months, and 1 year postoperatively. Computed tomography was performed 1 year after fusion surgery and bone growth of the autologous bone grafts and DBM were analyzed by ImageJ software. Results Eighteen patients completed 1 year of follow-up, including 10 men and 8 women, and the mean age was 56.4 (32–71). The operated level ranged from L3/4 to L5/S1. Eleven patients had single level and 7 patients had two-level repairs. The mean back pain NRS improved from 4.61 to 2.78 (p=0.003) and the leg pain NRS improved from 6.89 to 2.39 (p<0.001). The mean K-ODI score also improved from 27.33 to 13.83 (p<0.001). The ROM decreased below 2.0 degrees at the 3-month assessment, and remained less than 2 degrees through the 1 year postoperative assessment. Every local autologous bone graft and DBM packed cage showed bone bridge formation. On the quantitative analysis of bone growth, the autologous bone grafts showed significantly higher bone growth compared to DBM on both coronal and sagittal images (p<0.001 and p=0.028, respectively). Osteoporotic patients showed less bone

  3. A Surrogate Measure of Cortical Bone Matrix Density by Long T2-Suppressed MRI

    PubMed Central

    Seifert, Alan C.; Li, Cheng; Wehrli, Suzanne L.; Wehrli, Felix W.

    2015-01-01

    Magnetic resonance has the potential to image and quantify two pools of water within bone: free water within the Haversian pore system (transverse relaxation time, T2 > 1 ms), and water hydrogen-bonded to matrix collagen (T2 ~ 300–400 µs). While total bone water concentration quantified by MRI has been shown to scale with porosity, greater insight into bone matrix density and porosity may be gained by relaxation-based separation of bound and pore water fractions. The objective of this study was to evaluate a recently developed surrogate measurement for matrix density, single adiabatic inversion recovery (SIR) zero echo-time (ZTE) MRI, in human bone. Specimens of tibial cortical bone from 15 donors (27–97 y/o, eight female and seven male) were examined at 9.4T field strength using two methods: (1) 1H ZTE MRI, to capture total 1H signal, and (2) 1H SIR-ZTE MRI, to selectively image matrix-associated 1H signal. Total water, bone matrix, and bone mineral densities were also quantified gravimetrically, and porosity was measured by micro-CT. ZTE apparent total water 1H concentration was 32.7±3.2 M (range: 28.5–40.3 M), and was correlated positively with porosity (R2 = 0.80) and negatively with matrix and mineral densities (R2 = 0.90 and 0.82, respectively). SIR-ZTE apparent bound water 1H concentration was 32.9±3.9 M (range: 24.4–39.8 M), and its correlations were opposite to those of apparent total water: negative with porosity (R2 = 0.73) and positive with matrix density (R2 = 0.74) and mineral density (R2 = 0.72). Porosity was strongly correlated with gravimetric matrix density (R2 = 0.91, negative) and total water density (R2 = 0.92, positive). The strong correlations of SIR-ZTE-derived apparent bound water 1H concentration with ground-truth measurements suggest that this quantitative solid-state MRI method provides a nondestructive surrogate measure of bone matrix density. PMID:26085307

  4. Expression of CD44v6 as matrix-associated ectodomain in the bone development.

    PubMed

    Nakajima, Kosei; Taniguchi, Kazumi; Mutoh, Ken-ichiro

    2010-08-01

    This study describes the expression of CD44v6 in the bone development and is the first study of its kind to the authors' best knowledge. The CD44 family is a family of transmembrane glycoproteins that acts as cell adhesion molecules binding cells to other cells as well as cells to the extracellular matrix. It has been suggested that the CD44v6, a family member of CD44, is closely related to the osteosarcoma metastasis. In general, when cancer cells metastasize, they revert to their immature forms. In the present study, therefore, we have investigated CD44v6 and the standard form of CD44 (CD44st) in two types of immature forms of bone tissues: developmentally immature stages from fetuses to adults as well as experimentally immature stages using fracture models. CD44st expression was identified in osteoblasts, osteocytes, and in the peripheral portion of the bone matrix from the fetal to young ages of rats. Many more intense reactions for CD44v6 were observed in the bone matrix than CD44st in fetal stages. In experimental fracture models, positive immunoreactions to CD44st were clearly observed in the osteoblasts and osteocytes. CD44v6-positive immunoreactivity, however, was not detected in either osteoblasts or the bone matrix. In conclusion, CD44v6 is expressed in the embryonic stages and may be involved in the bone matrix formation as a matrix-associated ectodomain during normal ontogenetic development but not involved in the process of fracture healing.

  5. Hybrid Matrix Grafts to Favor Tissue Regeneration in Rabbit Femur Bone Lesions

    PubMed Central

    Goy, Dante Pascual; Gorosito, Emmanuel; Costa, Hermes S; Mortarino, Pablo; Pedemonte, Noelia Acosta; Toledo, Javier; Mansur, Herman S; Pereira, Marivalda M; Battaglino, Ricardo; Feldman, Sara

    2012-01-01

    At present, typical approaches employed to repair fractures and other bone lesions tend to use matrix grafts to promote tissue regeneration. These grafts act as templates, which promote cellular adhesion, growth and proliferation, osteoconduction, and even osteoinduction, which commonly results in de novo osteogenesis. The present work aimed to study the bone-repairing ability of hybrid matrixes (HM) prepared with polyvinyl alcohol (PVA) and bioactive glass in an experimental rabbit model. The HM were prepared by combining 30% bioactive glass (nominal composition of 58% SiO2 -33 % CaO - 9% P2O5) and 70% PVA. New Zealand rabbits were randomly divided into the control group (C group) and two groups with bone lesions, in which one received a matrix implant HM (Implant group), while the other did not (no Implant group). Clinical monitoring showed no altered parameters from either the Implant or the no Implant groups as compared to the control group, for the variables of diet grades, day and night temperatures and hemograms. In the Implant group, radiologic and tomographic studies showed implanted areas with clean edges in femoral non-articular direction, and radio-dense images that suggest incipient integration. Minimum signs of phlogosis could be observed, whereas no signs of rejection at this imaging level could be identified. Histological analysis showed evidence of osteo-integration, with the formation of a trabecular bone within the implant. Together, these results show that implants of hybrid matrixes of bioactive glass are capable of promoting bone regeneration. PMID:22848334

  6. Marrow stromal fibroblastic cell cultivation in vitro on decellularized bone marrow extracellular matrix.

    PubMed

    Dutra, Timothy F; French, Samuel W

    2010-02-01

    The in vitro biocompatibility of decellularized bone marrow extracellular matrix was evaluated. Following a freeze-thaw cycle, sectioned discs of fresh frozen rat metaphyseal bone were sequentially incubated in solutions of hypertonic, then hypotonic Ringer's solution, followed by deoxycholic acid, then DNAase I. The adequacy of decellularization of marrow stroma was examined by light microscopy. Marrow stromal fibroblastic cells were harvested by dispersion of rat long bone marrow, followed by concentration by discontinuous Ficoll-Paque gradient centrifugation. The fibroblastic cells were expanded by in vitro cultivation, and second passage cells were cryopreserved until needed. Cryopreserved marrow stromal cells were applied dropwise to sections of decellularized bone marrow extracellular matrix, and cultured in BJGb medium with 20% fetal bovine serum for ten days. Mature cultures were formalin fixed, decalcified, and embedded in paraffin. Light microscopy of hematoxylin and eosin stained sections showed individual spindle cells invading the upper portion of the decellularized extracellular matrix, and also a monolayer of spindle cells on the upper surfaces of exposed trabecular and cortical bone. This experiment showed that decellularized marrow extracellular matrix is a biocompatible three dimensional in vitro substrate for marrow stromal fibroblastic cells.

  7. Modifications in Bone Matrix of Estrogen-Deficient Rats Treated with Intermittent PTH

    PubMed Central

    Campos, Jenifer Freitas; Katchburian, Eduardo; de Medeiros, Valquíria Pereira; Nader, Helena Bonciani; Nonaka, Keico Okino; Plotkin, Lilian Irene; Reginato, Rejane Daniele

    2015-01-01

    Bone matrix dictates strength, elasticity, and stiffness to the bone. Intermittent parathyroid hormone (iPTH), a bone-forming treatment, is widely used as a therapy for osteoporosis. We investigate whether low doses of intermittent PTH (1-34) change the profile of organic components in the bone matrix after 30 days of treatment. Forty 6-month-old female Wistar rats underwent ovariectomy and after 3 months received low doses of iPTH administered for 30 days: daily at 0.3 µg/kg/day (PTH03) or 5 µg/kg/day (PTH5); or 3 times per week at 0.25 µg/kg/day (PTH025). After euthanasia, distal femora were processed for bone histomorphometry, histochemistry for collagen and glycosaminoglycans, biochemical quantification of sulfated glycosaminoglycans, and hyaluronan by ELISA and TUNEL staining. Whole tibiae were used to estimate the bone mineral density (BMD). Histomorphometric analysis showed that PTH5 increased cancellous bone volume by 6% over vehicle-treated rats. In addition, PTH5 and PTH03 increased cortical thickness by 21% and 20%, respectively. Tibial BMD increased in PTH5-treated rats and this group exhibited lower levels of chondroitin sulfate; on the other hand, hyaluronan expression was increased. Hormonal administration in the PTH5 group led to decreased collagen maturity. Further, TUNEL-positive osteocytes were decreased in the cortical compartment of PTH5 whereas administration of PTH025 increased the osteocyte death. Our findings suggest that daily injections of PTH at low doses alter the pattern of organic components from the bone matrix, favoring the increase of bone mass. PMID:25695082

  8. Implants of polyanionic collagen matrix in bone defects of ovariectomized rats.

    PubMed

    Cunha, Marcelo Rodrigues; Santos, Arnaldo Rodrigues; Goissis, Gilberto; Genari, Selma C

    2008-03-01

    In recent years, there has been a great interest in the development of biomaterials that could be used in the repair of bone defects. Collagen matrix (CM) has the advantage that it can be modified chemically to improve its mechanical properties. The aim of the present study was to evaluate the effect of three-dimensional membranes of native or anionic (submitted to alkaline treatment for 48 or 96 h) collagen matrix on the consolidation of osteoporosis bone fractures resulting from the gonadal hormone alterations caused by ovariectomy in rats subjected to hormone replacement therapy. The animals received the implants 4 months after ovariectomy and were sacrificed 8 weeks after implantation of the membranes into 4-mm wide bone defects created in the distal third of the femur with a surgical bur. Macroscopic analysis revealed the absence of pathological alterations in the implanted areas, suggesting that the material was biocompatible. Microscopic analysis showed a lower amount of bone ingrowth in the areas receiving the native membrane compared to the bone defects filled with the anionic membranes. In ovariectomized animals receiving anionic membranes, a delay in bone regeneration was observed mainly in animals not subjected to hormone replacement therapy. We conclude that anionic membranes treated with alkaline solution for 48 and 96 h presented better results in terms of bone ingrowth.

  9. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis

    PubMed Central

    Karunaratne, A.; Xi, L.; Bentley, L.; Sykes, D.; Boyde, A.; Esapa, C.T.; Terrill, N.J.; Brown, S.D.M.; Cox, R.D.; Thakker, R.V.; Gupta, H.S.

    2016-01-01

    A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh− 120/+) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh− 120/+ mice. We also find a much larger fibril strain/tissue strain ratio in Crh− 120/+ mice (~ 1.5) compared to the wild-type mice (~ 0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis. PMID:26657825

  10. Model system for studies on bone matrix formation by osteogenic cells in microgravity

    NASA Astrophysics Data System (ADS)

    Quinton, Todd M.; Fattaey, Heideh K.; Motaffaf, Farzaneh; Johnson, Terry C.

    1998-01-01

    A considerable amount of attention has been focused on the physiological factors that are responsible for the reduction of bone mineralization and mass during prolonged periods in the microgravity environment. Although bone mineralization can be reduced by one percent per month as shown to result from shuttle flights and Mir habitation, the reasons for this phenomenon remain unclear. Changes in specific markers of bone cells upon differentiation indicate that the induction of bone matrix formation is dependent upon these cells reaching confluency. In our laboratory, we have isolated a reversible inhibitor of cellular growth (CeReS-18) that could be important in cell contact inhibition and thus may mimic the signals involved in growth confluency. Preliminary experiments with osteogenic cells have revealed the potential capability of CeReS-18 to inhibit these cells in a reversible manner. We are developing a series of studies, designed at the cellular level, to quantitatively measure the production of bone matrix by osteogenic cells propagated in culture. The use of CeReS-18 would facilitate the study of several factors being assessed regarding matrix formation including the rate of cell population density, hormone induction events, calcium availability, and cell cycle arest. The studies are being conducted in a manner that will allow comparable measurements in the microgravity environment with flight hardware designed and deployed by BioServe Space Technologies.

  11. Changes in chemical composition of bone matrix in ovariectomized (OVX) rats detected by Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi

    2015-02-01

    Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.

  12. Castor oil polymer induces bone formation with high matrix metalloproteinase-2 expression.

    PubMed

    Saran, Wallace Rocha; Chierice, Gilberto Orivaldo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; Paula-Silva, Francisco Wanderley Garcia; da Silva, Léa Assed Bezerra

    2014-02-01

    The aim of this study was to evaluate the modulation of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) expression in newly formed bone tissue at the interface between implants derived from castor oil (Ricinus communis) polymer and the tibia medullary canal. Forty-four rabbits were assigned to either Group 1 (n = 12; control) or Group 2 (n = 30), which had the tibial medullary canals reamed bilaterally and filled with polymer. CT scans showed no space between the material surface and the bone at the implant/bone marrow interface, and the density of the tissues at this interface was similar to the density measured of other regions of the bone. At 90 days postimplantation, the interface with the polymer presented a thick layer of newly formed bone tissue rich in osteocytes. This tissue exhibited ongoing maturation at 120 and 150 days postimplantation. Overall, bone remodeling process was accompanied by positive modulation of MMP-2 and low MMP-9 expression. Differently, in control group, the internal surface close to the medullary canal was lined by osteoblasts, followed by a bone tissue zone with few lacunae filled with osteocytes. Maturation of the tissue of the medullary internal surface occurred in the inner region, with the bone being nonlamellar.

  13. A radiopaque polymeric matrix for acrylic bone cements.

    PubMed

    Artola, A; Goñi, I; Gil, J; Ginebra, P; Manero, J M; Gurruchaga, M

    2003-01-15

    As part of the search for an alternative to inorganic radiopaque agents, this work studies the possibility of modifying bone cement formulations by incorporating a radiopaque monomer, that is, 4-iodophenol methacrylate (IPMA), in the liquid phase. The monomer was synthesized in the laboratory, and cements were prepared by the standard method. The influence on the different cement characteristics of various monomer concentrations was studied. It was seen that the setting time decreased as the percentage of monomer increased. The radiopacity attained in the 15 vol.% IPMA formulations was about the same as that for a cement containing 10 wt.% barium sulphate. Dynamic and static mechanical properties were measured. The materials did not show significant differences in the glass transition temperature. However, static mechanical properties showed enhanced compressive strength, tensile strength, and elastic modulus with respect to conventional cements formulated with barium sulphate. Histological studies showed a good response of muscular tissue to implanted specimens.

  14. How Osteoblasts Sense their Environment: Integrin-Extracellular Matrix Interactions and Mechanical Loading of Bone

    NASA Technical Reports Server (NTRS)

    Globus, Ruth K.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Osteoblasts are the cells responsible for forming and replacing bone throughout life. We know that mechanical stimulation through weight-bearing at I gravity on Earth is needed to maintain healthy bone, and that osteoblasts play a critical role in that process. Over the last 9 years in my laboratory at NASA ARC, we have studied the regulation of osteoblast function by interactions between the extracellular matrix and die cell. Using a cell culture approach, we defined the repertoire of adhesion receptors, called integrins, which are expressed on the osteoblast surface, as well as specific extracellular matrix proteins, which are needed for cellular differentiation and survival. We are now extending these observations to determine if integrin signaling is involved in the skeletal responses to disuse and recovery from disuse using the rodent model of hindlimb unloading by tail suspension. Together, our cell culture and animal studies are providing new insight into the regulation of osteoblast function in bone.

  15. Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

    PubMed Central

    2016-01-01

    Objectives The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM and ABB according to a stepwise dry and dip lyophilizing protocol. Histological and microcomputed tomography (µCT) analyses were performed to measure the amount of bone formation and bone volume after 2- and 8-week healing intervals. Results Upon histological observation at two weeks, the DDM and ABB/rhBMP-2 groups showed osteoconductive bone formation, while the DDM/rhBMP-2 group showed osteoconductive and osteoinductive bone formation. New bone formation was higher in DDM/rhBMP-2, DDM and ABB decreasing order. The amounts of bone formation were very similar at two weeks; however, at eight weeks, the DDM/rhBMP-2 group showed a two-fold greater amount of bone formation compared to the DDM and ABB/rhBMP-2 groups. The µCT analysis showed markedly increased bone volume in the DDM/rhBMP-2 group at eight weeks compared with that of the DDM group. Notably, there was a slight decrease in bone volume in the ABB/rhBMP-2 group at eight weeks. There were no significant differences among the DDM, ABB/rhBMP-2, and DDM/rhBMP-2 groups at two or eight weeks. Conclusion Within the limitations of this study, DDM appears to be a suitable carrier for rhBMP-2 in orthotopic sites. PMID:27162749

  16. Long-term safety of antiresorptive treatment: bone material, matrix and mineralization aspects

    PubMed Central

    Misof, Barbara M; Fratzl-Zelman, Nadja; Paschalis, Eleftherios P; Roschger, Paul; Klaushofer, Klaus

    2015-01-01

    It is well established that long-term antiresorptive use is effective in the reduction of fracture risk in high bone turnover osteoporosis. Nevertheless, during recent years, concerns emerged that longer bone turnover reduction might favor the occurrence of fatigue fractures. However, the underlying mechanisms for both beneficial and suspected adverse effects are not fully understood yet. There is some evidence that their effects on the bone material characteristics have an important role. In principle, the composition and nanostructure of bone material, for example, collagen cross-links and mineral content and crystallinity, is highly dependent on tissue age. Bone turnover determines the age distribution of the bone structural units (BSUs) present in bone, which in turn is decisive for its intrinsic material properties. It is noteworthy that the effects of bone turnover reduction on bone material were observed to be dependent on the duration of the antiresorptive therapy. During the first 2–3 years, significant decreases in the heterogeneity of material properties such as mineralization of the BSUs have been observed. In the long term (5–10 years), the mineralization pattern reverts towards normal heterogeneity and degree of mineralization, with no signs of hypermineralization in the bone matrix. Nevertheless, it has been hypothesized that the occurrence of fatigue fractures (such as atypical femoral fractures) might be linked to a reduced ability of microdamage repair under antiresorptive therapy. The present article examines results from clinical studies after antiresorptive, in particular long-term, therapy with the aforementioned potentially positive or negative effects on bone material. PMID:25709811

  17. Serum albumin coating of demineralized bone matrix results in stronger new bone formation.

    PubMed

    Horváthy, Dénes B; Vácz, Gabriella; Szabó, Tamás; Szigyártó, Imola C; Toró, Ildikó; Vámos, Boglárka; Hornyák, István; Renner, Károly; Klára, Tamás; Szabó, Bence T; Dobó-Nagy, Csaba; Doros, Attila; Lacza, Zsombor

    2016-01-01

    Blood serum fractions are hotly debated adjuvants in bone replacement therapies. In the present experiment, we coated demineralized bone matrices (DBM) with serum albumin and investigated stem cell attachment in vitro and bone formation in a rat calvaria defect model. In the in vitro experiments, we observed that significantly more cells adhere to the serum albumin coated DBMs at every time point. In vivo bone formation with albumin coated and uncoated DBM was monitored biweekly by computed tomography until 11 weeks postoperatively while empty defects served as controls. By the seventh week, the bone defect in the albumin group was almost completely closed (remaining defect 3.0 ± 2.3%), while uncoated DBM and unfilled control groups still had significant defects (uncoated: 40.2 ± 9.1%, control: 52.4 ± 8.9%). Higher density values were also observed in the albumin coated DBM group. In addition, the serum albumin enhanced group showed significantly higher volume of newly formed bone in the microCT analysis and produced significantly higher breaking force and stiffness compared to the uncoated grafts (peak breaking force: uncoated: 15.7 ± 4 N, albumin 46.1 ± 11 N). In conclusion, this investigation shows that implanting serum albumin coated DBM significantly reduces healing period in nonhealing defects and results in mechanically stronger bone. These results also support the idea that serum albumin coating provides a convenient milieu for stem cell function, and a much improved bone grafting success can be achieved without the use of exogenous stem cells.

  18. Different matrix evaluation for the bone regeneration of rats' femours using time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Rusu, Laura-Cristina; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Zaharia, Cristian; Ardelean, Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-01-01

    The osteoconductive materials are important in bone regeneration procedures. Three dimensional (3D) reconstructions were obtained from the analysis. The aim of this study is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on two artificial matrixes inserted in previously artificially induced defects. For this study, under strict supervision 20 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were IngeniOss (for ten samples) and 4Bone(for the other ten samples). These materials were inserted into the induced defects. The femurs were investigated at 1 month, after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The scanning procedure is similar to that used in any CM, where the fast scanning is en-face (line rate) and the scanning in depth is much slower (at the frame rate). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The results showed open interfaces due to the insufficient healing process, as well as closed interfaces due to a new bone formation inside the defect. The conclusion of this study is that TD-OCT can act as a valuable tool in the investigation of the interface between the old bone and the one that has been newly created due to the osteoinductive process. The TD-OCT has proven a valuable tool for the non-invasive evaluation of the matrix bone interfaces.

  19. 3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study.

    PubMed

    Zhou, Xuan; Zhu, Wei; Nowicki, Margaret; Miao, Shida; Cui, Haitao; Holmes, Benjamin; Glazer, Robert I; Zhang, Lijie Grace

    2016-11-09

    Metastasis is one of the deadliest consequences of breast cancer, with bone being one of the primary sites of occurrence. Insufficient 3D biomimetic models currently exist to replicate this process in vitro. In this study, we developed a biomimetic bone matrix using 3D bioprinting technology to investigate the interaction between breast cancer (BrCa) cells and bone stromal cells (fetal osteoblasts and human bone marrow mesenchymal stem cells (MSCs)). A tabletop stereolithography 3D bioprinter was employed to fabricate a series of bone matrices consisting of osteoblasts or MSCs encapsulated in gelatin methacrylate (GelMA) hydrogel with nanocrystalline hydroxyapatite (nHA). When BrCa cells were introduced into the stromal cell-laden bioprinted matrices, we found that the growth of BrCa cells was enhanced by the presence of osteoblasts or MSCs, whereas the proliferation of the osteoblasts or MSCs was inhibited by the BrCa cells. The BrCa cells co-cultured with MSCs or osteoblasts presented increased vascular endothelial growth factor (VEGF) secretion in comparison to that of monocultured BrCa cells. Additionally, the alkaline phosphatase activity of MSCs or osteoblasts was reduced after BrCa cell co-culture. These results demonstrate that the 3D bioprinted matrix, with BrCa cells and bone stromal cells, provides a suitable model with which to study the interactive effects of cells in the context of an artificial bone microenvironment and thus may serve as a valuable tool for the investigation of postmetastatic breast cancer progression in bone.

  20. Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia.

    PubMed

    Zhukauskas, Rasa; Dodds, Robert A; Hartill, Caroline; Arola, Travis; Cobb, Ronald R; Fox, Casey

    2010-03-01

    Complex fractures resulting in bone loss or impaired fracture healing remain problematic in trauma and orthopedic surgeries. Many bone graft substitutes have been developed and are commercially available. These products differ in their osteoconductive and osteoinductive properties. Differential enhancement of these properties may optimize the performance of these products for various orthopedic and craniofacial applications. The use of bone graft substitutes offers the ability to lessen the possible morbidity of the harvest site in autografts. The objective of the present study was to compare the ability of two bone graft substitutes, BioSet RT, an allograft demineralized bone matrix formulation, and ProOsteon 500R, a coralline hydroxyapatite, in a rabbit critical tibial defect model. BioSet RT and ProOsteon 500R were implanted into a unicortical proximal metaphyseal tibial defect and evaluated for new bone formation. Samples were analyzed radiographically and histologically at 1 day, 6 weeks, 12 weeks, and 24 weeks post surgery. Both materials were biocompatible and demonstrated significant bone growth and remodeling. At 12 weeks, the BioSet RT implanted sites demonstrated significantly more defect closure and bone remodeling as determined by radiographic analyses with 10 out of 14 defects being completely healed versus 1 out of 14 being completely healed in the ProOsteon 500R implanted sites. At 24 weeks, both materials demonstrated complete closure of the defect as determined histologically. There were no statistical differences in radiographic scores between the two implanted materials. However, there was an observable trend that the BioSet RT material generated higher histological and radiographic scores, although not statistically significant. This study provides evidence that both BioSet RT and ProOsteon 500R are biocompatible and able to induce new bone formation as measured in this rabbit model. In addition, this in vivo study demonstrates the ability of

  1. The effect of enamel matrix derivative (Emdogain) on bone formation: a systematic review.

    PubMed

    Rathe, Florian; Junker, Rüdiger; Chesnutt, Betsy M; Jansen, John A

    2009-09-01

    This systematic review focused on the question, if and to what extent enamel matrix derivative (Emdogain) [EMD]) promotes the regeneration of bone. The influence of combinations with other biomaterials was additionally evaluated. Twenty histomorphometric studies were included in this systematic review. Main results of the reviewed articles were (i) guide tissue regeneration (GTR) of infrabony defects seems to result in a higher degree of bone regeneration compared to treatment with EMD; (ii) combined therapy (GTR + EMD) of infrabony defects might not lead to better results than GTR therapy alone; (iii) there seems to be no additional benefit of combined therapy (GTR + EMD) in furcation defects over GTR therapy alone; (iv) EMD seems to lead to more bone regeneration of infrabony defects compared to open flap debridement; (v) however, EMD application might result in more bone formation when applied in supporting defects compared to nonsupporting defects; and (vi) EMD does not seem to promote external jaw/parietal bone formation in the titanium capsule model. The results of one study that suggest that EMD increases the initial growth of trabecular bone around endosseous implants by new bone induction need to be confirmed by additional research.

  2. Tendon Reattachment to Bone in an Ovine Tendon Defect Model of Retraction Using Allogenic and Xenogenic Demineralised Bone Matrix Incorporated with Mesenchymal Stem Cells

    PubMed Central

    2016-01-01

    Background Tendon-bone healing following rotator cuff repairs is mainly impaired by poor tissue quality. Demineralised bone matrix promotes healing of the tendon-bone interface but its role in the treatment of tendon tears with retraction has not been investigated. We hypothesized that cortical demineralised bone matrix used with minimally manipulated mesenchymal stem cells will result in improved function and restoration of the tendon-bone interface with no difference between xenogenic and allogenic scaffolds. Materials and Methods In an ovine model, the patellar tendon was detached from the tibial tuberosity and a complete distal tendon transverse defect measuring 1 cm was created. Suture anchors were used to reattach the tendon and xenogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5), or allogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5) were used to bridge the defect. Graft incorporation into the tendon and its effect on regeneration of the enthesis was assessed using histomorphometry. Force plate analysis was used to assess functional recovery. Results Compared to the xenograft, the allograft was associated with significantly higher functional weight bearing at 6 (P = 0.047), 9 (P = 0.028), and 12 weeks (P = 0.009). In the allogenic group this was accompanied by greater remodeling of the demineralised bone matrix into tendon-like tissue in the region of the defect (p = 0.015), and a more direct type of enthesis characterized by significantly more fibrocartilage (p = 0.039). No failures of tendon-bone healing were noted in either group. Conclusion Demineralised bone matrix used with minimally manipulated mesenchymal stem cells promotes healing of the tendon-bone interface in an ovine model of acute tendon retraction, with superior mechanical and histological results associated with use of an allograft. PMID:27606597

  3. Mechanisms of fluid-flow-induced matrix production in bone tissue engineering.

    PubMed

    Morris, H L; Reed, C I; Haycock, J W; Reilly, G C

    2010-12-01

    Matrix production by tissue-engineered bone is enhanced when the growing tissue is subjected to mechanical forces and/or fluid flow in bioreactor culture. Cells deposit collagen and mineral, depending upon the mechanical loading that they receive. However, the molecular mechanisms of flow-induced signal transduction in bone are poorly understood. The hyaluronan (HA) glycocalyx has been proposed as a potential mediator of mechanical forces in bone. Using a parallel-plate flow chamber the effects of removal of HA on flow-induced collagen production and NF-kappaB activation in MLO-A5 osteoid osteocytes were investigated. Short periods of fluid flow significantly increased collagen production and induced translocation of the NF-kappaB subunit p65 to the cell's nuclei in 65 per cent of the cell population. Enzymatic removal of the HA coat and antibody blocking of CD44 (a transmembrane protein that binds to HA) eliminated the fluid-flow-induced increase in collagen production but had no effect on the translocation of p65. HA and CD44 appear to play roles in transducing the flow signals that modulate collagen production over long-term culture but not in the short-term flow-induced activation of NF-kappaB, implying that multiple signalling events are initiated from the commencement of flow. Understanding the mechanotransduction events that enable fluid flow to stimulate bone matrix production will allow the optimization of bioreactor design and flow profiles for bone tissue engineering.

  4. TIEG1-NULL OSTEOCYTES DISPLAY DEFECTS IN THEIR MORPHOLOGY, DENSITY AND SURROUNDING BONE MATRIX

    PubMed Central

    Haddad, Oualid; Hawse, John R.; Subramaniam, Malayannan; Spelsberg, Thomas C.; Bensamoun, Sabine F.

    2011-01-01

    Through the development of TGFβ-inducible early gene-1 (TIEG1) knockout (KO) mice, we have demonstrated that TIEG1 plays an important role in osteoblast-mediated bone mineralization, and in bone resistance to mechanical strain. To further investigate the influence of TIEG1 in skeletal maintenance, osteocytes were analyzed by transmission electron microscopy using TIEG1 KO and wild-type mouse femurs at one, three and eight months of age. The results revealed an age-dependent change in osteocyte surface and density, suggesting a role for TIEG1 in osteocyte development. Moreover, there was a decrease in the amount of hypomineralized bone matrix surrounding the osteocytes in TIEG1 KO mice relative to wild-type controls. While little is known about the function or importance of this hypomineralized bone matrix immediately adjacent to osteocytes, this study reveals significant differences in this bone microenvironment and suggests that osteocyte function may be compromised in the absence of TIEG1 expression. PMID:22121306

  5. Isolation of Human Mesenchymal Stem Cells and their Cultivation on the Porous Bone Matrix

    PubMed Central

    Rodríguez-Fuentes, Nayeli; Reynoso-Ducoing, Olivia; Rodríguez-Hernández, Ana; Ambrosio-Hernández, Javier R.; Piña-Barba, Maria C.; Zepeda-Rodríguez, Armando; Cerbón-Cervantes, Marco A.; Tapia-Ramírez, José; Alcantara-Quintana, Luz E.

    2015-01-01

    Mesenchymal stem cells (MSCs) have a differentiation potential towards osteoblastic lineage when they are stimulated with soluble factors or specific biomaterials. This work presents a novel option for the delivery of MSCs from human amniotic membrane (AM-hMSCs) that employs bovine bone matrix Nukbone (NKB) as a scaffold. Thus, the application of MSCs in repair and tissue regeneration processes depends principally on the efficient implementation of the techniques for placing these cells in a host tissue. For this reason, the design of biomaterials and cellular scaffolds has gained importance in recent years because the topographical characteristics of the selected scaffold must ensure adhesion, proliferation and differentiation into the desired cell lineage in the microenvironment of the injured tissue. This option for the delivery of MSCs from human amniotic membrane (AM-hMSCs) employs bovine bone matrix as a cellular scaffold and is an efficient culture technique because the cells respond to the topographic characteristics of the bovine bone matrix Nukbone (NKB), i.e., spreading on the surface, macroporous covering and colonizing the depth of the biomaterial, after the cell isolation process. We present the procedure for isolating and culturing MSCs on a bovine matrix. PMID:25742362

  6. Isolation of human mesenchymal stem cells and their cultivation on the porous bone matrix.

    PubMed

    Rodríguez-Fuentes, Nayeli; Reynoso-Ducoing, Olivia; Rodríguez-Hernández, Ana; Ambrosio-Hernández, Javier R; Piña-Barba, Maria C; Zepeda-Rodríguez, Armando; Cerbón-Cervantes, Marco A; Tapia-Ramírez, José; Alcantara-Quintana, Luz E

    2015-02-09

    Mesenchymal stem cells (MSCs) have a differentiation potential towards osteoblastic lineage when they are stimulated with soluble factors or specific biomaterials. This work presents a novel option for the delivery of MSCs from human amniotic membrane (AM-hMSCs) that employs bovine bone matrix Nukbone (NKB) as a scaffold. Thus, the application of MSCs in repair and tissue regeneration processes depends principally on the efficient implementation of the techniques for placing these cells in a host tissue. For this reason, the design of biomaterials and cellular scaffolds has gained importance in recent years because the topographical characteristics of the selected scaffold must ensure adhesion, proliferation and differentiation into the desired cell lineage in the microenvironment of the injured tissue. This option for the delivery of MSCs from human amniotic membrane (AM-hMSCs) employs bovine bone matrix as a cellular scaffold and is an efficient culture technique because the cells respond to the topographic characteristics of the bovine bone matrix Nukbone (NKB), i.e., spreading on the surface, macroporous covering and colonizing the depth of the biomaterial, after the cell isolation process. We present the procedure for isolating and culturing MSCs on a bovine matrix.

  7. Diversity of bone matrix adhesion proteins modulates osteoblast attachment and organization of actin cytoskeleton.

    PubMed

    Demais, V; Audrain, C; Mabilleau, G; Chappard, D; Baslé, M F

    2014-06-01

    Interaction of cells with extracellular matrix is an essential event for differentiation, proliferation and activity of osteoblasts. In bone, binding of osteoblasts to bone matrix is required to determine specific activities of the cells and to synthesize matrix bone proteins. Integrins are the major cell receptors involved in the cell linkage to matrix proteins such as fibronectin, type I collagen and vitronectin, via the RGD-sequences. In this study, cultures of osteoblast-like cells (Saos-2) were done on coated glass coverslips in various culture conditions: DMEM alone or DMEM supplemented with poly-L-lysine (PL), fetal calf serum (FCS), fibronectin (FN), vitronectin (VN) and type I collagen (Col-I). The aim of the study was to determine the specific effect of these bone matrix proteins on cell adherence and morphology and on the cytoskeleton status. Morphological characteristics of cultured cells were studied using scanning electron microscopy and image analysis. The heterogeneity of cytoskeleton was studied using fractal analysis (skyscrapers and blanket algorithms) after specific preparation of cells to expose the cytoskeleton. FAK and MAPK signaling pathways were studied by western blotting in these various culture conditions. Results demonstrated that cell adhesion was reduced with PL and VN after 240 min. After 60 min of adhesion, cytoskeleton organization was enhanced with FN, VN and Col-I. No difference in FAK phosphorylation was observed but MAPK phosphorylation was modulated by specific adhesion on extracellular proteins. These results indicate that culture conditions modulate cell adhesion, cytoskeleton organization and intracellular protein pathways according to extracellular proteins present for adhesion.

  8. Purification of water-soluble bone-inductive protein from bovine demineralized bone matrix.

    PubMed

    Yoshimura, Y; Hirano, A; Nishida, M; Kawada, J; Horisaka, Y; Okamoto, Y; Matsumoto, N; Yamashita, K; Takagi, T

    1993-05-01

    The water-soluble fraction containing bone-inductive activity was purified from guanidine-hydrochloride extracts of bovine demineralized bone. The purification steps include ultrafiltration, dialysis, affinity chromatography on heparin-Sepharose and gel chromatography on Sephacryl S-200. Combination of these steps was proven to be an effective and rapid method for the purification of this protein. Subcutaneous implantation of the water-soluble protein with type I collagen was carried out in the thorax of rats. When alkaline phosphatase activity and calcium content in implants were used as indices for purification, the water-soluble bone-inductive protein was purified > 600-fold according to the enzyme activity and 64-fold according to the calcium content. A morphological examination revealed that many chondrocyte and osteoblast cells were seen in the location of the implanted material. Sodium dodecyl sulfate/gel electrophoresis of the protein produced in this way under non-reducing conditions revealed four protein bands of 18, 16, 14 and 11 kDa. None of the separated bands had any biological activity. This result suggests that the water-soluble bone-inductive activity depends on an associated form of various proteins in the range of 18 to 11 kDa.

  9. Effect of enamel matrix derivative (Emdogain) on bone defects in rabbit tibias.

    PubMed

    Cornelini, Roberto; Scarano, Antonio; Piattelli, Maurizio; Andreana, Sebastiano; Covani, Ugo; Quaranta, Alessandro; Piattelli, Adriano

    2004-01-01

    The aim of this study was to assess the effect of an enamel matrix derivative (Emdogain, Biora, AB, Malmö, Sweden) on bone healing. Ten New Zealand rabbits, weighing about 2.5 kg, were used. One 8-mm bone defect was created in each tibia. The defect on the right leg was filled with Emdogain, whereas the defect on the opposite leg was left unfilled as control. A total of 20 defects were created. Five rabbits each were killed at 4 and 8 weeks with an overdose of Tanax. Block sections containing the defects were retrieved and the specimens processed for light microscopy examination. The slides were stained with acid and basic fuchsin and toluidine blue. Histologically, no differences were noted in both groups at each observation period; in the test group, remnants of the implanted Emdogain were not present at 4 weeks. Newly formed bone was detectable in both groups at all observation times. At 8 weeks, both groups showed mature bone, and in the test group the material implanted was not visible. No inflammatory cells were visible in both groups. In conclusion, our results indicate that Emdogain implanted in bone defects is fully resorbed after 4 to 8 weeks and does not adversely affect bone formation.

  10. Development of biomimetic nanocomposites as bone extracellular matrix for human osteoblastic cells.

    PubMed

    Bhowmick, Arundhati; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-05-05

    Here, we have developed biomimetic nanocomposites containing chitosan, poly(vinyl alcohol) and nano-hydroxyapatite-zinc oxide as bone extracellular matrix for human osteoblastic cells and characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction. Scanning electron microscopy images revealed interconnected macroporous structures. Moreover, in this study, the problem related to fabricating a porous composite with good mechanical strength has been resolved by incorporating 5wt% of nano-hydroxyapatite-zinc oxide into chitosan-poly(vinyl alcohol) matrix; the present composite showed high tensile strength (20.25MPa) while maintaining appreciable porosity (65.25%). These values are similar to human cancellous bone. These nanocomposites also showed superior water uptake, antimicrobial and biodegradable properties than the previously reported results. Compatibility with human blood and pH was observed, indicating nontoxicity of these materials to the human body. Moreover, proliferation of osteoblastic MG-63 cells onto the nanocomposites was also observed without having any negative effect.

  11. Effects of the decellularization method on the local stiffness of acellular lungs.

    PubMed

    Melo, Esther; Garreta, Elena; Luque, Tomas; Cortiella, Joaquin; Nichols, Joan; Navajas, Daniel; Farré, Ramon

    2014-05-01

    Lung bioengineering, a novel approach to obtain organs potentially available for transplantation, is based on decellularizing donor lungs and seeding natural scaffolds with stem cells. Various physicochemical protocols have been used to decellularize lungs, and their performance has been evaluated in terms of efficient decellularization and matrix preservation. No data are available, however, on the effect of different decellularization procedures on the local stiffness of the acellular lung. This information is important since stem cells directly sense the rigidity of the local site they are engrafting to during recellularization, and it has been shown that substrate stiffness modulates cell fate into different phenotypes. The aim of this study was to assess the effects of the decellularization procedure on the inhomogeneous local stiffness of the acellular lung on five different sites: alveolar septa, alveolar junctions, pleura, and vessels' tunica intima and tunica adventitia. Local matrix stiffness was measured by computing Young's modulus with atomic force microscopy after decellularizing the lungs of 36 healthy rats (Sprague-Dawley, male, 250-300 g) with four different protocols with/without perfusion through the lung circulatory system and using two different detergents (sodium dodecyl sulfate [SDS] and 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate [CHAPS]). The local stiffness of the acellular lung matrix significantly depended on the site within the matrix (p<0.001), ranging from ∼ 15 kPa at the alveolar septum to ∼ 60 kPa at the tunica intima. Acellular lung stiffness (p=0.003) depended significantly, albeit modestly, on the decellularization process. Whereas perfusion did not induce any significant differences in stiffness, the use of CHAPS resulted in a ∼ 35% reduction compared with SDS, the influence of the detergent being more important in the tunica intima. In conclusion, lung matrix stiffness is considerably inhomogeneous, and

  12. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  13. Development of a synthetic tissue engineered 3D printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro.

    PubMed

    Adel-Khattab, Doaa; Giacomini, Francesca; Gildenhaar, Renate; Berger, Georg; Gomes, Cynthia; Linow, Ulf; Hardt, Martin; Peleska, Barbara; Günster, Jens; Stiller, Michael; Houshmand, Alireza; Abdel Ghaffar, Khaled; Gamal, Ahmed; El-Mofty, Mohamed; Knabe, Christine

    2016-11-15

    Over the last decade there have been increasing efforts to develop 3D scaffolds for bone tissue engineering from bioactive ceramics with 3D printing emerging as a promising technology. The overall objective of the present study was to generate a tissue engineered synthetic bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro, thereby mimicking the advantageous properties of autogenous bone grafts and facilitating usage for reconstructing segmental discontinuity defects in vivo. To this end, 3D scaffolds were developed from a silica containing calciumalkaliorthophosphate utilizing first a replica technique namely the Schwartzwalder Somers method (SSM), and second 3D printing, (i.e. rapid prototyping, RP). The mechanical and physical scaffold properties and their potential to facilitate homogenous colonization by osteogenic cells and extracellular bone matrix formation throughout the porous scaffold architecture were examined. To this end, osteoblastic cells were dynamically cultured for 7d on both scaffold types with two different concentrations of 1.5 and 3x10(6) cells/ml. The amount of cells and bone matrix formed and osteogenic marker expression were evaluated using hard tissue histology, immunohistochemical and histomorphometric analysis. 3D printed scaffolds (RPS) exhibited more micropores, greater compressive strength and silica release. RPS seeded with 3x10(6) cells/ml displayed greatest cell and extracellular matrix formation, mineralization and osteocalcin expression. In conclusion, RPS displayed superior mechanical and biological properties and facilitated generating a tissue engineered synthetic bone graft in vitro, which mimics the advantageous properties of autogenous bone grafts, by containing homogenously distributed terminally differentiated osteoblasts and mineralizing bone matrix and therefore is suitable for subsequent in vivo implantation for regenerating segmental discontinuity bone defects.

  14. The potential of comparative genomic hybridization as a tool in the differential diagnosis of matrix-producing bone lesions.

    PubMed

    Gebert, Carsten; Brinkschmidt, Christian; Bielack, Stefan; Bernhardt, Thomas; Jürgens, Heribert; Böcker, Werner; Winkelmann, Winfried; Bürger, Horst; Gosheger, Georg

    2006-07-01

    Matrix-producing bone lesions consist of a wide variety of benign and malignant conditions. With respect to morphology, an overlap exists between benign and malignant bone tumors that causes difficulties in the final determination of the tumor. This study was conducted to show the potential of comparative genomic hybridization as a tool in the differential diagnosis of matrix-producing bone lesions. Thirty benign bone tumors were evaluated by conventional comparative genomic hybridization. To test its diagnostic reliability, 5 additional cases were analyzed, all with differential diagnostic difficulties related to morphology and radiology. All were ultimately diagnosed as malignant sarcomas, and unbalanced alterations were detected. In contrast benign tumors or tumor-like lesions did not reveal any chromosomal alterations. Comparative genomic hybridization is a useful adjunct in the complicated differential diagnostic algorithms of matrix-producing bone tumors.

  15. Angiopoietin-1 peptide QHREDGS promotes osteoblast differentiation, bone matrix deposition and mineralization on biomedical materials.

    PubMed

    Feric, Nicole; Cheng, Calvin C H; Goh, M Cynthia; Dudnyk, Vyacheslav; Di Tizio, Val; Radisic, Milica

    2014-10-01

    Bone loss occurs as a consequence of a variety of diseases as well as from traumatic injuries, and often requires therapeutic intervention. Strategies for repairing and replacing damaged and/or lost bone tissue include the use of biomaterials and medical implant devices with and without osteoinductive coatings. The soluble growth factor angiopoietin-1 (Ang-1) has been found to promote cell adhesion and survival in a range of cell types including cardiac myocytes, endothelial cells and fibroblasts through an integrin-dependent mechanism. Furthermore, the short sequence QHREDGS has been identified as the integrin-binding sequence of Ang-1 and as a synthetic peptide has been found to possess similar integrin-dependent effects as Ang-1 in the aforementioned cell types. Integrins have been implicated in osteoblast differentiation and bone mineralization, processes critical to bone regeneration. By binding integrins on the osteoblast surface, QHREDGS could promote cell survival and adhesion, as well as conceivably osteoblast differentiation and bone mineralization. Here we immobilized QHREDGS onto polyacrylate (PA)-coated titanium (Ti) plates and polyethylene glycol (PEG) hydrogels. The osteoblast differentiation marker, alkaline phosphatase, peaked in activity 4-12 days earlier on the QHREDGS-immobilized PA-coated Ti plates than on the unimmobilized, DGQESHR (scrambled)- and RGDS-immobilized surfaces. Significantly more bone matrix was deposited on the QHREDGS-immobilized Ti surface than on the other surfaces as determined by atomic force microscopy. The QHREDGS-immobilized hydrogels also had a significantly higher mineral-to-matrix (M/M) ratio determined by Fourier transform infrared spectroscopy. Alizarin Red S and von Kossa staining and quantification, and environmental scanning electron microscopy showed that while both the QHREDGS- and RGDS-immobilized surfaces had extensive mineralization relative to the unimmobilized and DGQESHR-immobilized surfaces, the

  16. Biomineralization of a Self-Assembled Extracellular Matrix for Bone Tissue Engineering

    PubMed Central

    Meng, Yizhi; DiMasi, Elaine; Ba, Xiaolan; Rafailovich, Miriam; Pernodet, Nadine

    2009-01-01

    Understanding how biomineralization occurs in the extracellular matrix (ECM) of bone cells is crucial to the understanding of bone formation and the development of a successfully engineered bone tissue scaffold. It is still unclear how ECM mechanical properties affect protein-mineral interactions in early stages of bone mineralization. We investigated the longitudinal mineralization properties of MC3T3-E1 cells and the elastic modulus of their ECM using shear modulation force microscopy, synchrotron grazing incidence X-ray diffraction (GIXD), scanning electron microscopy, energy dispersive X-ray spectroscopy, and confocal laser scanning microscopy (CLSM). The elastic modulus of the ECM fibers underwent significant changes for the mineralizing cells, which were not observed in the nonmineralizing cells. On substrates conducive to ECM network production, the elastic modulus of mineralizing cells increased at time points corresponding to mineral production, whereas that of the nonmineralizing cells did not vary over time. The presence of hydroxyapatite in mineralizing cells and the absence thereof in the nonmineralizing ones were confirmed by GIXD, and CLSM showed that a restructuring of actin occurred only for mineral-producing cells. These results show that the correct and complete development of the ECM network is required for osteoblasts to mineralize. This in turn requires a suitably prepared synthetic substrate for bone development to succeed in vitro. PMID:18759666

  17. Biomineralization of a Self-Assembled Extracellular Matrix for Bone Tissue Engineering

    SciTech Connect

    Yizhi, M.; Yi-Xian, Q; DiMasi, E; Xiaolan, B; Rafailovich, M; Pernodet, N

    2009-01-01

    Understanding how biomineralization occurs in the extracellular matrix (ECM) of bone cells is crucial to the understanding of bone formation and the development of a successfully engineered bone tissue scaffold. It is still unclear how ECM mechanical properties affect protein-mineral interactions in early stages of bone mineralization. We investigated the longitudinal mineralization properties of MC3T3-E1 cells and the elastic modulus of their ECM using shear modulation force microscopy, synchrotron grazing incidence X-ray diffraction (GIXD), scanning electron microscopy, energy dispersive X-ray spectroscopy, and confocal laser scanning microscopy (CLSM). The elastic modulus of the ECM fibers underwent significant changes for the mineralizing cells, which were not observed in the nonmineralizing cells. On substrates conducive to ECM network production, the elastic modulus of mineralizing cells increased at time points corresponding to mineral production, whereas that of the nonmineralizing cells did not vary over time. The presence of hydroxyapatite in mineralizing cells and the absence thereof in the nonmineralizing ones were confirmed by GIXD, and CLSM showed that a restructuring of actin occurred only for mineral-producing cells. These results show that the correct and complete development of the ECM network is required for osteoblasts to mineralize. This in turn requires a suitably prepared synthetic substrate for bone development to succeed in vitro.

  18. Biomineralization of a self-assembled extracellular matrix for bone tissue engineering.

    PubMed

    Meng, Yizhi; Qin, Yi-Xian; DiMasi, Elaine; Ba, Xiaolan; Rafailovich, Miriam; Pernodet, Nadine

    2009-02-01

    Understanding how biomineralization occurs in the extracellular matrix (ECM) of bone cells is crucial to the understanding of bone formation and the development of a successfully engineered bone tissue scaffold. It is still unclear how ECM mechanical properties affect protein-mineral interactions in early stages of bone mineralization. We investigated the longitudinal mineralization properties of MC3T3-E1 cells and the elastic modulus of their ECM using shear modulation force microscopy, synchrotron grazing incidence X-ray diffraction (GIXD), scanning electron microscopy, energy dispersive X-ray spectroscopy, and confocal laser scanning microscopy (CLSM). The elastic modulus of the ECM fibers underwent significant changes for the mineralizing cells, which were not observed in the nonmineralizing cells. On substrates conducive to ECM network production, the elastic modulus of mineralizing cells increased at time points corresponding to mineral production, whereas that of the nonmineralizing cells did not vary over time. The presence of hydroxyapatite in mineralizing cells and the absence thereof in the nonmineralizing ones were confirmed by GIXD, and CLSM showed that a restructuring of actin occurred only for mineral-producing cells. These results show that the correct and complete development of the ECM network is required for osteoblasts to mineralize. This in turn requires a suitably prepared synthetic substrate for bone development to succeed in vitro.

  19. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects.

    PubMed

    Wang, Yang; Li, Zheng-Wei; Luo, Min; Li, Ya-Jun; Zhang, Ke-Qiang

    2015-06-01

    The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was

  20. Effect of allogenic freeze-dried demineralized bone matrix on guided tissue regeneration in dogs.

    PubMed

    Caplanis, N; Lee, M B; Zimmerman, G J; Selvig, K A; Wikesjö, U M

    1998-08-01

    This randomized, split-mouth study was designed to evaluate the adjunctive effect of allogenic, freeze-dried, demineralized bone matrix (DBM) to guided tissue regeneration (GTR). Contralateral fenestration defects (6 x 4 mm) were created 6 mm apical to the buccal alveolar crest on maxillary canine teeth in 6 beagle dogs. DBM was implanted into one randomly selected fenestration defect. Expanded polytetrafluoroethylene (ePTFE) membranes were used to provide bilateral GTR. Tissue blocks including defects with overlying membranes and soft tissues were harvested following a four-week healing interval and prepared for histometric analysis. Differences between GTR+DBM and GTR defects were evaluated using a paired t-test (N = 6). DBM was discernible in all GTR+DBM defects with limited, if any, evidence of bone metabolic activity. Rather, the DBM particles appeared solidified within a dense connective tissue matrix, often in close contact to the instrumented root. There were no statistically significant differences between the GTR+DBM versus the GTR condition for any histometric parameter examined. Fenestration defect height averaged 3.7+/-0.3 and 3.9+/-0.3 mm, total bone regeneration 0.8+/-0.6 and 1.5+/-0.8 mm, and total cementum regeneration 2.0+/-1.3 and 1.6+/-1.7 mm for GTR+DBM and GTR defects, respectively. The histologic and histometric observations, in concert, suggest that allogenic freeze-dried DBM has no adjunctive effect to GTR in periodontal fenestration defects over a four-week healing interval. The critical findings were 1) the DBM particles remained, embedded in dense connective tissue without evidence of bone metabolic activity; and 2) limited and similar amounts of bone and cementum regeneration were observed for both the GTR+DBM and GTR defects.

  1. Osteoclast precursor interaction with bone matrix induces osteoclast formation directly by an interleukin-1-mediated autocrine mechanism.

    PubMed

    Yao, Zhenqiang; Xing, Lianping; Qin, Chunlin; Schwarz, Edward M; Boyce, Brendan F

    2008-04-11

    Interleukin-1 (IL-1) and tumor necrosis factor (TNF) mediate bone resorption in a variety of diseases affecting bone. Like TNF, IL-1 is secreted by osteoclast precursors (OCPs), but unlike TNF, it does not induce osteoclast formation directly from OCPs in vitro. TNF induces IL-1 expression and activates c-Fos, a transcription factor required in OCPs for osteoclast formation. Here, we examined whether IL-1 can induce osteoclast formation directly from OCPs overexpressing c-Fos and whether interaction with bone matrix affects OCP cytokine expression. We infected OCPs with c-Fos or green fluorescent protein retrovirus, cultured them with macrophage colony-stimulating factor and IL-1 on bone slices or plastic dishes, and assessed osteoclast and resorption pit formation and expression of IL-1 by OCPs. We used a Transwell assay to determine whether OCPs secrete IL-1 when they interact with bone matrix. IL-1 induced osteoclast formation directly from c-Fos-expressing OCPs on plastic. c-Fos-expressing OCPs formed osteoclasts spontaneously on bone slices without addition of cytokines. OCPs on bone secreted IL-1, which induced osteoclast formation from c-Fos-expressing OCPs in the lower Transwell dishes. The bone matrix proteins dentin sialoprotein and osteopontin, but not transforming growth factor-beta, stimulated OCP expression of IL-1 and induced c-Fos-expressing OCP differentiation into osteoclasts. Osteoclasts eroding inflamed joints have higher c-Fos expression compared with osteoclasts inside bone. We conclude that OCPs expressing c-Fos may induce their differentiation directly into osteoclasts by an autocrine mechanism in which they produce IL-1 through interaction with bone matrix. TNF could induce c-Fos expression in OCPs at sites of inflammation in bone to promote this autocrine mechanism and thus amplify bone loss.

  2. Podocan-like protein: a novel small leucine-rich repeat matrix protein in bone.

    PubMed

    Mochida, Yoshiyuki; Kaku, Masaru; Yoshida, Keiko; Katafuchi, Michitsuna; Atsawasuwan, Phimon; Yamauchi, Mitsuo

    2011-07-01

    Recently, significant attention has been drawn to the biology of small leucine-rich repeat proteoglycans (SLRPs) due to their multiple functionalities in various cell types and tissues. Here, we characterize a novel SLRP member, "Podocan-like (Podnl) protein" identified by a bioinformatics approach. The Podnl protein has a signal peptide, a unique cysteine-rich N-terminal cluster, 21 leucine-rich repeat (LRR) motifs, and one putative N-glycosylation site. This protein is structurally similar to podocan in SLRPs. The gene was highly expressed in mineralized tissues and in osteoblastic cells and the high expression level was observed at and after matrix mineralization in vitro. Podnl was enriched in newly formed bones based on immunohistochemical analysis. When Podnl was transfected into osteoblastic cells, the protein with N-glycosylation was detected mainly in the cultured medium, indicating that Podnl is a secreted N-glycosylated protein. The endogenous Podnl protein was also present in bone matrix. These data provide a new insight into our understanding of the emerging SLRP functions in bone formation.

  3. Nanostructured biomaterials from electrospun demineralized bone matrix: a survey of processing and crosslinking strategies.

    PubMed

    Leszczak, Victoria; Place, Laura W; Franz, Natalee; Popat, Ketul C; Kipper, Matt J

    2014-06-25

    In the design of scaffolds for tissue engineering biochemical function and nanoscale features are of particular interest. Natural polymers provide a wealth of biochemical function, but do not have the processability of synthetic polymers, limiting their ability to mimic the hierarchy of structures in the natural extracellular matrix. Thus, they are often combined with synthetic carrier polymers to enable processing. Demineralized bone matrix (DBM), a natural polymer, is allograft bone with inorganic material removed. DBM contains the protein components of bone, which includes adhesion ligands and osteoinductive signals, such as important growth factors. Herein we describe a novel method for tuning the nanostructure of DBM through electrospinning without the use of a carrier polymer. This work surveys solvents and solvent blends for electrospinning DBM. Blends of hexafluoroisopropanol and trifluoroacetic acid are studied in detail. The effects of DBM concentration and dissolution time on solution viscosity are also reported and correlated to observed differences in electrospun fiber morphology. We also present a survey of techniques to stabilize the resultant fibers with respect to aqueous environments. Glutaraldehyde vapor treatment is successful at maintaining both macroscopic and microscopic structure of the electrospun DBM fibers. Finally, we report results from tensile testing of stabilized DBM nanofiber mats, and preliminary evaluation of their cytocompatibility. The DBM nanofiber mats exhibit good cytocompatibility toward human dermal fibroblasts (HDF) in a 4-day culture; neither the electrospun solvents nor the cross-linking results in any measurable residual cytotoxicity toward HDF.

  4. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models.

    PubMed

    Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang

    2010-06-01

    In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization.

  5. Production of an osteoinductive demineralised bone matrix powder without the use of organic solvents.

    PubMed

    Eagle, M J; Rooney, P; Kearney, J N

    2015-09-01

    Demineralised bone matrix (DBM) is produced by grinding cortical bone into a powder, sieving the powder to obtain a desired size range and then demineralising the powder using acid. Protocols for the production of DBM powder have been published since 1965 and the powder can be used in lyophilised form or it can be mixed with a carrier to produce a paste or putty. The powder is generally produced from cortical bone which has been processed to remove blood, bone marrow and bone marrow components, including fat. Removal of fat is accomplished by incorporating incubation in an organic solvent, often chloroform, chloroform/methanol or acetone. The use of organic solvents in a clean room environment in a human tissue bank is problematic and involves operator exposure and the potential for the solvent to be trapped in air filters or recirculated throughout the clean room suite. Consequently, in this study, we have developed a cortical bone washing step which removes fat/lipid without the use of an organic solvent. Bone was prepared from six femoral shafts from three donors by dissecting soft tissue and bisecting the shaft, the shafts were then cut into ~9-10 cm lengths. These struts were then taken through a series of hot water washes at 56-59 °C, centrifugation and decontamination steps. Washed cortical struts were then lyophilised before being ground with a compressed air milling machine. The ground bone was sieved, demineralised, freeze-dried and terminally sterilised with a target dose of 25 kGy gamma irradiation. The DBM powder was evaluated for residual calcium content, in vitro cytotoxicity and osteoinductivity by implantation into the muscle of an athymic mouse. Data indicated that in addition to removing in excess of 97% DNA and extractable soluble protein, the washing protocol reduced lipid 10,000-fold. The processed bone was easily ground without clogging the grinder; the sterilised DBM powder was not cytotoxic but was osteoinductive in the animal model

  6. Evaluation of horizontal ridge augmentation using beta tricalcium phosphate and demineralized bone matrix: A comparative study

    PubMed Central

    Shalash, Mahmoud A.; Rahman, Hatem A.; Azim, Amr A.; Neemat, Amani H.; Hawary, Hesham E.

    2013-01-01

    Objectives: To evaluate the effectiveness of beta tricalcium phosphate (β-TCP) alone compared to β-TCP and Demineralized Bone Matrix (DBM) in regenerating localized horizontal maxillary alveolar ridge deficiencies prior to implant placement. Study Design: The study included 20 patients with horizontal maxillary ridge deficiencies limited to one or more neighbouring teeth and initial ridge width of ≤ 5mmm. Patients were divided equally into two equal groups. Ridge augmentation was performed using Guided Bone Regeneration (GBR) principals. In group I GBR was performed using β-TCP only, while in group II both β-TCP and DBM were used. Following a 6 months healing period, bone cores from both groups were retrieved and implants were inserted. Specimens were examined histologically to calculate percentage of mineralized bone. Apical and crestal changes in ridge dimensions were calculated by digital subtraction using Cone Beam Computed Tomography (CBCT) immediately after graft placement and six months later. Results: There was a statistically significant difference between the mean area percentage of mineralized bone between both groups where it was 40.1 % (range: 27.76-% 66.29 %) for group I and 68.96 % (range: 60.07 % - 87.33 %) for group II. Radiograpically, the mean ridge width in group I increased crestally to 4.66 mm (range:3.5-5mm) and apically to 6.12 mm (range: 4.1-6.7 mm). In group II the mean ridge width increased crestally to 5.2 mm (range 4.9-5.4mm) and apically to 6.9 mm (range 6.0-7.8 mm). Group II showed more bone gain with a mean of 1.37 mm crestally and 2.44 mm apically. This difference however was not statistically significant Conclusion: Within the limitations of this study the combination of DBM and β-TCP can be used effectively in cases exhibiting minimal alveolar ridge defects. Key words:Guided bone regeneration, equine bone, alloplast, bone graft. PMID:24455091

  7. Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix.

    PubMed

    Ben-David, Dror; Srouji, Samer; Shapira-Schweitzer, Keren; Kossover, Olga; Ivanir, Eran; Kuhn, Gisela; Müller, Ralph; Seliktar, Dror; Livne, Erella

    2013-04-01

    Bone repair strategies utilizing resorbable biomaterial implants aim to stimulate endogenous cells in order to gradually replace the implant with functional repair tissue. These biomaterials should therefore be biodegradable, osteoconductive, osteoinductive, and maintain their integrity until the newly formed host tissue can contribute proper function. In recent years there has been impressive clinical outcomes for this strategy when using osteoconductive hydrogel biomaterials in combination with osteoinductive growth factors such as human recombinant bone morphogenic protein (hrBMP-2). However, the success of hrBMP-2 treatments is not without risks if the factor is delivered too rapidly and at very high doses because of a suboptimal biomaterial. Therefore, the aim of this study was to evaluate the use of a PEGylated fibrinogen (PF) provisional matrix as a delivery system for low-dose hrBMP-2 treatment in a critical size maxillofacial bone defect model. PF is a semi-synthetic hydrogel material that can regulate the release of physiological doses of hrBMP-2 based on its controllable physical properties and biodegradation. hrBMP-2 release from the PF material and hrBMP-2 bioactivity were validated using in vitro assays and a subcutaneous implantation model in rats. Critical size calvarial defects in mice were treated orthotopically with PF containing 8 μg/ml hrBMP-2 to demonstrate the capacity of these bioactive implants to induce enhanced bone formation in as little as 6 weeks. Control defects treated with PF alone or left empty resulted in far less bone formation when compared to the PF/hrBMP-2 treated defects. These results demonstrate the feasibility of using a semi-synthetic biomaterial containing small doses of osteoinductive hrBMP-2 as an effective treatment for maxillofacial bone defects.

  8. Effectiveness of Posterolateral Lumbar Fusion Varies with the Physical Properties of Demineralized Bone Matrix Strip

    PubMed Central

    Kim, Dae-Hee; Park, Ji-Hun; Johnstone, Brian; Yoo, Jung-U

    2015-01-01

    Study Design A randomized, controlled animal study. Purpose To investigate the effectiveness of fusion and new bone formation induced by demineralized bone matrix (DBM) strips with jelly strengths. Overview of Literature The form of the DBM can make a difference to the outcome. The effect of different jelly strengths on the ability of DBM to form new bone is not known. Methods Forty-eight rabbits were randomized into a control group and two experimental groups. In the control group (group 1), 1.4 g of autologous iliac crest bone was placed bilaterally. In the experimental groups, a high jelly strength DBM-hyaluronic acid (HA)-gelatin strip (group 2) and a low jelly strength DBM-HA-gelatin strip (group 3) were used. The fusion was assessed with manual manipulation and radiographs. The volume of the fusion mass was determined from computed tomographic images. Results The fusion rates as determined by manual palpation were 37.5%, 93.8% and 50.0% in group 1, group 2, and group 3, respectively (p<0.05). By radiography, the fusion rate of High jelly strength DBM strip was statistically significantly greater than that of the other alternatives (p<0.05). The mean bone volume of the fusion mass as determined by computed tomography was 2,142.2±318.5 mm3, 3,132.9±632.1 mm3, and 2,741.5±380.4 mm3 in group 1, group 2, and group 3, respectively (p<0.05). Conclusions These results indicate that differences in the structural and mechanical properties of gelatin that are associated with jelly strength influenced cellular responses such as cell viability and bony tissue ingrowth, facilitating greater bone fusion around high jelly strength implants. PMID:26097660

  9. Acellular ostrich corneal stroma used as scaffold for construction of tissue-engineered cornea

    PubMed Central

    Liu, Xian-Ning; Zhu, Xiu-Ping; Wu, Jie; Wu, Zheng-Jie; Yin, Yong; Xiao, Xiang-Hua; Su, Xin; Kong, Bin; Pan, Shi-Yin; Yang, Hua; Cheng, Yan; An, Na; Mi, Sheng-Li

    2016-01-01

    AIM To assess acellular ostrich corneal matrix used as a scaffold to reconstruct a damaged cornea. METHODS A hypertonic saline solution combined with a digestion method was used to decellularize the ostrich cornea. The microstructure of the acellular corneal matrix was observed by transmission electron microscopy (TEM) and hematoxylin and eosin (H&E) staining. The mechanical properties were detected by a rheometer and a tension machine. The acellular corneal matrix was also transplanted into a rabbit cornea and cytokeratin 3 was used to check the immune phenotype. RESULTS The microstructure and mechanical properties of the ostrich cornea were well preserved after the decellularization process. In vitro, the methyl thiazolyl tetrazolium results revealed that extracts of the acellular ostrich corneas (AOCs) had no inhibitory effects on the proliferation of the corneal epithelial or endothelial cells or on the keratocytes. The rabbit lamellar keratoplasty showed that the transplanted AOCs were transparent and completely incorporated into the host cornea while corneal turbidity and graft dissolution occurred in the acellular porcine cornea (APC) transplantation. The phenotype of the reconstructed cornea was similar to a normal rabbit cornea with a high expression of cytokeratin 3 in the superficial epithelial cell layer. CONCLUSION We first used AOCs as scaffolds to reconstruct damaged corneas. Compared with porcine corneas, the anatomical structures of ostrich corneas are closer to those of human corneas. In accordance with the principle that structure determines function, a xenograft lamellar keratoplasty also confirmed that the AOC transplantation generated a superior outcome compared to that of the APC graft. PMID:27158598

  10. Improved bone morphogenetic protein-2 retention in an injectable collagen matrix using bifunctional peptides.

    PubMed

    Hamilton, Paul T; Jansen, Michelle S; Ganesan, Sathya; Benson, R Edward; Hyde-Deruyscher, Robin; Beyer, Wayne F; Gile, Joseph C; Nair, Shrikumar A; Hodges, Jonathan A; Grøn, Hanne

    2013-01-01

    To promote healing of many orthopedic injuries, tissue engineering approaches are being developed that combine growth factors such as Bone Morphogenetic Proteins (BMP) with biomaterial carriers. Although these technologies have shown great promise, they still face limitations. We describe a generalized approach to create target-specific modular peptides that bind growth factors to implantable biomaterials. These bifunctional peptide coatings provide a novel way to modulate biology on the surface of an implant. Using phage display techniques, we have identified peptides that bind with high affinity to BMP-2. The peptides that bind to BMP-2 fall into two different sequence clusters. The first cluster of peptide sequences contains the motif W-X-X-F-X-X-L (where X can be any amino acid) and the second cluster contains the motif F-P-L-K-G. We have synthesized bifunctional peptide linkers that contain BMP-2 and collagen-binding domains. Using a rat ectopic bone formation model, we have injected rhBMP-2 into a collagen matrix with or without a bifunctional BMP-2: collagen peptide (BC-1). The presence of BC-1 significantly increased osteogenic cellular activity, the area of bone formed, and bone maturity at the site of injection. Our results suggest that bifunctional peptides that can simultaneously bind to a growth factor and an implantable biomaterial can be used to control the delivery and release of growth factors at the site of implantation.

  11. [Aplication of demineralized human bone matrix in the surgical dental fusion treatment. Report of a case].

    PubMed

    Mora-Rincones, Oscar A; Corona-Rodríguez, Julio C; Díaz-Carvajal, Alvaro L; Franco-Carrero, Isabel C

    2008-06-01

    The purpose of this work is to present a surgical alternative in the treatment of the dental fusions through the placement of demineralized human bone matrix (DHBM) (Grafton Putty)*, immediately after the separation and extraction of the fused tooth to the permanent one. The dental fusion is a dental anomaly of union, that consists in the union of two dental germs during development. It could happen at any of the dental germ evolution stages from the dental sheet or from more advanced processes of differentiation. For the clinical treatment, an allograft of DHBM with osteoinductive and osteoconductive properties was used. This had several factors of bone growth, it allowed the gradual growth of a new bone that helped to correct the bone defects post-extraction and to cover the exposed distal wall of the remaining permanent tooth. The clinic evaluation and the periapical and panoramic radiographies images were used for the clinical control. It can be concluded that the surgical separation and the extraction of the tooth with less anatomical likeness to the contralateral and the placement of the DHBM, represent a surgical treatment alternative of the dental fusion.

  12. The effect of enamel matrix derivative (Emdogain®) on gene expression profiles of human primary alveolar bone cells.

    PubMed

    Yan, X Z; Rathe, F; Gilissen, C; van der Zande, M; Veltman, J; Junker, R; Yang, F; Jansen, J A; Walboomers, X F

    2014-06-01

    Emdogain® is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain® on expression profiles of human-derived bone cells with the help of the micro-array, and subsequent validation. Bone was harvested from non-smoking patients during dental implant surgery. After outgrowth, cells were cultured until subconfluence, treated for 24 h with either Emdogain® (100 µg/ml) or control medium, and subsequently RNA was isolated and micro-array was performed. The most important genes demonstrated by micro-array data were confirmed by qPCR and ELISA tests. Emdogain tipped the balance between genes expressed for bone formation and bone resorption towards a more anabolic effect, by interaction of the PGE2 pathway and inhibition of IL-7 production. In addition the results of the present study indicate that Emdogain possibly has an effect on gene expression for extracellular matrix formation of human bone cells, in particular on bone matrix formation and on proliferation and differentiation. With the micro-array and the subsequent validation, the genes possibly involved in Emdogain action on bone cells were identified. These results can contribute to establishing new products and pathways promoting bone formation.

  13. Extracellular matrix-inspired growth factor delivery systems for bone regeneration

    SciTech Connect

    Martino, Mikaël M.; Briquez, Priscilla S.; Maruyama, Kenta; Hubbell, Jeffrey A.

    2015-04-17

    Growth factors are very promising molecules to enhance bone regeneration. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems derive from the vastly supra-physiological doses of growth factor used without optimized delivery systems. Therefore, these issues have motivated the development of new delivery systems allowing better control of the spatio-temporal release and signaling of growth factors. Because the extracellular matrix (ECM) naturally plays a fundamental role in coordinating growth factor activity in vivo, a number of novel delivery systems have been inspired by the growth factor regulatory function of the ECM. After introducing the role of growth factors during the bone regeneration process, this review exposes different issues that growth factor-based therapies have encountered in the clinic and highlights recent delivery approaches based on the natural interaction between growth factor and the ECM.

  14. Granule Size–Dependent Bone Regenerative Capacity of Octacalcium Phosphate in Collagen Matrix

    PubMed Central

    Tanuma, Yuji; Anada, Takahisa; Honda, Yoshitomo; Kawai, Tadashi; Kamakura, Shinji; Echigo, Seishi

    2012-01-01

    The present study was designed to determine whether the osteoconductivity of octacalcium phosphate–collagen (OCP/Col) composite can be improved by controlling the granule size of OCP. The granules of synthetic OCP, with diameters in the range of 53 to 300, 300 to 500, and 500 to 1000 μm, were used as an inorganic source of composite materials mixed with atelo-Col. After vacuum dehydrothemal treatment, OCP/Col disks were implanted into critical-sized calvaria defects in Wistar rats for 4, 8, and 12 weeks and examined radiographically, histologically, histomorphometrically, and histochemically. The materials were characterized according to mercury intrusion porosimetry and scanning electron microscopy. X-ray diffraction was performed before and after implantation. The dissolution of OCP crystals in a Col matrix was determined by immersing OCP/Col disks in a culture medium. OCP/Col had a constant pore size (∼30 μm) regardless of OCP granule size. OCP in the Col matrix tended to convert to hydroxyapatite (HA) during the implantation. OCP/Col with the smallest granules of OCP enhances both bone regeneration and biodegradation the most through tartrate-resistant acid phosphatase (TRAP)-positive osteoclastic cellular resorption of OCP granules. The smallest OCP granules in the Col matrix showed the highest dissolution and had the greatest potential to form HA. The results indicated that the size of the included OCP granules can controll the osteoconductivity of OCP/Col. The overall results suggest that the physicochemical property of OCP crystals is a factor that determines the bone regenerative capacity of OCP/Col in critical-sized calvaria large bone defects in rats. PMID:21942921

  15. Time domain optical coherence tomography investigation of bone matrix interface in rat femurs

    NASA Astrophysics Data System (ADS)

    Rusu, Laura-Cristina; Negruá¹±iu, Meda-Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Topala, Florin-Ionel; Duma, Virgil-Florin; Rominu, Mihai; Podoleanu, Adrian G.

    2013-08-01

    The materials used to fabricate scaffolds for tissue engineering are derived from synthetic polymers, mainly from the polyester family, or from natural materials (e.g., collagen and chitosan). The mechanical properties and the structural properties of these materials can be tailored by adjusting the molecular weight, the crystalline state, and the ratio of monomers in the copolymers. Quality control and adjustment of the scaffold manufacturing process are essential to achieve high standard scaffolds. Most scaffolds are made from highly crystalline polymers, which inevitably result in their opaque appearance. Their 3-D opaque structure prevents the observation of internal uneven surface structures of the scaffolds under normal optical instruments, such as the traditional light microscope. The inability to easily monitor the inner structure of scaffolds as well as the interface with the old bone poses a major challenge for tissue engineering: it impedes the precise control and adjustment of the parameters that affect the cell growth in response to various mimicked culture conditions. The aim of this paper is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on different artificial matrixes inserted in previously artificially induced defects. For this study, 15 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were Bioss and 4bone. These materials were inserted into the induced defects. The femurs were investigated at 1 week, 1 month, 2 month and three month after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The scanning

  16. Improved binding of acidic bone matrix proteins to cationized filters during solid phase assays.

    PubMed

    Farach-Carson, M C; Wright, G C; Butler, W T

    1992-01-01

    A number of commercially available matrix filter supports have been designed for the immobilization of proteins following either electrotransfer from sodium dodecyl sulfate (SDS) polyacrylamide gels or direct application during dot blotting assays. These matrices differ with respect to chemical composition, charge, pore size, and degree of hydrophobicity. It follows that the properties of the protein(s) of interest will greatly influence the degree to which they interact with and ultimately bind to various filters. Acidic bone proteins contain diverse post-translational modifications that influence their interactions with solid phase matrices such as those used in immunoblotting (Western or dot blotting) or ion binding (overlay) procedures. This communication describes the results of a study comparing binding of various mixtures of non-collagenous acidic bone matrix phosphoproteins as well as purified osteopontin and osteocalcin to various filters including nitrocellulose and cationized paper or nylon. Based on our findings, we recommend the use of cationized filters for solid phase assays requiring the binding of these acidic macromolecules to background supports.

  17. Demineralized bone matrix as an osteoinductive biomaterial and in vitro predictors of its biological potential.

    PubMed

    Katz, Jordan M; Nataraj, Chandra; Jaw, Rebecca; Deigl, Elizabeth; Bursac, Predrag

    2009-04-01

    The osteoinductivity of demineralized bone matrix (DBM) varies from donor to donor as a result of varying levels of multiple growth factors, matrix integrity, and artifacts from material processing. Many in vitro assays are currently used for screening the osteoinductivity of DBM. The objectives of this study were to determine the correlation of specific growth factors and in vitro mitotic stimulation to in vivo ectopic bone formation capacity with a large number of DBM samples. Samples were assayed using ELISA methods for BMP-2/4 and TGF-beta1 (n = 304) and cell proliferation using SAOS-2 osteoblasts (n = 239). All samples were then implanted intramuscularly in the abdomen of nude rats. All in vitro assays showed significant variability for any particular level of ostoinductivity determined by in vivo model. A significant, but only very weak, positive correlation to in vivo results was found for TGF-beta1 (r(2) = 0.016), BMP 2/4 (r(2) = 0.065), and SAOS-2 cell proliferation (r(2) = 0.053). The results of this study amplify the notion that a multitude of factors and their relative interplay, rather than a single factor are likely to determine the potency of any particular lot of DBM.

  18. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae

    PubMed Central

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-01-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20–40 years) and a group of elderly women (n = 5, age: 70–95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (−2.374 vs. −2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. PMID:22946475

  19. Antheraea pernyi silk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation.

    PubMed

    Jiayao, Zhuang; Guanshan, Zhou; Jinchi, Zhang; Yuyin, Chen; Yongqiang, Zhu

    2017-03-01

    Bone biomineralization is well-regulated processes mediated by extracellular matrix proteins. The materials that can direct nucleation of hydroxylapatite (HAp) crystals and assembly of well-structured material-minerals complex are the key to mimicking the natural mineralization. This study used sericin from Antheraea pernyi (A.pernyi), non-mulberry silkworm cocoon as template to mediate nucleation of HAp crystals. Here we find out that AS (Antheraea pernyi sericin) can nucleate the formation HAp crystals in simulated body fluid verified by XRD and FTIR observations. The HAp crystals are organized into nano-rods oriented with c-axis preferentially parallel to the long axis of AS due to hydrogen bonds and electrostatic interaction and finally aggregated into HAp globule. The cell culture of human bone marrow-derived mesenchymal stem cells (BMSCs) showed that the HAp crystals mediated by AS not only stimulate cell adhesion and proliferation but also promote 0f osteogenic differentiation, suggesting that the resultant mineralized AS biomaterial has potential in promoting bone formation. Thus our work will provide significant implication on biomineralization of A. pernyi silk sericin as a potential scaffold for tissue engineering.

  20. Matrix metalloproteinase-based photodynamic molecular beacons for targeted destruction of bone metastases in vivo.

    PubMed

    Liu, T W; Akens, M K; Chen, J; Wilson, B C; Zheng, G

    2016-03-01

    The metastatic spread of cancer from the primary site or organ is one of its most devastating aspects, being responsible for up to 90% of cancer-associated mortality. Bone is one of the common sites of metastatic spread, including the vertebrae. Regardless of the treatment strategy, the clinical goals for patients with vertebral metastases are to improve the quality of life by preventing neurologic decline, to achieve durable pain relief and enhance local tumor control. However, in part due to the close proximity of the spinal cord, current treatment options are limited. We propose a novel therapeutic strategy with the use of photodynamic molecular beacons (PMBs) for targeted destruction of spinal metastases, particularly to de-bulk lesions as an adjuvant to vertebroplasty or kyphoplasty in order to mechanically stabilize weak or fractured vertebrae. The PDT efficacy of a matrix metalloproteinase-specific PMB is reported in a metstatic model that recapitulates the clinical features of tumor growth within the bone. We demonstrate that not only does tumor cell destruction occur but also the killing of bone stromal cells. The potential of PMB-PDT to destroy metastatic tumors, disrupt the osteolytic cycle and better preserve critical organs with an increased therapeutic window compared with conventional photosensitizers is demonstrated.

  1. Radiographic and histological evaluation of ectopic application of deproteinized bovine bone matrix

    PubMed Central

    da Silva, Rodrigo Carlos; Crivellaro, Viviane Rozeira; Giovanini, Allan Fernando; Scariot, Rafaela; Gonzaga, Carla Castiglia; Zielak, João César

    2016-01-01

    Objective: To evaluate, through radiographic and histological analysis, the tissue reaction induced by a biomaterial based on deproteinized bovine bone matrix (DBBM) in the muscle of sheep. Materials and Methods: Sixteen sheep were used. The animals underwent surgery to insert polyethylene tubes containing the biomaterial in the muscle of the lower back (ectopic site) and were euthanized after 3 and 6 months. Each sheep received three tubes: Group 1 - sham group (negative control - tube without biomaterial), Group 2 - particulate autogenous bone (positive control), and Group 3 - DBBM biomaterial (GenOx Inorg). The material removed was evaluated by radiographic, macroscopic, and microscopic analysis, descriptively. Results: Macroscopic analysis showed that Group 3 had a greater tissue volume maintenance. Microscopic analysis indicated that Group 1 had a higher concentration of dense, thin collagen fibers (3 and 6 months); in Group 2, there was a decrease in the inflammatory process and the deposition of dense, thin collagen fibers (3 and 6 months); in Group 3, the presence of a dense connective tissue was noted, in which the DBBM particles (3 months) were found. On the periphery of these particles, a deposition of basophilic material was found, indicating the formation of mineral particles and the formation of tissues with osteoid characteristics (6 months). Conclusion: Based on the results obtained, it can be concluded that the biomaterial based on DBBM led to the formation of tissue with similar characteristics to an osteoid matrix in a postoperative period of 6 months. However, none of the groups evaluated showed ectopic bone neoformation. PMID:27563599

  2. The vitamin D analog ZK191784 normalizes decreased bone matrix mineralization in mice lacking the calcium channel TRPV5.

    PubMed

    van der Eerden, Bram C J; Fratzl-Zelman, Nadja; Nijenhuis, Tom; Roschger, Paul; Zügel, Ulrich; Steinmeyer, Andreas; Hoenderop, Joost G J; Bindels, René J M; Klaushofer, Klaus; van Leeuwen, Johannes P T M

    2013-02-01

    Mice lacking the renal epithelial Ca(2+) channel TRPV5 (TRPV5(-/-)) display impaired renal Ca(2+) reabsorption, hypercalciuria, and intestinal Ca(2+) hyperabsorption, due to secondary hypervitaminosis D. Using these mice, we previously demonstrated that ZK191784 acts as an intestine-specific 1,25(OH)(2) D(3) antagonist without affecting serum calcium levels. On the other hand, it acted as an agonist in the kidney and the effects of ZK191784 on bone were ambiguous. The present study was undertaken to further evaluate the effect of the vitamin D receptor antagonist on murine bone in mice lacking TRPV5. Eight-week-old female Trpv5(+/+) and Trpv5(-/-) mice were treated for 4 weeks with or without 50 µg/kg/day ZK191784. Quantitative backscattered electron imaging showed that the reduced bone matrix mineralization found in femoral bones of Trpv5(-/-) mice was partially but significantly restored upon ZK191784 treatment, just as we observed for trabecular bone thickness. This supports the significance of 1,25(OH)(2) D(3) and optimal control of Ca(2+) homeostasis for bone formation and matrix mineralization. Restoration also took place at the bone gene expression level, where 1α-hydroxylase (Cyp27b1) mRNA in femurs from ZK-treated Trpv5(-/-) mice was upregulated compared to control levels. The downregulated 24-hydroxylase (Cyp24a1) gene expression in femoral bone indicated local vitamin D resistance in the mice treated with ZK191784. Phosphate homeostasis was unaffected between the groups as shown by unaltered serum PO(4)(3-) and fibroblast growth factor (FGF) 23 as well as Fgf23 mRNA expression in bone. In conclusion, circulating 1,25(OH)(2) D(3) is important for optimal control of Ca(2+) homeostasis but also for controlled bone formation and matrix mineralization.

  3. Prostate cancer metastases alter bone mineral and matrix composition independent of effects on bone architecture in mice--a quantitative study using microCT and Raman spectroscopy.

    PubMed

    Bi, Xiaohong; Sterling, Julie A; Merkel, Alyssa R; Perrien, Daniel S; Nyman, Jeffry S; Mahadevan-Jansen, Anita

    2013-10-01

    Prostate cancer is the most common primary tumor and the second leading cause of cancer-related deaths in men in the United States. Prostate cancer bone metastases are characterized by abnormal bone remodeling processes and result in a variety of skeletal morbidities. Prevention of skeletal complications is a crucial element in prostate cancer management. This study investigated prostate cancer-induced alterations in the molecular composition and morphological structure of metastasis-bearing bones in a mouse model of prostate cancer using Raman spectroscopy and micro-computed tomography (microCT). LNCaP C4-2B prostate cancer cells were injected into the right tibiae of 5-week old male SCID mice. Upon sacrifice at 8weeks post tumor inoculation, two out of the ten tumor-bearing tibiae showed only osteoblastic lesions in the radiographs, 4 osteolytic lesions only and 4 mixed with osteoblastic and osteolytic lesions. Carbonate substitution was significantly increased while there was a marked reduction in the level of collagen mineralization, mineral crystallinity, and carbonate:matrix ratio in the cortex of the intact tumor-bearing tibiae compared to contralateral controls. MicroCT analysis revealed a significant reduction in bone volume/total volume, trabecular number and trabecular thickness, as well as significant increase in bone surface/volume ratio in tibiae with osteolytic lesions, suggesting active bone remodeling and bone loss. None of the changes in bone compositional properties were correlated with lesion area from radiographs or the changes in bone architecture from microCT. This study indicates that LNCaP C4-2B prostate cancer metastases alter bone tissue composition independent of changes in architecture, and altered bone quality may be an important contributor to fracture risk in these patients. Raman spectroscopy may provide a new avenue of investigation into interactions between tumor and bone microenvironment.

  4. In vitro assessment of biodurability: acellular systems.

    PubMed Central

    de Meringo, A; Morscheidt, C; Thélohan, S; Tiesler, H

    1994-01-01

    The assessment of biodurability of man-made vitreous fibers is essential to the limitation of health hazards associated with human exposure to environments in which respirable fibers are present. In vitro acellular systems provide effective test methods of measuring fiber solubility provided care is taken to select the most suitable solvent and test conditions for the specific fiber type and dimension. PMID:7882955

  5. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development

    NASA Astrophysics Data System (ADS)

    Deng, Meng

    The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were

  6. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.

    PubMed

    Muir, Peter; Sample, Susannah J; Barrett, Jennifer G; McCarthy, Jenna; Vanderby, Ray; Markel, Mark D; Prokuski, Laura J; Kalscheur, Vicki L

    2007-04-01

    Functional adaptation of bone to cyclic fatigue involves a complex physiological response that is targeted to sites of microdamage. The mechanisms that regulate this process are not understood, although lacunocanalicular interstitial fluid flow is likely important. We investigated the effect of a single period of cyclic fatigue on bone blood flow and interstitial fluid flow. The ulnae of 69 rats were subjected to cyclic fatigue unilaterally using an initial peak strain of -6000 muepsilon until 40% loss of stiffness developed. Groups of rats (n=23 per group) were euthanized immediately after loading, at 5 days, and at 14 days. The contralateral ulna served as a treatment control, and a baseline control group (n=23) that was not loaded was also included. After euthanasia, localization of intravascular gold microspheres within the ulna (n=7 rats/group) and tissue distribution of procion red tracer were quantified (n=8 rats/group). Microcracking, modeling, and remodeling (Cr.S.Dn, microm/mm(2), Ne.Wo.B.T.Ar, mm(2), and Rs.N/T.Ar, #/mm(2) respectively) were also quantified histologically (n=8 rats/group). Cyclic fatigue loading induced hyperemia of the loaded ulna, which peaked at 5 days after loading. There was an associated overall decrease in procion tracer uptake in both the loaded and contralateral control ulnae. Tracer uptake was also decreased in the periosteal region, when compared with the endosteal region of the cortex. Pooling of tracer was seen in microdamaged bone typically adjacent to an intracortical stress fracture at all time points after fatigue loading; in adjacent bone tracer uptake was decreased. New bone formation was similar at 5 days and at 14 days, whereas formation of resorption spaces was increased at 14 days. These data suggest that a short period of cyclic fatigue induces bone hyperemia and associated decreased lacunocanalicular interstitial fluid flow, which persists over the time period in which osteoclasts are recruited to sites of

  7. The role of bone intrinsic properties measured by infrared spectroscopy in whole lumbar vertebra mechanics: organic rather than inorganic bone matrix?

    PubMed

    Wegrzyn, Julien; Roux, Jean-Paul; Farlay, Delphine; Follet, Hélène; Chapurlat, Roland

    2013-10-01

    Whole bone strength is determined by bone mass, microarchitecture and intrinsic properties of the bone matrix. However, few studies have directly investigated the contribution of bone tissue material properties to whole bone strength in humans. This study assessed the role of bone matrix composition on whole lumbar vertebra mechanics. We obtained 17 fresh frozen human lumbar spines (8 W, 9 M, aged 76±11years). L3 bone mass was measured by DXA and microarchitecture by μ-CT with a 35 μm-isotropic resolution. Microarchitectural parameters were directly measured: Tb.BV/TV, SMI, Tb.Th, DA, Ct.Th, Ct.Po and radius of anterior cortical curvature. Failure load (N), stiffness (N/mm) and work to failure (N.mm) were extracted from quasi-static uniaxial compressive testing performed on L3 vertebral bodies. FTIRM analysis was performed on 2 μm-thick sections from L2 trabecular cores, with a Perkin-Elmer GXII Auto-image Microscope equipped with a wide band detector. Twenty measurements per sample were performed at 30∗100 μm of spatial resolution. Each spectrum was collected at 4 cm(-1) resolution and 50 scans in transmission mode. Mineral and collagen maturity, and mineralization and crystallinity index were measured. There was no association between the bone matrix characteristics and bone mass or microarchitecture. Mineral maturity, mineralization and crystallinity index were not related to whole vertebra mechanics. However, collagen maturity was positively correlated with whole vertebra failure load and stiffness (r=0.64, p=0.005 and r=0.54, p=0.025, respectively). The collagen maturity (3rd step) in combination with bone mass (i.e., BMC, 1st step) and microarchitecture (i.e., Tb.Th, 2nd step) improved the prediction of whole vertebra mechanical properties in forward stepwise multiple regression models, together explaining 71% of the variability in whole vertebra stiffness (p=0.001). In conclusion, we demonstrated a substantial contribution of collagen maturity, but

  8. Enhanced Androgen Signaling With Androgen Receptor Overexpression in the Osteoblast Lineage Controls Skeletal Turnover, Matrix Quality and Bone Architecture

    DTIC Science & Technology

    2007-12-01

    exhibited exclusively at periosteal surfaces, but in mature osteoblasts androgens inhibit osteogenesis with detrimental effects on matrix quality...consequence of increased AR abundance in likely target (tissues or cells) for androgen in vivo, i.e., periosteal cells and the osteoblast lineage compared...cortical bone, with no expression seen in periosteal fibroblasts (11). In the trabecular area of metaphyseal bone, strong expression was observed at

  9. Enhanced Androgen Signaling with Androgen Receptor Overexpression in the Osteoblast Lineage Controls Skeletal Turnover, Matrix Quality and Bone Architecture

    DTIC Science & Technology

    2008-12-01

    exhibited exclusively at periosteal surfaces, but in mature osteoblasts androgens inhibit osteogenesis with detrimental effects on matrix quality, bone...androgen in vivo, i.e., periosteal cells and the osteoblast lineage compared to mature osteoblasts and osteocytes. These models, characterized by the...surfaces, and in a large proportion of osteocytes in femurs throughout cortical bone, with no expression seen in periosteal fibroblasts (11). In the

  10. Immediate placement of a porous-tantalum, trabecular metal-enhanced titanium dental implant with demineralized bone matrix into a socket with deficient buccal bone: A clinical report

    PubMed Central

    Bencharit, Sompop; Byrd, Warren C.; Hosseini, Bashir

    2014-01-01

    A missing or deficient buccal alveolar bone plate is often an important limiting factor for immediate implant placement. Titanium dental implants enhanced with porous, tantalum-based trabecular metal material (PTTM) are designed for osseoincorporation, a combination of vascularized bone ingrowth and osseointegration (bone on-growth). Demineralized bone matrix (DBM) contains growth factors with good handling characteristics. However, the combination of these 2 materials in facial alveolar bone regeneration associated with immediate implant therapy has not been reported. A 65-year-old Asian woman presented with a failing central incisor. Most of the buccal alveolar bone plate of the socket was missing. A PTTM enhanced implant was immediately placed with DBM. Cone beam CT scans 12 months after the insertion of the definitive restoration showed regeneration of buccal alveolar bone. A combination of a PTTM enhanced implant, DBM, and a custom healing abutment may have an advantage in retaining biologically active molecules and form a scaffold for neovascularization and osteogenesis. This treatment protocol may be a viable option for immediate implant therapy in a failed tooth with deficient buccal alveolar bone. PMID:25702965

  11. Augmentation of intramembranous bone in rabbit calvaria using an occlusive barrier in combination with demineralized bone matrix (DBM): a pilot study.

    PubMed

    Beltrán, Víctor; Engelke, Wilfried; Prieto, Ruth; Valdivia-Gandur, Iván; Navarro, Pablo; Manzanares, María Cristina; Borie, Eduardo; Fuentes, Ramón

    2014-01-01

    The aim of this study was to histologically evaluate the performance of demineralized bone matrix (DBM) when compared with a blood clot in addition to an occlusive barrier in the bone regeneration process for bone defects in a rabbit model. Prefabricated metallic capsules with 4.5 mm and 3.5 mm dimensions were placed in five adult rabbit skulls. At the right side, the capsule was filled with DBM, and the clot was located on the left side. The barriers were supplied with a 0.5 mm horizontal peripheral flap and a vertical edge, fitting tightly into a circular slit prepared by a trephine in the skull. After a healing period of three months, the animals were sacrificed, and the samples were prepared for histological and histomorphometric analyses after capsule removal. Trabecular and medullar bone percentages were calculated from the different areas of the newly formed bone inside the metallic barriers, and non-parametric statistical analysis was used to describe the findings. The results showed a complete filling of newly formed bone inside the capsules of both groups. Less mature bone tissue was observed in the upper third of all samples, and a higher trabecular area was observed in the samples with DBM. The use of barriers resulted in the augmentation of newly formed bone in a three-month period. However, a higher trabecular area was observed in the barriers filled with DBM.

  12. Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms.

    PubMed

    Cao, Haihui; Ackerman, Jerome L; Hrovat, Mirko I; Graham, Lila; Glimcher, Melvin J; Wu, Yaotang

    2008-12-01

    The density of the organic matrix of bone substance is a critical parameter necessary to clinically evaluate and distinguish structural and metabolic pathological conditions such as osteomalacia in adults and rickets in growing children. Water- and fat-suppressed proton projection MRI (WASPI) was developed as a noninvasive means to obtain this information. In this study, a density calibration phantom was developed to convert WASPI intensity to true bone matrix density. The phantom contained a specifically designed poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA) blend, whose MRI properties (T(1), T(2), and resonance linewidth) were similar to those of solid bone matrix (collagen, tightly bound water, and other immobile molecules), minimizing the need to correct for differences in T(1) and/or T(2) relaxation between the phantom and the subject. Cortical and trabecular porcine bone specimens were imaged using WASPI with the calibration phantom in the field of view (FOV) as a stable intensity reference. Gravimetric and amino acid analyses were carried out on the same specimens after WASPI, and the chemical results were found to be highly correlated (r(2) = 0.98 and 0.95, respectively) to the WASPI intensity. By this procedure the WASPI intensity can be used to obtain the true bone matrix mass density in g cm(-3).

  13. Heterotopic Ossification around the Knee after Internal Fixation of a Complex Tibial Plateau Fracture Combined with the Use of Demineralized Bone Matrix (DBM): A Case Report

    PubMed Central

    Nota, Sjoerd P.F.T.; Kloen, Peter

    2014-01-01

    Demineralized bone matrix has been successfully commercialized as an alternative bone graft material that not only can function as filler but also as an osteoinductive graft. Numerous studies have confirmed its beneficial use in clinical practice. Heterotopic ossification after internal fixation combined with the use of demineralized bone matrix has not been widely reported. In this paper we describe a 39 year old male who sustained a complex articular fracture that developed clinically significant heterotopic ossification after internal fixation with added demineralized bone matrix. Although we cannot be sure that there is a cause-and-effect relation between demineralized bone matrix and the excessive heterotopic ossification seen in our patient, it seems that some caution in using demineralised bone matrix in similar cases is warranted. Also, given the known inter- and intraproduct variability, the risks and benefits of these products should be carefully weighed. PMID:25692153

  14. Preparation and characterization of an acellular bovine pericardium intended for manufacture of valve bioprostheses.

    PubMed

    Goissis, Gilberto; Giglioti, Aparecida de Fátima; Braile, Domingo Marcolino

    2011-05-01

    Major problems with biological heart valves post-implantation are associated with progressive structural deterioration and calcification attributed to glutaraldehyde processing, dead cells, and cell fragments present in the native tissue. In spite of these problems, glutaraldehyde still is the reagent of choice. The results with acellular matrix xenograft usually prepared by detergent treatment in association with enzymes are rather conflicting because while preserving mechanical properties, tissue morphology and collagen structure are process dependent. This work describes a chemical approach for the preparation of an acellular bovine pericardium matrix intended for the manufacture of heart valve bioprostheses. Cell removal was performed by an alkaline extraction in the presence of calcium salts for periods ranging from 6 to 48 h. The results showed that cell removal was achieved after 12 h, with swelling and negative charge increasing with processing time. Nevertheless, collagen fibril structure, ability to form fibrils, and stability to collagenase were progressive after 24-h processing. There was no denaturation of the collagen matrix. A process is described for the preparation of acellular bovine pericardium matrices with preserved fibril structure and morphology for the manufacture of cardiac valve bioprostheses and may be used in other applications for tissue reconstruction.

  15. Development and Characterization of Acellular Porcine Pulmonary Valve Scaffolds for Tissue Engineering

    PubMed Central

    Korossis, Sotirios A.; Wilshaw, Stacy-Paul; Jennings, Louise M; Fisher, John; Ingham, Eileen

    2014-01-01

    Currently available replacement heart valves all have limitations. This study aimed to produce and characterize an acellular, biocompatible porcine pulmonary root conduit for reconstruction of the right ventricular outflow tract e.g., during Ross procedure. A process for the decellularization of porcine pulmonary roots was developed incorporating trypsin treatment of the adventitial surface of the scraped pulmonary artery and sequential treatment with hypotonic Tris buffer (HTB; 10 mM Tris pH 8.0, 0.1% (w/v) EDTA, and 10 KIU aprotinin), 0.1% (w/v) sodium dodecyl sulfate in HTB, two cycles of DNase and RNase, and sterilization with 0.1% (v/v) peracetic acid. Histology confirmed an absence of cells and retention of the gross histoarchitecture. Immunohistochemistry further confirmed cell removal and partial retention of the extracellular matrix, but a loss of collagen type IV. DNA levels were reduced by more than 96% throughout all regions of the acellular tissue and no functional genes were detected using polymerase chain reaction. Total collagen levels were retained but there was a significant loss of glycosaminoglycans following decellularization. The biomechanical, hydrodynamic, and leaflet kinematics properties were minimally affected by the process. Both immunohistochemical labeling and antibody absorption assay confirmed a lack of α-gal epitopes in the acellular porcine pulmonary roots and in vitro biocompatibility studies indicated that acellular leaflets and pulmonary arteries were not cytotoxic. Overall the acellular porcine pulmonary roots have excellent potential for development of a tissue substitute for right ventricular outflow tract reconstruction e.g., during the Ross procedure. PMID:24786313

  16. Nanofiber-microsphere (nano-micro) matrices for bone regenerative engineering: a convergence approach toward matrix design.

    PubMed

    Nelson, Clarke; Khan, Yusuf; Laurencin, Cato T

    2014-11-01

    Bone is an essential organ for health and quality of life. Due to current shortfalls in therapy for bone tissue engineering, scientists have sought the application of synthetic materials as bone graft substitutes. As a composite organic/inorganic material with significant extra cellular matrix (ECM), one way to improve bone graft substitutes may be to engineer a synthetic matrix that is influenced by the physical appearance of natural ECM networks. In this work, the authors evaluate composite, hybrid scaffolds for bone tissue engineering based on composite ceramic/polymer microsphere scaffolds with synthetic ECM-mimetic networks in their pore spaces. Using thermally induced phase separation, nanoscale fibers were deposited in the pore spaces of structurally sound microsphere-based scaffold with a density proportionate to the initial polymer concentration. Porosimetry and mechanical testing indicated no significant changes in overall pore characteristics or mechanical integrity as a result of the fiber deposition process. These scaffolds displayed adequate mechanical integrity on the scale of human trabecular bone and supported the adhesion and proliferation of cultured mouse calvarial osteoblasts. Drawing from natural cues, these scaffolds may represent a new avenue forward for advanced bone tissue engineering scaffolds.

  17. Evidence from Raman Spectroscopy of a Putative Link Between Inherent Bone Matrix Chemistry and Degenerative Joint Disease

    PubMed Central

    Kerns, Jemma G; Gikas, Panagiotis D; Buckley, Kevin; Shepperd, Adam; Birch, Helen L; McCarthy, Ian; Miles, Jonathan; Briggs, Timothy W R; Keen, Richard; Parker, Anthony W; Matousek, Pavel; Goodship, Allen E

    2014-01-01

    Objective Osteoarthritis (OA) is a common debilitating disease that results in degeneration of cartilage and bone in the synovial joints. Subtle changes in the molecular structure of the subchondral bone matrix occur and may be associated with cartilage changes. The aim of this study was to explore whether the abnormal molecular changes observed in the matrix of OA subchondral bone can be identified with Raman spectroscopy. Methods Tibial plateaus from patients undergoing total knee replacement for OA (n = 10) were compared with healthy joints from patients undergoing leg amputation (n = 5; sex- and laterality-matched) and with non-OA cadaveric knee specimens (n = 5; age-matched). The samples were analyzed with Raman spectroscopy, peripheral quantitative computed tomography, and chemical analysis to compare changes in defined load-bearing sites in both the medial and lateral compartments. Results OA subchondral bone matrix changes were detected by Raman spectroscopy. Within each cohort, there was no spectral difference in bone matrix chemistry between the medial and lateral compartments, whereas a significant spectral difference (P < 0.001) was observed between the non-OA and OA specimens. Type I collagen chain ratios were normal in the non-OA specimens but were significantly elevated in the OA specimens. Conclusion In comparing the results of Raman spectroscopy with those obtained by other standard techniques, these findings show, for the first time, that subchondral bone changes, or inherent differences, exist in both the medial and lateral (beneath intact cartilage) compartments of OA knees. The development of Raman spectroscopy as a screening tool, based on molecular-specific modifications in bone, would facilitate the identification of clinical disease, including early molecular changes. PMID:24470432

  18. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering.

    PubMed

    Huang, Wei; Shi, Xuetao; Ren, Li; Du, Chang; Wang, Yingjun

    2010-05-01

    Polymer scaffolds, particularly in the form of microspheres, have been employed to support cells growth and deliver drugs or growth factors in tissue engineering. In this study, we have established a scaffold by embedding poly (beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PHBV) microspheres into poly (L-lactic-co-glycolic acid) (PLGA) matrix, according to their different solubility in acetone, with the aim of repairing bone defects. PLGA/PHBV scaffolds had good pore parameters, for example, the porosity of PLGA/30% PHBV scaffold can reach to 81.273 +/- 2.192%. Besides, the pore size distribution of the model was evaluated and the results revealed that the pore size mainly distributed between 50 mum and 200 mum. With increasing the amount of PHBV microspheres, the compressive strength of the PLGA/PHBV scaffold enhanced. The morphology of the hybrid scaffold was rougher than that of pure PLGA scaffold, which had no significant effect on the cell behavior. The in vitro evaluation suggested that the model is suitable as a scaffold for engineering bone tissue, and has the potential for further applications in drug delivery system.

  19. Biomembranes enriched with TGFbeta1 favor bone matrix protein expression by human osteoblasts in vitro.

    PubMed

    Lilli, C; Marinucci, L; Stabellini, G; Belcastro, S; Becchetti, E; Balducci, C; Staffolani, N; Locci, P

    2002-01-01

    The use of growth factors in oral tissue regeneration is currently under investigation. When growth factors are combined with commercial materials, the in vitro mechanisms of action still remain unclear. The present study first evaluated the capacity of barrier membranes, used in oral surgery, to sequester TGFbeta(1). Resorbable HYAFF, paroguide, poly DL-lactide and nonresorbable PTFE membranes were immersed in MEM containing 0.2 ng (125)I-TGFbeta(1) for different periods of time. It was found that HYAFF membrane and paroguide sequestered the most TGFbeta(1), which was then released in its active form (as shown by the CCL64 cell line bioassay). Untreated membranes and membranes enriched with TGFbeta(1) were then used as substrate for human bone cells to evaluate the synthesis of the osteoblast phenotype, as indicated by specific parameters. Results showed that membranes enriched with TGFbeta(1) increased alkaline phosphatase activity, collagen, and osteocalcin production more than untreated membranes. HYAFF and paroguide membranes, which sequestered the most of TGFbeta(1), were the most suitable for stimulating bone matrix proteins.

  20. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    PubMed

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals.

  1. Quantum dots as mineral- and matrix-specific strain gages for bone biomechanical studies

    NASA Astrophysics Data System (ADS)

    Zhu, Peizhi; Xu, Jiadi; Morris, Michael; Ramamoorthy, Ayyalusamy; Sahar, Nadder; Kohn, David

    2009-02-01

    We report the use of quantum dots (Qdots) as strain gages in the study of bone biomechanics using solid state nuclear magnetic resonance (NMR) spectroscopy. We have developed solid state NMR sample cells for investigation of deformations of bone tissue components at loads up to several Mega Pascal. The size constraints of the NMR instrumentation limit the bone specimen diameter and length to be no greater than 2-3 mm and 30 mm respectively. Further, magic angle spinning (MAS) solid state NMR experiments require the use of non-metallic apparatus that can be rotated at kilohertz rates. These experimental constraints preclude the use of standard biomechanical measurement systems. In this paper we explore the use of quantum dot center of gravity measurement as a strain gage technology consistent with the constraints of solid state NMR. We use Qdots that bind calcium (625 nm emission) and collagen (705 nm emission) for measurement of strain in these components. Compressive loads are applied to a specimen in a cell through a fine pitch screw turned with a mini-torque wrench. Displacement is measured as changes in the positions of arrays of quantum dots on the surface of a specimen. Arrays are created by spotting the specimen with dilute suspensions of Qdots. Mineral labeling is achieved with 705 nm carboxylated dots and matrix labeling with 565 nm quantum dots conjugated to collagen I antibodies. After each load increment the new positions of the quantum dots are measured by fluorescence microscopy. Changes in Qdot center of gravity as a function of applied load can be measured with submicron accuracy.

  2. Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects.

    PubMed

    Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V

    2015-09-01

    The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as

  3. Matrix metalloproteinase-9 and cell division in neuroblastoma cells and bone marrow macrophages.

    PubMed

    Sans-Fons, M Gloria; Sole, Sonia; Sanfeliu, Coral; Planas, Anna M

    2010-12-01

    Matrix metalloproteinases (MMPs) degrade the extracellular matrix and carry out key functions in cell development, cancer, injury, and regeneration. In addition to its well recognized extracellular action, functional intracellular MMP activity under certain conditions is supported by increasing evidence. In this study, we observed higher gelatinase activity by in situ zymography and increased MMP-9 immunoreactivity in human neuroblastoma cells and in bone marrow macrophages undergoing mitosis compared with resting cells. We studied the pattern of immunoreactivity at the different stages of cell division by confocal microscopy. Immunostaining with different monoclonal antibodies against MMP-9 revealed a precise, dynamic, and well orchestrated localization of MMP-9 at the different stages of cell division. The cellular distribution of MMP-9 staining was studied in relation to that of microtubules. The spatial pattern of MMP-9 immunoreactivity suggested some participation in both the reorganization of the nuclear content and the process of chromatid segmentation. We then used several MMP-9 inhibitors to find out whether MMP-9 might be involved in the cell cycle. These drugs impaired the entry of cells into mitosis, as revealed by flow cytometry, and reduced cell culture growth. In addition, the silencing of MMP-9 expression with small interfering RNA also reduced cell growth. Taken together, these results suggest that intracellular MMP-9 is involved in the process of cell division in neuroblastoma cells and in primary cultures of macrophages.

  4. The tent pole splint: a bone-supported stereolithographic surgical splint for the soft tissue matrix expansion graft procedure.

    PubMed

    Cillo, Joseph E; Theodotou, Nicholas; Samuels, Marc; Krajekian, Joseph

    2010-06-01

    This report details the use of computer-aided planning and intraoperative stereolithographic direct-bone-contact surgical splints for the accurate extraoral placement of dental implants in the soft tissue matrix expansion (tent pole) graft of the severely resorbed mandible.

  5. Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix

    PubMed Central

    Lee, Dong Joon; Padilla, Ricardo; Zhang, He; Hu, Wei-Shou; Ko, Ching-Chang

    2014-01-01

    Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS). Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD). Twelve Sprague-Dawley rats were randomized to four groups: control (defect only), decellularized bone matrix (DECBM), and HGCS with and without multipotent adult progenitor cells (MAPCs). DECBM was prepared by removing all the cells using SDS and NH4OH. After 12 weeks, the CSD specimens were harvested to evaluate radiographical, histological, and histomorphometrical outcomes. The in vitro osteogenic effects of the materials were studied by focal adhesion, MTS, and alizarin red. Micro-CT analysis indicated that the DECBM and the HGCS scaffold groups developed greater radiopaque areas than the other groups. Bone regeneration, assessed using histological analysis and fluorochrome labeling, was the highest in the HGCS scaffold seeded with MAPCs. The DECBM group showed limited osteoinductivity, causing a gap between the implant and host tissue. The group grafted with HGCS+MAPCs resulting in twice as much new bone formation seems to indicate a role for effective bone regeneration. In conclusion, the novel HGCS scaffold could improve bone regeneration and is a promising carrier for stem cell-mediated bone regeneration. PMID:25054149

  6. Development of a three-dimensional bone-like construct in a soft self-assembling peptide matrix.

    PubMed

    Marí-Buyé, Núria; Luque, Tomás; Navajas, Daniel; Semino, Carlos E

    2013-04-01

    This work describes the development of a three-dimensional (3D) model of osteogenesis using mouse preosteoblastic MC3T3-E1 cells and a soft synthetic matrix made out of self-assembling peptide nanofibers. By adjusting the matrix stiffness to very low values (around 120 Pa), cells were found to migrate within the matrix, interact forming a cell-cell network, and create a contracted and stiffer structure. Interestingly, during this process, cells spontaneously upregulate the expression of bone-related proteins such as collagen type I, bone sialoprotein, and osteocalcin, indicating that the 3D environment enhances their osteogenic potential. However, unlike MC3T3-E1 cultures in 2D, the addition of dexamethasone is required to acquire a final mature phenotype characterized by features such as matrix mineralization. Moreover, a slight increase in the hydrogel stiffness (threefold) or the addition of a cell contractility inhibitor (Rho kinase inhibitor) abrogates cell elongation, migration, and 3D culture contraction. However, this mechanical inhibition does not seem to noticeably affect the osteogenic process, at least at early culture times. This 3D bone model intends to emphasize cell-cell interactions, which have a critical role during tissue formation, by using a compliant unrestricted synthetic matrix.

  7. Development of a Three-Dimensional Bone-Like Construct in a Soft Self-Assembling Peptide Matrix

    PubMed Central

    Marí-Buyé, Núria; Luque, Tomás; Navajas, Daniel

    2013-01-01

    This work describes the development of a three-dimensional (3D) model of osteogenesis using mouse preosteoblastic MC3T3-E1 cells and a soft synthetic matrix made out of self-assembling peptide nanofibers. By adjusting the matrix stiffness to very low values (around 120 Pa), cells were found to migrate within the matrix, interact forming a cell–cell network, and create a contracted and stiffer structure. Interestingly, during this process, cells spontaneously upregulate the expression of bone-related proteins such as collagen type I, bone sialoprotein, and osteocalcin, indicating that the 3D environment enhances their osteogenic potential. However, unlike MC3T3-E1 cultures in 2D, the addition of dexamethasone is required to acquire a final mature phenotype characterized by features such as matrix mineralization. Moreover, a slight increase in the hydrogel stiffness (threefold) or the addition of a cell contractility inhibitor (Rho kinase inhibitor) abrogates cell elongation, migration, and 3D culture contraction. However, this mechanical inhibition does not seem to noticeably affect the osteogenic process, at least at early culture times. This 3D bone model intends to emphasize cell–cell interactions, which have a critical role during tissue formation, by using a compliant unrestricted synthetic matrix. PMID:23157379

  8. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    PubMed

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  9. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats

    NASA Technical Reports Server (NTRS)

    Cavolina, J. M.; Evans, G. L.; Harris, S. A.; Zhang, M.; Westerlind, K. C.; Turner, R. T.

    1997-01-01

    A 14-day orbital spaceflight was performed using ovariectomized Fisher 344 rats to determine the combined effects of estrogen deficiency and near weightlessness on tibia radial bone growth and cancellous bone turnover. Twelve ovariectomized rats with established cancellous osteopenia were flown aboard the space shuttle Columbia (STS-62). Thirty ovariectomized rats were housed on earth as ground controls: 12 in animal enclosure modules, 12 in vivarium cages, and 6 killed the day of launch for baseline measurements. An additional 18 ovary-intact rats were housed in vivarium cages as ground controls: 8 rats were killed as baseline controls and the remaining 10 rats were killed 14 days later. Ovariectomy increased periosteal bone formation at the tibia-fibula synostosis; cancellous bone resorption and formation in the secondary spongiosa of the proximal tibial metaphysis; and messenger RNA (mRNA) levels for the prepro-alpha2(1) subunit of type 1 collagen, osteocalcin, transforming growth factor-beta, and insulin-like growth factor I in the contralateral proximal tibial metaphysis and for the collagen subunit in periosteum pooled from tibiae and femora and decreased cancellous bone area. Compared to ovariectomized weight-bearing rats, the flight group experienced decreases in periosteal bone formation, collagen subunit mRNA levels, and cancellous bone area. The flight rats had a small decrease in the cancellous mineral apposition rate, but no change in the calculated bone formation rate. Also, spaceflight had no effect on cancellous osteoblast and osteoclast perimeters or on mRNA levels for bone matrix proteins and signaling peptides. On the other hand, spaceflight resulted in an increase in bone resorption, as ascertained from the diminished retention of a preflight fluorochrome label. This latter finding suggests that osteoclast activity was increased. In a follow-up ground-based experiment, unilateral sciatic neurotomy of ovariectomized rats resulted in cancellous

  10. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix.

    PubMed

    Cholas, Rahmatullah; Kunjalukkal Padmanabhan, Sanosh; Gervaso, Francesca; Udayan, Gayatri; Monaco, Graziana; Sannino, Alessandro; Licciulli, Antonio

    2016-06-01

    Biomimetic scaffolds with a structural and chemical composition similar to native bone tissue may be promising for bone tissue regeneration. In the present work hydroxyapatite mesoporous microspheres (mHA) were incorporated into collagen scaffolds containing an ordered interconnected macroporosity. The mHA were obtained by spray drying of a nano hydroxyapatite slurry prepared by the precipitation technique. X-ray diffraction (XRD) analysis revealed that the microspheres were composed only of hydroxyapatite (HA) phase, and energy-dispersive x-ray spectroscopy (EDS) analysis revealed the Ca/P ratio to be 1.69 which is near the value for pure HA. The obtained microspheres had an average diameter of 6 μm, a specific surface area of 40 m(2)/g as measured by Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis showed a mesoporous structure with an average pore diameter of 16 nm. Collagen/HA-microsphere (Col/mHA) composite scaffolds were prepared by freeze-drying followed by dehydrothermal crosslinking. SEM observations of Col/mHA scaffolds revealed HA microspheres embedded within a porous collagen matrix with a pore size ranging from a few microns up to 200 μm, which was also confirmed by histological staining of sections of paraffin embedded scaffolds. The compressive modulus of the composite scaffold at low and high strain values was 1.7 and 2.8 times, respectively, that of pure collagen scaffolds. Cell proliferation measured by the MTT assay showed more than a 3-fold increase in cell number within the scaffolds after 15 days of culture for both pure collagen scaffolds and Col/mHA composite scaffolds. Attractive properties of this composite scaffold include the potential to load the microspheres for drug delivery and the controllability of the pore structure at various length scales.

  11. Defective Endochondral Ossification-Derived Matrix and Bone Cells Alter the Lymphopoietic Niche in Collagen X Mouse Models

    PubMed Central

    Sweeney, Elizabeth; Roberts, Douglas; Lin, Angela; Guldberg, Robert

    2013-01-01

    Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders. PMID:23656481

  12. Eight-year results of site retention of anorganic bovine bone and anorganic bovine matrix.

    PubMed

    Degidi, Marco; Perrotti, Vittoria; Piattelli, Adriano; Iezzi, Giovanna

    2013-12-01

    The long-term fate of some biomaterials is still unknown, and the reports present in the literature are not conclusive as to whether these biomaterials are resorbed over time or not. Different reports can be found with regard to the resorption behavior of anorganic bovine bone (ABB). The aim of the present study was to provide a comparative histological and histomorphometrical evaluation, in the same patient, of 2 specimens retrieved from a sinus augmented with ABB and with anorganic bovine matrix added to a cell-binding peptide (PepGen P-15), respectively, after a healing period of 6 months and after 8 years of implant loading, to evaluate the resorption of both biomaterials. A unilateral sinus augmentation procedure with ABB (50%) and with PepGen P-15 (50%) was performed in a 54-year-old male patient. Two titanium dental implants with a sandblasted and acid-etched surface were inserted after 6 months. During this procedure, 2 tissue cores were retrieved from the sinus with a trephine, before implant insertion. After an additional 6 months, a fixed prosthetic restoration was fabricated. One of these implants, after a loading period of 8 years, fractured in the coronal portion and was removed. Both specimens, one retrieved after a 6-month healing period and the other after an 8-year loading period, were treated to obtain thin ground sections. In the 6-month specimen, the histomorphometry showed that the percentage of newly formed bone was 27.2% ± 3.6%, marrow spaces 35.6% ± 2.3%, residual ABB particles 25.1% ± 1.2%, and residual PepGen P-15 particles 12.1% ± 2.2%. In the 8-year specimen, the histomorphometry showed that the percentage of newly formed bone was 51.4% ± 4.8%, marrow spaces 40% ± 7.1%, residual ABB particles 6.2% ± 0.7%, and residual PepGen P-15 particles 2.4% ± 0.5%. Both biomaterials underwent significant resorption over the course of this study.

  13. [Effect of extracellular matrix components on adhesion of bone marrow multipotent mesenchymal stromal cells to polytetrafluoroethylene].

    PubMed

    Karpenko, A A; Rozanova, I A; Poveshchenko, O V; Lykov, A P; Bondarenko, N A; Kim, I I; Nikonorova, Iu V; Podkhvatilina, N A; Sergeevichev, D S; Popova, I V; Konenkov, V I

    2015-01-01

    Search for new bioengineering materials for creation of small-diameter vascular grafts is currently a priority task. One of the promising trends of creating tissue engineering constructions is coating the internal layer of implants made of polytetrafluoroethylene (PTFE) with autologous mesenchymal multipotent stromal cells. In the study we assessed the ability of separate components of the extracellular matrix such as fibronectin, type I collagen and type IV collagen to influence adhesion, proliferation and morphology of mesenchymal multipotent stromal cells being cultured on PTFE. Bone marrow multipotent stromal cells taken from second-passage Wistar rats in the amount of 106 per 1 cm2 were applied onto PTFE. We used the following variants of preliminary treatment of the material prior to seeding: fibronectin with type I collagen, fibronectin with type IV collagen, fibronectin with a mixture of type I and IV collagens, as well as a control group without coating. After six weeks of cell growth on PTFE patches the samples were subjected to fixation in 10% formalin followed by haematoxylin-eosin stain and morphometric assessment of adhered cells by calculation using the software AxioVision (Carl Zeiss), assessing the number of cells, area of the cellular monolayer, dimensions and ratios of the area of separate cells and the area of cellular nuclei. The maximal area of the monolayer from mesenchymal multipotent stromal cells on the PTFE surface was revealed while culturing with a mixture of fibronectin and type I and IV collagens. Cell colonization density while treatment of the synthetic material with mixtures of fibronectin with type I collagen, type IV collagen and type I and IV collagens demonstrated the results exceeding the parameters of the control specimen 5-, 2.5- and 7-fold, respectively. Hence, extracellular matrix components considerably increase enhance adhesion of cells to PTFE, as well as improve formation of a monolayer from mesenchymal multipotent

  14. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering.

    PubMed

    Zhang, Fan; Song, Qingxin; Huang, Xuan; Li, Fengning; Wang, Kun; Tang, Yixing; Hou, Canglong; Shen, Hongxing

    2016-01-20

    A potential bone tissue engineering material was produced from a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), loaded with nanodiamond phospholipid compound (NDPC) via physical mixing. On the basis of hydrophobic effects and physical absorption, we modified the original hydrophilic surface of the nanodiamond (NDs) with phospholipids to be amphipathic, forming a typical core-shell structure. The ND-phospholipid weight ratio was optimized to generate sample NDPC50 (i.e., ND-phospholipid weight ratio of 100:50), and NDPC50 was able to be dispersed in a PLGA matrix at up to 20 wt %. Compared to a pure PLGA matrix, the introduction of 10 wt % of NDPC (i.e., sample NDPC50-PF10) resulted in a significant improvement in the material's mechanical and surface properties, including a decrease in the water contact angle from 80 to 55°, an approximately 100% increase in the Young's modulus, and an approximate 550% increase in hardness, thus closely resembling that of human cortical bone. As a novel matrix supporting human osteoblast (hFOB1.19) growth, NDPC50-PFs with different amounts of NDPC50 demonstrated no negative effects on cell proliferation and osteogenic differentiation. Furthermore, we focused on the behaviors of NDPC-PFs implanted into mice for 8 weeks and found that NDPC-PFs induced acceptable immune response and can reduce the rapid biodegradation of PLGA matrix. Our results represent the first in vivo research on ND (or NDPC) as nanofillers in a polymer matrix for bone tissue engineering. The high mechanical properties, good in vitro and in vivo biocompatibility, and increased mineralization capability suggest that biodegradable PLGA composite matrices loaded with NDPC may potentially be useful for a variety of biomedical applications, especially bone tissue engineering.

  15. The Association of Guided Bone Regeneration and Enamel Matrix Derivative for Suprabony Reconstruction in the Esthetic Area: A Case Report.

    PubMed

    Simion, Massimo; Ferrantino, Luca; Idotta, Eleonora; Maglione, Michele

    2015-01-01

    This case report presents the correction of severe alveolar ridge atrophy due to congenital and iatrogenic factors. Implants that compromised the natural adjacent teeth and overall esthetics for this young patient were removed and replaced after significant vertical bone and soft tissue regenerative procedures. A treatment combination of bone graft particles, a nonresorbable membrane, and enamel matrix derivatives was used. Significant and stable improvement in esthetics was achieved 12 months after final prosthetic restoration, demonstrating the ability of such a combined treatment to correct the esthetic deformity, improve the health of the adjacent natural teeth, and allow for successful implant treatment.

  16. Sulfated hyaluronan alters fibronectin matrix assembly and promotes osteogenic differentiation of human bone marrow stromal cells

    PubMed Central

    Vogel, Sarah; Arnoldini, Simon; Möller, Stephanie; Schnabelrauch, Matthias; Hempel, Ute

    2016-01-01

    Extracellular matrix (ECM) composition and structural integrity is one of many factors that influence cellular differentiation. Fibronectin (FN) which is in many tissues the most abundant ECM protein forms a unique fibrillary network. FN homes several binding sites for sulfated glycosaminoglycans (sGAG), such as heparin (Hep), which was previously shown to influence FN conformation and protein binding. Synthetically sulfated hyaluronan derivatives (sHA) can serve as model molecules with a well characterized sulfation pattern to study sGAG-FN interaction. Here is shown that the low-sulfated sHA (sHA1) interacts with FN and influences fibril assembly. The interaction of FN fibrils with sHA1 and Hep, but not with non-sulfated HA was visualized by immunofluorescent co-staining. FRET analysis of FN confirmed the presence of more extended fibrils in human bone marrow stromal cells (hBMSC)-derived ECM in response to sHA1 and Hep. Although both sHA1 and Hep affected FN conformation, exclusively sHA1 increased FN protein level and led to thinner fibrils. Further, only sHA1 had a pro-osteogenic effect and enhanced the activity of tissue non-specific alkaline phosphatase. We hypothesize that the sHA1-triggered change in FN assembly influences the entire ECM network and could be the underlying mechanism for the pro-osteogenic effect of sHA1 on hBMSC. PMID:27808176

  17. Sulfated hyaluronan alters fibronectin matrix assembly and promotes osteogenic differentiation of human bone marrow stromal cells

    NASA Astrophysics Data System (ADS)

    Vogel, Sarah; Arnoldini, Simon; Möller, Stephanie; Schnabelrauch, Matthias; Hempel, Ute

    2016-11-01

    Extracellular matrix (ECM) composition and structural integrity is one of many factors that influence cellular differentiation. Fibronectin (FN) which is in many tissues the most abundant ECM protein forms a unique fibrillary network. FN homes several binding sites for sulfated glycosaminoglycans (sGAG), such as heparin (Hep), which was previously shown to influence FN conformation and protein binding. Synthetically sulfated hyaluronan derivatives (sHA) can serve as model molecules with a well characterized sulfation pattern to study sGAG-FN interaction. Here is shown that the low-sulfated sHA (sHA1) interacts with FN and influences fibril assembly. The interaction of FN fibrils with sHA1 and Hep, but not with non-sulfated HA was visualized by immunofluorescent co-staining. FRET analysis of FN confirmed the presence of more extended fibrils in human bone marrow stromal cells (hBMSC)-derived ECM in response to sHA1 and Hep. Although both sHA1 and Hep affected FN conformation, exclusively sHA1 increased FN protein level and led to thinner fibrils. Further, only sHA1 had a pro-osteogenic effect and enhanced the activity of tissue non-specific alkaline phosphatase. We hypothesize that the sHA1-triggered change in FN assembly influences the entire ECM network and could be the underlying mechanism for the pro-osteogenic effect of sHA1 on hBMSC.

  18. Remineralization of demineralized bone matrix in critical size cranial defects in rats: A 6-month follow-up study.

    PubMed

    Horváthy, Dénes B; Vácz, Gabriella; Toró, Ildikó; Szabó, Tamás; May, Zoltán; Duarte, Miguel; Hornyák, István; Szabó, Bence T; Dobó-Nagy, Csaba; Doros, Attila; Lacza, Zsombor

    2016-10-01

    The key drawback of using demineralized bone matrix (DBM) is its low initial mechanical stability due to the severe depletion of mineral content. In the present study, we investigated the long-term regeneration of DBM in a critical size bone defect model and investigated the remineralization after 6 months. Bone defects were created in the cranium of male Wistar rats which were filled with DBM or left empty as negative control. In vivo bone formation was monitored with computed tomography after 11, 19, and 26 weeks postoperatively. After 6 months, parietal bones were subjected to micro-CT. Mineral content was determined with spectrophotometric analysis. After 11 weeks the DBM-filled bone defects were completely closed, while empty defects were still open. Density of the DBM-treated group increased significantly while the controls remained unchanged. Quantitative analysis by micro-CT confirmed the in vivo results, bone volume/tissue volume was significantly lower in the controls than in the DBM group. The demineralization procedure depleted the key minerals of the bone to a very low level. Six months after implantation Ca, P, Na, Mg, Zn, and Cr contents were completely restored to the normal level, while K, Sr, and Mn were only partially restored. The remineralization process of DBM is largely complete by the 6th month after implantation in terms of bone density, structure, and key mineral levels. Although DBM does not provide sufficient sources for any of these minerals, it induces a faster and more complete regeneration process. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1336-1342, 2016.

  19. Studies of collagen in bone and dentin matrix of a Columbian mammoth (late Pleistocene) of central Utah.

    PubMed

    Schaedler, J M; Krook, L; Wootton, J A; Hover, B; Brodsky, B; Naresh, M D; Gillette, D D; Madsen, D B; Horne, R H; Minor, R R

    1992-08-01

    A Columbian mammoth, Mammuthus columbi, was excavated at an elevation of 9000 feet in Huntington Canyon, Emery County, Utah. Radiocarbon dates on the skeleton indicated death approximately 11,200 years ago. The skeleton was removed from postglacial, Late Quaternary, lake sediments deposited as glacial runoff approximately 9500 years ago. The bones and teeth were especially well preserved in a saturated lake bed. After excavation the bones and teeth were preserved by controlled desiccation, without hardeners, over a period of 9 months. Microradiography, light and electron microscopy, medium and high angle X-ray diffraction, amino acid analysis and cyanogen bromide peptide mapping were undertaken to evaluate the packing, organization, and preservation of collagen in bone and dentin of this mammoth. Microradiography and light microscopy showed that the bone consisted of especially well preserved compact and trabecular bone, and electron microscopy of demineralized bone and tusk showed that the matrix consisted of lamellae of densely packed cylindrical collagen fibrils. Cell remnants with intact nuclei, with or without a nucleolus, as well as variable lengths of plasma membrane were occasionally present on the surface of bony trabecula. Remnants of odontoblast processes were present in some dentin tubules. High and low angle X-ray diffraction demonstrated that the demineralized matrix contained native collagen molecules and amino acid analysis showed that the composition was comparable to that of type I collagen. Cyanogen bromide peptide mapping indicated that the major peptides of type I collagen were present and had the same electrophoretic mobility as that of type I collagen of demineralized Asian elephant bone and rat tail tendon.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Comparison of the Osteogenic Potential of OsteoSelect Demineralized Bone Matrix Putty to NovaBone Calcium-Phosphosilicate Synthetic Putty in a Cranial Defect Model

    PubMed Central

    Schallenberger, Mark A.; Rossmeier, Kerri; Lovick, Helena M.; Meyer, Todd R.; Aberman, Harold M.; Juda, Gregory A.

    2014-01-01

    Abstract The purpose of this study was to compare the osteogenic potential of a synthetic and a demineralized bone matrix (DBM) putty using a cranial defect model in New Zealand white rabbits. Paired, bilateral critical-size defects (10 mm) were prepared in the frontal bones of 12 rabbits and filled with either OsteoSelect DBM Putty or NovaBone calcium-phosphosilicate putty. At days 43 and 91, 6 rabbits were killed and examined via semiquantitative histology and quantitative histomorphometry. Defects filled with the DBM putty were histologically associated with less inflammation and fibrous tissue in the defect and more new bone than the synthetic counterpart at both time points. Histomorphometric analysis revealed that the defects filled with DBM putty were associated with significantly more bone formation at day 43 (70.7% vs 40.7%, P = 0.043) and at day 91 (70.4% vs 39.9%, P = 0.0044). The amount of residual implant was similar for both test groups at each time point. PMID:24577306

  1. When size matters: differences in demineralized bone matrix particles affect collagen structure, mesenchymal stem cell behavior, and osteogenic potential.

    PubMed

    Dozza, B; Lesci, I G; Duchi, S; Della Bella, E; Martini, L; Salamanna, F; Falconi, M; Cinotti, S; Fini, M; Lucarelli, E; Donati, D

    2017-04-01

    Demineralized bone matrix (DBM) is a natural, collagen-based, osteoinductive biomaterial. Nevertheless, there are conflicting reports on the efficacy of this product. The purpose of this study was to evaluate whether DBM collagen structure is affected by particle size and can influence DBM cytocompatibility and osteoinductivity. Sheep cortical bone was ground and particles were divided in three fractions with different sizes, defined as large (L, 1-2 mm), medium (M, 0.5-1 mm), and small (S, <0.5 mm). After demineralization, the chemical-physical analysis clearly showed a particle size-dependent alteration in collagen structure, with DBM-M being altered but not as much as DBM-S. DBM-M displayed a preferable trend in almost all biological characteristics tested, although all DBM particles revealed an optimal cytocompatibility. Subcutaneous implantation of DBM particles into immunocompromised mice resulted in bone induction only for DBM-M. When sheep MSC were seeded onto particles before implantation, all DBM particles were able to induce new bone formation with the best incidence for DBM-M and DBM-S. In conclusion, the collagen alteration in DBM-M is likely the best condition to promote bone induction in vivo. Furthermore, the choice of 0.5-1 mm particles may enable to obtain more efficient and consistent results among different research groups in bone tissue-engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1019-1033, 2017.

  2. The osteogenetic efficacy of goat bone marrow-enriched self-assembly peptide/demineralized bone matrix in vitro and in vivo.

    PubMed

    Li, Zhiqiang; Hou, Tianyong; Deng, Moyuan; Luo, Fei; Wu, Xuehui; Xing, Junchao; Chang, Zhengqi; Xu, Jianzhong

    2015-04-01

    In clinical practice, the prolonged duration, high cost, critical technique requirements, and ethical issues make the classical construction method of tissue-engineered bones difficult to apply widely. The major essentials in tissue engineering strategies include seed cells, growth factors, and scaffolds. This study aimed to incorporate these factors in a rapid and cost-effective manner. A self-assembly peptide/demineralized bone matrix (SAP/DBM) composite was artificially established and used for bone marrow enrichment via a selective cell retention approach. Then, goat mesenchymal stem cells (gMSCs) were seeded onto the SAP/DBM or DBM. The proliferation status of gMSCs in different scaffolds was analyzed, and the osteogenetic efficacy was evaluated after osteogenic induction. Bilateral critical-sized femoral defects (20-mm in length) were created in goats, and then the defects were implanted with the postenriched composite or DBM. Then, bone scan imaging, micro-computed tomography (CT) analysis and histological examination were performed to assess the reparative effects of the different implants. Compared with the DBM scaffolds, the growth of gMSCs in the postenriched SAP/DBM composite was faster and the expression levels of the osteo-specific genes (i.e., alkaline phosphatase, osteocalcin, osteopontin, and runt-related transcription factor 2) were significantly higher after 14 days of osteogenic induction. More importantly, the postenriched SAP/DBM composite significantly enhanced bone metabolic activity in the defect area compared with DBM at 2 and 4 weeks postoperation. Moreover, bone reconstruction was complete in marrow-enriched SAP/DBM composite, but not in the DBM. In addition, all of the osteo-related parameters, including the ratio of bone volume to total bone volume, bone mineral density, new trabecular number, and new trabecular thickness, were significantly higher in the marrow-enriched SAP/DBM than those in the DBM. These results indicated that the

  3. Generation and characterization of a human acellular meniscus scaffold for tissue engineering.

    PubMed

    Sandmann, G H; Eichhorn, S; Vogt, S; Adamczyk, C; Aryee, S; Hoberg, M; Milz, S; Imhoff, A B; Tischer, T

    2009-11-01

    Meniscus tears are frequent indications for arthroscopic evaluation which can result in partial or total meniscectomy. Allografts or synthetic meniscus scaffolds have been used with varying success to prevent early degenerative joint disease in these cases. Problems related to reduced initial and long-term stability, as well as immunological reactions prevent widespread clinical use so far. Therefore, the aim of this study was to develop a new construct for tissue engineering of the human meniscus based on an acellular meniscus allograft. Human menisci (n = 16) were collected and acellularized using the detergent sodium dodecyl sulfate as the main ingredient or left untreated as control group. These acellularized menisci were characterized biomechanically using a repetitive ball indentation test (Stiffness N/mm, residual force N, relative compression force N) and by histological (hematoxylin-eosin, phase-contrast) as well as immunohistochemical (collagen I, II, VI) investigation. The processed menisci histologically appeared cell-free and had biomechanical properties similar to the intact meniscus samples (p > 0.05). The collagen fiber arrangement was not altered, according to phase-contrast microscopy and immunohistochemical labeling. The removal of the immunogenic cell components combined with the preservation of the mechanically relevant parts of the extracellular matrix could make these scaffolds ideal implants for future tissue engineering of the meniscus.

  4. Combination of absorbable mesh and demineralized bone matrix in orbital wall fracture for preventing herniation of orbit.

    PubMed

    Tak, Kyoung Seok; Jung, Min Su; Lee, Byeong Ho; Kim, Joo Hyun; Ahn, Duk Kyun; Jeong, Hii Sun; Park, Young Kyu; Suh, In Suck

    2014-07-01

    After restoration of orbit wall fracture, preventing sequelae is important. An absorbable mesh is commonly used in orbit wall fracture, yet it has limitation due to orbit sagging when bony defect is larger than the moderate size (1 × 1 cm2). In this study, the authors present a satisfactory result in treating orbit wall fracture larger than the moderate size with a combination of absorbable mesh and demineralized bone matrix.From 2009 to 2012, 63 patients with bony defect larger than the moderate size, who were treated with a combination of absorbable mesh and demineralized bone matrix, were reviewed retrospectively. The site of bony defect, size, and applied amount of demineralized bone matrix were reviewed, and a 2-year follow-up was done. Facial computed tomography scans were checked preoperative, immediate postoperative, and 2-year postoperative.Among the 63 patients, there were 52 men and 11 women. Mean age was 33.3 years. The most common cause was blunt blow (35 cases); mean defect size was 13.36 × 12.82 mm2 in inferior wall fracture and 20.69 × 14.41 mm2 in medial wall fracture. There was no complication except for 3 cases of infraorbital nerve hypoesthesia. A 2-year follow-up computed tomography showed that the surgical site preserved bony formation without herniation. In treating moderate-sized bony defect in orbit wall fracture, absorbable mesh and demineralized bone matrix can maintain structural stability through good bony formation even after degradation of absorbable mesh.

  5. Effect of Matrix Metallopeptidase 13 on the Function of Mouse Bone Marrow-derived Dendritic Cells

    PubMed Central

    Li, Xiao-Dong; Zhang, Xin-Rui; Li, Zhi-Hao; Yang, Yang; Zhang, Duo; Zheng, Heng; Dong, Shu-Ying; Chen, Juan; Zeng, Xian-Dong

    2017-01-01

    Background: Dendritic cells are professional antigen-presenting cells found in an immature state in epithelia and interstitial space, where they capture antigens such as pathogens or damaged tissue. Matrix metallopeptidase 13 (MMP-13), a member of the collagenase subfamily, is involved in many different cellular processes and is expressed in murine bone marrow-derived dendritic cells (DCs). The function of MMP-13 in DCs is not well understood. Here, we investigated the effect of MMP-13 on DC maturation, apoptosis, and phagocytosis. Methods: Bone marrow-derived dendritic cells were obtained from C57BL/6 mice. One short-interfering RNA specific for MMP-13 was used to transfect DCs. MMP-13-silenced DCs and control DCs were prepared, and apoptosis was measured using real-time polymerase chain reaction and Western blotting. MMP-13-silenced DCs and control DCs were analyzed for surface expression of CD80 and CD86 and phagocytosis capability using flow cytometry. Results: Compared to the control DCs, MMP-13-silenced DCs increased expression of anti-apoptosis-related genes, BAG1 (control group vs. MMP-13-silenced group: 4.08 ± 0.60 vs. 6.11 ± 0.87, P = 0.008), BCL-2 (control group vs. MMP-13-silenced group: 7.54 ± 0.76 vs. 9.54 ± 1.29, P = 0.036), and TP73 (control group vs. MMP-13-silenced group: 4.33 ± 0.29 vs. 5.60 ± 0.32, P = 0.001) and decreased apoptosis-related genes, CASP1 (control group vs. MMP-13-silenced group: 3.79 ± 0.67 vs. 2.54 ± 0.39, P = 0.019), LTBR (control group vs. MMP-13-silenced group: 9.23 ± 1.25 vs. 6.24 ± 1.15, P = 0.012), and CASP4 (control group vs. MMP-13-silenced group: 2.07 ± 0.56 vs. 0.35 ± 0.35, P = 0.002). Protein levels confirmed the same expression pattern. MMP-13-silenced groups decreased expression of CD86 on DCs; however, there was no statistical difference in CD80 surface expression. Furthermore, MMP-13-silenced groups exhibited weaker phagocytosis capability. Conclusion: These results indicate that MMP-13 inhibition

  6. Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality.

    PubMed

    Paschalis, E P; Gamsjaeger, S; Hassler, N; Fahrleitner-Pammer, A; Dobnig, H; Stepan, J J; Pavo, I; Eriksen, E F; Klaushofer, K

    2017-02-01

    Prospective, controlled clinical trials in postmenopausal osteoporosis typically compare effects of an active drug with placebo in addition to vitamin D and calcium supplementation in both treatment arms. While clinical benefits are documented, the effect of this supplementation in the placebo arm and in clinical practice on bone material composition properties is unknown. The purpose of the present study was to evaluate these bone quality indices (specifically mineral/matrix, nanoporosity, glycosaminoglycan content, mineral maturity/crystallinity, and pyridinoline content) in patients that either received long-term vitamin D (400-1200IU) and calcium (1.0-1.5g) supplementation, or did not. We have analyzed by Raman microspectroscopy the bone forming trabecular surfaces of iliac crest in pre-treatment samples of a teriparatide study and the endpoint biopsies of the control arm obtained from the HORIZON trial. In general, the mineral/matrix ratio and the glycosaminoglycan (GAG) content was higher while nanoporosity, (a surrogate for tissue water content), the mineral maturity/crystallinity (MMC) and the pyridinoline (Pyd) content was lower in patients without long-term supplementation. Moreover, all indices were significantly dependent on tissue age. In conclusion, vitamin D and calcium supplementation is associated with altered mineral and organic matrix properties.

  7. The changes in bone organic and inorganic matrix in newborn rats after maternal application of antiretroviral agents: Indinavir and zidovudine.

    PubMed

    Maciejewska, Karina; Drzazga, Zofia; Kaszuba, Michal

    2015-05-06

    This work presents results concerning influence of indinavir (protease inhibitor, PI(1)) and zidovudine (nucleoside and nucleotide inhibitor of reverse transcriptase, NRTI) administered to pregnant Wistar rat females on organic and mineral constituents of bones and teeth (mandibles, skulls, tibiae, femurs, and incisors) of their offspring at the age of: 7, 14, and 28 days studied by means of induced laser and X-ray fluorescence spectroscopy supported by digital radiography. Influence of indinavir administered to pregnant female rats on bone of their offspring revealed mainly in changes of mineral concentration: lowered Ca concentration and disturbances of trace elements. Zidovudine influenced organic matter more than inorganic matrix which was seen in enhancement of LIF fluorescence. However, there was also an unexpected increase of bone density for rats from zidovudine group, unlike indinavir group, observed. Our studies suggest that studied antiretroviral agents given to pregnant women, may have different destructive impact on bone state of their offspring in the first period of life. Maternal administration of zidovudine may delay development of organic matrix, while indinavir may have adverse effects on inorganic structure.

  8. Enhanced differentiation of human embryonic stem cells on extracellular matrix-containing osteomimetic scaffolds for bone tissue engineering.

    PubMed

    Rutledge, Katy; Cheng, Qingsu; Pryzhkova, Marina; Harris, Greg M; Jabbarzadeh, Ehsan

    2014-11-01

    Current methods of treating critical size bone defects include autografts and allografts, however, both present major limitations including donor-site morbidity, risk of disease transmission, and immune rejection. Tissue engineering provides a promising alternative to circumvent these shortcomings through the use of autologous cells, three-dimensional scaffolds, and growth factors. We investigated the development of a scaffold with native bone extracellular matrix (ECM) components for directing the osteogenic differentiation of human embryonic stem cells (hESCs). Toward this goal, a microsphere-sintering technique was used to fabricate poly(lactic-co-glycolic acid) (PLGA) scaffolds with optimum mechanical and structural properties. Human osteoblasts (hOBs) were seeded on these scaffolds to deposit bone ECM for 14 days. This was followed by a decellularization step leaving the mineralized matrix intact. Characterization of the decellularized PLGA scaffolds confirmed the deposition of calcium, collagen II, and alkaline phosphatase by osteoblasts. hESCs were seeded on the osteomimetic substrates in the presence of osteogenic growth medium, and osteogenicity was determined according to calcium content, osteocalcin expression, and bone marker gene regulation. Cell proliferation studies showed a constant increase in number for hESCs seeded on both PLGA and ECM-coated PLGA scaffolds. Calcium deposition by hESCs was significantly higher on the osteomimetic scaffolds compared with the control groups. Consistently, immunofluorescence staining demonstrated an increased expression of osteocalcin in hESCs seeded on ECM-coated osteomimetic PLGA scaffolds. Gene expression analysis of RUNX2 and osteocalcin further confirmed osteogenic differentiation of hESCs at the highest expression level on osteomimetic PLGA. These results together demonstrate the potential of PLGA scaffolds with native bone ECM components to direct osteogenic differentiation of hESCs and induce bone formation.

  9. Enhanced Differentiation of Human Embryonic Stem Cells on Extracellular Matrix-Containing Osteomimetic Scaffolds for Bone Tissue Engineering

    PubMed Central

    Rutledge, Katy; Cheng, Qingsu; Pryzhkova, Marina; Harris, Greg M.

    2014-01-01

    Current methods of treating critical size bone defects include autografts and allografts, however, both present major limitations including donor-site morbidity, risk of disease transmission, and immune rejection. Tissue engineering provides a promising alternative to circumvent these shortcomings through the use of autologous cells, three-dimensional scaffolds, and growth factors. We investigated the development of a scaffold with native bone extracellular matrix (ECM) components for directing the osteogenic differentiation of human embryonic stem cells (hESCs). Toward this goal, a microsphere-sintering technique was used to fabricate poly(lactic-co-glycolic acid) (PLGA) scaffolds with optimum mechanical and structural properties. Human osteoblasts (hOBs) were seeded on these scaffolds to deposit bone ECM for 14 days. This was followed by a decellularization step leaving the mineralized matrix intact. Characterization of the decellularized PLGA scaffolds confirmed the deposition of calcium, collagen II, and alkaline phosphatase by osteoblasts. hESCs were seeded on the osteomimetic substrates in the presence of osteogenic growth medium, and osteogenicity was determined according to calcium content, osteocalcin expression, and bone marker gene regulation. Cell proliferation studies showed a constant increase in number for hESCs seeded on both PLGA and ECM-coated PLGA scaffolds. Calcium deposition by hESCs was significantly higher on the osteomimetic scaffolds compared with the control groups. Consistently, immunofluorescence staining demonstrated an increased expression of osteocalcin in hESCs seeded on ECM-coated osteomimetic PLGA scaffolds. Gene expression analysis of RUNX2 and osteocalcin further confirmed osteogenic differentiation of hESCs at the highest expression level on osteomimetic PLGA. These results together demonstrate the potential of PLGA scaffolds with native bone ECM components to direct osteogenic differentiation of hESCs and induce bone formation

  10. Use of a graft of demineralized bone matrix along with TGF-β1 leads to an early bone repair in dogs.

    PubMed

    Servin-Trujillo, Miguel Angel; Reyes-Esparza, Jorge Alberto; Garrido-Fariña, German; Flores-Gazca, Enrique; Osuna-Martinez, Ulises; Rodriguez-Fragoso, Lourdes

    2011-09-01

    Tibia fractures are common in small animal practice. Over the past decade, improvements to animal internal fracture fixation have been developed. TGF-β1 has been shown to be crucial in the development, induction and repair of bone. In present study, we investigate the effect of local application of a graft demineralized bone matrix (DBM) along with TGF-β1 in a model of open osteotomy induced experimentally in dogs. Tibia fracture was brought about by using an open osteotomy model in young male dogs. Fracture repair was evaluated by a histological and biochemical analysis. Collagen content, proteolytic activity and urokinase-type plasminogen activator (uPA) expression were analyzed at the end of the study. Radiographic analysis, alkaline phosphatase and hematological evaluation were performed weekly. At the fifth week, there was an improvement and restoration of bone architecture in animals treated with a graft containing TGF-β1 (5 ng/ml) compared with the control and graft groups, as was evidenced by the presence of an early formation of wide callus and bone regeneration. In addition, local application of TGF-β1 led to an increase in collagen and proteolytic activity. More immunopositive osteoclast and mesenchymal cells were found in bone tissue from animals treated with TGF-β1 as compared with the control group. No changes in alkaline phosphatase, hematological and clinical parameters were observed. This study shows that the combined use of DBM along with TGF-β1 is able to improve and accelerate the bone repair.

  11. Purification of a tartrate-resistant acid phosphatase (TrACP) from bovine cortical bone matrix

    SciTech Connect

    Lau, K.H.W.; Freeman, T.K.; Baylink, D.J.

    1986-05-01

    It has been previously demonstrated that a partially purified bovine skeletal TrACP showed protein phosphatase (P'ase) activity that was specific for phosphotyrosyl (Ptyr) proteins. They have now purified TrACP activity from bovine cortical bone matrix to apparent homogeneity. The purification procedures included CM-Sepharose ion-exchange, cellulose phosphate affinity, sephacryl S-300 gel filtration and phenyl sepharose affinity chromatographies. Overall yield was > 25% and purification was approximately 2000-fold with a specific activity of 8.15 umol pNPP hydrolyzed/min/mg protein at 37/sup 0/C. The purified enzyme was judged to be homogeneous based on: (i) appearance as a single protein band on SDS-PAGE (silver staining technique) and (ii) distribution analysis of radioiodinated purified TrACP after SDS-PAGE revealing one band of radioactivity at the same positions as the TrACP protein band. M.W. of TrACP was 34,600 as assessed by gel filtration and 32,500 by SDS-PAGE, suggesting that bovine skeletal TrACP exists as active monomer. Analysis of the purified TrACP by isoelectric focusing showed at least 9 bands of enzyme activities with pIs between 4 and 5, indicating micro-heterogenecity. Substrate specificity analyses revealed that the purified TrACP also hydrolyzed nucleotide tri- and di-phosphates, but not monophosphates or other low M.W. phosphoryl esters, and was also capable of hydrolyzing phosphotyrosine (Tyr(P)) and Ptyr proteins with little activity toward other phosphoamino acids or phosphoseryl proteins. Optimal pH was 5.5 for TrACP activity, 6.0 for Tyr(P) P'ase activity and 7.0 for Ptyr protein P'ase activity. Results of these studies represent the first purification of a skeletal TrACP to apparent homogeneity.

  12. Cartilage tissue engineering of nasal septal chondrocyte-macroaggregates in human demineralized bone matrix.

    PubMed

    Liese, Juliane; Marzahn, Ulrike; El Sayed, Karym; Pruss, Axel; Haisch, Andreas; Stoelzel, Katharina

    2013-06-01

    Tissue Engineering is an important method for generating cartilage tissue with isolated autologous cells and the support of biomaterials. In contrast to various gel-like biomaterials, human demineralized bone matrix (DBM) guarantees some biomechanical stability for an application in biomechanically loaded regions. The present study combined for the first time the method of seeding chondrocyte-macroaggregates in DBM for the purpose of cartilage tissue engineering. After isolating human nasal chondrocytes and creating a three-dimensional macroaggregate arrangement, the DBM was cultivated in vitro with the macroaggregates. The interaction of the cells within the DBM was analyzed with respect to cell differentiation and the inhibitory effects of chondrocyte proliferation. In contrast to chondrocyte-macroaggregates in the cell-DBM constructs, morphologically modified cells expressing type I collagen dominated. The redifferentiation of chondrocytes, characterized by the expression of type II collagen, was only found in low amounts in the cell-DBM constructs. Furthermore, caspase 3, a marker for apoptosis, was detected in the chondrocyte-DBM constructs. In another experimental setting, the vitality of chondrocytes as related to culture time and the amount of DBM was analyzed with the BrdU assay. Higher amounts of DBM tended to result in significantly higher proliferation rates of the cells within the first 48 h. After 96 h, the vitality decreased in a dose-dependent fashion. In conclusion, this study provides the proof of concept of chondrocyte-macroaggregates with DBM as an interesting method for the tissue engineering of cartilage. The as-yet insufficient redifferentiation of the chondrocytes and the sporadic initiation of apoptosis will require further investigations.

  13. Intact growth factors are conserved in the extracellular matrix of ancient human bone and teeth: a storehouse for the study of human evolution in health and disease.

    PubMed

    Schmidt-Schultz, Tyede H; Schultz, Michael

    2005-08-01

    For the first time we have extracted, solubilized and identified growth factors, such as insulin growth factor II (IGF-II), bone morphogenetic protein-2 (BMP-2), and transforming growth factor-beta (TGF-beta), from archaeological compact human bone and tooth dentin dating from the late pre-ceramic pottery Neolithic (late PPNB) and the early Middle Ages. These factors are typical of special physiological or pathological situations in the metabolism of bone. The extracellular matrix proteins from bone and teeth of individuals from the late PPNB and early Middle Ages were separated by 2-D electrophoresis and more than 300 different protein spots were detected by silver staining. The matrix protein patterns of compact bone and tooth from the same individual (early Middle Ages) are very different and only 16% of the protein spots were detected in both compact bone and tooth dentin.

  14. Complementary interplay between matrix metalloproteinase-9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation

    PubMed Central

    Ortega, Nathalie; Wang, Ke; Ferrara, Napoleone; Werb, Zena; Vu, Thiennu H.

    2010-01-01

    SUMMARY Long bone development depends on endochondral bone formation, a complex process requiring exquisite balance between hypertrophic cartilage (HC) formation and its ossification. Dysregulation of this process may result in skeletal dysplasias and heterotopic ossification. Endochondral ossification requires the precise orchestration of HC vascularization, extracellular matrix remodeling, and the recruitment of osteoclasts and osteoblasts. Matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and osteoclasts have all been shown to regulate endochondral ossification, but how their function interrelates is not known. We have investigated the functional relationship among these regulators of endochondral ossification, demonstrating that they have complementary but non-overlapping functions. MMP-9, VEGF and osteoclast deficiency all cause impaired growth plate ossification resulting in the accumulation of HC. VEGF mRNA and protein expression are increased at the MMP-9−/− growth plate, and VEGF activity contributes to endochondral ossification since sequestration of VEGF by soluble receptors results in further inhibition of growth plate vascularization and ossification. However, VEGF bioavailability is still limited in MMP-9 deficiency, as exogenous VEGF is able to rescue the MMP-9−/− phenotype, demonstrating that MMP-9 may partially, but not fully, regulate VEGF bioavailability. The organization of the HC extracellular matrix at the MMP-9−/− growth plate is altered, supporting a role for MMP-9 in HC remodeling. Inhibition of VEGF impairs osteoclast recruitment, whereas MMP-9 deficiency leads to an accumulation of osteoclasts at the chondro-osseous junction. Growth plate ossification in osteoclast-deficient mice is impaired in the presence of normal MMP-9 expression, indicating that other osteoclastic functions are also necessary. Our data delineate the complementary interplay between MMP-9, VEGF and osteoclast function that is

  15. Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix.

    PubMed

    Eckhardt, Bedrich L; Parker, Belinda S; van Laar, Ryan K; Restall, Christina M; Natoli, Anthony L; Tavaria, Michael D; Stanley, Kym L; Sloan, Erica K; Moseley, Jane M; Anderson, Robin L

    2005-01-01

    A clinically relevant model of spontaneous breast cancer metastasis to multiple sites, including bone, was characterized and used to identify genes involved in metastatic progression. The metastatic potential of several genetically related tumor lines was assayed using a novel real-time quantitative RT-PCR assay of tumor burden. Based on this assay, the tumor lines were categorized as nonmetastatic (67NR), weakly metastatic to lymph node (168FARN) or lung (66cl4), or highly metastatic to lymph node, lung, and bone (4T1.2 and 4T1.13). In vitro assays that mimic stages of metastasis showed that highly metastatic tumors lines were more adhesive, invasive, and migratory than the less metastatic lines. To identify metastasis-related genes in this model, each metastatic tumor was array profiled against the nonmetastatic 67NR using 15,000 mouse cDNA arrays. A significant proportion of genes relating to the extracellular matrix had elevated expression in highly metastatic tumors. The role of one of these genes, POEM, was further investigated in the model. In situ hybridization showed that POEM expression was specific to the tumor epithelium of highly metastatic tumors. Decreased POEM expression in 4T1.2 tumors significantly inhibited spontaneous metastasis to the lung, bone, and kidney. Taken together, our data support a role for the extracellular matrix in metastatic progression and describe, for the first time, a role for POEM in this process.

  16. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration

    PubMed Central

    Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang

    2015-01-01

    Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects. PMID:26632447

  17. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration

    NASA Astrophysics Data System (ADS)

    Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang

    2015-12-01

    Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects.

  18. Inhibition of cartilage and bone destruction in adjuvant arthritis in the rat by a matrix metalloproteinase inhibitor

    PubMed Central

    1995-01-01

    Considerable evidence has associated the expression of matrix metalloproteinases (MMPs) with the degradation of cartilage and bone in chronic conditions such as arthritis. Direct evaluation of MMPs' role in vivo has awaited the development of MMP inhibitors with appropriate pharmacological properties. We have identified butanediamide, N4- hydroxy-2-(2-methylpropyl)-N1-[2-[[2-(morpholinyl)ethyl]-,[S- (R*,S*)] (GI168) as a potent MMP inhibitor with sufficient solubility and stability to permit evaluation in an experimental model of chronic destructive arthritis (adjuvant-induced arthritis) in rats. In this model, pronounced acute and chronic synovial inflammation, distal tibia and metatarsal marrow hyperplasia associated with osteoclasia, severe bone and cartilage destruction, and ectopic new bone growth are well developed by 3 wk after adjuvant injection. Rats were injected with Freund's adjuvant on day 0. GI168 was was administered systemically from days 8 to 21 by osmotic minipumps implanted subcutaneously. GI168 at 6, 12, and 25 mg/kg per d reduced ankle swelling in a dose-related fashion. Radiological and histological ankle joint evaluation on day 22 revealed a profound dose related inhibition of bone and cartilage destruction in treated rats relative to rats receiving vehicle alone. A significant reduction in edema, pannus formation, periosteal new bone growth and the numbers of adherent marrow osteoclasts was also noted. However, no significant decrease in polymorphonuclear and mononuclear leukocyte infiltration of synovium and marrow hematopoietic cellularity was seen. This unique profile of antiarthritic activity indicates that GI168 is osteo- and chondro-protective, and it supports a direct role for MMP in cartilage and bone damage and pannus formation in adjuvant- induced arthritis. PMID:7629505

  19. Dynamic compression promotes proliferation and neovascular networks of endothelial progenitor cells in demineralized bone matrix scaffold seed.

    PubMed

    Kong, Zhan; Li, Jianjun; Zhao, Qun; Zhou, Zhendong; Yuan, Xiangnan; Yang, Dongxiang; Chen, Xu

    2012-08-15

    Neovascularization is required for bone formation and successful fracture healing. In the process of neovascularization, endothelial progenitor cells (EPCs) play an important role and finish vascular repair through reendothelialization to promote successful fracture healing. In this study, we found that dynamic compression can promote the proliferation and capillary-like tube formation of EPCs in the demineralized bone matrix (DBM) scaffold seed. EPCs isolated from the bone marrow of rats have been cultured in DBM scaffolds before dynamic compression and then seeded in the DBM scaffolds under dynamic conditions. The cells/scaffold constructs were subjected to cyclic compression with 5% strain and at 1 Hz for 4 h/day for 7 consecutive days. By using MTT and real-time PCR, we found that dynamic compression can significantly induce the proliferation of EPCs in three-dimensional culture with an even distribution of cells onto DBM scaffolds. Both in vitro and in vivo, the tube formation assays in the scaffolds showed that the loaded EPCs formed significant tube-like structures. These findings suggest that dynamic compression promoted the vasculogenic activities of EPCs seeded in the scaffolds, which would benefit large bone defect tissue engineering.

  20. The in vitro bioactivity of two novel hydrophilic, partially degradable bone cements.

    PubMed

    Boesel, Luciano F; Cachinho, Sandra C P; Fernandes, Maria H V; Reis, Rui L

    2007-03-01

    Composite bone cements were prepared with bioactive glasses (MgO-SiO(2)-3CaO.P(2)O(5)) of different reactivities. The matrix of these so-called hydrophilic, partially degradable and bioactive cements was composed of a starch/cellulose acetate blend and poly(2-hydroxyethyl methacrylate). The addition of 30 wt.% of glasses to this system made them bioactive in acellular medium: a dense apatite layer formed on the surface after 7 days of immersion in simulated body fluid. This was demonstrated both by microscopic and infrared spectroscopic techniques. The composition of the glass and, consequently, its structure was found to have important effects on the rate of the apatite formation. The combination of reactivity obtained by one formulation with the hydrophilic and degradable character of these cements makes them a very promising alternative to conventional acrylic bone cements, by allowing a better stabilization of the implant and a stronger adhesion to the bone.

  1. Reconstitution of bone-like matrix in osteogenically differentiated mesenchymal stem cell–collagen constructs: A three-dimensional in vitro model to study hematopoietic stem cell niche

    PubMed Central

    Lai, WY; Li, YY; Mak, SK; Ho, FC; Chow, ST; Chooi, WH; Chow, CH; Leung, AY

    2013-01-01

    Mesenchymal stem/stromal cells (MSCs) and osteoblasts are important niche cells for hematopoietic stem cells (HSCs) in bone marrow osteoblastic niche. Here, we aim to partially reconstitute the bone marrow HSC niche in vitro using collagen microencapsulation for investigation of the interactions between HSCs and MSCs. Mouse MSCs (mMSCs) microencapsulated in collagen were osteogenically differentiated to derive a bone-like matrix consisting of osteocalcin, osteopontin, and calcium deposits and secreted bone morphogenic protein 2 (BMP2). Decellularized bone-like matrix was seeded with fluorescence-labeled human MSCs and HSCs. Comparing with pure collagen scaffold, significantly more HSCs and HSC–MSC pairs per unit area were found in the decellularized bone-like matrix. Moreover, incubation with excess neutralizing antibody of BMP2 resulted in a significantly higher number of HSC per unit area than that without in the decellularized matrix. This work suggests that the osteogenic differentiated MSC–collagen microsphere is a valuable three-dimensional in vitro model to elucidate cell–cell and cell–matrix interactions in HSC niche. PMID:24555007

  2. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells.

    PubMed

    Mathews, Smitha; Bhonde, Ramesh; Gupta, Pawan Kumar; Totey, Satish

    2012-09-01

    The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.

  3. Enhanced Androgen Signaling With Androgen Receptor Overexpression in the Osteoblast Lineage Controls Skeletal Turnover, Matrix Quality and Bone Architecture

    DTIC Science & Technology

    2006-12-01

    knockout (ARKO) mice: an in vivomodel for the study of androgen functions in selective tissues. Proc Natl Acad Sci U S A 2002;99:13498–503. [63] Zagar Y...The views, opinions and/or findings contained in this report are those of the author( s ) and should not be construed as an official Department...Skeletal Turnover, Matrix Quality and Bone Architecture 5b. GRANT NUMBER W81XWH-05-1-0086 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT

  4. New collagen matrix to avoid the reduction of keratinized tissue during guided bone regeneration in postextraction sites.

    PubMed

    De Santis, Daniele; Cucchi, Alessandro; de Gemmis, Antonio; Nocini Pier, Francesco

    2012-05-01

    For decades, there has been an ongoing controversy regarding the need for an "adequate" width of keratinized gingiva/mucosa to preserve periodontal and implant health. Today, the presence of a certain width of keratinized tissue is recommended for achieving long-term periodontal and implant success, and therefore, a new collagen matrix has been developed to enhance the width of keratinized gingiva/mucosa. During postextraction socket preservation, guided bone regeneration techniques require complete coverage of the barrier membrane to reduce the risk of infection, occasionally causing a reduction of the width of keratinized tissue. Using the new collagen matrix, it is possible to leave the membrane intentionally uncovered, without suturing the surgical flap above it, to avoid the reduction of such tissue.

  5. Alterations of collagen matrix in weight-bearing bones during skeletal unloading

    NASA Technical Reports Server (NTRS)

    Shiiba, M.; Arnaud, S. B.; Tanzawa, H.; Uzawa, K.; Yamauchi, M.

    2001-01-01

    Skeletal unloading induces loss of bone mineral density in weight-bearing bones. The objectives of this study were to characterize the post-translational modifications of collagen of weight-bearing bones subjected to hindlimb unloading for 8 weeks. In unloaded bones, tibiae and femurs, while the overall amino acid composition was essentially identical in the unloaded and control tibiae and femurs, the collagen cross-link profile showed significant differences. Two major reducible cross-links (analyzed as dihydroxylysinonorleucine and hydroxylysinonorleucine) were increased in the unloaded bones. In addition, the ratios of the former to the latter as well as pyridinoline to deoxypyridinoline were significantly decreased in the unloaded bones indicating a difference in the extent of lysine hydroxylation at the cross-linking sites between these two groups. These results indicate that upon skeletal unloading the relative pool of newly synthesized collagen is increased and it is post-translationally altered. The alteration could be associated with impaired osteoblastic differentiation induced by skeletal unloading that results in a mineralization defect.

  6. ToF-SIMS analysis of osteoblast-like cells and their mineralized extracellular matrix on strontium enriched bone cements.

    PubMed

    Kokesch-Himmelreich, Julia; Schumacher, Matthias; Rohnke, Marcus; Gelinsky, Michael; Janek, Jürgen

    2013-12-01

    Commonly used implants for therapeutic approaches of non-systemically impaired bone do not sufficiently support the healing process of osteoporotic bone. Since strontium (II) has been proven as an effective anti-osteoporotic drug new types of strontium enriched calcium phosphate bone cements were developed. As osteoporosis is characterized by an imbalance of osteoblast and osteoclast activity the influence of this newly generated strontium enriched biomaterials on the cellular behavior of osteoblast-like cells was investigated by time of flight secondary ion mass spectrometry (ToF-SIMS). ToF-SIMS is used to analyze whether strontium is incorporated in the mineralized extracellular matrix (mECM) and whether there is strontium uptake by osteogenically differentiated human mesenchymal stem cells (hMSCs). Therefore hMSCs were cultured in osteogenic differentiation medium for 21 days on two different strontium enriched bone cements (S100 and A10) and for reference also on the pure calcium phosphate cement (CPC) and on a silicon wafer. The distribution of strontium in the osteoblast-like cells and within their mineralized extracellular matrix was analyzed. A higher intensity of the strontium signal could be detected in the region of the mECM, synthesized by cells cultivated on the Sr- substituted bone cement (S100) in comparison to the reference groups. The osteoblast-like cells used the released strontium from the biomaterial to synthesize their mECM. Apart from that a uniform strontium distribution was measured within all investigated cells. However, different amounts of strontium were found in cells cultured on different biomaterials and substrates. Compared to the negative controls the strontium content in the cells on the strontium enriched biomaterials was much higher. A higher concentration of strontium inside the cells means that more strontium can take part in signaling pathways. As strontium is known for its beneficial effects on osteoblasts by promoting

  7. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation

    NASA Technical Reports Server (NTRS)

    Harter, L. V.; Hruska, K. A.; Duncan, R. L.

    1995-01-01

    Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.

  8. Bone

    NASA Astrophysics Data System (ADS)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  9. Hematopoiesis on cellulose ester membranes. XI. Induction of new bone and a hematopoietic microenvironment by matrix factors secreted by marrow stromal cells.

    PubMed

    Knospe, W H; Husseini, S G; Fried, W

    1989-07-01

    Cellulose ester membranes (CEM) were coated with stromal cells from bone marrow (BM) or bone and implanted intraperitoneally (IP) in CAF1 mice for intervals of 1 to 6 months. Previous studies indicated that matrix factors [glycoproteins (GPs), proteoglycans (PGs), and glycosaminoglycans (GAGs)] were secreted by the regenerating stromal cells and adsorbed by the CEM. After 1 to 6 months, the CEMs were removed, scraped free of adherent cells, and irradiated in vitro with 40 Gy. The scraped and irradiated CEMs were then reimplanted IP or subcutaneously (SC) for periods of 1 to 6 months in secondary syngeneic murine hosts. They were then removed for histologic study. CEMs reimplanted in SC sites developed bone and hematopoiesis as early as 1 month after implantation. Maximum hematopoiesis and bone formation was observed after 3 months. CEMs coated during the initial implantation with bone-derived stromal cells contained more bone and hematopoietic cells than did CEMs coated with marrow-derived stromal cells after SC implementation. Neither the CEMs coated with bone stromal cells nor those coated with marrow stromal cells developed new bone or trilineal hematopoiesis after being implanted IP. A few CEMs contained small foci of granulopoiesis only. We conclude that noncellular matrix substances deposited on CEMs by bone, and to a lesser degree by marrow cells, can induce prestromal cells in the SC tissues to produce a microenvironment suitable for trilineal hematopoiesis.

  10. Creation and implantation of acellular rat renal ECM-based scaffolds

    PubMed Central

    Peloso, Andrea; Ferrario, Jacopo; Maiga, Benedetta; Benzoni, Ilaria; Bianco, Carolina; Citro, Antonio; Currao, Manuela; Malara, Alessandro; Gaspari, Annalisa; Balduini, Alessandra; Abelli, Massimo; Piemonti, Lorenzo; Dionigi, Paolo; Orlando, Giuseppe; Maestri, Marcello

    2015-01-01

    Abstract Kidney transplantation is the only potentially curative treatment for patient facing end-stage renal disease, and it is now routinely used. Its use is mainly limited by the supply of transplantable donor organs, which far exceeds the demand. Regenerative medicine and tissue engineering offer promising means for overcoming this shortage. In the present study, we developed and validated a protocol for producing acellular rat renal scaffolds. Left kidneys were removed from 26 male Lewis rats (weights: 250–350 g) and decellularized by means of aortic anterograde perfusion with ionic and anionic detergents (Triton X-100 1% and SDS 1%, respectively). 19 scaffolds thus obtained (and contralateral native kidneys as controls) were deeply characterized in order to evaluate the decellularization quality, the preservation of extracellular matrix components and resultant micro-angioarchitecture structure. The other 7 were transplanted into 7 recipient rats that had undergone unilateral nephrectomy. Recipients were sacrificed on post-transplantation day 7 and the scaffolds subjected to histologic studies. The dual-detergent protocol showed, with only 5 h of perfusion per organ, to obtain thoroughly decellularized renal scaffolds consisting almost exclusively of extracellular matrix. Finally the macro- and the microarchitecture of the renal parenchyma were well preserved, and the grafts were implanted with ease. Seven days after transplant, the scaffolds were morphologically intact although all vascular structures were obstructed with thrombi. Production and implantation of acellular rat renal scaffolds is a suitable platform for further studies on regenerative medicine and tissue engineering. PMID:26186418

  11. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration

    PubMed Central

    Wagner, Darcy E.; Bonenfant, Nicholas R.; Sokocevic, Dino; DeSarno, Michael; Borg, Zachary; Parsons, Charles; Brooks, Elice M.; Platz, Joseph; Khalpey, Zain; Hoganson, David M.; Deng, Bin; Lam, Ying Wai; Oldinski, Rachael A.; Ashikaga, Takamaru; Weiss, Daniel J.

    2014-01-01

    Acellular scaffolds from complex whole organs such as lung are being increasingly studied for ex vivo organ generation and for in vitro studies of cell-extracellular matrix interactions. We have established effective methods for efficient de- and recellularization of large animal and human lungs including techniques which allow multiple small segments (∼1–3cm3) to be excised that retain 3-dimensional lung structure. Coupled with the use of a synthetic pleural coating, cells can be selectively physiologically inoculated via preserved vascular and airway conduits. Inoculated segments can be further sliced for high throughput studies. Further, we demonstrate thermography as a powerful noninvasive technique for monitoring perfusion decellularization and for evaluating preservation of vascular and airway networks following human and porcine lung decellularization. Collectively, these techniques are a significant step forward as they allow high throughput in vitro studies from a single lung or lobe in a more biologically relevant, three-dimensional acellular scaffold. PMID:24411675

  12. Evolution of the vertebrate bone matrix: an expression analysis of the network forming collagen paralogues in amphibian osteoblasts.

    PubMed

    Aldea, Daniel; Hanna, Patricia; Munoz, David; Espinoza, Javier; Torrejon, Marcela; Sachs, Laurent; Buisine, Nicolas; Oulion, Silvan; Escriva, Hector; Marcellini, Sylvain

    2013-09-01

    The emergence of vertebrates is closely associated to the evolution of mineralized bone tissue. However, the molecular basis underlying the origin and subsequent diversification of the skeletal mineralized matrix is still poorly understood. One efficient way to tackle this issue is to compare the expression, between vertebrate species, of osteoblastic genes coding for bone matrix proteins. In this work, we have focused on the evolution of the network forming collagen family which contains the Col8a1, Col8a2, and Col10a1 genes. Both phylogeny and synteny reveal that these three paralogues are vertebrate-specific and derive from two independent duplications in the vertebrate lineage. To shed light on the evolution of this family, we have analyzed the osteoblastic expression of the network forming collagens in endochondral and intramembraneous skeletal elements of the amphibian Xenopus tropicalis. Remarkably, we find that amphibian osteoblasts express Col10a1, a gene strongly expressed in osteoblasts in actinopterygians but not in amniotes. In addition, while Col8a1 is known to be robustly expressed in mammalian osteoblasts, the expression levels of its amphibian orthologue are dramatically reduced. Our work reveals that while a skeletal expression of network forming collagen members is widespread throughout vertebrates, osteoblasts from divergent vertebrate lineages express different combinations of network forming collagen paralogues.

  13. Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome.

    PubMed

    Lomri, A; Lemonnier, J; Hott, M; de Parseval, N; Lajeunie, E; Munnich, A; Renier, D; Marie, P J

    1998-03-15

    Apert syndrome, associated with fibroblast growth factor receptor (FGFR) 2 mutations, is characterized by premature fusion of cranial sutures. We analyzed proliferation and differentiation of calvaria cells derived from Apert infants and fetuses with FGFR-2 mutations. Histological analysis revealed premature ossification, increased extent of subperiosteal bone formation, and alkaline phosphatase- positive preosteoblastic cells in Apert fetal calvaria compared with age-matched controls. Preosteoblastic calvaria cells isolated from Apert infants and fetuses showed normal cell growth in basal conditions or in response to exogenous FGF-2. In contrast, the number of alkaline phosphatase- positive calvaria cells was fourfold higher than normal in mutant fetal calvaria cells with the most frequent Apert FGFR-2 mutation (Ser252Trp), suggesting increased maturation rate of cells in the osteoblastic lineage. Biochemical and Northern blot analyses also showed that the expression of alkaline phosphatase and type 1 collagen were 2-10-fold greater than normal in mutant fetal calvaria cells. The in vitro production of mineralized matrix formed by immortalized mutant fetal calvaria cells cultured in aggregates was also increased markedly compared with control immortalized fetal calvaria cells. The results show that Apert FGFR-2 mutations lead to an increase in the number of precursor cells that enter the osteogenic pathway, leading ultimately to increased subperiosteal bone matrix formation and premature calvaria ossification during fetal development, which establishes a connection between the altered genotype and cellular phenotype in Apert syndromic craniosynostosis.

  14. Detailed Analysis of the Structural Changes of Bone Matrix During the Demineralization Process Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Timchenko, E. V.; Zherdeva, L. A.; Timchenko, P. E.; Volova, L. T.; Ponomareva, U. V.

    The results of experimental research of human cortical bone tissue depending on demineralization time were represented using Raman spectroscopy. Depending on demineralization time the ratio of the mineral (РO43- and CO32-) and organic components (amide I) of bone tissue, as well as changes in the spectral regions responsible for the structural integrity of the collagen fibers in bone tissue (1200-1460 cm-1 and 2880-3000 cm-1) were investigated. The observed changes show a decrease in mineral components: thus, the value of Raman band intensity at 956 and 1069 cm-1 for 5 minutes demineralization is 68.5 and 77.3%, for 20 minutes - 55.1 and 61.1%, for 120 minutes - 32.8 and 37% from Raman intensity values of not demineralized tissue objects respectively.

  15. Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors.

    PubMed

    Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M

    2017-02-27

    The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.

  16. Experimental bone defect healing with xenogenic demineralized bone matrix and bovine fetal growth plate as a new xenograft: radiological, histopathological and biomechanical evaluation.

    PubMed

    Bigham, A S; Dehghani, S N; Shafiei, Z; Nezhad, S Torabi

    2009-02-01

    The following study was designed to evaluate xenogenic bovine demineralized bone matrix (DBM) and new xenograft (Bovine fetal growth plate) effects on bone healing process. Twenty male White New Zealand rabbits were used in this study. In group I (n = 10) the defect was filled by xenogenic DBM and in group II (n = 10) the defect was filled by a segment of bovine fetal growth plate and was fixed by cercelage wire. Radiological, histopathological, and biomechanical evaluations were performed blindly and results scored and analyzed statistically. Statistical tests did not support significant differences between two groups radiographically (P > 0.05). There was a significant difference for union at the 28th postoperative radiologically (P < 0.05). Xenograft was superior to DBM group at the 28th postoperative day for radiological union (P < 0.03). Histopathological and biomechanical evaluation revealed no significant differences between two groups. In conclusion, the results of this study indicate that satisfactory healing occurred in rabbit radius defect filled with xenogenic bovine DBM and xenogenic bovine fetal growth plate. Complications were not identified and healing was faster in two grafting groups.

  17. Demineralized Bone Matrix Add-On for Acceleration of Bone Healing in Atypical Subtrochanteric Femoral Fracture: A Consecutive Case-Control Study

    PubMed Central

    Kulachote, Noratep; Sirisreetreerux, Norachart; Chanplakorn, Pongsthorn; Fuangfa, Praman; Suphachatwong, Chanyut; Wajanavisit, Wiwat

    2016-01-01

    Background. Delayed union and nonunion are common complications in atypical femoral fractures (AFFs) despite having good fracture fixation. Demineralized bone matrix (DBM) is a successfully proven method for enhancing fracture healing of the long bone fracture and nonunion and should be used in AFFs. This study aimed to compare the outcome after subtrochanteric AFFs (ST-AFFs) fixation with and without DBM. Materials and Methods. A prospective study was conducted on 9 ST-AFFs patients using DBM (DBM group) during 2013-2014 and compared with a retrospective consecutive case series of ST-AFFs patients treated without DBM (2010–2012) (NDBM group, 9 patients). All patients were treated with the same standard guideline and followed up until fractures completely united. Postoperative outcomes were then compared. Results. DBM group showed a significant shorter healing time than NDBM group (28.1 ± 14.4 versus 57.9 ± 36.8 weeks, p = 0.04). Delayed union was found in 4 patients (44%) in DBM group compared with 7 patients (78%) in NDBM group (p > 0.05). No statistical difference of nonunion was demonstrated between both groups (DBM = 1 and NDBM = 2, p > 0.05). Neither postoperative infection nor severe local tissue reaction was found. Conclusions. DBM is safe and effective for accelerating the fracture healing in ST-AFFx and possibly reduces nonunion after fracture fixation. Trial registration number is TCTR20151021001. PMID:27022610

  18. Acellular dermal graft reinforcement at the hiatus.

    PubMed

    Freedman, Bruce

    2012-11-01

    The ideal technique to repair large hiatal and diaphragmatic defects remains controversial. Due to high recurrence rates with primary repair alone, attempts at crural reinforcement with various products has been investigated. Initial evaluation of synthetic mesh at the hiatus in retrospective studies led to the conclusion that there were too many serious complications with these products. The next step was to see how biologic grafts fared in this location. Beginning with porcine intestine submucosa in a laminated array and progressing through human and porcine acellular dermal matrices, multiple, retrospective studies looked at the efficacy and safety of these products. Unfortunately, most of these studies evaluated a small sample size with a relatively short follow-up period. The one study followed out to 5 years failed to show any benefit using the biologic (porcine intestinal submucosa) compared with the primary repair alone. Additional, prospective, randomized studies with ample numbers carried out for years will be necessary to see which biologic graft is not only safe but also successful in preventing recurrent herniations.

  19. Surgical Outcomes of Anterior Cervical Fusion Using Deminaralized Bone Matrix as Stand-Alone Graft Material: Single Arm, Pilot Study

    PubMed Central

    Chung, Ho-Jung; Ryu, Kyeong-Sik; Kim, Jin-Sung; Seong, Ji-Hoon

    2016-01-01

    Objective To investigate the safety and efficacy of demineralized bone matrix (DBM) as a bone graft substitute for anterior cervical discectomy and fusion (ACDF) surgery. Methods Twenty consecutive patients treated with ACDF using stand-alone polyestheretherketone (PEEK) cages (Zero-P) with DBM(CGDBM100) were prospectively evaluated with a minimum of 6 months of follow-up. Radiologic efficacy was evaluated with a 6-point scoring method for osseous fusion using plain radiograph and computed tomogrpahy scans. Clinical efficacy was evaluated using the visual analogue scale (VAS), Owestry disability index (ODI), and short-form health questionnaire-36. The safety of the bone graft substitute was assessed with vital sign monitoring and a survey measuring complications at each follow-up visit. Results There were significant improvements in VAS and ODI scores at a mean 6-month follow-up. Six months after surgery, solid fusion was achieved in all patients. Mean score on the 6-point scoring system was 5.1, and bony formation was found to score at least 4 points in all patients. There was no case with implant-related complications such as cage failure or migration, and no complications associated with the use of CGDBM100. Conclusion ACDF using CGDBM100 demonstrated good clinical and radiologic outcomes. The fusion rate was comparable with the published results of traditional ACDF. Therefore, the results of this study suggest that the use of a PEEK cage packed with DBM for ACDF is a safe and effective alternative to the gold standard of autologous iliac bone graft. PMID:27799989

  20. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering.

    PubMed

    Wang, Z H; Zhang, J; Zhang, Q; Gao, Y; Yan, J; Zhao, X Y; Yang, Y Y; Kong, D M; Zhao, J; Shi, Y X; Li, X L

    2016-07-15

    This study was designed to evaluate bone matrix gelatin (BMG)/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering. Chondrocytes were isolated from costal cartilage of Sprague-Dawley rats and seeded on BMG/fibrin glue or chitosan/gelatin composite scaffolds. After different in vitro culture durations, the scaffolds were subjected to hematoxylin and eosin, Masson's trichrome, and toluidine blue staining, anti-collagen II and anti-aggrecan immunohistochemistry, and scanning electronic microscopy (SEM) analysis. After 2 weeks of culture, chondrocytes were distributed evenly on the surfaces of both scaffolds. Cell numbers and the presence of extracellular matrix components were markedly increased after 8 weeks of culture, and to a greater extent on the chitosan/gelatin scaffold. The BMG/fibrin glue scaffold showed signs of degradation after 8 weeks. Immunofluorescence analysis confirmed higher levels of collagen II and aggrecan using the chitosan/gelatin scaffold. SEM revealed that the majority of cells on the surface of the BMG/fibrin glue scaffold demonstrated a round morphology, while those in the chitosan/gelatin group had a spindle-like shape, with pseudopodia. Chitosan/gelatin scaffolds appear to be superior to BMG/ fibrin glue constructs in supporting chondrocyte attachment, proliferation, and biosynthesis of cartilaginous matrix components.

  1. Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro

    SciTech Connect

    Zheng, Zhenyang; Leng, Yan; Zhou, Chen; Ma, Zhenyu; Zhong, Zhigang; Shi, Xing-Ming; Zhang, Weixi

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer MMP-1 is a member of the zinc-dependent endopeptidase family. Black-Right-Pointing-Pointer MMP-1 has no cytotoxic effects on BMSCs. Black-Right-Pointing-Pointer MMP-1 can promote the myogenic differentiation of BMSCs. Black-Right-Pointing-Pointer MyoD and desmin were chosen as myogenic markers in this study. -- Abstract: Matrix metalloproteinase-1 (MMP-1) is a member of the family of zinc-dependent endopeptidases that are capable of degrading extracellular matrix (ECM) and certain non-matrix proteins. It has been shown that MMP-1 can enhance muscle regeneration by improving the differentiation and migration of myoblasts. However, it is still not known whether MMP-1 can promote the myogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). To address this question, we isolated BMSCs from C57BL/6J mice and investigated the effects of MMP-1 on their proliferation and myogenic differentiation. Our results showed that MMP-1 treatment, which had no cytotoxic effects on BMSCs, increased the mRNA and protein levels of MyoD and desmin in a dose-dependent manner, indicating that MMP-1 promoted myogenic differentiation of BMSCs in vitro. These results suggest that BMSCs may have a therapeutic potential for treating muscular disorders.

  2. Human serine protease HTRA1 positively regulates osteogenesis of human bone marrow-derived mesenchymal stem cells and mineralization of differentiating bone-forming cells through the modulation of extracellular matrix protein.

    PubMed

    Tiaden, André N; Breiden, Maike; Mirsaidi, Ali; Weber, Fabienne A; Bahrenberg, Gregor; Glanz, Stephan; Cinelli, Paolo; Ehrmann, Michael; Richards, Peter J

    2012-10-01

    Mammalian high-temperature requirement serine protease A1 (HTRA1) is a secreted member of the trypsin family of serine proteases which can degrade a variety of bone matrix proteins and as such has been implicated in musculoskeletal development. In this study, we have investigated the role of HTRA1 in mesenchymal stem cell (MSC) osteogenesis and suggest a potential mechanism through which it controls matrix mineralization by differentiating bone-forming cells. Osteogenic induction resulted in a significant elevation in the expression and secretion of HTRA1 in MSCs isolated from human bone marrow-derived MSCs (hBMSCs), mouse adipose-derived stromal cells (mASCs), and mouse embryonic stem cells. Recombinant HTRA1 enhanced the osteogenesis of hBMSCs as evidenced by significant changes in several osteogenic markers including integrin-binding sialoprotein (IBSP), bone morphogenetic protein 5 (BMP5), and sclerostin, and promoted matrix mineralization in differentiating bone-forming osteoblasts. These stimulatory effects were not observed with proteolytically inactive HTRA1 and were abolished by small interfering RNA against HTRA1. Moreover, loss of HTRA1 function resulted in enhanced adipogenesis of hBMSCs. HTRA1 Immunofluorescence studies showed colocalization of HTRA1 with IBSP protein in osteogenic mASC spheroid cultures and was confirmed as being a newly identified HTRA1 substrate in cell cultures and in proteolytic enzyme assays. A role for HTRA1 in bone regeneration in vivo was also alluded to in bone fracture repair studies where HTRA1 was found localized predominantly to areas of new bone formation in association with IBSP. These data therefore implicate HTRA1 as having a central role in osteogenesis through modification of proteins within the extracellular matrix.

  3. Evaluation of radiotherapy and chemotherapy effects in bone matrix using X-ray microfluorescence

    NASA Astrophysics Data System (ADS)

    Andrade, C. B. V.; Salata, C.; Silva, C. M.; Ferreira-Machado, S. C.; Braz, D.; Almeida, A. P.; Nogueira, L. P.; Barroso, R. C.; deAlmeida, C. E.; Mantuano, A.; Mota, C. L.; Pickler, A.

    2014-02-01

    Premenopausal women undergoing adjuvant chemotherapy and/or radiotherapy for Breast Cancer (BC) treatment have significant bone loss. This high bone mineral density loss can lead to an increased risk of fractures. In this study, there were evaluated parameters involved in osteoporosis when rats were subjected to a chemotherapy regimen (TC) and/or irradiation (IR). Female Wistar rats were divided into 3 groups: control (G1), TC+IR (G2) and IR (G3). The animals were euthanized after 5 months at the end of treatment and their femurs were excised and dissected. Sections of 10 μm thick were used for μXRF analysis at the National Laboratory of Synchrotron Light. The uteri of these rats were collected and weighed. The obtained results showed that animals from G2 had a significant reduction (p<0.05) of uterine mass when compared to control. The qualitative analysis performed by μXRF showed that animals from G2 had iron in bone composition of the femurs. This same result was notobserved in animals from G1 and G3 groups. These results suggest that early menopause occurs and osteoporosis begins, probably because of the absence, or reduced, production of estrogen. The presence of iron in the G2 samples in indicates the process of osteoporosis, because according to literature, this ion is competitive with calcium ions.

  4. Transcript-activated collagen matrix as sustained mRNA delivery system for bone regeneration.

    PubMed

    Badieyan, Zohreh Sadat; Berezhanskyy, Taras; Utzinger, Maximilian; Aneja, Manish Kumar; Emrich, Daniela; Erben, Reinhold; Schüler, Christiane; Altpeter, Philipp; Ferizi, Mehrije; Hasenpusch, Günther; Rudolph, Carsten; Plank, Christian

    2016-10-10

    Transcript therapies using chemically modified messenger RNAs (cmRNAs) are emerging as safe and promising alternatives for gene and recombinant protein therapies. However, their applications have been limited due to transient translation and relatively low stability of cmRNAs compared to DNA. Here we show that vacuum-dried cmRNA-loaded collagen sponges, termed transcript activated matrices (TAMs), can serve as depots for sustained delivery of cmRNA. TAMs provide steady state protein production for up to six days, and substantial residual expression until 11days post transfection. Another advantage of this technology was nearly 100% transfection efficiency as well as low toxicity in vitro. TAMs were stable for at least 6months at room temperature. Human BMP-2-encoding TAMs induced osteogenic differentiation of MC3T3-E1 cells in vitro and bone regeneration in a non-critical rat femoral bone defect model in vivo. In summary, TAMs are a promising tool for bone regeneration and potentially also for other applications in regenerative medicine and tissue engineering.

  5. Osteoclast derived matrix metalloproteinase-9 directly impacts angiogenesis in the prostate tumor-bone microenvironment

    PubMed Central

    Bruni-Cardoso, Alexandre; Johnson, Lindsay C.; Vessella, Robert L.; Peterson, Todd E.; Lynch, Conor C.

    2010-01-01

    In human prostate to bone metastases and in a novel rodent model that recapitulates prostate tumor induced-osteolytic and osteogenic responses, we found that osteoclasts are a major source of the proteinase, MMP-9. Since MMPs are important mediators of tumor-host communication, we tested the impact of host derived MMP-9 on prostate tumor progression in bone. To this end, immunocompromised mice that were wild type or null for MMP-9 received transplants of osteolytic/osteogenic inducing prostate adenocarcinoma tumor tissue to the calvaria. Surprisingly, we found that that host MMP-9 significantly contributed to prostate tumor growth without impacting prostate tumor induced osteolytic or osteogenic change as determined by μCT, μSPECT and histomorphometry. Subsequent studies aimed at delineating the mechanism of MMP-9 action on tumor growth focused on angiogenesis since MMP-9 and osteoclasts have been implicated in this process. We observed; 1) significantly fewer and smaller blood vessels in the MMP-9 null group by CD-31 immunohistochemistry; 2) MMP-9 null osteoclasts had significantly lower levels of bioavailable VEGF-A164 and; 3) using an aorta sprouting assay, conditioned media derived from wild type osteoclasts was significantly more angiogenic than conditioned media derived from MMP-9 null osteoclasts. In conclusion, these studies demonstrate that osteoclast derived MMP-9 impacts prostate tumor growth in the bone microenvironment by contributing to angiogenesis without altering prostate tumor induced osteolytic or osteogenic changes. PMID:20332212

  6. Adjuvant neurotrophic factors in peripheral nerve repair with chondroitin sulfate proteoglycan-reduced acellular nerve allografts

    PubMed Central

    Boyer, Richard B.; Sexton, Kevin W.; Rodriguez-Feo, Charles L.; Nookala, Ratnam; Pollins, Alonda C.; Cardwell, Nancy L.; Tisdale, Keonna Y.; Nanney, Lillian B.; Shack, R. Bruce; Thayer, Wesley P.

    2014-01-01

    Background Acellular nerve allografts are now standard tools in peripheral nerve repair due to decreased donor site morbidity and operative time savings. Preparation of nerve allografts involves several steps of decellularization and modification of extracellular matrix to remove chondroitin sulfate proteoglycans (CSPGs), which have been shown to inhibit neurite outgrowth through a poorly understood mechanism involving RhoA and ECM-integrin interactions. Chondroitinase ABC (ChABC) is an enzyme that degrades CSPG molecules and has been shown to promote neurite outgrowth following injury of the central and peripheral nervous systems. Variable results following chondroitinase ABC treatment make it difficult to predict the effects of this drug in human nerve allografts, especially in the presence of native extracellular signaling molecules. Several studies have shown cross-talk between neurotrophic factor and CSPG signaling pathways, but their interaction remains poorly understood. In this study, we examined the adjuvant effects of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on neurite outgrowth post-injury in CSPG-reduced substrates and acellular nerve allografts. Materials and Methods E12 chicken DRG explants were cultured in medium containing ChABC, ChABC + NGF, ChABC + GDNF or control media. Explants were imaged at 3 d and neurite outgrowths measured. The rat sciatic nerve injury model involved a 1-cm sciatic nerve gap that was microsurgically repaired with ChABC pre-treated acellular nerve allografts. Prior to implantation, nerve allografts were incubated in NGF, GDNF or sterile water. Nerve histology was evaluated at 5d and 8wk post-injury. Results The addition of GDNF in vitro produced significant increase in sensory neurite length at 3 d compared to ChABC alone (P < 0.01), while NGF was not significantly different from control. In vivo adjuvant NGF produced increases in total myelinated axon count (P < 0.005) and motor axon

  7. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment

    PubMed Central

    Klamer, Sofieke; Voermans, Carlijn

    2014-01-01

    Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products. PMID:25482635

  8. Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin β3 and TGF-β Receptor Type II

    PubMed Central

    Ruppender, Nazanin S.; Guo, Ruijing; Dadwal, Ushashi C.; Cannonier, Shellese; Basu, Sandip; Guelcher, Scott A.; Sterling, Julie A.

    2015-01-01

    Cancer patients frequently develop skeletal metastases that significantly impact quality of life. Since bone metastases remain incurable, a clearer understanding of molecular mechanisms regulating skeletal metastases is required to develop new therapeutics that block establishment of tumors in bone. While many studies have suggested that the microenvironment contributes to bone metastases, the factors mediating tumors to progress from a quiescent to a bone-destructive state remain unclear. In this study, we hypothesized that the “soil” of the bone microenvironment, specifically the rigid mineralized extracellular matrix, stimulates the transition of the tumor cells to a bone-destructive phenotype. To test this hypothesis, we synthesized 2D polyurethane (PUR) films with elastic moduli ranging from the basement membrane (70 MPa) to cortical bone (3800 MPa) and measured expression of genes associated with mechanotransduction and bone metastases. We found that expression of Integrin β3 (Iβ3), as well as tumor-produced factors associated with bone destruction (Gli2 and parathyroid hormone related protein (PTHrP)), significantly increased with matrix rigidity, and that blocking Iβ3 reduced Gli2 and PTHrP expression. To identify the mechanism by which Iβ3 regulates Gli2 and PTHrP (both are also known to be regulated by TGF-β), we performed Förster resonance energy transfer (FRET) and immunoprecipitation, which indicated that Iβ3 co-localized with TGF-β Receptor Type II (TGF-β RII) on rigid but not compliant films. Finally, transplantation of tumor cells expressing Iβ3 shRNA into the tibiae of athymic nude mice significantly reduced PTHrP and Gli2 expression, as well as bone destruction, suggesting a crucial role for tumor-produced Iβ3 in disease progression. This study demonstrates that the rigid mineralized bone matrix can alter gene expression and bone destruction in an Iβ3/TGF-β-dependent manner, and suggests that Iβ3 inhibitors are a potential

  9. Proteoglycan synthesis by skeletal muscle undergoing bone matrix-directed transformation into cartilage in vitro.

    PubMed

    Nathanson, M A

    1983-09-10

    Myoblasts and fibroblasts of embryonic skeletal muscle reproducibly form chondrocytes when cultured on demineralized bone in vitro. The transformation occurs in 3 morphologically defined phases, with disappearance of the myoblast phenotype preceding the appearance of fibroblast-like cells and finally chondrocytes. Proteoglycan synthesis in these cultures was investigated by labeling at prechondrogenic (5 days) and postchondrogenic (6-12 days) stages with (35S)sulfate and [6-3H]glucosamine. Labeled material elutes from associative Sepharose CL-2B columns as two major included peaks, which correspond to proteoglycan monomer and a material of lower molecular size. Control cultures, cultured upon gels of type I collagen, fail to synthesize monomer-like material and contain solely a material of lower molecular size. Demineralized bone-derived monomer was rechromatographed under dissociative conditions in an attempt to detect the presence of small aggregates. Again, only a single peak of sulfate and glucosamine-labeled material appears. The data further show that the monomer resembles that of embryonic cartilage in glycosaminoglycan chain size (Mr = 8.6-12.2 X 10(3] and composition (mainly chondroitin 4-sulfate). Aggregated monomer forms a shoulder of the monomeric peak and comprises only 5% of the sulfated material. Fifteen to thirty-four per cent of the monomer elutes as aggregate after addition of rooster comb hyaluronic acid (HA). Failure to aggregate appears to be related to endogenous synthesis of short chain HA. Synthesis of long chain HA may constitute a rate-limiting step in chondrogenesis. Material of lower molecular size, from cultures grown on demineralized bone, bind to exogenous HA, whereas the elution pattern of sulfated material from control cultures remains essentially unchanged. These latter data suggest that proteoglycans of low hydrodynamic size may participate in the early formation of proteoglycan aggregate.

  10. Transdifferentiation of Bone Marrow Mesenchymal Stem Cells into the Islet-Like Cells: the Role of Extracellular Matrix Proteins.

    PubMed

    Pokrywczynska, Marta; Lewandowska, Marzena Anna; Krzyzanowska, Sandra; Jundzill, Arkadiusz; Rasmus, Marta; Warda, Karolina; Gagat, Maciej; Deptula, Aleksander; Helmin-Basa, Anna; Holysz, Marcin; Nowacki, Maciej; Buchholz, Lukasz; Bodnar, Magdalena; Marszalek, Andrzej; Grzanka, Alina; Jozwicki, Wojciech; Michalkiewicz, Jacek; Drewa, Tomasz

    2015-10-01

    Pancreatic islet implantation has been recently shown to be an efficient method of treatment for type 1 diabetes. However, limited availability of donor islets reduces its use. Bone morrow would provide potentially unlimited source of stem cells for generation of insulin-producing cells. This study was performed to evaluate the influence of extracellular matrix proteins like collagen, laminin, and vitronectin on bone marrow mesenchymal stem cells (BM-MSCs) transdifferentiation into islet-like cells (ILCs) in vitro. To our knowledge, this is the first report evaluating the importance of vitronectin in transdifferentiation of BM-MSCs into ILCs. Rat BM-MSCs were induced to ILCs using four-step protocol on plates coated with collagen type IV, laminin type I and vitronectin type I. Quantitative real-time PCR was performed to detect gene expression related to pancreatic β cell development. The induced cells expressed islet-related genes including: neurogenin 3, neurogenic differentiation 1, paired box 4, NK homeobox factor 6.1, glucagon, insulin 1 and insulin 2. Laminin but not collagen type IV or vitronectin enhanced expression of insulin and promoted formation of islet-like structures in monolayer culture. Laminin triggered transdifferentiation of BM-MSCs into ILCs.

  11. Mimicking bone extracellular matrix: integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium.

    PubMed

    Fraioli, Roberta; Rechenmacher, Florian; Neubauer, Stefanie; Manero, José M; Gil, Javier; Kessler, Horst; Mas-Moruno, Carlos

    2015-04-01

    Interaction between the surface of implants and biological tissues is a key aspect of biomaterials research. Apart from fulfilling the non-toxicity and structural requirements, synthetic materials are asked to direct cell response, offering engineered cues that provide specific instructions to cells. This work explores the functionalization of titanium with integrin-binding peptidomimetics as a novel and powerful strategy to improve the adhesion, proliferation and differentiation of osteoblast-like cells to implant materials. Such biomimetic strategy aims at targeting integrins αvβ3 and α5β1, which are highly expressed on osteoblasts and are essential for many fundamental functions in bone tissue development. The successful grafting of the bioactive molecules on titanium is proven by contact angle measurements, X-ray photoelectron spectroscopy and fluorescent labeling. Early attachment and spreading of cells are statistically enhanced by both peptidomimetics compared to unmodified titanium, reaching values of cell adhesion comparable to those obtained with full-length extracellular matrix proteins. Moreover, an increase in alkaline phosphatase activity, and statistically higher cell proliferation and mineralization are observed on surfaces coated with the peptidomimetics. This study shows an unprecedented biological activity for low-molecular-weight ligands on titanium, and gives striking evidence of the potential of these molecules to foster bone regeneration on implant materials.

  12. Clinical evaluation of a combined regenerative technique with enamel matrix derivative, bone grafts, and guided tissue regeneration.

    PubMed

    Harris, Randall J; Harris, Laura E; Harris, Christopher R; Harris, Anne J

    2007-04-01

    The goal of this study was to evaluate the clinical changes obtained when intra-bony defects were treated with an enamel matrix derivative (EMD), a bone graft, and guided tissue regeneration. Fifty patients with a periodontal defect not associated with a furcation and with an attachment loss of at least 7.0 mm were included in this study. Full-thickness flaps were reflected, the roots were planed, EMD was applied, a demineralized freeze-dried bone allograft combined with EMD was placed, a bioabsorbable membrane was placed, and more EMD was applied. The defect areas were then sutured. At a mean of 5.3 months after treatment, there was a mean increase in recession of 0.7 mm, a mean reduction in probing depth of 5.7 mm, and a mean gain in attachment level of 5.0 mm. In this study there was more recession in smokers than in nonsmokers and in defects associated with anterior teeth. Additionally, the deeper defects (those with greater probing depths and attachment level loss) had the greatest reductions in probing depth and gains in attachment level. Based on this study, this technique proved itself to be an effective method to improve the clinical situation when treating periodontal defects not involving furcations.

  13. Liver-derived matrix metalloproteinase-9 (gelatinase B) recruits progenitor cells from bone marrow into the blood circulation.

    PubMed

    Watanabe, Yoshifumi; Haruyama, Takahiro; Akaike, Toshihiro

    2003-04-01

    Matrix metalloproteinases (MMPs) are involved in invasive cell behavior, embryonic development and organ remodeling. In this report, we investigated the role of liver-derived MMP-9 in the in vivo system at liver injury. Liver injury induced MMP-9 expression in the liver 3 to 12 h after intravenous administration of anti-Fas antibody, followed by the expression of the activity and the protein detected by zymography and Western blotting, respectively, in the blood circulation. Interestingly, the MMP-9 expression was accompanied by the recruitment of hematopoietic progenitor cells from bone marrow into the circulation. The recruitment was blocked by a specific MMP-9 inhibitor, R94138, which did not affect the Fas-mediated liver injury or induced expression of MMP-9. Compulsive expression of mutant active MMP-9 in the liver also recruited the progenitor cells into the circulation. In contrast, partial hepatectomy, which treatment does not directly injure hepatocytes, did not recruit progenitor cells despite the increased expression of MMP-9 in the circulation. These results suggest that liver-derived MMP-9 induced by liver injury plays an essential role in the recruitment of hematopoietic progenitor cells from bone marrow into the blood circulation.

  14. Bioreactor-based bone tissue engineering: The influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization

    PubMed Central

    Yu, Xiaojun; Botchwey, Edward A.; Levine, Elliot M.; Pollack, Solomon R.; Laurencin, Cato T.

    2004-01-01

    An important issue in tissue engineering concerns the possibility of limited tissue ingrowth in tissue-engineered constructs because of insufficient nutrient transport. We report a dynamic flow culture system using high-aspect-ratio vessel rotating bioreactors and 3D scaffolds for culturing rat calvarial osteoblast cells. 3D scaffolds were designed by mixing lighter-than-water (density, <1g/ml) and heavier-than-water (density, >1g/ml) microspheres of 85:15 poly(lactide-co-glycolide). We quantified the rate of 3D flow through the scaffolds by using a particle-tracking system, and the results suggest that motion trajectories and, therefore, the flow velocity around and through scaffolds in rotating bioreactors can be manipulated by varying the ratio of heavier-than-water to lighter-than-water microspheres. When rat primary calvarial cells were cultured on the scaffolds in bioreactors for 7 days, the 3D dynamic flow environment affected bone cell distribution and enhanced cell phenotypic expression and mineralized matrix synthesis within tissue-engineered constructs compared with static conditions. These studies provide a foundation for exploring the effects of dynamic flow on osteoblast function and provide important insight into the design and optimization of 3D scaffolds suitable in bioreactors for in vitro tissue engineering of bone. PMID:15277663

  15. Treatment of intrabony defects with anorganic bone matrix/p-15 or guided tissue regeneration in patients with aggressive periodontitis.

    PubMed

    Queiroz, Adriana C; Nóbrega, Priscila Brasil da; Oliveira, Fabíola S; Novaes, Arthur B; Taba, Mário; Palioto, Daniela B; Grisi, Márcio F M; Souza, Sergio L S

    2013-01-01

    Intrabony periodontal defects present a particular treatment problem, especially in patients with generalized aggressive periodontitis (G-AgP). Regenerative procedures have been indicated for this clinical situation. The aim of this study was to compare treatment outcomes of intrabony periodontal defects with either anorganic bone matrix/cell binding peptide (ABM/P-15) or guided tissue regeneration (GTR) in patients with G-AgP. Fifteen patients, with two intrabony defects ≥3 mm deep, were selected. Patients were randomly allocated to be treated with ABM/P-15 or GTR. At baseline and at 3 and 6 months after surgery, clinical and radiographic parameters and IL-1β and IL-6 gingival fluid concentrations were recorded. There was a significant probing pocket depth reduction (p<0.001) for both groups (2.27 ± 0.96 mm for ABM/P-15 group and 2.57 ± 1.06 mm for GTR group). Clinical attachment level gain (1.87 ± 0.94 mm for ABM/P-15 group and 2.09 ± 0.88 mm for GTR group) was also observed. There were no statistically significant differences in clinical parameters between the groups. The radiographic bone fill was more expressive in ABM/P-15 group (2.49 mm) than in GTR group (0.73 mm). In subtraction radiographs, the areas representing gain in density were 93.16% of the baseline defect for ABM/P-15 group versus 62.03% in GRT group. There were no statistically significant differences in inter-group and intra-group comparisons with regards to IL-1β and IL-6 quantification. Treatment of intrabony periodontal defects in patients with G-AgP with ABM/P-15 and GTR improved significantly the clinical outcomes. The use of ABM/P-15 promoted a better radiographic bone fill.

  16. Promotion of hepatic differentiation of bone marrow mesenchymal stem cells on decellularized cell-deposited extracellular matrix.

    PubMed

    He, Hongliang; Liu, Xiaozhen; Peng, Liang; Gao, Zhiliang; Ye, Yun; Su, Yujie; Zhao, Qiyi; Wang, Ke; Gong, Yihong; He, Fan

    2013-01-01

    Interactions between stem cells and extracellular matrix (ECM) are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimicked in vivo liver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS), bone marrow mesenchymal stem cells (BM-MSCs) cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.

  17. Dietary Zinc Reduces Osteoclast Resorption Activities and Increases Markers of Osteoblast Differentiation, Matrix Maturation, and Mineralization in the Long Bones of Growing Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nutritional influence of zinc (Zn) on markers of bone extracellular matrix (ECM) resorption and mineralization was investigated in growing rats. Thirty male weanling rats were randomly assigned to consume AIN-93G based diets containing 2.5, 5, 7.5, 15, or 30 µg Zn/g diet for 24 d. Femur Zn incre...

  18. Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on oriented collagen substrates.

    PubMed

    Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Nakano, Takayoshi

    2015-02-01

    Bone tissue has a specific anisotropic morphology derived from collagen fiber alignment and the related apatite crystal orientation as a bone quality index. However, the precise mechanism of cellular regulation of the crystallographic orientation of apatite has not been clarified. In this study, anisotropic construction of cell-produced mineralized matrix in vitro was established by initiating organized cellular alignment and subsequent oriented bone-like matrix (collagen/apatite) production. The oriented collagen substrates with three anisotropic levels were prepared by a hydrodynamic method. Primary osteoblasts were cultured on the fabricated substrates until mineralized matrix formation is confirmed. Osteoblast alignment was successfully regulated by the level of substrate collagen orientation, with preferential alignment along the direction of the collagen fibers. Notably, both fibrous orientation of newly synthesized collagen matrix and c-axis of produced apatite crystals showed preferential orientation along the cell direction. Because the degree of anisotropy of the deposited apatite crystals showed dependency on the directional distribution of osteoblasts cultured on the oriented collagen substrates, the cell orientation determines the crystallographic anisotropy of produced apatite crystals. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy, even the alignment of apatite crystals, is controllable by varying the degree of osteoblast alignment via regulating the level of substrate orientation.

  19. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials.

    PubMed

    Yunoki, Shunji; Sugiura, Hiroaki; Ikoma, Toshiyuki; Kondo, Eiji; Yasuda, Kazunori; Tanaka, Junzo

    2011-02-01

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm⁻³ and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  20. Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells.

    PubMed

    Matthies, Norah-Faye; Mulet-Sierra, Aillette; Jomha, Nadr M; Adesida, Adetola B

    2013-12-01

    The ultimate aim of this study was to assess the feasibility of using human bone marrow stromal cells (BMSCs) to supplement meniscus cells for meniscus tissue engineering and regeneration. Human menisci were harvested from three patients undergoing total knee replacements. Meniscus cells were released from the menisci after collagenase treatment. BMSCs were harvested from the iliac crest of three patients and were expanded in culture until passage 2. Primary meniscus cells and BMSCs were co-cultured in vitro in three-dimensional (3D) pellet culture at three different cell-cell ratios for 3 weeks under normal (21% O2 ) or low (3% O2 ) oxygen tension in the presence of serum-free chondrogenic medium. Pure BMSCs and pure meniscus cell pellets served as control groups. The tissue generated was assessed biochemically, histochemically and by quantitative RT-PCR. Co-cultures of primary meniscus cells and BMSCs resulted in tissue with increased (1.3-1.7-fold) deposition of proteoglycan (GAG) extracellular matrix (ECM) relative to tissues derived from BMSCs or meniscus cells alone under 21% O2 . GAG matrix formation was also enhanced (1.3-1.6-fold) under 3% O2 culture conditions. Alcian blue staining of generated tissue confirmed increased deposition of GAG-rich matrix. mRNA expression of type I collagen (COL1A2), type II collagen (COL2A1) and aggrecan were upregulated in co-cultured pellets. However, SOX9 and HIF-1α mRNA expression were not significantly modulated by co-culture. Co-culture of primary meniscus cells with BMSCs resulted in increased ECM formation. Co-delivery of meniscus cells and BMSCs can, in principle, be used in tissue engineering and regenerative medicine strategies to repair meniscus defects.

  1. Biphasic organo-bioceramic fibrous composite as a biomimetic extracellular matrix for bone tissue regeneration.

    PubMed

    Kumar, Sanjay; Stokes Iii, James A; Dean, Derrick; Rogers, Christian; Nyairo, Elijah; Thomas, Vinoy; Mishra, Manoj K

    2017-03-01

    In bone tissue engineering, the organo-ceramic composite, electrospun polycaprolactone/hydroxyapatite (PCL/HA) scaffold has the potential to support cell proliferation, migration, differentiation, and homeostasis. Here, we report the effect of PCL/HA scaffold in tissue regeneration using human mesenchymal stem cells (hMSCs). We characterized the scaffold by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and assessed its biocompatibility. PCL/HA composite is superior as a scaffold compared to PCL alone. Furthermore, increasing HA content (5-10%) was more efficacious in supporting cell-scaffold attachment, expression of ECM molecules and proliferation. These results suggest that PCL/HA is useful as a scaffold for tissue regeneration.

  2. Healing of periodontal defects treated with enamel matrix proteins and root surface conditioning--an experimental study in dogs.

    PubMed

    Sakallioğlu, Umur; Açikgöz, Gökhan; Ayas, Bülent; Kirtiloğlu, Tuğrul; Sakallioğlu, Eser

    2004-05-01

    Application of enamel matrix proteins has been introduced as an alternative method for periodontal regenerative therapy. It is claimed that this approach provides periodontal regeneration by a biological approach, i.e. creating a matrix on the root surfaces that promotes cementum, periodontal ligament (PDL) and alveolar bone regeneration, thus mimicking the events occurring during tooth development. Although there have been numerous in vitro and in vivo studies demonstrating periodontal regeneration, acellular cementum formation and clinical outcomes via enamel matrix proteins usage, their effects on the healing pattern of soft and hard periodontal tissues are not well-established and compared with root conditioning alone. In the present study, the effects of Emdogain (Biora, Malmö, Sweden), an enamel matrix derivative mainly composed of enamel matrix proteins (test), on periodontal wound healing were evaluated and compared with root surface conditioning (performed with 36% orthophosphoric acid) alone (control) histopathologically and histomorphometrically by means of the soft and hard tissue profile of periodontium. An experimental periodontitis model performed at premolar teeth of four dogs were used in the study and the healing pattern of periodontal tissues was evaluated at days 7, 14, 21, 28 (one dog at each day), respectively. At day 7, soft tissue attachment evaluated by means of connective tissue and/or epithelial attachment to the root surfaces revealed higher connective tissue attachment rate in the test group and the amount of new connective tissue proliferation in the test group was significantly greater than the control group (p<0.01). New bone formation by osteoconduction initiated at day 14 in the test and control group. At day 21, the orientation of supra-alveolar and PDL fibers established, and new cementum formation observed in both groups. At day 28, although regenerated cementum was cellular in all of the roots in the control samples, an

  3. Relationship of immunogenicity to protective potency in acellular pertussis vaccines.

    PubMed

    Xing, Dorothy; Asokanathan, Catpagavalli; Xu, Ying Hua; Bolgiano, Barbara; Douglas-Bardsley, Alex; Zhang, Shumin; Wang, Junzhi; Corbel, Michael

    2014-01-01

    Comparison of the immunogenicity response and resistance to challenge in the modified intracerebral challenge assay induced by various acellular pertussis vaccines showed that these were not closely linked. The immunogenicity assay was effective for confirming the presence of specific antigenic components and was invaluable for detecting minor components present in co-purified vaccines. However, the magnitude of antibody responses was not consistently related to antigen concentration nor did it correlate with protection in the modified intracerebral challenge assay. The immunogenicity assay detected degradation of pertussis toxin and pertactin components but not of filamentous haemagglutinin or fimbriae 2 and 3 in denatured acellular pertussis vaccines. The modified intracerebral challenge assay was effective in detecting antigen degradation in all types of acellular pertussis vaccines including those of European/North American origin but was dominated by the response to pertussis toxin. Aerosol challenge was more sensitive in detecting denaturation of filamentous haemagglutinin or fimbriae. The modified intracerebral challenge assay was the only assay that provided a quantitative indication of protective activity. Both immunogenicity and challenge assays provided useful data on acellular pertussis vaccine properties but were complementary and not alternatives.

  4. Relationship of immunogenicity to protective potency in acellular pertussis vaccines

    PubMed Central

    Xing, Dorothy; Asokanathan, Catpagavalli; Xu, Ying Hua; Bolgiano, Barbara; Douglas-Bardsley, Alex; Zhang, Shumin; Wang, Junzhi; Corbel, Michael

    2014-01-01

    Comparison of the immunogenicity response and resistance to challenge in the modified intracerebral challenge assay induced by various acellular pertussis vaccines showed that these were not closely linked. The immunogenicity assay was effective for confirming the presence of specific antigenic components and was invaluable for detecting minor components present in co-purified vaccines. However, the magnitude of antibody responses was not consistently related to antigen concentration nor did it correlate with protection in the modified intracerebral challenge assay. The immunogenicity assay detected degradation of pertussis toxin and pertactin components but not of filamentous haemagglutinin or fimbriae 2 and 3 in denatured acellular pertussis vaccines. The modified intracerebral challenge assay was effective in detecting antigen degradation in all types of acellular pertussis vaccines including those of European/North American origin but was dominated by the response to pertussis toxin. Aerosol challenge was more sensitive in detecting denaturation of filamentous haemagglutinin or fimbriae. The modified intracerebral challenge assay was the only assay that provided a quantitative indication of protective activity. Both immunogenicity and challenge assays provided useful data on acellular pertussis vaccine properties but were complementary and not alternatives. PMID:25424817

  5. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

    PubMed Central

    Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified

  6. A combined approach of enamel matrix derivative gel and autogenous bone grafts in treatment of intrabony periodontal defects. A case report.

    PubMed

    Leung, George; Jin, Lijian

    2003-04-01

    Enamel matrix derivative (EMD) has recently been introduced as a new modality in regenerative periodontal therapy. This case report demonstrates a combined approach in topical application of EMD gel (Emdogain) and autogenous bone grafts for treatment of intrabony defects and furcation involvement defects in a patient with chronic periodontitis. The seven-month post-surgery clinical and radiographic results were presented. The combined application of EMD gel with autogenous bone grafts in intrabony osseous defects resulted in clinically significant gain of attachment on diseased root surfaces and bone fill on radiographs. Further controlled clinical studies are required to confirm the long-term effectiveness of the combination of EMD gel and autogenous bone grafts in treatment of various osseous defects in subjects with chronic periodontitis.

  7. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations

    PubMed Central

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2014-01-01

    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. PMID:24975579

  8. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations.

    PubMed

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2014-09-01

    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton.

  9. Cross-Talk Between Human Tenocytes and Bone Marrow Stromal Cells Potentiates Extracellular Matrix Remodeling In Vitro

    PubMed Central

    Ekwueme, Emmanuel C.; Shah, Jay V.; Mohiuddin, Mahir; Ghebes, Corina A.; Crispim, João F.; Saris, Daniël B.F.; Fernandes, Hugo A.M.; Freeman, Joseph W.

    2016-01-01

    Tendon and ligament (T/L) pathologies account for a significant portion of musculoskeletal injuries and disorders. Tissue engineering has emerged as a promising solution in the regeneration of both tissues. Specifically, the use of multipotent human mesenchymal stromal cells (hMSC) has shown great promise to serve as both a suitable cell source for tenogenic regeneration and a source of trophic factors to induce tenogenesis. Using four donor sets, we investigated the bidirectional paracrine tenogenic response between human hamstring tenocytes (hHT) and bone marrow-derived hMSC. Cell metabolic assays showed that only one hHT donor experienced sustained notable increases in cell metabolic activity during co-culture. Histological staining confirmed that co-culture induced elevated collagen protein levels in both cell types at varying time-points in two of four donor sets assessed. Gene expression analysis using qPCR showed the varied up-regulation of anabolic and catabolic markers involved in extracellular matrix maintenance for hMSC and hHT. Furthermore, analysis of hMSC/hHT co-culture secretome using a reporter cell line for TGF-β, a potent inducer of tenogenesis, revealed a trend of higher TGF-β bioactivity in hMSC secretome compared to hHT. Finally, hHT cytoskeletal immunostaining confirmed that both cell types released soluble factors capable of inducing favorable tenogenic morphology, comparable to control levels of soluble TGF-β1. These results suggest a potential for TGF-β-mediated signaling mechanism that is involved during the paracrine interplay between the two cell types that is reminiscent of T/L matrix remodeling/ turnover. These findings have significant implications in the clinical use of hMSC for common T/L pathologies. PMID:26308651

  10. Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion.

    PubMed

    Mauney, Joshua R; Kaplan, David L; Volloch, Vladimir

    2004-07-01

    During prolonged cultivation ex vivo, adult bone marrow stromal stem cells (BMSCs) undergo two probably interdependent processes, replicative aging and a decline in differentiation potential. Recently, our results with primary human fibroblasts indicated that growth on denatured collagen (DC) matrix results in the reduction of the rate of cellular aging. The present study has been undertaken to test whether the growth of human BMSCs under the same conditions would translate into preservation of cellular aging-attenuated functions, such as the ability to express HSP70 in response to stress as well as of osteogenic differentiation potential. We report here that growth of BMSCs on a DC matrix versus tissue culture polystyrene significantly reduced one of the main manifestations of cellular aging, the attenuation of the ability to express a major protective stress response component, HSP70, increased the proliferation capacity of ex vivo expanded BMSCs, reduced the rate of morphological changes, and resulted in a dramatic increase in the retention of the potential to express osteogenic-specific functions and markers upon treatment with osteogenic stimulants. BMSCs are a promising and increasingly important cell source for tissue engineering as well as cell and gene therapeutic strategies. For use of BMSCs in these applications, ex vivo expansion is necessary to obtain a sufficient, therapeutically useful, number of cells; however, this results in the loss of differentiation potential. This problem is especially acute in older patients where more extensive in vitro expansion of smaller number of stem/progenitor cells is needed. The finding that growth on certain biomaterials preserves aging-attenuated functions, enhances proliferation capacity, and maintains differentiation potential of BMSCs indicates a promising approach to address this problem.

  11. Intentional reim plantation of a tooth with severe periodontal involvement using enamel matrix derivative in combination with guided tissue regeneration and bone grafting: a case report.

    PubMed

    Sugai, Kenji; Sato, Shuichi; Suzuki, Kuniharu; Ito, Koichi

    2008-02-01

    This case involved the intentional reimplantation of a tooth with severe periodontal involvement using regenerative therapies. The maxillary left central incisor was intentionally extracted, enamel matrix derivative (EMD) was applied, and the tooth was repositioned accurately. The bone defect was filled with a xenograft and a demineralized freeze-dried bone allograft, and a guided tissue regeneration membrane was adapted over the site. After 5 years, a reduction in probing depth and a gain in clinical attachment were observed. Conventional radiographs and cone-beam computerized tomographs showed hard tissue improvement. Favorable clinical results were obtained with reimplantation with applied EMD, combined with regenerative therapies, for treating a tooth with severe periodontal involvement.

  12. Magnetically Responsive Bone Marrow Mesenchymal Stem Cell-Derived Smooth Muscle Cells Maintain Their Benefits to Augmenting Elastic Matrix Neoassembly.

    PubMed

    Swaminathan, Ganesh; Sivaraman, Balakrishnan; Moore, Lee; Zborowski, Maciej; Ramamurthi, Anand

    2016-04-01

    Abdominal aortic aneurysms (AAA) represent abnormal aortal expansions that result from chronic proteolytic breakdown of elastin and collagen fibers by matrix metalloproteases. Poor elastogenesis by adult vascular smooth muscle cells (SMCs) limits regenerative repair of elastic fibers, critical for AAA growth arrest. Toward overcoming these limitations, we recently demonstrated significant elastogenesis by bone marrow mesenchymal stem cell-derived SMCs (BM-SMCs) and their proelastogenesis and antiproteolytic effects on rat aneurysmal SMCs (EaRASMCs). We currently investigate the effects of super paramagnetic iron oxide nanoparticle (SPION) labeling of BM-SMCs, necessary to magnetically guide them to the AAA wall, on their functional benefits. Our results indicate that SPION-labeling is noncytotoxic and does not adversely impact the phenotype and elastogenesis by BM-SMCs. In addition, SPION-BM-SMCs showed no changes in the ability of the BM-SMCs to stimulate elastin regeneration and attenuate proteolytic activity by EaRASMCs. Together, our results are promising toward the utility of SPIONs for magnetic targeting of BM-SMCs for in situ AAA regenerative repair.

  13. Differences in bone mineral density, markers of bone turnover and extracellular matrix and daily life muscular activity among patients with recent motor-incomplete versus motor-complete spinal cord injury.

    PubMed

    Kostovski, E; Hjeltnes, N; Eriksen, E F; Kolset, S O; Iversen, P O

    2015-02-01

    Spinal cord injury (SCI) leads to severe bone loss, but the associated mechanisms are poorly described in incomplete SCI individuals. The purpose of the study is to compare alterations in bone mineral density (BMD) and serum biomarkers of bone turnover in recent motor-incomplete to -complete SCI men, as well as to describe their physical activity and spasticity. We studied 31 men with acute SCI. Whole-body DXA scans, serum biomarkers and self-reported activity and spasticity were examined 1 and/or 3 and 12 months after the injury. We observed a decrease in proximal femur BMD (p < 0.02) in both the groups. Serum phosphate and carboxy-terminal-collagen crosslinks were significantly lower in motor-incomplete versus complete SCI men, whereas albumin-corrected Ca(2+) (p = 0.02) were lower only 3 months after injury. When data from all 31 SCI participants were pooled, we observed increased serum matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of MMP-2 (TIMP-2) (p < 0.02) whereas TIMP-1 decreased (p = 0.03). BMD correlated positively with self-reported activity (r = 0.59, p = 0.04) and negatively with spasticity (r = 0.74, p = 0.02) 12 months after injury. As a summary, men with motor-incomplete SCI developed significant proximal femur bone loss 12 months after injury and exhibited increased bone resorption throughout the first year after the injury. Compared with complete SCI men, incomplete SCI men show attenuated bone resorption. Our pooled data show increased turnover of extracellular matrix after injury and that increased exercise before and after injury correlated with reduced bone loss.

  14. Investigating the Potential of Amnion-Based Scaffolds as a Barrier Membrane for Guided Bone Regeneration.

    PubMed

    Li, Wuwei; Ma, Guowu; Brazile, Bryn; Li, Nan; Dai, Wei; Butler, J Ryan; Claude, Andrew A; Wertheim, Jason A; Liao, Jun; Wang, Bo

    2015-08-11

    Guided bone regeneration is a new concept of large bone defect therapy, which employs a barrier membrane to afford a protected room for osteogenesis and prevent the invasion of fibroblasts. In this study, we developed a novel barrier membrane made from lyophilized multilayered acellular human amnion membranes (AHAM). After decellularization, the AHAM preserved the structural and biomechanical integrity of the amnion extracellular matrix (ECM). The AHAM also showed minimal toxic effects when cocultured with mesenchymal stem cells (MSCs), as evidenced by high cell density, good cell viability, and efficient osteogenic differentiation after 21-day culturing. The effectiveness of the multilayered AHAM in guiding bone regeneration was evaluated using an in vivo rat tibia defect model. After 6 weeks of surgery, the multilayered AHAM showed great efficiency in acting as a shield to avoid the invasion of the fibrous tissues, stabilizing the bone grafts and inducing the massive bone growth. We hence concluded that the advantages of the lyophilized multilayered AHAM barrier membrane are as follows: preservation of the structural and mechanical properties of the amnion ECM, easiness for preparation and handling, flexibility in adjusting the thickness and mechanical properties to suit the application, and efficiency in inducing bone growth and avoiding fibrous tissues invasion.

  15. Effects of gangliosides from deer bone extract on the gene expressions of matrix metalloproteinases and collagen type II in interleukin-1β-induced osteoarthritic chondrocytes

    PubMed Central

    Suh, Hyung Joo; Lee, Hyunji; Min, Byung Jung; Jung, Sung Ug

    2016-01-01

    BACKGROUND/OBJECTIVES We investigated the anti-osteoarthritic effects of deer bone extract on the gene expressions of matrix metalloproteinases (MMPs) and collagen type II (COL2) in interleukin-1β-induced osteoarthritis (OA) chondrocytes. MATERIALS/METHODS Primary rabbit chondrocytes were treated as follows: CON (PBS treatment), NC (IL-1β treatment), PC (IL-1β + 100 µg/mL glucosamine sulphate/chondroitin sulphate mixture), and DB (IL-1β + 100 µg/mL deer bone extract). RESULTS The results of the cell viability assay indicated that deer bone extract at doses ranging from 100 to 500 µg/mL inhibits cell death in chondrocytes induced by IL-1β. Deer bone extract was able to significantly recover the mRNA expression of COL2 that was down-regulated by IL-1β (NC: 0.79 vs. DB: 0.87, P < 0.05) and significantly decrease the mRNA expression of MMP-3 (NC: 2.24 vs. DB: 1.75) and -13 (NC: 1.28 vs. DB: 0.89) in OA chondrocytes (P < 0.05). CONCLUSIONS We concluded that deer bone extract induces accumulation of COL2 through the down-regulation of MMPs in IL-1β-induced OA chondrocytes. Our results suggest that deer bone extract, which contains various components related to OA, including chondroitin sulphate, may possess anti-osteoarthritic properties and be of value in inhibiting the pathogenesis of OA. PMID:27909553

  16. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    PubMed Central

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p < 0.005; BW: R2 = 0.63, p < 0.0005) and age (31P: R2 = 0.39, p < 0.05; BW: R2 = 0.70, p < 0.0001), and positively with pQCT density (31P: R2 = 0.46, p < 0.05; BW: R2 = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  17. Tetanus–diphtheria–acellular pertussis vaccination for adults: an update

    PubMed Central

    2017-01-01

    Although tetanus and diphtheria have become rare in developed countries, pertussis is still endemic in some developed countries. These are vaccine-preventable diseases and vaccination for adults is important to prevent the outbreak of disease. Strategies for tetanus, diphtheria, and pertussis vaccines vary from country to country. Each country needs to monitor consistently epidemiology of the diseases and changes vaccination policies accordingly. Recent studies showed that tetanus–diphtheria–acellular pertussis vaccine for adults is effective and safe to prevent pertussis disease in infants. However, vaccine coverage still remains low than expected and seroprevalence of protective antibodies levels for tetanus, diphtheria, and pertussis decline with aging. The importance of tetanus–diphtheria–acellular pertussis vaccine administration should be emphasized for the protection of young adult and elderly people also, not limited to children. PMID:28168170

  18. Differential effects of transforming growth factor-beta on the synthesis of extracellular matrix proteins by normal fetal rat calvarial bone cell populations

    PubMed Central

    1988-01-01

    To determine the effects of transforming growth factor-beta (TGF-beta) on the different cell types that exist in bone, cell populations (I- IV), progressively enriched in osteoblastic cells relative to fibroblastic cells, were prepared from fetal rat calvaria using timed collagenase digestions. TGF-beta did not induce anchorage-independent growth of these cells, nor was anchorage-dependent growth stimulated in most populations studied, despite a two- to threefold increase in the synthesis of cellular proteins. In all populations the synthesis of secreted proteins increased 2-3.5-fold. In particular, collagen, fibronectin, and plasminogen activator inhibitor synthesis was stimulated. However, different degrees of stimulation of individual proteins were observed both within and between cell populations. A marked preferential stimulation of plasminogen activator inhibitor was observed in each population, together with a slight preferential stimulation of collagen; the effect on collagen expression being directed primarily at type I collagen. In contrast, the synthesis of SPARC (secreted protein acidic rich in cysteine/osteonectin was stimulated approximately two-fold by TGF-beta, but only in fibroblastic populations. Collectively, these results demonstrate that TGF-beta stimulates matrix production by bone cells and, through differential effects on individual matrix components, may also influence the nature of the matrix formed by different bone cell populations. In the presence of TGF-beta, osteoblastic cells lost their polygonal morphology and alkaline phosphatase activity was decreased, reflecting a suppression of osteoblastic features. The differential effects of TGF- beta on bone cell populations are likely to be important in bone remodeling and fracture repair. PMID:3162238

  19. Management of a One-wall Intrabony Osseous Defect with Combination of Platelet Rich Plasma and Demineralized Bone Matrix- a Two-year Follow up Case Report

    PubMed Central

    Thakkalapati, Parthasaradhi; R Chandran, Chitraa; Ranganathan, Aravindhan Thiruputkuzhi; Jain, Ashish Ratahanchand; Prabhakar, Priya; Padmanaban, Suganya

    2015-01-01

    Periodontal regeneration in a one-wall intrabony defect is a challenging and complex phenomenon. The combination therapy of commercially available bone grafts with the innovative tissue engineering strategy, the platelet rich plasma, has emerged as a promising grafting modality for two and three walled intrabony osseous defects. The application of this combination approach was attempted in a most challenging one-wall intrabony defect. Open flap debridement and placement of combination of autologous platelet rich plasma(PRP) and demineralized bone matrix was done in one-wall intrabony defect in relation to tooth #21 in a 30 year old female patient. The 6-month follow- up results showed significant improvement in clinical parameters. Radiographic evidence of bone formation was observed as early as 3 months with almost complete fill by 6 months post-operatively. The results were maintained over a period of 2 years. PMID:26331153

  20. Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells

    PubMed Central

    Di Maggio, Nunzia; Martella, Elisa; Frismantiene, Agne; Resink, Therese J.; Schreiner, Simone; Lucarelli, Enrico; Jaquiery, Claude; Schaefer, Dirk J.; Martin, Ivan; Scherberich, Arnaud

    2017-01-01

    Stromal vascular fraction (SVF) cells of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, adipose-derived stromal/stem cells (ASC), even after minimal monolayer expansion, display poor osteogenic capacity in vivo. We investigated whether ASC bone-forming capacity may be maintained by culture within a self-produced extracellular matrix (ECM) that recapitulates the native environment. SVF cells expanded without passaging up to 28 days (Unpass-ASC) deposited a fibronectin-rich extracellular matrix and displayed greater clonogenicity and differentiation potential in vitro compared to ASC expanded only for 6 days (P0-ASC) or for 28 days with regular passaging (Pass-ASC). When implanted subcutaneously, Unpass-ASC produced bone tissue similarly to SVF cells, in contrast to P0- and Pass-ASC, which mainly formed fibrous tissue. Interestingly, clonogenic progenitors from native SVF and Unpass-ASC expressed low levels of the fibronectin receptor α5 integrin (CD49e), which was instead upregulated in P0- and Pass-ASC. Mechanistically, induced activation of α5β1 integrin in Unpass-ASC led to a significant loss of bone formation in vivo. This study shows that ECM and regulation of α5β1-integrin signaling preserve ASC progenitor properties, including bone tissue-forming capacity, during in vitro expansion. PMID:28290502

  1. Is Sterile Better Than Aseptic? Comparing the Microbiology of Acellular Dermal Matrices

    PubMed Central

    Klein, Gabriel M.; Nasser, Ahmed E.; Phillips, Brett T.; Gersch, Robert P.; Fourman, Mitchell S.; Lilo, Sarit E.; Fritz, Jason R.; Khan, Sami U.; Dagum, Alexander B.

    2016-01-01

    Introduction: Postoperative infections are a major complication associated with tissue-expander-based breast reconstruction. The use of acellular dermal matrix (ADM) in this surgery has been identified as a potential reservoir of infection, prompting the development of sterile ADM. Although aseptic and sterile ADMs have been investigated, no study has focused on the occurrence and clinical outcome of bacterial colonization before implantation. Methods: Samples of aseptic AlloDerm, sterile Ready-To-Use AlloDerm, and AlloMax were taken before implantation. These samples were incubated in Tryptic soy broth overnight before being streaked on Trypticase soy agar, MacConkey agar, and 5% blood agar plates for culture and incubated for 48 hours. Culture results were cross-referenced with patient outcomes for 1 year postoperatively. Results: A total of 92 samples of ADM were collected from 63 patients. There were 15 cases of postoperative surgical site infection (16.3%). Only 1 sample of ADM (AlloMax) showed growth of Escherichia coli, which was likely a result of contamination. That patient did not develop any infectious sequelae. Patient outcomes showed no difference in the incidence of seroma or infection between sterile and aseptic ADMs. Conclusions: This study evaluates the microbiology of acellular dermal matrices before use in breast reconstruction. No difference was found in the preoperative bacterial load of either aseptic or sterile ADM. No significant difference was noted in infection or seroma formation. Given these results, we believe aseptic processing used on ADMs is equivalent to sterile processing in our patient cohort in terms of clinical infection and seroma occurrence postoperatively. PMID:27482500

  2. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    PubMed Central

    Di Liddo, Rosa; Aguiari, Paola; Barbon, Silvia; Bertalot, Thomas; Mandoli, Amit; Tasso, Alessia; Schrenk, Sandra; Iop, Laura; Gandaglia, Alessandro; Parnigotto, Pier Paolo; Conconi, Maria Teresa; Gerosa, Gino

    2016-01-01

    Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary evaluation of heart valve prosthetic functionality. PMID:27789941

  3. Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered oxygen and glucose microenvironments.

    PubMed

    Naqvi, Syeda M; Buckley, Conor T

    2015-12-01

    Bone marrow (BM) stem cells may be an ideal source of cells for intervertebral disc (IVD) regeneration. However, the harsh biochemical microenvironment of the IVD may significantly influence the biological and metabolic vitality of injected stem cells and impair their repair potential. This study investigated the viability and production of key matrix proteins by nucleus pulposus (NP) and BM stem cells cultured in the typical biochemical microenvironment of the IVD consisting of altered oxygen and glucose concentrations. Culture-expanded NP cells and BM stem cells were encapsulated in 1.5% alginate and ionically crosslinked to form cylindrical hydrogel constructs. Hydrogel constructs were maintained under different glucose concentrations (1, 5 and 25 mM) and external oxygen concentrations (5 and 20%). Cell viability was measured using the Live/Dead® assay and the production of sulphated glycosaminoglycans (sGAG), and collagen was quantified biochemically and histologically. For BM stem cells, IVD-like micro-environmental conditions (5 mM glucose and 5% oxygen) increased the accumulation of sGAG and collagen. In contrast, low glucose conditions (1 mM glucose) combined with 5% external oxygen concentration promoted cell death, inhibiting proliferation and the accumulation of sGAG and collagen. NP-encapsulated alginate constructs were relatively insensitive to oxygen concentration or glucose condition in that they accumulated similar amounts of sGAG under all conditions. Under IVD-like microenvironmental conditions, NP cells were found to have a lower glucose consumption rate compared with BM cells and may in fact be more suitable to adapt and sustain the harsh microenvironmental conditions. Considering the highly specialised microenvironment of the central NP, these results indicate that IVD-like concentrations of low glucose and low oxygen are critical and influential for the survival and biological behaviour of stem cells. Such findings may promote and accelerate

  4. Proline and gamma-carboxylated glutamate residues in matrix Gla protein are critical for binding of bone morphogenetic protein-4.

    PubMed

    Yao, Yucheng; Shahbazian, Ani; Boström, Kristina I

    2008-05-09

    Arterial calcification is ubiquitous in vascular disease and is, in part, prevented by matrix Gla protein (MGP). MGP binds calcium ions through gamma-carboxylated glutamates (Gla residues) and inhibits bone morphogenetic protein (BMP)-2/-4. We hypothesized that a conserved proline (Pro)64 is essential for BMP inhibition. We further hypothesized that calcium binding by the Gla residues is a prerequisite for BMP inhibition. Site-directed mutagenesis was used to modify Pro64 and the Gla residues, and the effect on BMP-4 activity, and binding of BMP-4 and calcium was tested using luciferase reporter gene assays, coimmunoprecipitation, crosslinking, and calcium quantification. The results showed that Pro64 was critical for binding and inhibition of BMP-4 but not for calcium binding. The Gla residues were also required for BMP-4 binding but flexibility existed. As long as 1 Gla residue remained on each side of Pro64, the ability to bind and inhibit BMP-4 was preserved. Chelation of calcium ions by EDTA or warfarin treatment of cells led to loss of ability of MGP to bind BMP-4. Our results also showed that phenylalanine could replace Pro64 without loss of function and that zebrafish MGP, which lacks upstream Gla residues, did not function as a BMP inhibitor. The effect of MGP mutagenesis on vascular calcification was determined in calcifying vascular cells. Only MGP proteins with preserved ability to bind and inhibit BMP-4 prevented osteogenic differentiation and calcification. Together, our results suggest that BMP and calcium binding in MGP are independent but functionally intertwined processes and that the BMP binding is essential for prevention of vascular calcification.

  5. A Nerve Conduit Containing a Vascular Bundle and Implanted With Bone Marrow Stromal Cells and Decellularized Allogenic Nerve Matrix.

    PubMed

    Kaizawa, Yukitoshi; Kakinoki, Ryosuke; Ikeguchi, Ryosuke; Ohta, Soichi; Noguchi, Takashi; Takeuchi, Hisataka; Oda, Hiroki; Yurie, Hirofumi; Matsuda, Shuichi

    2017-02-16

    Cells, scaffolds, growth factors, and vascularity are essential for nerve regeneration. Previously, we reported that the insertion of a vascular bundle and the implantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) into a nerve conduit promoted peripheral nerve regeneration. In this study, the efficacy of nerve conduits containing a vascular bundle, BM-MSCs, and thermally decellularized allogenic nerve matrix (DANM) was investigated using a rat sciatic nerve model with a 20-mm defect. Lewis rats were used as the sciatic nerve model and for the preparation of BM-MSCs, and Dark Agouti rats were used for the preparation of the DANM. The revascularization and the immunogenicity of the DANM were investigated histologically. The regeneration of nerves through nerve conduits containing vessels, BM-MSCs, and DANM (VBD group) was evaluated based on electrophysiological, morphometric, and reinnervated muscle weight measurements and compared with that of vessel-containing conduits that were implanted with BM-MSCs (VB group). The DANM that was implanted into vessel-containing tubes (VCTs) was revascularized by neovascular vessels that originated from the inserted vascular bundle 5-7 days after surgery. The number of CD8+ cells found in the DANM in the VCT was significantly smaller than that detected in the untreated allogenic nerve segment. The regenerated nerve in the VBD group was significantly superior to that in the VB group with regard to the amplitude of the compound muscle action potential detected in the pedal adductor muscle; the number, diameter, and myelin thickness of the myelinated axons; and the tibialis anterior muscle weight at 12 and 24 weeks. The additional implantation of the DANM into the BM-MSC-implanted VCT optimized the axonal regeneration through the conduit. Nerve conduits constructed with vascularity, cells, and scaffolds could be an effective strategy for the treatment of peripheral nerve injuries with significant segmental defects.

  6. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    PubMed Central

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone. PMID:25221592

  7. Characterization of acellular dermal matrices (ADMs) prepared by two different methods.

    PubMed

    Walter, R J; Matsuda, T; Reyes, H M; Walter, J M; Hanumadass, M

    1998-03-01

    The efficacy of acellular dermal matrix (ADM) in the treatment of full-thickness skin injuries as a dermal substitute depends on its low antigenicity, capacity for rapid vascularization, and stability as a dermal template. These properties will be determined largely by the final composition of the ADM. We have treated human skin with either Dispase followed by Triton X-100 detergent or NaCl followed by SDS detergent, cryosectioned the resulting ADMs, and then characterized them immunohistochemically. Staining for cell-associated antigens (HLA-ABC, HLA-DR, vimentin, desmin, talin), extracellular matrix components (chondroitin sulfate, fibronectin, laminin, vitronectin, hyaluronic acid), elastin, and collagen type VII was dramatically reduced or absent from ADMs prepared by both methods. However, significant amounts of elastin, keratan sulfate, laminin, and collagen types III and IV were still observed in both ADMs. Both methods of ADM preparation resulted in extensive extraction of both cellular and extracellular components of the skin but retention of the basic dermal architecture. In general, ADM prepared by the NaCl-SDS method retained larger amounts of each antigen than did that prepared by the Dispase-Triton method. This was most evident for laminin and type VII collagen but larger amounts of type IV collagen, fibronectin, desmin, elastin, and HLA-DR were also evident in the NaCl-SDS ADM.

  8. A novel modified acrylic bone cement matrix. A step forward on antibiotic delivery against multiresistant bacteria responsible for prosthetic joint infections.

    PubMed

    Matos, Ana C; Gonçalves, Lídia M; Rijo, Patrícia; Vaz, Mário A; Almeida, António J; Bettencourt, Ana F

    2014-05-01

    Currently the safe and responsible use of antibiotics is a world-wide concern as it promotes prevention of the increasing emergence of multiresistant bacterial strains. Considering that there is a noticeable decline of the available antibiotic pipeline able to combat emerging resistance in serious infection a major concern grows around the prosthetic joint infections once the available commercial antibiotic loaded polymethylmethacrylate bone cements (BC) are inadequate for local antibiotic treatment, especially against MRSA, the most commonly isolated and antibiotic-resistant pathogen in bone infections. In this paper a novel modified BC matrix loaded with minocycline is proposed. A renewed interest in this tetracycline arises due to its broad-spectrum of activity against the main organisms responsible for prosthetic joint infections, especially against MRSA. The modified BC matrices were evaluated concerning minocycline release profile, biomechanical properties, solid-state characterization, antimicrobial stability and biocompatibility under in vitro conditions. BC matrix loaded with 2.5% (w/wBC) of minocycline and 10.0% (w/wBC) of lactose presented the best properties since it completely released the loaded minocycline, maintained the mechanical properties and the antimicrobial activity against representative strains of orthopedic infections. In vitro biocompatibility was assessed for the elected matrix and neither minocycline nor lactose loading enhanced BC cytotoxicity.

  9. Whooping cough, twenty years from acellular vaccines introduction.

    PubMed

    Greco, D; Esposito, S; Tozzi, A; Pandolfi, E; Icardi, G; Giammanco, A

    2015-01-01

    Clinical pertussis resulting from infection with B. pertussis is a significant medical and public health problem, despite the huge success of vaccination that has greatly reduced its incidence. The whole cell vaccine had an undeniable success over the last 50 years, but its acceptance was strongly inhibited by fear, only partially justified, of severe side effects, but also, in the Western world, by the difficulty to enter in combination with other vaccines: today multi-vaccine formulations are essential to maintain a high vaccination coverage. The advent of acellular vaccines was greeted with enthusiasm by the public health world: in the Nineties, several controlled vaccine trials were carried out: they demonstrated a high safety and good efficacy of new vaccines. In fact, in the Western world, the acellular vaccines completely replaced the whole cells ones. In the last years, ample evidence on the variety of protection of these vaccines linked to the presence of different antigens of Bordetella pertussis was collected. It also became clear that the protection provided, on average around 80%, leaves every year a significant cohort of vaccinated susceptible even in countries with a vaccination coverage of 95%, such as Italy. Finally, it was shown that, as for the pertussis disease, protection decreases over time, to leave a proportion of adolescents and adults unprotected. Waiting for improved pertussis vaccines, the disease control today requires a different strategy that includes a booster at 5 years for infants, but also boosters for teenagers and young adults, re-vaccination of health care personnel, and possibly of pregnant women and of those who are in contact with infants (cocooning). Finally, the quest for better vaccines inevitably tends towards pertussis acellular vaccines with at least three components, which have demonstrated superior effectiveness and have been largely in use in Italy for fifteen years.

  10. Exposed tibial bone after burns: Flap reconstruction versus dermal substitute.

    PubMed

    Verbelen, Jozef; Hoeksema, Henk; Pirayesh, Ali; Van Landuyt, Koenraad; Monstrey, Stan

    2016-03-01

    A 44 years old male patient had suffered extensive 3rd degree burns on both legs, undergoing thorough surgical debridement, resulting in both tibias being exposed. Approximately 5 months after the incident he was referred to the Department of Plastic and Reconstructive Surgery of the University Hospital Gent, Belgium, to undergo flap reconstruction. Free flap surgery was performed twice on both lower legs but failed on all four occasions. In between flap surgery, a dermal substitute (Integra(®)) was applied, attempting to cover the exposed tibias with a layer of soft tissue, but also without success. In order to promote the development of granulation tissue over the exposed bone, small holes were drilled in both tibias with removal of the outer layer of the anterior cortex causing the bone to bleed and subsequently negative pressure wound therapy (NPWT) was applied. The limited granulation tissue resulting from this procedure was then covered with a dermal substitute (Glyaderm(®)), consisting of acellular human dermis with an average thickness of 0.25mm. This dermal substitute was combined with a NPWT-dressing, and then served as an extracellular matrix (ECM), guiding the distribution of granulation tissue over the remaining areas of exposed tibial bone. Four days after initial application of Glyaderm(®) combined with NPWT both tibias were almost completely covered with a thin coating of soft tissue. In order to increase the thickness of this soft tissue cover two additional layers of Glyaderm(®) were applied at intervals of approximately 1 week. One week after the last Glyaderm(®) application both wounds were autografted. The combination of an acellular dermal substitute (Glyaderm(®)) with negative pressure wound therapy and skin grafting proved to be an efficient technique to cover a wider area of exposed tibial bone in a patient who was not a candidate for free flap surgery. An overview is also provided of newer and simpler techniques for coverage of

  11. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats.

    PubMed

    Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin W; Booms, Patrick; Stübinger, Stefan; Landes, Constantin; Sader, Robert Anton; Kirkpatrick, Charles James

    2010-06-01

    The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute.The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.

  12. Matrix Vesicle Enzyme Activity and Phospholipid Content in Endosteal Bone Following Implantation of Osseointegrating and Non-Osseointegrating Implant Materials.

    DTIC Science & Technology

    1991-11-01

    formation of dental calculus by colonies of organized dental plaque (Boyan et al., 1982; Ennever et al., 1978b; and Sidaway, 1980). Although first thought...chamber was achieved by frontal 17 penetration of the antero-medial aspect of the exposed bone with a saline-cooled, round dental burr (#4) and a...penetration of the antero- 24 25 medial aspect of the exposed bone with a saline-cooled, round dental burr (#4) and a 20,000 RPM motor. The bone marrow

  13. Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion.

    PubMed

    Mauney, Joshua R; Volloch, Vladimir; Kaplan, David L

    2005-11-01

    Recently, cell-based approaches utilizing adipogenic progenitor cells for fat tissue engineering have been developed and reported to have success in promoting in vivo adipogenesis and the repair of defect sites. For autologous applications, human bone marrow-derived mesenchymal stem cells (MSCs) have been suggested as a potential cell source for adipose tissue engineering applications due to their ability to be isolated and ex vivo expanded from adult bone marrow aspirates and their versatility for pluripotent differentiation into various mesenchymal lineages including adipogenic. Due to the relatively low frequency of MSCs present within bone marrow, extensive ex vivo expansion of these cells is necessary to obtain therapeutic cell populations for tissue engineering strategies. Currently, utilization of MSCs for adipose tissue engineering is limited due to the attenuation of their adipogenic differentiation potential following extensive ex vivo expansion on conventional tissue culture plastic (TCP) substrates. In the present study, the ability of a denatured collagen type I (DC) matrix to preserve MSC adipogenic potential during ex vivo expansion was examined. Adipocyte-related markers and functions were examined in vitro in response to adipogenic culture conditions for 21 days in comparison to early passage MSCs and late passage MSCs ex vivo expanded on TCP. The results demonstrated significant preservation of the ability of late passage MSCs ex vivo expanded on the DC matrix to express adipogenic markers (fatty acid-binding protein-4, lipoprotein lipase, acyl-CoA synthetase, adipsin, facilitative glucose transporter-4, and accumulation of lipids) similar to the early passage cells and in contrast to late passage MSCs expanded on TCP. The ability of the DC matrix to preserve adipocyte-related markers and functions of MSCs following extensive ex vivo expansion represents a novel culture technique to expand functional adipogenic progenitors for tissue engineering

  14. Feasibility of assessing bone matrix and mineral properties in vivo by combined solid-state 1H and 31P MRI

    PubMed Central

    Song, Hee Kwon; Seifert, Alan C.; Li, Cheng; Wehrli, Felix W.

    2017-01-01

    Purpose To develop and evaluate an integrated imaging protocol for bone water and phosphorus quantification in vivo by solid-state 1H and 31P MRI. Materials and methods All studies were HIPAA-compliant and were performed with institutional review board approval and written informed consent. Proton (1H) ultra-short echo-time (UTE) and phosphorus (31P) zero echo-time (ZTE) sequences were designed and implemented on a 3 T clinical MR scanner to quantify bone water and mineral in vivo. The left tibia of ten healthy subjects (including both genders, 49±15 y/o) was examined with a custom-built 1H/31P dual-frequency extremity RF coil. Total bone water (TW), water bound to the collagen matrix (BW) and bone 31P were quantified from MR images with respect to reference samples of known 1H or 31P concentration, and pore water (PW) was subsequently determined from TW and BW. Porosity index (PI) was calculated as the ratio between UTE images acquired at two echo times. MRI parameters were compared with bone density measures obtained by high-resolution peripheral quantitative CT (HR-pQCT). Results The total scan time for the bone water and 31P quantification protocol was about 50 minutes. Average TW, BW, PW and 31P concentrations were 13.99±1.26, 10.39±0.80, 3.34±1.41 mol/L and 7.06±1.53 mol/L for the studied cohort, respectively, in good agreement with previous results conducted ex vivo. Average intra-subject coefficients of variation were 3.47%, 2.60% and 7.50% for TW, BW and PW and 5.60% for 31P. Negative correlations were observed between PW and vBMD (p<0.05) as well as between PI and 31P (p<0.05), while bone mineral content (BMC) estimated from 31P MRI and HR-pQCT were strongly positively correlated (p<0.0001). Conclusion This work demonstrates the feasibility of quantifying bone water and mineral phosphorus in human subjects in a single MRI session with a clinically practical imaging protocol. PMID:28296979

  15. Homogenous demineralized dentin matrix and platelet-rich plasma for bone tissue engineering in cranioplasty of diabetic rabbits: biochemical, radiographic, and histological analysis.

    PubMed

    Gomes, M F; Valva, V N; Vieira, E M M; Giannasi, L C; Salgado, M A C; Vilela-Goulart, M G

    2016-02-01

    This study evaluated the effects of homogenous demineralized dentin matrix (HDDM) slices and platelet-rich plasma (PRP) in surgical defects created in the parietal bones of alloxan-induced diabetic rabbits, treated with a guided bone regeneration technique. Biochemical, radiographic, and histological analyses were performed. Sixty adult New Zealand rabbits were divided into five groups of 12: normoglycaemic (control, C), diabetic (D), diabetic with a PTFE membrane (DM), diabetic with a PTFE membrane and HDDM slices (DM-HDDM), and diabetic with PTFE membrane and PRP (DM-PRP). The quantity and quality of bone mass was greatest in the DM-HDDM group (respective radiographic and histological analyses: at 15 days, 71.70 ± 16.50 and 50.80 ± 1.52; 30 days, 62.73 ± 16.51 and 54.20 ± 1.23; 60 days, 63.03 ± 11.04 and 59.91 ± 3.32; 90 days, 103.60 ± 24.86 and 78.99 ± 1.34), followed by the DM-PRP group (respective radiographic and histological analyses: at 15 days 23.00 ± 2.74 and 20.66 ± 7.45; 30 days 31.92 ± 6.06 and 25.31 ± 5.59; 60 days 25.29 ± 16.30 and 46.73 ± 2.07; 90 days 38.10 ± 14.04 and 53.38 ± 9.20). PRP greatly enhanced vascularization during the bone repair process. Abnormal calcium metabolism was statistically significant in the DM-PRP group (P<0.001) for all four time intervals studied, especially when compared to the DM-HDDM group. Alkaline phosphatase activity was significantly higher in the DM-HDDM group (P<0.001) in comparison to the C, D, and DM-PRP groups, confirming the findings of intense osteoblastic activity and increased bone mineralization. Thus, HDDM promoted superior bone architectural microstructure in bone defects in diabetic rabbits due to its effective osteoinductive and osteoconductive activity, whereas PRP stimulated angiogenesis and red bone marrow formation.

  16. The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model.

    PubMed

    Zwingenberger, Stefan; Langanke, Robert; Vater, Corina; Lee, Geoffrey; Niederlohmann, Eik; Sensenschmidt, Markus; Jacobi, Angela; Bernhardt, Ricardo; Muders, Michael; Rammelt, Stefan; Knaack, Sven; Gelinsky, Michael; Günther, Klaus-Peter; Goodman, Stuart B; Stiehler, Maik

    2016-09-01

    The treatment of critical size bone defects represents a challenge. The growth factor bone morphogenetic protein 2 (BMP-2) is clinically established but has potentially adverse effects when used at high doses. The aim of this study was to evaluate if stromal derived factor-1 alpha (SDF-1α) and BMP-2 released from heparinized mineralized collagen type I matrix (MCM) scaffolds have a cumulative effect on bone regeneration. MCM scaffolds were functionalized with heparin, loaded with BMP-2 and/or SDF-1α and implanted into a murine critical size femoral bone defect (control group, low dose BMP-2 group, low dose BMP-2 + SDF-1α group, and high dose BMP-2 group). After 6 weeks, both the low dose BMP-2 + SDF-1α group (5.8 ± 0.6 mm³, p = 0.0479) and the high dose BMP-2 group (6.5 ± 0.7 mm³, p = 0.008) had a significantly increased regenerated bone volume compared to the control group (4.2 ± 0.5 mm³). There was a higher healing score in the low dose BMP-2 + SDF-1α group (median grade 8; Q1-Q3 7-9; p = 0.0357) than in the low dose BMP-2 group (7; Q1-Q3 5-9) histologically. This study showed that release of BMP-2 and SDF-1α from heparinized MCM scaffolds allows for the reduction of the applied BMP-2 concentration since SDF-1α seems to enhance the osteoinductive potential of BMP-2. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2126-2134, 2016.

  17. Decellularization of porcine skeletal muscle extracellular matrix for the formulation of a matrix hydrogel: a preliminary study.

    PubMed

    Fu, Yuehe; Fan, Xuejiao; Tian, Chunxiang; Luo, Jingcong; Zhang, Yi; Deng, Li; Qin, Tingwu; Lv, Qing

    2016-04-01

    Extracellular matrix (ECM) hydrogels are used as scaffolds to facilitate the repair and reconstruction of tissues. This study aimed to optimize the decellularization process of porcine skeletal muscle ECM and to formulate a matrix hydrogel scaffold. Five multi-step methods (methods A-E) were used to generate acellular ECM from porcine skeletal muscle [rinsing in SDS, trypsin, ethylenediaminetetraacetic acid (EDTA), Triton X-100 and/or sodium deoxycholate at 4-37°C]. The resulting ECM was evaluated using haematoxylin and eosin, 4-6-diamidino-2-phenylindole (DAPI) staining, and DNA quantification. Acellular matrix was dissolved in pepsin and gelled at 37°C. Hydrogel response to temperature was observed in vivo and in vitro. ECM components were assessed by Masson, Sirius red, and alcian blue staining, and total protein content. Acellular porcine skeletal muscle exhibited a uniform translucent white appearance. No intact nuclear residue was detected by haematoxylin and eosin staining, while DAPI staining showed a few nuclei in the matrixes produced by methods B, C, and D. Method A generated a gel that was too thin for gelation. However, the matrix obtained by rinsing in 0.2% trypsin/0.1% EDTA, 0.5% Triton X-100, and 1% Triton X-100/0.2% sodium deoxycholate was nuclei-free and produced a viscous solution that formed a structurally stable white jelly-like hydrogel. The residual DNA content of this solution was 49.37 ± 0.72 ng/mg, significantly less than in fresh skeletal muscle, and decreased to 19.22 ± 0.85 ng/mg after gelation (P < 0.05). The acellular matrix was rich in collagen and glycosaminoglycan, with a total protein concentration of 64.8 ± 6.9%. An acellular ECM hydrogel from porcine skeletal muscle was efficiently produced.

  18. Bone poroelasticity.

    PubMed

    Cowin, S C

    1999-03-01

    Poroelasticity is a well-developed theory for the interaction of fluid and solid phases of a fluid-saturated porous medium. It is widely used in geomechanics and has been applied to bone by many authors in the last 30 years. The purpose of this work is, first, to review the literature related to the application of poroelasticity to the interstitial bone fluid and, second, to describe the specific physical and modeling considerations that establish poroelasticity as an effective and useful model for deformation-driven bone fluid movement in bone tissue. The application of poroelasticity to bone differs from its application to soft tissues in two important ways. First, the deformations of bone are small while those of soft tissues are generally large. Second, the bulk modulus of the mineralized bone matrix is about six times stiffer than that of the fluid in the pores while the bulk moduli of the soft tissue matrix and the pore water are almost the same. Poroelasticity and electrokinetics can be used to explain strain-generated potentials in wet bone. It is noted that strain-generated potentials can be used as an effective tool in the experimental study of local bone fluid flow, and that the knowledge of this technique will contribute to the answers of a number of questions concerning bone mineralization, osteocyte nutrition and the bone mechanosensory system.

  19. Ultrastructural immunolocalization of cartilage oligomeric matrix protein (COMP) in the articular cartilage on the equine third carpal bone in trained and untrained horses.

    PubMed

    Skiöldebrand, E; Ekman, S; Heinegård, D; Hultenby, K

    2010-04-01

    The present study was designed to delineate the presence of COMP at the ultrastructural level comparing concentrations between two areas of articular cartilage from the equine third carpal bone, subjected to different loading, from trained and untrained horses. We also analyzed the fibril thickness of collagen type II in the same compartments and zones. Samples were collected from high load-bearing areas of the dorsal radial facet (intermittent high load) and an area of the palmar condyle (low constant load) in five non-trained and three trained young racehorses. The data show that COMP is much less abundant in the matrix in intermittent high loaded areas of articular cartilage from trained horses as compared to the untrained horses (p=0.036). On the other hand, the untrained horses often displayed a higher immunolabeling in loaded areas compared to unloaded areas, indicating that an adequate dynamic load promotes COMP synthesis and/or retention, while an excessive load may have an opposite effect. The collagen fibril diameter showed marked variation between individuals. The present study indicates that dynamic in vivo compression at high load and frequency lowers matrix content of COMP in the articular cartilage of the third carpal bone. It also indicates that the collagen network is influenced by mechanical load following by strenuous exercise.

  20. Inductive effects of dexamethasone on the gene expression of Cbfa1, Osterix and bone matrix proteins during differentiation of cultured primary rat osteoblasts.

    PubMed

    Igarashi, Masato; Kamiya, Naoko; Hasegawa, Mitsuharu; Kasuya, Tomohiro; Takahashi, Tomihisa; Takagi, Minoru

    2004-01-01

    Runx2/core binding factor alpha 1 (Cbfa1) and Osterix (Osx) are osteoblast-specific transcription factors essential for the development of a mature osteoblast phenotype and are thought to activate osteoblast marker genes in vivo to produce a bone-specific matrix. Dexamethasone (Dex) is known to be a potent stimulator of osteoblastic differentiation in vitro, however, the exact role is still unclear. To investigate the mechanisms of the stimulation of osteoblastic differentiation by Dex, we evaluated the effects of Dex on proliferation and mineralization as well as on mRNA expression of Cbfa1, Osx and osteoblast marker genes, osteocalcin (OC) and bone sialoprotein (BSP) mRNAs in differentiating foetal rat calvarial cells (FRCC), which were cultured for 35 days in the presence or absence of 10(-7) M Dex. Treatment of FRCC with Dex resulted in the stimulation of cell proliferation and increased the number of cells, which are able to produce bone-like nodules with a mineralized matrix when compared to untreated controls. Northern blot analysis revealed that, in the absence of Dex, Cbfa1 mRNA expressed at day 8, while Osx mRNA expressed at day 15. Subsequently expression of these mRNAs increased up to day 21, followed by constant expression during the culture period. The expression of OC and BSP mRNAs appeared to be synchronous with that of Osx mRNA and was detectable at day 15 with an increase thereafter. The presence of Dex resulted in an induction in Cbfa1 and Osx mRNA expression. The former appeared at day 5 and the latter appeared at day 11. Subsequently expression of Cbfa1 and Osx mRNAs increased up to day 15 with a decrease thereafter. Expression of OC and BSP mRNAs appeared to be coincident with that of Osx mRNA and was detectable at day 11 and reached a maximum at day 15 followed by constant expression. These observations indicate that induction of Cbfal and Osx mRNAs by Dex may be followed by activation of osteoblast marker genes such as OC and BSP mRNAs to

  1. Enhanced Androgen Signaling with Androgen Receptor Overexpression in the Osteoblast Lineage Controls Skeletal Turnover, Matrix Quality and Bone Architecture

    DTIC Science & Technology

    2009-12-01

    Kristine M. - 4 - Introduction Androgen deficiency (as a result of aging, hypogonadism, glucocorticoid therapy, or alcoholism), and other...way ANOVA revealed significant differences in BMD (p < 0.01), BMC (p < 0.001), and bone area (p < 0.05) following ORX. Tukey’s multiple comparison...reduced BMC and bone area (p < 0.001) following OVX. Tukey’s multiple comparison test ** p < 0.01, *** p < 0.001, vs. Sham controls (n = 12-15

  2. Functional bone histology of zebrafish reveals two types of endochondral ossification, different types of osteoblast clusters and a new bone type.

    PubMed

    Weigele, Jochen; Franz-Odendaal, Tamara A

    2016-07-01

    The zebrafish is as an important vertebrate animal model system for studying developmental processes, gene functions and signalling pathways. It is also used as a model system for the understanding of human developmental diseases including those related to the skeleton. However, surprisingly little is known about normal zebrafish skeletogenesis and osteogenesis. As in most vertebrates, it is commonly known that the bones of adult zebrafish are cellular unlike that of some other teleosts. After careful histological analyses of each zebrafish adult bone, we identified several acellular bones, with no entrapped osteocytes in addition to several cellular bones. We show that both cellular and acellular bones can even occur within the same skeletal element and transitions between these two cell types can be found. Furthermore, we describe two types of osteoblast clusters during skeletogenesis and two different types of endochondral ossification. The epiphyseal plate, for example, lacks a zone of calcification and a degradation zone with osteoblasts. A new bone type that we term tubular bone was also identified. This bone is completely filled with adipose tissue, unlike spongy bones. This study provides important insight on how osteogenesis takes place in zebrafish, and especially on the transition from cellular to acellular bones. Overall, this study leads to a deeper understanding of the functional histological composition of adult zebrafish bones.

  3. Using genipin-crosslinked acellular porcine corneal stroma for cosmetic corneal lens implants.

    PubMed

    Liu, Zhao; Zhou, Qiang; Zhu, Jixiang; Xiao, Jianhui; Wan, Pengxia; Zhou, Chenjing; Huang, Zheqian; Qiang, Na; Zhang, Wei; Wu, Zheng; Quan, Daping; Wang, Zhichong

    2012-10-01

    Acellular porcine corneal stroma (APCS) has been proven to maintain the matrix microenvironment and is therefore an ideal biomaterial for the repair and reconstruction of corneal stroma. This study aims to develop a method to prepare cosmetic corneal lens implants for leukoma using genipin-crosslinked APCS (Gc-APCS). The Gc-APCS was prepared from APCS immersed in 1.0% genipin aqueous solution (pH 5.5) for 4 h at 37 °C, followed by lyophilization at -10 °C. The color of the Gc-APCS gradually deepened to dark-blue. The degree of crosslinking was 45.7 ± 4.6%, measured by the decrease of basic and hydroxy amino acids. The porous structure and ultrastructure of collagenous lamellae were maintained, and the porosity and BET SSA were 72.7 ± 4.6% and 23.01 ± 3.45 m(2)/g, respectively. The Gc-APCS rehydrated to the physiological water content within 5 min and was highly resistant to collagenase digestion. There were no significant differences in the areal modulus and curvature variation between Gc-APCS and nature porcine cornea. The dark-blue pigments were stable to pH, light and implantation in vivo. Gc-APCS extracts had no inhibitory effects on the proliferation of keratocytes. Corneal neovascularization, graft degradation and corneal rejection were not observed within 6 months.

  4. Treatment of an 8-mm Myxoma Using Acellular Corneal Tissue

    PubMed Central

    Lim, Kyung Sup; Wee, Sung Wook

    2014-01-01

    A myxoma is a benign tumor found in the heart and in various soft tissues; however, a corneal myxoma is rare. A mucinous mass of unknown etiology was observed on the left cornea of a 32-year-old male patient. We performed deep anterior lamellar keratoplasty using acellular corneal tissue and concurrent amniotic membrane transplantation. Hematoxylin and eosin staining revealed vacuolation of the parenchyma and myxoid change in the corneal tissue that occurred in the anterior half of the corneal parenchyma. We identified a myxoid stroma by Alcian blue staining and observed collagen fibers with denatured stroma by Masson trichrome staining. The patient's visual acuity improved from light perception to 20 / 200, and the intraocular pressure remained within the normal range for one year after surgery. The transplanted cornea survived successfully with well-maintained transparency, and recurrence was not observed one year after surgery. PMID:24505204

  5. Enhanced Androgen Signaling with Androgen Receptor Overexpression in the Osteoblast Lineage Controls Skeletal Turnover, Matrix Quality, and Bone Architecture

    DTIC Science & Technology

    2005-12-01

    mice at the periosteal surface (10), as shown in Fig. 8A. Importantly, there is similar overexpression of AR levels in calvaria harvested from...col3.6 vs. col2.3 mice (see Fig. 2). This result suggests that overexpression of AR in periosteal and immature osteoblasts is primarily responsible...effects of col2.3 AR overexpression on periosteal vs. endosteal bone formation. We have previously determined an envelope-specific effect of

  6. Complication Rates With Human Acellular Dermal Matrices: Retrospective Review of 211 Consecutive Breast Reconstructions

    PubMed Central

    Carman, Claire M.; Tobin, Chase; Chase, Serena A.; Rossmeier, Kerri A.

    2016-01-01

    Background: Human acellular dermal matrix (HADM) is commonly used to provide coverage and support for breast reconstruction. The primary purpose of this study was to evaluate the complication rates associated with breast reconstruction procedures when performed in conjunction with multiple types of HADM in a consecutive series. Methods: After receiving institutional review board approval, medical records from a single surgeon were retrospectively reviewed for 126 consecutive patients (170 breasts and 211 procedures) who received a breast reconstruction or revision with implantation of HADM between 2012 and 2014. Patient demographics, surgical technique, and the complication profile of 4 major types of HADM were evaluated by procedure. Complication data were primarily evaluated for infection, seroma formation, necrosis, and other complications requiring additional surgery. Results: The total complication rate was 19.4%. The complication rates were not statistically different between all 4 types of HADM: Alloderm (n = 143); Alloderm RTU (n = 19); FlexHD (n = 18); hMatrix (n = 32) (P > 0.05). Smokers and large-breasted women (≥500 g) had a significantly higher complication rate than the rest of the population (P < 0.01 and P < 0.03, respectively). The complication rates associated with all other patient cohorts analyzed (age, body mass index, comorbid conditions, cancer diagnosis, prepectoral technique) showed no influence on complication rates (P > 0.05). Conclusions: In characteristically similar cohorts, there was no statistically significant difference in complication rates based on type of HADM; however, certain risk factors and anatomy should be considered before HADM-assisted breast reconstruction. PMID:27975023

  7. Matrix Vesicle Enzyme Activity and Phospholipid Content in Endosteal Bone Following Implantation of Osseointegrating and Non-Osseointegrating Implant Materials.

    DTIC Science & Technology

    1992-01-01

    vesicles are an initial locus for calcification in most calcified matrices. b. The studies to be performed include: alkaline phosphatase specific activity...Treatment and Contralateral Tibias .............................. 23 Figure 6. Alkaline Phosphatase Specific Activity of Matrix Vesicle-Enriched Membranes...endosteal tissue removed from treated tibias, as well as the contralateral control. There was an increase at six days in MVEM alkaline phosphatase and

  8. In vitro and in vivo evaluation of the effects of demineralized bone matrix or calcium sulfate addition to polycaprolactone-bioglass composites.

    PubMed

    Erdemli, O; Captug, O; Bilgili, H; Orhan, D; Tezcaner, A; Keskin, D

    2010-01-01

    The objective of this study was to improve the efficacy of polycaprolactone/bioglass (PCL/BG) bone substitute using demineralized bone matrix (DBM) or calcium sulfate (CS) as a third component. Composite discs involving either DBM or CS were prepared by compression moulding. Bioactivity of discs was evaluated by energy dispersive X-ray spectroscopy (ESCA) and scanning electron microscopy (SEM) following simulated body fluid incubation. The closest Calcium/Phosphate ratio to that of hydroxyl carbonate apatite crystals was observed for PCL/ BG/DBM group (1.53) after 15 day incubation. Addition of fillers increased microhardness and compressive modulus of discs. However, after 4 and 6-week PBS incubations, PCL/BG/DBM discs showed significant decrease in modulus (from 266.23 to 54.04 and 33.45 MPa, respectively) in parallel with its highest water uptakes (36.3 and 34.7%). Discs preserved their integrity with only considerable weight loss (7.5-14.5%) in PCL/BG/DBM group. In vitro cytotoxicity tests showed that all discs were biocompatible.

  9. Mechanobiology of bone marrow stem cells: from myosin-II forces to compliance of matrix and nucleus in cell forms and fates.

    PubMed

    Shin, Jae-Won; Swift, Joe; Ivanovska, Irena; Spinler, Kyle R; Buxboim, Amnon; Discher, Dennis E

    2013-10-01

    Adult stem cells and progenitors are of great interest for their clinical application as well as their potential to reveal deep sensitivities to microenvironmental factors. The bone marrow is a niche for at least two types of stem cells, and the prototype is the hematopoietic stem cell/progenitors (HSC/Ps), which have saved many thousands of patients for several decades now. In bone marrow, HSC/Ps interact functionally with marrow stromal cells that are often referred to as mesenchymal stem cells (MSCs) or derivatives thereof. Myosin and matrix elasticity greatly affect MSC function, and these mechanobiological factors are now being explored with HSC/Ps both in vitro and in vivo. Also emerging is a role for the nucleus as a mechanically sensitive organelle that is semi-permeable to transcription factors which are modified for nuclear entry by cytoplasmic mechanobiological pathways. Since therapies envisioned with induced pluripotent stem cells and embryonic stem cells generally involve in vitro commitment to an adult stem cell or progenitor, a very deep understanding of stem cell mechanobiology is essential to progress with these multi-potent cells.

  10. Gene expression profiling of giant cell tumor of bone reveals downregulation of extracellular matrix components decorin and lumican associated with lung metastasis.

    PubMed

    Lieveld, M; Bodson, E; De Boeck, G; Nouman, B; Cleton-Jansen, A M; Korsching, E; Benassi, M S; Picci, P; Sys, G; Poffyn, B; Athanasou, N A; Hogendoorn, P C W; Forsyth, R G

    2014-12-01

    Giant cell tumor of bone (GCTB) displays worrisome clinical features such as local recurrence and occasionally metastatic disease which are unpredictable by morphology. Additional routinely usable biomarkers do not exist. Gene expression profiles of six clinically defined groups of GCTB and one group of aneurysmal bone cyst (ABC) were determined by microarray (n = 33). The most promising differentially expressed genes were validated by Q-PCR as potential biomarkers in a larger patient group (n = 41). Corresponding protein expression was confirmed by immunohistochemistry. Unsupervised hierarchical clustering reveals a metastatic GCTB cluster, a heterogeneous, non-metastatic GCTB cluster, and a primary ABC cluster. Balanced score testing indicates that lumican (LUM) and decorin (DCN) are the most promising biomarkers as they have lower level of expression in the metastatic group. Expression of dermatopontin (DPT) was significantly lower in recurrent tumors. Validation of the results was performed by paired and unpaired t test in primary GCTB and corresponding metastases, which proved that the differential expression of LUM and DCN is tumor specific rather than location specific. Our findings show that several genes related to extracellular matrix integrity (LUM, DCN, and DPT) are differentially expressed and may serve as biomarkers for metastatic and recurrent GCTB.

  11. Extracellular Matrix Proteins, Alkaline Phosphatase and Pyrophosphate as Molecular Determinants of Bone, Tooth, Kidney and Vascular Calcification

    NASA Astrophysics Data System (ADS)

    McKee, Marc D.

    2008-09-01

    Progress in biomineralization research in recent years has identified, characterized and described functions for key noncollagenous extracellular matrix proteins regulating crystal growth in the skeleton and dentition. Some of these same proteins expressed in soft tissues undergoing pathologic calcification also inhibit ectopic crystal growth. In addition to extracellular matrix proteins regulating matrix mineralization, the enzyme tissue-nonspecific alkaline phosphatase—which is highly expressed by cells in mineralized tissues—cleaves pyrophosphate, an anionic small-molecule inhibitor of mineralization. Together with the required mineral ion availability necessary for crystal growth, these molecular determinants appear to function in limiting the spread of pathologic calcification seen in soft tissues such as blood vessels and kidneys. Osteopontin, in particular, is a potent calcification inhibitor that accumulates in mineralized tissues and in calcified deposits during vascular calcification and nephrolithiasis/urolithiasis. Additional research is required to establish the exact temporal sequence in which the molecular determinants of pathologic calcification appear relative to mineral crystal growth in different tissues, and to establish their relationship (if any) to the activation of osteogenic differentiation programs.

  12. Clinical and radiographic evaluation of copolymerized Polylactic/polyglycolic acids as a bone filler in combination with a cellular dermal matrix graft around immediate implants

    PubMed Central

    Soliman, Mahitab M.; Zaki, Azza Abdulrahman; El Gazaerly, Hanaa Mohamed; Shemmrani, Ammar Al; Sorour, Abd El Latif

    2014-01-01

    Objective This study was conducted to evaluate clinically and radiographically the use of a cellular dermal matrix allograft (Alloderm) in combination with PLA/PGA (Fisiograft) around immediate implants. Materials and Methods Fourteen patients were included in this study, three patients received two implants, total of seventeen implants were placed. Periapical radiographs and orthopantomographs were taken. The selected teeth were extracted atraumatically after the reflection of full thickness flaps. One-piece Zimmer implants were placed immediately into the sockets. Weeks from implantation, radiographic evaluation was made at 6 Fisiograft in powder form was placed in the osseous defects around the implants. The implants were immediately restored with provisional crowns free from occlusion. Patients were clinically evaluated at 3, 6, and 14 months after loading which was done after 6 weeks from implantation. Radiographic evaluation was made at 6 and 14 months from implant placement. Results showed that immediate implantation was successful in sixteen out of seventeen implants, clinical parameters regarding plaque index, gingival index, there was a slight decrease through the follow-up periods from 3 to 14 months but it was non-significant, while there was a significant decrease in the probing depth. Radiographically there was a significant increase in the bone density from 6 to 14 months post loading, while the vertical bone defect was significantly decreased. The fisiograft functioned well as space maker and scaffolding material. The Alloderm performed well as a membrane to be used in association with immediate implants and it has a good potentiality for increasing the width of the keratinized gingiva, which is an important feature for implant esthetics. Conclusion the combination technique between the bone graft and the membrane proved to be successful to overcome dehiscence and osseous defects around immediate implants. PMID:25780357

  13. Polyetheretherketone Cage with Demineralized Bone Matrix Can Replace Iliac Crest Autografts for Anterior Cervical Discectomy and Fusion in Subaxial Cervical Spine Injuries

    PubMed Central

    Kim, Soo-Han; Lee, Jung-Kil; Jang, Jae-Won; Park, Hyun-Woong; Hur, Hyuk

    2017-01-01

    Objective This study aimed to compare the clinical and radiologic outcomes of patients with subaxial cervical injury who underwent anterior cervical discectomy and fusion (ACDF) with autologous iliac bone graft or polyetheretherketone (PEEK) cages using demineralized bone matrix (DBM). Methods From January 2005 to December 2010, 70 patients who underwent one-level ACDF with plate fixation for post-traumatic subaxial cervical spinal injury in a single institution were retrospectively investigated. Autologous iliac crest grafts were used in 33 patients (Group I), whereas 37 patients underwent ACDF using a PEEK cage filled with DBM (Group II). Plain radiographs were used to assess bone fusion, interbody height (IBH), segmental angle (SA), overall cervical sagittal alignment (CSA, C2–7 angle), and development of adjacent segmental degeneration (ASD). Clinical outcome was assessed using a visual analog scale (VAS) for pain and Frankel grade. Results The mean follow-up duration for patients in Group I and Group II was 28.9 and 25.4 months, respectively. All patients from both groups achieved solid fusion during the follow-up period. The IBH and SA of the fused segment and CSA in Group II were better maintained during the follow-up period. Nine patients in Group I and two patients in Group II developed radiologic ASD. There were no statistically significant differences in the VAS score and Frankel grade between the groups. Conclusion This study showed that PEEK cage filled with DBM, and plate fixation is at least as safe and effective as ACDF using autograft, with good maintenance of cervical alignment. With advantages such as no donor site morbidity and no graft-related complications, PEEK cage filled with DBM, and plate fixation provide a promising surgical option for treating traumatic subaxial cervical spine injuries. PMID:28264242

  14. Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells.

    PubMed

    Fawzy El-Sayed, Karim M; Dörfer, Christof; Ungefroren, Hendrick; Kassem, Neemat; Wiltfang, Jörg; Paris, Sebastian

    2014-07-01

    The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p < 0.05; Two-way ANOVA/Bonferroni) with no mineralized nodule formation. Under in-vitro conditions, Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation.

  15. Characterization of partially hydrolyzed OCP crystals deposited in a gelatin matrix as a scaffold for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Ezoe, Yushi; Anada, Takahisa; Yamazaki, Hajime; Handa, Takuto; Kobayashi, Kazuhito; Takahashi, Tetsu; Suzuki, Osamu

    2015-03-01

    The present study was designed to investigate how hydrolysis of octacalcium phosphate (OCP) into hydroxyapatite is affected by the presence of gelatin (Gel) molecules and how osteoblastic cells respond to the resultant OCP hydrolyzate/Gel composites as the hydrolysis advances. OCP was prepared from a solution containing calcium and phosphate ions and Gel molecules, having a composition to produce a 40 wt% OCP as a final co-precipitate as the OCP/Gel. The precipitate was further incubated up to 40 h to advance the hydrolysis of OCP. These precipitates were processed to mold OCP/Gel sponges through lyophilization and dehydrothermal treatment. Chemical analysis, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and selected area electron diffraction revealed that the hydrolysis of OCP/Gel composite in hot water advanced in a time-dependent manner and faster than hydrolysis of OCP alone. The effect of Gel on the OCP hydrolysis was further examined in the presence of distinct concentrations of Gel molecules in hot water, showing that the Gel enhanced the hydrolysis as the concentration increased. Proliferation and differentiation of mouse bone marrow stromal ST-2 cells on the hydrolyzed OCP/Gel composites were compatible with Gel sponge alone after 21 days of culture, suggesting that these composites could be a candidate as a scaffold in bone tissue engineering.

  16. Bladder tissue regeneration using acellular bi-layer silk scaffolds in a large animal model of augmentation cystoplasty.

    PubMed

    Tu, Duong D; Chung, Yeun Goo; Gil, Eun Seok; Seth, Abhishek; Franck, Debra; Cristofaro, Vivian; Sullivan, Maryrose P; Di Vizio, Dolores; Gomez, Pablo; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2013-11-01

    Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a porcine model of augmentation cystoplasty. Two bi-layer matrix configurations were fabricated by solvent-casting/salt leaching either alone (Group 1) or in combination with silk film casting (Group 2) to yield porous foams buttressed by heterogeneous surface pore occlusions or homogenous silk films, respectively. Bladder augmentation was performed with each scaffold group (6 × 6 cm(2)) in juvenile Yorkshire swine for 3 m of implantation. Augmented animals exhibited high rates of survival (Group 1: 5/6, 83%; Group 2: 4/4, 100%) and voluntary voiding over the course of the study period. Urodynamic evaluations demonstrated mean increases in bladder capacity over pre-operative levels (Group 1: 277%; Group 2: 153%) which exceeded nonsurgical control gains (144%) encountered due to animal growth.In addition, animals augmented with both matrix configurations displayed increases in bladder compliance over pre-operative levels(Group 1: 357%; Group 2: 338%) similar to growth-related elevations observed in non-surgical controls (354%) [corrected]. Gross tissue evaluations revealed that both matrix configurations supported extensive de novo tissue formation throughout the entire original implantation site which exhibited ultimate tensile strength similar to nonsurgical counterparts. Histological and immunohistochemical analyses showed that both implant groups promoted comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within defect sites similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent cytokeratin, uroplakin, and p63 protein expression in both matrix groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by synaptophysin-positive neuronal

  17. [Bone grafts using tissue engineering].

    PubMed

    Delloye, C

    2001-01-01

    An overview of bone grafts and, in particular, the allografts is presented. The availability of bone allografts, has promoted their use at the expense of the autograft. However, the loss of the cellular activity in an allograft, makes them less performant than an autograft. The use of an allograft in a small size defect can be advocated provided that the implantation technique is stringent. In case of a large segmental bone defect, an allograft can be considered whereas an autograft is not anymore possible. A massive bone allograft allows an anatomical reconstruction and the preservation of strong tendon insertions. In tumor surgery, a bone allograft has become one of the best options to reshape the skeleton. To offset the poor remodeling of the massive bone allografts, and to improve the take of small size bone allografts, researches are presently carried on, using tissue engineering in order to recover a cellular population. The aim is to combine an acellular bone graft with the cells of the recipient. Cells are procured from the bone marrow. Stromal cells are isolated, cultured, so that they will grow with an osteoblastic phenotype. They can be used alone or in association with a bone graft. It is believed that tomorrow such cellular therapy will become a routine procedure.

  18. Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I

    PubMed Central

    White, Lisa J.; Shakesheff, Kevin M.; Tatullo, Marco

    2016-01-01

    Objectives The aim of this study was to evaluate the level of odontogenic differentiation of dental pulp stem cells (DPSCs) on hydrogel scaffolds derived from bone extracellular matrix (bECM) in comparison to those seeded on collagen I (Col-I), one of the main components of dental pulp ECM. Methods DPSCs isolated from human third molars were characterized for surface marker expression and odontogenic potential prior to seeding into bECM or Col-I hydrogel scaffolds. The cells were then seeded onto bECM and Col-I hydrogel scaffolds and cultured under basal conditions or with odontogenic and growth factor (GF) supplements. DPSCs cultivated on tissue culture polystyrene (TCPS) with and without supplements were used as controls. Gene expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE) was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and mineral deposition was observed by Von Kossa staining. Results When DPSCs were cultured on bECM hydrogels, the mRNA expression levels of DSPP, DMP-1 and MEPE genes were significantly upregulated with respect to those cultured on Col-I scaffolds or TCPS in the absence of extra odontogenic inducers. In addition, more mineral deposition was observed on bECM hydrogel scaffolds as demonstrated by Von Kossa staining. Moreover, DSPP, DMP-1 and MEPE mRNA expressions of DPSCs cultured on bECM hydrogels were further upregulated by the addition of GFs or osteo/odontogenic medium compared to Col-I treated cells in the same culture conditions. Significance These results demonstrate the potential of the bECM hydrogel scaffolds to stimulate odontogenic differentiation of DPSCs. PMID:26882351

  19. Repair of Traumatic Skeletal Muscle Injury with Bone-Marrow-Derived Mesenchymal Stem Cells Seeded on Extracellular Matrix

    DTIC Science & Technology

    2010-06-02

    Tierney, M.S.,1 Laura J. Suggs, Ph.D.,2 Thomas J. Walters, Ph.D.,3 and Roger P. Farrar, Ph.D.1 Skeletal muscle injury resulting in tissue loss poses unique...will not grow to fill the injured area completely. Prior work in our lab has shown the potential to fill the void with an extracellular matrix (ECM...scaffold, resulting in restoration of morphology, but not functional recovery. To improve the functional outcome of the injured muscle, a muscle

  20. Human Bone-Forming Chondrocytes Cultured in the Hydrodynamic Focusing Bioreactor Retain Matrix Proteins: Similarities to Spaceflight Results

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Hecht, J.; Montufar-Solis, D.

    2006-01-01

    Fracture healing, crucial to a successful Mars mission, involves formation of a cartilaginous fracture callus which differentiates, mineralizes, ossifies and remodels via the endochondral process. Studies of spaceflown and tailsuspended rats found that, without loading, fracture callus formation and cartilage differentiation within the callus were minimal. We found delayed differentiation of chondrocytes within the rat growth plate on Cosmos 1887, 2044, and Spacelab 3. In the current study, differentiation of human bone-forming chondrocytes cultured in the hydrodynamic focusing bioreactor (HFB) was assessed. Human costochondral chondrocytes in suspension were aggregated overnight, then cultured in the HFB for 25 days. Collagen Type II, aggrecan and unsulfated chondroitin were found extracellularly and chondroitin sulfates 4 and 6 within the cell. Lack of secretion was also found in pancreatic cells of spaceflown rats, and in our SL3 studies. The HFB can be used to study cartilage differentiation in simulated microgravity.

  1. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.

    PubMed

    Nyberg, Ethan; Rindone, Alexandra; Dorafshar, Amir; Grayson, Warren L

    2017-02-07

    Three-dimensional (3D)-printing facilitates rapid, custom manufacturing of bone scaffolds with a wide range of material choices. Recent studies have demonstrated the potential for 3D-printing bioactive (i.e., osteo-inductive) scaffolds for use in bone regeneration applications. In this study, we 3D-printed porous poly-ɛ-caprolactone (PCL) scaffolds using a fused deposition modeling (FDM) process and functionalized them with mineral additives that have been widely used commercially and clinically: tricalcium phosphate (TCP), hydroxyapatite (HA), Bio-Oss (BO), or decellularized bone matrix (DCB). We assessed the "print quality" of the composite scaffolds and found that the print quality of PCL-TCP, PCL-BO, and PCL-DCB measured ∼0.7 and was statistically lower than PCL and PCL-HA scaffolds (∼0.8). We found that the incorporation of mineral particles did not significantly decrease the compressive modulus of the graft, which was on the order of 260 MPa for solid blocks and ranged from 32 to 83 MPa for porous scaffolds. Raman spectroscopy revealed the surfaces of the scaffolds maintained the chemical profile of their dopants following the printing process. We evaluated the osteo-inductive properties of each scaffold composite by culturing adipose-derived stromal/stem cells in vitro and assessing their differentiation into osteoblasts. The calcium content (normalized to DNA) increased significantly in PCL-TCP (p < 0.05), PCL-BO (p < 0.001), and PCL-DCB (p < 0.0001) groups relative to PCL only. The calcium content also increased in PCL-HA but was not statistically significant (p > 0.05). Collagen 1 expression was 10-fold greater than PCL in PCL-BO and PCL-DCB (p < 0.05) and osteocalcin expression was 10-fold greater in PCL-BO and PCL-DCB (p < 0.05) as measured by quantitative-real time-polymerase chain reaction. This study suggests that PCL-BO and PCL-DCB hybrid material may be advantageous for bone healing applications over PCL-HA or PCL

  2. Direct Hospital Cost of Outcome Pathways in Implant-Based Reconstruction with Acellular Dermal Matrices

    PubMed Central

    Qureshi, Ali A.; Broderick, Kristen; Funk, Susan; Reaven, Nancy; Tenenbaum, Marissa M.

    2016-01-01

    Background: Current cost data on tissue expansion followed by exchange for permanent implant (TE/I) reconstruction lack a necessary assessment of the experience of a heterogenous breast cancer patient population and their multiple outcome pathways. We extend our previous analysis to that of direct hospital cost as bundling of payments is likely to follow the changing centralization of cancer care at the hospital level. Methods: We performed a retrospective analysis (2003–2009) of TE/I reconstructions with or without an acellular dermal matrix (ADM), namely Alloderm RTM. Postreconstructive events were analyzed and organized into outcome pathways as previously described. Aggregated and normalized inpatient and outpatient hospital direct costs and physician reimbursement were generated for each outcome pathway with or without ADM. Results: Three hundred sixty-seven patients were analyzed. The average 2-year hospital direct cost per TE/I breast reconstruction patient was $11,862 in the +ADM and $12,319 in the −ADM groups (P > 0.05). Initial reconstructions were costlier in the +ADM ($6,868) than in the −ADM ($5,615) group, but the average cost of subsequent postreconstructive events within 2 years was significantly lower in +ADM ($5,176) than −ADM ($6,704) patients (P < 0.05). When a complication occurred, but reconstruction was still completed within 2 years, greater costs were incurred in the −ADM than in the +ADM group for most scenarios, leading to a net equalization of cost between study groups. Conclusion: Although direct hospital cost is an important factor for resource and fund allocation, it should not remain the sole factor when deciding to use ADM in TE/I reconstruction. PMID:27622099

  3. Boron Induces Early Matrix Mineralization via Calcium Deposition and Elevation of Alkaline Phosphatase Activity in Differentiated Rat Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Movahedi Najafabadi, Bent-al-hoda; Abnosi, Mohammad Hussein

    2016-01-01

    Objective Boron (B) is essential for plant development and might be an essential micronutrient for animals and humans. This study was conducted to characterize the impact of boric acid (BA) on the cellular and molecular nature of differentiated rat bone marrow mesenchymal stem cells (BMSCs). Materials and Methods In this experimental study, BMSCs were extracted and expanded to the 3rdpassage, then cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) complemented with osteogenic media as well as 6 ng/ml and 6 µg/ml of BA. After 5, 10, 15 and 21 days the viability and the level of mineralization was determined using MTT assay and alizarin red respectively. In addition, the morphology, nuclear diameter and cytoplasmic area of the cells were studied with the help of fluorescent dye. The concentration of calcium, activity of alanine transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) as well as sodium and potassium levels were also evaluated using commercial kits and a flame photometer respectively. Results Although 6 µg/ml of BA was found to be toxic, a concentration of 6 ng/ml increased the osteogenic ability of the cell significantly throughout the treatment. In addition it was observed that B treatment caused the early induction of matrix mineralization compared to controls. Conclusion Although more investigation is required, we suggest the prescription of a very low concentration of B in the form of BA or foods containing BA, in groups at high risk of osteoporosis or in the case of bone fracture. PMID:27054120

  4. Pertactin deficient Bordetella pertussis present a better fitness in mice immunized with an acellular pertussis vaccine.

    PubMed

    Hegerle, N; Dore, G; Guiso, N

    2014-11-20

    Bordetella pertussis is the etiologic agent of whooping cough and has been the target of vaccination for over fifty years. The latest strategies include the use of acellular pertussis vaccines that induce specific immunity against few virulence factors amongst which pertactin is included in three and five component acellular pertussis vaccines. Recently, it has been reported that B. pertussis clinical isolates loose the production of this adhesin in regions reaching high vaccine coverage with vaccines targeting this virulence factor. We here demonstrate that isolates not producing pertactin are capable of sustaining longer infection as compared to pertactin producing isolates in an in vivo model of acellular pertussis immunization. Loosing pertactin production might thus provide a selective advantage to these isolates in this background, which could account for the upraise in prevalence of these pertactin deficient isolates in the population.

  5. Acellular comet assay: a tool for assessing variables influencing the alkaline comet assay.

    PubMed

    Kennedy, Erin K; McNamee, James P; Prud'homme Lalonde, Louise; Jones, Trevor; Wilkinson, Diana

    2012-01-01

    In this study, an acellular modification to the alkaline comet assay to further evaluate key variables within the assay that may influence the outcome of genotoxicity studies is described. This acellular comet assay can detect differences of 0.2 Gy of (60)Co gamma-ray radiation between 0 and 1 Gy and differences of 1 Gy between 0 and 8 Gy; thus, this assay is applicable for a wide range of DNA damage levels. It is also shown that DNA damage from different radiation energies was not significantly different from (60)Co gamma-ray. This assay displayed a statistical increase in DNA damage due to uncontrolled exposure to natural light; however, the slope of the dose-response curve for light-exposed samples was similar to that for samples protected from light. A comparison of the alkaline comet assay with the acellular comet assay allowed for the intrinsic repair capacity of the alkaline comet assay to be quantified.

  6. Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration.

    PubMed

    Lai, Po-Hong; Chang, Yen; Chen, Sung-Ching; Wang, Chung-Chi; Liang, Huang-Chien; Chang, Wei-Chun; Sung, Hsing-Wen

    2006-09-01

    It was found in our previous study that acellular tissues derived from bovine pericardia consist primarily of insoluble collagen, elastin, and tightly bound glycosaminoglycans (GAGs). It is speculated that the inherent GAGs in acellular tissues may serve as a reservoir for loading basic fibroblast growth factor (bFGF) and promote angiogenesis and tissue regeneration. This study was therefore designed to investigate effects of the content of GAGs in acellular bovine pericardia on the binding of bFGF and its release profile in vitro while its stimulation in angiogenesis and tissue regeneration in vivo were evaluated subcutaneously in a rat model. To control the content of GAGs, acellular tissues were treated additionally with hyaluronidase for 1 (Hase-D1), 3 (Hase-D3), or 5 days (Hase-D5). The in vitro results indicated that a higher content of GAGs in the acellular tissue resulted in an increase in bFGF binding and in a more gradual and sustained release of the growth factor. The in vivo results obtained at 1 week postoperatively showed that the density and the depth of neo-vessels infiltrated into the acellular tissue loaded with bFGF (acellular/bFGF) were significantly greater than the other test samples. At 1 month postoperatively, vascularized neo-connective tissues were found to fill the pores within each test sample, particularly for the acellular/bFGF tissue. These results suggested that the sustained release of bFGF from the acellular/ bFGF tissue continued to be effective in enhancing angiogenesis and generation of new tissues. In conclusion, the inherent GAGs present in acellular tissues may be used for binding and sustained release of bFGF to enhance angiogenesis and tissue regeneration.

  7. [Actin cytoskeleton organization and spreading of bone marrow stromal cells and cartilage cells during their combined and independent cultivation on different extracellular matrix proteins].

    PubMed

    Sakhenberg, E I; Nikolaenko, N S; Pinaev, G P

    2014-01-01

    To clarify the mutual influence of bone marrow stromal cells (BMSCs) and cartilage cells we studied the organization of their actin cytoskeleton and cell spreading on different extracellular matrix proteins--laminin 2/4, collagen type I or fibronectin. It has been shown that the most pronounced difference in morphological characteristics of the cells such as their form, size and actin cytoskeleton organization occur in the case of interaction with fibronectin. So, after separate brief incubation of both cell types on fibronectin, the average area of BMSCs spreading was about 4 times greater than the area of the cartilage cell spreading. However, in the co-culture of these cells in a ratio of 1:1, the average jointed spreading area on fibronctin was nearly 1.5 times less than the theoretically calculated. To determine the nature of exposure of the cells to each other we have studied spreading of these cells in the media conditioned by another cell type. We have found that the area of BMSC's spreading in the medium conditioned by cartilage cells is markedly smaller than the area of spreading of the same cells in the control medium. These data suggest that the cartilage cells secrete factors that reduce BMSC's spreading.

  8. Granulocyte-Colony-Stimulating Factor Stimulation of Bone Marrow Mesenchymal Stromal Cells Promotes CD34+ Cell Migration Via a Matrix Metalloproteinase-2-Dependent Mechanism

    PubMed Central

    Ponte, Adriana López; Ribeiro-Fleury, Tatiana; Chabot, Valérie; Gouilleux, Fabrice; Langonné, Alain; Hérault, Olivier; Charbord, Pierre

    2012-01-01

    Human hematopoietic stem/progenitor cells (HSPCs) can be mobilized into the circulation using granulocyte-colony stimulating factor (G-CSF), for graft collection in view of hematopoietic transplantation. This process has been related to bone marrow (BM) release of serine proteases and of the matrix metalloproteinase-9 (MMP-9). Yet, the role of these mediators in HSC egress from their niches remains questionable, because they are produced by nonstromal cells (mainly neutrophils and monocytes/macrophages) that are not a part of the niche. We show here that the G-CSF receptor (G-CSFR) is expressed by human BM mesenchymal stromal/stem cells (MSCs), and that G-CSF prestimulation of MSCs enhances the in vitro trans-stromal migration of CD34+ cells. Zymography analysis indicates that pro-MMP-2 (but not pro-MMP-9) is expressed in MSCs, and that G-CSF treatment increases its expression and induces its activation at the cell membrane. We further demonstrate that G-CSF-stimulated migration depends on G-CSFR expression and is mediated by a mechanism that involves MMPs. These results suggest a molecular model whereby G-CSF infusion may drive, by the direct action on MSCs, HSPC egress from BM niches via synthesis and activation of MMPs. In this model, MMP-2 instead of MMP-9 is implicated, which constitutes a major difference with mouse mobilization models. PMID:22651889

  9. A clinical evaluation of guided tissue regeneration with a bioabsorbable matrix membrane combined with an allograft bone graft. A series of case reports.

    PubMed

    Harris, R J

    1997-06-01

    THE PURPOSE OF THIS STUDY was to evaluate the clinical effectiveness of a surgical technique in treating periodontal defects. The technique combined tetracycline treatment of a root planed root, grafting of the osseous defect with a demineralized freeze-dried bone allograft combined with tetracycline and the placement of a bioabsorbable matrix membrane, made of polylactic acid softened with citric acid ester. Thirty defects were treated in 27 patients. Statistically significant changes, as a result of the surgical procedure, were observed in marginal recession (mean: 0.5 mm), probing depth reductions (mean: 5.7 mm), and attachment level gain (mean: 5.2 mm). No statistically significant difference existed between the results in the furcation and non-furcation groups. The defects with probing depths > or = 10 mm had a greater mean probing depth reduction (7.4 mm) and mean attachment level improvement (7.2 mm) than the defects with < 10 mm probing depths (probing depth reduction 4.5 mm and attachment level gain 3.9 mm). The proposed surgical procedure seemed to be an effective method to treat periodontal defects.

  10. A decellularization methodology for the production of a natural acellular intestinal matrix.

    PubMed

    Maghsoudlou, Panagiotis; Totonelli, Giorgia; Loukogeorgakis, Stavros P; Eaton, Simon; De Coppi, Paolo

    2013-10-07

    Successful tissue engineering involves the combination of scaffolds with appropriate cells in vitro or in vivo. Scaffolds may be synthetic, naturally-derived or derived from tissues/organs. The latter are obtained using a technique called decellularization. Decellularization may involve a combination of physical, chemical, and enzymatic methods. The goal of this technique is to remove all cellular traces whilst maintaining the macro- and micro-architecture of the original tissue. Intestinal tissue engineering has thus far used relatively simple scaffolds that do not replicate the complex architecture of the native organ. The focus of this paper is to describe an efficient decellularization technique for rat small intestine. The isolation of the small intestine so as to ensure the maintenance of a vascular connection is described. The combination of chemical and enzymatic solutions to remove the cells whilst preserving the villus-crypt axis in the luminal aspect of the scaffold is also set out. Finally, assessment of produced scaffolds for appropriate characteristics is discussed.

  11. An acellular dermal matrix allograft (Alloderm®) for increasing keratinized attached gingiva: A case series

    PubMed Central

    Agarwal, Chitra; Kumar, Baron Tarun; Mehta, Dhoom Singh

    2015-01-01

    Context: Adequate amount of keratinized gingiva is necessary to keep gingiva healthy and free of inflammation. Autografts have been used for years with great success to increase the width of attached gingiva. Autografts, however, have the disadvantage of increasing postoperative morbidity and improper color match with the adjacent tissues. Alloderm® allograft has been introduced as an alternative to autografts to overcome these disadvantages. Aim: In this study, the efficacy of alloderm® in increasing the width of attached gingiva and the stability of gained attached gingiva was evaluated clinically. Materials and Methods: Five patients with sites showing inadequate width of attached gingiva (≤1 mm) were enrolled for the study. The width of keratinized gingiva and other clinical parameters were recorded at baseline and 9th month postoperatively. Result: In all cases, there is the average increase of about 2.5 mm of attached gingiva and was maintained for 9-month. Percentage shrinkage of the graft is about 75% at the end of 3rd month in all cases. Excellent colors match with adjacent tissue has been obtained. Conclusion: The study signifies that Alloderm® results in an adequate increase in the amount of attached gingiva and therefore can be used successfully in place of autografts. PMID:26015676

  12. Immunogenicity and safety of a monovalent, multicomponent acellular pertussis vaccine in 15 month-6-year-old German children. Monovalent Acellular Pertussis Vaccine Study Group.

    PubMed

    Stehr, K; Heininger, U; Uhlenbusch, R; Angersbach, P; Hackell, J; Eckhardt, T

    1995-03-01

    Immunization against pertussis has been re-recommended for healthy children in Germany in 1991. In addition the former restriction of immunizing only in the first 2 years of life was abolished. In children born before 1991 immunization rates against pertussis were 15% or less. With the new recommendations physicians are now faced with an increasing demand of parents for catch-up vaccinations in these children. Since they were immunized against diphtheria and tetanus previously monovalent pertussis vaccines are needed for this indication. Therefore a monovalent, multicomponent acellular pertussis vaccine was studied in 249 German children 15 months to 6 years of age. Three doses were administered at 6-10 week intervals. Reactogenicity and antibody responses against the vaccine antigens pertussis toxin (PT), filamentous haemagglutinin (FHA), 69-kd antigen (pertactin) and fimbriae-2 (agglutinogen) were investigated. Local and systemic reactions were minimal in frequency and severity. Antibody responses against all vaccine antigens were pronounced with 93%-100% of vaccinees demonstrating at least four fold titre rises above pre-immunization after the third dose. These findings indicate that this monovalent, multicomponent acellular pertussis vaccine with excellent immunogenicity and low reactogenicity is an appropriate candidate for closing immunization gaps in older children in countries with previously low vaccination rates against pertussis. Based on the results of this study the monovalent acellular pertussis vaccine was licensed in Germany in January 1994.

  13. A comparative study of the proliferation and osteogenic differentiation of human periodontal ligament cells cultured on β-TCP ceramics and demineralized bone matrix with or without osteogenic inducers in vitro.

    PubMed

    An, Shaofeng; Gao, Yan; Huang, Xiangya; Ling, Junqi; Liu, Zhaohui; Xiao, Yin

    2015-05-01

    The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell-Counting kit-8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects

  14. Biological Regulation of Bone Quality

    PubMed Central

    Alliston, Tamara

    2014-01-01

    The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149

  15. Bone graft

    MedlinePlus

    Autograft - bone; Allograft - bone; Fracture - bone graft; Surgery - bone graft; Autologous bone graft ... Fuse joints to prevent movement Repair broken bones (fractures) that have bone loss Repair injured bone that ...

  16. Effects of Transplantation of hTIMP1-Expressing Bone Marrow Mesenchymal Stem Cells on the Extracellular Matrix of Degenerative Intervertebral Discs in an in vivo Rabbit Model.

    PubMed

    Yi, Zhou; Guanjun, Tu; Lin, Cong; Zifeng, Pei

    2014-04-08

    Study Design. Prospective, randomized controlled animal study.Objective. To observe ECM changes in degenerative IVD after transplantation of bone marrow mesenchymal stem cells (BMSCs) virally transfected with a construct expressing human tissue inhibitor of metalloproteinase 1 (hTIMP-1), and to discuss the feasibility of using this approach to treat intervertebral disc degeneration (IDD).Summary of Background Data. Intervertebral disc (IVD) degeneration is characterized by decreased cell numbers, bioactivity of the nucleus pulposus (NP), and remodeled extracellular matrix (ECM). Exogenous genes can be targeted into cells to produce inhibition of ECM degradation and increase ECM content in IVDs, and thereby potentially stop or reverse degenerative processes and modify disc structure.Methods. BMSCs were isolated from a pure New-Zealand rabbit and identified by flow cytometry. Transgenic BMSCs were acquired by transfection with a recombinant adenovirus vector carrying the hTIMP-1 gene. Animal models of IDD were established by annulus puncture and then given intra-NP injections according to their random assignment into three groups: (1) a transgenic BMSC transplantation (TgBT) group that received BMSCs transfected with an hTIMP-1-expressing adenovirus vector; (2) a BMSC transplantation (BT) group that received unaltered BMSCs; and (3) a control (PCon) group that received cell-free phosphate-buffered saline. Degree of degeneration was evaluated 12 wks after modeling. ECM content was quantified using immunohistochemistry (IHC) and spectrophotography. Expression of hTIMP-1 was observed via quantitative PCR, western blot, and IHC.Results. Significantly fewer degenerative changes and increased ECM content were observed in the TBT and BT groups compared to PCon animals (P < .05). The TBT group had greater ECM content than did the BT group (P < .05), as well as higher levels of hTIMP-1 mRNA and protein.Conclusions. Transplantation of BMSCs transfected with hTIMP-1 can

  17. Bone morphogenetic protein 4 inhibits TGF-beta2 stimulation of extracellular matrix proteins in optic nerve head cells: role of gremlin in ECM modulation.

    PubMed

    Zode, Gulab S; Clark, Abbot F; Wordinger, Robert J

    2009-05-01

    The characteristic cupping of the optic nerve head (ONH) in glaucoma is associated with elevated TGF-beta2 and increased synthesis and deposition of extracellular matrix (ECM) proteins. In addition to TGF-beta2, the human ONH also expresses bone morphogenetic proteins (BMPs) and BMP receptors, which are members of the TGF-beta superfamily. We examined the potential effects of BMP4 and the BMP antagonist gremlin on TGF-beta2 induction of ECM proteins in ONH cells. BMP-4 dose dependently inhibited TGF-beta2-induced fibronectin (FN) and PAI-1 expression in ONH astrocytes and lamina cribrosa (LC) cells and also reduced TGF-beta2 stimulation of collagen I, collagen VI, and elastin. Addition of gremlin blocked this BMP-4 response, increasing cellular and secreted FN as well as PAI-1 levels in both cell types. Gremlin was expressed in ONH tissues and ONH cells, and gremlin protein levels were significantly increased in the LC region of human glaucomatous ONH tissues. Interestingly, recombinant gremlin dose dependently increased ECM protein expression in cultured ONH astrocytes and LC cells. Gremlin stimulation of ECM required activation of TGF-beta receptor and R-Smad3. TGF-beta2 increased gremlin mRNA expression and protein levels in ONH cells. Inhibition of either the type I TGF-beta receptor or Smad3 phosphorylation blocked TGF-beta2-induced gremlin expression. In conclusion, BMP4 blocked the TGF-beta2 induction of ECM proteins in ONH cells. The BMP antagonist gremlin reversed this inhibition, allowing TGF-beta2 stimulation of ECM synthesis. Increased expression of gremlin in the glaucomatous ONH may further exacerbate TGF-beta2 effects on ONH ECM metabolism by inhibiting BMP-4 antagonism of TGF-beta2 signaling. Modulation of the ECM via gremlin provides a novel therapeutic target for glaucoma.

  18. Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum

    PubMed Central

    Esmaeli, Azadeh; Moshrefi, Mojgan; Shamsara, Ali; Eftekhar-vaghefi, Seyed Hasan; Nematollahi-mahani, Seyed Noureddin

    2016-01-01

    Background: Fetal bovine serum (FBS) is widely used in cell culture laboratories, risk of zoonotic infections and allergic side effects create obstacles for its use in clinical trials. Therefore, an alternative supplement with proper inherent growth-promoting activities is demanded. Objective: To find FBS substitute, we tested human umbilical cord blood serum (hUCS) for proliferation of human umbilical cord matrix derived mesenchymal stem cells (hUC-MSCs) and human bone marrow-derived mesenchymal cells (hBM-MSCs). Materials and Methods: Umbilical cord blood of healthy neonates, delivered by Caesarian section, was collected and the serum was separated. hUC-MSCs and hBM-MSCs were isolated and characterized by assessment of cell surface antigens by flow cytometry, alkaline phosphatase activity and osteogenic/adipogenic differentiation potential. The cells were then cultured in Iscove's Modified Dulbecco's Medium (IMDM) by conventional methods in three preparations: 1- with hUCS, 2- with FBS, and 3- without serum supplements. Cell proliferation was measured using WST-1 assay, and cell viability was assessed by trypan blue staining. Results: The cells cultured in hUCS and FBS exhibited similar morphology and mesenchymal stem cells properties. WST-1 proliferation assay data showed no significant difference between the proliferation rate of either cells following hUCS and FBS supplementation. Trypan blue exclusion dye test also revealed no significant difference for viability between hUCS and FBS groups. A significant difference was detected between the proliferation rate of stem cells cultured in serum-supplemented medium compared with serum-free medium. Conclusion: Our results indicate that human umbilical cord serum can effectively support proliferation of hBM-MSCS and hUC-MSCs in vitro and can be used as an appropriate substitute for FBS, especially in clinical studies. PMID:27738658

  19. Evaluation of the effectiveness of enamel matrix derivative, bone grafts, and membrane in the treatment of mandibular Class II furcation defects.

    PubMed

    Jaiswal, Ritika; Deo, Vikas

    2013-01-01

    The combination of osseous graft with barrier membrane and enamel matrix protein derivative (EMD) has the potential to result in a synergistic effect. Therefore, the aim of this study was to evaluate the effectiveness of EMD in combination with demineralized freeze-dried bone allograft (BG) and bioresorbable membrane (Biomesh) in the treatment of human mandibular Class II furcation defects over a period of 12 months. Thirty patients with chronic periodontitis and a single Class II furcation defect on the buccal or lingual surface of mandibular teeth were included. The clinical parameters evaluated were probing pocket depth (PPD), horizontal probing depth (HPD), vertical relative attachment level (V-RAL), and relative gingival margin level (RGML). three groups were created based on treatment method: EMD + BG + guided tissue regeneration (GTR), BG + GTR, and open flap debridement (OFD). All three groups showed a statistically significant PPD reduction of 1.74 ± 1.00 mm, 0.81 ± 0.31 mm, and 0.46 ± 0.52 mm at 12 months postsurgery. EMD + BG + GTR showed a significantly greater PPD reduction compared with BG + GTR, as well as OFD. EMD + BG + GTR showed a statistically significant vertical clinical attachment gain of 2.12 ± 1.07 mm at 12 months compared with BG + GTR as well as OFD. Significant reductions in mean HPD were observed for EMD + BG + GTR (2.10 mm) as well as BG + GTR (1.5 mm). The number of Class II furcation defects that closed or converted to Class I was greatest for EMD + BG + GTR. It can be concluded that EMD + BG + GTR resulted in a statistically significant reduction of PPD, V-RAL gain, and a nonsignificantly greater reduction of HPD compared to BG + GTR.

  20. A comparative study of the effects of different bioactive fillers in PLGA matrix composites and their suitability as bone substitute materials: A thermo-mechanical and in vitro investigation.

    PubMed

    Simpson, R L; Nazhat, S N; Blaker, J J; Bismarck, A; Hill, R; Boccaccini, A R; Hansen, U N; Amis, A A

    2015-10-01

    Bone substitute composite materials with poly(L-lactide-co-glycolide) (PLGA) matrices and four different bioactive fillers: CaCO3, hydroxyapatite (HA), 45S5 Bioglass(®) (45S5 BG), and ICIE4 bioactive glass (a lower sodium glass than 45S5 BG) were produced via melt blending, extrusion and moulding. The viscoelastic, mechanical and thermal properties, and the molecular weight of the matrix were measured. Thermogravimetric analysis evaluated the effect of filler composition on the thermal degradation of the matrix. Bioactive glasses caused premature degradation of the matrix during processing, whereas CaCO3 or HA did not. All composites, except those with 45S5 BG, had similar mechanical strength and were stiffer than PLGA alone in compression, whilst all had a lower tensile strength. Dynamic mechanical analysis demonstrated an increased storage modulus (E') in the composites (other than the 45S5 BG filled PLGA). The effect of water uptake and early degradation was investigated by short-term in vitro aging in simulated body fluid, which indicated enhanced water uptake over the neat polymer; bioactive glass had the greatest water uptake, causing matrix plasticization. These results enable a direct comparison between bioactive filler type in poly(α-hydroxyester) composites, and have implications when selecting a composite material for eventual application in bone substitution.

  1. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice

    PubMed Central

    Godin, Lindsay M.; Sandri, Brian J.; Wagner, Darcy E.; Meyer, Carolyn M.; Price, Andrew P.; Akinnola, Ifeolu; Weiss, Daniel J.; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases. PMID:26954258

  2. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice.

    PubMed

    Godin, Lindsay M; Sandri, Brian J; Wagner, Darcy E; Meyer, Carolyn M; Price, Andrew P; Akinnola, Ifeolu; Weiss, Daniel J; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.

  3. Evaluation of anorganic bovine-derived hydroxyapatite matrix/cell binding peptide as a bone graft material in the treatment of human periodontal infrabony defects: A clinico-radiographic study

    PubMed Central

    Fatima, Ghousia; Shivamurthy, Ravindra; Thakur, Srinath; Baseer, Mohammad Abdul

    2015-01-01

    Background: Various bone graft materials have been used in the treatment of periodontal defects. A synthetic bone substitute material composed of P-15 with anorganic bone mineral has been scantly studied. Hence, the present study was aimed to evaluate and compare the efficacy of anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) in human periodontal infrabony defects with that of open flap debridement (OFD) alone. Materials and Methods: A split-mouth, randomized controlled clinical study was designed to investigate the efficacy of ABM/P-15. In this clinical trial, 10 patients having bilateral periodontal infrabony defects were treated either with ABM/P-15 or OFD and followed for a period of 9 months. At baseline and at 9 months probing pocket depth (PPD), relative attachment level (RAL), depth of a defect, and radiographic bone level were measured; and compared between test and control sites. Results: A statistically significant reduction (P < 0.001) in PPD was observed in test sites compared to control sites. Both sites showed a gain in RAL without any significant difference. Similarly, the radiographic evaluation revealed significantly higher radiographic defect fill in test sites as compared to control sites (P < 0.001). Conclusion: ABM/P-15 bone graft material appears to be useful and beneficial in the treatment of human periodontal infrabony defects. PMID:26941516

  4. Histologic and histomorphometric evaluation of an implant retrieved 8 years after insertion in a sinus augmented with anorganic bovine bone and anorganic bovine matrix associated with a cell-binding peptide: a case report.

    PubMed

    Degidi, Marco; Piattelli, Adriano; Perrotti, Vittoria; Iezzi, Giovanna

    2012-08-01

    Few histologic and histomorphometric reports are present in the literature regarding the peri-implant bone response around implants inserted in sinuses grafted with different biomaterials. Anorganic bovine bone (ABB) and anorganic bovine matrix with the addition of an active cell-binding peptide (PepGen P-15) are xenogenic materials that have been reported to present biocompatibility and osteoconductivity. A monolateral sinus augmentation procedure with ABB (50%) and PepGen P-15 (50%) was performed in a 54-year-old man. Two titanium implants with a sandblasted and acid-etched surface were inserted after 6 months. After an additional 6 months, a fixed prosthetic restoration was fabricated. One implant fractured in the coronal portion after an 8-year loading period and was removed using a 5-mm trephine bur. Few particles of both grafting materials were present in the peri-implant bone. No graft material particles were found in contact with the implant surface, and bone was always interposed between the graft materials and surface. No inflammatory cell infiltrate, multinucleated giant cells, or foreign body reaction cells were found. The tissues around the implant were composed of 51.4% ± 4.8% bone, 6.2% ± 0.7% ABB particles, 2.4% ± 0.5% PepGen P-15, and 40.0% ± 7.1% marrow spaces. The bone-implant contact percentage was 78.4% ± 4.1%. A sinus augmentation procedure using ABB and PepGen P-15 produced bone formation with subsequent implant osseointegration, which was still present after 8 years of implant loading.

  5. Aging and Bone

    PubMed Central

    Boskey, A.L.; Coleman, R.

    2010-01-01

    Bones provide mechanical and protective function, while also serving as housing for marrow and a site for regulation of calcium ion homeostasis. The properties of bones do not remain constant with age; rather, they change throughout life, in some cases improving in function, but in others, function deteriorates. Here we review the modifications in the mechanical function and shape of bones, the bone cells, the matrix they produce, and the mineral that is deposited on this matrix, while presenting recent theories about the factors leading to these changes. PMID:20924069

  6. Acellular Endocardium as a Novel Biomaterial for the Intima of Tissue-Engineered Small-Caliber Vascular Grafts.

    PubMed

    Wang, Feng; Guan, Xin; Wu, TianYi; Qiao, JianOu; Han, ZhaoQing; Wu, JinLong; Yu, XiaoWei; You, QingJun

    2016-12-01

    We aimed to investigate whether acellular endocardium can be used as a useful biomaterial for the intima of engineered small-caliber vascular grafts. Fresh endocardium was harvested from the swine left atrium and was decellularized by digestion with the decellularization solution of Triton X-100 and SDS containing DNase I and RNase A. Surface morphological characteristics and Young's modulus were evaluated. To analyze the effect of mechanical characteristics on cell adhesion, the decellularized endocardium was stiffened with 2.5% glutaraldehyde. Small-caliber vascular grafts were constructed using decellularized endocardium treated with or without glutaraldehyde as the intima. CD34+ cells were seeded onto the luminal surface of the vascular grafts and linked to bioreactors that simulate a pulsatile blood stream. Acellular endocardium had distinct surface morphological characteristics, which were quite different from those of other materials. The compliance of acellular endocardium was higher than that of other materials tested by Young's modulus. CD34+ cells formed a monolayer structure and adhered to the inner face of the acellular endocardium. The glutaraldehyde treatment stiffened the acellular endocardium but had little impact on the surface morphological characteristics or static adhesiveness of the cells. Data from the bioreactor study showed that the detachment of the cells from the surface of glutaraldehyde-treated acellular endocardium increased dramatically when the pressure was equal or higher than 40 mm Hg, while the cells on the untreated acellular endocardium remained well and formed confluent monolayers and tight junctions under the same pressure. Acellular endocardium has distinct structures and mechanical characteristics that are beneficial for CD34+ cell adhesion and retention under dynamic fluid perfusion. Thus, it can be used as a useful biomaterial for the construction of the intima of engineered small-caliber vascular grafts.

  7. Prevalence and clinical significance of acellular mucin in locally advanced rectal cancer patients showing pathologic complete response to preoperative chemoradiotherapy.

    PubMed

    Lim, Seok-Byung; Hong, Seung-Mo; Yu, Chang Sik; Hong, Yong Sang; Kim, Tae Won; Park, Jin-hong; Kim, Jong Hoon; Kim, Jin Cheon

    2013-01-01

    Occasionally, patients with locally advanced rectal adenocarcinoma who receive preoperative chemoradiotherapy (CRT) show acellular mucin in resection specimens that had shown pathologic complete response (pCR), but the clinical and prognostic significance of this finding has been controversial. This study analyzed data from 217 consecutive patients showing pCR to preoperative CRT followed by resection to evaluate the clinicopathologic features and prognostic significance of acellular mucin. Patients were categorized according to the presence of acellular mucin, as identified by pathologic analysis. The clinicopathologic findings and oncologic results were compared. Acellular mucins were identified in 35 (16.1%) of 217 pCR patients. Acellular mucins were found predominantly in male patients (20.8% vs. 9.8%, P=0.039) and in those with mucinous/signet ring cell differentiation (66.7% vs. 15.1%, P=0.008). The presence of acellular mucin was more frequent in patients with a shorter (<42 d) CRT-operation interval (22.6% vs. 10.3%, P=0.017). With a mean follow-up of 41 months (range, 2 to 119 mo), the 3-year overall survival (96.8% with mucin vs. 95.9% without mucin, P=0.314) and the 3-year disease-free survival (97.0% with mucin vs. 93.0% without mucin, P=0.131) did not differ between the groups. The presence of acellular mucin in rectal cancer patients showing pCR to preoperative CRT is associated with male sex and mucinous differentiation and does not have a significant impact on oncologic outcomes. Acellular mucins are also associated with the CRT-operation interval as a phenomenon of time-dependent response to CRT.

  8. Bone tumor

    MedlinePlus

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  9. New Insights on the Composition and the Structure of the Acellular Extrinsic Fiber Cementum by Raman Analysis

    PubMed Central

    Colard, Thomas; Falgayrac, Guillaume; Bertrand, Benoit; Naji, Stephan; Devos, Olivier; Balsack, Clara; Delannoy, Yann; Penel, Guillaume

    2016-01-01

    Acellular extrinsic fiber cementum is a mineralized tissue that covers the cervical half of the tooth root surface. It contains mainly extrinsic or Sharpey’s fibers that run perpendicular to the root surface to anchor the tooth via the periodontal ligament. Acellular cementum is continuously and slowly produced throughout life and exhibits an alternating bright and dark pattern under light microscopy. However, although a better understanding of the structural background of acellular cementum is relevant to many fields, such as cementochronology, periodontology and tissue engineering, acellular cementum remains rarely studied and poorly understood. In this work, we studied the acellular cementum at the incremental line scale of five human mandibular canines using polarized Raman spectroscopy. We provided Raman imaging analysis and polarized acquisitions as a function of the angular orientation of the sample. The results showed that mineral crystals were always parallel to collagen fibrils, and at a larger scale, we proposed an organizational model in which we found radial collagen fibers, “orthogonal” to the cementum surface, and “non-orthogonal” fibers, which consist of branching and bending radial fibers. Concerning the alternating pattern, we observed that the dark lines corresponded to smaller, more mineralized and probably more organized bands, which is consistent with the zoological assumption that incremental lines are produced during a winter rest period of acellular cementum growth. PMID:27936010

  10. Effect of Cell Origin and Timing of Delivery for Stem Cell-Based Bone Tissue Engineering Using Biologically Functionalized Hydrogels

    PubMed Central

    Dosier, Christopher R.; Uhrig, Brent A.; Willett, Nick J.; Krishnan, Laxminarayanan; Li, Mon-Tzu Alice; Stevens, Hazel Y.; Schwartz, Zvi; Boyan, Barbara D.

    2015-01-01

    Despite progress in bone tissue engineering, the healing of critically sized diaphyseal defects remains a clinical challenge. A stem cell-based approach is an attractive alternative to current treatment techniques. The objective of this study was to examine the ability of adult stem cells to enhance bone formation when co-delivered with the osteoinductive factor bone morphogenetic protein-2 (BMP-2) in a biologically functionalized hydrogel. First, adipose and bone marrow-derived mesenchymal stem cells (ADSCs and BMMSCs) were screened for their potential to form bone when delivered in an RGD functionalized alginate hydrogel using a subcutaneous implant model. BMMSCs co-delivered with BMP-2 produced significantly more mineralized tissue compared with either ADSCs co-delivered with BMP-2 or acellular hydrogels containing BMP-2. Next, the ability of BMMSCs to heal a critically sized diaphyseal defect with a nonhealing dose of BMP-2 was tested using the alginate hydrogel as an injectable cell carrier. The effect of timing of therapeutic delivery on bone regeneration was also tested in the diaphyseal model. A 7 day delayed injection of the hydrogel into the defect site resulted in less mineralized tissue formation than immediate delivery of the hydrogel. By 12 weeks, BMMSC-loaded hydrogels produced significantly more bone than acellular constructs regardless of immediate or delayed treatment. For immediate delivery, bridging of defects treated with BMMSC-loaded hydrogels occurred at a rate of 75% compared with a 33% bridging rate for acellular-treated defects. No bridging was observed in any of the delayed delivery samples for any of the groups. Therefore, for this cell-based bone tissue engineering approach, immediate delivery of constructs leads to an overall enhanced healing response compared with delayed delivery techniques. Further, these studies demonstrate that co-delivery of adult stem cells, specifically BMMSCs, with BMP-2 enhances bone regeneration in a

  11. Two-level contiguous cervical disc disease treated with peek cages packed with demineralized bone matrix: results of 3-year follow-up

    PubMed Central

    Topuz, Kıvanç; Çolak, Ahmet; Şimşek, Hakan; Kutlay, Murat; Demircan, Mehmet Nusret; Velioğlu, Murat

    2009-01-01

    Interbody cages are widely used instruments for cervical fusion operations. Long-term follow-up studies are needed to clarify if these devices are dependable. In this prospective study, 79 patients (42 women and 37 men) with a mean age of 51 years operated between January 2000 and December 2005 for treatment of degenerative cervical disc disease and spondylosis associated with radiculopathy or myelopathy were evaluated. Patients underwent two-level contiguous anterior cervical discectomy and fusion operations with standard anterior Smith–Robinson approach. To achieve fusion PEEK cages packed with demineralized bone matrix mixed with autologous blood were used. Clinical outcome was evaluated with Odom’s criteria and results were evaluated as ‘excellent’, ‘good’, ‘fair’ and ‘poor’. Spinal curves, mobility and fusion status were assessed with anterior–posterior and lateral (neutral, flexion and extension) radiographs obtained before surgery and at 3, 12, 24 and 36 months postoperatively. The Ishihara curvature index (ICI) was used for spinal curve evaluation. Lateral dynamic (flexion and extension) radiographs at postoperative 12th month revealed the fusion status classified as 1A, 1B, 2A and 2B. The radiological outcomes were classified as ‘non-fusion’ when 2B healing was observed, and as ‘fusion’ when 1A, 1B or 2A healing was observed at the levels subjected to surgery. According to Odom’s criteria, clinical outcomes were classified as ‘excellent’ or ‘good’ in 69 patients (success rate: 87.3%). Eight patients were graded as ‘fair’ and two as ‘poor’. Preoperative mean ICI was 10.4 ± 3.72 and postoperative mean ICI was 10.1 ± 3.14. The difference was statistically insignificant (P > 0.05); therefore, preoperative lordosis was said to be preserved at final follow-up. Final fusion rate (Types 1A, 1B, and 2A) was 91.7% (145/158 levels). Radiological imaging showed no cage failure or dislodgement and reoperation

  12. The role of extracellular matrix components in pin bone attachments during storage-a comparison between farmed Atlantic salmon (Salmo salar) and cod (Gadus morhua L.).

    PubMed

    Rønning, Sissel B; Østbye, Tone-Kari; Krasnov, Aleksei; Vuong, Tram T; Veiseth-Kent, Eva; Kolset, Svein O; Pedersen, Mona E

    2017-04-01

    Pin bones represent a major problem for processing and quality of fish products. Development of methods of removal requires better knowledge of the pin bones' attachment to the muscle and structures involved in the breakdown during loosening. In this study, pin bones from cod and salmon were dissected from fish fillets after slaughter or storage on ice for 5 days, and thereafter analysed with molecular methods, which revealed major differences between these species before and after storage. The connective tissue (CT) attaches the pin bone to the muscle in cod, while the pin bones in salmon are embedded in adipose tissue. Collagens, elastin, lectin-binding proteins and glycosaminoglycans (GAGs) are all components of the attachment site, and this differ between salmon and cod, resulting in a CT in cod that is more resistant to enzymatic degradation compared to the CT in salmon. Structural differences are reflected in the composition of transcriptome. Microarray analysis comparing the attachment sites of the pin bones with a reference muscle sample showed limited differences in salmon. In cod, on the other hand, the variances were substantial, and the gene expression profiles suggested difference in myofibre structure, metabolism and cell processes between the pin bone attachment site and the reference muscle. Degradation of the connective tissue occurs closest to the pin bones and not in the neighbouring tissue, which was shown using light microscopy. This study shows that the attachment of the pin bones in cod and salmon is different; therefore, the development of methods for removal should be tailored to each individual species.

  13. [Effect of two different acellular lung matrices on α-SMA expression in A549 cells].

    PubMed

    Chen, C; Wang, Z Y; Weng, J; Wang, Z B; Mei, J; Du, X H; Wang, L

    2017-01-24

    Objective: To explore the effect of acellular normal and fibrotic lung matrices on alpha smooth muscle actin (α-SMA) expression in human lung adenocarcinoma cell line A549. Methods: Twenty adult SD rats were randomly divided into normal group and idiopathic pulmonary fibrosis(IPF)group (n=10 each). The pulmonary fibrosis was induced by Bleomycin. Normal and fibrotic decellularized lungs were made, then sections with 500 μm thick were cut by a standard Vibratome. None scaffold was set as control group. A549 cells were seeded dropwise into different slices (normal and fibrotic scaffolds), and cultured for one week in vitro. The expression of α-SMA was measured by immunofluorescence staining and quantitative real time polymerase chain reaction (qRT-PCR). Results: In control group, the expression of α-SMA protein was positive in A549 cells by immunofluorescence staining. However, it expressed weakly both in normal and fibrotic scaffold group, and the fluorescence intensity in fibrotic scaffold group was significant lower than that in normal group (P<0.05). The relative expression amount of α-SMA mRNA in normal and fibrotic scaffold group were (0.70±0.11) and (0.55±0.12), which were significant lower than that of control group (1.28±0.21) (P<0.05). Moreover, the relative expression of α-SMA mRNA in fibrotic scaffold group was decreased compared to that in normal scaffold group (P<0.05). Conclusions: Acellular normal and fibrotic lung scaffold can downregulate the expression of α-SMA in human lung adenocarcinoma cell line A549. It may inhibit the movement of A549 cells in acellular normal and fibrotic lung matrices, especially in acellular fibrotic lung scaffold.

  14. Method for fusing bone

    DOEpatents

    Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.

    1996-01-01

    Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  15. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation.

    PubMed

    Uriarte, Juan J; Nonaka, Paula N; Campillo, Noelia; Palma, Renata K; Melo, Esther; de Oliveira, Luis V F; Navajas, Daniel; Farré, Ramon

    2014-12-01

    Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering.

  16. Osteopontin Deficiency Increases Bone Fragility but Preserves Bone Mass

    PubMed Central

    Thurner, Philipp J.; Chen, Carol G.; Ionova-Martin, Sophi; Sun, Luling; Harman, Adam; Porter, Alexandra; Ager, Joel W.; Ritchie, Robert O.; Alliston, Tamara

    2010-01-01

    The ability of bone to resist catastrophic failure is critically dependent upon the material properties of bone matrix, a composite of hydroxyapatite, collagen type I, and noncollagenous proteins. These properties include elastic modulus, hardness, and fracture toughness. Like other aspects of bone quality, matrix material properties are biologically-defined and can be disrupted in skeletal disease. While mineral and collagen have been investigated in greater detail, the contribution of noncollagenous proteins such as osteopontin to bone matrix material properties remains unclear. Several roles have been ascribed to osteopontin in bone, many of which have the potential to impact material properties. To elucidate the role of osteopontin in bone quality, we evaluated the structure, composition, and material properties of bone from osteopontin-deficient mice and wild-type littermates at several length scales. Most importantly, the results show that osteopontin deficiency causes a 30% decrease in fracture toughness, suggesting an important role for OPN in preventing crack propagation. This significant decline in fracture toughness is independent of changes in whole bone mass, structure, or matrix porosity. Using nanoindentation and quantitative backscattered electron imaging to evaluate osteopontin-deficient bone matrix at the micrometer level, we observed a significant reduction in elastic modulus and increased variability in calcium concentration. Matrix heterogeneity was also apparent at the ultrastructural level. In conclusion, we find that osteopontin is essential for the fracture toughness of bone, and reduced toughness in osteopontin-deficient bone may be related to the increased matrix heterogeneity observed at the micro-scale. By exploring the effects of osteopontin-deficiency on bone matrix material properties, composition and organization, this study suggests that reduced fracture toughness is one mechanism by which loss of noncollagenous proteins contribute

  17. Osteopontin deficiency increases bone fragility but preserves bone mass.

    PubMed

    Thurner, Philipp J; Chen, Carol G; Ionova-Martin, Sophi; Sun, Luling; Harman, Adam; Porter, Alexandra; Ager, Joel W; Ritchie, Robert O; Alliston, Tamara

    2010-06-01

    The ability of bone to resist catastrophic failure is critically dependent upon the material properties of bone matrix, a composite of hydroxyapatite, collagen type I, and noncollagenous proteins. These properties include elastic modulus, hardness, and fracture toughness. Like other aspects of bone quality, matrix material properties are biologically-defined and can be disrupted in skeletal disease. While mineral and collagen have been investigated in greater detail, the contribution of noncollagenous proteins such as osteopontin to bone matrix material properties remains unclear. Several roles have been ascribed to osteopontin in bone, many of which have the potential to impact material properties. To elucidate the role of osteopontin in bone quality, we evaluated the structure, composition, and material properties of bone from osteopontin-deficient mice and wild-type littermates at several length scales. Most importantly, the results show that osteopontin deficiency causes a 30% decrease in fracture toughness, suggesting an important role for OPN in preventing crack propagation. This significant decline in fracture toughness is independent of changes in whole bone mass, structure, or matrix porosity. Using nanoindentation and quantitative backscattered electron imaging to evaluate osteopontin-deficient bone matrix at the micrometer level, we observed a significant reduction in elastic modulus and increased variability in calcium concentration. Matrix heterogeneity was also apparent at the ultrastructural level. In conclusion, we find that osteopontin is essential for the fracture toughness of bone, and reduced toughness in osteopontin-deficient bone may be related to the increased matrix heterogeneity observed at the micro-scale. By exploring the effects of osteopontin deficiency on bone matrix material properties, composition and organization, this study suggests that reduced fracture toughness is one mechanism by which loss of noncollagenous proteins contribute

  18. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.

    PubMed

    Buckley, Michael; Collins, Matthew; Thomas-Oates, Jane; Wilson, Julie C

    2009-12-01

    Species identification of fragmentary bone, such as in rendered meat and bone meal or from archaeological sites, is often difficult in the absence of clear morphological markers. Here we present a robust method of analysing genus-specific collagen peptides by mass spectrometry simply by using solid-phase extraction (a C18 ZipTip) for peptide purification, rather than liquid chromatography/mass spectrometry (LC/MS). Analysis of the collagen from 32 different mammal species identified a total of 92 peptide markers that could be used for species identification, for example, in processed food and animal feed. A set of ancient (>100 ka@10 degrees C) bone samples was also analysed to show that the proposed method has applications to archaeological bone identification.

  19. Cancer to bone: a fatal attraction

    PubMed Central

    Weilbaecher, Katherine N.; Guise, Theresa A.; McCauley, Laurie K.

    2013-01-01

    When cancer metastasizes to bone, considerable pain and deregulated bone remodelling occurs, greatly diminishing the possibility of cure. Metastasizing tumour cells mobilize and sculpt the bone microenvironment to enhance tumour growth and to promote bone invasion. Understanding the crucial components of the bone microenvironment that influence tumour localization, along with the tumour-derived factors that modulate cellular and protein matrix components of bone to favour tumour expansion and invasion, is central to the pathophysiology of bone metastases. Basic findings of tumour–bone interactions have uncovered numerous therapeutic opportunities that focus on the bone microenvironment to prevent and treat bone metastases. PMID:21593787

  20. Platelet-rich plasma diminishes calvarial bone repair associated with alterations in collagen matrix composition and elevated CD34+ cell prevalence.

    PubMed

    Giovanini, Allan Fernando; Deliberador, Tatiana Miranda; Gonzaga, Carla Castiglia; de Oliveira Filho, Marco Antonio; Göhringer, Isabella; Kuczera, Juliane; Zielak, João Cesar; de Andrade Urban, Cícero

    2010-06-01

    The interaction between platelets and both type I and III collagens plays an important role in modulating platelet adhesion and aggregation, also contributing to the chemotaxis of CD34+ cells. The interaction with type III collagen can maintain high levels of collagen and alter the biology of bone repair when the PRP is used. The aim of this study was to evaluate the effect of platelet-rich plasma (PRP) and autograft on the presence of type III and type I collagens, the ratio between them, as well as the presence of CD34+ progenitor cells, while comparing these results by means of a histomorphometric analysis of the bone tissue. Four bone defects (8.0mm in diameter and 2.0mm in depth) were produced on the calvarium of 23 rabbits. The surgical defects were treated with either autogenous bone grafts, autogenous bone grafts with PRP and PRP alone. Animals were euthanized at 2, 4 or 6 weeks post-surgery. Histological, histomorphometric and immunohistochemical analyses were performed to assess repair time, as well as the expression of type I and III collagens, and number of progenitor CD34+ cells. Data were analyzed using the ANOVA and Student-Newman-Keuls test (alpha=5%). An enlarged granulation and medullary tissue areas in the PRP groups were observed. The use of PRP in this study hindered bone deposition, also enhanced type III to type I collagen ratio and the chemotaxis of CD34+ progenitor cells, similarly to a thrombogenic effect.

  1. Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method

    PubMed Central

    Cama, G.; Gharibi, B.; Knowles, J. C.; Romeed, S.; DiSilvio, L.; Deb, S.

    2014-01-01

    Brushite (dicalcium phosphate dihydrate) and monetite (dicalcium phosphate anhydrous) are of considerable interest in bone augmentation owing to their metastable nature in physiological fluids. The anhydrous form of brushite, namely monetite, has a finer microstructure with higher surface area, strength and bioresorbability, which does not transform to the poorly resorbable hydroxyapatite, thus making it a viable alternative for use as a scaffold for engineering of bone tissue. We recently reported the formation of monetite cements by a simple processing route without the need of hydrothermal treatment by using a high concentration of sodium chloride in the reaction mix of β-tricalcium phosphate and monocalcium phosphate monohydrate. In this paper, we report the biological responsiveness of monetite formed by this method. The in vitro behaviour of monetite after interaction and ageing both in an acellular and cellular environment showed that the crystalline phase of monetite was retained over three weeks as evidenced from X-ray diffraction measurements. The crystal size and morphology also remained unaltered after ageing in different media. Human osteoblast cells seeded on monetite showed the ability of the cells to proliferate and express genes associated with osteoblast maturation and mineralization. Furthermore, the results showed that monetite could stimulate osteoblasts to undergo osteogenesis and accelerate osteoblast maturation earlier than cells cultured on hydroxyapatite scaffolds of similar porosity. Osteoblasts cultured on monetite cement also showed higher expression of osteocalcin, which is an indicator of the maturation stages of osteoblastogenesis and is associated with matrix mineralization and bone forming activity of osteoblasts. Thus, this new method of fabricating porous monetite can be safely used for generating three-dimensional bone graft constructs. PMID:25297314

  2. Endochondral bone growth, bone calcium accretion, and bone mineral density: how are they related?

    PubMed

    Wongdee, Kannikar; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2012-07-01

    Endochondral bone growth in young growing mammals or adult mammals with persistent growth plates progresses from proliferation, maturation and hypertrophy of growth plate chondrocytes to mineralization of cartilaginous matrix to form an osseous tissue. This complex process is tightly regulated by a number of factors with different impacts, such as genetics, endocrine/paracrine factors [e.g., PTHrP, 1,25(OH)(2)D(3), IGF-1, FGFs, and prolactin], and nutritional status (e.g., dietary calcium and vitamin D). Despite a strong link between growth plate function and elongation of the long bone, little is known whether endochondral bone growth indeed determines bone calcium accretion, bone mineral density (BMD), and/or peak bone mass. Since the process ends with cartilaginous matrix calcification, an increase in endochondral bone growth typically leads to more calcium accretion in the primary spongiosa and thus higher BMD. However, in lactating rats with enhanced trabecular bone resorption, bone elongation is inversely correlated with BMD. Although BMD can be increased by factors that enhance endochondral bone growth, the endochondral bone growth itself is unlikely to be an important determinant of peak bone mass since it is strongly determined by genetics. Therefore, endochondral bone growth and bone elongation are associated with calcium accretion only in a particular subregion of the long bone, but do not necessarily predict BMD and peak bone mass.

  3. Evaluating acellular versus cellular perfusate composition during prolonged ex vivo lung perfusion after initial cold ischaemia for 24 hours.

    PubMed

    Becker, Simon; Steinmeyer, Jasmin; Avsar, Murat; Höffler, Klaus; Salman, Jawad; Haverich, Axel; Warnecke, Gregor; Ochs, Matthias; Schnapper, Anke

    2016-01-01

    Normothermic ex vivo lung perfusion (EVLP) has developed as a powerful technique to evaluate particularly marginal donor lungs prior to transplantation. In this study, acellular and cellular perfusate compositions were compared in an identical experimental setting as no consensus has been reached on a preferred technique yet. Porcine lungs underwent EVLP for 12 h on the basis of an acellular or a cellular perfusate composition after 24 h of cold ischaemia as defined organ stress. During perfusion, haemodynamic and respiratory parameters were monitored. After EVLP, the lung condition was assessed by light and transmission electron microscopy. Aerodynamic parameters did not show significant differences between groups and remained within the in vivo range during EVLP. Mean oxygenation indices were 491 ± 39 in the acellular group and 513 ± 53 in the cellular group. Groups only differed significantly in terms of higher pulmonary artery pressure and vascular resistance in the cellular group. Lung histology and ultrastructure were largely well preserved after prolonged EVLP and showed only minor structural alterations which were similarly present in both groups. Prolonged acellular and cellular EVLP for 12 h are both feasible with lungs prechallenged by ischaemic organ stress. Physiological and ultrastructural analysis showed no superiority of either acellular or cellular perfusate composition.

  4. Acellular Vascular Grafts Generated from Collagen and Elastin Analogues

    PubMed Central

    Kumar, Vivek A.; Caves, Jeffrey M.; Haller, Carolyn A.; Dai, Erbin; Li, Liying; Grainger, Stephanie; Chaikof, Elliot L.

    2013-01-01

    Tissue engineered vascular grafts require long fabrication times, in part, due to the requirement of cells from a variety of cell sources to produce a robust load bearing, extracellular matrix. Herein, we propose a design strategy for the fabrication of tubular conduits comprised of collagen fiber networks and elastin-like protein polymers to mimic native tissue structure and function. Dense fibrillar collagen networks exhibited an ultimate tensile strength (UTS) of 0.71 ± 0.06 MPa, strain to failure of 37.1 ± 2.2%, and Young’s modulus of 2.09 ± 0.42 MPa, comparing favorably to an UTS and a Young’s modulus for native blood vessels of 1.4 – 11.1 MPa and 1.5 ± 0.3 MPa, respectively. Resilience, a measure of recovered energy during unloading of matrices, demonstrated that 58.9 ± 4.4% of the energy was recovered during loading-unloading cycles. Rapid fabrication of multilayer tubular conduits with maintenance of native collagen ultrastructure was achieved with internal diameters ranging between 1 to 4 mm. Compliance and burst pressures exceeded 2.7 ± 0.3%/100 mmHg and 830 ± 131 mmHg, respectively, with a significant reduction in observed platelet adherence as compared to ePTFE (6.8 ± 0.05 × 105 vs. 62 ± 0.05 × 105 platelets/mm2, p < 0.01). Using a rat aortic interposition model, early in vivo responses were evaluated at 2 weeks via Doppler ultrasound and CT angiography with immunohistochemistry confirming a limited early inflammatory response (n=8). Engineered collagen-elastin composites represent a promising strategy for fabricating synthetic tissues with defined extracellular matrix content, composition, and architecture. PMID:23743129

  5. Bladder Tissue Regeneration Using Acellular Bi-Layer Silk Scaffolds in a Large Animal Model of Augmentation Cystoplasty

    PubMed Central

    Tu, Duong D.; Chung, Yeun Goo; Gil, Eun Seok; Seth, Abhishek; Franck, Debra; Cristofaro, Vivian; Sullivan, Maryrose P.; Di Vizio, Dolores; Gomez, Pablo; Adam, Rosalyn M.; Kaplan, David L.; Estrada, Carlos R.; Mauney, Joshua R.

    2013-01-01

    A cellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a porcine model of augmentation cystoplasty. Two bi-layer matrix configurations were fabricated by solvent-casting/salt leaching either alone (Group 1) or in combination with silk film casting (Group 2) to yield porous foams buttressed by heterogeneous surface pore occlusions or homogenous silk films, respectively. Bladder augmentation was performed with each scaffold group (6×6cm2) in juvenile Yorkshire swine for 3 m of implantation. Augmented animals exhibited high rates of survival (Group 1: 5/6, 83%; Group 2: 4/4, 100%) and voluntary voiding over the course of the study period. Urodynamic evaluations demonstrated mean increases in bladder capacity over pre-operative levels (Group 1: 277%; Group 2: 153%) which exceeded non surgical control gains (144%) encountered due to animal growth. Similarly, elevations in bladder compliance were substantially higher in augmented animals from baseline (Group 1: 357%; Group 2: 147%) in comparison to controls (41%). Gross tissue evaluations revealed that both matrix configurations supported extensive de novo tissue formation throughout the entire original implantation site which exhibited ultimate tensile strength similar to nonsurgical counterparts. Histological and immunohistochemical analyses showed that both implant groups promoted comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within defect sites similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent cytokeratin, uroplakin, and p63 protein expression in both matrix groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Ex vivo organ bath

  6. In Vivo Bone Regeneration Using Tubular Perfusion System Bioreactor Cultured Nanofibrous Scaffolds

    PubMed Central

    Yeatts, Andrew B.; Both, Sanne K.; Yang, Wanxun; Alghamdi, Hamdan S.; Yang, Fang; Jansen, John A.

    2014-01-01

    The use of bioreactors for the in vitro culture of constructs for bone tissue engineering has become prevalent as these systems may improve the growth and differentiation of a cultured cell population. Here we utilize a tubular perfusion system (TPS) bioreactor for the in vitro culture of human mesenchymal stem cells (hMSCs) and implant the cultured constructs into rat femoral condyle defects. Using nanofibrous electrospun poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) scaffolds, hMSCs were cultured for 10 days in vitro in the TPS bioreactor with cellular and acellular scaffolds cultured statically for 10 days as a control. After 3 and 6 weeks of in vivo culture, explants were removed and subjected to histomorphometric analysis. Results indicated more rapid bone regeneration in defects implanted with bioreactor cultured scaffolds with a new bone area of 1.23±0.35 mm2 at 21 days compared to 0.99±0.43 mm2 and 0.50±0.29 mm2 in defects implanted with statically cultured scaffolds and acellular scaffolds, respectively. At the 21 day timepoint, statistical differences (p<0.05) were only observed between defects implanted with cell containing scaffolds and the acellular control. After 42 days, however, defects implanted with TPS cultured scaffolds had the greatest new bone area with 1.72±0.40 mm2. Defects implanted with statically cultured and acellular scaffolds had a new bone area of 1.26±0.43 mm2 and 1.19±0.33 mm2, respectively. The increase in bone growth observed in defects implanted with TPS cultured scaffolds was statistically significant (p<0.05) when compared to both the static and acellular groups at this timepoint. This study demonstrates the efficacy of the TPS bioreactor to improve bone tissue regeneration and highlights the benefits of utilizing perfusion bioreactor systems to culture MSCs for bone tissue engineering. PMID:23865551

  7. Bone scintiscanning updated.

    PubMed

    Lentle, B C; Russell, A S; Percy, J S; Scott, J R; Jackson, F I

    1976-03-01

    Use of modern materials and methods has given bone scintiscanning a larger role in clinical medicine, The safety and ready availability of newer agents have led to its greater use in investigating both benign and malignant disease of bone and joint. Present evidence suggests that abnormal accumulation of 99mTc-polyphosphate and its analogues results from ionic deposition at crystal surfaces in immature bone, this process being facilitated by an increase in bone vascularity. There is, also, a component of matrix localization. These factors are in keeping with the concept that abnormal scintiscan sites represent areas of increased osteoblastic activity, although this may be an oversimplification. Increasing evidence shows that the bone scintiscan is more sensitive than conventional radiography in detecting focal disease of bone, and its ability to reflect the immediate status of bone further complements radiographic findings. The main limitation of this method relates to nonspecificity of the results obtained.

  8. Free vascularised fibular grafting with OsteoSet®2 demineralised bone matrix versus autograft for large osteonecrotic lesions of the femoral head.

    PubMed

    Feng, Yong; Wang, Shanzhi; Jin, Dongxu; Sheng, Jiagen; Chen, Shengbao; Cheng, Xiangguo; Zhang, Changqing

    2011-04-01

    The aim of this study was to compare the safety and efficacy of OsteoSet®2 DBM with autologous cancellous bone in free vascularised fibular grafting for the treatment of large osteonecrotic lesions of the femoral head. Twenty-four patients (30 hips) with large osteonecrotic lesions of the femoral head (stage IIC in six hips, stage IIIC in 14, and stage IVC in ten, according to the classification system of Steinberg et al.) underwent free vascularised fibular grafting with OsteoSet®2 DBM. This group was retrospectively matched to a group of 24 patients (30 hips) who underwent free vascularised fibular grafting with autologous cancellous bone during the same time period according to the aetiology, stage, and size of the lesion and the mean preoperative Harris hip score. A prospective case-controlled study was then performed with a mean follow-up duration of 26 months. The results show no statistically significant differences between the two groups in overall clinical outcome or the radiographic assessment. Furthermore, no adverse events related to the use of the OsteoSet®2 DBM were observed. The results demonstrate that OsteoSet®2 DBM combined with autograft bone performs equally as well as that of autologous bone alone. Therefore, OsteoSet®2 DBM can be used as a safe and effective graft extender in free vascularised fibular grafting for large osteonecrotic lesions of the femoral head.

  9. Comparison of Demineralized Dentin and Demineralized Freeze Dried Bone as Carriers for Enamel Matrix Proteins in a Rat Critical Size Defect

    DTIC Science & Technology

    2005-05-01

    derivative in the treatment of periodontal intrabony defects. A 12-month re-entry study. J Periodontol 2001;72:25-34. Froum S., Weinberg M., Novak J., Mailhot...1 B . O dontogenesis ........................................................................ 2 C. Periodontal regeneration...LITERATURE REVIEW A. Introduction Periodontal disease may result in destruction of periodontal attachment and eventual loss of bone and/or teeth. About 13

  10. Old age and the associated impairment of bones' adaptation to loading are associated with transcriptomic changes in cellular metabolism, cell-matrix interactions and the cell cycle.

    PubMed

    Galea, Gabriel L; Meakin, Lee B; Harris, Marie A; Delisser, Peter J; Lanyon, Lance E; Harris, Stephen E; Price, Joanna S

    2017-01-30

    In old animals, bone's ability to adapt its mass and architecture to functional load-bearing requirements is diminished, resulting in bone loss characteristic of osteoporosis. Here we investigate transcriptomic changes associated with this impaired adaptive response. Young adult (19-week-old) and aged (19-month-old) female mice were subjected to unilateral axial tibial loading and their cortical shells harvested for microarray analysis between 1h and 24h following loading (36 mice per age group, 6 mice per loading group at 6 time points). In non-loaded aged bones, down-regulated genes are enriched for MAPK, Wnt and cell cycle components, including E2F1. E2F1 is the transcription factor most closely associated with genes down-regulated by ageing and is down-regulated at the protein level in osteocytes. Genes up-regulated in aged bone are enriched for carbohydrate metabolism, TNFα and TGFβ superfamily components. Loading stimulates rapid and sustained transcriptional responses in both age groups. However, genes related to proliferation are predominantly up-regulated in the young and down-regulated in the aged following loading, whereas those implicated in bioenergetics are down-regulated in the young and up-regulated in the aged. Networks of inter-related transcription factors regulated by E2F1 are loading-responsive in both age groups. Loading regulates genes involved in similar signalling cascades in both age groups, but these responses are more sustained in the young than aged. From this we conclude that cells in aged bone retain the capability to sense and transduce loading-related stimuli, but their ability to translate acute responses into functionally relevant outcomes is diminished.

  11. Function of osteocytes in bone.

    PubMed

    Aarden, E M; Burger, E H; Nijweide, P J

    1994-07-01

    Although the structural design of cellular bone (i.e., bone containing osteocytes that are regularly spaced throughout the bone matrix) dates back to the first occurrence of bone as a tissue in evolution, and although osteocytes represent the most abundant cell type of bone, we know as yet little about the role of the osteocyte in bone metabolism. Osteocytes descend from osteoblasts. They are formed by the incorporation of osteoblasts into the bone matrix. Osteocytes remain in contact with each other and with cells on the bone surface via gap junction-coupled cell processes passing through the matrix via small channels, the canaliculi, that connect the cell body-containing lacunae with each other and with the outside world. During differentiation from osteoblasts to mature osteocyte the cells lose a large part of their cell organelles. Their cell processes are packed with microfilaments. In this review we discuss the various theories on osteocyte function that have taken in consideration these special features of osteocytes. These are 1) osteocytes are actively involved in bone turnover; 2) the osteocyte network is through its large cell-matrix contact surface involved in ion exchange; and 3) osteocytes are the mechanosensory cells of bone and play a pivotal role in functional adaptation of bone. In our opinion, especially the last theory offers an exciting concept for which some biomechanical, biochemical, and cell biological evidence is already available and which fully warrants further investigations.

  12. Method for fusing bone

    DOEpatents

    Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.

    1996-03-12

    The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  13. Effect of psoralen on bone formation.

    PubMed

    Wong, Ricky W K; Rabie, A Bakr M

    2011-02-01

    To compare the amount of new bone and bone cells produced by psoralen in collagen matrix to that produced by collagen matrix in vivo. Eighteen bone defects, 5 mm by 10 mm were created in the parietal bone of nine New Zealand White rabbits. Six defects were grafted with psoralen mixed with collagen matrix. Six defects were grafted with collagen matrix alone (negative control--collagen) and six were left empty (negative control--empty). Animals were killed on day 14 and the defects were dissected and prepared for histological assessment. Quantitative analysis of new bone formation and bone cells were made on 100 sections (50 sections for each group) using image analysis. A total of 454% more new bone was present in defects grafted with psoralen in collagen matrix than those grafted with collagen matrix. No bone was formed in the negative control--empty group. The amount of bone forming osteoblasts was also significantly greater in the psoralen group than the negative control--collagen group. Psoralen in collagen matrix has the effect of increasing new bone formation locally in vivo. Psoralen in collagen matrix can be developed as a bone graft material.

  14. A prospective, randomised, controlled, multicentre clinical trial examining healing rates, safety and cost to closure of an acellular reticular allogenic human dermis versus standard of care in the treatment of chronic diabetic foot ulcers.

    PubMed

    Zelen, Charles M; Orgill, Dennis P; Serena, Thomas; Galiano, Robert; Carter, Marissa J; DiDomenico, Lawrence A; Keller, Jennifer; Kaufman, Jarrod; Li, William W

    2017-04-01

    Acellular dermal matrices can successfully heal wounds. This study's goal was to compare clinical outcomes of a novel, open-structure human reticular acellular dermis matrix (HR-ADM) to facilitate wound closure in non-healing diabetic foot ulcers (DFUs) versus DFUs treated with standard of care (SOC). Following a 2-week screening period in which DFUs were treated with offloading and moist wound care, patients were randomised to either SOC alone or HR-ADM plus SOC applied weekly for up to 12 weeks. At 6 weeks, the primary outcome time, 65% of the HR-ADM-treated DFUs healed (13/20) compared with 5% (1/20) of DFUs that received SOC alone. At 12 weeks, the proportions of DFUs healed were 80% and 20%, respectively. Mean time to heal within 12 weeks was 40 days for the HR-ADM group compared with 77 days for the SOC group. There was no incidence of increased adverse or serious adverse events between groups or any adverse events related to the graft. Mean and median graft costs to closure per healed wound in the HR-ADM group were $1475 and $963, respectively. Weekly application of HR-ADM is an effective intervention for promoting closure of non-healing DFUs.

  15. Bone Biopsy

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging guidance ... limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided procedure ...

  16. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels.

    PubMed

    Jung, Hyungjin; Best, Makenzie; Akkus, Ozan

    2015-07-01

    Mechanisms by which bone microdamage triggers repair response are not completely understood. It has been shown that calcium efflux ([Ca(2+)]E) occurs from regions of bone undergoing microdamage. Such efflux has also been shown to trigger intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells local to damaged regions. Voltage-gated calcium channels (VGCCs) are implicated in the entry of [Ca(2+)]E to the cytoplasm. We investigated the involvement of VGCC in the extracellular calcium induced intracellular calcium response (ECIICR). MC3T3-E1 cells were subjected to one dimensional calcium efflux from their basal aspect which results in an increase in [Ca(2+)]I. This increase was concomitant with membrane depolarization and it was significantly reduced in the presence of Bepridil, a non-selective VGCC inhibitor. To identify specific type(s) of VGCC in ECIICR, the cells were treated with selective inhibitors for different types of VGCC. Significant changes in the peak intensity and the number of [Ca(2+)]I oscillations were observed when L-type and T-type specific VGCC inhibitors (Verapamil and NNC55-0396, respectively) were used. So as to confirm the involvement of L- and T-type VGCC in the context of microdamage, cells were seeded on devitalized notched bone specimen, which were loaded to induce microdamage in the presence and absence of Verapamil and NNC55-0396. The results showed significant decrease in [Ca(2+)]I activity of cells in the microdamaged regions of bone when L- and T-type blockers were applied. This study demonstrated that extracellular calcium increase in association with damage depolarizes the cell membrane and the calcium ions enter the cell cytoplasm by L- and T-type VGCCs.

  17. Mesenchymal stem cells seeded on cross-linked and noncross-linked acellular porcine dermal scaffolds for long-term full-thickness hernia repair in a small animal model.

    PubMed

    Mestak, Ondrej; Matouskova, Eva; Spurkova, Zuzana; Benkova, Kamila; Vesely, Pavel; Mestak, Jan; Molitor, Martin; Pombinho, Antonio; Sukop, Andrej

    2014-07-01

    Biological meshes are biomaterials consisting of extracellular matrix that are used in surgery particularly for hernia treatment, thoracic wall reconstruction, or silicone implant-based breast reconstruction. We hypothesized that combination of extracellular matrices with autologous mesenchymal stem cells used for hernia repair would result in increased vascularization and increased strength of incorporation. We cultured autologous adipose-derived stem cells harvested from the inguinal region of Wistar rats on cross-linked and noncross-linked porcine extracellular matrices. In 24 Wistar rats, a standardized 2×4 cm fascial defect was created and repaired with either cross-linked or noncross-linked grafts enriched with stem cells. Non-MSC-enriched grafts were used as controls. The rats were sacrificed at 3 months of age. The specimens were examined for the strength of incorporation, vascularization, cell invasion, foreign body reaction, and capsule formation. Both materials showed cellular ingrowth and neovascularization. Comparison of both tested groups with the controls showed no significant differences in the capsule thickness, foreign body reaction, cellularization, or vascularization. The strength of incorporation of the stem cell-enriched cross-linked extracellular matrix specimens was higher than in acellular specimens, but this result was statistically nonsignificant. In the noncross-linked extracellular matrix, the strength of incorporation was significantly higher in the stem cell group than in the acellular group. Seeding of biological meshes with stem cells does not significantly contribute to their increased vascularization. In cross-linked materials, it does not ensure increased strength of incorporation, in contrast to noncross-linked materials. Owing to the fact that isolation and seeding of stem cells is a very complex procedure, we do not see sufficient benefits for its use in the clinical setting.

  18. Biomaterials and bone mechanotransduction

    NASA Technical Reports Server (NTRS)

    Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  19. Biomaterials and bone mechanotransduction.

    PubMed

    Sikavitsas, V I; Temenoff, J S; Mikos, A G

    2001-10-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  20. Acellular components of Chlamydia pneumoniae stimulate cytokine production in human blood mononuclear cells.

    PubMed

    Netea, M G; Selzman, C H; Kullberg, B J; Galama, J M; Weinberg, A; Stalenhoef, A F; Van der Meer, J W; Dinarello, C A

    2000-02-01

    Accumulating evidence suggest that infection with Chlamydia pneumoniae is associated with atherosclerosis, but the mechanisms involved remain unclear. Inflammation is important in the initial phase of atherogenesis, and cytokines are important in the initiation and progression of inflammation. The aim of this study was to assess the capacity of acellular components of C. pneumoniae to stimulate the production of pro-inflammatory cytokines and chemokines. Peripheral blood mononuclear cells were stimulated in vitro with sonicated C. pneumoniae. Significant amounts of TNF-alpha, IL-1, IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) were produced. Inhibition of endotoxin using polymyxin B revealed that chlamydial endotoxin plays a minor role in the cytokine induction. Neutralization of TNF by TNF-binding protein and blockade of IL-1 receptors by IL-1 receptor antagonist revealed that TNF, IL-1 and IL-6 production was independent from each other, whereas IL-8 synthesis was strongly dependent on endogenous TNF and IL-1. In contrast, synthesis of MCP-1 and MIP-1alpha was dependent on endogenous TNF, but not IL-1. In conclusion, acellular components of C. pneumoniae are a potent stimulus for cytokine production, and this mechanism may have an important role in the inflammatory aspects of atherogenesis.

  1. Cellular Immune Responses of Preterm Infants after Vaccination with Whole-Cell or Acellular Pertussis Vaccines▿

    PubMed Central

    Vermeulen, Françoise; Verscheure, Virginie; Damis, Eliane; Vermeylen, Danièle; Leloux, Gaëlle; Dirix, Violette; Locht, Camille; Mascart, Françoise

    2010-01-01

    Based on studies reporting specific antibody titers, it is recommended to vaccinate preterm infants against Bordetella pertussis according to their chronological age. However, as specific T-cell responses also are involved in the protection against B. pertussis, we have determined whether highly preterm infants (<31 weeks) are able to mount these immune responses during vaccination. Forty-eight premature infants were vaccinated at 2, 3, and 4 months of their chronological age with an acellular (Pa; n = 24) or a whole-cell (Pw; n = 24) tetravalent diphtheria-tetanus-pertussis-polio vaccine, and blood samples were collected at 2, 3, and 6 months of age. Most of the Pa- and Pw-vaccinated infants developed at 3 or 6 months of age a gamma interferon (IFN-γ) response to the B. pertussis antigens, accompanied by an interleukin-5 (IL-5) and IL-13 secretion for the Pa-vaccinated infants. No association was found between a very low infant birth weight, the occurrence of severe infections, and corticosteroid treatment or the administration of gammaglobulins with a low level of antigen-induced IFN-γ secretion. We conclude that like full-term infants, most preterm infants are able to mount a specific cellular immune response to the administration of the first doses of an acellular or a whole-cell pertussis vaccine. PMID:20016042

  2. Acellular Urethra Bioscaffold: Decellularization of Whole Urethras for Tissue Engineering Applications.

    PubMed

    Simões, Irina N; Vale, Paulo; Soker, Shay; Atala, Anthony; Keller, Daniel; Noiva, Rute; Carvalho, Sandra; Peleteiro, Conceição; Cabral, Joaquim M S; Eberli, Daniel; da Silva, Cláudia L; Baptista, Pedro M

    2017-02-06

    Patients with stress urinary incontinence mainly suffer from malfunction of the urethra closure mechanism. We established the decellularization of porcine urethras to produce acellular urethra bioscaffolds for future tissue engineering applications, using bioscaffolds or bioscaffold-derived soluble products. Cellular removal was evaluated by H&E, DAPI and DNA quantification. The presence of specific ECM proteins was assessed through immunofluorescence staining and colorimetric assay kits. Human skeletal muscle myoblasts, muscle progenitor cells and adipose-derived stromal vascular fractions were used to evaluate the recellularization of the acellular urethra bioscaffolds. The mechanochemical decellularization system removed ~93% of tissue's DNA, generally preserving ECM's components and microarchitecture. Recellularization was achieved, though methodological advances are required regarding cell seeding strategies and functional assessment. Through microdissection and partial digestion, different urethra ECM-derived coating substrates were formulated (i.e. containing smooth or skeletal muscle ECM) and used to culture MPCs in vitro. The skeletal muscle ECM substrates enhanced fiber formation leading to the expression of the main skeletal muscle-related proteins and genes, as confirmed by immunofluorescence and RT-qPCR. The described methodology produced a urethra bioscaffold that retained vital ECM proteins and was liable to cell repopulation, a crucial first step towards the generation of urethra bioscaffold-based Tissue Engineering products.

  3. Alternatives to HIST for acellular pertussis vaccines: progress and challenges in replacement

    PubMed Central

    Arciniega, J.; Wagner, L.; Prymula, R.; Sebo, P.; Isbrucker, R.; Descampe, B.; Chapsal, J.M.; Costanzo, A.; Hendriksen, C.; Hoonaker, M.; Nelson, S.; Lidster, K.; Casey, W.; Allen, D.

    2016-01-01

    The ‘International Workshop on Alternatives to the Murine Histamine Sensitization Test for Acellular Pertussis Vaccines: Progress and Challenges in the Replacement of HIST’ was held on 24 August 2014, in Prague, Czech Republic, as a satellite meeting to the 9 th World Congress on Alternatives and Animal Use in the Life Sciences. Participants discussed the progress and challenges associated with the development, validation, and implementation of in vitro assays as replacements for the histamine sensitisation test (HIST) for acellular pertussis vaccines. Discussions focused on the consistency approach, the necessary framework for regulatory acceptance of a harmonised method, and recent international efforts towards the development of in vitro assays to replace the HIST. Workshop participants agreed that acceptable alternatives to the HIST should be based on ADP ribosylation-mediated cell intoxication and therefore that the CHO cell clustering assay, which measures cell intoxication, should be further pursued and developed as a possible replacement for the HIST. Participants also agreed to continue ongoing multinational discussions involving national and international standardisation authorities to reach consensus and to organise collaborative studies in this context for assay characterisation and calibration of reference materials. PMID:27506225

  4. Acellular Urethra Bioscaffold: Decellularization of Whole Urethras for Tissue Engineering Applications

    PubMed Central

    Simões, Irina N.; Vale, Paulo; Soker, Shay; Atala, Anthony; Keller, Daniel; Noiva, Rute; Carvalho, Sandra; Peleteiro, Conceição; Cabral, Joaquim M. S.; Eberli, Daniel; da Silva, Cláudia L.; Baptista, Pedro M.

    2017-01-01

    Patients with stress urinary incontinence mainly suffer from malfunction of the urethra closure mechanism. We established the decellularization of porcine urethras to produce acellular urethra bioscaffolds for future tissue engineering applications, using bioscaffolds or bioscaffold-derived soluble products. Cellular removal was evaluated by H&E, DAPI and DNA quantification. The presence of specific ECM proteins was assessed through immunofluorescence staining and colorimetric assay kits. Human skeletal muscle myoblasts, muscle progenitor cells and adipose-derived stromal vascular fractions were used to evaluate the recellularization of the acellular urethra bioscaffolds. The mechanochemical decellularization system removed ~93% of tissue’s DNA, generally preserving ECM’s components and microarchitecture. Recellularization was achieved, though methodological advances are required regarding cell seeding strategies and functional assessment. Through microdissection and partial digestion, different urethra ECM-derived coating substrates were formulated (i.e. containing smooth or skeletal muscle ECM) and used to culture MPCs in vitro. The skeletal muscle ECM substrates enhanced fiber formation leading to the expression of the main skeletal muscle-related proteins and genes, as confirmed by immunofluorescence and RT-qPCR. The described methodology produced a urethra bioscaffold that retained vital ECM proteins and was liable to cell repopulation, a crucial first step towards the generation of urethra bioscaffold-based Tissue Engineering products. PMID:28165009

  5. Link protein N-terminal peptide binds to bone morphogenetic protein (BMP) type II receptor and drives matrix protein expression in rabbit intervertebral disc cells.

    PubMed

    Wang, Zili; Weitzmann, M Neale; Sangadala, Sreedhara; Hutton, William C; Yoon, S Tim

    2013-09-27

    Intervertebral disc (IVD) degeneration and associated spinal disorders are leading sources of morbidity, and they can be responsible for chronic low back pain. Treatments for degenerative disc diseases continue to be a challenge. Intensive research is now focusing on promoting regeneration of degenerated discs by stimulating production of the disc matrix. Link protein N-terminal peptide (LPP) is a proteolytic fragment of link protein, an important cross-linker and stabilizer of the major structural components of cartilage, aggrecan and hyaluronan. In this study we investigated LPP action in rabbit primary intervertebral disc cells cultured ex vivo in a three-dimensional alginate matrix. Our data reveal that LPP promotes disc matrix production, which was evidenced by increased expression of the chondrocyte-specific transcription factor SOX9 and the extracellular matrix macromolecules aggrecan and collagen II. Using colocalization and pulldown studies we further document a noggin-insensitive direct peptide-protein association between LPP and BMP-RII. This association mediated Smad signaling that converges on BMP genes leading to expression of BMP-4 and BMP-7. Furthermore, through a cell-autonomous loop BMP-4 and BMP-7 intensified Smad1/5 signaling though a feedforward circuit involving BMP-RI, ultimately promoting expression of SOX9 and downstream aggrecan and collagen II genes. Our data define a complex regulatory signaling cascade initiated by LPP and suggest that LPP may be a useful therapeutic substitute for direct BMP administration to treat IVD degeneration and to ameliorate IVD-associated chronic low back pain.

  6. Link Protein N-terminal Peptide Binds to Bone Morphogenetic Protein (BMP) Type II Receptor and Drives Matrix Protein Expression in Rabbit Intervertebral Disc Cells*

    PubMed Central

    Wang, Zili; Weitzmann, M. Neale; Sangadala, Sreedhara; Hutton, William C.; Yoon, S. Tim

    2013-01-01

    Intervertebral disc (IVD) degeneration and associated spinal disorders are leading sources of morbidity, and they can be responsible for chronic low back pain. Treatments for degenerative disc diseases continue to be a challenge. Intensive research is now focusing on promoting regeneration of degenerated discs by stimulating production of the disc matrix. Link protein N-terminal peptide (LPP) is a proteolytic fragment of link protein, an important cross-linker and stabilizer of the major structural components of cartilage, aggrecan and hyaluronan. In this study we investigated LPP action in rabbit primary intervertebral disc cells cultured ex vivo in a three-dimensional alginate matrix. Our data reveal that LPP promotes disc matrix production, which was evidenced by increased expression of the chondrocyte-specific transcription factor SOX9 and the extracellular matrix macromolecules aggrecan and collagen II. Using colocalization and pulldown studies we further document a noggin-insensitive direct peptide-protein association between LPP and BMP-RII. This association mediated Smad signaling that converges on BMP genes leading to expression of BMP-4 and BMP-7. Furthermore, through a cell-autonomous loop BMP-4 and BMP-7 intensified Smad1/5 signaling though a feedforward circuit involving BMP-RI, ultimately promoting expression of SOX9 and downstream aggrecan and collagen II genes. Our data define a complex regulatory signaling cascade initiated by LPP and suggest that LPP may be a useful therapeutic substitute for direct BMP administration to treat IVD degeneration and to ameliorate IVD-associated chronic low back pain. PMID:23940040

  7. Proteolytic enzymes in skeletal development: histochemical methods adapted to the study of matrix lysis during the transformation of a "cartilage model" into bone.

    PubMed

    Lee, Eunice Rosalind

    2006-09-01

    The replacement of a "cartilage model" by definitive bone is characterized by a series of localized excavations of the cartilage which are eventually followed by bone deposition. Each excavation requires lysis of cartilage components (defined here as the breakdown of a peptide bond) and their eventual resorption (defined here as microscopical visible cartilage loss). More precisely we have proposed that the lysis is affected by proteases capable of breaking down the main proteoglycan "aggrecan" and the main fibril element, "type II collagen". Four approaches combining biochemical, immunologic and microscopic techniques have been adapted to test this hypothesis. Each is applied to the rat tibial head's "cartilage model" where proteases have been shown to be major contributors to secondary ossification center formation. The approaches have been found both effective and distinct as cartilage resorbing enzymes have not only been identified but also detected in situ before and after activation. Achieved overall is an understanding of when, where and how specified proteases contribute to tissue component lyses. While the focus resides on the in situ proteolysis of cartilage, three of the approaches could be translated without change to other tissues, whereas one may require tissue specific adjustments before use.

  8. Gravity related behavior of the acellular slime mold Physarum polycephalum (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Block, I.

    1992-01-01

    The objective of the experiment is to investigate the effect of near weightlessness on a single cell. The test object is the acellular slime mold Physarum polycephalum. This cell is composed of a network of protoplastic strands which perform rhythmic contractions in the minute range. These contractions of the strands' ectoplastic walls generate the force to drive the vigorous shuttle streaming of fluid protoplasm inside the strands (hydrostatic pressure flow). A net transport of protoplasm in one direction determines the direction of the cell's locomotion itself. In this way, gravity modifies the contraction rhythm of the strands, the streaming velocity of protoplasm in the strands, and the direction of locomotion of the whole slime mold (geotaxis). The other parts of this experiment will address the major question of how this cell, which does not possess any specialized gravireceptors, gets the information about the direction of the gravity vector. Details of the experimental setup are given.

  9. TGF-β in cancer and bone: implications for treatment of bone metastases.

    PubMed

    Juárez, Patricia; Guise, Theresa A

    2011-01-01

    Bone metastases are common in patients with advanced breast, prostate and lung cancer. Tumor cells co-opt bone cells to drive a feed-forward cycle which disrupts normal bone remodeling to result in abnormal bone destruction or formation and tumor growth in bone. Transforming growth factor-beta (TGF-β) is a major bone-derived factor, which contributes to this vicious cycle of bone metastasis. TGF-β released from bone matrix during osteoclastic resorption stimulates tumor cells to produce osteolytic factors further increasing bone resorption adjacent to the tumor cells. TGF-β also regulates 1) key components of the metastatic cascade such as epithelial-mesenchymal transition, tumor cell invasion, angiogenesis and immunosuppression as well as 2) normal bone remodeling and coupling of bone resorption and formation. Preclinical models demonstrate that blockade of TGF-β signaling is effective to treat and prevent bone metastases as well as to increase bone mass.

  10. Nanoscale deformation mechanisms in bone.

    PubMed

    Gupta, Himadri S; Wagermaier, Wolfgang; Zickler, Gerald A; Raz-Ben Aroush, D; Funari, Sérgio S; Roschger, Paul; Wagner, H Daniel; Fratzl, Peter

    2005-10-01

    Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.

  11. Effect of schedule on reactogenicity and antibody persistence of acellular and whole-cell pertussis vaccines: value of laboratory tests as predictors of clinical performance.

    PubMed

    Miller, E; Ashworth, L A; Redhead, K; Thornton, C; Waight, P A; Coleman, T

    1997-01-01

    The performance of four acellular pertussis vaccines containing between two and five pertussis antigens combined with diphtheria and tetanus toxoids was compared with that of British whole-cell diphtheria/tetanus/pertussis (DTP) vaccine both in laboratory assays for potency, toxicity and immunogenicity, and for reactogenicity and immunogenicity in infants. Clinical responses were evaluated in double blind randomized Phase II trials using 3/5/9 month and 2/3/4 month schedules. The acellular DTPs had much lower toxicity than whole-cell DTP in laboratory tests and were significantly less pyrogenic than whole-cell DTP under both schedules. Local reactions were not consistently lower in acellular than whole-cell vaccinees and varied with the source of the diphtheria and tetanus antigens used. Differences in endotoxin level and content of active pertussis toxin (PT) between acellular DTP vaccines were not clinically significant. The reactogenicity advantage of the acellular vaccines was substantially reduced under the 2/3/4 month schedule due to the reduced reactogenicity of the whole-cell DTP vaccine when given at a younger age. There was no relationship between antigen content measured in micrograms per dose and ELISA antibody responses to filamentous haemagglutinin (FHA) and PT in infants, nor was murine immunogenicity predictive of immunogenicity in humans. Antibody response to PT was attenuated in the whole-cell group under the 2/3/4 month schedule but was unaffected in the group receiving acellular vaccines with individually purified components; antibody response to pertactin (69 kDa antigen) was similar in recipients of the whole-cell and component acellular vaccines under the 2/3/4 month schedule. PT antibody persistence until 4-5 years of age was significantly better in recipients of the component acellular than either the whole-cell vaccine or the co-purified acellular vaccine under the 3/5/9 month schedule. However, diphtheria antitoxin levels were reduced in

  12. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth.

    PubMed

    Li, X W; Yasuda, H Y; Umakoshi, Y

    2006-06-01

    Bioceramic composites were synthesized by sintering the powders of hydroxyapatite (HAp) mixed directly with additive of 0.5, 1.0, 2.0, 5.0 and 10 wt.%SiO(2), respectively, at 1,200( composite function)C. X-ray diffraction (XRD) analysis indicated that the phase transformation from HAp to tricalcium phosphate (TCP) comprising alpha-TCP and Si-TCP occurred and became more prominent with the addition of SiO(2) and the increase in SiO(2) content. The observations of their surface microstructures showed that the addition of SiO(2) suppressed the grain growth and promoted the formation of crystalline-glassy composites denoted HAp + TCP/Bioglass. As the SiO(2) content is as high as 5 wt.%, the composite made a feature of crystalline clusters with different sizes consisting of HAp and TCP grains surrounded by the matrix of glassy phase. Furthermore, the dependence of in vitro bioactivity of these composites on the SiO(2) content was biomimetically assessed by determining the changes in surface morphology, i.e., bone-like apatite layer growth, after soaking in an acellular stimulated body fluid (SBF) for 3 days at 36.5( composite function)C. It was found that the HAp-SiO(2) composites showed a much faster bone-like layer growth than pure HAp, and the propensity of composites to exhibit a better bioactivity was getting more notable with increasing SiO(2) content, except for the case of the highest content of 10 wt.%. It was believed that the formation of the bone-like layer on the surfaces of these bio-composites is closely related to the increasingly provided silanol groups and transformed TCP phase in materials associated with the content of SiO(2) added.

  13. The Roles of Matrix Polymer Crystallinity and Hydroxyapatite Nanoparticles in Modulating Material Properties of Photo-crosslinked Composites and Bone Marrow Stromal Cell Responses

    PubMed Central

    Wang, Shanfeng; Kempen, Diederik H. R.; Yaszemski, Michael J.; Lu, Lichun

    2010-01-01

    Two poly(ε-caprolactone fumarate)s (PCLFs) with distinct physical properties have been employed to prepare nanocomposites with hydroxyapatite (HA) nanoparticles via photo-crosslinking. The two PCLFs are PCLF530 and PCLF2000, named after their precursor PCL diol molecular weight of 530 and 2000 g.mol-1, respectively. Crosslinked PCLF530 is amorphous while crosslinked PCLF2000 is semi-crystalline with a melting temperature (Tm) of ∼40 °C and a crystallinity of 40%. Consequently, the rheological and mechanical properties of crosslinked PCLF2000 are significantly greater than those of crosslinked PCLF530. Structural characterizations and physical properties of both series of crosslinked PCLF/HA nanocomposites with HA compositions of 0%, 5%, 10%, 20%, and 30% have been investigated. By adding HA nanoparticles, crosslinked PCLF530/HA nanocomposites demonstrate enhanced rheological and mechanical properties while the enhancement in compressive modulus is less prominent in crosslinked PCLF2000/HA nanocomposites. In vitro cell attachment and proliferation have been performed using rat bone marrow stromal cells (BMSCs) and correlated with the material properties. Cell attachment and proliferation on crosslinked PCLF530/HA nanocomposite disks have been enhanced strongly with increasing the HA composition. However, surface morphology and surface chemistry such as composition, hydrophilicity, and the capability of adsorbing protein cannot be used to interpret the cell responses on different samples. Instead, the role of surface stiffness in regulating cell responses can be supported by the correlation between the change in compressive modulus and BMSC proliferation on these two series of crosslinked PCLFs and PCLF/HA nanocomposites. PMID:19339048

  14. Autologous collagen induced chondrogenesis (ACIC: Shetty-Kim technique) - A matrix based acellular single stage arthroscopic cartilage repair technique.

    PubMed

    Shetty, Asode Ananthram; Kim, Seok Jung; Shetty, Vishvas; Jang, Jae Deog; Huh, Sung Woo; Lee, Dong Hwan

    2016-01-01

    The defects of articular cartilage in the knee joint are a common degenerative disease and currently there are several established techniques to treat this problem, each with their own advantages and shortcomings. Autologous chondrocyte implantation is the current gold standard but the technique is expensive, time-consuming and most versions require two stage procedures and an arthrotomy. Autologous collagen induced chondrogenesis (ACIC) is a single-stage arthroscopic procedure and we developed. This method uses microfracture technique with atelocollagen mixed with fibrin gel to treat articular cartilage defects. We introduce this ACIC techniques and its scientific background.

  15. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice

    SciTech Connect

    Colnot, C. . E-mail: colnotc@orthosurg.ucsf.edu; Huang, S.; Helms, J.

    2006-11-24

    The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.