Science.gov

Sample records for acellular cartilage sheets

  1. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    PubMed Central

    Cui, Wei-ling; Qiu, Long-hai; Lian, Jia-yan; Li, Jia-chun; Hu, Jun; Liu, Xiao-lin

    2016-01-01

    Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group) alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group). As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves. PMID:27127495

  2. The Application of Sheet Technology in Cartilage Tissue Engineering.

    PubMed

    Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei

    2016-04-01

    Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions. PMID:26414455

  3. Cellular and Acellular Approaches for Cartilage Repair

    PubMed Central

    2015-01-01

    There are several choices of cells to use for cartilage repair. Cells are used as internal or external sources and sometimes in combination. In this article, an analysis of the different cell choices and their use and potential is provided. Embryonic cartilage formation is of importance when finding more about how to be able to perfect cartilage repair. Some suggestions for near future research based on up-to-date knowledge on chondrogenic cells are given to hopefully stimulate more studies on the final goal of cartilage regeneration. PMID:27340516

  4. Histochemical and morphological studies on a new type of acellular cartilage.

    PubMed

    Junqueira, L C; Toledo, O M; Montes, G S

    1983-01-01

    A new type of cartilage was found participating in a valve-like system inside the conus arteriosus of the fresh water sting ray, Potamotrygon sp.. This cartilage possesses no chondrocytes and its matrix is perforated by vascular channels that ramify dendritically forming canaliculi. The acellular cartilage does not possess perichondrium but, rather, it is attached to a basement membrane-like structure. The cartilaginous matrix contains collagen fibrils that strongly interact with the chondroitin sulfate of the ground substance. The histochemical and biochemical findings suggest that not all of the glycosaminoglycans present in the acellular cartilage are bound to protein cores to form proteoglycans. PMID:6407464

  5. The properties of bioengineered chondrocyte sheets for cartilage regeneration

    PubMed Central

    Mitani, Genya; Sato, Masato; Lee, Jeong IK; Kaneshiro, Nagatoshi; Ishihara, Miya; Ota, Naoshi; Kokubo, Mami; Sakai, Hideaki; Kikuchi, Tetsutaro; Mochida, Joji

    2009-01-01

    Background Although the clinical results of autologous chondrocyte implantation for articular cartilage defects have recently improved as a result of advanced techniques based on tissue engineering procedures, problems with cell handling and scaffold imperfections remain to be solved. A new cell-sheet technique has been developed, and is potentially able to overcome these obstacles. Chondrocyte sheets applicable to cartilage regeneration can be prepared with this cell-sheet technique using temperature-responsive culture dishes. However, for clinical application, it is necessary to evaluate the characteristics of the cells in these sheets and to identify their similarities to naive cartilage. Results The expression of SOX 9, collagen type 2, 27, integrin α10, and fibronectin genes in triple-layered chondrocyte sheets was significantly increased in comparison to those in conventional monolayer culture and in a single chondrocyte sheet, implying a nature similar to ordinary cartilage. In addition, immunohistochemistry demonstrated that collagen type II, fibronectin, and integrin α10 were present in the triple-layered chondrocyte sheets. Conclusion The results of this study indicate that these chondrocyte sheets with a consistent cartilaginous phenotype and adhesive properties may lead to a new strategy for cartilage regeneration. PMID:19267909

  6. Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering

    PubMed Central

    Chen, Ying-Chen; Chen, Ray-Neng; Jhan, Hua-Jing; Liu, Der-Zen; Ho, Hsiu-O; Mao, Yong; Kohn, Joachim

    2015-01-01

    Given the growing number of arthritis patients and the limitations of current treatments, there is great urgency to explore cartilage substitutes by tissue engineering. In this study, we developed a novel decellularization method for menisci to prepare acellular extracellular matrix (ECM) scaffolds with minimal adverse effects on the ECM. Among all the acid treatments, formic acid treatment removed most of the cellular contents and preserved the highest ECM contents in the decellularized porcine menisci. Compared with fresh porcine menisci, the content of DNA decreased to 4.10%±0.03%, and there was no significant damage to glycosaminoglycan (GAG) or collagen. Histological staining also confirmed the presence of ECM and the absence of cellularity. In addition, a highly hydrophilic scaffold with three-dimensional interconnected porous structure was fabricated from decellularized menisci tissue. Human chondrocytes showed enhanced cell proliferation and synthesis of chondrocyte ECM including type II collagen and GAG when cultured in this acellular scaffold. Moreover, the scaffold effectively supported chondrogenesis of human bone marrow-derived mesenchymal stem cells. Finally, in vivo implantation was conducted in rats to assess the biocompatibility of the scaffolds. No significant inflammatory response was observed. The acellular ECM scaffold provided a native environment for cells with diverse physiological functions to promote cell proliferation and new tissue formation. This study reported a novel way to prepare decellularized meniscus tissue and demonstrated the potential as scaffolds to support cartilage repair. PMID:25919905

  7. Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering.

    PubMed

    Chen, Ying-Chen; Chen, Ray-Neng; Jhan, Hua-Jing; Liu, Der-Zen; Ho, Hsiu-O; Mao, Yong; Kohn, Joachim; Sheu, Ming-Thau

    2015-09-01

    Given the growing number of arthritis patients and the limitations of current treatments, there is great urgency to explore cartilage substitutes by tissue engineering. In this study, we developed a novel decellularization method for menisci to prepare acellular extracellular matrix (ECM) scaffolds with minimal adverse effects on the ECM. Among all the acid treatments, formic acid treatment removed most of the cellular contents and preserved the highest ECM contents in the decellularized porcine menisci. Compared with fresh porcine menisci, the content of DNA decreased to 4.10%±0.03%, and there was no significant damage to glycosaminoglycan (GAG) or collagen. Histological staining also confirmed the presence of ECM and the absence of cellularity. In addition, a highly hydrophilic scaffold with three-dimensional interconnected porous structure was fabricated from decellularized menisci tissue. Human chondrocytes showed enhanced cell proliferation and synthesis of chondrocyte ECM including type II collagen and GAG when cultured in this acellular scaffold. Moreover, the scaffold effectively supported chondrogenesis of human bone marrow-derived mesenchymal stem cells. Finally, in vivo implantation was conducted in rats to assess the biocompatibility of the scaffolds. No significant inflammatory response was observed. The acellular ECM scaffold provided a native environment for cells with diverse physiological functions to promote cell proliferation and new tissue formation. This study reported a novel way to prepare decellularized meniscus tissue and demonstrated the potential as scaffolds to support cartilage repair. PMID:25919905

  8. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    PubMed Central

    Pot, Michiel W.; Gonzales, Veronica K.; Buma, Pieter; IntHout, Joanna

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular biomaterials significantly

  9. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    PubMed

    Pot, Michiel W; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; van Kuppevelt, Toin H; de Vries, Rob B M; Daamen, Willeke F

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0-100% scale. Implantation of acellular biomaterials significantly

  10. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    PubMed

    Pot, Michiel W; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; van Kuppevelt, Toin H; de Vries, Rob B M; Daamen, Willeke F

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0-100% scale. Implantation of acellular biomaterials significantly

  11. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    PubMed Central

    Pot, Michiel W.; Gonzales, Veronica K.; Buma, Pieter; IntHout, Joanna

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular biomaterials significantly

  12. Cartilage engineering using chondrocyte cell sheets and its application in reconstruction of microtia.

    PubMed

    Zhou, Libin; Ding, Ruiying; Li, Baowei; Han, Haolun; Wang, Hongnan; Wang, Gang; Xu, Bingxin; Zhai, Suoqiang; Wu, Wei

    2015-01-01

    The imperfections of scaffold materials have hindered the clinical application of cartilage tissue engineering. The recently developed cell-sheet technique is adopted to engineer tissues without scaffold materials, thus is considered being potentially able to overcome the problems concerning the scaffold imperfections. This study constructed monolayer and bilayer chondrocyte cell sheets and harvested the sheets with cell scraper instead of temperature-responsive culture dishes. The properties of the cultured chondrocyte cell sheets and the feasibility of cartilage engineering using the chondrocyte cell sheets was further investigated via in vitro and in vivo study. Primary extracellular matrix (ECM) formation and type II collagen expression was detected in the cell sheets during in vitro culture. After implanted into nude mice for 8 weeks, mature cartilage discs were harvested. The morphology of newly formed cartilage was similar in the constructs originated from monolayer and bilayer chondrocyte cell sheet. The chondrocytes were located within evenly distributed ovoid lacunae. Robust ECM formation and intense expression of type II collagen was observed surrounding the evenly distributed chondrocytes in the neocartilages. Biochemical analysis showed that the DNA contents of the neocartilages were higher than native human costal cartilage; while the contents of the main component of ECM, glycosaminoglycan and hydroxyproline, were similar to native human costal cartilage. In conclusion, the chondrocyte cell sheet constructed using the simple and low-cost technique is basically the same with the cell sheet cultured and harvested in temperature-responsive culture dishes, and can be used for cartilage tissue engineering.

  13. Cartilage engineering using chondrocyte cell sheets and its application in reconstruction of microtia.

    PubMed

    Zhou, Libin; Ding, Ruiying; Li, Baowei; Han, Haolun; Wang, Hongnan; Wang, Gang; Xu, Bingxin; Zhai, Suoqiang; Wu, Wei

    2015-01-01

    The imperfections of scaffold materials have hindered the clinical application of cartilage tissue engineering. The recently developed cell-sheet technique is adopted to engineer tissues without scaffold materials, thus is considered being potentially able to overcome the problems concerning the scaffold imperfections. This study constructed monolayer and bilayer chondrocyte cell sheets and harvested the sheets with cell scraper instead of temperature-responsive culture dishes. The properties of the cultured chondrocyte cell sheets and the feasibility of cartilage engineering using the chondrocyte cell sheets was further investigated via in vitro and in vivo study. Primary extracellular matrix (ECM) formation and type II collagen expression was detected in the cell sheets during in vitro culture. After implanted into nude mice for 8 weeks, mature cartilage discs were harvested. The morphology of newly formed cartilage was similar in the constructs originated from monolayer and bilayer chondrocyte cell sheet. The chondrocytes were located within evenly distributed ovoid lacunae. Robust ECM formation and intense expression of type II collagen was observed surrounding the evenly distributed chondrocytes in the neocartilages. Biochemical analysis showed that the DNA contents of the neocartilages were higher than native human costal cartilage; while the contents of the main component of ECM, glycosaminoglycan and hydroxyproline, were similar to native human costal cartilage. In conclusion, the chondrocyte cell sheet constructed using the simple and low-cost technique is basically the same with the cell sheet cultured and harvested in temperature-responsive culture dishes, and can be used for cartilage tissue engineering. PMID:25755694

  14. Driving Cartilage Formation in High-Density Human Adipose-Derived Stem Cell Aggregate and Sheet Constructs Without Exogenous Growth Factor Delivery

    PubMed Central

    Dang, Phuong N.; Solorio, Loran D.

    2014-01-01

    An attractive cell source for cartilage tissue engineering, human adipose-derived stem cells (hASCs) can be easily expanded and signaled to differentiate into chondrocytes. This study explores the influence of growth factor distribution and release kinetics on cartilage formation within 3D hASC constructs incorporated with transforming growth factor-β1 (TGF-β1)-loaded gelatin microspheres. The amounts of microspheres, TGF-β1 concentration, and polymer degradation rate were varied within hASC aggregates. Microsphere and TGF-β1 loading concentrations were identified that resulted in glycosaminoglycan (GAG) production comparable to those of control aggregates cultured in TGF-β1-containing medium. Self-assembling hASC sheets were then engineered for the production of larger, more clinically relevant constructs. Chondrogenesis was observed in hASC-only sheets cultured with exogenous TGF-β1 at 3 weeks. Importantly, sheets with incorporated TGF-β1-loaded microspheres achieved GAG production similar to sheets treated with exogenous TGF-β1. Cartilage formation was confirmed histologically via observation of cartilage-like morphology and GAG staining. This is the first demonstration of the self-assembly of hASCs into high-density cell sheets capable of forming cartilage in the presence of exogenous TGF-β1 or with TGF-β1-releasing microspheres. Microsphere incorporation may bypass the need for extended in vitro culture, potentially enabling hASC sheets to be implanted more rapidly into defects to regenerate cartilage in vivo. PMID:24873753

  15. Infection in the Nasal Tip Caused by Acellular Dermal Matrix.

    PubMed

    Lee, Kun Hee

    2015-12-01

    A 19-year-old female patient visited our clinic for rhinoplasty. She complained about her low take-off point, which was apparent in profile view, and wanted slight tip projection. She refused additional cartilage harvesting from ears or ribs but consented to the use of homologous tissue, including acellular dermal matrix, for her dorsum and tip. Septoturbinoplasty was performed, and only a very small amount of septal cartilage could be harvested. It was used as both the columellar strut and the alar rim graft. Nasal dorsum and tip were augmented with acellular dermal matrix. Three months postoperatively, she experienced a few episodes of edema and redness on her nasal tip, followed by pus exudation from the nasal skin. Six months postoperatively, she underwent revision rhinoplasty for removal of inflamed grafts, and onlay tip graft with homologous rib cartilage was performed. Nasal dorsum or tip grafts are an integral part of Asian rhinoplasty. Autogenous tissue is the gold standard for grafting materials. However, the limited availability of autogenous tissue and the preference of patients and surgeons for artificial surgical implants make Asian rhinoplasty challenging. Unavailability of autogenous cartilage and patient refusal of artificial implants led to the use of acellular dermal matrix (ADM) in the nasal dorsum and tip for this case. This is the first report of postoperative complication because of infection rather than absorption after ADM use.

  16. Infection in the Nasal Tip Caused by Acellular Dermal Matrix.

    PubMed

    Lee, Kun Hee

    2015-12-01

    A 19-year-old female patient visited our clinic for rhinoplasty. She complained about her low take-off point, which was apparent in profile view, and wanted slight tip projection. She refused additional cartilage harvesting from ears or ribs but consented to the use of homologous tissue, including acellular dermal matrix, for her dorsum and tip. Septoturbinoplasty was performed, and only a very small amount of septal cartilage could be harvested. It was used as both the columellar strut and the alar rim graft. Nasal dorsum and tip were augmented with acellular dermal matrix. Three months postoperatively, she experienced a few episodes of edema and redness on her nasal tip, followed by pus exudation from the nasal skin. Six months postoperatively, she underwent revision rhinoplasty for removal of inflamed grafts, and onlay tip graft with homologous rib cartilage was performed. Nasal dorsum or tip grafts are an integral part of Asian rhinoplasty. Autogenous tissue is the gold standard for grafting materials. However, the limited availability of autogenous tissue and the preference of patients and surgeons for artificial surgical implants make Asian rhinoplasty challenging. Unavailability of autogenous cartilage and patient refusal of artificial implants led to the use of acellular dermal matrix (ADM) in the nasal dorsum and tip for this case. This is the first report of postoperative complication because of infection rather than absorption after ADM use. PMID:26894006

  17. Cartilage Disorders

    MedlinePlus

    ... cartilage problems include Tears and injuries, such as sports injuries Genetic factors Other disorders, such as some types of arthritis Osteoarthritis results from breakdown of cartilage. NIH: National Institute of Arthritis and Musculoskeletal and Skin Diseases

  18. Engineering Cartilage

    MedlinePlus

    ... Method Builds Bone Lab-Grown Kidneys Function in Rats Cartilage: The Key to Healthy Joints Fast Facts ... Popular Stories An expanded map of the human brain How breast cancers resist chemotherapy Stem cells grown ...

  19. Acellular pertussis vaccines in China.

    PubMed

    Wang, Lichan; Lei, Dianliang; Zhang, Shumin

    2012-11-26

    In China, whole-cell pertussis (Pw) vaccines were produced in the early 1960s and acellular pertussis (Pa) vaccines were introduced in 1995. Pa vaccines have now almost completely replaced Pw vaccines in the national immunization program. To strengthen the regulation of vaccines used in China, a vaccine lot release system was established in 2001 and Pa vaccines have been included in the system since 2006. This paper mainly described the current status of production and the quality control measures in place for Pa vaccines; and analyses quality control test data accumulated between 2006 and 2010.

  20. Articular cartilage biochemistry

    SciTech Connect

    Kuettner, K.E.; Schleyerbach, R.; Hascall, V.C.

    1986-01-01

    This book contains six parts, each consisting of several papers. The part titles are: Cartilage Matrix Components; Biosynthesis and Characterization of Cartilage--Specific Matrix Components and Events; Cartilage Metabolism; In Vitro Studies of Articular Cartilage Metabolism; Normal and Pathologic Metabolism of Cartilage; and Destruction of the Articular Cartilage in Rheumatoid Diseases. Some of the paper topics are: magnetic resonance imaging; joint destruction; age-related changes; proteoglycan structure; and biosynthesis of cartilage proteoglycan.

  1. Development and characterisation of a decellularised bovine osteochondral biomaterial for cartilage repair.

    PubMed

    Fermor, Hazel L; Russell, Serena L; Williams, Sophie; Fisher, John; Ingham, Eileen

    2015-05-01

    It is proposed that an acellular natural osteochondral scaffold will provide a successful repair material for the early intervention treatment of cartilage lesions, to prevent or slow the progression of cartilage deterioration to osteoarthritis. Here, we investigated the efficacy of methods for the decellularisation of bovine osteochondral plugs. The plugs were subject to four freeze/thaw cycles followed by two cycles of washes in hypotonic solution and low concentration (0.1% w/v) sodium dodecyl sulphate with protease inhibitors. Plugs were treated with nuclease (DNase and RNase) treatment followed by sterilization in peracetic acid. Full tissue decellularisation was achieved as confirmed by histological analysis and DNA quantification, however the resultant acellular matrix had reduced glycosaminoglycan content which led to an increased percent deformation of cartilage. Furthermore, the acellular scaffold was not reproducibly biocompatible. Additional terminal washes were included in the process to improve biocompatibility, however, this led to visible structural damage to the cartilage. This damage was found to be minimised by reducing the cut edge to cartilage area ratio through decellularisation of larger cuts of osteochondral tissue. PMID:25893393

  2. Recent advances in acellular regenerative tissue scaffolds.

    PubMed

    Protzman, Nicole M; Brigido, Stephen A

    2015-01-01

    The management of chronic wounds is a considerable challenge for foot and ankle surgeons. The well-established tenets of adequate vascular supply, debridement with eradication of infection, and offloading must be employed in the management of all extremity wounds. Regenerative scaffolds are a viable means of reestablishing a favorable wound environment. The matrix facilitates cell migration, chemoattraction, angiogenesis, wound bed granulation, and expedited wound closure. Although studies have demonstrated success with acellular matrices, a multimodal approach should always be employed to improve healing success. Negative pressure wound therapy, compression, offloading, and antibiotics are advocated to improve outcomes. Acellular graft selection requires a multifactorial analysis, taking into consideration the specific patient and wound characteristics as well as the differences between acellular matrices. Patient age, comorbidities, activity level, and ability to comply with protocol as well as wound etiology, duration, depth, surface area, exudate, bacterial burden, location, vascular status, ischemic status, and presentation are all critical components. To effectively choose a matrix, the clinician must have a comprehensive understanding of the products available and the data validating their use. The mechanisms by which the acellular matrix accelerates wound healing and increases the likelihood of wound healing continue to be investigated. However, it is clear that these acellular biologic tissue scaffolds are incorporating into the host tissue, with resultant revascularization and cellular repopulation. Moving forward, additional investigations examining the effectiveness of acellular biologic tissue scaffolds to improve healing in complex, nondiabetic wounds are warranted.

  3. Demonstration of fibronectin in human articular cartilage by an indirect immunoperoxidase technique.

    PubMed

    Clemmensen, I; Hølund, B; Johansen, N; Andersen, R B

    1982-01-01

    Fresh frozen tissue sections of human articular cartilage was treated without and with human testicular hyaluronidase (2 x 10(6) units/l) for 60 min at 37 degrees C and stained by the indirect immunoperoxidase technique with rabbit antihuman fibronectin. The rabbit antihuman fibronectin was purified by affinity chromatography on human fibronectin-Sepharose. Fibronectin was only found on the acellular surface of the articular cartilage in tissue sections not treated with hyaluronidase. In this surface layer, probably identical to "lamina splendens", the arrangement of fibronectin was as a membrane. No collagen was seen in this area by van Gieson staining. No staining for fibronectin was found in the cartilage matrix or in the chondrocytes. Treatment of the cartilage tissue with hyaluronidase resulted in visualization of high amount of fibronectin in the cartilage matrix, with the highest intensity around the chondrocytes. The staining of the acellular surface layer of the articular cartilage was identical with the results obtained without hyaluronidase treatment. These results indicate that articular cartilage is rich in fibronectin probably in complex with hyaluronic acid, and that the chondrocytes produce fibronectin in situ. It also demonstrates the steric hindrance of hyaluronic acid aggregates in diffusion of the antibody and the value of hyaluronidase treatment of tissue before demonstration of fibronectin. PMID:6757202

  4. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.

    PubMed

    Cattell, Maria; Lai, Su; Cerny, Robert; Medeiros, Daniel Meulemans

    2011-01-01

    The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed

  5. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.

    PubMed

    Cattell, Maria; Lai, Su; Cerny, Robert; Medeiros, Daniel Meulemans

    2011-01-01

    The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed

  6. Automatic detection of diseased regions in knee cartilage

    NASA Astrophysics Data System (ADS)

    Qazi, Arish A.; Dam, Erik B.; Olsen, Ole F.; Nielsen, Mads; Christiansen, Claus

    2007-03-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation. A central problem in clinical trials is quantification of progression and early detection of the disease. The accepted standard for evaluating OA progression is to measure the joint space width from radiographs however; there the cartilage is not visible. Recently cartilage volume and thickness measures from MRI are becoming popular, but these measures don't account for the biochemical changes undergoing in the cartilage before cartilage loss even occurs and therefore are not optimal for early detection of OA. As a first step, we quantify cartilage homogeneity (computed as the entropy of the MR intensities) from 114 automatically segmented medial compartments of tibial cartilage sheets from Turbo 3D T 1 sequences, from subjects with no, mild or severe OA symptoms. We show that homogeneity is a more sensitive technique than volume quantification for detecting early OA and for separating healthy individuals from diseased. During OA certain areas of the cartilage are affected more and it is believed that these are the load-bearing regions located at the center of the cartilage. Based on the homogeneity framework we present an automatic technique that partitions the region on the cartilage that contributes to maximum homogeneity discrimination. These regions however, are more towards the noncentral regions of the cartilage. Our observation will provide valuable clues to OA research and may lead to improving treatment efficacy.

  7. "High-grade" central acellular carcinoma and matrix-producing carcinoma of the breast: correlation between ultrasonographic findings and pathological features.

    PubMed

    Yamaguchi, Rin; Tanaka, Maki; Mizushima, Yasuko; Hirai, Yoshitake; Yamaguchi, Miki; Terasaki, Hiroshi; Yokoyama, Toshiro; Tsuchiya, Shin-ichi; Nakashima, Osamu; Yano, Hirohisa

    2011-09-01

    High-grade carcinoma with a large central acellular zone (central acellular carcinoma, CAC) and matrixproducing carcinoma (MPC) are aggressive tumors that both have a central myxomatous acellular zone. Their characteristic morphology may be useful in diagnostic imaging. Ultrasonographic findings based on the Breast Imaging Recording and Data System (BI-RADS) and detailed histological features were evaluated in 11 cases of CAC and 2 cases of MPC to characterize their features. Safranin-O staining was undertaken for the evaluation of central acellular zones in these tumors. Overall, ultrasonography demonstrated heterogeneous hyperechoic lesions in the center of the hypoechoic mass. Posterior echo enhancement was observed in all but 1 case. One case was classified as malignant and the others as "borderline." Histologically, cancer tissue was located in the periphery of the tumor with a ring-like structure and fewer cellular central areas comprising hyaline cartilage myxoid material such as those stained by safranin-O. The present study showed that the pathological findings of CACs and MPCs accurately reflect the ultrasonographic findings. Tumors that showed hyperechoic areas in the center of the hypoechoic mass, with posterior echo enhancement indicating acellular zones composed by myxochondroid material, and that were also relatively round on ultrasonography may be benign, but evaluation is required to exclude CAC and MPC.

  8. In vitro assessment of biodurability: acellular systems.

    PubMed Central

    de Meringo, A; Morscheidt, C; Thélohan, S; Tiesler, H

    1994-01-01

    The assessment of biodurability of man-made vitreous fibers is essential to the limitation of health hazards associated with human exposure to environments in which respirable fibers are present. In vitro acellular systems provide effective test methods of measuring fiber solubility provided care is taken to select the most suitable solvent and test conditions for the specific fiber type and dimension. PMID:7882955

  9. Equine cricoid cartilage densitometry.

    PubMed Central

    Behrens, E; Poteet, B; Cohen, N

    1993-01-01

    The density of the cricoid cartilage from 29 equine larynges collected from an abattoir was determined by dual photon absorptiometry (DPA). Densities of the right and left cricoid cartilages were highly correlated. No correlation was found between age of the horse and the density of the cricoid cartilage. PMID:8269372

  10. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix.

    PubMed

    Ye, Ken; Traianedes, Kathy; Choong, Peter F M; Myers, Damian E

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair. PMID:26858950

  11. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix

    PubMed Central

    Ye, Ken; Traianedes, Kathy; Choong, Peter F. M.; Myers, Damian E.

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell–matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair. PMID:26858950

  12. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix.

    PubMed

    Ye, Ken; Traianedes, Kathy; Choong, Peter F M; Myers, Damian E

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair.

  13. The surface lamina of the articular cartilage of human zygapophyseal joints.

    PubMed

    Giles, L G

    1992-07-01

    Literature referring to the conflicting results of investigations into the possible existence and composition of the lamina splendens is reviewed. Two hundred micrometer thick histological sections from 80 human cadaveric lower lumbar zygapophyseal joint articular cartilages were examined by ordinary light and darkfield microscopy. The findings illustrate what appears to be an acellular surface lamina on the opposing cartilaginous surfaces. No speculation is made regarding the possible physiological significance of the lamina based on this anatomical study. PMID:1609968

  14. Lubricin reduces cartilage--cartilage integration.

    PubMed

    Schaefer, Dirk B; Wendt, David; Moretti, Matteo; Jakob, Marcel; Jay, Gregory D; Heberer, Michael; Martin, Ivan

    2004-01-01

    Cartilage integration in vivo does not occur, such that even cartilage fissures do not heal. This could be due not only to the limited access of chondrocytes to the wound, but also to exogenous factors. In this paper, we tested the hypothesis that lubricin, a lubricating protein physiologically present in the synovial fluid, reduces the integrative cartilage repair capacity. Disk/ring composites of bovine articular cartilage were prepared using concentric circular blades and cultured for 6 weeks with or without treatment with 250 microg/ml lubricin applied three times per week. Following culture, the percentage of contact area between the disks and the rings, as assessed by light microscopy, were equal in both groups. The adhesive strength of the integration interface, as assessed by push-out mechanical tests, was markedly and significantly lower in lubricin-treated specimens (2.5 kPa) than in the controls (28.7 kPa). Histological observation of Safranin-O stained cross-sections confirmed the reduced integration in the lubricin treated composites. Our findings suggest that the synovial milieu, by providing lubrication of cartilage surfaces, impairs cartilage--cartilage integration. PMID:15299281

  15. Modelling cartilage mechanobiology.

    PubMed Central

    Carter, Dennis R; Wong, Marcy

    2003-01-01

    The growth, maintenance and ossification of cartilage are fundamental to skeletal development and are regulated throughout life by the mechanical cues that are imposed by physical activities. Finite element computer analyses have been used to study the role of local tissue mechanics on endochondral ossification patterns, skeletal morphology and articular cartilage thickness distributions. Using single-phase continuum material representations of cartilage, the results have indicated that local intermittent hydrostatic pressure promotes cartilage maintenance. Cyclic tensile strains (or shear), however, promote cartilage growth and ossification. Because single-phase material models cannot capture fluid exudation in articular cartilage, poroelastic (or biphasic) solid/fluid models are often implemented to study joint mechanics. In the middle and deep layers of articular cartilage where poroelastic analyses predict little fluid exudation, the cartilage phenotype is maintained by cyclic fluid pressure (consistent with the single-phase theory). In superficial articular layers the chondrocytes are exposed to tangential tensile strain in addition to the high fluid pressure. Furthermore, there is fluid exudation and matrix consolidation, leading to cell 'flattening'. As a result, the superficial layer assumes an altered, more fibrous phenotype. These computer model predictions of cartilage mechanobiology are consistent with results of in vitro cell and tissue and molecular biology experiments. PMID:14561337

  16. Acellular dermal matrix in abdominal wall reconstruction.

    PubMed

    Silverman, Ronald P

    2011-09-01

    Abdominal wall reconstruction is a complex and challenging surgical undertaking. While permanent prosthetic mesh is considered the gold standard for minimizing hernia recurrence, placement of synthetic mesh is sometimes imprudent due to contamination or risk of infection. Acellular dermal matrices (ADM) offer an exciting biologic alternative. This article provides a historical perspective on the evolution of complex ventral hernia repair leading up to and including the placement of ADM, an explanation of the biology of ADM as it relates to ventral hernia repair, and a description of the current indications, techniques, benefits, and shortcomings of its use in the abdominal wall.

  17. Cartilage conduction hearing.

    PubMed

    Shimokura, Ryota; Hosoi, Hiroshi; Nishimura, Tadashi; Yamanaka, Toshiaki; Levitt, Harry

    2014-04-01

    Sound information is known to travel to the cochlea via either air or bone conduction. However, a vibration signal, delivered to the aural cartilage via a transducer, can also produce a clearly audible sound. This type of conduction has been termed "cartilage conduction." The aural cartilage forms the outer ear and is distributed around the exterior half of the external auditory canal. In cartilage conduction, the cartilage and transducer play the roles of a diaphragm and voice coil of a loudspeaker, respectively. There is a large gap between the impedances of cartilage and skull bone, such that cartilage vibrations are not easily transmitted through bone. Thus, these methods of conduction are distinct. In this study, force was used to apply a transducer to aural cartilage, and it was found that the sound in the auditory canal was amplified, especially for frequencies below 2 kHz. This effect was most pronounced at an application force of 1 N, which is low enough to ensure comfort in the design of hearing aids. The possibility of using force adjustments to vary amplification may also have applications for cell phone design.

  18. Cartilage transplantation techniques for talar cartilage lesions.

    PubMed

    Mitchell, Matthew E; Giza, Eric; Sullivan, Martin R

    2009-07-01

    Talar articular cartilage is known to differ significantly from knee cartilage. Even so, recommendations for the treatment of talar cartilage lesions have been based on strategies for the knee. Arthroscopic management of osteochondral lesions of the talus is well documented. Results have been favorable with reparative techniques such as débridement with curettage and débridement with drilling, whether undertaken via early open techniques or more recent arthroscopic procedures. Salvage of failed reparative techniques is controversial. Early efforts to salvage failed débridement focused on osteochondral allografts and autografts that used the knee as a donor site. Results of these restorative techniques have been favorable, but concerns have been raised regarding knee donor site morbidity, the use of malleolar osteotomy, and incomplete restoration of the talar articular surface. More recent restorative techniques developed for the knee have been adapted for the ankle, such as autologous chondrocyte implantation and matrix-induced autologous chondrocyte implantation.

  19. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  20. Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage.

    PubMed

    Liao, I-Chien; Moutos, Franklin T; Estes, Bradley T; Zhao, Xuanhe; Guilak, Farshid

    2013-12-17

    The development of synthetic biomaterials that possess mechanical properties that mimic those of native tissues remains an important challenge to the field of materials. In particular, articular cartilage is a complex nonlinear, viscoelastic, and anisotropic material that exhibits a very low coefficient of friction, allowing it to withstand millions of cycles of joint loading over decades of wear. Here we show that a three-dimensionally woven fiber scaffold that is infiltrated with an interpenetrating network hydrogel can provide a functional biomaterial that provides the load-bearing and tribological properties of native cartilage. An interpenetrating dual-network "tough-gel" consisting of alginate and polyacrylamide was infused into a porous three-dimensionally woven poly(ε-caprolactone) fiber scaffold, providing a versatile fiber-reinforced composite structure as a potential acellular or cell-based replacement for cartilage repair. PMID:24578679

  1. Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage.

    PubMed

    Liao, I-Chien; Moutos, Franklin T; Estes, Bradley T; Zhao, Xuanhe; Guilak, Farshid

    2013-12-17

    The development of synthetic biomaterials that possess mechanical properties that mimic those of native tissues remains an important challenge to the field of materials. In particular, articular cartilage is a complex nonlinear, viscoelastic, and anisotropic material that exhibits a very low coefficient of friction, allowing it to withstand millions of cycles of joint loading over decades of wear. Here we show that a three-dimensionally woven fiber scaffold that is infiltrated with an interpenetrating network hydrogel can provide a functional biomaterial that provides the load-bearing and tribological properties of native cartilage. An interpenetrating dual-network "tough-gel" consisting of alginate and polyacrylamide was infused into a porous three-dimensionally woven poly(ε-caprolactone) fiber scaffold, providing a versatile fiber-reinforced composite structure as a potential acellular or cell-based replacement for cartilage repair.

  2. Mechanotransduction and cartilage integrity

    PubMed Central

    Leong, Daniel J.; Hardin, John A.; Cobelli, Neil J.; Sun, Hui B.

    2015-01-01

    Osteoarthritis (OA) is characterized by the breakdown of articular cartilage that is mediated in part by increased production of matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS), enzymes that degrade components of the cartilage extracellular matrix. Efforts to design synthetic inhibitors of MMPs/ADAMTS have only led to limited clinical success. In addition to pharmacologic therapies, physiologic joint loading is widely recommended as a nonpharmacologic approach to improve joint function in osteoarthritis. Clinical trials report that moderate levels of exercise exert beneficial effects, such as improvements in pain and physical function. Experimental studies demonstrate that mechanical loading mitigates joint destruction through the downregulation of MMPs/ADAMTS. However, the molecular mechanisms underlying these effects of physiologic loading on arthritic joints are not well understood. We review here the recent progress on mechanotransduction in articular joints, highlighting the mediators and pathways in the maintenance of cartilage integrity, especially in the prevention of cartilage degradation in OA. PMID:22172037

  3. Nanotechnology Biomimetic Cartilage Regenerative Scaffolds

    PubMed Central

    Sardinha, Jose Paulo; Myers, Simon

    2014-01-01

    Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery. PMID:24883273

  4. Cartilage on the Move: Cartilage Lineage Tracing During Tadpole Metamorphosis

    PubMed Central

    Kerney, Ryan R.; Brittain, Alison L.; Hall, Brian K.; Buchholz, Daniel R.

    2012-01-01

    The reorganization of cranial cartilages during tadpole metamorphosis is a set of complex processes. The fates of larval cartilage-forming cells (chondrocytes) and sources of adult chondrocytes are largely unknown. Individual larval cranial cartilages may either degenerate or remodel, while many adult cartilages appear to form de novo during metamorphosis. Determining the extent to which adult chondrocytes/cartilages are derived from larval chondrocytes during metamorphosis requires new techniques in chondrocyte lineage tracing. We have developed two transgenic systems to label cartilage cells throughout the body with fluorescent proteins. One system strongly labels early tadpole cartilages only. The other system inducibly labels forming cartilages at any developmental stage. We examined cartilages of the skull (viscero- and neurocranium), and identified larval cartilages that either resorb or remodel into adult cartilages. Our data show that the adult otic capsules, tecti anterius and posterius, hyale, and portions of Meckel’s cartilage are derived from larval chondrocytes. Our data also suggest that most adult cartilages form de novo, though we cannot rule out the potential for extreme larval chondrocyte proliferation or de- and re-differentiation, which could dilute our fluorescent protein signal. The transgenic lineage tracing strategies developed here are the first examples of inducible, skeleton-specific, lineage tracing in Xenopus. PMID:23036161

  5. Biological, biochemical and biomechanical characterisation of articular cartilage from the porcine, bovine and ovine hip and knee.

    PubMed

    Fermor, H L; McLure, S W D; Taylor, S D; Russell, S L; Williams, S; Fisher, J; Ingham, E

    2015-01-01

    This study aimed to determine the optimal starting material for the development of an acellular osteochondral graft. Osteochondral tissues from three different species were characterised; pig (6 months), cow (18 months) and two ages of sheep (8-12 months and >4 year old). Tissues from the acetabulum and femoral head of the hip, and the groove, medial and lateral condyles and tibial plateau of the knee were assessed. Histological analysis of each tissue allowed for qualification of cartilage histoarchitecture, glycosaminoglycan (GAG) distribution, assessment of cellularity and cartilage thickness. Collagen and GAG content were quantified and cartilage water content was defined. Following biomechanical testing, the percentage deformation, permeability and equilibrium elastic modulus was determined. Results showed that porcine cartilage had the highest concentration of sulphated proteoglycans and that the condyles and groove of the knee showed higher GAG content than other joint areas. Cartilage from younger tissues (porcine and young ovine) had higher cell content and was thicker, reflecting the effects of age on cartilage structure. Cartilage from older sheep had a much higher elastic modulus and was less permeable than other species.

  6. Articular Cartilage Injury in Athletes

    PubMed Central

    McAdams, Timothy R.; Mithoefer, Kai; Scopp, Jason M.; Mandelbaum, Bert R.

    2010-01-01

    Articular cartilage lesions in the athletic population are observed with increasing frequency and, due to limited intrinsic healing capacity, can lead to progressive pain and functional limitation over time. If left untreated, isolated cartilage lesions can lead to progressive chondropenia or global cartilage loss over time. A chondropenia curve is described to help predict the outcome of cartilage injury based on different lesion and patient characteristics. Nutriceuticals and chondroprotective agents are being investigated as tools to slow the development of chondropenia. Several operative techniques have been described for articular cartilage repair or replacement and, more recently, cartilage regeneration. Rehabilitation guidelines are being developed to meet the needs of these new techniques. Next-generation techniques are currently evaluated to optimize articular cartilage repair biology and to provide a repair cartilage tissue that can withstand the high mechanical loads experienced by the athlete with consistent long-term durability. PMID:26069548

  7. Acellular Dermal Matrix in Rotator Cuff Surgery.

    PubMed

    Cooper, Joseph; Mirzayan, Raffy

    2016-01-01

    The success of rotator cuff repair (RCR) surgery can be measured clinically (validated outcome scores, range of motion) as well as structurally (re-tear rates using imaging studies). Regardless of repair type or technique, most studies have shown that patients do well clinically. However, multiple studies have also shown that structurally, the failure rate can be very high. A variety of factors, including poor tendon quality, age over 63 years, smoking, advanced fatty infiltration into the muscle, and the inability of the tendon to heal to bone, have been implicated as the cause of the high re-tear rate in RCRs. The suture-tendon interface is felt to be the weakest link in the RCR construct, and suture pullout through the tendon is believed to be the most common method of failure. This review of the published literature seeks to determine if there is support for augmentation of RCR with acellular dermal matrices to strengthen the suture-tendon interface and reduce the re-tear rate. PMID:27552454

  8. Anti-cartilage antibody.

    PubMed

    Greenbury, C L; Skingle, J

    1979-08-01

    Antibody to cartilage has been demonstrated by indirect immunofluorescence on rat trachea in the serum of about 3% of 1126 patients with rheumatoid arthritis. Titres ranged from 1:20 to 1:640. The antibody was not found in 284 patients with primary or secondary osteoarthritis or in 1825 blood donors, nor, with the exception of two weak reactors, in 1314 paraplegic patients. In most cases the antibody appears to be specific for native type II collagen. Using this as an antigen in a haemagglutination test 94% of anti-cartilage sera were positive, whereas among 100 rheumatoid control sera there were only three weak positives. More than 80% of patients with antibody had some erosion of articular cartilage, but there was no correlation with age, sex, duration of disease, nor any recognisable clinical event or change.

  9. Anti-cartilage antibody.

    PubMed Central

    Greenbury, C L; Skingle, J

    1979-01-01

    Antibody to cartilage has been demonstrated by indirect immunofluorescence on rat trachea in the serum of about 3% of 1126 patients with rheumatoid arthritis. Titres ranged from 1:20 to 1:640. The antibody was not found in 284 patients with primary or secondary osteoarthritis or in 1825 blood donors, nor, with the exception of two weak reactors, in 1314 paraplegic patients. In most cases the antibody appears to be specific for native type II collagen. Using this as an antigen in a haemagglutination test 94% of anti-cartilage sera were positive, whereas among 100 rheumatoid control sera there were only three weak positives. More than 80% of patients with antibody had some erosion of articular cartilage, but there was no correlation with age, sex, duration of disease, nor any recognisable clinical event or change. Images Fig. 1 PMID:389957

  10. Cartilage (Bovine and Shark) (PDQ)

    MedlinePlus

    ... and use of cartilage as a complementary or alternative treatment for cancer? Cartilage from cows (bovine cartilage) and sharks has ... of CAM therapies originally considered to be purely alternative approaches are finding a place in cancer treatment—not as cures, but as complementary therapies that ...

  11. Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration.

    PubMed

    Corona, Benjamin T; Greising, Sarah M

    2016-10-01

    Volumetric muscle loss (VML) injuries present a complex and heterogeneous clinical problem that results in a chronic loss of muscle tissue and strength. The primary limitation to muscle tissue regeneration after VML injury is the frank loss of all native muscle constituents in the defect, especially satellite cells and the basal lamina. Recent advancements in regenerative medicine have set forth encouraging and emerging translational and therapeutic options for these devastating injuries including the surgical implantation of acellular biological scaffolds. While these biomaterials can modulate the wound environment, the existing data do not support their capacity to promote appreciable muscle fiber regeneration that can contribute to skeletal muscle tissue functional improvements. An apparent restriction of endogenous satellite cell (i.e., pax7(+)) migration to acellular biological scaffolds likely underlies this deficiency. This work critically evaluates the role of an acellular biological scaffold in orchestrating skeletal muscle tissue regeneration, specifically when used as a regenerative medicine approach for VML injury. PMID:27472161

  12. Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration.

    PubMed

    Corona, Benjamin T; Greising, Sarah M

    2016-10-01

    Volumetric muscle loss (VML) injuries present a complex and heterogeneous clinical problem that results in a chronic loss of muscle tissue and strength. The primary limitation to muscle tissue regeneration after VML injury is the frank loss of all native muscle constituents in the defect, especially satellite cells and the basal lamina. Recent advancements in regenerative medicine have set forth encouraging and emerging translational and therapeutic options for these devastating injuries including the surgical implantation of acellular biological scaffolds. While these biomaterials can modulate the wound environment, the existing data do not support their capacity to promote appreciable muscle fiber regeneration that can contribute to skeletal muscle tissue functional improvements. An apparent restriction of endogenous satellite cell (i.e., pax7(+)) migration to acellular biological scaffolds likely underlies this deficiency. This work critically evaluates the role of an acellular biological scaffold in orchestrating skeletal muscle tissue regeneration, specifically when used as a regenerative medicine approach for VML injury.

  13. Costal Cartilage Grafts in Rhinoplasty.

    PubMed

    Fedok, Fred G

    2016-01-01

    Cartilage grafts are regularly used in rhinoplasty. Septal and auricular donor sites are commonly used. Many situations compel the surgeon to use other alternative donor sites, including revision rhinoplasty and trauma. Many patients have a small amount of native septal cartilage and are unable to provide adequate septal cartilage to be used for frequently performed rhinoplasty maneuvers. The rib cage provides an enormous reserve of costal cartilage that can be carved into a variety of necessary grafts. A description of the technique of harvesting costal cartilage, a review of complications and management, and illustrative cases examples are included. PMID:26616708

  14. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  15. Engineering Lubrication in Articular Cartilage

    PubMed Central

    McNary, Sean M.; Athanasiou, Kyriacos A.

    2012-01-01

    Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to withstand and support the physiological compressive and tensile forces in weight-bearing synovial joints such as the knee. However, there is an increasing realization that these tissue-engineered cartilage constructs will fail without the optimal frictional and wear properties present in native articular cartilage. These characteristics are critical to smooth, pain-free joint articulation and a long-lasting, durable cartilage surface. To achieve optimal tribological properties, engineered cartilage therapies will need to incorporate approaches and methods for functional lubrication. Steady progress in cartilage lubrication in native tissues has pushed the pendulum and warranted a shift in the articular cartilage tissue-engineering paradigm. Engineered tissues should be designed and developed to possess both tribological and mechanical properties mirroring natural cartilage. In this article, an overview of the biology and engineering of articular cartilage structure and cartilage lubrication will be presented. Salient progress in lubrication treatments such as tribosupplementation, pharmacological, and cell-based therapies will be covered. Finally, frictional assays such as the pin-on-disk tribometer will be addressed. Knowledge related to the elements of cartilage lubrication has progressed and, thus, an opportune moment is provided to leverage these advances at a critical step in the development of mechanically and tribologically robust, biomimetic tissue-engineered cartilage. This article is intended to serve as the first stepping stone toward future studies in functional

  16. Engineering lubrication in articular cartilage.

    PubMed

    McNary, Sean M; Athanasiou, Kyriacos A; Reddi, A Hari

    2012-04-01

    Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to withstand and support the physiological compressive and tensile forces in weight-bearing synovial joints such as the knee. However, there is an increasing realization that these tissue-engineered cartilage constructs will fail without the optimal frictional and wear properties present in native articular cartilage. These characteristics are critical to smooth, pain-free joint articulation and a long-lasting, durable cartilage surface. To achieve optimal tribological properties, engineered cartilage therapies will need to incorporate approaches and methods for functional lubrication. Steady progress in cartilage lubrication in native tissues has pushed the pendulum and warranted a shift in the articular cartilage tissue-engineering paradigm. Engineered tissues should be designed and developed to possess both tribological and mechanical properties mirroring natural cartilage. In this article, an overview of the biology and engineering of articular cartilage structure and cartilage lubrication will be presented. Salient progress in lubrication treatments such as tribosupplementation, pharmacological, and cell-based therapies will be covered. Finally, frictional assays such as the pin-on-disk tribometer will be addressed. Knowledge related to the elements of cartilage lubrication has progressed and, thus, an opportune moment is provided to leverage these advances at a critical step in the development of mechanically and tribologically robust, biomimetic tissue-engineered cartilage. This article is intended to serve as the first stepping stone toward future studies in functional

  17. Evaluation of lymphangiogenesis in acellular dermal matrix

    PubMed Central

    Cherubino, Mario; Pellegatta, Igor; Tamborini, Federico; Cerati, Michele; Sessa, Fausto; Valdatta, Luigi

    2014-01-01

    Introduction: Much attention has been directed towards understanding the phenomena of angiogenesis and lymphangiogenesis in wound healing. Thanks to the manifold dermal substitute available nowadays, wound treatment has improved greatly. Many studies have been published about angiogenesis and cell invasion in INTEGRA®. On the other hand, the development of the lymphatic network in acellular dermal matrix (ADM) is a more obscure matter. In this article, we aim to characterize the different phases of host cell invasion in ADM. Special attention was given to lymphangiogenic aspects. Materials and Methods: Among 57 rats selected to analyse the role of ADM in lymphangiogenesis, we created four groups. We performed an excision procedure on both thighs of these rats: On the left one we did not perform any action except repairing the borders of the wound; while on the right one we used INTEGRA® implant. The excision biopsy was performed at four different times: First group after 7 days, second after 14 days, third after 21 days and fourth after 28 days. For our microscopic evaluation, we used the classical staining technique of haematoxylin and eosin and a semi-quantitative method in order to evaluate cellularity counts. To assess angiogenesis and lymphangiogenesis development we employed PROX-1 Ab and CD31/PECAM for immunohistochemical analysis. Results: We found remarkable wound contraction in defects that healed by secondary intention while minor wound contraction was observed in defects treated with ADM. At day 7, optical microscopy revealed a more plentiful cellularity in the granulation tissue compared with the dermal regeneration matrix. The immunohistochemical process highlighted vascular and lymphatic cells in both groups. After 14 days a high grade of fibrosis was noticeable in the non-treated group. At day 21, both lymphatic and vascular endothelial cells were better developed in the group with a dermal matrix application. At day 28, lymphatic endothelial

  18. Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study

    PubMed Central

    Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.

    2011-01-01

    Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979

  19. Lubrication of Articular Cartilage.

    PubMed

    Jahn, Sabrina; Seror, Jasmine; Klein, Jacob

    2016-07-11

    The major synovial joints such as hips and knees are uniquely efficient tribological systems, able to articulate over a wide range of shear rates with a friction coefficient between the sliding cartilage surfaces as low as 0.001 up to pressures of more than 100 atm. No human-made material can match this. The means by which such surfaces maintain their very low friction has been intensively studied for decades and has been attributed to fluid-film and boundary lubrication. Here, we focus especially on the latter: the reduction of friction by molecular layers at the sliding cartilage surfaces. In particular, we discuss such lubrication in the light of very recent advances in our understanding of boundary effects in aqueous media based on the paradigms of hydration lubrication and of the synergism between different molecular components of the synovial joints (namely hyaluronan, lubricin, and phospholipids) in enabling this lubrication.

  20. Cartilage-forming tumors.

    PubMed

    Qasem, Shadi A; DeYoung, Barry R

    2014-01-01

    Cartilage-forming tumors as a group are the most common primary bone tumors; this is largely due to the common occurrence of asymptomatic benign lesions such as osteochondroma and enchondroma. The common feature of these tumors is the presence of chondrocytic cells and the formation of cartilaginous tumor matrix. Some of these tumors are true neoplasms while others are hamartomas or developmental abnormalities. The morphologic heterogeneity of these tumors may be explained by a common multipotent mesenchymal cell differentiating along the lines of fetal-adult cartilage maturation. Recently mutations in IDH1 and IDH2 have been detected in a variety of benign and malignant cartilaginous tumors.(1-4.) PMID:24680178

  1. Cartilage analysis by reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Laun, T.; Muenzer, M.; Wenzel, U.; Princz, S.; Hessling, M.

    2015-07-01

    A cartilage bioreactor with analytical functions for cartilage quality monitoring is being developed. For determining cartilage composition, reflection spectroscopy in the visible (VIS) and near infrared (NIR) spectral region is evaluated. Main goal is the determination of the most abundant cartilage compounds water, collagen I and collagen II. Therefore VIS and NIR reflection spectra of different cartilage samples of cow, pig and lamb are recorded. Due to missing analytical instrumentation for identifying the cartilage composition of these samples, typical literature concentration values are used for the development of chemometric models. In spite of these limitations the chemometric models provide good cross correlation results for the prediction of collagen I and II and water concentration based on the visible and the NIR reflection spectra.

  2. Signaling Pathways in Cartilage Repair

    PubMed Central

    Mariani, Erminia; Pulsatelli, Lia; Facchini, Andrea

    2014-01-01

    In adult healthy cartilage, chondrocytes are in a quiescent phase characterized by a fine balance between anabolic and catabolic activities. In ageing, degenerative joint diseases and traumatic injuries of cartilage, a loss of homeostatic conditions and an up-regulation of catabolic pathways occur. Since cartilage differentiation and maintenance of homeostasis are finely tuned by a complex network of signaling molecules and biophysical factors, shedding light on these mechanisms appears to be extremely relevant for both the identification of pathogenic key factors, as specific therapeutic targets, and the development of biological approaches for cartilage regeneration. This review will focus on the main signaling pathways that can activate cellular and molecular processes, regulating the functional behavior of cartilage in both physiological and pathological conditions. These networks may be relevant in the crosstalk among joint compartments and increased knowledge in this field may lead to the development of more effective strategies for inducing cartilage repair. PMID:24837833

  3. STUDIES ON CARTILAGE

    PubMed Central

    Sheldon, Huntington; Robinson, Robert A.

    1960-01-01

    Electron microscope observations on rabbit ear cartilage following the administration of papain show that both the elastic component of the matrix and the amorphous material disappear leaving a matrix which consists of delicate fibrils which are presumed to be collagen. This unmasking of fibrils coincides with the appearance of an abnormal component in the electrophoretic pattern of the rabbit's serum. The chondrocytes show vacuoles in their cytoplasm which appear at the same time that the cells appear crenated in the light microscope. A ruffly appearance of the cell surface membrane coincides with this vacuolization, and vacuoles often appear open and in continuity with the extracellular space. The resurgence of the rabbit ear is accompanied by a reconstitution of both the amorphous material and the elastic component of the matrix. During this period numerous dilated cisternae of the endoplasmic reticulum which contain a moderately dense material are present in the chondrocyte cytoplasm. We have been unable to demonstrate a direct relationship between the elastic component of the matrix and a particular component of the chondrocyte cytoplasm, but it is clear that changes occur in the cartilage cell cytoplasm during both the depletion and reconstitution of the matrix. Previous studies on the effect of papain on elastic tissue are noted and the possible relationships between changes in the cells and matrix of this elastic cartilage are discussed. PMID:19866569

  4. Biochemical composition of the superficial layer of articular cartilage.

    PubMed

    Crockett, R; Grubelnik, A; Roos, S; Dora, C; Born, W; Troxler, H

    2007-09-15

    To gain more information on the mechanism of lubrication in articular joints, the superficial layer of bovine articular cartilage was mechanically removed in a sheet of ice that formed on freezing the cartilage. Freeze-dried samples contained low concentrations of chondroitin sulphate and protein. Analysis of the protein by SDS PAGE showed that the composition of the sample was comparable to that of synovial fluid (SF). Attenuated total reflection infrared (ATR-IR) spectroscopy of the dried residue indicated that the sample contained mostly hyaluronan. Moreover, ATR-IR spectroscopy of the upper layer of the superficial layer, adsorbed onto silicon, showed the presence of phospholipids. A gel could be formed by mixing hyaluronan and phosphatidylcholine in water with mechanical properties similar to those of the superficial layer on cartilage. Much like the superficial layer of natural cartilage, the surface of this gel became hydrophobic on drying out. Thus, it is proposed that the superficial layer forms from hyaluronan and phospholipids, which associate by hydrophobic interactions between the alkyl chains of the phospholipids and the hydrophobic faces of the disaccharide units in hyaluronan. This layer is permeable to material from the SF and the cartilage, as shown by the presence of SF proteins and chondroitin sulphate. As the cartilage dries out after removal from the joint, the phospholipids migrate towards the surface of the superficial layer to reduce the surface tension. It is also proposed that the highly efficient lubrication in articular joints can, at least in part, be attributed to the ability of the superficial layer to adsorb and hold water on the cartilage surface, thus creating a highly viscous boundary protection.

  5. MRI based knee cartilage assessment

    NASA Astrophysics Data System (ADS)

    Kroon, Dirk-Jan; Kowalski, Przemyslaw; Tekieli, Wojciech; Reeuwijk, Els; Saris, Daniel; Slump, Cornelis H.

    2012-03-01

    Osteoarthritis is one of the leading causes of pain and disability worldwide and a major health problem in developed countries due to the gradually aging population. Though the symptoms are easily recognized and described by a patient, it is difficult to assess the level of damage or loss of articular cartilage quantitatively. We present a novel method for fully automated knee cartilage thickness measurement and subsequent assessment of the knee joint. First, the point correspondence between a pre-segmented training bone model is obtained with use of Shape Context based non-rigid surface registration. Then, a single Active Shape Model (ASM) is used to segment both Femur and Tibia bone. The surfaces obtained are processed to extract the Bone-Cartilage Interface (BCI) points, where the proper segmentation of cartilage begins. For this purpose, the cartilage ASM is trained with cartilage edge positions expressed in 1D coordinates at the normals in the BCI points. The whole cartilage model is then constructed from the segmentations obtained in the previous step. An absolute thickness of the segmented cartilage is measured and compared to the mean of all training datasets, giving as a result the relative thickness value. The resulting cartilage structure is visualized and related to the segmented bone. In this way the condition of the cartilage is assessed over the surface. The quality of bone and cartilage segmentation is validated and the Dice's coefficients 0.92 and 0.86 for Femur and Tibia bones and 0.45 and 0.34 for respective cartilages are obtained. The clinical diagnostic relevance of the obtained thickness mapping is being evaluated retrospectively. We hope to validate it prospectively for prediction of clinical outcome the methods require improvements in accuracy and robustness.

  6. Towards Regeneration of Articular Cartilage

    PubMed Central

    Iwamoto, Masahiro; Ohta, Yoichi; Larmour, Colleen; Enomoto-Iwamoto, Motomi

    2014-01-01

    Articular cartilage is classified into permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in growth plate. In the process of synovial joint development, articular cartilage is originated from the interzone, developing at the edge of the cartilaginous anlagen, it establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators such as Wnts, GDF5, Erg, and PTHLH coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracerllular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier’s groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Further, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. PMID:24078496

  7. Epigenetics of cartilage diseases.

    PubMed

    Gabay, Odile; Clouse, Kathleen A

    2016-10-01

    Osteoarticular diseases, such as arthritis or osteoarthritis, are multifactorial diseases with an underlying genetic etiology that are challenging to study. Genome-Wide Association studies (GWAS) have identified several genetic loci associated with these diseases. Epigenetics is a complex mechanism of chromatin and gene modulation through DNA methylation, histone deacetylation or microRNA, which might contribute to the inheritability of disease. Some of these mechanisms have been studied for decades in other diseases or as part of the aging process, where epigenetic changes seem to play an important role. With the implementation of better technological tools, such as the Illumina next generation sequencing, altered methylation of DNA has been linked to articular diseases and these mechanisms have been shown to regulate metalloprotease (MMP) expression and cartilage matrix integrity. Some miRNA have also been identified and more extensively characterized, such as delineation of the role played by miR-140 in chondrogenesis, followed by the discovery of numerous miRNA potentially involved in the epigenetic regulation of osteoarthritic disease. Histone deacetylases have long been linked to aging, particularly with respect to the Sirtuin family with Sirt1 as the major player. Because aging is the major risk factor for osteoarthritis, the involvement of Sirtuins in the etiology of osteoarthritis has been suggested and investigated. All of these fine regulations together shed new light on cartilage disease pathophysiology. We present in this short review an update of the role of these pathways in articular diseases.

  8. Comparison of toxicities of acellular pertussis vaccine with whole cell pertussis vaccine in experimental animals.

    PubMed

    Sato, Y; Sato, H

    1991-01-01

    There is no suitable animal model for pertussis encephalopathy in humans. In this study, we have compared the toxicity of acellular pertussis vaccine with whole cell pertussis vaccine in mice or guinea pigs. Two lots of acellular and two lots of whole cell vaccine produced in different countries were assayed in the test. 1. There was no statistical difference in mouse protective potency between these acellular or whole cell pertussis vaccines. 2. There were no differences in chemical ingredients between acellular and whole cell pertussis vaccines except for protein nitrogen content. The protein nitrogen content of whole cell vaccine was at least three times higher than that of the acellular product. 3. Anti-PT antibody productivity of the acellular vaccine was higher than that of the whole cell vaccine. 4. Anti-agglutinogen antibody productivity of the whole cell vaccine was higher than that of the acellular vaccine. 5. There was no pyrogenic activity with the acellular vaccine, but high pyrogenicity was seen with whole cell vaccine. 6. There was high body-weight decreasing toxicity in mice and guinea pigs by the whole cell vaccine. 7. The mice died when they received whole cell pertussis vaccine iv, but no deaths occurred in the mice which received acellular pertussis vaccine. PMID:1778317

  9. BIOCOMPATIBILITY OF ACELLULAR DERMAL MATRIX GRAFT EVALUATED IN CULTURE OF MURINE MACROPHAGES

    PubMed Central

    Vendramini, Ana Paula; Melo, Rafaela Fernanda; Marcantonio, Rosemary Adriana Chiérici; Carlos, Iracilda Zepone

    2006-01-01

    The acellular dermal matrix allograft has been used as an alternative to autogenous palatal mucosal graft. The aim of this study was the evaluation of the biocompatibility of an acellular dermal matrix (AlloDerm®) in culture of macrophages. For hydrogen peroxidase determination we used the method of Pick & Kesari, and the Griess method for nitric oxide determination,. Statistical analysis showed no significant difference (p ≤ 0,05) in the release of nitric oxide and hydrogen peroxide by the macrophages exposed to acellular dermal matrix and the negative control. The results suggest that acellular dermal matrix did not activate the cell inflammatory response. PMID:19089033

  10. Tensorial electrokinetics in articular cartilage.

    PubMed

    Reynaud, Boris; Quinn, Thomas M

    2006-09-15

    Electrokinetic phenomena contribute to biomechanical functions of articular cartilage and underlie promising methods for early detection of osteoarthritic lesions. Although some transport properties, such as hydraulic permeability, are known to become anisotropic with compression, the direction-dependence of cartilage electrokinetic properties remains unknown. Electroosmosis experiments were therefore performed on adult bovine articular cartilage samples, whereby fluid flows were driven by electric currents in directions parallel and perpendicular to the articular surface of statically compressed explants. Magnitudes of electrokinetic coefficients decreased slightly with compression (from approximately -7.5 microL/As in the range of 0-20% compression to -6.0 microL/As in the 35-50% range) consistent with predictions of microstructure-based models of cartilage material properties. However, no significant dependence on direction of the electrokinetic coupling coefficient was detected, even for conditions where the hydraulic permeability tensor is known to be anisotropic. This contrast may also be interpreted using microstructure-based models, and provides insights into structure-function relationships in cartilage extracellular matrix and physical mediators of cell responses to tissue compression. Findings support the use of relatively simple isotropic modeling approaches for electrokinetic phenomena in cartilage and related materials, and indicate that measurement of electrokinetic properties may provide particularly robust means for clinical evaluation of cartilage matrix integrity.

  11. Porcine acellular lung matrix for wound healing and abdominal wall reconstruction: A pilot study.

    PubMed

    Fernandez-Moure, Joseph S; Van Eps, Jeffrey L; Rhudy, Jessica R; Cabrera, Fernando J; Acharya, Ghanashyam S; Tasciotti, Ennio; Sakamoto, Jason; Nichols, Joan E

    2016-01-01

    Surgical wound healing applications require bioprosthetics that promote cellular infiltration and vessel formation, metrics associated with increased mechanical strength and resistance to infection. Porcine acellular lung matrix is a novel tissue scaffold known to promote cell adherence while minimizing inflammatory reactions. In this study, we evaluate the capacity of porcine acellular lung matrix to sustain cellularization and neovascularization in a rat model of subcutaneous implantation and chronic hernia repair. We hypothesize that, compared to human acellular dermal matrix, porcine acellular lung matrix would promote greater cell infiltration and vessel formation. Following pneumonectomy, porcine lungs were processed and characterized histologically and by scanning electron microscopy to demonstrate efficacy of the decellularization. Using a rat model of subcutaneou implantation, porcine acellular lung matrices (n = 8) and human acellular dermal matrices (n = 8) were incubated in vivo for 6 weeks. To evaluate performance under mechanically stressed conditions, porcine acellular lung matrices (n = 7) and human acellular dermal matrices (n = 7) were implanted in a rat model of chronic ventral incisional hernia repair for 6 weeks. After 6 weeks, tissues were evaluated using hematoxylin and eosin and Masson's trichrome staining to quantify cell infiltration and vessel formation. Porcine acellular lung matrices were shown to be successfully decellularized. Following subcutaneous implantation, macroscopic vessel formation was evident. Porcine acellular lung matrices demonstrated sufficient incorporation and showed no evidence of mechanical failure after ventral hernia repair. Porcine acellular lung matrices demonstrated significantly greater cellular density and vessel formation when compared to human acellular dermal matrix. Vessel sizes were similar across all groups. Cell infiltration and vessel formation are well-characterized metrics of incorporation

  12. Porcine acellular lung matrix for wound healing and abdominal wall reconstruction: A pilot study

    PubMed Central

    Fernandez-Moure, Joseph S; Van Eps, Jeffrey L; Rhudy, Jessica R; Cabrera, Fernando J; Acharya, Ghanashyam S; Tasciotti, Ennio; Sakamoto, Jason; Nichols, Joan E

    2016-01-01

    Surgical wound healing applications require bioprosthetics that promote cellular infiltration and vessel formation, metrics associated with increased mechanical strength and resistance to infection. Porcine acellular lung matrix is a novel tissue scaffold known to promote cell adherence while minimizing inflammatory reactions. In this study, we evaluate the capacity of porcine acellular lung matrix to sustain cellularization and neovascularization in a rat model of subcutaneous implantation and chronic hernia repair. We hypothesize that, compared to human acellular dermal matrix, porcine acellular lung matrix would promote greater cell infiltration and vessel formation. Following pneumonectomy, porcine lungs were processed and characterized histologically and by scanning electron microscopy to demonstrate efficacy of the decellularization. Using a rat model of subcutaneou implantation, porcine acellular lung matrices (n = 8) and human acellular dermal matrices (n = 8) were incubated in vivo for 6 weeks. To evaluate performance under mechanically stressed conditions, porcine acellular lung matrices (n = 7) and human acellular dermal matrices (n = 7) were implanted in a rat model of chronic ventral incisional hernia repair for 6 weeks. After 6 weeks, tissues were evaluated using hematoxylin and eosin and Masson’s trichrome staining to quantify cell infiltration and vessel formation. Porcine acellular lung matrices were shown to be successfully decellularized. Following subcutaneous implantation, macroscopic vessel formation was evident. Porcine acellular lung matrices demonstrated sufficient incorporation and showed no evidence of mechanical failure after ventral hernia repair. Porcine acellular lung matrices demonstrated significantly greater cellular density and vessel formation when compared to human acellular dermal matrix. Vessel sizes were similar across all groups. Cell infiltration and vessel formation are well-characterized metrics of incorporation

  13. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    PubMed

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies.

  14. Microsphere-based scaffolds encapsulating chondroitin sulfate or decellularized cartilage.

    PubMed

    Gupta, Vineet; Tenny, Kevin M; Barragan, Marilyn; Berkland, Cory J; Detamore, Michael S

    2016-09-01

    Extracellular matrix materials such as decellularized cartilage (DCC) and chondroitin sulfate (CS) may be attractive chondrogenic materials for cartilage regeneration. The goal of the current study was to investigate the effects of encapsulation of DCC and CS in homogeneous microsphere-based scaffolds, and to test the hypothesis that encapsulation of these extracellular matrix materials would induce chondrogenesis of rat bone marrow stromal cells. Four different types of homogeneous scaffolds were fabricated from microspheres of poly(D,L-lactic-co-glycolic acid): Blank (poly(D,L-lactic-co-glycolic acid) only; negative control), transforming growth factor-β3 encapsulated (positive control), DCC encapsulated, and CS encapsulated. These scaffolds were then seeded with rat bone marrow stromal cells and cultured for 6 weeks. The DCC and CS encapsulation altered the morphological features of the microspheres, resulting in higher porosities in these groups. Moreover, the mechanical properties of the scaffolds were impacted due to differences in the degree of sintering, with the CS group exhibiting the highest compressive modulus. Biochemical evidence suggested a mitogenic effect of DCC and CS encapsulation on rat bone marrow stromal cells with the matrix synthesis boosted primarily by the inherently present extracellular matrix components. An important finding was that the cell seeded CS and DCC groups at week 6 had up to an order of magnitude higher glycosaminoglycan contents than their acellular counterparts. Gene expression results indicated a suppressive effect of DCC and CS encapsulation on rat bone marrow stromal cell chondrogenesis with differences in gene expression patterns existing between the DCC and CS groups. Overall, DCC and CS were easily included in microsphere-based scaffolds; however, there is a requirement to further refine their concentrations to achieve the differentiation profiles we seek in vitro. PMID:27358376

  15. Phase II trial of whole-cell pertussis vaccine vs an acellular vaccine containing agglutinogens.

    PubMed

    Miller, E; Ashworth, L A; Robinson, A; Waight, P A; Irons, L I

    1991-01-12

    An acellular pertussis vaccine containing agglutinogens 2 and 3, pertussis toxin, and filamentous haemagglutinin was developed by the Centre for Applied Microbiology and Research in the UK. 188 infants were entered into a randomised blind trial and received either the acellular or a whole-cell vaccine, combined with diphtheria and tetanus toxoids, in a 3, 5, and 8-10 month schedule. Local reactions were similar in the two groups but significantly fewer infants had systemic symptoms after the acellular vaccine. Mean log-antibody titres to the agglutinogen and toxin components were higher with the acellular than with the whole-cell vaccine. Persistence of antibodies one year after the third dose was also better in the acellular group. PMID:1670725

  16. Whooping cough, twenty years from acellular vaccines introduction.

    PubMed

    Greco, D; Esposito, S; Tozzi, A; Pandolfi, E; Icardi, G; Giammanco, A

    2015-01-01

    Clinical pertussis resulting from infection with B. pertussis is a significant medical and public health problem, despite the huge success of vaccination that has greatly reduced its incidence. The whole cell vaccine had an undeniable success over the last 50 years, but its acceptance was strongly inhibited by fear, only partially justified, of severe side effects, but also, in the Western world, by the difficulty to enter in combination with other vaccines: today multi-vaccine formulations are essential to maintain a high vaccination coverage. The advent of acellular vaccines was greeted with enthusiasm by the public health world: in the Nineties, several controlled vaccine trials were carried out: they demonstrated a high safety and good efficacy of new vaccines. In fact, in the Western world, the acellular vaccines completely replaced the whole cells ones. In the last years, ample evidence on the variety of protection of these vaccines linked to the presence of different antigens of Bordetella pertussis was collected. It also became clear that the protection provided, on average around 80%, leaves every year a significant cohort of vaccinated susceptible even in countries with a vaccination coverage of 95%, such as Italy. Finally, it was shown that, as for the pertussis disease, protection decreases over time, to leave a proportion of adolescents and adults unprotected. Waiting for improved pertussis vaccines, the disease control today requires a different strategy that includes a booster at 5 years for infants, but also boosters for teenagers and young adults, re-vaccination of health care personnel, and possibly of pregnant women and of those who are in contact with infants (cocooning). Finally, the quest for better vaccines inevitably tends towards pertussis acellular vaccines with at least three components, which have demonstrated superior effectiveness and have been largely in use in Italy for fifteen years.

  17. Model-based cartilage thickness measurement in the submillimeter range

    SciTech Connect

    Streekstra, G. J.; Strackee, S. D.; Maas, M.; Wee, R. ter; Venema, H. W.

    2007-09-15

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness was varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical

  18. Resident mesenchymal progenitors of articular cartilage

    PubMed Central

    Candela, Maria Elena; Yasuhara, Rika; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi

    2015-01-01

    Articular cartilage has poor capacity of self-renewal and repair. Insufficient number and activity of resident mesenchymal (connective tissue) progenitors is likely one of the underlying reasons. Chondroprogenitors reside not only in the superficial zone of articular cartilage but also in other zones of articular cartilage and in the neighboring tissues, including perichondrium (groove of Ranvier), synovium and fat pad. These cells may respond to injury and contribute to articular cartilage healing. In addition, marrow stromal cells can migrate through subchondral bone when articular cartilage is damaged. We should develop drugs and methods that correctly stimulate resident progenitors for improvement of repair and inhibition of degenerative changes in articular cartilage. PMID:25179676

  19. Resident mesenchymal progenitors of articular cartilage.

    PubMed

    Candela, Maria Elena; Yasuhara, Rika; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi

    2014-10-01

    Articular cartilage has poor capacity of self-renewal and repair. Insufficient number and activity of resident mesenchymal (connective tissue) progenitors is likely one of the underlying reasons. Chondroprogenitors reside not only in the superficial zone of articular cartilage but also in other zones of articular cartilage and in the neighboring tissues, including perichondrium (groove of Ranvier), synovium and fat pad. These cells may respond to injury and contribute to articular cartilage healing. In addition, marrow stromal cells can migrate through subchondral bone when articular cartilage is damaged. We should develop drugs and methods that correctly stimulate resident progenitors for improvement of repair and inhibition of degenerative changes in articular cartilage. PMID:25179676

  20. Human acellular dermal wound matrix: evidence and experience.

    PubMed

    Kirsner, Robert S; Bohn, Greg; Driver, Vickie R; Mills, Joseph L; Nanney, Lillian B; Williams, Marie L; Wu, Stephanie C

    2015-12-01

    A chronic wound fails to complete an orderly and timely reparative process and places patients at increased risk for wound complications that negatively impact quality of life and require greater health care expenditure. The role of extracellular matrix (ECM) is critical in normal and chronic wound repair. Not only is ECM the largest component of the dermal skin layer, but also ECM proteins provide structure and cell signalling that are necessary for successful tissue repair. Chronic wounds are characterised by their inflammatory and proteolytic environment, which degrades the ECM. Human acellular dermal matrices, which provide an ECM scaffold, therefore, are being used to treat chronic wounds. The ideal human acellular dermal wound matrix (HADWM) would support regenerative healing, providing a structure that could be repopulated by the body's cells. Experienced wound care investigators and clinicians discussed the function of ECM, the evidence related to a specific HADWM (Graftjacket(®) regenerative tissue matrix, Wright Medical Technology, Inc., licensed by KCI USA, Inc., San Antonio, TX), and their clinical experience with this scaffold. This article distills these discussions into an evidence-based and practical overview for treating chronic lower extremity wounds with this HADWM. PMID:24283346

  1. Preclinical evaluations of acellular biological conduits for peripheral nerve regeneration

    PubMed Central

    Liao, I-Chien; Wan, Hua; Qi, Shijie; Cui, Cunqi; Patel, Paarun; Sun, Wendell

    2013-01-01

    Various types of natural biological conduits have been investigated as alternatives to the current surgical standard approach for peripheral nerve injuries. Autologous nerve graft, the current gold standard for peripheral nerve damage, is limited by clinical challenges such as donor-site morbidity and limited availability. The purpose of this study was to evaluate the efficacy of using acellular xenographic conduits (nerve, artery, and dermis) for the repair of a 1.2 cm critical size defect of peripheral nerve in a rodent model. Four months post surgery, the animal group receiving acellular artery as a nerve conduit showed excellent physiological outcome in terms of the prevention of muscle atrophy and foot ulcer. Histological assessment of the bridged site revealed excellent axon regeneration, as opposed to the nonrepaired control group or the group receiving dermal conduit. Finally, the study evaluated the potential improvement via the addition of undifferentiated mesenchymal stem cells into the artery conduit during the bridging procedure. The mesenchymal stem cell–dosed artery conduit group resulted in significantly higher concentration of regenerated axons over artery conduit alone, and exhibited accelerated muscle atrophy rescue. Our results demonstrated that xenographic artery conduits promoted excellent axonal regeneration with highly promising clinical relevance. PMID:23532671

  2. Multilayered implantation using acellular dermal matrix into nude mice.

    PubMed

    Lee, Dong Won; Lee, Myung Chul; Roh, Hyun; Lee, Won Jai

    2014-12-01

    Soft tissue augmentation using acellular dermal matrix has gained popularity to overcome the shortcomings of autogenous and alloplastic materials. Sometimes it needs multilayered stacking to obtain enough volume. In this study, we investigated the efficacy of multilayered implantation using acellular dermal matrix (MatriDerm(®)) for soft tissue augmentation. MatriDerm was implanted subdermally on each side of the dorsum of nude mice (n = 20), stacked two layers thick in the control group and three layers thick in the experimental group. Alterations of thickness, degree of angiogenesis, and collagen and elastin fiber syntheses were observed over 40 days. Three-layered implantation with MatriDerm maintained its volume similarly as in two-layered implantation, although the thickness decreased after 30 days in both groups. At the early stage of implantation, angiogenesis and collagen and elastin fiber syntheses occurred fluently on the central portion, which is the farthest away from the surface in contact with the host tissue. Collagen and elastin fibers became more concentrated over time, and the original structure of MatriDerm could not be maintained due to being replaced with newly formed collagen and elastin fibers 40 days after implantation. Multilayered implantation with MatriDerm is considered appropriate for tissue ingrowth and can be used as a substitute for soft tissue augmentation.

  3. Acellular dermal matrices in breast reconstructions - a literature review.

    PubMed

    Skovsted Yde, Simon; Brunbjerg, Mette Eline; Damsgaard, Tine Engberg

    2016-08-01

    During the last two decades, acellular dermal matrices (ADM) have been more widely used in reconstructive procedures i.e. breast reconstructions. Several, both synthetic and biologic products derived from human, porcine and bovine tissue, have been introduced. Until this point postoperative complications for the acellular dermal matrices, as a group, have been the main focus. The purpose of this literature review is to summarize the current knowledge on the each biologic product used in breast reconstructions, including product specific complication frequencies. A systematic search of the literature was performed in the PubMed and EMBASE databases, identifying 55 relevant articles, mainly evidence level III. AlloDerm seems to be associated with severe complicating matters in the reconstructive process compared to other products. This could be due to the higher number of investigating studies relative to the others. The surgical area faces certain challenges comparing results, due to surgical variance, the data collection and follow-up. More well-defined guidelines and more high-evidence randomized studies could increase the overall level of evidence in this area. PMID:26881927

  4. Human acellular dermal wound matrix: evidence and experience.

    PubMed

    Kirsner, Robert S; Bohn, Greg; Driver, Vickie R; Mills, Joseph L; Nanney, Lillian B; Williams, Marie L; Wu, Stephanie C

    2015-12-01

    A chronic wound fails to complete an orderly and timely reparative process and places patients at increased risk for wound complications that negatively impact quality of life and require greater health care expenditure. The role of extracellular matrix (ECM) is critical in normal and chronic wound repair. Not only is ECM the largest component of the dermal skin layer, but also ECM proteins provide structure and cell signalling that are necessary for successful tissue repair. Chronic wounds are characterised by their inflammatory and proteolytic environment, which degrades the ECM. Human acellular dermal matrices, which provide an ECM scaffold, therefore, are being used to treat chronic wounds. The ideal human acellular dermal wound matrix (HADWM) would support regenerative healing, providing a structure that could be repopulated by the body's cells. Experienced wound care investigators and clinicians discussed the function of ECM, the evidence related to a specific HADWM (Graftjacket(®) regenerative tissue matrix, Wright Medical Technology, Inc., licensed by KCI USA, Inc., San Antonio, TX), and their clinical experience with this scaffold. This article distills these discussions into an evidence-based and practical overview for treating chronic lower extremity wounds with this HADWM.

  5. The quality of healing: articular cartilage.

    PubMed

    Gomoll, Andreas H; Minas, Tom

    2014-05-01

    Articular cartilage lacks an intrinsic capacity for self-repair, and once damaged, it never heals. This creates an opportunity for surgical intervention, whether to stimulate a healing response that results in the formation of a lower-quality fibrocartilaginous scar or formal cartilage repair in the form of cartilage transplants. This article will review the nature of cartilage injury and discuss indications and techniques for repair.

  6. Aggrecanases and cartilage matrix degradation

    PubMed Central

    Nagase, Hideaki; Kashiwagi, Masahide

    2003-01-01

    The loss of extracellular matrix macromolecules from the cartilage results in serious impairment of joint function. Metalloproteinases called 'aggrecanases' that cleave the Glu373–Ala374 bond of the aggrecan core protein play a key role in the early stages of cartilage destruction in rheumatoid arthritis and in osteoarthritis. Three members of the ADAMTS family of proteinases, ADAMTS-1, ADAMTS-4 and ADAMTS-5, have been identified as aggrecanases. Matrix metalloproteinases, which are also found in arthritic joints, cleave aggrecans, but at a distinct site from the aggrecanases (i.e. Asn341–Phe342). The present review discuss the enzymatic properties of the three known aggrecanases, the regulation of their activities, and their role in cartilage matrix breakdown during the development of arthritis in relation to the action of matrix metalloproteinases. PMID:12718749

  7. Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages.

    PubMed

    DuRaine, Grayson D; Brown, Wendy E; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-03-01

    This review explores scaffold-free methods as an additional paradigm for tissue engineering. Musculoskeletal cartilages-for example articular cartilage, meniscus, temporomandibular joint disc, and intervertebral disc-are characterized by low vascularity and cellularity, and are amenable to scaffold-free tissue engineering approaches. Scaffold-free approaches, particularly the self-assembling process, mimic elements of developmental processes underlying these tissues. Discussed are various scaffold-free approaches for musculoskeletal cartilage tissue engineering, such as cell sheet engineering, aggregation, and the self-assembling process, as well as the availability and variety of cells used. Immunological considerations are of particular importance as engineered tissues are frequently of allogeneic, if not xenogeneic, origin. Factors that enhance the matrix production and mechanical properties of these engineered cartilages are also reviewed, as the fabrication of biomimetically suitable tissues is necessary to replicate function and ensure graft survival in vivo. The concept of combining scaffold-free and scaffold-based tissue engineering methods to address clinical needs is also discussed. Inasmuch as scaffold-based musculoskeletal tissue engineering approaches have been employed as a paradigm to generate engineered cartilages with appropriate functional properties, scaffold-free approaches are emerging as promising elements of a translational pathway not only for musculoskeletal cartilages but for other tissues as well.

  8. Cartilage collagen analysis in the chondrodystrophies.

    PubMed

    Horton, W A; Chou, J W; Machado, M A

    1985-09-01

    A simple and reproducible method for analyzing small samples of cartilage collagens was developed. Following extraction with guanidine HCl, the cartilage specimens were digested directly with CNBr and the resultant peptides separated by gel-permeation high-performance liquid chromatography. Resting cartilage collagen CNBr peptide maps differed from normal in two inherited chondrodystrophies, achondrogenesis II and spondyloepiphyseal dysplasia congenita. PMID:4053564

  9. MRI EVALUATION OF KNEE CARTILAGE

    PubMed Central

    Rodrigues, Marcelo Bordalo; Camanho, Gilberto Luís

    2015-01-01

    Through the ability of magnetic resonance imaging (MRI) to characterize soft tissue noninvasively, it has become an excellent method for evaluating cartilage. The development of new and faster methods allowed increased resolution and contrast in evaluating chondral structure, with greater diagnostic accuracy. In addition, physiological techniques for cartilage assessment that can detect early changes before the appearance of cracks and erosion have been developed. In this updating article, the various techniques for chondral assessment using knee MRI will be discussed and demonstrated. PMID:27022562

  10. [Cartilage tumors : Pathology and radiomorphology].

    PubMed

    Uhl, M; Herget, G; Kurz, P

    2016-06-01

    Primary cartilage-forming tumors of the bone are frequent entities in the daily work of skeletal radiologists. This article describes the correlation of pathology and radiology in cartilage-forming skeletal tumors, in particular, enchondroma, osteochondroma, periosteal chondromas, chondroblastoma and various forms of chondrosarcoma. After reading, the radiologist should be able to deduce the different patterns of cartilage tumors on radiographs, CT, and MRI from the pathological aspects. Differentiation of enchondroma and chondrosarcoma is a frequent diagnostic challenge. Some imaging parameters, e. g., deep cortical scalloping (more than two thirds of the cortical thickness), cortical destruction, or a soft-tissue mass, are features of a sarcoma. Osteochondromas are bony protrusions with a continuous extension of bone marrow from the parent bone, the host cortical bone runs continuously from the osseous surface of the tumor into the shaft of the osteochondroma and the osteochondroma has a cartilage cap. Chondromyxoid fibromas are well-defined lytic and eccentric lesions of the metaphysis of the long bones, with nonspecific MRI findings. Chondroblastomas have a strong predilection for the epiphysis of long tubular bones and develop an intense perifocal bone marrow edema. Dedifferentiated chondrosarcomas are bimorphic lesions with a low-grade chondrogenic component and a high-grade noncartilaginous component. Most chondrogenic tumors have a predilection with regard to site and age at manifestation. PMID:27233920

  11. Animal models of cartilage repair

    PubMed Central

    Cook, J. L.; Hung, C. T.; Kuroki, K.; Stoker, A. M.; Cook, C. R.; Pfeiffer, F. M.; Sherman, S. L.; Stannard, J. P.

    2014-01-01

    Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair. Cite this article: Bone Joint Res 2014;4:89–94. PMID:24695750

  12. Extended Eden model reproduces growth of an acellular slime mold

    NASA Astrophysics Data System (ADS)

    Wagner, Geri; Halvorsrud, Ragnhild; Meakin, Paul

    1999-11-01

    A stochastic growth model was used to simulate the growth of the acellular slime mold Physarum polycephalum on substrates where the nutrients were confined in separate drops. Growth of Physarum on such substrates was previously studied experimentally and found to produce a range of different growth patterns [Phys. Rev. E 57, 941 (1998)]. The model represented the aging of cluster sites and differed from the original Eden model in that the occupation probability of perimeter sites depended on the time of occupation of adjacent cluster sites. This feature led to a bias in the selection of growth directions. A moderate degree of persistence was found to be crucial to reproduce the biological growth patterns under various conditions. Persistence in growth combined quick propagation in heterogeneous environments with a high probability of locating sources of nutrients.

  13. Protection against pertussis by Takeda's acellular pertussis vaccine: household contact studies in Kawasaki City, Japan.

    PubMed

    Kato, T; Kaku, H; Arimoto, Y

    1988-01-01

    To evaluate the vaccine efficacy of an acellular pertussis vaccine which has been in clinical use in Japan since 1981, a retrospective study was performed by a questionnaire survey of secondary pertussis attacks through family contact in 146 children with pertussis diagnosed in the period from January 1981 through May 1988. In this study, Takeda's acellular vaccine which contains a high level of FHA, low level of PT and a small amount of agglutinogen, was evaluated. Secondary pertussis attacks through family contact were found in 17 of 27 siblings (62.9%) not immunized with pertussis vaccine. On the other hand, 26 siblings immunized with Takeda's acellular vaccine were exposed to pertussis through family contact and a secondary attack was seen in only one of them (3.8%). The present study revealed an efficacy rate of 93.9% for Takeda's acellular pertussis vaccine. PMID:3078808

  14. Protection against pertussis by acellular pertussis vaccines (Takeda, Japan): household contact studies in Kawasaki City, Japan.

    PubMed

    Kato, T; Goshima, T; Nakajima, N; Kaku, H; Arimoto, Y; Hayashi, F

    1989-12-01

    To evaluate the vaccine efficacy of an acellular pertussis vaccine which has been in clinical use in Japan since 1981, a retrospective study was performed by a questionnaire survey of secondary pertussis attacks through family contact in 146 children with pertussis diagnosed in the period from January 1981 through May 1988. In this study, acellular vaccine made by Takeda Pharmaceutical Company, which contains a high level of FHA (filamentous hemagglutinin), a low level of PT (pertussis toxin) and a small amount of agglutinogen, was evaluated. Secondary pertussis attacks through family contact were found in 17 of 29 siblings (58.6%) not immunized with pertussis vaccine. On the other hand, 27 siblings immunized with Takeda's acellular vaccine were exposed to pertussis through family contact and a secondary attack was seen in only one of them (3.7%). The present study revealed an efficacy rate of 93.7% for Takeda's acellular pertussis vaccine. PMID:2516396

  15. [Protection against pertussis by Japanese T type acellular pertussis vaccine: household contact study in Kawasaki City].

    PubMed

    Kato, T; Matsuyoshi, S; Goshima, T; Nakajima, N; Yamamoto, H; Arimoto, Y; Kaku, H; Hayashi, F

    1989-09-01

    To evaluate the vaccine efficacy of acellular pertussis vaccine which has been in clinical use in Japan since 1981, a retrospective study was made by a questionnaire from secondary pertussis attack through family contact in 149 children with pertussis diagnosed in the period from January 1981 through May 1988. In this study, Takeda's acellular vaccine which contains a high level of FHA, low level of PT and a small amount of agglutinogen, was evaluated. Secondary pertussis attacks through family contact were found in 17 of 29 siblings (58.6%) not immunized with pertussis vaccine. On the other hand of the siblings immunized with Takeda's acellular vaccine 27 were exposed to pertussis through family contact and a secondary attack was seen in only one of them (3.4%). The present study revealed an efficacy rate of 94.2% for the Takeda's acellular pertussis vaccine. PMID:2509597

  16. A simple measuring device for laboratory indentation tests on cartilage.

    PubMed

    Koeller, Wolfgang; Kunow, Julius; Ostermeyer, Oliver; Stomberg, Peter; Boos, Carsten; Russlies, Martin

    2008-04-01

    Mechanical testing of articular cartilage and repair tissue enables judgment of their capacity in withstanding mechanical loading. In the past, different methods have been developed requiring a complex technical setup and extensive data analysis. Therefore, the aim of the present project was to build up a simple measuring apparatus for laboratory indentation tests. The device consists of an incremental optical displacement transducer with a sleeve bearing guided plunger and a spherical tip made of polished steel (radius: 0.75 or 1.5 mm), a sensitive load cell and a stiff frame. The indentation force results from the plunger's gravity plus the force of the spring inside the displacement transducer and levels at 0.170 N or 0.765 N. The displacement transducer is fixed to the frame via the load cell that enables one to detect the initial contact of the tip with the tissue. The load cell has a standard uncertainty of 2 mN and the displacement transducer of 1 microm. From indentation-creep tests, a "0.25-s elastic modulus" is calculated. Measurements on thin rubber sheets were carried out to determine the quality of the measuring device. Compression tests on cylinders made of these rubber sheets yielded control data, and a good agreement with the "0.25-s elastic modulus" was found. Indentation tests on cartilage at different sites of sheep femoral condyles yielded a very good repeatability of the measurement results (+/-7.5%). PMID:18979621

  17. Induction of inflammatory cytokines by cartilage extracts.

    PubMed

    Merly, Liza; Simjee, Shabana; Smith, Sylvia L

    2007-03-01

    Shark cartilage extracts were examined for induction of cytokines and chemokines in human peripheral blood leukocytes. Primary leukocyte cultures were exposed to a variety of aqueous and organic extracts prepared from several commercial brands of shark cartilage. From all commercial sources of shark cartilage tested the acid extracts induced higher levels of TNFalpha than other extracts. Different commercial brands of shark cartilage varied significantly in cytokine-inducing activity. TNFalpha induction was seen as early as 4 h and IFNgamma at detectable levels for up to four days. Shark cartilage extracts did not induce physiologically significant levels of IL-4. Results suggest that shark cartilage, preferentially, induces Th1 type inflammatory cytokines. When compared to bovine cartilage extract, collagen, and chondroitin sulfate, shark cartilage induced significantly higher levels of TNFalpha. Treatment with digestive proteases (trypsin and chymotrypsin) reduced the cytokine induction response by 80%, suggesting that the active component(s) in cartilage extracts is proteinaceous. The induction of Th1 type cytokine response in leukocytes is a significant finding since shark cartilage, taken as a dietary supplement for a variety of chronic degenerative diseases, would be contraindicated in cases where the underlying pathology of the chronic condition is caused by inflammation. PMID:17276897

  18. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  19. Supporting Biomaterials for Articular Cartilage Repair

    PubMed Central

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  20. Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications.

    PubMed

    Stapleton, Thomas W; Ingram, Joanne; Fisher, John; Ingham, Eileen

    2011-01-01

    Previously, we have described the development of an acellular porcine meniscal scaffold. The aims of this study were to determine the immunocompatibility of the scaffold and capacity for cellular attachment and infiltration to gain insight into its potential for meniscal repair and replacement. Porcine menisci were decellularized by exposing the tissue to freeze-thaw cycles, incubation in hypotonic tris buffer, 0.1% (w/v) sodium dodecyl sulfate in hypotonic buffer plus protease inhibitors, nucleases, hypertonic buffer followed by disinfection using 0.1% (v/v) peracetic, and final washing in phosphate-buffered saline. In vivo immunocompatibility was assessed after implantation of the acellular meniscal scaffold subcutaneously into galactosyltransferase knockout mice for 3 months in comparison to fresh and acellular tissue treated with α-galactosidase (negative control). The cellular infiltrates in the explants were assessed by histology and characterized using monoclonal antibodies against: CD3, CD4, CD34, F4/80, and C3c. Static culture was used to assess the potential of acellular porcine meniscal scaffold to support the attachment and infiltration of primary human dermal fibroblasts and primary porcine meniscal cells in vitro. The explants were surrounded by capsules that were more pronounced for the fresh meniscal tissue compared to the acellular tissues. Cellular infiltrates compromised mononuclear phagocytes, CD34-positive cells, and nonlabeled fibroblastic cells. T-lymphocytes were sparse in all explanted tissue types and there was no evidence of C3c deposition. The analysis revealed an absence of a specific immune response to all of the implanted tissues. Acellular porcine meniscus was shown to be capable of supporting the attachment and infiltration of primary human fibroblasts and primary porcine meniscal cells. In conclusion, acellular porcine meniscal tissue exhibits excellent immunocompatibility and potential for cellular regeneration in the longer term.

  1. Surface of articular cartilage: immunohistological studies.

    PubMed

    Duance, V C

    1983-10-01

    Using several physical techniques the surface of articular cartilage has been reported to be structurally different from the deeper layers. In this paper using immunohistochemical methods, the surface has been shown to contain a characteristically different collagen, Type I in contrast to Type II which is the major collagen of cartilage. These results support previous proposals for a surface layer, or lamina splendens, the presence of which would be of considerable importance in understanding the degradation of cartilage in arthritides. PMID:6678620

  2. Izogenic cartilage transfer in rhinoplasty procedure.

    PubMed

    Yigit, Baris; Bicer, Ahmet; Aytop, Derya

    2015-01-01

    Cartilage is commonly grafted during primary and secondary rhinoplasties as a means of addressing both functional and esthetic issues. Generally, such grafts are taken from the nasal septum, but auricular conchae or ribs may serve as donor sites if needed. However, the latter often entail considerable morbidity and graft mismatch. To circumvent these drawbacks, use of implants or processed cartilage (allogenic or xenogenic in origin) has been proposed. Herein, the isogenic transfer of nasal septal cartilage between identical twins is reported. PMID:25569406

  3. Preserved irradiated homolgous cartilage for orbital reconstruction.

    PubMed

    Linberg, J V; Anderson, R L; Edwards, J J; Panje, W R; Bardach, J

    1980-07-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is concenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption. PMID:7393528

  4. Multimodal evaluation of tissue-engineered cartilage

    PubMed Central

    Mansour, Joseph M.; Welter, Jean F.

    2012-01-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment of these properties should be part of the implantation release criteria for TE cartilage. Release criteria should certify that selected tissue properties have reached certain target ranges, and should be predictive of the likelihood of success of an implant in vivo. Unfortunately, it is not currently known which properties are needed to establish release criteria, nor how close one has to be to the properties of native cartilage to achieve success. Achieving properties approaching those of native cartilage requires a clear understanding of the target properties and reproducible assessment methodology. Here, we review several main aspects of quality control as it applies to TE cartilage. This includes a look at known mechanical and biological properties of native cartilage, which should be the target in engineered tissues. We also present an overview of the state of the art of tissue assessment, focusing on native articular and TE cartilage. Finally, we review the arguments for developing and validating non-destructive testing methods for assessing TE products. PMID:23606823

  5. Comparative biological activities of acellular pertussis vaccines produced by Kitasato.

    PubMed

    Watanabe, M; Izumiya, K; Sato, T; Yoshino, K; Nakagawa, N; Ohoishi, M; Hoshino, M

    1991-04-01

    The quality of 14 lots of acellular pertussis-diphtheria-tetanus (AC-PDT) vaccines manufactured by the Kitasato Institute during the period 1987-1990 were investigated. The geometric means of HSU, LPU, and BWDU were 0.078, 0.257, and 7.33 per ml respectively. The potency was higher than 14 IU per ml. These results indicated the consistency of the Kitasato AC-PDT vaccines. The antibody response to the AC-PDT vaccines was measured in primary and secondary vaccinated mice by ELISA. IgG antibody response to FHA and PT was obtained in all immunized mice (P less than 0.001) after the primary injection. In contrast, IgG antibody response to fimbriae 2 showed a significant titer rise (P less than 0.001) after the booster injection. The results indicated that the Kitasato AC-P vaccines consisted of protein, PT and FHA as the major antigens, and a little agglutinogen as the minor antigen. PMID:1798236

  6. Characterization of co-purified acellular pertussis vaccines.

    PubMed

    Xu, Yinghua; Tan, Yajun; Asokanathan, Catpagavalli; Zhang, Shumin; Xing, Dorothy; Wang, Junzhi

    2015-01-01

    Whole-cell pertussis vaccines (WPVs) have been completely replaced by the co-purified acellular vaccines (APVs) in China. To date few laboratory studies were reported for co-purified APVs in terms of their antigenic composition and protective immune responses. To further understand the antigenic composition in co-purified APVs, in the present study 2-dimensional gel electrophoresis-based proteomic technology was used to analyze the composition of co-purified APVs. The results showed that besides the main antigens pertussis toxin (PT) and filamentous hemagglutinin (FHA), co-purified APVs also contained pertactin (PRN), fimbriae (FIM) 2and3 and other minor protein antigens. Of the 9 proteins identified, 3 were differentially presented in products from manufacturer 1 and manufacturer 2. Compared with WPVs and purified APVs, co-purified APVs induced a mixed Th1/Th2 immune response with more toward to a Th1 response than the purified APVs in this study. These results hint that different immune mechanisms might be involved in protection induced by co-purified and purified APVs.

  7. Characterization of co-purified acellular pertussis vaccines

    PubMed Central

    Xu, Yinghua; Tan, Yajun; Asokanathan, Catpagavalli; Zhang, Shumin; Xing, Dorothy; Wang, Junzhi

    2015-01-01

    Whole-cell pertussis vaccines (WPVs) have been completely replaced by the co-purified acellular vaccines (APVs) in China. To date few laboratory studies were reported for co-purified APVs in terms of their antigenic composition and protective immune responses. To further understand the antigenic composition in co-purified APVs, in the present study 2-dimensional gel electrophoresis-based proteomic technology was used to analyze the composition of co-purified APVs. The results showed that besides the main antigens pertussis toxin (PT) and filamentous hemagglutinin (FHA), co-purified APVs also contained pertactin (PRN), fimbriae (FIM) 2and3 and other minor protein antigens. Of the 9 proteins identified, 3 were differentially presented in products from manufacturer 1 and manufacturer 2. Compared with WPVs and purified APVs, co-purified APVs induced a mixed Th1/Th2 immune response with more toward to a Th1 response than the purified APVs in this study. These results hint that different immune mechanisms might be involved in protection induced by co-purified and purified APVs. PMID:25610957

  8. Angiogenic response induced by acellular brain scaffolds grafted onto the chick embryo chorioallantoic membrane.

    PubMed

    Ribatti, Domenico; Conconi, Maria Teresa; Nico, Beatrice; Baiguera, Silvia; Corsi, Patrizia; Parnigotto, Pier Paolo; Nussdorfer, Gastone G

    2003-10-31

    The repair and regeneration of injured tissues and organs depend on the re-establishment of the blood flow needed for cellular infiltration and metabolic support. Among the various materials used in tissue reconstruction, acellular scaffolds have recently been utilized. In this study, we investigated the angiogenic response induced by acellular brain scaffolds implanted in vivo onto the chick embryo chorioallantoic membrane (CAM), a useful model for such investigations. The results show that acellular brain scaffolds are able to induce a strong angiogenic response, comparable to that of fibroblast growth factor-2 (FGF-2), a well known angiogenic cytokine. The response may be considered dependent on a direct angiogenic effect exerted by the scaffold, because no inflammatory infiltrate was detectable in CAM's mesenchyme beneath the implant. Acellular brain scaffolds might induce the release of endogenous angiogenic factors, such as FGF-2 and vascular endothelial growth factor (VEGF) released from the extracellular matrix of the developing CAM. In addition, the angiogenic response may depend, in part, also on the presence in the acellular matrix of transforming growth factor beta 1 (TGFbeta1).

  9. Articular Cartilage Changes in Maturing Athletes

    PubMed Central

    Luria, Ayala; Chu, Constance R.

    2014-01-01

    Context: Articular cartilage has a unique functional architecture capable of providing a lifetime of pain-free joint motion. This tissue, however, undergoes substantial age-related physiologic, mechanical, biochemical, and functional changes that reduce its ability to overcome the effects of mechanical stress and injury. Many factors affect joint function in the maturing athlete—from chondrocyte survival and metabolism to structural composition and genetic/epigenetic factors governing cartilage and synovium. An evaluation of age-related changes for joint homeostasis and risk for osteoarthritis is important to the development of new strategies to rejuvenate aging joints. Objective: This review summarizes the current literature on the biochemical, cellular, and physiologic changes occurring in aging articular cartilage. Data Sources: PubMed (1969-2013) and published books in sports health, cartilage biology, and aging. Study Selection: Keywords included aging, athlete, articular cartilage, epigenetics, and functional performance with age. Study Design: Systematic review. Level of Evidence: Level 3. Data Extraction: To be included, research questions addressed the effect of age-related changes on performance, articular cartilage biology, molecular mechanism, and morphology. Results: The mature athlete faces challenges in maintaining cartilage health and joint function due to age-related changes to articular cartilage biology, morphology, and physiology. These changes include chondrocyte loss and a decline in metabolic response, alterations to matrix and synovial tissue composition, and dysregulation of reparative responses. Conclusion: Although physical decline has been regarded as a normal part of aging, many individuals maintain overall fitness and enjoy targeted improvement to their athletic capacity throughout life. Healthy articular cartilage and joints are needed to maintain athletic performance and general activities. Genetic and potentially reversible

  10. Use of an acellular flowable dermal replacement scaffold on lower extremity sinus tract wounds: a retrospective series.

    PubMed

    Brigido, Stephen A; Schwartz, Edward; McCarroll, Raymond; Hardin-Young, Janet

    2009-04-01

    A novel injectable human dermal matrix has been developed for the treatment of complex diabetic sinus tract wounds. Bioengineered grafts are commercially available that have been somewhat effective in treating chronic wounds such as diabetic foot ulcers; however, these bioengineered grafts are only available in sheet form. These therapies are less effective in treating complex or irregularly shaped wounds that demonstrate tunnels or extensions into deep soft tissue. One acellular graft (GRAFTJACKET, Matrix, Wright Medical Technology, Arlington, Tennessee) that has been shown to effectively treat open wounds is also available in a micronized form (GRAFTJACKET Xpress Scaffold, Wright Medical Technology). This human dermal graft forms a flowable soft tissue scaffold that can be delivered via syringe into tunneling wounds. In this retrospective series, 12 patients with deep tunneling wounds were treated with GRAFTJACKET Xpress Scaffold and followed for 12 weeks. Complete wound healing was achieved in 10 of 12 patients within the 12-week evaluation. The average time to complete healing was 8.5 weeks, whereas the average time to depth healing was 7.8 weeks. The data from the study suggest that this injectable human dermal matrix has unique properties that allow it to facilitate healing of complex tunneling diabetic foot ulcers. The material is easy to prepare and inject into the wound, thereby preventing the necessity of extensive surgical exposure. The matrix supports neo-subcutaneous tissue formation and allows the body to rapidly repair these wounds.

  11. Photoactivated methods for enabling cartilage-to-cartilage tissue fixation

    NASA Astrophysics Data System (ADS)

    Sitterle, Valerie B.; Roberts, David W.

    2003-06-01

    The present study investigates whether photoactivated attachment of cartilage can provide a viable method for more effective repair of damaged articular surfaces by providing an alternative to sutures, barbs, or fibrin glues for initial fixation. Unlike artificial materials, biological constructs do not possess the initial strength for press-fitting and are instead sutured or pinned in place, typically inducing even more tissue trauma. A possible alternative involves the application of a photosensitive material, which is then photoactivated with a laser source to attach the implant and host tissues together in either a photothermal or photochemical process. The photothermal version of this method shows potential, but has been almost entirely applied to vascularized tissues. Cartilage, however, exhibits several characteristics that produce appreciable differences between applying and refining these techniques when compared to previous efforts involving vascularized tissues. Preliminary investigations involving photochemical photosensitizers based on singlet oxygen and electron transfer mechanisms are discussed, and characterization of the photodynamic effects on bulk collagen gels as a simplified model system using FTIR is performed. Previous efforts using photothermal welding applied to cartilaginous tissues are reviewed.

  12. Magnetic Resonance Imaging of Cartilage Repair

    PubMed Central

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  13. Handheld-Level Electromechanical Cartilage Reshaping Device.

    PubMed

    Kim, Sehwan; Manuel, Cyrus T; Wong, Brian J F; Chung, Phil-Sang; Mo, Ji-Hun

    2015-06-01

    We have developed a handheld-level multichannel electromechanical reshaping (EMR) cartilage device and evaluated the feasibility of providing a means of cartilage reshaping in a clinical outpatient setting. The effect of EMR on pig costal cartilage was evaluated in terms of shape change, tissue heat generation, and cell viability. The pig costal cartilage specimens (23 mm × 6.0 mm × 0.7 mm) were mechanically deformed to 90 degrees and fixed to a plastic jig and applied 5, 6, 7, and 8 V up to 8 minutes to find the optimal dosimetry for the our developed EMR device. The results reveal that bend angle increased with increasing voltage and application time. The maximum bend angle obtained was 70.5 ± 7.3 at 8 V, 5 minutes. The temperature of flat pig costal cartilage specimens were measured, while a constant electric voltage was applied to three pairs of electrodes that were inserted into the cartilages. The nonthermal feature of EMR was validated by a thermal infrared camera; that is, the maximum temperate of the flat cartilages is 20.3°C at 8 V. Cell viability assay showed no significant difference in cell damaged area from 3 to 7 minutes exposure with 7 V. In conclusion, the multichannel EMR device that was developed showed a good feasibility of cartilage shaping with minimal temperature change. PMID:26126226

  14. Tissue engineering of the small intestine by acellular collagen sponge scaffold grafting.

    PubMed

    Hori, Y; Nakamura, T; Matsumoto, K; Kurokawa, Y; Satomi, S; Shimizu, Y

    2001-01-01

    Tissue engineering of the small intestine will prove a great benefit to patients suffering from short bowel disease. However cell seeding in tissue engineering, such as fetal cell use, is accompanied by problems of ethical issues, rejection, and short supply. To overcome these problems, we carried out an experimental study on tissue engineering of the small intestine by acellular collagen sponge scaffold grafting. We resected the 5 cm long jejunum from beagle dogs and reconstructed it by acellular collagen sponge grafting with a silicon tube stent. The graft was covered with the omentum. At 1 month after operation, the silicon stent was removed endoscopically. Animals were sacrificed 1 and 4 months after operation, and were examined microscopically. Neo-intestinal regeneration was observed and the intestinal mucosa covered the luminal side of the regenerated intestine across the anastomosis. Thus, the small intestine was regenerated by tissue engineering technology using an acellular collagen sponge scaffold.

  15. Pertactin deficient Bordetella pertussis present a better fitness in mice immunized with an acellular pertussis vaccine.

    PubMed

    Hegerle, N; Dore, G; Guiso, N

    2014-11-20

    Bordetella pertussis is the etiologic agent of whooping cough and has been the target of vaccination for over fifty years. The latest strategies include the use of acellular pertussis vaccines that induce specific immunity against few virulence factors amongst which pertactin is included in three and five component acellular pertussis vaccines. Recently, it has been reported that B. pertussis clinical isolates loose the production of this adhesin in regions reaching high vaccine coverage with vaccines targeting this virulence factor. We here demonstrate that isolates not producing pertactin are capable of sustaining longer infection as compared to pertactin producing isolates in an in vivo model of acellular pertussis immunization. Loosing pertactin production might thus provide a selective advantage to these isolates in this background, which could account for the upraise in prevalence of these pertactin deficient isolates in the population.

  16. Acellular comet assay: a tool for assessing variables influencing the alkaline comet assay.

    PubMed

    Kennedy, Erin K; McNamee, James P; Prud'homme Lalonde, Louise; Jones, Trevor; Wilkinson, Diana

    2012-01-01

    In this study, an acellular modification to the alkaline comet assay to further evaluate key variables within the assay that may influence the outcome of genotoxicity studies is described. This acellular comet assay can detect differences of 0.2 Gy of (60)Co gamma-ray radiation between 0 and 1 Gy and differences of 1 Gy between 0 and 8 Gy; thus, this assay is applicable for a wide range of DNA damage levels. It is also shown that DNA damage from different radiation energies was not significantly different from (60)Co gamma-ray. This assay displayed a statistical increase in DNA damage due to uncontrolled exposure to natural light; however, the slope of the dose-response curve for light-exposed samples was similar to that for samples protected from light. A comparison of the alkaline comet assay with the acellular comet assay allowed for the intrinsic repair capacity of the alkaline comet assay to be quantified.

  17. TGFβ Signaling in Cartilage Development and Maintenance

    PubMed Central

    Wang, Weiguang; Rigueur, Diana; Lyons, Karen M.

    2014-01-01

    Members of the transforming growth factor beta (TGFβ) superfamily of secreted factors play essential roles in nearly every aspect of cartilage formation and maintenance. However, the mechanisms by which TGFβs transduce their effects in cartilage in vivo remain poorly understood. Mutations in several TGFβ family members, their receptors, extracellular modulators, and intracellular transducers have been described, and these usually impact the development of the cartilaginous skeleton. Furthermore, genome-wide association studies have linked components of the (TGFβ) superfamily to susceptibility to osteoarthritis. This review focuses on recent discoveries from genetic studies in the mouse regarding the regulation of TGFβ signaling in developing growth plate and articular cartilage, as well as the different modes of crosstalk between canonical and noncanonical TGFβ signaling. These new insights into TGFβ signaling in cartilage may open new prospects for therapies that maintain healthy articular cartilage. PMID:24677722

  18. [Pertussis vaccines: acellular versus whole cell. Perhaps a return to the past?].

    PubMed

    Cofré, José

    2015-10-01

    The resurgence of pertussis in the world and in our country has questioned the effectiveness of cellular and acellular vaccines. The reason why pertussis has not been controlled or eliminated after 70 years of implementation of the vaccination is probably multifactorial. This article, on the basis of questions and answers, describes the benefits and limitations of both cellular and acellular vaccines and suggests new strategies of vaccination in childhood. It is a fact that the currently applied vaccination does not eliminate the circulation of Bordetella pertussis in the community. Perhaps the introduction of vaccines with live B. pertussis, inhalation, will be able to eliminate the disease around the world. PMID:26633113

  19. An equine joint friction test model using a cartilage-on-cartilage arrangement.

    PubMed

    Noble, Prisca; Collin, Bernard; Lecomte-Beckers, Jacqueline; Magnée, Adrien; Denoix, Jean M; Serteyn, Didier

    2010-02-01

    This study describes an equine joint friction test using a cartilage-on-cartilage arrangement and investigates the influence of age and load on the frictional response. Osteochondral plugs were extracted from equine shoulder joints (2-5 years, n=12; 10-14 years, n=15), and mounted in a pin-on-disc tribometer. The frictional response was then measured under constant conditions (2N; 20 degrees C; 5 mm/s), and with increasing load (2N, 5N, 10N). In all experiments, the friction coefficient of young cartilage was significantly (P<0.001) smaller than obtained from old cartilage, while the application of a greater load resulted in a significant (P<0.001) decrease in friction coefficient only in old cartilage. It was concluded that cartilage ageing was responsible for an increase in friction coefficient under these experimental conditions. Moreover, where young cartilage lubrication remained stable, cartilage ageing may have been responsible for lubrication regime change. The cartilage-on-cartilage model could be used to better understand lubrication regime disturbances in healthy and diseased equine joints, and to test the efficacy of various bio-lubricant treatments.

  20. Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair

    PubMed Central

    Little, Christopher B.; Meeker, Clare T.; Golub, Suzanne B.; Lawlor, Kate E.; Farmer, Pamela J.; Smith, Susan M.; Fosang, Amanda J.

    2007-01-01

    Aggrecan loss from cartilage in arthritis is mediated by aggrecanases. Aggrecanases cleave aggrecan preferentially in the chondroitin sulfate–2 (CS-2) domain and secondarily at the E373↓374A bond in the interglobular domain (IGD). However, IGD cleavage may be more deleterious for cartilage biomechanics because it releases the entire CS-containing portion of aggrecan. Recent studies identifying aggrecanase-2 (ADAMTS-5) as the predominant aggrecanase in mouse cartilage have not distinguished aggrecanolysis in the IGD from aggrecanolysis in the CS-2 domain. We generated aggrecan knockin mice with a mutation that rendered only the IGD resistant to aggrecanases in order to assess the contribution of this specific cleavage to cartilage pathology. The knockin mice were viable and fertile. Aggrecanase cleavage in the aggrecan IGD was not detected in knockin mouse cartilage in situ nor following digestion with ADAMTS-5 or treatment of cartilage explant cultures with IL-1α. Blocking cleavage in the IGD not only diminished aggrecan loss and cartilage erosion in surgically induced osteoarthritis and a model of inflammatory arthritis, but appeared to stimulate cartilage repair following acute inflammation. We conclude that blocking aggrecanolysis in the aggrecan IGD alone protects against cartilage erosion and may potentiate cartilage repair. PMID:17510707

  1. Regulatory Challenges for Cartilage Repair Technologies.

    PubMed

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible.

  2. NMR Studies of Cartilage Dynamics, Diffusion, Degradation

    NASA Astrophysics Data System (ADS)

    Huster, Daniel; Schiller, Jurgen; Naji, Lama; Kaufmann Jorn; Arnold, Klaus

    An increasing number of people is suffering from rheumatic diseases, and, therefore, methods of early diagnosis of joint degeneration are urgently required. For their establishment, however, an improved knowledge about the molecular organisation of cartilage would be helpful. Cartilage consists of three main components: Water, collagen and chondroitin sulfate (CS) that is (together with further polysaccharides and proteins) a major constituent of the proteoglycans of cartilage. 1H and 13C MAS (magic-angle spinning) NMR (nuclear magnetic resonance) opened new perspectives for the study of the macromolecular components in cartilage. We have primarily studied the mobilities of CS and collagen in bovine nasal and pig articular cartilage (that differ significantly in their collagen/polysaccharide content) by measuring 13C NMR relaxation times as well as the corresponding 13C CP (cross polarisation) MAS NMR spectra. These data clearly indicate that the mobility of cartilage macromolecules is broadly distributed from almost completely rigid (collagen) to highly mobile (polysaccharides), which lends cartilage its mechanical strength and shock-absorbing properties.

  3. Method and apparatus for cartilage reshaping by radiofrequency heating

    DOEpatents

    Wong, Brian J.; Milner, Thomas E.; Sobol, Emil N.; Keefe, Michael W.

    2003-07-08

    A method and apparatus for reshaping cartilage using radiofrequency heating. The cartilage temperature is raised sufficiently for stress relaxation to occur in the cartilage, but low enough so that significant denaturation of the cartilage does not occur. The RF electrodes may be designed to also function as molds, preses, clamps, or mandrills to deform the cartilage tissue. Changes in various properties of the cartilage associated with stress relaxation in the cartilage may be measured in order to provide the control signal to provide effective reshaping without denaturation.

  4. Immunogenicity and safety of a monovalent, multicomponent acellular pertussis vaccine in 15 month-6-year-old German children. Monovalent Acellular Pertussis Vaccine Study Group.

    PubMed

    Stehr, K; Heininger, U; Uhlenbusch, R; Angersbach, P; Hackell, J; Eckhardt, T

    1995-03-01

    Immunization against pertussis has been re-recommended for healthy children in Germany in 1991. In addition the former restriction of immunizing only in the first 2 years of life was abolished. In children born before 1991 immunization rates against pertussis were 15% or less. With the new recommendations physicians are now faced with an increasing demand of parents for catch-up vaccinations in these children. Since they were immunized against diphtheria and tetanus previously monovalent pertussis vaccines are needed for this indication. Therefore a monovalent, multicomponent acellular pertussis vaccine was studied in 249 German children 15 months to 6 years of age. Three doses were administered at 6-10 week intervals. Reactogenicity and antibody responses against the vaccine antigens pertussis toxin (PT), filamentous haemagglutinin (FHA), 69-kd antigen (pertactin) and fimbriae-2 (agglutinogen) were investigated. Local and systemic reactions were minimal in frequency and severity. Antibody responses against all vaccine antigens were pronounced with 93%-100% of vaccinees demonstrating at least four fold titre rises above pre-immunization after the third dose. These findings indicate that this monovalent, multicomponent acellular pertussis vaccine with excellent immunogenicity and low reactogenicity is an appropriate candidate for closing immunization gaps in older children in countries with previously low vaccination rates against pertussis. Based on the results of this study the monovalent acellular pertussis vaccine was licensed in Germany in January 1994. PMID:7758519

  5. Repair of a Gingival Fenestration Using an Acellular Dermal Matrix Allograft.

    PubMed

    Breault, Lawrence G; Brentson, Raquel C; Fowler, Edward B; Bisch, Frederick C

    2016-01-01

    A case report illustrating the successful treatment of a gingival fenestration with an acellular dermal matrix (ADM) allograft. After 2½ months of healing, the ADM was completely integrated into the soft tissues of the mandibular anterior gingiva with complete resolution of the gingival fenestration, resulting in excellent gingival esthetics. PMID:26874103

  6. One-stage human acellular nerve allograft reconstruction for digital nerve defects

    PubMed Central

    Li, Xue-yuan; Hu, Hao-liang; Fei, Jian-rong; Wang, Xin; Wang, Tian-bing; Zhang, Pei-xun; Chen, Hong

    2015-01-01

    Human acellular nerve allografts have a wide range of donor origin and can effectively avoid nerve injury in the donor area. Very little is known about one-stage reconstruction of digital nerve defects. The present study observed the feasibility and effectiveness of human acellular nerve allograft in the reconstruction of < 5-cm digital nerve defects within 6 hours after injury. A total of 15 cases of nerve injury, combined with nerve defects in 18 digits from the Department of Emergency were enrolled in this study. After debridement, digital nerves were reconstructed using human acellular nerve allografts. The patients were followed up for 6–24 months after reconstruction. Mackinnon-Dellon static two-point discrimination results showed excellent and good rates of 89%. Semmes-Weinstein monofilament test demonstrated that light touch was normal, with an obvious improvement rate of 78%. These findings confirmed that human acellular nerve allograft for one-stage reconstruction of digital nerve defect after hand injury is feasible, which provides a novel trend for peripheral nerve reconstruction. PMID:25788927

  7. Cartilage Repair and Subchondral Bone Remodeling in Response to Focal Lesions in a Mini-Pig Model: Implications for Tissue Engineering

    PubMed Central

    Fisher, Matthew B.; Belkin, Nicole S.; Milby, Andrew H.; Henning, Elizabeth A.; Bostrom, Marc; Kim, Minwook; Pfeifer, Christian; Meloni, Gregory; Dodge, George R.; Burdick, Jason A.; Schaer, Thomas P.; Steinberg, David R.

    2015-01-01

    Objective: Preclinical large animal models are essential for evaluating new tissue engineering (TE) technologies and refining surgical approaches for cartilage repair. Some preclinical animal studies, including the commonly used minipig model, have noted marked remodeling of the subchondral bone. However, the mechanisms underlying this response have not been well characterized. Thus, our objective was to compare in-vivo outcomes of chondral defects with varied injury depths and treatments. Design: Trochlear chondral defects were created in 11 Yucatan minipigs (6 months old). Groups included an untreated partial-thickness defect (PTD), an untreated full-thickness defect (FTD), and FTDs treated with microfracture, autologous cartilage transfer (FTD-ACT), or an acellular hyaluronic acid hydrogel. Six weeks after surgery, micro-computed tomography (μCT) was used to quantitatively assess defect fill and subchondral bone remodeling. The quality of cartilage repair was assessed using the ICRS-II histological scoring system and immunohistochemistry for type II collagen. A finite element model (FEM) was developed to assess load transmission. Results: Using μCT, substantial bone remodeling was observed for all FTDs, but not for the PTD group. The best overall histological scores and greatest type II collagen staining was found for the FTD-ACT and PTD groups. The FEM confirmed that only the FTD-ACT group could initially restore appropriate transfer of compressive loads to the underlying bone. Conclusions: The bony remodeling observed in this model system appears to be a biological phenomena and not a result of altered mechanical loading, with the depth of the focal chondral defect (partial vs. full thickness) dictating the bony remodeling response. The type of cartilage injury should be carefully controlled in studies utilizing this model to evaluate TE approaches for cartilage repair. PMID:25318414

  8. Calcification of in vitro developed hypertrophic cartilage

    SciTech Connect

    Tacchetti, C.; Quarto, R.; Campanile, G.; Cancedda, R.

    1989-04-01

    We have recently reported that dedifferentiated cells derived from stage 28-30 chick embryo tibiae, when transferred in suspension culture in the presence of ascorbic acid, develop in a tissue closely resembling hypertrophic cartilage. Ultrastructural examination of this in vitro formed cartilage showed numerous matrix vesicles associated with the extracellular matrix. In the present article we report that the in vitro developed hypertrophic cartilage undergoes calcification. We indicate a correlation between the levels of alkaline phosphatase activity and calcium deposition at different times of development. Following the transfer of cells into suspension culture and an initial lag phase, the level of alkaline phosphatase activity rapidly increased. In most experiments the maximum of activity was reached after 5 days of culture. When alkaline phosphatase activity and /sup 45/Ca deposition were measured in the same experiment, we observed that the increase in alkaline phosphatase preceded the deposition of nonwashable calcium deposits in the cartilage.

  9. Nanomechanics of the Cartilage Extracellular Matrix

    NASA Astrophysics Data System (ADS)

    Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine

    2011-08-01

    Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology.

  10. Cartilage tissue engineering using resorbable scaffolds.

    PubMed

    Rotter, Nicole; Bücheler, Markus; Haisch, Andreas; Wollenberg, Barbara; Lang, Stephan

    2007-01-01

    Cartilage tissue engineering holds considerable promise for orthopaedic and reconstructive head and neck surgery. With an increasingly ageing population, the number of patients affected by arthritis and recurrent joint pain is constantly growing, along with the associated socio-economic costs. In head and neck surgery reconstructive procedures gain increasing importance in multimodal tumour therapies. These procedures require the harvesting of large amounts of donor tissue, which causes significant donor site morbidity. Therefore, in vitro-engineered cartilage may provide for a cost-effective and clinically valuable medical need. This article presents an overview of the clinical background as well as considerations for engineered cartilage in the head and neck, and provides examples of cartilage tissue engineering based on various scaffolds.

  11. Materials science: Like cartilage, but simpler

    NASA Astrophysics Data System (ADS)

    Ladegaard Skov, Anne

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partly on repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties. See Letter p.68

  12. Acellular ostrich corneal stroma used as scaffold for construction of tissue-engineered cornea

    PubMed Central

    Liu, Xian-Ning; Zhu, Xiu-Ping; Wu, Jie; Wu, Zheng-Jie; Yin, Yong; Xiao, Xiang-Hua; Su, Xin; Kong, Bin; Pan, Shi-Yin; Yang, Hua; Cheng, Yan; An, Na; Mi, Sheng-Li

    2016-01-01

    AIM To assess acellular ostrich corneal matrix used as a scaffold to reconstruct a damaged cornea. METHODS A hypertonic saline solution combined with a digestion method was used to decellularize the ostrich cornea. The microstructure of the acellular corneal matrix was observed by transmission electron microscopy (TEM) and hematoxylin and eosin (H&E) staining. The mechanical properties were detected by a rheometer and a tension machine. The acellular corneal matrix was also transplanted into a rabbit cornea and cytokeratin 3 was used to check the immune phenotype. RESULTS The microstructure and mechanical properties of the ostrich cornea were well preserved after the decellularization process. In vitro, the methyl thiazolyl tetrazolium results revealed that extracts of the acellular ostrich corneas (AOCs) had no inhibitory effects on the proliferation of the corneal epithelial or endothelial cells or on the keratocytes. The rabbit lamellar keratoplasty showed that the transplanted AOCs were transparent and completely incorporated into the host cornea while corneal turbidity and graft dissolution occurred in the acellular porcine cornea (APC) transplantation. The phenotype of the reconstructed cornea was similar to a normal rabbit cornea with a high expression of cytokeratin 3 in the superficial epithelial cell layer. CONCLUSION We first used AOCs as scaffolds to reconstruct damaged corneas. Compared with porcine corneas, the anatomical structures of ostrich corneas are closer to those of human corneas. In accordance with the principle that structure determines function, a xenograft lamellar keratoplasty also confirmed that the AOC transplantation generated a superior outcome compared to that of the APC graft. PMID:27158598

  13. Development and characterization of acellular porcine pulmonary valve scaffolds for tissue engineering.

    PubMed

    Luo, Ji; Korossis, Sotirios A; Wilshaw, Stacy-Paul; Jennings, Louise M; Fisher, John; Ingham, Eileen

    2014-11-01

    Currently available replacement heart valves all have limitations. This study aimed to produce and characterize an acellular, biocompatible porcine pulmonary root conduit for reconstruction of the right ventricular outflow tract e.g., during Ross procedure. A process for the decellularization of porcine pulmonary roots was developed incorporating trypsin treatment of the adventitial surface of the scraped pulmonary artery and sequential treatment with hypotonic Tris buffer (HTB; 10 mM Tris pH 8.0, 0.1% (w/v) EDTA, and 10 KIU aprotinin), 0.1% (w/v) sodium dodecyl sulfate in HTB, two cycles of DNase and RNase, and sterilization with 0.1% (v/v) peracetic acid. Histology confirmed an absence of cells and retention of the gross histoarchitecture. Immunohistochemistry further confirmed cell removal and partial retention of the extracellular matrix, but a loss of collagen type IV. DNA levels were reduced by more than 96% throughout all regions of the acellular tissue and no functional genes were detected using polymerase chain reaction. Total collagen levels were retained but there was a significant loss of glycosaminoglycans following decellularization. The biomechanical, hydrodynamic, and leaflet kinematics properties were minimally affected by the process. Both immunohistochemical labeling and antibody absorption assay confirmed a lack of α-gal epitopes in the acellular porcine pulmonary roots and in vitro biocompatibility studies indicated that acellular leaflets and pulmonary arteries were not cytotoxic. Overall the acellular porcine pulmonary roots have excellent potential for development of a tissue substitute for right ventricular outflow tract reconstruction e.g., during the Ross procedure. PMID:24786313

  14. Native Chondrocyte Viability during Cartilage Lesion Progression

    PubMed Central

    Ganguly, Kumkum; McRury, Ian D.; Goodwin, Peter M.; Morgan, Roy E.; Augé, Wayne K.

    2010-01-01

    Objective: Early surgical intervention for articular cartilage disease is desirable before full-thickness lesions develop. As early intervention treatments are designed, native chondrocyte viability at the treatment site before intervention becomes an important parameter to consider. The purpose of this study is to evaluate native chondrocyte viability in a series of specimens demonstrating the progression of articular cartilage lesions to determine if the chondrocyte viability profile changes during the evolution of articular cartilage disease to the level of surface fibrillation. Design: Osteochondral specimens demonstrating various degrees of articular cartilage damage were obtained from patients undergoing knee total joint replacement. Three groups were created within a patient harvest based on visual and tactile cues commonly encountered during surgical intervention: group 1, visually and tactilely intact surfaces; group 2, visually intact, tactilely soft surfaces; and group 3, surface fibrillation. Confocal laser microscopy was performed following live/dead cell viability staining. Results: Groups 1 to 3 demonstrated viable chondrocytes in all specimens, even within the fibrillated portions of articular cartilage, with little to no evidence of dead chondrocytes. Chondrocyte viability profile in articular cartilage does not appear to change as disease lesion progresses from normal to surface fibrillation. Conclusions: Fibrillated partial-thickness articular cartilage lesions are a good therapeutic target for early intervention. These lesions retain a high profile of viable chondrocytes and are readily diagnosed by visual and tactile cues during surgery. Early intervention should be based on matrix failure rather than on more aggressive procedures that further corrupt the matrix and contribute to chondrocyte necrosis of contiguous untargeted cartilage. PMID:26069561

  15. Degradome expression profiling in human articular cartilage

    PubMed Central

    Swingler, Tracey E; Waters, Jasmine G; Davidson, Rosemary K; Pennington, Caroline J; Puente, Xose S; Darrah, Clare; Cooper, Adele; Donell, Simon T; Guile, Geoffrey R; Wang, Wenjia; Clark, Ian M

    2009-01-01

    Introduction The molecular mechanisms underlying cartilage destruction in osteoarthritis are poorly understood. Proteolysis is a key feature in the turnover and degradation of cartilage extracellular matrix where the focus of research has been on the metzincin family of metalloproteinases. However, there is strong evidence to indicate important roles for other catalytic classes of proteases, with both extracellular and intracellular activities. The aim of this study was to profile the expression of the majority of protease genes in all catalytic classes in normal human cartilage and that from patients with osteoarthritis (OA) using a quantitative method. Methods Human cartilage was obtained from femoral heads at joint replacement for either osteoarthritis or following fracture to the neck of femur (NOF). Total RNA was purified, and expression of genes assayed using Taqman® low-density array quantitative RT-PCR. Results A total of 538 protease genes were profiled, of which 431 were expressed in cartilage. A total of 179 genes were differentially expressed in OA versus NOF cartilage: eight aspartic proteases, 44 cysteine proteases, 76 metalloproteases, 46 serine proteases and five threonine proteases. Wilcoxon ranking as well as the LogitBoost-NR machine learning approach were used to assign significance to each gene, with the most highly ranked genes broadly similar using each method. Conclusions This study is the most complete quantitative analysis of protease gene expression in cartilage to date. The data help give direction to future research on the specific function(s) of individual proteases or protease families in cartilage and may help to refine anti-proteolytic strategies in OA. PMID:19549314

  16. Imaging of articular cartilage: current concepts

    PubMed Central

    RONGA, MARIO; ANGERETTI, GLORIA; FERRARO, SERGIO; DE FALCO, GIOVANNI; GENOVESE, EUGENIO A.; CHERUBINO, PAOLO

    2014-01-01

    Magnetic resonance imaging (MRI) is the gold standard method for non-invasive assessment of joint cartilage, providing information on the structure, morphology and molecular composition of this tissue. There are certain minimum requirements for a MRI study of cartilage tissue: machines with a high magnetic field (> 1.5 Tesla); the use of surface coils; and the use of T2-weighted, proton density-weighted fast-spin echo (T2 FSE-DP) and 3D fat-suppressed T1-weighted gradient echo (3D-FS T1W GRE) sequences. For better contrast between the different joint structures, MR arthography is a method that can highlight minimal fibrillation or fractures of the articular surface and allow evaluation of the integrity of the native cartilage-repair tissue interface. To assess the biochemical composition of cartilage and cartilage repair tissue, various techniques have been proposed for studying proteoglycans [dGEMRIC, T1rho mapping, sodium (23Na) imaging MRI, etc.], collagen, and water distribution [T2 mapping, “magnetisation transfer contrast”, diffusion-weighted imaging (DWI), and so on]. Several MRI classifications have been proposed for evaluating the processes of joint degeneration (WORMS, BLOKS, ICRS) and post-surgical maturation of repair tissue (MOCART, 3D MOCART). In the future, isotropic 3D sequences set to improve image quality and facilitate the diagnosis of disorders of articular structures adjacent to cartilage. PMID:25606557

  17. Cartilage-containing tumours of the lung

    PubMed Central

    Bateson, Eric M.

    1967-01-01

    An unusual case is reported of a woman aged 27 years who presented with four intrapulmonary cartilage-containing tumours which were resected from the left lung. The appearance of two new shadows in the chest several years later suggested that two of the resected tumours had recurred. Three of the four resected tumours consisted entirely of cartilage and bone and other connective tissues. The fourth tumour, although consisting almost entirely of cartilage and connective tissue, also contained epithelial tissue in the form of two small clefts, one in the periphery and the other in a connective tissue septum between the lobules of cartilage of the tumour. These tumours are regarded as a variation of the more typical cartilage-containing tumour of the lung which contains many spaces lined by respiratory epithelium and is regarded as a neoplasm arising in the connective tissue beneath the mucosa of a small bronchus with subsequent expansion into its lumen and enclosing spaces lined by the mucosal epithelium during its eccentric growth. The tumours consisting almost entirely of cartilage without spaces lined by epithelial cells are thought to expand into the adjacent lung tissue and not into the bronchial lumen. Therefore there is no inclusion of respiratory epithelium from the mucosa of the bronchus of origin. Images PMID:6033393

  18. Silk hydrogel for cartilage tissue engineering

    PubMed Central

    Chao, Pen-Hsiu Grace; Yodmuang, Supansa; Wang, Xiaoqin; Sun, Lin; Kaplan, David L.; Vunjak-Novakovic, Gordana

    2011-01-01

    Cartilage tissue engineering based on cultivation of immature chondrocytes in agarose hydrogel can yield tissue constructs with biomechanical properties comparable to native cartilage. However, agarose is immunogenic and non-degradable, and our capability to modify the structure, composition, and mechanical properties of this material is rather limited. In contrast, silk hydrogel is biocompatible and biodegradable, and it can be produced using a water-based method without organic solvents that enables precise control of structural and mechanical properties in a range of interest for cartilage tissue engineering. We observed that one particular preparation of silk hydrogel yielded cartilaginous constructs with biochemical content and mechanical properties matching constructs based on agarose. This finding and the possibility to vary the properties of silk hydrogel motivated this study of the factors underlying the suitability of hydrogels for cartilage tissue engineering. We present data resulting from a systematic variation of silk hydrogel properties, silk extraction method, gel concentration, and gel structure. Data suggest that silk hydrogel can be used as a tool for studies of the hydrogel-related factors and mechanisms involved in cartilage formation, as well as a tailorable and fully degradable scaffold for cartilage tissue engineering. PMID:20725950

  19. Tissue engineering strategies to study cartilage development, degeneration and regeneration.

    PubMed

    Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh

    2015-04-01

    Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.

  20. Effects of introducing cultured human chondrocytes into a human articular cartilage explant model.

    PubMed

    Secretan, Charles; Bagnall, Keith M; Jomha, Nadr M

    2010-02-01

    Articular cartilage (AC) heals poorly and effective host-tissue integration after reconstruction is a concern. We have investigated the ability of implanted chondrocytes to attach at the site of injury and to be incorporated into the decellularized host matrix adjacent to a defect in an in vitro human explant model. Human osteochondral dowels received a standardized injury, were seeded with passage 3 chondrocytes labelled with PKH 26 and compared with two control groups. All dowels were cultured in vitro, harvested at 0, 7, 14 and 28 days and assessed for chondrocyte adherence and migration into the region of decellularized tissue adjacent to the defects. Additional evaluation included cell viability, general morphology and collagen II production. Seeded chondrocytes adhered to the standardized defect and areas of lamina splendens disruption but did not migrate into the adjacent acellular region. A difference was noted in viable-cell density between the experimental group and one control group. A thin lattice-like network of matrix surrounded the seeded chondrocytes and collagen II was present. The results indicate that cultured human chondrocytes do indeed adhere to regions of AC matrix injury but do not migrate into the host tissue, despite the presence of viable cells. This human explant model is thus an effective tool for studying the interaction of implanted cells and host tissue. PMID:20012649

  1. Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints

    NASA Astrophysics Data System (ADS)

    Hong, Jin-Yong; Yun, Sol; Wie, Jeong Jae; Zhang, Xu; Dresselhaus, Mildred S.; Kong, Jing; Park, Ho Seok

    2016-06-01

    In this study, we demonstrate a cartilage-inspired superelastic and ultradurable nanocomposite strategy for the selective inclusion of viscoelastic poly(dimethylsiloxane) (PDMS) into graphene sheet junctions to create effective stress-transfer pathways within three-dimensional (3D) graphene aerogels (GAs). Inspired by the joint architectures in the human body, where small amounts of soft cartilage connect stiff (or hard) but hollow (and thus lightweight) bones, the 3D internetworked GA@PDMS achieves synergistic toughening. The resulting GA@PDMS nanocomposites exhibit fully reversible structural deformations (99.8% recovery even at a 90% compressive strain) and high compressive mechanical strength (448.2 kPa at a compressive strain of 90%) at repeated compression cycles. Owing to the combination of excellent mechanical and electrical properties, the GA@PDMS nanocomposites are used as signal transducers for strain sensors, showing very short response and recovery times (in the millisecond range) with reliable sensitivity and extreme durability. Furthermore, the proposed system is applied to electronic scales with a large detectable weight of about 4600 times greater than its own weight. Such bio-inspired cartilage architecture opens the door to fabricate new 3D multifunctional and mechanically durable nanocomposites for emerging applications, which include sensors, actuators, and flexible devices.In this study, we demonstrate a cartilage-inspired superelastic and ultradurable nanocomposite strategy for the selective inclusion of viscoelastic poly(dimethylsiloxane) (PDMS) into graphene sheet junctions to create effective stress-transfer pathways within three-dimensional (3D) graphene aerogels (GAs). Inspired by the joint architectures in the human body, where small amounts of soft cartilage connect stiff (or hard) but hollow (and thus lightweight) bones, the 3D internetworked GA@PDMS achieves synergistic toughening. The resulting GA@PDMS nanocomposites exhibit fully

  2. Human stem cells and articular cartilage regeneration.

    PubMed

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  3. Polarized IR microscopic imaging of articular cartilage.

    PubMed

    Ramakrishnan, Nagarajan; Xia, Yang; Bidthanapally, Aruna

    2007-08-01

    The objective of this spectroscopic imaging study is to understand the anisotropic behavior of articular cartilage under polarized infrared radiation at 6.25 microm pixel resolution. Paraffin embedded canine humeral cartilage-bone blocks were used to obtain 6 microm thick tissue sections. Two wire grid polarizers were used to manipulate the polarization states of IR radiation by setting them for various polarizer/analyzer angles. The characteristics of the major chemical components (amide I, amide II, amide III and sugar) of articular cartilage were investigated using (a) a polarizer and (b) a combination of a polarizer and an analyzer. These results were compared to those obtained using only an analyzer. The infrared anisotropy (variation in infrared absorption as a function of polarization angles) of amide I, amide II and amide III bands correlates with the orientation of collagen fibrils along the tissue depth in different histological zones. An 'anisotropic flipping' region of amide profiles indicates the possibility of using Fourier transform infrared imaging (FTIRI) to determine the histological zones in cartilage. Cross-polarization experiment indicates the resolution of overlapping peaks of collagen triple helix and/or proteoglycan in articular cartilage.

  4. Nano-approaches in cartilage repair.

    PubMed

    Giannoni, Paolo; Narcisi, Roberto

    2009-01-01

    Technological improvements in biology, medicine, chemistry, engineering and material science have allowed deeper insights into the architectural and molecular organization levels of tissues and materials, providing innovative approaches and tools for medical treatments. One of the therapeutic targets that may benefit from these new issues is damaged human articular cartilage, a tissue unable to self-heal. In this review, we have not taken into consideration the pathological degenerations that may cause cartilage damage, but we have concentrated on the means of repair, providing a brief overview of the consolidated cellbased approaches for cartilage resurfacing. However, we have also focused on the tight relationships between chondrocytes and their surrounding extracellular matrix. The aim was to evidence the requirements of the cell components of the tissue, the un-fulfillment of which may cause unsatisfactory therapeutic outcomes in present therapies. A deeper analysis of the structural microand nano-characteristics of the articular cartilage matrix is presented to motivate the most recent "nano-approaches" that have been developed and published in the literature. Nanofiber technology, material surface topography and bioactivation, and recent advances in nanoparticle modifications are thus considered for their interesting contributions aimed at improving tissue engineering-based cartilage repair.

  5. Polarized IR microscopic imaging of articular cartilage

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Nagarajan; Xia, Yang; Bidthanapally, Aruna

    2007-08-01

    The objective of this spectroscopic imaging study is to understand the anisotropic behavior of articular cartilage under polarized infrared radiation at 6.25 µm pixel resolution. Paraffin embedded canine humeral cartilage-bone blocks were used to obtain 6 µm thick tissue sections. Two wire grid polarizers were used to manipulate the polarization states of IR radiation by setting them for various polarizer/analyzer angles. The characteristics of the major chemical components (amide I, amide II, amide III and sugar) of articular cartilage were investigated using (a) a polarizer and (b) a combination of a polarizer and an analyzer. These results were compared to those obtained using only an analyzer. The infrared anisotropy (variation in infrared absorption as a function of polarization angles) of amide I, amide II and amide III bands correlates with the orientation of collagen fibrils along the tissue depth in different histological zones. An 'anisotropic flipping' region of amide profiles indicates the possibility of using Fourier transform infrared imaging (FTIRI) to determine the histological zones in cartilage. Cross-polarization experiment indicates the resolution of overlapping peaks of collagen triple helix and/or proteoglycan in articular cartilage.

  6. DermACELL: Human Acellular Dermal Matrix Allograft A Case Report.

    PubMed

    Cole, Windy E

    2016-03-01

    Diabetes often causes ulcers on the feet of diabetic patients. A 56-year-old, insulin-dependent, diabetic woman presented to the wound care center with a Wagner grade 3 ulcer of the right heel. She reported a 3-week history of ulceration with moderate drainage and odor and had a history of ulceration and osteomyelitis in the contralateral limb. Rigorous wound care, including hospitalization; surgical incision and drainage; intravenous antibiotic drug therapy; vacuum-assisted therapy; and a new room temperature, sterile, human acellular dermal matrix graft were used to heal the wound, save her limb, and restore her activities of daily living. This case presentation involves alternative treatment of a diabetic foot ulcer with this new acellular dermal matrix, DermACELL. PMID:27031550

  7. Prosthetic Breast Reconstruction With Acellular Dermal Matrices: Achieving Predictability and Reproducibility.

    PubMed

    Nahabedian, Maurice Y

    2016-05-01

    The use of acellular dermal matrices in the setting of prosthetic breast reconstruction has captured the attention of many plastic surgeons. The regenerative capacity of these materials has provided additional tissue support to the mastectomy skin flaps with the ultimate result of improving surgical and aesthetic outcomes. Despite the benefits, there remains a significant diversity with regard to outcomes with some surgeons reporting increased morbidity. The reasons for this are varied but ultimately related to differences in patient selection and surgical techniques. The purpose of this article is to provide strategies for using acellular dermal matrix to achieve success in a manner that is usually associated with outcomes that are predictable and reproducible. PMID:27579223

  8. Pioneering technique using Acellular Dermal Matrix in the rescue of a radiation ulcer

    PubMed Central

    NASEEM, S.; PATEL, A.D.; DEVALIA, H.

    2016-01-01

    Background Radiotherapy as an adjuvant to mastectomy is integral to the treatment of breast cancer, but can result in skin ulceration. Skin ulceration following radiotherapy is traditionally managed by removing the implant and allowing the skin to heal by secondary intention. Case report A 42-year-old woman underwent radiotherapy following a breast reconstruction. She developed a 2 x 3cm radiation ulcer. The ulcer was managed by removing the implant and performing capsulectomy. A Beckers 50 expander was placed and reinforced with acellular dermal matrix inferolaterally. At follow-up the patient had a good cosmetic outcome. Conclusion Post-radiation skin ulcers present a challenge to treat with no current standardised management. The use of acellular dermal matrix may present a new technique to promote healing in these testing cases. PMID:27142826

  9. Prosthetic Breast Reconstruction With Acellular Dermal Matrices: Achieving Predictability and Reproducibility

    PubMed Central

    2016-01-01

    Summary: The use of acellular dermal matrices in the setting of prosthetic breast reconstruction has captured the attention of many plastic surgeons. The regenerative capacity of these materials has provided additional tissue support to the mastectomy skin flaps with the ultimate result of improving surgical and aesthetic outcomes. Despite the benefits, there remains a significant diversity with regard to outcomes with some surgeons reporting increased morbidity. The reasons for this are varied but ultimately related to differences in patient selection and surgical techniques. The purpose of this article is to provide strategies for using acellular dermal matrix to achieve success in a manner that is usually associated with outcomes that are predictable and reproducible. PMID:27579223

  10. Animal Evolution: The Hard Problem of Cartilage Origins.

    PubMed

    Brunet, Thibaut; Arendt, Detlev

    2016-07-25

    Our skeletons evolved from cartilaginous tissue, but it remains a mystery how cartilage itself first arose in evolution. Characterization of cartilage in cuttlefish and horseshoe crabs reveals surprising commonalities with chordate chondrocytes, suggesting a common evolutionary origin. PMID:27458918

  11. Animal Evolution: The Hard Problem of Cartilage Origins.

    PubMed

    Brunet, Thibaut; Arendt, Detlev

    2016-07-25

    Our skeletons evolved from cartilaginous tissue, but it remains a mystery how cartilage itself first arose in evolution. Characterization of cartilage in cuttlefish and horseshoe crabs reveals surprising commonalities with chordate chondrocytes, suggesting a common evolutionary origin.

  12. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration

    PubMed Central

    Akkiraju, Hemanth; Nohe, Anja

    2016-01-01

    Articular cartilage (AC) covers the diarthrodial joints and is responsible for the mechanical distribution of loads across the joints. The majority of its structure and function is controlled by chondrocytes that regulate Extracellular Matrix (ECM) turnover and maintain tissue homeostasis. Imbalance in their function leads to degenerative diseases like Osteoarthritis (OA). OA is characterized by cartilage degradation, osteophyte formation and stiffening of joints. Cartilage degeneration is a consequence of chondrocyte hypertrophy along with the expression of proteolytic enzymes. Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are an example of these enzymes that degrade the ECM. Signaling cascades involved in limb patterning and cartilage repair play a role in OA progression. However, the regulation of these remains to be elucidated. Further the role of stem cells and mature chondrocytes in OA progression is unclear. The progress in cell based therapies that utilize Mesenchymal Stem Cell (MSC) infusion for cartilage repair may lead to new therapeutics in the long term. However, many questions are unanswered such as the efficacy of MSCs usage in therapy. This review focuses on the role of chondrocytes in cartilage formation and the progression of OA. Moreover, it summarizes possible alternative therapeutic approaches using MSC infusion for cartilage restoration. PMID:27347486

  13. Allogenous cartilage graft versus autogenous cartilage graft in augmentation rhinoplasty: a decade of clinical experience.

    PubMed

    Tosun, Z; Karabekmez, F E; Keskin, M; Duymaz, A; Savaci, N

    2008-03-01

    Cartilage grafts have great value in augmentation rhinoplasty. For most surgeons, an autogenous cartilage graft is the first choice in rhinoplasty because of its resistance to infection and resorption. On the other hand, an allogenous cartilage graft might be preferred over an autogenous graft to avoid additional morbidity and lengthened operating time. Allogenous cartilage grafts not only have the advantage of averting donor site morbidity but also are resistant to infection, resembling autogenous cartilage grafts. The authors present their experience with 41 patients who underwent augmentation rhinoplasty using 22 autogenous and 19 allogenous cartilage grafts between June 1994 and August 2004. For evaluation of adequate augmentation rates, photographic analyses were performed on preoperative, early postoperative, and late postoperative photographs from all the patients. To assess patient satisfaction, the Facial Appearance Sorting Test (FAST) was applied preoperatively and late postoperatively in both groups. These results were compared, and it was concluded that in terms of resorption, there was no difference in the early and late postoperative follow-up data between allogenous and autogenous cartilage grafts. Evaluation of the preoperative and early postoperative photographic outcomes showed statistically significant differences with respect to adequate augmentation rates between the two groups. The FAST scores showed statistically significant differences between preoperative and late postoperative outcomes. There were no infections in the two groups of patients.

  14. The Cellular Immune Mechanism after Transfer of Chemically Extracted Acellular Nerve Xenografts

    PubMed Central

    Lin, Xingshi; Yang, Ruojia; He, Qing; Ruan, Dike

    2013-01-01

    Severe peripheral nerve defect by injuries causing functional loss require nerve grafting. Autograft has limitations for clinical use because it results in the creation of a new nerve injury and the generation of donor site morbidity. Based on these limitations, nerve allografts and xenografts provide a readily accessible alternative strategy. The aim of the present study was to observe the immune mechanism underlying the rejection of chemically extracted acellular nerve xenografts, and further evaluate immunogenicity of chemically treated acellular nerve grafts for clinical applications. A total of 160 BALB/c mice were randomly divided into a negative contrast group (NC, 40 mice), a fresh autograft group (AG, 40 mice), a fresh xenogeneic nerve group (FXN, 40 mice) and a chemically extracted acellular xenogeneic nerve group (CEXN, 40 mice). Various types of nerve grafts were implanted into the thigh muscle of BALB/C mice in the corresponding groups. At 3, 7, 14 and 28 days post-operation, the mice (10 mice from each group) were sacrificed and their spleens were extracted. The spleens were ground into paste. The erythrocytes and other cells were lysed using distilled water and the T lymphocytes were collected. Fluorescein isothiocyanate (FITC) -labeled monoclonal antibodies (CD3, CD4, CD8, CD25, IL-2, IFN-γ and TNF-α) were then added to the solution. The Fluorescence Activated Cell Sorting (FACS) was used to determine the positivity rate of the cells combined with the monoclonal antibodies above. No significant statistical differences were observed between the CEXN, NC and AG groups, so that no obvious immune rejections were observed among the chemically extracted acellular nerve xenografts. PMID:23874771

  15. Hertwig's epithelial root sheath cell behavior during initial acellular cementogenesis in rat molars.

    PubMed

    Yamamoto, Tsuneyuki; Yamamoto, Tomomaya; Yamada, Tamaki; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio

    2014-11-01

    This study was designed to examine developing acellular cementum in rat molars by immunohistochemistry, to elucidate (1) how Hertwig's epithelial root sheath disintegrates and (2) whether epithelial sheath cells transform into cementoblasts through epithelial-mesenchymal transition (EMT). Initial acellular cementogenesis was divided into three developmental stages, which can be seen in three different portions of the root: portion 1, where the epithelial sheath is intact; portion 2, where the epithelial sheath becomes fragmented; and portion 3, where acellular cementogenesis begins. Antibodies against three kinds of matrix proteinases, which degrade epithelial sheath-maintaining factors, including basement membrane and desmosomes, were used to investigate proteolytic activity of the epithelial sheath. Tissue non-specific alkaline phosphatase (TNALP) and keratin were used to investigate EMT. Epithelial sheath cells showed immunoreactivity for all three enzymes at fragmentation, which suggests that epithelial sheath disintegration is enzymatically mediated. Dental follicle cells and cementoblasts showed intense immunoreactivity for TNALP, and from portion 1 through to 3, the reaction extended from the alveolar bone-related zone to the root-related zone. Cells possessing keratin/TNALP double immunoreactivity were virtually absent. Keratin-positive epithelial sheath cells showed negligible immunoreactivity for TNALP, and epithelial cells did not appear to migrate to the dental follicle. Together, these findings suggest that a transition phenotype between epithelial cells and cementoblasts does not exist in the developing dental follicle and hence that epithelial sheath cells do not undergo EMT during initial acellular cementogenesis. In brief, this study supports the notion that cementoblasts derive from the dental follicle. PMID:24859538

  16. Altered function in cartilage derived mesenchymal stem cell leads to OA-related cartilage erosion

    PubMed Central

    Xia, Zenan; Ma, Pei; Wu, Nan; Su, Xinlin; Chen, Jun; Jiang, Chao; Liu, Sen; Chen, Weisheng; Ma, Bupeng; Yang, Xu; Ma, Yufen; Weng, Xisheng; Qiu, Guixing; Huang, Shishu; Wu, Zhihong

    2016-01-01

    A portion of osteoarthritis (OA) patients with total knee arthroplasty (TKA) had monocondylar destruction in medial femoral condyle, but healthy-appearant cartilage in lateral side. However, there is limited information concerning functional differences of cartilage derived mesenchymal stem cell (CMSC) between these two locations in the same donor and its possible role in the pathogenesis of OA. Cells isolated from the degraded cartilage in medial condyle and normal cartilage in lateral side from OA patients were identified with co-expressed markers CD105 and CD166 and confirmed as CMSCs by immunophenotype. The relative percentage, proliferation activity, multi-lineage differentiation potential and miRNA expression profile of CMSCs in two groups were compared by flow cytometry, CCK-8 assay, cytochemical staining, immunohistochemistry, real-time PCR and miRNA microarray analysis. Our study suggested that the percentage (10.61±6.97% vs. 18.44±9.97%, P<0.05) and proliferation rate (P<0.01) of CD105+/CD166+ CMSCs from the degraded cartilage were significantly reduced compared with those from the normal cartilage. CMSCs from the degraded cartilage also showed stronger osteogenic (P<0.05), weaker adipogenic (P<0.01), and comparable chondrogenic potential (P>0.05) during differentiation. MiR-31-5p and miR-424-5p were down regulated in CMSCs from the degraded cartilage. In conclusion, altered function such as reduced percentage and proliferation ability, as well as changes in differentiation profile of CMSC contributed to homeostasis imbalance, leading to OA-related cartilage erosion. Furthermore, regulatory networks of multiple miRNAs may be partially responsible for the dysfunction of CMSCs. PMID:27158337

  17. Cells and biomaterials in cartilage tissue engineering.

    PubMed

    Stoddart, Martin J; Grad, Sibylle; Eglin, David; Alini, Mauro

    2009-01-01

    Cartilage defects are notoriously difficult to repair and owing to the long-term prognosis of osteoarthritis, and a rapidly aging population, a need for new therapies is pressing. Cell-based therapies for cartilage regeneration were introduced into patients in the early 1990s. Since that time the technology has developed from a simple cell suspension to more complex 3D structures. Cells, both chondrocytes and stem cells, have been incorporated into scaffold material with the aim to better recreate the natural environment of the cell, while providing more structural support to withstand the large forces applied on the de novo tissue. This review aims to provide an overview of potential cell sources and different scaffold materials, which are in development for cartilage tissue engineering.

  18. Irradiated homologous costal cartilage for augmentation rhinoplasty

    SciTech Connect

    Lefkovits, G. )

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  19. [Stage oriented surgical cartilage therapy. Current situation].

    PubMed

    Braun, S; Vogt, S; Imhoff, A B

    2007-06-01

    Chondral or osteochondral lesions are typical injuries in orthopaedics and traumatology. Since there is no regeneration of damaged articular cartilage, these lesions can lead to premature osteoarthritis. Therefore, an adequate therapy for these injuries is an important goal. Nowadays, common methods in cartilage therapy are procedures for the recruitment of mesenchymal stem cells: autologous osteochondral transplantation and autologous chondrocyte transplantation. Currently, autologous osteochondral transplantation is the only procedure that allows the replacement of the defect with hyaline cartilage. However, this procedure has the problem of donor-site morbidity and limited availability of transplants. Stem cell recruiting procedures and autologous chondrocyte transplantation normally achieve a regeneration of the defect with only fibrocartilage tissue, but both can achieve good medium-term clinical results. Each of these therapeutic principles has certain major indications. In order to select an adequate therapy, the classification of chondral or osteochondral lesion is needed. From a multiplicity of classification systems, those of the ICRS are of particular clinical relevance.

  20. [Stage oriented surgical cartilage therapy. Current situation].

    PubMed

    Vogt, S; Braun, S; Imhoff, A B

    2007-10-01

    Chondral or osteochondral lesions are typical injuries in orthopaedics and traumatology. Since there is no regeneration of damaged articular cartilage, these lesions can lead to premature osteoarthritis. Therefore, an adequate therapy for these injuries is an important goal. Nowadays, common methods in cartilage therapy are procedures for the recruitment of mesenchymal stem cells: autologous osteochondral transplantation and autologous chondrocyte transplantation. Currently, autologous osteochondral transplantation is the only procedure that allows the replacement of the defect with hyaline cartilage. However, this procedure has the problem of donor-site morbidity and limited availability of transplants. Stem cell recruiting procedures and autologous chondrocyte transplantation normally achieve a regeneration of the defect with only fibrocartilage tissue, but both can achieve good medium-term clinical results. Each of these therapeutic principles has certain major indications. In order to select an adequate therapy, the classification of chondral or osteochondral lesion is needed. From a multiplicity of classification systems, those of the ICRS are of particular clinical relevance.

  1. Induced pluripotent stem cells in cartilage repair

    PubMed Central

    Lietman, Steven A

    2016-01-01

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  2. Induced pluripotent stem cells in cartilage repair.

    PubMed

    Lietman, Steven A

    2016-03-18

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  3. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation.

    PubMed

    Uriarte, Juan J; Nonaka, Paula N; Campillo, Noelia; Palma, Renata K; Melo, Esther; de Oliveira, Luis V F; Navajas, Daniel; Farré, Ramon

    2014-12-01

    Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering. PMID:25241281

  4. Preparation and characterization of an acellular bovine pericardium intended for manufacture of valve bioprostheses.

    PubMed

    Goissis, Gilberto; Giglioti, Aparecida de Fátima; Braile, Domingo Marcolino

    2011-05-01

    Major problems with biological heart valves post-implantation are associated with progressive structural deterioration and calcification attributed to glutaraldehyde processing, dead cells, and cell fragments present in the native tissue. In spite of these problems, glutaraldehyde still is the reagent of choice. The results with acellular matrix xenograft usually prepared by detergent treatment in association with enzymes are rather conflicting because while preserving mechanical properties, tissue morphology and collagen structure are process dependent. This work describes a chemical approach for the preparation of an acellular bovine pericardium matrix intended for the manufacture of heart valve bioprostheses. Cell removal was performed by an alkaline extraction in the presence of calcium salts for periods ranging from 6 to 48 h. The results showed that cell removal was achieved after 12 h, with swelling and negative charge increasing with processing time. Nevertheless, collagen fibril structure, ability to form fibrils, and stability to collagenase were progressive after 24-h processing. There was no denaturation of the collagen matrix. A process is described for the preparation of acellular bovine pericardium matrices with preserved fibril structure and morphology for the manufacture of cardiac valve bioprostheses and may be used in other applications for tissue reconstruction.

  5. Immunolocation of proteoglycans and bone-related noncollagenous glycoproteins in developing acellular cementum of rat molars.

    PubMed

    Yamamoto, T; Domon, T; Takahashi, S; Arambawatta, A K S; Wakita, M

    2004-09-01

    To elucidate the roles of proteoglycans of (PGs), bone sialoprotein (BSP), and osteopontin (OPN) in cementogenesis, their distribution was investigated in developing and established acellular cementum of rat molars by an immunoperoxidase method. To characterize PGs, antibodies against five species of glycosaminoglycans (GAGS), chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S), unsulfated chondroitin (C0S), dermatan sulfate (DS), and keratan sulfate (KS) were used. Routine histological staining was also applied. With onset of dentin mineralization, the initial cementum appeared on the dentin surface as a hematoxylin-stained fibril-poor layer. Subsequently, primitive principal fibers attached to the initial cementum. As the acellular cementum containing extrinsic fibers covered the initial cementum, the intal cementum formed the cemento-dentinal junction. Following immunohistochemistry at the earliest time of cementogenesis, the initial cementum was intensely immunoreactive for C4S, C6S, C0S, BSP, and OPN. After the initial cementum was embedded, neither the cemento-dentinal junction nor the cementum was immunoreactive for any GAG species. However, the cementum was immunoreactive for any GAG species. However, the cementum and cemento-dentinal were consistently immunoreactive for BSP. Although the cemento-dentinal junction was consistently immunoreactive for OPN, the remaining cementum showed no significant immunoreactivity. Thus, initial acellular cementogenesis requires a dense accumulation of PGs, BSP, and OPN, which may be associated with the mineralization process independently of collagen fibrils and initial principal fiber attachment. PMID:15278434

  6. Preparation and characterization of an acellular bovine pericardium intended for manufacture of valve bioprostheses.

    PubMed

    Goissis, Gilberto; Giglioti, Aparecida de Fátima; Braile, Domingo Marcolino

    2011-05-01

    Major problems with biological heart valves post-implantation are associated with progressive structural deterioration and calcification attributed to glutaraldehyde processing, dead cells, and cell fragments present in the native tissue. In spite of these problems, glutaraldehyde still is the reagent of choice. The results with acellular matrix xenograft usually prepared by detergent treatment in association with enzymes are rather conflicting because while preserving mechanical properties, tissue morphology and collagen structure are process dependent. This work describes a chemical approach for the preparation of an acellular bovine pericardium matrix intended for the manufacture of heart valve bioprostheses. Cell removal was performed by an alkaline extraction in the presence of calcium salts for periods ranging from 6 to 48 h. The results showed that cell removal was achieved after 12 h, with swelling and negative charge increasing with processing time. Nevertheless, collagen fibril structure, ability to form fibrils, and stability to collagenase were progressive after 24-h processing. There was no denaturation of the collagen matrix. A process is described for the preparation of acellular bovine pericardium matrices with preserved fibril structure and morphology for the manufacture of cardiac valve bioprostheses and may be used in other applications for tissue reconstruction. PMID:21595716

  7. Management of complex abdominal wall defects using acellular porcine dermal collagen.

    PubMed

    Chavarriaga, Luis Felipe; Lin, Edward; Losken, Albert; Cook, Michael W; Jeansonne, Louis O; White, Brent C; Sweeney, John F; Galloway, John R; Davis, S Scott

    2010-01-01

    Multiple techniques have been used for the repair of complex abdominal wall defects after recurrent incisional hernias with varying rates of success. Primary repair has been associated with high recurrence rates, and prosthetic mesh placement is contraindicated in contaminated surgical fields. The development of biologic prostheses has changed the approach to these difficult problems. This study evaluates the management of complex abdominal wall defects using acellular porcine dermal collagen. Between August 2006 and May 2007, 18 patients underwent abdominal wall reconstruction for complex defects with acellular porcine dermal collagen (CollaMend; Bard Inc., Warwick, RI). Patient demographics, preoperative risk factors, previous herniorrhaphy attempts, postoperative complications, recurrences, and long-term results were retrospectively reviewed. Records were reviewed at a mean follow up of 7.3 months; the recurrence rate was 44.4 per cent. A total of 38.9 per cent (seven of 18) developed a postoperative wound complications, including infection in 22.2 per cent (four of 18). All of the patients with infection required prosthesis removal as a result of encapsulation rather than incorporation of the biologic prosthesis. Acellular porcine dermal collagen has the potential for reconstruction of abdominal wall defects with postoperative wound occurrences comparable with other biologic materials. Encapsulation of the material was a major problem in cases with wound infection that required graft removal rather than local wound measures. Hernia recurrence and dehiscence of the graft were problems in noncompromised surgical fields.

  8. Morphogenesis of the second pharyngeal arch cartilage (Reichert's cartilage) in human embryos

    PubMed Central

    Rodríguez-Vázquez, J F; Mérida-Velasco, J R; Verdugo-López, S; Sánchez-Montesinos, I; Mérida-Velasco, J A

    2006-01-01

    This study was performed on 50 human embryos and fetuses between 7 and 17 weeks of development. Reichert's cartilage is formed in the second pharyngeal arch in two segments. The longer cranial or styloid segment is continuous with the otic capsule; its inferior end is angulated and is situated very close to the oropharynx. The smaller caudal segment is in contact with the body and greater horn of the hyoid cartilaginous structure. No cartilage forms between these segments. The persistent angulation of the inferior end of the cranial or styloid segment of Reichert's cartilage and its important neurovascular relationships may help explain the symptomatology of Eagle's syndrome. PMID:16441562

  9. Morphogenesis of the second pharyngeal arch cartilage (Reichert's cartilage) in human embryos.

    PubMed

    Rodríguez-Vázquez, J F; Mérida-Velasco, J R; Verdugo-López, S; Sánchez-Montesinos, I; Mérida-Velasco, J A

    2006-02-01

    This study was performed on 50 human embryos and fetuses between 7 and 17 weeks of development. Reichert's cartilage is formed in the second pharyngeal arch in two segments. The longer cranial or styloid segment is continuous with the otic capsule; its inferior end is angulated and is situated very close to the oropharynx. The smaller caudal segment is in contact with the body and greater horn of the hyoid cartilaginous structure. No cartilage forms between these segments. The persistent angulation of the inferior end of the cranial or styloid segment of Reichert's cartilage and its important neurovascular relationships may help explain the symptomatology of Eagle's syndrome.

  10. Preparation of Articular Cartilage Specimens for Scanning Electron Microscopy.

    PubMed

    Stupina, T A

    2016-08-01

    We developed and adapted a technology for preparation of articular cartilage specimens for scanning electron microscopy. The method includes prefixation processing, fixation, washing, and dehydration of articular cartilage specimens with subsequent treatment in camphene and air-drying. The technological result consists in prevention of deformation of the articular cartilage structures. The method is simpler and cheaper than the known technologies. PMID:27591865

  11. An evaluation of serious neurological disorders following immunization: a comparison of whole-cell pertussis and acellular pertussis vaccines.

    PubMed

    Geier, David A; Geier, Mark R

    2004-08-01

    Serious neurological disorders reported following whole-cell pertussis in comparison to acellular pertussis vaccines were evaluated. The Vaccine Adverse Events Reporting System (VAERS) was analyzed for Emergency Department (ED) visits, life-threatening reactions, hospitalizations, disabilities, deaths, seizures, infantile spasms, encephalitis/encephalopathy, autism, Sudden Infant Death Syndrome (SIDS) and speech disorders reported with an initial onset of symptoms within 3 days following whole-cell pertussis and acellular pertussis vaccines among those residing in the US from 1997 to 1999. Controls were employed to evaluate potential biases in VAERS. Evaluations as to whether whole-cell and acellular vaccines were administered to populations of similar age and sex were undertaken because these factors might influence the study's results. Statistical increases were observed for all events examined following whole-cell pertussis vaccination in comparison to acellular pertussis vaccination, excepting cerebellar ataxia. Reporting biases were minimal in VAERS, and whole-cell and acellular pertussis vaccines were administered to populations of similar age and sex. Biologic mechanisms for the increased reactogenicity of whole-cell pertussis vaccines may stem from the fact that whole-cell pertussis vaccines contain 3,000 different proteins, whereas DTaP contains two to five proteins. Whole-cell pertussis vaccine contains known neurotoxins including: endotoxin, pertussis toxin and adenylate cyclase. Our results, and conclusions by the US Institute of Medicine, suggest an association between serious neurological disorders and whole-cell pertussis immunization. In light of the presence of a safer and at least equally efficacious acellular pertussis vaccine alternative, the Japanese and US switch to using acellular pertussis vaccine seems well justified. Other countries using whole-cell pertussis-containing vaccines should consider following suite in the near future.

  12. Construction of a chondrocyte cell sheet using temperature-responsive poly(N-isopropylacrylamide)-co-acrylamide.

    PubMed

    Viravaidya-Pasuwat, Kwanchanok; Wong-in, Sopita; Sakulaue, Phongphot; Siriwatwechakul, Wanwipa

    2013-01-01

    In this study, a novel temperature-responsive poly(N-isopropylacrylamide)-co-acrylamide was used to prepare a chondrocyte cell sheet. Chondrocytes were isolated from human articular cartilage and plated on the copolymer film grafted tissue culture plates. The cell attachment on the copolymer film was shown to be similar to that of the ungrafted surface. To harvest a cell sheet, the incubation temperature was reduced to 10°C for 30 minutes to allow the polymer chain to fully extend, changing the copolymer's phase from hydrophobicity to hydrophilicity. Additional incubation at 20°C for 60 minutes was necessary to activate the cellular metabolism required for cytoskeletal organization and cell detachment. A complete cell sheet recovery was achieved when a PVDF membrane was used as a cell sheet carrier. Unfortunately, the shrinkage of the cell sheet was observed. Nonetheless, the harvested cell sheet was shown to be viable and healthy. PMID:24111348

  13. Influence of dynamic load on friction behavior of human articular cartilage, stainless steel and polyvinyl alcohol hydrogel as artificial cartilage.

    PubMed

    Li, Feng; Su, Yonglin; Wang, Jianping; Wu, Gang; Wang, Chengtao

    2010-01-01

    Many biomaterials are being developed to be used for cartilage substitution and hemiarthroplasty implants. The lubrication property is a key feature of the artificial cartilage. The frictional behavior of human articular cartilage, stainless steel and polyvinyl alcohol (PVA) hydrogel were investigated under cartilage-on-PVA hydrogel contact, cartilage-on-cartilage contact and cartilage-on-stainless steel contact using pin-on-plate method. Tests under static load, cyclic load and 1 min load change were used to evaluate friction variations in reciprocating motion. The results showed that the lubrication property of cartilage-on-PVA hydrogel contact and cartilage-on-stainless steel contact were restored in both 1 min load change and cyclic load tests. The friction coefficient of PVA hydrogel decreased from 0.178 to 0.076 in 60 min, which was almost one-third of the value under static load in continuous sliding tests. In each test, the friction coefficient of cartilage-on-cartilage contact maintained far lower value than other contacts. It is indicated that a key feature of artificial cartilage is the biphasic lubrication properties.

  14. Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model.

    PubMed

    Hasegawa, Masateru; Yamato, Masayuki; Kikuchi, Akihiko; Okano, Teruo; Ishikawa, Isao

    2005-01-01

    Conventional periodontal regeneration methods remain insufficient to attain complete and reliable clinical regeneration of periodontal tissues. We have developed a new method of cell transplantation using cell sheet engineering and have applied it to this problem. The purpose of this study was to investigate the characteristics of human periodontal ligament (HPDL) cell sheets retrieved from culture on unique temperature-responsive culture dishes, and to examine whether these cell sheets can regenerate periodontal tissues. The HPDL cell sheets were examined histologically and biochemically, and also were transplanted into a mesial dehiscence model in athymic rats. HPDL cells were harvested from culture dishes as a contiguous cell sheet with abundant extracellular matrix and retained intact integrins that are susceptible to trypsin-EDTA treatment. In the animal study, periodontal ligament-like tissues that include an acellular cementum-like layer and fibrils anchoring into this layer were identified in all the athymic rats transplanted with HPDL cell sheets. This fibril anchoring highly resembles native periodontal ligament fibers; such regeneration was not observed in nontransplanted controls. These results suggest that this technique, based on the concept of cell sheet engineering, can be useful for periodontal tissue regeneration. PMID:15869425

  15. Effect of levofloxacin on glycosaminoglycan and DNA synthesis of cultured rabbit chondrocytes at concentrations inducing cartilage lesions in vivo.

    PubMed Central

    Kato, M; Takada, S; Ogawara, S; Takayama, S

    1995-01-01

    We investigated the toxic effect of levofloxacin (LVFX), a quinolone antibacterial agent, on cartilage by examining aspects of its in vivo toxicokinetics and effect on the function of cultured chondrocytes of the femoral articular cartilage from juvenile New Zealand White rabbits. Repeated administration of LVFX (100 mg/kg) orally for 7 days induced focal necrosis and superficial erosion in the articular cartilage of the femoral condyle, but 30 mg/kg did not. Concentrations of LVFX in the cartilage were highest at the first sampling point (30 min) after a single administration, being 4.93 and 12.2 micrograms/g in the 30- and 100-mg/kg groups, respectively. The arthropathic concentration of LVFX in the cartilage was then shown to be 12.2 micrograms/g or more. For an in vitro study, chondrocytes were separated from the articular cartilage of the rabbit femoral condyle and cultured for 7 days until confluence. 35SO4 uptake by cultured chondrocyte sheets was most susceptible to LVFX, decreasing at drug concentrations of 5 micrograms/ml or more in 24- and 48-h cultures but not in a 72-h culture. Furthermore, 3H-thymidine uptake was decreased at concentrations of 10 micrograms/ml or more in a 48-h culture but not in 24- and 72-h cultures. Rhodamine 123 accumulation was susceptible to inhibition in cultured chondrocytes at an LVFX concentration of 10 micrograms/ml or more. These results suggest that LVFX inhibits glycosaminoglycan synthesis initially and DNA synthesis and mitochondrial function secondarily at actual arthropathic concentrations in cultured rabbit chondrocytes but that these changes are reversible and not enough to kill the cells. PMID:8540702

  16. Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints.

    PubMed

    Hong, Jin-Yong; Yun, Sol; Wie, Jeong Jae; Zhang, Xu; Dresselhaus, Mildred S; Kong, Jing; Park, Ho Seok

    2016-07-14

    In this study, we demonstrate a cartilage-inspired superelastic and ultradurable nanocomposite strategy for the selective inclusion of viscoelastic poly(dimethylsiloxane) (PDMS) into graphene sheet junctions to create effective stress-transfer pathways within three-dimensional (3D) graphene aerogels (GAs). Inspired by the joint architectures in the human body, where small amounts of soft cartilage connect stiff (or hard) but hollow (and thus lightweight) bones, the 3D internetworked GA@PDMS achieves synergistic toughening. The resulting GA@PDMS nanocomposites exhibit fully reversible structural deformations (99.8% recovery even at a 90% compressive strain) and high compressive mechanical strength (448.2 kPa at a compressive strain of 90%) at repeated compression cycles. Owing to the combination of excellent mechanical and electrical properties, the GA@PDMS nanocomposites are used as signal transducers for strain sensors, showing very short response and recovery times (in the millisecond range) with reliable sensitivity and extreme durability. Furthermore, the proposed system is applied to electronic scales with a large detectable weight of about 4600 times greater than its own weight. Such bio-inspired cartilage architecture opens the door to fabricate new 3D multifunctional and mechanically durable nanocomposites for emerging applications, which include sensors, actuators, and flexible devices. PMID:27244686

  17. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications.

    PubMed

    Schwarz, Silke; Koerber, Ludwig; Elsaesser, Alexander F; Goldberg-Bockhorn, Eva; Seitz, Andreas M; Dürselen, Lutz; Ignatius, Anita; Walther, Paul; Breiter, Roman; Rotter, Nicole

    2012-11-01

    Damage of cartilage structures in the head and neck region as well as in orthopedic sites are frequently caused by trauma, tumor resection, or congenital defects. Despite a high demand in many clinical fields, until today, no adequate cartilage replacement matrix is available for these fields of application. Materials that are clinically applied for joint cartilage repair still need optimization due to difficult intraoperative handling and risk of early mechanical damage. We have developed and applied a novel chemical process to completely decellularize and sterilize human and porcine cartilage tissues (meniscus cartilage and nasal septum) to generate a new type of bioimplant matrix. To characterize this matrix and to determine the effect of the decellularization process, the content of denatured collagen (w(D)) and the content of glycosaminoglycans (GAGs) (w(G)) were determined. Possible cytotoxic effects and cellular compatibility of the matrix in vitro have been examined by seeding processed cartilage biomatrices with human primary chondrocytes as well as murine fibroblasts (L929). Vitality and state of metabolism of cells were measured using MTS assays. Both cell types adhered to scaffold surfaces and proliferated. No areas of growth inhibition or cytotoxic effects were detected. New synthesis of cartilage-specific extracellular matrix was observed. By histological staining, electron microscopy, and μCT analysis, an increase of matrix porosity, complete cell elimination, and high GAG removal were demonstrated. Being from natural-origin, processed xenogenic and allogeneic cartilage biomatrices are highly versatile with regard to shape, size, and biomechanics, making them promising candidates for various biomedical applications.

  18. Dielectric Characterization of Costal Cartilage Chondrocytes

    PubMed Central

    Stacey, Michael W.; Sabuncu, Ahmet Can; Beskok, Ali

    2013-01-01

    Background Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enables the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy. Methods Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are compared with other cell types in order to comparatively assess the electrical nature of chondrocytes. Results The results suggest that electrical cell membrane characteristics of chondrocyte cells are close to cardiomyoblast cells, cells known to possess an array of active ion channels. The blocking effect of the non-specific ion channel blocker gadolinium is tested on chondrocytes with a significant reduction in both membrane capacitance and conductance. Conclusions We have utilized a microfluidic chamber to mimic biomechanical events through changes in bioelectrochemistry and described the dielectric properties of chondrocytes to be closer to cells derived from electrically excitably tissues General significance and interest The studydescribes dielectric characterization of human costal chondrocyte cells using physical tools, where results and methodology can be used to identify potential anomalies in bioelectrochemical responses that may lead to cartilage disorders. PMID:24016606

  19. Nanomechanics of the Cartilage Extracellular Matrix

    PubMed Central

    Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine

    2012-01-01

    Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology. PMID:22792042

  20. PRP and Articular Cartilage: A Clinical Update

    PubMed Central

    Rossi, Roberto; Castoldi, Filippo; Michielon, Gianni

    2015-01-01

    The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory. PMID:26075244

  1. Septal cartilage tissue engineering: new horizons.

    PubMed

    Greene, Jacqueline J; Watson, Deborah

    2010-10-01

    Cartilage tissue engineering is a dynamically changing field that has the potential to address some of the tissue repair challenges seen in nasal and craniofacial reconstructive surgeries. The scope of the problem includes limited autologous tissue availability, donor site morbidity associated with the harvesting of these tissue grafts, and the risk of an immune reaction to allogenic or synthetic implants that might be used as alternatives. Current tissue engineering strategies involve harvesting a small biopsy specimen from a patient and then isolating chondrocytes through enzymatic digestion of the extracellular matrix. These isolated chondrocytes can be expanded in monolayer and reseeded into a three-dimensional scaffold that could potentially be used as autologous surgical grafts. Using cell-expansion techniques, it would be feasible to generate abundant amounts of cartilage in defined shapes and sizes. The ideal tissue-engineered cartilage would resemble native tissue in terms of its biochemical, structural, and metabolic properties so that it could restore stability, function, and contour to the damaged or defective facial region. In this article, emerging technology and major challenges are described to highlight recent advances and overall trends within septal cartilage tissue engineering.

  2. Generating Cartilage Repair from Pluripotent Stem Cells

    PubMed Central

    Cheng, Aixin; Hardingham, Timothy E.

    2014-01-01

    The treatment of degeneration and injury of articular cartilage has been very challenging for scientists and surgeons. As an avascular and hypocellular tissue, cartilage has a very limited capacity for self-repair. Chondrocytes are the only cell type in cartilage, in which they are surrounded by the extracellular matrix that they secrete and assemble. Autologous chondrocyte implantation for cartilage defects has achieved good results, but the limited resources and complexity of the procedure have hindered wider application. Stem cells form an alternative to chondrocytes as a source of chondrogenic cells due to their ability to proliferate extensively while retaining the potential for differentiation. Adult stem cells such as mesenchymal stem cells have been differentiated into chondrocytes, but the limitations in their proliferative ability and the heterogeneous cell population hinder their adoption as a prime alternative source for generating chondrocytes. Human embryonic stem cells (hESCs) are attractive as candidates for cell replacement therapy because of their unlimited self-renewal and ability for differentiation into mesodermal derivatives as well as other lineages. In this review, we focus on current protocols for chondrogenic differentiation of ESCs, in particular the chemically defined culture system developed in our lab that could potentially be adapted for clinical application. PMID:23957872

  3. Editorial commentary: scaffold-based cartilage treatments.

    PubMed

    Lubowitz, James H

    2015-04-01

    With or without cells, scaffold-based cartilage treatments show promising results. Clinical study focuses on autologous stem cells, but in vitro, basic science biologics research favors mesenchymal stem cells. MSCs vary by cell type and concentration, and may be expanded ex vivo.

  4. Zn deposition at the bone cartilage interface in equine articular cartilage

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Moger, C. J.; Winlove, C. P.

    2007-09-01

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 μm and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  5. The effects of exercise on human articular cartilage

    PubMed Central

    Eckstein, F; Hudelmaier, M; Putz, R

    2006-01-01

    The effects of exercise on articular hyaline articular cartilage have traditionally been examined in animal models, but until recently little information has been available on human cartilage. Magnetic resonance imaging now permits cartilage morphology and composition to be analysed quantitatively in vivo. This review briefly describes the methodological background of quantitative cartilage imaging and summarizes work on short-term (deformational behaviour) and long-term (functional adaptation) effects of exercise on human articular cartilage. Current findings suggest that human cartilage deforms very little in vivo during physiological activities and recovers from deformation within 90 min after loading. Whereas cartilage deformation appears to become less with increasing age, sex and physical training status do not seem to affect in vivo deformational behaviour. There is now good evidence that cartilage undergoes some type of atrophy (thinning) under reduced loading conditions, such as with postoperative immobilization and paraplegia. However, increased loading (as encountered by elite athletes) does not appear to be associated with increased average cartilage thickness. Findings in twins, however, suggest a strong genetic contribution to cartilage morphology. Potential reasons for the inability of cartilage to adapt to mechanical stimuli include a lack of evolutionary pressure and a decoupling of mechanical competence and tissue mass. PMID:16637874

  6. [Present status and perspective of articular cartilage regeneration].

    PubMed

    Wakitani, Shigeyuki

    2007-05-01

    Because the capacity of articular cartilage for repair is limited, defects are a major clinical problem, and there is at present no satisfactory clinical technique to regenerate cartilage defects. Current clinical practice involves the bone stimulation technique, which breaks subchondral bone to facilitate cartilage repair from bone marrow derived cells and cytokines. This consists of multiple perforations, abrasions, and micro-fractures. However, with this procedure, cartilage defects are repaired with fibrocartilage, which is known to be biochemically and biomechanically different from normal hyaline cartilage and degeneration occurs in the reparative tissue. Autologous chondrocyte implantation (ACI) for repair of human articular cartilage was reported in 1994, and approved by the USA Food and Drug Association in 1997. This procedure has been performed for more than 20000 people all over the world, but its effectiveness is still controversial. Mosaic plasty was explored in the 1990s. Using this procedure, we can repair defects with hyaline cartilage, but the donor site morbidity is unsolved. To explore a new method for cartilage repair, we transplanted autologous culture-expanded bone marrow mesenchymal cells into articular cartilage defects. Clinical symptoms were improred but the repair cartilage was not hyaline cartilage. Further improvement is required. Many investigations have been made in the search for better means of repair, including gene transduction and the addition of growth factors during cell culture. In addition to bone marrow mesenchymal cells, synovial cells, adipocytes, muscle cells, etc. have been evaluated.

  7. Evaluating acellular versus cellular perfusate composition during prolonged ex vivo lung perfusion after initial cold ischaemia for 24 hours.

    PubMed

    Becker, Simon; Steinmeyer, Jasmin; Avsar, Murat; Höffler, Klaus; Salman, Jawad; Haverich, Axel; Warnecke, Gregor; Ochs, Matthias; Schnapper, Anke

    2016-01-01

    Normothermic ex vivo lung perfusion (EVLP) has developed as a powerful technique to evaluate particularly marginal donor lungs prior to transplantation. In this study, acellular and cellular perfusate compositions were compared in an identical experimental setting as no consensus has been reached on a preferred technique yet. Porcine lungs underwent EVLP for 12 h on the basis of an acellular or a cellular perfusate composition after 24 h of cold ischaemia as defined organ stress. During perfusion, haemodynamic and respiratory parameters were monitored. After EVLP, the lung condition was assessed by light and transmission electron microscopy. Aerodynamic parameters did not show significant differences between groups and remained within the in vivo range during EVLP. Mean oxygenation indices were 491 ± 39 in the acellular group and 513 ± 53 in the cellular group. Groups only differed significantly in terms of higher pulmonary artery pressure and vascular resistance in the cellular group. Lung histology and ultrastructure were largely well preserved after prolonged EVLP and showed only minor structural alterations which were similarly present in both groups. Prolonged acellular and cellular EVLP for 12 h are both feasible with lungs prechallenged by ischaemic organ stress. Physiological and ultrastructural analysis showed no superiority of either acellular or cellular perfusate composition.

  8. Inducing articular cartilage phenotype in costochondral cells

    PubMed Central

    2013-01-01

    Introduction Costochondral cells may be isolated with minimal donor site morbidity and are unaffected by pathologies of the diarthrodial joints. Identification of optimal exogenous stimuli will allow abundant and robust hyaline articular cartilage to be formed from this cell source. Methods In a three factor, two level full factorial design, the effects of hydrostatic pressure (HP), transforming growth factor β1 (TGF-β1), and chondroitinase ABC (C-ABC), and all resulting combinations, were assessed in third passage expanded, redifferentiated costochondral cells. After 4 wks, the new cartilage was assessed for matrix content, superficial zone protein (SZP), and mechanical properties. Results Hyaline articular cartilage was generated, demonstrating the presence of type II collagen and SZP, and the absence of type I collagen. TGF-β1 upregulated collagen synthesis by 175% and glycosaminoglycan synthesis by 75%, resulting in a nearly 200% increase in tensile and compressive moduli. C-ABC significantly increased collagen content, and fibril density and diameter, leading to a 125% increase in tensile modulus. Hydrostatic pressure increased fibril diameter by 30% and tensile modulus by 45%. Combining TGF-β1 with C-ABC synergistically increased collagen content by 300% and tensile strength by 320%, over control. No significant differences were observed between C-ABC/TGF-β1 dual treatment and HP/C-ABC/TGF-β1. Conclusions Employing biochemical, biophysical, and mechanical stimuli generated robust hyaline articular cartilage with a tensile modulus of 2 MPa and a compressive instantaneous modulus of 650 kPa. Using expanded, redifferentiated costochondral cells in the self-assembling process allows for recapitulation of robust mechanical properties, and induced SZP expression, key characteristics of functional articular cartilage. PMID:24330640

  9. The cranial cartilages of teleosts and their classification.

    PubMed Central

    Benjamin, M

    1990-01-01

    The structure and distribution of cartilages has been studied in 45 species from 24 families. The resulting data have been used as a basis for establishing a new classification. A cartilage is regarded as 'cell-rich' if its cells or their lacunae occupy more than half of the tissue volume. Five classes of cell-rich cartilage are recognised (a) hyaline-cell cartilage (common in the lips of bottom-dwelling cyprinids) and its subtypes fibro/hyaline-cell cartilage, elastic/hyaline-cell cartilage and lipo/hyaline-cell cartilage, (b) Schaffer's Zellknorpel, typified by the cartilage in the gill filaments of most teleosts examined, (c) elastic/cell-rich cartilage, such as that which supports the barbels and oral valves of catfish, e.g. Corydoras metae, (d) fibro/cell-rich cartilage, as in the submaxillary meniscus of Sphaerichthys osphromenoides, (e) cell-rich hyaline and (f) matrix-rich hyaline cartilage--both of which are common in the neurocranium and gill arches of most teleosts. The range of cartilages seen, and the predominant cartilage type, is recorded for each species and a list is provided of the tissues that most typify different organs or regions of the head. As a preliminary pointer to developmental relationships between the cartilages, note was taken of gradual transitions between one cartilage and another. It is suggested that hyaline-cell cartilage occupies a key position in teleosts as the most labile of the supporting tissues and is highly characteristic of Cypriniformes. The cartilage that best resembles mammalian hyaline cartilage (matrix-rich hyaline cartilage) has a very conservative distribution in different skeletal elements and the least number of associations with other tissues. It is well represented in Siluriformes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 24 Fig. 25 Fig. 26 Fig. 27 PMID:2384333

  10. Florid pustular dermatitis of breast: A case report on a unusual complication from acellular dermal matrix use

    PubMed Central

    James, Justin; Jackson, Lee; Saunders, Christobel

    2016-01-01

    Introduction Idiopathic erythematous reaction of the breast (Red breast syndrome) is a known complication following breast reconstruction with acellular dermal matrix. However pustular dermatitis like presentation is not previously known. Presentation of case We present a 42-year-old lady who developed bilateral pustular dermatitis like appearance following breast reconstruction with acellular dermal matrix slings. Though surgical washout was done, both expanders and flex HD could be preserved. Discussion Acellular dermal matrix use is the only possible explanation for such a presentation and this can be considered a variant of red breast syndrome. Conclusion Pustular dermatitis like presentation can be associated with acelluar dermal matrix use and should be considered in similar clinical presentations, since this can avoid unnecessary surgical procedures. PMID:27058152

  11. Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model.

    PubMed

    van de Breevaart Bravenboer, Jarno; In der Maur, Caroline D; Bos, P Koen; Feenstra, Louw; Verhaar, Jan A N; Weinans, Harrie; van Osch, Gerjo J V M

    2004-01-01

    The objective of the present study was to investigate whether treatment of articular cartilage with hyaluronidase and collagenase enhances histological and mechanical integration of a cartilage graft into a defect. Discs of 3 mm diameter were taken from 8-mm diameter bovine cartilage explants. Both discs and annulus were either treated for 24 hours with 0.1% hyaluronidase followed by 24 hours with 10 U/ml collagenase or left untreated (controls). Discs and annulus were reassembled and implanted subcutaneously in nude mice for 5 weeks. Integration of disc with surrounding cartilage was assessed histologically and tested biomechanically by performing a push-out test. After 5 weeks a significant increase in viable cell counts was seen in wound edges of the enzyme-treated group as compared with controls. Furthermore, matrix integration (expressed as a percentage of the total interface length that was connected; mean +/- standard error) was 83 +/- 15% in the treated samples versus 44 +/- 40% in the untreated controls. In the enzyme-treated group only, picro-Sirius Red staining revealed collagen crossing the interface perpendicular to the wound surface. Immunohistochemical analyses demonstrated that the interface tissue contained cartilage-specific collagen type II. Collagen type I was found only in a small region of fibrous tissue at the level of the superficial layer, and collagen type III was completely absent in both groups. A significant difference in interfacial strength was found using the push-out test: 1.32 +/- 0.15 MPa in the enzyme-treated group versus 0.84 +/- 0.14 MPa in the untreated controls. The study shows that enzyme treatment of cartilage wounds increases histological integration and improves biomechanical bonding strength. Enzymatic treatment may represent a promising addition to current techniques for articular cartilage repair.

  12. Hyperosmolaric contrast agents in cartilage tomography may expose cartilage to overload-induced cell death.

    PubMed

    Turunen, M J; Töyräs, J; Lammi, M J; Jurvelin, J S; Korhonen, R K

    2012-02-01

    In clinical arthrographic examination, strong hypertonic contrast agents are injected directly into the joint space. This may reduce the stiffness of articular cartilage, which is further hypothesized to lead to overload-induced cell death. We investigated the cell death in articular cartilage while the tissue was compressed in situ in physiological saline solution and in full strength hypertonic X-ray contrast agent Hexabrix(TM). Samples were prepared from bovine patellae and stored in Dulbecco's Modified Eagle's Medium overnight. Further, impact tests with or without creep were conducted for the samples with contact stresses and creep times changing from 1 MPa to 10 MPa and from 0 min to 15 min, respectively. Finally, depth-dependent cell viability was assessed with a confocal microscope. In order to characterize changes in the biomechanical properties of cartilage as a result of the use of Hexabrix™, stress-relaxation tests were conducted for the samples immersed in Hexabrix™ and phosphate buffered saline (PBS). Both dynamic and equilibrium modulus of the samples immersed in Hexabrix™ were significantly (p<0.05) lower than those of the samples immersed in PBS. Cartilage samples immersed in physiological saline solution showed load-induced cell death primarily in the superficial and middle zones. However, under high 8-10 MPa contact stresses, the samples immersed in full strength Hexabrix™ showed significantly (p<0.05) higher number of dead cells than the samples compressed in physiological saline, especially in the deep zone of cartilage. In conclusion, excessive loading stresses followed by tissue creep might increase the risk for chondrocyte death in articular cartilage when immersed in hypertonic X-ray contrast agent, especially in the deep zone of cartilage.

  13. Adipose tissue regeneration in vivo using micronized acellular allogenic dermis as an injectable scaffold.

    PubMed

    Lee, Hee Young; Yang, Hyun Jin; Rhie, Jong Won; Han, Ki Talk

    2014-10-01

    Over the past few years, the clinical use of injectable artificial materials in plastic surgery has increased. In addition, autologous lipoimplantation is being performed for volume replacement of soft tissue for aesthetic purposes. In this study, acellular allogenic dermis was utilized as a scaffold for the culturing of preadipocytes, confirming the possibility of three-dimensional proliferation of progenitor cells, the eventual differentiation of stromal cells in adipose tissue into the adipocytes, and the in vivo implantation of such adipocytes to form fat tissue. Preadipocytes, recently called ASCs (adipose tissue-derived stromal/stem cells), were cultured in acellular allogenic dermis, successfully attached to the dermal particles in a three-dimensional structure, and proliferated, differentiated, and eventually formed a cluster. For the in vivo implantation, four groups were formed: the first group was cultured within the dermal scaffold for 24 h before implantation (24-h preconditioned group), the second group was induced for differentiation for 10 days before implantation (10-day preconditioned group), the third group was implanted immediately after cell propagation (nonpreconditioned group), and the control group was implanted with only dermal scaffold. In vivo implanted preadipocytes showed great differentiation into adipocytes within the dermal scaffolds. Also, the 10-day preconditioned group showed a greater volume of fat tissue compared to the 24-h preconditioned group. From these results, we confirmed that after a three-dimensional culture in acellular allogenic dermis, implanted preadipocytes formed a greater amount of fat tissue and that this could be a possible effective method for future soft tissue restoration.

  14. Reconstruction of a Recurrent First Dorsal Web Space Defect using Acellular Dermis

    PubMed Central

    Buck, Donald W.; Kloeters, Oliver; Eo, SuRak; Jones, Neil F.

    2007-01-01

    Oncologic defects of the hand can be problematic for the reconstructive surgeon. These defects may require a delay in definitive coverage until clear margins of resection can be obtained, which can result in a prolonged period of painful dressing changes and increased risk of soft-tissue infection. In addition, reconstructive options for oncologic defects are often limited to skin grafting, which can yield functional deficits secondary to contracted healing. Currently, there is no definitive method for preventing skin graft contracture; however, acellular dermis has been proposed as a biomechanical scaffold to enhance subsequent skin graft healing and slow this functionally debilitating process. Here, we present a patient with recurrent melanoma of the first dorsal web space. After re-resection of the melanoma, the 11 cm × 5 cm defect was reconstructed using acellular dermis as temporary coverage to allow ample time for permanent section results. Ten days later, after confirming negative margins of resection, a split-thickness skin graft (STSG) was applied over the vascularized neo-dermis. Follow-up clinical examination and the Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaires were used to assess outcome. At 7 months, the patient had no recurrence of melanoma and a DASH functional reduction of only 6.9%. After approximately 18 months, the patient’s wounds had healed with excellent cosmetic and functional results, without any evidence of a web space contracture. These observations suggest that acellular dermis is a useful adjunct for wound coverage of the hand, particularly in areas of functional importance, such as the first dorsal web space. PMID:18780060

  15. Cartilage issues in football-today's problems and tomorrow's solutions.

    PubMed

    Mithoefer, Kai; Peterson, Lars; Zenobi-Wong, Marcy; Mandelbaum, Bert R

    2015-05-01

    Articular cartilage injury is prevalent in football players and results from chronic joint stress or acute traumatic injuries. Articular cartilage injury can often result in progressive painful impairment of joint function and limit sports participation. Management of articular cartilage injury in athletes aims to return the player to competition, and requires effective and durable joint surface restoration that resembles normal hyaline articular cartilage that can withstand the high joint stresses of football. Existing articular cartilage repair techniques can return the athlete with articular cartilage injury to high-impact sports, but treatment does not produce normal articular cartilage, and this limits the success rate and durability of current cartilage repair in athletes. Novel scientific concepts and treatment techniques that apply modern tissue engineering technologies promise further advancement in the treatment of these challenging injuries in the high demand athletic population. We review the current knowledge of cartilage injury pathophysiology, epidemiology and aetiology, and outline existing management algorithms, developing treatment options and future strategies to manage articular cartilage injuries in football players. PMID:25878075

  16. Cartilage issues in football—today's problems and tomorrow's solutions

    PubMed Central

    Mithoefer, Kai; Peterson, Lars; Zenobi-Wong, Marcy; Mandelbaum, Bert R

    2015-01-01

    Articular cartilage injury is prevalent in football players and results from chronic joint stress or acute traumatic injuries. Articular cartilage injury can often result in progressive painful impairment of joint function and limit sports participation. Management of articular cartilage injury in athletes aims to return the player to competition, and requires effective and durable joint surface restoration that resembles normal hyaline articular cartilage that can withstand the high joint stresses of football. Existing articular cartilage repair techniques can return the athlete with articular cartilage injury to high-impact sports, but treatment does not produce normal articular cartilage, and this limits the success rate and durability of current cartilage repair in athletes. Novel scientific concepts and treatment techniques that apply modern tissue engineering technologies promise further advancement in the treatment of these challenging injuries in the high demand athletic population. We review the current knowledge of cartilage injury pathophysiology, epidemiology and aetiology, and outline existing management algorithms, developing treatment options and future strategies to manage articular cartilage injuries in football players. PMID:25878075

  17. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    PubMed

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies. PMID:17586107

  18. Adjuvant neurotrophic factors in peripheral nerve repair with chondroitin sulfate proteoglycan-reduced acellular nerve allografts

    PubMed Central

    Boyer, Richard B.; Sexton, Kevin W.; Rodriguez-Feo, Charles L.; Nookala, Ratnam; Pollins, Alonda C.; Cardwell, Nancy L.; Tisdale, Keonna Y.; Nanney, Lillian B.; Shack, R. Bruce; Thayer, Wesley P.

    2014-01-01

    Background Acellular nerve allografts are now standard tools in peripheral nerve repair due to decreased donor site morbidity and operative time savings. Preparation of nerve allografts involves several steps of decellularization and modification of extracellular matrix to remove chondroitin sulfate proteoglycans (CSPGs), which have been shown to inhibit neurite outgrowth through a poorly understood mechanism involving RhoA and ECM-integrin interactions. Chondroitinase ABC (ChABC) is an enzyme that degrades CSPG molecules and has been shown to promote neurite outgrowth following injury of the central and peripheral nervous systems. Variable results following chondroitinase ABC treatment make it difficult to predict the effects of this drug in human nerve allografts, especially in the presence of native extracellular signaling molecules. Several studies have shown cross-talk between neurotrophic factor and CSPG signaling pathways, but their interaction remains poorly understood. In this study, we examined the adjuvant effects of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on neurite outgrowth post-injury in CSPG-reduced substrates and acellular nerve allografts. Materials and Methods E12 chicken DRG explants were cultured in medium containing ChABC, ChABC + NGF, ChABC + GDNF or control media. Explants were imaged at 3 d and neurite outgrowths measured. The rat sciatic nerve injury model involved a 1-cm sciatic nerve gap that was microsurgically repaired with ChABC pre-treated acellular nerve allografts. Prior to implantation, nerve allografts were incubated in NGF, GDNF or sterile water. Nerve histology was evaluated at 5d and 8wk post-injury. Results The addition of GDNF in vitro produced significant increase in sensory neurite length at 3 d compared to ChABC alone (P < 0.01), while NGF was not significantly different from control. In vivo adjuvant NGF produced increases in total myelinated axon count (P < 0.005) and motor axon

  19. Current opinions on indications and algorithms for acellular dermal matrix use in primary prosthetic breast reconstruction.

    PubMed

    Vu, Michael M; Kim, John Y S

    2015-06-01

    Acellular dermal matrix (ADM) is widely used in primary prosthetic breast reconstruction. Many indications and contraindications to use ADM have been reported in the literature, and their use varies by institution and surgeon. Developing rational, tested algorithms to determine when ADM is appropriate can significantly improve surgical outcomes and reduce costs associated with ADM use. We review the important indications and contraindications, and discuss the algorithms that have been put forth so far. Further research into algorithmic decision-making for ADM use will allow optimized balancing of cost with risk and benefit. PMID:26161304

  20. Current opinions on indications and algorithms for acellular dermal matrix use in primary prosthetic breast reconstruction

    PubMed Central

    Vu, Michael M.

    2015-01-01

    Acellular dermal matrix (ADM) is widely used in primary prosthetic breast reconstruction. Many indications and contraindications to use ADM have been reported in the literature, and their use varies by institution and surgeon. Developing rational, tested algorithms to determine when ADM is appropriate can significantly improve surgical outcomes and reduce costs associated with ADM use. We review the important indications and contraindications, and discuss the algorithms that have been put forth so far. Further research into algorithmic decision-making for ADM use will allow optimized balancing of cost with risk and benefit. PMID:26161304

  1. A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair.

    PubMed

    Ainola, Mari; Tomaszewski, Waclaw; Ostrowska, Barbara; Wesolowska, Ewa; Wagner, H Daniel; Swieszkowski, Wojciech; Sillat, Tarvo; Peltola, Emilia; Konttinen, Yrjö T

    2016-01-01

    The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.

  2. Structural Biology Fact Sheet

    MedlinePlus

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  3. Zika Virus Fact Sheet

    MedlinePlus

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Zika virus Fact sheet Updated 6 September 2016 Key facts ... and last for 2-7 days. Complications of Zika virus disease After a comprehensive review of evidence, there ...

  4. Nasal dorsum reconstruction with 11th rib cartilage and auricular cartilage grafts.

    PubMed

    Gentile, Pietro; Cervelli, Valerio

    2009-01-01

    We present a review of international literature on the topic of nasal dorsum reconstruction with 11th rib cartilage and auricular cartilage grafts, analyzing 123 patients selected from 653 cases of rhinoplasties performed between January 1990 and October 2007 at the Department of Plastic and Reconstructive Surgery of the University of Rome "Tor Vergata." We present our experience with the correction of deformities of the nasal dorsum using rib cartilage and auricular cartilage grafts. The majority of the time, nasal dorsum deformities are complicated defects to correct surgically. They can be a consequence of naso-ethmoid-orbital fractures and of surgical procedures in the nasal area where a loss of bone or septal cartilaginous support has occurred. After a review of the techniques employed in the reconstruction, we describe the advantage of the use of rib cartilage and our experience using this procedure. In the sample examined, 84% of treated patients showed cosmetic improvements, with satisfactory results to both surgeon and patient. A functional improvement has been achieved in 94% of the operated cases. PMID:19131722

  5. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    PubMed

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism. PMID:26970769

  6. Hyaline cartilage engineered by chondrocytes in pellet culture: histological, immunohistochemical and ultrastructural analysis in comparison with cartilage explants

    PubMed Central

    Zhang, Zijun; McCaffery, J Michael; Spencer, Richard G S; Francomano, Clair A

    2004-01-01

    Cartilage engineering is a strategic experimental goal for the treatment of multiple joint diseases. Based on the process of embryonic chondrogenesis, we hypothesized that cartilage could be engineered by condensing chondrocytes in pellet culture and, in the present study, examined the quality of regenerated cartilage in direct comparison with native cartilage. Chondrocytes isolated from the sterna of chick embryos were cultured in pellets (4 × 106 cells per pellet) for 2 weeks. Cartilage explants from the same source were cultured as controls. After 2 weeks, the regenerated cartilage from pellet culture had a disc shape and was on average 9 mm at the longest diameter. The chondrocyte phenotype was stabilized in pellet culture as shown by the synthesis of type II collagen and aggrecan, which was the same intensity as in the explant after 7 days in culture. During culture, chondrocytes also continuously synthesized type IX collagen. Type X collagen was negatively stained in both pellets and explants. Except for fibril orientation, collagen fibril diameter and density in the engineered cartilage were comparable with the native cartilage. In conclusion, hyaline cartilage engineered by chondrocytes in pellet culture, without the transformation of cell phenotypes and scaffold materials, shares similarities with native cartilage in cellular distribution, matrix composition and density, and ultrastructure. PMID:15379928

  7. Determination of viability of human cartilage allografts by a rapid and quantitative method not requiring cartilage digestion.

    PubMed

    López, Carmen; Ajenjo, Nuria; Muñoz-Alonso, Maria J; Farde, Pilar; León, J; Gómez-Cimiano, J

    2008-01-01

    Fresh osteochondral allograft transplantation is increasingly used for the treatment of cartilage pathologies of the knee. It is believed that transplantation success depends on the presence of viable chondrocytes in the graft, but methods to evaluate graft viability require the isolation of chondrocytes by enzymatic digestion of the cartilage and/or the use of radioactive precursors. We have adapted the well-known cell viability assay based on the reduction of tetrazolium derivatives to evaluate cartilage viability. We took advantage from the histological properties of cartilage tissue and the fact that some tetrazolium derivatives (e.g., WST-1, XTT) give soluble reduction products that can permeate the hyaline cartilage matrix. We have validated this assay in human cartilage explants from arthrotomy interventions and deceased donors, measuring the reduced product in the explant supernatant. Using this method we have compared the performance of several culture media in cartilage viability. From those tested, DMEM supplemented with fetal bovine serum results in higher viability of the cartilage and the explants remain viable at least 15 days in culture at 37 degrees C. Cartilage cells continued expressing chondrocyte-specific genes, suggesting the maintenance of chondrogenic phenotype. The described method offers a quantitative and convenient method to measure the viability of human cartilage grafts.

  8. Bioprinted Scaffolds for Cartilage Tissue Engineering.

    PubMed

    Kang, Hyun-Wook; Yoo, James J; Atala, Anthony

    2015-01-01

    Researchers are focusing on bioprinting technology as a viable option to overcome current difficulties in cartilage tissue engineering. Bioprinting enables a three-dimensional (3-D), free-form, computer-designed structure using biomaterials, biomolecules, and/or cells. The inner and outer shape of a scaffold can be controlled by this technology with great precision. Here, we introduce a hybrid bioprinting technology that is a co-printing process of multiple materials including high-strength synthetic polymer and cell-laden hydrogel. The synthetic polymer provides mechanical support for shape maintenance and load bearing, while the hydrogel provides the biological environment for artificial cartilage regeneration. This chapter introduces the procedures for printing of a 3-D scaffold using our hybrid bioprinting technology and includes the source materials for preparation of 3-D printing. PMID:26445837

  9. Cartilage restoration technique of the hip

    PubMed Central

    Mardones, Rodrigo; Larrain, Catalina

    2016-01-01

    Hip cartilage lesions represent a diagnostic challenge and can be an elusive source of pain. Treatment may present difficulties due to localization and spherical form of the joint and is most commonly limited to excision, debridement, thermal chondroplasty and microfractures. This chapter will focus in new technologies to enhance the standard techniques. These new technologies are based in stem cells therapies; as intra-articular injections of expanded mesenchymal stem cells, mononuclear concentrate in a platelet-rich plasma matrix and expanded mesenchymal stem cells seeded in a collagen membrane. This review will discuss the bases, techniques and preliminary results obtained with the use of stem cells for the treatment of hip cartilage lesions. PMID:27026816

  10. FUNCTIONAL CARTILAGE MRI T2 MAPPING: EVALUATING THE EFFECT OF AGE AND TRAINING ON KNEE CARTILAGE RESPONSE TO RUNNING

    PubMed Central

    Mosher, Timothy J.; Liu, Yi; Torok, Collin M.

    2009-01-01

    Objective To characterize effects of age and physical activity level on cartilage thickness and T2 response immediately after running. Design Institutional review board approval was obtained and all subjects provided informed consent prior to study participation. Cartilage thickness and MRI T2 values of 22 marathon runners and 15 sedentary controls were compared before and after 30 minutes of running. Runner and control groups were stratified by age ≤ 45 and ≥ 46 years. Multi-echo (TR/TE 1500 ms/9 –109 ms) MR images obtained using a 3.0 T scanner were used to calculate thickness and T2 values from the central femoral and tibial cartilage. Baseline cartilage T2 values, and change in cartilage thickness and T2 values after running were compared between the four groups using 1-way ANOVA. Results After running MRI T2 values decreased in superficial femoral (2 ms to 4 ms) and tibial (1 ms to 3 ms) cartilage along with a decrease in cartilage thickness: (femoral: 4% to 8%, tibial: 0% to 12%). Smaller decrease in cartilage t2 values were observed in the middle zone of cartilage, and no change was observed in the deepest layer. There was no difference cartilage deformation or T2 response to running as a function of age or level of physical activity. Conclusions Running results in a measurable decrease in cartilage thickness and MRI T2 values of superficial cartilage consistent with greater compressibility of the superficial cartilage layer. Age and level of physical activity did not alter the T2 response to running. PMID:19948266

  11. Quantitative MRI techniques of cartilage composition

    PubMed Central

    Matzat, Stephen J.; van Tiel, Jasper; Gold, Garry E.

    2013-01-01

    Due to aging populations and increasing rates of obesity in the developed world, the prevalence of osteoarthritis (OA) is continually increasing. Decreasing the societal and patient burden of this disease motivates research in prevention, early detection of OA, and novel treatment strategies against OA. One key facet of this effort is the need to track the degradation of tissues within joints, especially cartilage. Currently, conventional imaging techniques provide accurate means to detect morphological deterioration of cartilage in the later stages of OA, but these methods are not sensitive to the subtle biochemical changes during early disease stages. Novel quantitative techniques with magnetic resonance imaging (MRI) provide direct and indirect assessments of cartilage composition, and thus allow for earlier detection and tracking of OA. This review describes the most prominent quantitative MRI techniques to date—dGEMRIC, T2 mapping, T1rho mapping, and sodium imaging. Other, less-validated methods for quantifying cartilage composition are also described—Ultrashort echo time (UTE), gagCEST, and diffusion-weighted imaging (DWI). For each technique, this article discusses the proposed biochemical correlates, as well its advantages and limitations for clinical and research use. The article concludes with a detailed discussion of how the field of quantitative MRI has progressed to provide information regarding two specific patient populations through clinical research—patients with anterior cruciate ligament rupture and patients with impingement in the hip. While quantitative imaging techniques continue to rapidly evolve, specific challenges for each technique as well as challenges to clinical applications remain. PMID:23833729

  12. Lipid Transport and Metabolism in Healthy and Osteoarthritic Cartilage

    PubMed Central

    Villalvilla, Amanda; Gómez, Rodolfo; Largo, Raquel; Herrero-Beaumont, Gabriel

    2013-01-01

    Cartilage is an avascular tissue and cartilage metabolism depends on molecule diffusion from synovial fluid and subchondral bone. Thus, nutrient availability is limited by matrix permeability according to the size and charge of the molecules. Matrix composition limits the access of molecules to chondrocytes, determining cell metabolism and cartilage maintenance. Lipids are important nutrients in chondrocyte metabolism and are available for these cells through de novo synthesis but also through diffusion from surrounding tissues. Cartilage status and osteoarthritis development depend on lipid availability. This paper reviews lipid transport and metabolism in cartilage. We also analyze signalling pathways directly mediated by lipids and those that involve mTOR pathways, both in normal and osteoarthritic cartilage. PMID:24135873

  13. Bone–cartilage crosstalk: a conversation for understanding osteoarthritis

    PubMed Central

    Findlay, David M; Kuliwaba, Julia S

    2016-01-01

    Although cartilage degradation is the characteristic feature of osteoarthritis (OA), it is now recognized that the whole joint is involved in the progression of OA. In particular, the interaction (crosstalk) between cartilage and subchondral bone is thought to be a central feature of this process. The interface between articular cartilage and bone of articulating long bones is a unique zone, which comprises articular cartilage, below which is the calcified cartilage sitting on and intercalated into the subchondral bone plate. Below the subchondral plate is the trabecular bone at the end of the respective long bones. In OA, there are well-described progressive destructive changes in the articular cartilage, which parallel characteristic changes in the underlying bone. This review examines the evidence that biochemical and biomechanical signaling between these tissue compartments is important in OA disease progression and asks whether such signaling might provide possibilities for therapeutic intervention to halt or slow disease development.

  14. Ultrasound Backscattering Is Anisotropic in Bovine Articular Cartilage.

    PubMed

    Inkinen, Satu I; Liukkonen, Jukka; Tiitu, Virpi; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2015-07-01

    Collagen, proteoglycans and chondrocytes can contribute to ultrasound scattering in articular cartilage. However, anisotropy of ultrasound scattering in cartilage is not fully characterized. We investigate this using a clinical intravascular ultrasound device with ultrasound frequencies of 9 and 40 MHz. Osteochondral samples were obtained from intact bovine patellas, and cartilage was imaged in two perpendicular directions: through articular and lateral surfaces. At both frequencies, ultrasound backscattering was higher (p < 0.05) when measured through the lateral surface of cartilage. In addition, the composition and structure of articular cartilage were investigated with multiple reference methods involving light microscopy, digital densitometry, polarized light microscopy and Fourier infrared imaging. Reference methods indicated that acoustic anisotropy of ultrasound scattering arises mainly from non-uniform distribution of chondrocytes and anisotropic orientation of collagen fibers. To conclude, ultrasound backscattering in articular cartilage was found to be anisotropic and dependent on the frequency in use. PMID:25933711

  15. Ultrasound Backscattering Is Anisotropic in Bovine Articular Cartilage.

    PubMed

    Inkinen, Satu I; Liukkonen, Jukka; Tiitu, Virpi; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2015-07-01

    Collagen, proteoglycans and chondrocytes can contribute to ultrasound scattering in articular cartilage. However, anisotropy of ultrasound scattering in cartilage is not fully characterized. We investigate this using a clinical intravascular ultrasound device with ultrasound frequencies of 9 and 40 MHz. Osteochondral samples were obtained from intact bovine patellas, and cartilage was imaged in two perpendicular directions: through articular and lateral surfaces. At both frequencies, ultrasound backscattering was higher (p < 0.05) when measured through the lateral surface of cartilage. In addition, the composition and structure of articular cartilage were investigated with multiple reference methods involving light microscopy, digital densitometry, polarized light microscopy and Fourier infrared imaging. Reference methods indicated that acoustic anisotropy of ultrasound scattering arises mainly from non-uniform distribution of chondrocytes and anisotropic orientation of collagen fibers. To conclude, ultrasound backscattering in articular cartilage was found to be anisotropic and dependent on the frequency in use.

  16. Clinical translation of stem cells: insight for cartilage therapies

    PubMed Central

    Lee, Jennifer K.; Responte, Donald J.; Cissell, Derek D.; Hu, Jerry C.; Nolta, Jan A.; Athanasiou, Kyriacos A.

    2015-01-01

    The limited regenerative capacity of articular cartilage and deficiencies of current treatments have motivated the investigation of new repair technologies. In vitro cartilage generation using primary cell sources is limited by cell availability and expansion potential. Pluripotent stem cells possess the capacity for chondrocytic differentiation and extended expansion, providing a potential future solution to cell-based cartilage regeneration. However, despite successes in producing cartilage using adult and embryonic stem cells, the translation of these technologies to the clinic has been severely limited. This review discusses recent advances in stem cell-based cartilage tissue engineering and the major current limitations to clinical translation of these products. Concerns regarding appropriate animal models and studies, stem cell manufacturing, and relevant regulatory processes and guidelines will be addressed. Understanding the significant hurdles limiting the clinical use of stem cell-based cartilage may guide future developments in the fields of tissue engineering and regenerative medicine. PMID:24083452

  17. Strategies to minimize hypertrophy in cartilage engineering and regeneration

    PubMed Central

    Chen, Song; Fu, Peiliang; Cong, Ruijun; Wu, HaiShan; Pei, Ming

    2015-01-01

    Due to a blood supply shortage, articular cartilage has a limited capacity for self-healing once damaged. Articular chondrocytes, cartilage progenitor cells, embryonic stem cells, and mesenchymal stem cells are candidate cells for cartilage regeneration. Significant current attention is paid to improving chondrogenic differentiation capacity; unfortunately, the potential chondrogenic hypertrophy of differentiated cells is largely overlooked. Consequently, the engineered tissue is actually a transient cartilage rather than a permanent one. The development of hypertrophic cartilage ends with the onset of endochondral bone formation which has inferior mechanical properties. In this review, current strategies for inhibition of chondrogenic hypertrophy are comprehensively summarized; the impact of cell source options is discussed; and potential mechanisms underlying these strategies are also categorized. This paper aims to provide guidelines for the prevention of hypertrophy in the regeneration of cartilage tissue. This knowledge may also facilitate the retardation of osteophytes in the treatment of osteoarthritis. PMID:26000333

  18. Bone–cartilage crosstalk: a conversation for understanding osteoarthritis

    PubMed Central

    Findlay, David M; Kuliwaba, Julia S

    2016-01-01

    Although cartilage degradation is the characteristic feature of osteoarthritis (OA), it is now recognized that the whole joint is involved in the progression of OA. In particular, the interaction (crosstalk) between cartilage and subchondral bone is thought to be a central feature of this process. The interface between articular cartilage and bone of articulating long bones is a unique zone, which comprises articular cartilage, below which is the calcified cartilage sitting on and intercalated into the subchondral bone plate. Below the subchondral plate is the trabecular bone at the end of the respective long bones. In OA, there are well-described progressive destructive changes in the articular cartilage, which parallel characteristic changes in the underlying bone. This review examines the evidence that biochemical and biomechanical signaling between these tissue compartments is important in OA disease progression and asks whether such signaling might provide possibilities for therapeutic intervention to halt or slow disease development. PMID:27672480

  19. Processed bovine cartilage: an improved biosynthetic implant for contour defects

    SciTech Connect

    Ersek, R.A.; Hart, W.G. Jr.; Greer, D.; Beisang, A.A.; Flynn, P.J.; Denton, D.R.

    1984-05-01

    Irradiated human cartilage has been found to be a superior implant material for correction of contour defects; however, availability problems have prevented this material from gaining wide acceptance. Implantation of processed irradiated bovine cartilage in primates and rabbits, as described here, provides strong evidence that this material performs like irradiated allograft cartilage antigenically and has certain cosmetic advantages over allograft cartilage. Our studies in primates have shown that there is no systemically measurable antibody-antigen reaction, either cellular or noncellular, to irradiated processed bovine cartilage. Neither primary nor second-set provocative implantations produced any measurable rejection. In rabbits, composite grafts of two pieces of irradiated bovine cartilage adjacent to each other were also well tolerated, with no measurable absorption and with capsule formation typical of a foreign body reaction to an inert object.

  20. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis.

    PubMed

    Findlay, David M; Kuliwaba, Julia S

    2016-01-01

    Although cartilage degradation is the characteristic feature of osteoarthritis (OA), it is now recognized that the whole joint is involved in the progression of OA. In particular, the interaction (crosstalk) between cartilage and subchondral bone is thought to be a central feature of this process. The interface between articular cartilage and bone of articulating long bones is a unique zone, which comprises articular cartilage, below which is the calcified cartilage sitting on and intercalated into the subchondral bone plate. Below the subchondral plate is the trabecular bone at the end of the respective long bones. In OA, there are well-described progressive destructive changes in the articular cartilage, which parallel characteristic changes in the underlying bone. This review examines the evidence that biochemical and biomechanical signaling between these tissue compartments is important in OA disease progression and asks whether such signaling might provide possibilities for therapeutic intervention to halt or slow disease development. PMID:27672480

  1. Molecular Adhesion between Cartilage Extracellular Matrix Macromolecules

    PubMed Central

    2015-01-01

    In this study, we investigated the molecular adhesion between the major constituents of cartilage extracellular matrix, namely, the highly negatively charged proteoglycan aggrecan and the type II/IX/XI fibrillar collagen network, in simulated physiological conditions. Colloidal force spectroscopy was applied to measure the maximum adhesion force and total adhesion energy between aggrecan end-attached spherical tips (end radius R ≈ 2.5 μm) and trypsin-treated cartilage disks with undamaged collagen networks. Studies were carried out in various aqueous solutions to reveal the physical factors that govern aggrecan–collagen adhesion. Increasing both ionic strength and [Ca2+] significantly increased adhesion, highlighting the importance of electrostatic repulsion and Ca2+-mediated ion bridging effects. In addition, we probed how partial enzymatic degradation of the collagen network, which simulates osteoarthritic conditions, affects the aggrecan–collagen interactions. Interestingly, we found a significant increase in aggrecan–collagen adhesion even when there were no detectable changes at the macro- or microscales. It is hypothesized that the aggrecan–collagen adhesion, together with aggrecan–aggrecan self-adhesion, works synergistically to determine the local molecular deformability and energy dissipation of the cartilage matrix, in turn, affecting its macroscopic tissue properties. PMID:24491174

  2. Cartilage Engineering from Mesenchymal Stem Cells

    NASA Astrophysics Data System (ADS)

    Goepfert, C.; Slobodianski, A.; Schilling, A. F.; Adamietz, P.; Pörtner, R.

    Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism and in vitro engineering of tissues is hypothesized to follow the principles of embryogenesis. The embryonic development of the skeleton has been studied extensively with respect to the regulatory mechanisms governing morphogenesis, differentiation, and tissue formation. Various concepts have been designed for engineering tissues in vitro based on these developmental principles, most of them involving regulatory molecules such as growth factors or cytokines known to be the key regulators in developmental processes. Growth factors most commonly used for in vitro cultivation of cartilage tissue belong to the fibroblast growth factor (FGF) family, the transforming growth factor-beta (TGF-β) super-family, and the insulin-like growth factor (IGF) family. In this chapter, in vivo actions of members of these growth factors described in the literature are compared with in vitro concepts of cartilage engineering making use of these growth factors.

  3. Growth in cartilage-hair hypoplasia.

    PubMed

    Mäkitie, O; Perheentupa, J; Kaitila, I

    1992-02-01

    Cartilage-hair hypoplasia is an osteochondrodysplasia with short-limbed short stature. The cartilage-hair hypoplasia gene is exceptionally prevalent in Finland; more than 100 patients have been identified. We have analyzed the growth of 100 Finnish patients and present cartilage-hair hypoplasia-specific growth charts of height and weight for height. The disproportions were analyzed by sitting height, subischial leg height, sitting height:height ratio, and span-height difference. The stature was short at birth with a mean relative length of -3.0 SD. The median adult height was 131.1 cm (-7.9 SD, range 110.7 to 149.0 cm) for 15 males and 122.5 cm (-7.9 SD, range 103.7 to 137.4 cm) for 20 females. The progression of the growth failure was partly explained by weakness or absence of pubertal growth spurt. Weight for height was above normal median in childhood and increased further at puberty. Most of the adults were overweight. The adults' mean relative head circumference was -0.9 SD. Growth was disturbed both in the limbs and in the spine, more severely in the limbs. Adult height showed no correlation with the midparent height. The charts are useful for assessment of growth, prediction of adult height, detection of superimposed disorders, and evaluation of growth-accelerating therapy. PMID:1542548

  4. [STRUCTURE OF PARAPATELLAR CARTILAGES IN CANIDS].

    PubMed

    Slesarenko, N A; Shirokova, Ye O

    2015-01-01

    The aim of the study was to establish general patterns and morphological characteristics of the parapatellar structures of the knee joint in canids: dogs of factory breeding - Caucasian shepherd dog (n=15), Central Asian shepherd dog (n=14), poodle (n=9), the toy Terrier (n=13), Yorkshire Terrier (n=14) and Steppenwolf (n=17) and foxes (n=7) obtained from natural biocenoses. Subtle anatomical dissection was conducted and macroscopic evaluation of the structures was performed together with light microscopic analysis of serial histological sections stained with hematoxylin-eosin and picrofuchsin-fuchselin. Comparative analysis of the parapatellar cartilages allowed to establish both common regularities and breed-specific signs of their structure, that resulted from the impact of biomechanics of the locomotor behavior of the animals. In all the investigated canids parapatellar cartilages were formed by fibrous cartilaginous tissue with a predominance of fibrous structures over the cellular component and they could be divided into 3 zones - superficial, medial and deep. The peculiarities of the fibroarchitectonics of collagen bundles in each of them correspond to the nature of the pattern of biomechanical loads applied. Micromorphological studies performed show that parapatellar cartilages can act as compensatory devices, leveling functional overload of the quadriceps femoris in the extension phase of the knee joint.

  5. Articular Cartilage Injury and Potential Remedies.

    PubMed

    Chubinskaya, Susanna; Haudenschild, Dominik; Gasser, Seth; Stannard, James; Krettek, Christian; Borrelli, Joseph

    2015-12-01

    Osteoarthritis affects millions of people worldwide, is associated with joint stiffness and pain, and often causes significant disability and loss of productivity. Osteoarthritis is believed to occur as a result of ordinary "wear and tear" on joints during the course of normal activities of daily living. Posttraumatic osteoarthritis is a particular subset of osteoarthritis that occurs after a joint injury. Developing clinically relevant animal models will allow investigators to delineate the causes of posttraumatic osteoarthritis and develop means to slow or prevent its development after joint injury. Chondroprotectant compounds, which attack the degenerative pathways at a variety of steps, are being developed in an effort to prevent posttraumatic osteoarthritis and offer great promise. Often times, cartilage degradation after joint injury occurs despite our best efforts. When this happens, there are several evolving techniques that offer at least short-term relief from the effects of posttraumatic osteoarthritis. Occasionally, these traumatic lesions are so large that dramatic steps must be taken in an attempt to restore articular congruity and joint stability. Fresh osteochondral allografts have been used in these settings and offer the possibility of joint preservation. For patients presenting with neglected displaced intra-articular fractures that have healed, intra-articular osteotomy techniques are being developed in an effort to restore joint congruity and function. This article reviews the results of a newly developed animal model of posttraumatic osteoarthritis, several promising chondroprotectant compounds, and also cartilage techniques that are used when degenerative cartilage lesions develop after joint injury. PMID:26584267

  6. [The early development of the articular cartilage. IV. The metamorphosing cartilage].

    PubMed

    Knese, K H

    1980-01-01

    The definite articular cartilage originate from 2 anlagen, the primordial tangential layer and the greater part including the joint bone plate from the metamorphosing cartilage. The tangential layer grow by apposition from the perichondrium. Additional the layer becomes also dilatated as a result of the growing volume of the ossification center. In this way the Lamina splendens with residues of cells may be formed. The chondrocytes resemble partly fibroblasts, in older animals possibly even tendocytes. Moreover the cells exhibit a varying different shape. Today it is impossible to interpret the polymorphism of the cells. In the primordial state, the chondrocyts are embedded in a network from thin cartilage fibrils. Later on collagen fibrils from varied thickness (up to 900 A) are formed. The fibrils run only partly parallel to each other, in general they form a network, in which they cross with a low angle. There are great local differences in the fibrillar structure by the same animal. PMID:7461420

  7. Repair of osteochondral defects in rabbits with ectopically produced cartilage.

    PubMed

    Emans, Pieter J; Hulsbosch, Martine; Wetzels, Gwendolyn M R; Bulstra, Sjoerd K; Kuijer, Roel

    2005-01-01

    Cartilage has poor regenerative capacity. Donor site morbidity and interference with joint homeostasis should be considered when applying the autologous chondrocyte transplantation technique. The use of ectopically produced cartilage, derived from periosteum, might be a novel method to heal cartilage defects. Ectopic cartilage was produced by dissecting a piece of periosteum from the tibia of rabbits. After 14 days the reactive tissue at the dissection site was harvested and a graft was cored out and press-fit implanted in an osteochondral defect in the medial condyle of the femur with or without addition of hyaluronan. After 3 weeks and 3 months the repair reaction was evaluated by histology. Thionine- and collagen type II-stained sections were evaluated for graft viability, ingrowth of the graft, and joint surface repair. Empty defects remained empty 3 weeks after implantation, ectopic cartilage filled the defect to the level of the surrounding cartilage. Histologically, the grafts were viable, consisting mainly of cartilage, and showed a variable pattern of ingrowth. Three months after implantation empty defects with or without hyaluronan were filled primarily with fibrocartilaginous tissue. Defects treated with ectopic cartilage contained mixtures of fibrocartilaginous and hyaline cartilage. Sometimes a tidemark was observed in the new articular cartilage and the orientation of the cells resembled that of healthy articular cartilage. Subchondral bone repair was excellent. The modified O'Driscoll scores for empty defects without and with hyaluronan were 12.7 +/- 6.4 and 15.3 +/- 3.2; for treated defects scores were better (15.4 +/- 3.9 and 18.2 +/- 2.9). In this conceptual study the use of ectopic cartilage derived from periosteum appears to be a promising novel method for joint surface repair in rabbits.

  8. Harvesting Rib Cartilage in Primary and Secondary Rhinoplasty.

    PubMed

    Cochran, Christopher Spencer

    2016-01-01

    Satisfactory and consistent long-term results in primary and secondary rhinoplasty rely on adequately resupporting or reconstructing the nasal osseocartilagenous framework. Autogenous rib cartilage has been our graft material of choice for major nasal reconstruction when sufficient septal cartilage is not available. The rib provides the most abundant source of cartilage for graft fabrication and is the most reliable when structural support is needed. PMID:26616707

  9. Molecular conformational changes in articular cartilage using NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Barone, Justin; Schmidt, Walter

    2004-03-01

    NMR spectroscopy is used to study the conformational changes of the collagen and glycosaminoglycan molecules in bovine articular cartilage. Molecular conformation will change with the charge on each molecule. The charge on each molecule varies spatially throughout the cartilage. For a given point in space, the charge on each molecule can be screened by placing the cartilage in an increasingly ionic environment. The conformational changes are noted through changes in the chemical shifts in the NMR spectrum as a function of salt concentration.

  10. Creation and implantation of acellular rat renal ECM-based scaffolds

    PubMed Central

    Peloso, Andrea; Ferrario, Jacopo; Maiga, Benedetta; Benzoni, Ilaria; Bianco, Carolina; Citro, Antonio; Currao, Manuela; Malara, Alessandro; Gaspari, Annalisa; Balduini, Alessandra; Abelli, Massimo; Piemonti, Lorenzo; Dionigi, Paolo; Orlando, Giuseppe; Maestri, Marcello

    2015-01-01

    Abstract Kidney transplantation is the only potentially curative treatment for patient facing end-stage renal disease, and it is now routinely used. Its use is mainly limited by the supply of transplantable donor organs, which far exceeds the demand. Regenerative medicine and tissue engineering offer promising means for overcoming this shortage. In the present study, we developed and validated a protocol for producing acellular rat renal scaffolds. Left kidneys were removed from 26 male Lewis rats (weights: 250–350 g) and decellularized by means of aortic anterograde perfusion with ionic and anionic detergents (Triton X-100 1% and SDS 1%, respectively). 19 scaffolds thus obtained (and contralateral native kidneys as controls) were deeply characterized in order to evaluate the decellularization quality, the preservation of extracellular matrix components and resultant micro-angioarchitecture structure. The other 7 were transplanted into 7 recipient rats that had undergone unilateral nephrectomy. Recipients were sacrificed on post-transplantation day 7 and the scaffolds subjected to histologic studies. The dual-detergent protocol showed, with only 5 h of perfusion per organ, to obtain thoroughly decellularized renal scaffolds consisting almost exclusively of extracellular matrix. Finally the macro- and the microarchitecture of the renal parenchyma were well preserved, and the grafts were implanted with ease. Seven days after transplant, the scaffolds were morphologically intact although all vascular structures were obstructed with thrombi. Production and implantation of acellular rat renal scaffolds is a suitable platform for further studies on regenerative medicine and tissue engineering. PMID:26186418

  11. Aseptic versus Sterile Acellular Dermal Matrices in Breast Reconstruction: An Updated Review

    PubMed Central

    Mendenhall, Shaun D.; Neumeister, Michael W.; Cederna, Paul S.; Momoh, Adeyiza O.

    2016-01-01

    Background: As the use of acellular dermal matrices in breast reconstruction has become more commonplace and efforts are made to improve on postoperative outcomes, the method of acellular dermal matrix (ADM) processing (aseptic versus sterile) has become a subject of interest. This article provides an updated overview of the critical aspects of ADM processing in addition to application of ADMs in single- and two-stage breast reconstruction, a review of the morbidity associated with ADM use, and alternatives. Methods: A literature review was performed in PubMed identifying recent systematic reviews, meta-analyses, and head-to-head comparisons on aseptically processed ADM and sterile-processed ADM in implant-based breast reconstruction. Results: Recent meta-analyses have shown a 2- to 3-fold increase in infections and tissue expander/implant explantation rates and a 3- to 4-fold increase in seroma formation compared with non-ADM reconstruction techniques. Comparisons of aseptic and sterile ADMs in multiple studies have shown no significant difference in infection rates and equivocal findings for other specific complications such as seroma formation. Conclusions: Current evidence on the impact of processing techniques that improve ADM sterility on postoperative morbidity in implant breast reconstruction is unclear. Deficiencies of the available data highlight the need for well-designed, multicenter, randomized controlled studies that will aid in optimizing outcomes in implant-based breast reconstruction. PMID:27536502

  12. Xenogeneic acellular conjunctiva matrix as a scaffold of tissue-engineered corneal epithelium.

    PubMed

    Zhao, Haifeng; Qu, Mingli; Wang, Yao; Wang, Zhenyu; Shi, Weiyun

    2014-01-01

    Amniotic membrane-based tissue-engineered corneal epithelium has been widely used in the reconstruction of the ocular surface. However, it often degrades too early to ensure the success of the transplanted corneal epithelium when treating patients with severe ocular surface disorders. In the present study, we investigated the preparation of xenogeneic acellular conjunctiva matrix (aCM) and evaluated its efficacy and safety as a scaffold of tissue-engineered corneal epithelium. Native porcine conjunctiva was decellularized with 0.1% sodium dodecyl sulfate (SDS) for 12 h at 37°C and sterilized via γ-irradiation. Compared with native conjunctiva, more than 92% of the DNA was removed, and more than 90% of the extracellular matrix components (glycosaminoglycan and collagen) remained after the decellularization treatment. Compared with denuded amniotic membrane (dAM), the aCM possessed favorable optical transmittance, tensile strength, stability and biocompatibility as well as stronger resistance to degradation both in vitro and in vivo. The corneal epithelial cells seeded on aCM formed a multilayered epithelial structure and endured longer than did those on dAM. The aCM-based tissue-engineered corneal epithelium was more effective in the reconstruction of the ocular surface in rabbits with limbal stem cell deficiency. These findings support the application of xenogeneic acellular conjunctiva matrix as a scaffold for reconstructing the ocular surface.

  13. Deficiency in acellular cementum and periodontal attachment in bsp null mice.

    PubMed

    Foster, B L; Soenjaya, Y; Nociti, F H; Holm, E; Zerfas, P M; Wimer, H F; Holdsworth, D W; Aubin, J E; Hunter, G K; Goldberg, H A; Somerman, M J

    2013-02-01

    Bone sialoprotein (BSP) is an extracellular matrix protein found in mineralized tissues of the skeleton and dentition. BSP is multifunctional, affecting cell attachment and signaling through an RGD integrin-binding region, and acting as a positive regulator for mineral precipitation by nucleating hydroxyapatite crystals. BSP is present in cementum, the hard tissue covering the tooth root that anchors periodontal ligament (PDL) attachment. To test our hypothesis that BSP plays an important role in cementogenesis, we analyzed tooth development in a Bsp null ((-/-)) mouse model. Developmental analysis by histology, histochemistry, and SEM revealed a significant reduction in acellular cementum formation on Bsp (-/-) mouse molar and incisor roots, and the cementum deposited appeared hypomineralized. Structural defects in cementum-PDL interfaces in Bsp (-/-) mice caused PDL detachment, likely contributing to the high incidence of incisor malocclusion. Loss of BSP caused progressively disorganized PDL and significantly increased epithelial down-growth with aging. Bsp (-/-) mice displayed extensive root and alveolar bone resorption, mediated by increased RANKL and the presence of osteoclasts. Results collected here suggest that BSP plays a non-redundant role in acellular cementum formation, likely involved in initiating mineralization on the root surface. Through its importance to cementum integrity, BSP is essential for periodontal function. PMID:23183644

  14. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study.

    PubMed

    Cheng, Hai-Ling Margaret; Loai, Yasir; Beaumont, Marine; Farhat, Walid A

    2010-08-01

    Bladder acellular matrices (ACMs) derived from natural tissue are gaining increasing attention for their role in tissue engineering and regeneration. Unlike conventional scaffolds based on biodegradable polymers or gels, ACMs possess native biomechanical and many acquired biologic properties. Efforts to optimize ACM-based scaffolds are ongoing and would be greatly assisted by a noninvasive means to characterize scaffold properties and monitor interaction with cells. MRI is well suited to this role, but research with MRI for scaffold characterization has been limited. This study presents initial results from quantitative MRI measurements for bladder ACM characterization and investigates the effects of incorporating hyaluronic acid, a natural biomaterial useful in tissue-engineering and regeneration. Measured MR relaxation times (T(1), T(2)) and diffusion coefficient were consistent with increased water uptake and glycosaminoglycan content observed on biochemistry in hyaluronic acid ACMs. Multicomponent MRI provided greater specificity, with diffusion data showing an acellular environment and T(2) components distinguishing the separate effects of increased glycosaminoglycans and hydration. These results suggest that quantitative MRI may provide useful information on matrix composition and structure, which is valuable in guiding further development using bladder ACMs for organ regeneration and in strategies involving the use of hyaluronic acid.

  15. Creation and implantation of acellular rat renal ECM-based scaffolds.

    PubMed

    Peloso, Andrea; Ferrario, Jacopo; Maiga, Benedetta; Benzoni, Ilaria; Bianco, Carolina; Citro, Antonio; Currao, Manuela; Malara, Alessandro; Gaspari, Annalisa; Balduini, Alessandra; Abelli, Massimo; Piemonti, Lorenzo; Dionigi, Paolo; Orlando, Giuseppe; Maestri, Marcello

    2015-01-01

    Kidney transplantation is the only potentially curative treatment for patient facing end-stage renal disease, and it is now routinely used. Its use is mainly limited by the supply of transplantable donor organs, which far exceeds the demand. Regenerative medicine and tissue engineering offer promising means for overcoming this shortage. In the present study, we developed and validated a protocol for producing acellular rat renal scaffolds. Left kidneys were removed from 26 male Lewis rats (weights: 250-350 g) and decellularized by means of aortic anterograde perfusion with ionic and anionic detergents (Triton X-100 1% and SDS 1%, respectively). 19 scaffolds thus obtained (and contralateral native kidneys as controls) were deeply characterized in order to evaluate the decellularization quality, the preservation of extracellular matrix components and resultant micro-angioarchitecture structure. The other 7 were transplanted into 7 recipient rats that had undergone unilateral nephrectomy. Recipients were sacrificed on post-transplantation day 7 and the scaffolds subjected to histologic studies. The dual-detergent protocol showed, with only 5 h of perfusion per organ, to obtain thoroughly decellularized renal scaffolds consisting almost exclusively of extracellular matrix. Finally the macro- and the microarchitecture of the renal parenchyma were well preserved, and the grafts were implanted with ease. Seven days after transplant, the scaffolds were morphologically intact although all vascular structures were obstructed with thrombi. Production and implantation of acellular rat renal scaffolds is a suitable platform for further studies on regenerative medicine and tissue engineering. PMID:26186418

  16. Sterile acellular dermal collagen as a treatment for rippling deformity of breast.

    PubMed

    Busse, Brittany; Orbay, Hakan; Sahar, David E

    2014-01-01

    Prosthetic implants are frequently used for breast augmentation and breast reconstruction following mastectomy. Unfortunately, long-term aesthetic results of prosthetic breast restoration may be hindered by complications such as rippling, capsular contracture, and implant malposition. The advent of use of acellular dermal matrices has greatly improved the outcomes of prosthetic breast reconstruction. We describe a case of rippling deformity of breast that was treated using an acellular dermal matrix product, AlloMax. The patient presented with visible rippling of bilateral prosthetic breast implants as well as significant asymmetry of the breasts after multiple excisional biopsies for right breast ductal carcinoma in situ. A 6 × 10 cm piece of AlloMax was placed on the medial aspect of each breast between the implant and the skin flap. Follow-up was performed at 1 week, 3 months, and 1 year following the procedure. The patient recovered well from the surgery and there were no complications. At her first postoperative follow-up the patient was extremely satisfied with the result. At her 3-month and 1-year follow-up she had no recurrence of her previous deformity and no new deformity. PMID:25610697

  17. Waning vaccine immunity in teenagers primed with whole cell and acellular pertussis vaccine: recent epidemiology.

    PubMed

    Sheridan, Sarah L; Frith, Katie; Snelling, Thomas L; Grimwood, Keith; McIntyre, Peter B; Lambert, Stephen B

    2014-09-01

    The recent epidemics of pertussis (whooping cough) in parts of the USA and Australia have led to the largest numbers of annual cases reported in over half a century. These epidemics demonstrated a new pattern, with particularly high rates of disease among pre-adolescents and early adolescents. These high rates of pertussis coincided with the first cohorts vaccinated with purely acellular pertussis vaccine, which replaced whole-cell pertussis (wP) vaccine in the later 1990s in the USA and Australia. Studies undertaken during these epidemics provide new evidence of more rapid waning of acellular pertussis-containing vaccines and longer-term protection from effective wP-containing vaccines. There is evidence that receiving wP as at least the first dose of pertussis-containing vaccine provides greater and more long-lived protection, irrespective of the nature of subsequent doses. This evidence will be reviewed together with the immunobiology associated with both vaccines, and the implications for pertussis control discussed. PMID:25093268

  18. Alternatives to HIST for acellular pertussis vaccines: progress and challenges in replacement

    PubMed Central

    Arciniega, J.; Wagner, L.; Prymula, R.; Sebo, P.; Isbrucker, R.; Descampe, B.; Chapsal, J.M.; Costanzo, A.; Hendriksen, C.; Hoonaker, M.; Nelson, S.; Lidster, K.; Casey, W.; Allen, D.

    2016-01-01

    The ‘International Workshop on Alternatives to the Murine Histamine Sensitization Test for Acellular Pertussis Vaccines: Progress and Challenges in the Replacement of HIST’ was held on 24 August 2014, in Prague, Czech Republic, as a satellite meeting to the 9 th World Congress on Alternatives and Animal Use in the Life Sciences. Participants discussed the progress and challenges associated with the development, validation, and implementation of in vitro assays as replacements for the histamine sensitisation test (HIST) for acellular pertussis vaccines. Discussions focused on the consistency approach, the necessary framework for regulatory acceptance of a harmonised method, and recent international efforts towards the development of in vitro assays to replace the HIST. Workshop participants agreed that acceptable alternatives to the HIST should be based on ADP ribosylation-mediated cell intoxication and therefore that the CHO cell clustering assay, which measures cell intoxication, should be further pursued and developed as a possible replacement for the HIST. Participants also agreed to continue ongoing multinational discussions involving national and international standardisation authorities to reach consensus and to organise collaborative studies in this context for assay characterisation and calibration of reference materials. PMID:27506225

  19. [Cell therapy in cartilage repair: cellular and molecular bases].

    PubMed

    Corvol, Marie-Thérèse; Tahiri, Khadija; Montembault, Alexandra; Daumard, Alain; Savouret, Jean-François; Rannou, François

    2008-01-01

    The destruction of articular cartilage represents the outcome of most inflammatory and degenerative rheumatic diseases and leads to severe disability. Articular cartilage being unable to repair spontaneously, alterations of the joint surface often results in end-stage osteoarthritis, requiring surgical intervention and total joint replacement. This makes damaged tissues repair a major challenge in our aging society. Cartilage harbors only one cell type, the chondrocyte, which synthesizes and secretes specific matrix proteins such as type II collagen and high molecular weight proteoglycans. Matrix proteins are responsible for the conservation of the chondrocyte phenotype and the maintenance of the mechanical functions of cartilage. Development of therapeutic strategies for cartilage repair should thus comprise not only the replacement of lost cartilage cells but also that of extracellular matrix with cartilage-like properties. Different protocols are under investigation. The most commonly employed materials include transplantation of autologous osteochondral tissue. More recently, cell-based therapies using autologous mature chondrocytes or pre-chondrogenic stem cells have drawn particular attention. Tissue-engineering procedures represent the actual trend in cartilage repair. This approach combines biodegradable polymeric three-dimensional matrixes and isolated prechondrogenic stem cells. The cells are seeded within the biocompatible matrix and then implanted into the joint. Numerous non-degradable and degradable polymers, which efficiently "mimic" the natural surroundings of cartilage cells, are currently under investigation.

  20. Evaluation of apparent fracture toughness of articular cartilage and hydrogels

    PubMed Central

    Xiao, Yinghua; Rennerfeldt, Deena A.; Friis, Elizabeth A.; Gehrke, Stevin H.; Detamore, Michael S.

    2014-01-01

    Recently, biomaterials-based tissue-engineering strategies, including the use of hydrogels, have offered great promise for repairing articular cartilage. Mechanical failure testing in outcome analyses is of crucial clinical importance to the success of engineered constructs. Interpenetrating networks (IPNs) are gaining more attention, due to their superior mechanical integrity. This study provided a combination testing method of apparent fracture toughness, which was applied to both articular cartilage and hydrogels. The apparent fracture toughnesses of two groups, hydrogels and articular cartilage, were evaluated based on the modified single-edge notch test and ASTM standards on the single-edge notch test and compact tension test. The results demonstrated that the toughness for articular cartilage (348 ± 43 MPa/mm½) was much higher than that for hydrogels. With a toughness value of 10.8 ± 1.4 MPa/mm½, IPNs of agarose and poly(ethylene glycol) diacrylate (PEG-DA) looked promising. The IPNs were 1.4 times tougher than PEG-DA alone, although still over an order of magnitude less tough than cartilage. A new method was developed to evaluate hydrogels and cartilage in a manner that enabled a more relevant direct comparison for fracture testing of hydrogels for cartilage tissue engineering. Moreover, a target toughness value for cartilage of using this direct comparison method has been identified (348 ± 43 MPa/mm½), and the toughness discrepancy to be overcome between hydrogels and cartilage has been quantified. PMID:24700577

  1. Nanoscale study of cartilage surfaces using atomic force microscopy.

    PubMed

    Wang, Meiling; Peng, Zhongxiao; Watson, Jolanta A; Watson, Gregory S; Yin, Ling

    2012-12-01

    Articulating cartilage wear plays an important role in cartilage degeneration and osteoarthritis (OA) progression. This study investigated the changes of mechanical properties and surface roughness of sheep cartilages with wear progression at a nanometre scale. Young sheep's rear legs were subjected to a series of wear tests to generate worn cartilage samples to simulate the OA progression. Atomic force microscopy (AFM) was used to determine the effective indentation modulus and to measure the surface morphology of moist cartilage surfaces. The study has found that the mean effective indentation modulus values of worn cartilages were lower than that of healthy cartilage as the control sample. A medium-to-strong correlation between the effective indentation modulus values and the OA grades has been found. The relation between surface topography and effective indentation modulus values of the cartilage surfaces with OA progression was weakly correlated. The method established in this study can be implemented to investigate the effective indentation modulus values of clinical osteoarthritic cartilages and to assist in the understanding and assessment of OA.

  2. Fascia versus cartilage graft in type I tympanoplasty: audiological outcome.

    PubMed

    Kim, Joo Yeon; Oh, Jung Ho; Lee, Hwan Ho

    2012-11-01

    Various materials such as fascia, perichondrium, and cartilage have been used for reconstruction of the tympanic membrane in middle ear surgery. Because of its stiffness, cartilage is resistant to resorption and retraction. However, cartilage grafts result in increased acoustic impedance, the main limitation to their use. The aim of this study was to compare the hearing results after cartilage tympanoplasty versus fascia tympanoplasty. This study included 114 patients without postoperative tympanic membrane perforation who underwent tympanoplasty type I between 2007 and 2010, 31 with fascia and 83 with cartilage. Preoperative and 1 year postoperative air-bone gap (ABG) and postoperative gain in ABG at frequencies of 0.5, 1, 2, and 3 kHz were assessed. Both groups were statically similar in terms of the severity of middle ear pathology and the preoperative hearing levels. Overall, postoperative successful hearing results showed 77.4% of the fascia group and 77.1% of the cartilage group. Mean postoperative gains in ABG were 9.70 dB for the fascia group and 9.78 dB for the cartilage group. These results demonstrate that hearing after cartilage tympanoplasty is comparable to that after fascia tympanoplasty. Although cartilage is the ideal grafting material in problematic cases, it may be used in less severe cases, such as in type I tympanoplasty, without fear of impairing hearing.

  3. Structural quantification of cartilage changes using statistical parametric mapping

    NASA Astrophysics Data System (ADS)

    Tamez-Peña, José Gerardo; Barbu-McInnis, Monica; Totterman, Saara

    2007-03-01

    The early detection of Osteoarthritis (OA) treatment efficacy requires monitoring of small changes in cartilage morphology. Current approaches rely in carefully monitoring global cartilage parameters. However, they are not very sensitive to the detection of focal morphological changes in cartilage structure. This work presents the use of the statistical parametric mapping (SPM) for the detection and quantification of changes in cartilage morphology. The SPM is computed by first registering the baseline and the follow-up three dimensional (3D) reconstructions of the cartilage tissue. Once the registration is complete, the thickness changes for every cartilage point is computed which is followed by a model based estimation of the variance of thickness error. The cartilage thickness change and the variance estimations are used to compute the z-score map. The map is used to visualize and quantify significant changes in cartilage thickness. The z-map quantification provides the area of significant changes, the associated volume of changes as well as the average thickness of cartilage loss. Furthermore, thickness change distributions functions are normalized to provide the probability distribution functions (PDF). The PDF can be used to understand and quantify the differences among different treatment groups. The performance of the approach on simulated data and real subject data will be presented.

  4. From gristle to chondrocyte transplantation: treatment of cartilage injuries

    PubMed Central

    Lindahl, Anders

    2015-01-01

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. PMID:26416680

  5. Secondary cartilage revealed in a non-avian dinosaur embryo.

    PubMed

    Bailleul, Alida M; Hall, Brian K; Horner, John R

    2013-01-01

    The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors. PMID:23418610

  6. Secondary Cartilage Revealed in a Non-Avian Dinosaur Embryo

    PubMed Central

    Bailleul, Alida M.; Hall, Brian K.; Horner, John R.

    2013-01-01

    The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors. PMID:23418610

  7. Interposition Porcine Acellular Dermal Matrix Xenograft Successful Alternative in Treatment for Massive Rotator Cuff

    PubMed Central

    Neumann, Julie; Zgonis, Miltiadis H.; Reay, Kathleen Dolores; Mayer, Stephanie W.; Boggess, Blake; Toth, Alison P.

    2016-01-01

    Objectives: Despite advances in the surgical techniques of rotator cuff repair (RCR), the management of massive rotator cuff tears in shoulders without glenohumeral arthritis poses a difficult problem for surgeons. Failure of massive rotator cuff repairs range from 20-90% at one to two years postoperatively using arthrography, ultrasound, or magnetic resonance imaging. Additionally, there are inconsistent outcomes reported with debridement alone of massive rotator cuff tears as well as limitations seen with other current methods of operative intervention including arthroplasty and tendon transfers. The purpose of this prospective, comparative study was to determine if the repair of massive rotator cuff tears using an interposition porcine acellular dermal matrix xenograft improves subjective function, pain, range of motion, and strength at greater than two years follow-up. To our knowledge, this is the largest prospective series reporting outcomes of using porcine acellular dermal matrix xenograft as an interposition graft. Methods: Thirty-seven patients (37 shoulders) with an average age of 66 years (range 51-80 years) were prospectively followed for 33 months (range 23-48) following massive RCR using porcine acellular dermal matrix interposition xenograft. Subjective outcomes were measured using the Visual Analog Scale (VAS) pain score (0-10, 0 = no pain), Modified American Shoulder and Elbow Score (M-ASES), and Short-Form12 (SF-12) scores. Preoperative and postoperative objective outcome measures included active range of motion and supraspinatus and infraspinatus manual muscle strength. Postoperative outcome measures included quantitative muscle strength using a dynamometer and static and dynamic ultrasonography to assess the integrity of the repair. Results: Average VAS pain score decreased from 4.5 to 1.1 (P<0.001). Average postoperative M-ASES was 89.23. Average postoperative SF-12 was 52.6. Mean forward flexion, external and internal rotation significantly

  8. Superfund fact sheet: Benzene. Fact sheet

    SciTech Connect

    Not Available

    1992-09-01

    The fact sheet describes benzene, a chemical that can be found in a variety of products, including petroleum products (e.g. gasoline), some household cleaners, and some glues and adhesives. Explanations of how people are exposed to benzene and how benzene can enter the body and may affect human health are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no formal scientific training.

  9. FT-IR Microspectroscopy of Rat Ear Cartilage

    PubMed Central

    Vidal, Benedicto de Campos; Mello, Maria Luiza S.

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140–820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of –SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of –SO3- groups (1236–1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the –SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027–1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  10. FT-IR Microspectroscopy of Rat Ear Cartilage.

    PubMed

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue under

  11. Human Acellular Dermis versus Submuscular Tissue Expander Breast Reconstruction: A Multivariate Analysis of Short-Term Complications

    PubMed Central

    Davila, Armando A.; Seth, Akhil K.; Wang, Edward; Hanwright, Philip; Bilimoria, Karl; Fine, Neil

    2013-01-01

    Background Acellular dermal matrix (ADM) allografts and their putative benefits have been increasingly described in prosthesis based breast reconstruction. There have been a myriad of analyses outlining ADM complication profiles, but few large-scale, multi-institutional studies exploring these outcomes. In this study, complication rates of acellular dermis-assisted tissue expander breast reconstruction were compared with traditional submuscular methods by evaluation of the American College of Surgeon's National Surgical Quality Improvement Program (NSQIP) registry. Methods Patients who underwent immediate tissue expander breast reconstruction from 2006-2010 were identified using surgical procedure codes. Two hundred forty tracked variables from over 250 participating sites were extracted for patients undergoing acellular dermis-assisted versus submuscular tissue expander reconstruction. Thirty-day postoperative outcomes and captured risk factors for complications were compared between the two groups. Results A total of 9,159 patients underwent tissue expander breast reconstruction; 1,717 using acellular dermis and 7,442 with submuscular expander placement. Total complications and reconstruction related complications were similar in both cohorts (5.5% vs. 5.3%, P=0.68 and 4.7% vs. 4.3%, P=0.39, respectively). Multivariate logistic regression revealed body mass index and smoking as independent risk factors for reconstructive complications in both cohorts (P<0.01). Conclusions The NSQIP database provides large-scale, multi-institutional, independent outcomes for acellular dermis and submuscular breast reconstruction. Both thirty-day complication profiles and risk factors for post operative morbidity are similar between these two reconstructive approaches. PMID:23362476

  12. Computational model for the analysis of cartilage and cartilage tissue constructs

    PubMed Central

    Smith, David W.; Gardiner, Bruce S.; Davidson, John B.; Grodzinsky, Alan J.

    2013-01-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. PMID:23784936

  13. Improved specificity of cartilage matrix evaluation using multiexponential transverse relaxation analysis applied to pathomimetically degraded cartilage

    PubMed Central

    Reiter, David A.; Roque, Remigio A.; Lin, Ping-Chang; Doty, Stephen B.; Pleshko, Nancy; Spencer, Richard G.

    2012-01-01

    Noninvasive early detection of specific matrix alterations in degenerative cartilage disease would be of substantial use in basic science studies and clinically, but remains an elusive goal. Recently-developed MRI methods exhibit some specificity, but require contrast agents or nonstandard pulse sequences and hardware. We present a multiexponential approach which does not require contrast agents or specialized hardware, and uses a standard multiple-echo spin-echo sequence. Experiments were performed on tissue models of degenerative cartilage using enzymes with distinct actions. MR results were validated with histologic, biochemical, and infrared spectroscopic analyses. The sulfated glycosaminoglycan (sGAG) per dry weight (dw) in bovine nasal cartilage (BNC) was 0.72±0.06 mg/mg dw and was reduced through chondroitinase AC (ChAC) and collagenase digestion to 0.56±0.12 and 0.58±0.13 mg/mg dw, respectively. Multiexponential analysis of data obtained at 9.4T permitted identification of tissue compartments assigned to the proteoglycan (PG) component of the matrix and to bulk water. Enzymatic treatment resulted in a significant reduction in the ratio of PG-bound to free water from 0.13±0.02 in control cartilage to 0.03±0.02 and 0.05±0.06 under ChAC and collagenase treatment, respectively. As expected, monoexponential T2 increased with both degradation protocols, but without further specificity to the nature of the degradation. An important eventual extension of this approach may be to map articular cartilage degeneration in the clinical setting. As an initial step towards this, localized multiexponential T2 analysis was performed on excised bovine patella. Results obtained on this articular cartilage sample were readily interpretable in terms of PG-associated and relatively free water compartments. In potential clinical applications, SNR constraints will define the threshold for detection of macromolecular compartment changes at a given spatial scale. The

  14. Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis

    PubMed Central

    Panula, H.; Hyttinen, M.; Arokoski, J.; Langsjo, T.; Pelttari, A.; Kiviranta, I.; Helminen, H.

    1998-01-01

    OBJECTIVES—To investigate articular cartilage collagen network, thickness of birefringent cartilage zones, and glycosaminoglycan concentration in macroscopically normal looking knee joint cartilage of young beagles subjected to experimental slowly progressive osteoarthritis (OA).
METHODS—OA was induced by a tibial 30° valgus osteotomy in 15 female beagles at the age of 3 months. Fifteen sisters were controls. Cartilage specimens were collected seven (Group 1) and 18 months (Group 2) postoperatively. Collagen induced optical path difference and cartilage zone thickness measurements were determined from histological sections of articular cartilage with smooth and intact surface by computer assisted quantitative polarised light microscopy. Volume density of cartilage collagen fibrils was determined by image analysis from transmission electron micrographs and content of glycosaminoglycans by quantitative digital densitometry from histological sections.
Results—In the superficial zone of the lateral tibial and femoral cartilage, the collagen induced optical path difference (birefringence) decreased by 19 to 71% (p < 0.05) seven months postoperatively. This suggests that severe superficial collagen fibril network deterioration took place, as 18 months postoperatively, macroscopic and microscopic OA was present in many cartilage areas. Thickness of the uncalcified cartilage increased while the superficial zone became thinner in the same sites. In operated dogs, glycosaminoglycan content first increased (Group 1) in the lateral tibial condyle and then decreased (Group 2) (p < 0.05).
Conclusion—In this OA model, derangement of the superficial zone collagen network was the probable reason for birefringence reduction. This change occurred well before macroscopic OA.

 Keywords: cartilage; birefringence PMID:9709181

  15. ELASTICITY OF ARTICULAR CARTILAGE: EFFECT OF IONS AND VISCOUS SOLUTIONS.

    PubMed

    SOKOLOFF, L

    1963-09-13

    The deformability of articular cartilage is increased by cations, more so by polyvalent than monovalent ones. Trivalent cations also depress elastic recovery. Failure of viscous solutions to alter the elastic behavior suggests ultra-filtration by cartilage as a possible mechanism in synovial lubrication.

  16. Two dimensional spectral camera development for cartilage monitoring

    NASA Astrophysics Data System (ADS)

    Kuehn, A.; Graf, A.; Wenzel, U.; Princz, S.; Miller, R.; Mantz, H.; Hessling, M.

    2015-07-01

    In the joint project "BioopTiss" between the Ulm University Medical Center and Ulm University of Applied Sciences, a bioreactor is under development to grow facial cartilage by the methods of tissue engineering. In order to ensure a sufficient quality of the cartilage for implantation, the cartilage growth must be monitored continuously. Current monitoring methods destroy the cultured cartilage so that it is no longer suitable for implantation. Alternatively, it is possible to analyze the cartilage using fluorescence spectroscopy with UV light excitation. This allows a non-invasive assessment of cartilage in terms of composition and quality. The cultured cartilage tissue can reach a size of several square centimeters. For recording fluorescence spectra of every point of the cartilage sample, a highly sensitive spectral camera has been developed which allows distinguishing collagen I from collagen II non-invasively by their fluorescence. This spectral camera operates according to the computed tomography imaging spectrometry (CTIS) principle, which allows obtaining many spectra of a small area with only one snapshot.

  17. Improvement of PHBV Scaffolds with Bioglass for Cartilage Tissue Engineering

    PubMed Central

    Li, Haiyan; Sun, Junying; Liu, Kai

    2013-01-01

    Polymer scaffold systems consisting of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) have proven to be possible matrices for the three-dimensional growth of chondrocyte cultures. However, the engineered cartilage grown on these PHBV scaffolds is currently unsatisfactory for clinical applications due to PHBV’s poor hydrophilicity, resulting in inadequate thickness and poor biomechanical properties of the engineered cartilage. It has been reported that the incorporation of Bioglass (BG) into PHBV can improve the hydrophilicity of the composites. In this study, we compared the effects of PHBV scaffolds and PHBV/BG composite scaffolds on the properties of engineered cartilage in vivo. Rabbit articular chondrocytes were seeded into PHBV scaffolds and PHBV/BG scaffolds. Short-term in vitro culture followed by long-term in vivo transplantation was performed to evaluate the difference in cartilage regeneration between the cartilage layers grown on PHBV and PHBV/BG scaffolds. The results show that the incorporation of BG into PHBV efficiently improved both the hydrophilicity of the composites and the percentage of adhered cells and promoted cell migration into the inner part the constructs. With prolonged incubation time in vivo, the chondrocyte-scaffold constructs in the PHBV/BG group formed thicker cartilage-like tissue with better biomechanical properties and a higher cartilage matrix content than the constructs in the PHBV/BG group. These results indicate that PHBV/BG scaffolds can be used to prepare better engineered cartilage than pure PHBV. PMID:23951190

  18. Incidence and development of the human supracochlear cartilage.

    PubMed

    Mérida Velasco, J R; Rodríguez Vázquez, J F; de la Cuadra Blanco, C; Sanz Casado, J V; Mérida Velasco, J A

    2011-01-01

    The supracochlear cartilage is known as an accessory cartilage of the chondrocranium situated between the otic capsule and the trigeminal ganglion. Although claimed to appear regularly during human development, its incidence and development have been reported only scarcely in the literature. The aim of this study was to describe the position and relationships of the supracochlear cartilage during its development. This study was made in 96 human specimens of 7-17 weeks of development, belonging to a collection of the Embryology Institute of Complutense University of Madrid. In addition, three-dimensional reconstruction of the supracochlear cartilage was made from 1 specimen. This cartilage, spherical in shape, appeared bilaterally in 23 specimens and unilaterally (left side) in 5. In our results, the supracochlear cartilage was found in 26.5% of the cases and was related to the trigeminal ganglion, the dura mater of the trigeminal cavity and the otic capsule. In 4 specimens, bilaterally, the supracochlear cartilage was continuous with the otic capsule. This work suggests that, based on the structures to which the supracochlear cartilage is related, it could be derived from the cranial neural crest.

  19. Microscale surface friction of articular cartilage in early osteoarthritis.

    PubMed

    Desrochers, Jane; Amrein, Matthias W; Matyas, John R

    2013-09-01

    Articular cartilage forms the articulating surface of long bones and facilitates energy dissipation upon loading as well as joint lubrication and wear resistance. In normal cartilage, boundary lubrication between thin films at the cartilage surface reduces friction in the absence of interstitial fluid pressurization and fluid film lubrication by synovial fluid. Inadequate boundary lubrication is associated with degenerative joint conditions such as osteoarthritis (OA), but relations between OA and surface friction, lubrication and wear in boundary lubrication are not well defined. The purpose of the present study was to measure microscale boundary mode friction of the articular cartilage surface in an in vivo experimental model to better understand changes in cartilage surface friction in early OA. Cartilage friction was measured on the articular surface by atomic force microscopy (AFM) under applied loads ranging from 0.5 to 5 μN. Microscale AFM friction analyses revealed depth dependent changes within the top-most few microns of the cartilage surface in this model of early OA. A significant increase of nearly 50% was observed in the mean engineering friction coefficient for OA cartilage at the 0.5 μN load level; no significant differences in friction coefficients were found under higher applied loads. Changes in cartilage surface morphology observed by scanning electron microscopy included cracking and roughening of the surface indicative of disruption and wear accompanied by an apparent disintegration of the thin surface lamina from the underlying matrix. Immunohistochemical staining of lubricin - an important cartilage surface boundary lubricant - did not reveal differences in spatial distribution near the cartilage surface in OA compared to controls. The increase in friction at the 0.5 μN force level is interpreted to reflect changes in the interfacial mechanics of the thin surface lamina of articular cartilage: increased friction implies reduced

  20. Stem cells and cartilage development: complexities of a simple tissue.

    PubMed

    Hollander, Anthony P; Dickinson, Sally C; Kafienah, Wael

    2010-11-01

    Cartilage is considered to be a simple tissue that should be easy to engineer because it is avascular and contains just one cell type, the chondrocyte. Despite this apparent simplicity, regenerating cartilage in a form that can function effectively after implantation in the joint has proven difficult. This may be because we have not fully appreciated the importance of different structural regions of articular cartilage or of understanding the origins of chondrocytes and how this cell population is maintained in the normal tissue. This review considers what is known about different regions of cartilage and the types of stem cells in articulating joints and emphasizes the potential importance of regeneration of the lamina splendens at the joint surface and calcified cartilage at the junction with bone for long-term survival of regenerated tissue in vivo. PMID:20882533

  1. Stem Cells and Cartilage Development: Complexities of a Simple Tissue

    PubMed Central

    Hollander, Anthony P; Dickinson, Sally C; Kafienah, Wael

    2010-01-01

    Cartilage is considered to be a simple tissue that should be easy to engineer because it is avascular and contains just one cell type, the chondrocyte. Despite this apparent simplicity, regenerating cartilage in a form that can function effectively after implantation in the joint has proven difficult. This may be because we have not fully appreciated the importance of different structural regions of articular cartilage or of understanding the origins of chondrocytes and how this cell population is maintained in the normal tissue. This review considers what is known about different regions of cartilage and the types of stem cells in articulating joints and emphasizes the potential importance of regeneration of the lamina splendens at the joint surface and calcified cartilage at the junction with bone for long-term survival of regenerated tissue in vivo. Stem Cells 2010;28:1992–1996 PMID:20882533

  2. Engineering Superficial Zone Features in Tissue Engineered Cartilage

    PubMed Central

    Chen, Tony; Hilton, Matthew J.; Brown, Edward B.; Zuscik, Michael J.; Awad, Hani A.

    2013-01-01

    A major challenge in cartilage tissue engineering is the need to recreate the native tissue's anisotropic extracellular matrix structure. This anisotropy has important mechanical and biological consequences and could be crucial for integrative repair. Here we report that hydrodynamic conditions that mimic the motion-induced flow fields in between the articular surfaces in the synovial joint induce the formation of a distinct superficial layer in tissue engineered cartilage hydrogels, with enhanced production of cartilage matrix proteoglycan and type II collagen. Moreover, the flow stimulation at the surface induces the production of the surface zone protein Proteoglycan 4 (aka PRG4 or lubricin). Analysis of second harmonic generation signature of collagen in this superficial layer reveals a highly aligned fibrillar matrix that resembles the alignment pattern in native tissue's surface zone, suggesting that mimicking synovial fluid flow at the cartilage surface in hydrodynamic bioreactors could be key to creating engineered cartilage with superficial zone features. PMID:23239161

  3. Engineering cell attachments to scaffolds in cartilage tissue engineering

    NASA Astrophysics Data System (ADS)

    Steward, Andrew J.; Liu, Yongxing; Wagner, Diane R.

    2011-04-01

    One of the challenges of tissue engineering, a promising cell-based treatment for damaged or diseased cartilage, is designing the scaffold that provides structure while the tissue regenerates. In addition to the scaffold material's biocompatibility, mechanical properties, and ease of manufacturing, scaffold interactions with the cells must also be considered. In cartilage tissue engineering, a range of scaffolds with various degrees of cell attachment have been proposed, but the attachment density and type have yet to be optimized. Several techniques have been developed to modulate cell adhesion to the scaffold. These studies suggest that the need for cell attachment in cartilage tissue engineering may vary with cell type, stage of differentiation, culture condition, and scaffold material. Further studies will elucidate the role of cell attachment in cartilage regeneration and enhance efforts to engineer cell-based cartilage therapies.

  4. Stem Cell-assisted Approaches for Cartilage Tissue Engineering.

    PubMed

    Park, In-Kyu; Cho, Chong-Su

    2010-05-01

    The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When designing materials for cartilage tissue engineering, biodegradability and biocompatibility are the key factors in selecting material candidates, for either synthetic or natural polymers. The unique environment of cartilage makes it suitable to use a hydrogel with high water content in the cross-linked or thermosensitive (injectable) form. Moreover, design of composite scaffolds from two polymers with complementary physicochemical and biological properties has been explored to provide residing chondrocytes with a combination of the merits that each component contributes.

  5. Mesenchymal stem-cell potential in cartilage repair: an update

    PubMed Central

    Mazor, M; Lespessailles, E; Coursier, R; Daniellou, R; Best, T M; Toumi, H

    2014-01-01

    Articular cartilage damage and subsequent degeneration are a frequent occurrence in synovial joints. Treatment of these lesions is a challenge because this tissue is incapable of quality repair and/or regeneration to its native state. Non-operative treatments endeavour to control symptoms and include anti-inflammatory medications, viscosupplementation, bracing, orthotics and activity modification. Classical surgical techniques for articular cartilage lesions are frequently insufficient in restoring normal anatomy and function and in many cases, it has not been possible to achieve the desired results. Consequently, researchers and clinicians are focusing on alternative methods for cartilage preservation and repair. Recently, cell-based therapy has become a key focus of tissue engineering research to achieve functional replacement of articular cartilage. The present manuscript is a brief review of stem cells and their potential in the treatment of early OA (i.e. articular cartilage pathology) and recent progress in the field. PMID:25353372

  6. Simultaneous Magnetic Resonance Imaging and Consolidation Measurement of Articular Cartilage

    PubMed Central

    Wellard, Robert Mark; Ravasio, Jean-Philippe; Guesne, Samuel; Bell, Christopher; Oloyede, Adekunle; Tevelen, Greg; Pope, James M.; Momot, Konstantin I.

    2014-01-01

    Magnetic resonance imaging (MRI) offers the opportunity to study biological tissues and processes in a non-disruptive manner. The technique shows promise for the study of the load-bearing performance (consolidation) of articular cartilage and changes in articular cartilage accompanying osteoarthritis. Consolidation of articular cartilage involves the recording of two transient characteristics: the change over time of strain and the hydrostatic excess pore pressure (HEPP). MRI study of cartilage consolidation under mechanical load is limited by difficulties in measuring the HEPP in the presence of the strong magnetic fields associated with the MRI technique. Here we describe the use of MRI to image and characterize bovine articular cartilage deforming under load in an MRI compatible consolidometer while monitoring pressure with a Fabry-Perot interferometer-based fiber-optic pressure transducer. PMID:24803188

  7. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  8. Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering

    PubMed Central

    Li, Siwei; Glynne-Jones, Peter; Andriotis, Orestis G.; Ching, Kuan Y.; Jonnalagadda, Umesh S.; Oreffo, Richard O. C.; Hill, Martyn

    2014-01-01

    Cartilage grafts generated using conventional static tissue engineering strategies are characterised by low cell viability, suboptimal hyaline cartilage formation and, critically, inferior mechanical competency, which limit their application for resurfacing articular cartilage defects. To address the limitations of conventional static cartilage bioengineering strategies and generate robust, scaffold-free neocartilage grafts of human articular chondrocytes, the present study utilised custom-built microfluidic perfusion bioreactors with integrated ultrasound standing wave traps. The system employed sweeping acoustic drive frequencies over the range of 890 to 910 kHz and continuous perfusion of the chondrogenic culture medium at a low-shear flow rate to promote the generation of three-dimensional agglomerates of human articular chondrocytes, and enhance cartilage formation by cells of the agglomerates via improved mechanical stimulation and mass transfer rates. Histological examination and assessment of micromechanical properties using indentation-type atomic force microscopy confirmed that the neocartilage grafts were analogous to native hyaline cartilage. Furthermore, in the ex vivo organ culture partial thickness cartilage defect model, implantation of the neocartilage grafts into defects for 16 weeks resulted in the formation of hyaline cartilage-like repair tissue that adhered to the host cartilage and contributed to significant improvements to the tissue architecture within the defects, compared to the empty defects. The study has demonstrated the first successful application of the acoustofluidic perfusion bioreactors to bioengineer scaffold-free neocartilage grafts of human articular chondrocytes that have the potential for subsequent use in second generation autologous chondrocyte implantation procedures for the repair of partial thickness cartilage defects. PMID:25272195

  9. Direct Human Cartilage Repair Using Three-Dimensional Bioprinting Technology

    PubMed Central

    Cui, Xiaofeng; Breitenkamp, Kurt; Finn, M.G.; Lotz, Martin

    2012-01-01

    Current cartilage tissue engineering strategies cannot as yet fabricate new tissue that is indistinguishable from native cartilage with respect to zonal organization, extracellular matrix composition, and mechanical properties. Integration of implants with surrounding native tissues is crucial for long-term stability and enhanced functionality. In this study, we developed a bioprinting system with simultaneous photopolymerization capable for three-dimensional (3D) cartilage tissue engineering. Poly(ethylene glycol) dimethacrylate (PEGDMA) with human chondrocytes were printed to repair defects in osteochondral plugs (3D biopaper) in layer-by-layer assembly. Compressive modulus of printed PEGDMA was 395.73±80.40 kPa, which was close to the range of the properties of native human articular cartilage. Printed human chondrocytes maintained the initially deposited positions due to simultaneous photopolymerization of surrounded biomaterial scaffold, which is ideal in precise cell distribution for anatomic cartilage engineering. Viability of printed human chondrocytes increased 26% in simultaneous polymerization than polymerized after printing. Printed cartilage implant attached firmly with surrounding tissue and greater proteoglycan deposition was observed at the interface of implant and native cartilage in Safranin-O staining. This is consistent with the enhanced interface failure strength during the culture assessed by push-out testing. Printed cartilage in 3D biopaper had elevated glycosaminoglycan (GAG) content comparing to that without biopaper when normalized to DNA. These observations were consistent with gene expression results. This study indicates the importance of direct cartilage repair and promising anatomic cartilage engineering using 3D bioprinting technology. PMID:22394017

  10. Effective management of major lower extremity wounds using an acellular regenerative tissue matrix: a pilot study.

    PubMed

    Brigido, Stephen A; Boc, Steven F; Lopez, Ramon C

    2004-01-01

    Wound healing is a significant problem in orthopedics. Graftjacket tissue matrix (Wright Medical Technology, Inc, Arlington, Tenn), a novel acellular regenerative tissue matrix, has been designed to aid wound closure. A prospective, randomized study was initiated to determine the efficacy of this tissue product in wound repair compared with conventional treatment. Lower extremity wounds are refractile to healing in patients with diabetes mellitus. Therefore, researchers used diabetic foot ulcers to evaluate the efficacy of GraftJacket tissue matrix in wound repair. Only a single administration of the tissue matrix was required. After 1 month of treatment, preliminary results demonstrate that this novel tissue matrix promotes faster healing at a statistically significant rate over conventional treatment. Because wounds in this series of patients are deep and circulation around the wound is poor, the preliminary results suggest that this tissue matrix will be applicable to other types of orthopedic wounds.

  11. Gravity related behavior of the acellular slime mold Physarum polycephalum (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Block, I.

    1992-01-01

    The objective of the experiment is to investigate the effect of near weightlessness on a single cell. The test object is the acellular slime mold Physarum polycephalum. This cell is composed of a network of protoplastic strands which perform rhythmic contractions in the minute range. These contractions of the strands' ectoplastic walls generate the force to drive the vigorous shuttle streaming of fluid protoplasm inside the strands (hydrostatic pressure flow). A net transport of protoplasm in one direction determines the direction of the cell's locomotion itself. In this way, gravity modifies the contraction rhythm of the strands, the streaming velocity of protoplasm in the strands, and the direction of locomotion of the whole slime mold (geotaxis). The other parts of this experiment will address the major question of how this cell, which does not possess any specialized gravireceptors, gets the information about the direction of the gravity vector. Details of the experimental setup are given.

  12. Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity.

    PubMed

    Mahara, Atsushi; Somekawa, Shota; Kobayashi, Naoki; Hirano, Yoshiaki; Kimura, Yoshiharu; Fujisato, Toshiya; Yamaoka, Tetsuji

    2015-07-01

    Researchers have attempted to develop efficient antithrombogenic surfaces, and yet small-caliber artificial vascular grafts are still unavailable. Here, we demonstrate the excellent patency of tissue-engineered small-caliber long-bypass grafts measuring 20-30 cm in length and having a 2-mm inner diameter. The inner surface of an acellular ostrich carotid artery was modified with a novel heterobifunctional peptide composed of a collagen-binding region and the integrin α4β1 ligand, REDV. Six grafts were transplanted in the femoral-femoral artery crossover bypass method. Animals were observed for 20 days and received no anticoagulant medication. No thrombogenesis was observed on the luminal surface and five cases were patent. In contrast, all unmodified grafts became occluded, and severe thrombosis was observed. The vascular grafts reported here are the first successful demonstrations of short-term patency at clinically applicable sizes. PMID:25941782

  13. Tetanus-diphtheria-acellular pertussis vaccination of adults in the USA.

    PubMed

    Gidengil, Courtney A; Sandora, Thomas J; Lee, Grace M

    2008-07-01

    Pertussis is an important cause of morbidity and mortality, and its incidence has been increasing in adolescents and adults over the past two decades. Waning immunity in adolescents and adults may be partially responsible. Adults can suffer significant illness from pertussis and its complications, such as pneumonia, rib fractures and syncope. Moreover, adults serve as a source of disease for infants, who are more vulnerable to severe complications and even death. The economic burden of pertussis is substantial, in terms of both medical and nonmedical costs. Fortunately, the burden of pertussis disease can now be safely and effectively reduced by vaccinating adults with tetanus-diphtheria-acellular pertussis (Tdap) vaccine. Further research is needed to elucidate the role of vaccination in pregnant women and those over 65 years of age, and also to determine whether further booster doses of Tdap are needed.

  14. Immune Responses to Pertussis Antigens in Infants and Toddlers after Immunization with Multicomponent Acellular Pertussis Vaccine

    PubMed Central

    Wang, Li; Chen, Qingxia

    2014-01-01

    Given the resurgence of pertussis despite high rates of vaccination with the diphtheria-tetanus-acellular pertussis (DTaP) vaccine, a better understanding of vaccine-induced immune responses to Bordetella pertussis is needed. We investigated the antibody, cell-mediated, and cytokine responses to B. pertussis antigens in children who received the primary vaccination series (at 2, 4, and 6 months) and first booster vaccination (at 15 to 18 months) with 5-component acellular pertussis (aP) vaccine. The majority of subjects demonstrated a 4-fold increase in antibody titer to all four pertussis antigens (pertussis toxin [PT], pertactin [PRN], filamentous hemagglutinin [FHA], and fimbriae [FIM]) following the primary series and booster vaccination. Following the primary vaccine series, the majority of subjects (52 to 67%) mounted a positive T cell proliferative response (stimulation index of ≥3) to the PT and PRN antigens, while few subjects (7 to 12%) mounted positive proliferative responses to FHA and FIM. One month after booster vaccination (age 16 to 19 months), our study revealed significant increase in gamma interferon (IFN-γ) production in response to the PT and FIM antigens, a significant increase in IL-2 production with the PT, FHA, and PRN antigens, and a lack of significant interleukin-4 (IL-4) secretion with any of the antigens. While previous reports documented a mixed Th1/Th2 or Th2-skewed response to DTaP vaccine in children, our data suggest that following the first DTaP booster, children aged 16 to 19 months have a cytokine profile consistent with a Th1 response, which is known to be essential for clearance of pertussis infection. To better define aP-induced immune responses following the booster vaccine, further studies are needed to assess cytokine responses pre- and postbooster in DTaP recipients. PMID:25253666

  15. Is Sterile Better Than Aseptic? Comparing the Microbiology of Acellular Dermal Matrices

    PubMed Central

    Klein, Gabriel M.; Nasser, Ahmed E.; Phillips, Brett T.; Gersch, Robert P.; Fourman, Mitchell S.; Lilo, Sarit E.; Fritz, Jason R.; Khan, Sami U.; Dagum, Alexander B.

    2016-01-01

    Introduction: Postoperative infections are a major complication associated with tissue-expander-based breast reconstruction. The use of acellular dermal matrix (ADM) in this surgery has been identified as a potential reservoir of infection, prompting the development of sterile ADM. Although aseptic and sterile ADMs have been investigated, no study has focused on the occurrence and clinical outcome of bacterial colonization before implantation. Methods: Samples of aseptic AlloDerm, sterile Ready-To-Use AlloDerm, and AlloMax were taken before implantation. These samples were incubated in Tryptic soy broth overnight before being streaked on Trypticase soy agar, MacConkey agar, and 5% blood agar plates for culture and incubated for 48 hours. Culture results were cross-referenced with patient outcomes for 1 year postoperatively. Results: A total of 92 samples of ADM were collected from 63 patients. There were 15 cases of postoperative surgical site infection (16.3%). Only 1 sample of ADM (AlloMax) showed growth of Escherichia coli, which was likely a result of contamination. That patient did not develop any infectious sequelae. Patient outcomes showed no difference in the incidence of seroma or infection between sterile and aseptic ADMs. Conclusions: This study evaluates the microbiology of acellular dermal matrices before use in breast reconstruction. No difference was found in the preoperative bacterial load of either aseptic or sterile ADM. No significant difference was noted in infection or seroma formation. Given these results, we believe aseptic processing used on ADMs is equivalent to sterile processing in our patient cohort in terms of clinical infection and seroma occurrence postoperatively. PMID:27482500

  16. Physiological distal drift in rat molars contributes to acellular cementum formation.

    PubMed

    Tsuchiya, Shinobu; Tsuchiya, Masahiro; Nishioka, Takashi; Suzuki, Osamu; Sasano, Yasuyuki; Igarashi, Kaoru

    2013-08-01

    Occlusal forces may induce the physiological teeth migration in humans, but there is little direct evidence. Rat molars are known to migrate distally during aging, possibly caused by occlusal forces. The purpose of this study was to determine if a reduction in occlusion would decrease teeth migration and affect associated periodontal structures such as cementum. To reduce occlusal forces, the right upper first molar (M1) in juvenile rats was extracted. The transition of the position of upper second molar (M2) and formation of M2 cementum was followed during aging. From the cephalometric analyses, upper M2 was located more anterior compared with the original position with aging after M1 extraction. Associated with this "slowing-down" of the physiological drift, cementum thickness on distal surface, but not on mesial surface, of M2 root was significantly increased. The accumulation of alizarin red as vital stain indicative of calcification, was observed in the distal cementum of M2 root only on the side of M1 extraction. Extraction of M1 that results in less functional loading, distinctly attenuates the physiological drift only in the upper dentition. The decreased physiological drift appears to activate acellular cementum formation only on distal surface of M2 root, perhaps due to reduced mechanical stress associated with the attenuated distal drift. In conclusion, the physiological distal drift in rat molars appears to be largely driven by the occlusal force and also affects the formation of acellular cementum. These findings provide additional direct evidence for an important role of occlusal forces in tooth migration. PMID:23775928

  17. Poroelasticity of cartilage at the nanoscale.

    PubMed

    Nia, Hadi Tavakoli; Han, Lin; Li, Yang; Ortiz, Christine; Grodzinsky, Alan

    2011-11-01

    Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ~15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ~ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E*|, and phase angle, φ, between the force and tip displacement sinusoids, were measured in the frequency range f ~ 0.2-130 Hz at an offset indentation depth of δ(0) ~ 3 μm. The experimentally measured |E*| and φ corresponded well with that predicted by a fibril-reinforced poroelastic model over a three-decade frequency range. The peak frequency of phase angle, f(peak), was observed to scale linearly with the inverse square of the contact distance between probe tip and cartilage, 1/d(2), as predicted by linear poroelasticity theory. The dynamic mechanical properties were observed to be independent of the deformation amplitude in the range δ = 7-50 nm. Hence, these results suggest that poroelasticity was the dominant mechanism underlying the frequency-dependent mechanical behavior observed at these nanoscale deformations. These findings enable ongoing investigations of the nanoscale progression of matrix pathology in tissue-level disease.

  18. Composite scaffolds for cartilage tissue engineering.

    PubMed

    Moutos, Franklin T; Guilak, Farshid

    2008-01-01

    Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.

  19. Acellularization-Induced Changes in Tensile Properties Are Organ Specific - An In-Vitro Mechanical and Structural Analysis of Porcine Soft Tissues

    PubMed Central

    Aust, Gabriela; Boldt, Andreas; Fritsch, Sebastian; Keil, Isabel; Koch, Holger; Möbius, Robert; Scheidt, Holger A.; Wagner, Martin F. X.; Hammer, Niels

    2016-01-01

    Introduction Though xenogeneic acellular scaffolds are frequently used for surgical reconstruction, knowledge of their mechanical properties is lacking. This study compared the mechanical, histological and ultrastructural properties of various native and acellular specimens. Materials and Methods Porcine esophagi, ureters and skin were tested mechanically in a native or acellular condition, focusing on the elastic modulus, ultimate tensile stress and maximum strain. The testing protocol for soft tissues was standardized, including the adaption of the tissue’s water content and partial plastination to minimize material slippage as well as templates for normed sample dimensions and precise cross-section measurements. The native and acellular tissues were compared at the microscopic and ultrastructural level with a focus on type I collagens. Results Increased elastic modulus and ultimate tensile stress values were quantified in acellular esophagi and ureters compared to the native condition. In contrast, these values were strongly decreased in the skin after acellularization. Acellularization-related decreases in maximum strain were found in all tissues. Type I collagens were well-preserved in these samples; however, clotting and a loss of cross-linking type I collagens was observed ultrastructurally. Elastins and fibronectins were preserved in the esophagi and ureters. A loss of the epidermal layer and decreased fibronectin content was present in the skin. Discussion Acellularization induces changes in the tensile properties of soft tissues. Some of these changes appear to be organ specific. Loss of cross-linking type I collagen may indicate increased mechanical strength due to decreasing transverse forces acting upon the scaffolds, whereas fibronectin loss may be related to decreased load-bearing capacity. Potentially, the alterations in tissue mechanics are linked to organ function and to the interplay of cells and the extracellular matrix, which is different in

  20. Immunocytochemistry of the acellular slime mold Physarum polycephalum. III. Distribution of myosin and the actin-modulating protein (fragmin) in sandwiched plasmodia.

    PubMed

    Osborn, M; Weber, K; Naib-Majani, W; Hinssen, H; Stockem, W; Wohlfarth-Bottermann, K E

    1983-01-01

    The acellular slime mold Physarum forms very thin plasmodia when sandwiched between two agar sheets. After extraction with glycerol-containing buffers, suitable objects for immunofluorescence microscopy are obtained, and an analysis of the cytoskeletal and contractile system of Physarum becomes possible. Plasmodia were stained with antibodies against myosin and fragmin, a protein factor involved in actin filament length regulation. The microanatomy and topography of cellular structures containing these proteins were investigated at the light and electron microscopic levels. The patterns obtained with the two antibodies are closely related to those obtained with actin antibody [25]. In both cases the complex system of cytoplasmic fibrils is stained selectively. The fibrils form a more or less regular network in the advancing front zone with the fibrils being interconnected by focal nodes. In the posterior region of the plasmodium, where endoplasmic pathways and protoplasmic veins are differentiated, larger fibrils are detected, running obliquely or longitudinally to the veins. With both antibodies the fluorescent pattern of the fibrils is continuous without indications of periodic interruptions or striations, which would be expected in the case of sarcomere-like subunits. With anti-myosin unstained patches are frequently seen at or close to the nodes of the fibrillar network in the anterior region. The small lobopodia, which are rich in actin, are apparently not stained by the myosin antibody, a result similar to the situation in "ruffling edges¿ of cultured vertebrate cells. Electron microscopic investigations of antibody-labeled fibrils in embedded and sectioned plasmodia allow the identification of antibody molecules at specific sites along the fibrils with a different distribution pattern for each of the two antibodies. PMID:6339244

  1. Large, central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lung and brain metastases.

    PubMed

    Tsuda, H; Takarabe, T; Hasegawa, F; Fukutomi, T; Hirohashi, S

    2000-02-01

    High-grade invasive ductal carcinomas (IDCs) of the breast with large, central acellular zones on their cut surfaces are usually associated with the myoepithelial immunophenotype of carcinoma cells, which includes the expression of S-100 protein, alpha-smooth muscle actin, and keratin 14. To clarify the clinical significance of these features of IDCs, the authors compared the incidence of the myoepithelial immunophenotype immunohistochemically, patient prognosis, and metastatic sites of the tumor between 20 high-grade IDCs with large, central acellular zones and 40 control high-grade IDCs without these zones. The myoepithelial immunophenotype was detected in 16 IDCs (80%) with large, central acellular zones but in only seven IDCs (18%) without. The risk ratio of metastasis, especially in the brain and lung, and death from cancer were significantly higher (p = 0.0096 and p = 0.030) for the 20 IDCs with large, central acellular zones than for those without by Cox's univariate analysis. Using Cox's multivariate analysis, large, central acellular zones in IDCs were an indicator of high risk of brain and lung metastases and of death by cancer independent of nodal status and tumor size. Examination of large, central acellular zones and myoepithelial immunophenotype in high-grade IDCs appears helpful in predicting patient prognosis and preferential metastatic sites of the tumors.

  2. Developing Fact Sheets.

    ERIC Educational Resources Information Center

    Weiler, Robert M.

    1998-01-01

    Presents an assignment that allows preservice health educators to learn how to develop fact sheets for communicating health information. The process of developing fact sheets involves selecting a topic, selecting a target audience, researching the topic, writing the message, constructing the draft, and pretesting the product. Strategies for…

  3. Mechanics of Sheeting Joints

    NASA Astrophysics Data System (ADS)

    Martel, S. J.

    2015-12-01

    Physical breakdown of rock across a broad scale spectrum involves fracturing. In many areas large fractures develop near the topographic surface, with sheeting joints being among the most impressive. Sheeting joints share many geometric, textural, and kinematic features with other joints (opening-mode fractures) but differ in that they are (a) discernibly curved, (b) open near the topographic surface, and (c) form subparallel to the topographic surface. Where sheeting joints are geologically young, the surface-parallel compressive stresses are typically several MPa or greater. Sheeting joints are best developed beneath domes, ridges, and saddles; they also are reported, albeit rarely, beneath valleys or bowls. A mechanism that accounts for all these associations has been sought for more than a century: neither erosion of overburden nor high lateral compressive stresses alone suffices. Sheeting joints are not accounted for by Mohr-Coulomb shear failure criteria. Principles of linear elastic fracture mechanics, together with the mechanical effect of a curved topographic surface, do provide a basis for understanding sheeting joint growth and the pattern sheeting joints form. Compressive stresses parallel to a singly or doubly convex topographic surface induce a tensile stress perpendicular to the surface at shallow depths; in some cases this alone could overcome the weight of overburden to open sheeting joints. If regional horizontal compressive stresses, augmented by thermal stresses, are an order of magnitude or so greater than a characteristic vertical stress that scales with topographic amplitude, then topographic stress perturbations can cause sheeting joints to open near the top of a ridge. This topographic effect can be augmented by pressure within sheeting joints arising from water, ice, or salt. Water pressure could be particularly important in helping drive sheeting joints downslope beneath valleys. Once sheeting joints have formed, the rock sheets between

  4. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties

    PubMed Central

    Glass, Katherine A.; Link, Jarrett M.; Brunger, Jonathan M.; Moutos, Franklin T.; Gersbach, Charles A.; Guilak, Farshid

    2014-01-01

    The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (MSC) chondrogenesis. In this study, we combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in MSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce MSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis. PMID:24767790

  5. In vivo cartilage formation from growth factor modulated articular chondrocytes.

    PubMed

    Bradham, D M; Horton, W E

    1998-07-01

    Recent procedures for autologous repair of cartilage defects may be difficult in elderly patients because of the loss of stem cells and chondrocytes that occurs with age and the slow in vitro proliferation of chondrocytes from aged cartilage. In this study secondary chondroprogenitor cells were obtained by modulating the phenotype of articular chondrocytes with growth factors and stimulating the proliferation of these cells in culture. Chondrocytes isolated from the articular cartilage of mature New Zealand White rabbits were exposed to a combination of transforming growth factor beta and basic fibroblast growth factor treatment. These cells ceased the production of Collagen II (a marker for the chondrocyte phenotype) and underwent a 136-fold increase in cell number. Next, the cells were placed in high density culture and reexpressed the chondrocyte phenotype in vitro and formed hyaline cartilage in an in vivo assay. Primary chondrocytes obtained from articular cartilage of elderly humans could be manipulated in a similar fashion in vitro. These human secondary chondroprogenitor cells formed only cartilage tissue when assayed in vivo and in tissue bioreactors. This approach may be essential for autologous repair of degenerated articular cartilage in elderly patients with osteoarthritis.

  6. Management of articular cartilage defects of the knee.

    PubMed

    Bedi, Asheesh; Feeley, Brian T; Williams, Riley J

    2010-04-01

    Articular cartilage has a poor intrinsic capacity for healing. The goal of surgical techniques to repair articular cartilage injuries is to achieve the regeneration of organized hyaline cartilage. Microfracture and other bone marrow stimulation techniques involve penetration of the subchondral plate in order to recruit mesenchymal stem cells into the chondral defect. The formation of a stable clot that fills the lesion is of paramount importance to achieve a successful outcome. Mosaicplasty is a viable option with which to address osteochondral lesions of the knee and offers the advantage of transplanting hyaline cartilage. However, limited graft availability and donor site morbidity are concerns. Transplantation of an osteochondral allograft consisting of intact, viable articular cartilage and its underlying subchondral bone offers the ability to address large osteochondral defects of the knee, including those involving an entire compartment. The primary theoretical advantage of autologous chondrocyte implantation is the development of hyaline-like cartilage rather than fibrocartilage in the defect, which presumably leads to better long-term outcomes and longevity of the healing tissue. Use of synthetic scaffolds is a potentially attractive alternative to traditional cartilage procedures as they are readily available and, unlike allogeneic tissue transplants, are associated with no risk of disease transmission. Their efficacy, however, has not been proven clinically.

  7. Human cartilage repair with a photoreactive adhesive-hydrogel composite.

    PubMed

    Sharma, Blanka; Fermanian, Sara; Gibson, Matthew; Unterman, Shimon; Herzka, Daniel A; Cascio, Brett; Coburn, Jeannine; Hui, Alexander Y; Marcus, Norman; Gold, Garry E; Elisseeff, Jennifer H

    2013-01-01

    Surgical options for cartilage resurfacing may be significantly improved by advances and application of biomaterials that direct tissue repair. A poly(ethylene glycol) diacrylate (PEGDA) hydrogel was designed to support cartilage matrix production, with easy surgical application. A model in vitro system demonstrated deposition of cartilage-specific extracellular matrix in the hydrogel biomaterial and stimulation of adjacent cartilage tissue development by mesenchymal stem cells. For translation to the joint environment, a chondroitin sulfate adhesive was applied to covalently bond and adhere the hydrogel to cartilage and bone tissue in articular defects. After preclinical testing in a caprine model, a pilot clinical study was initiated where the biomaterials system was combined with standard microfracture surgery in 15 patients with focal cartilage defects on the medial femoral condyle. Control patients were treated with microfracture alone. Magnetic resonance imaging showed that treated patients achieved significantly higher levels of tissue fill compared to controls. Magnetic resonance spin-spin relaxation times (T(2)) showed decreasing water content and increased tissue organization over time. Treated patients had less pain compared with controls, whereas knee function [International Knee Documentation Committee (IKDC)] scores increased to similar levels between the groups over the 6 months evaluated. No major adverse events were observed over the study period. With further clinical testing, this practical biomaterials strategy has the potential to improve the treatment of articular cartilage defects. PMID:23303605

  8. Chondrocyte distribution in the articular cartilage of human femoral condyles.

    PubMed Central

    Gilmore, R S; Palfrey, A J

    1988-01-01

    The distribution of chondrocytes throughout the total thickness of articular cartilage from the femoral condyles of infants, children and adults has been studied using serial sections cut parallel as well as perpendicular to the articular surface. The thickness of the articular cartilage was estimated in fixed sections. In one of the adult specimens, the thickness of the articular cartilage was estimated firstly by direct measurement of the cut surfaces of a series of blocks cut from both condyles and then from the number of parallel sections of the cartilage prepared from those blocks. Cell density was highest in the superficial zone of all specimens examined, declining to lower values in the deep zone of the cartilage. Within this pattern the infant specimens had the highest values for cell density and the adults the lowest, with values for children in an intermediate range. There was no significant variation in cell density across the condyles of the selected adult specimen. The absolute values for cartilage thickness depended on the method used, but in general total thickness was found to approximately double from late gestation to maturity. In the selected adult specimen, the cartilage was thickest just anterior and posterior to the main weight-bearing area of the condyles. PMID:3198480

  9. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties.

    PubMed

    Glass, Katherine A; Link, Jarrett M; Brunger, Jonathan M; Moutos, Franklin T; Gersbach, Charles A; Guilak, Farshid

    2014-07-01

    The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (MSC) chondrogenesis. In this study, we combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in MSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce MSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis. PMID:24767790

  10. A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose

    PubMed Central

    2013-01-01

    Introduction Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model. Methods Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material. Results Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures

  11. Biomechanical Evaluation of Human and Porcine Auricular Cartilage

    PubMed Central

    Zopf, David A.; Flanagan, Colleen L.; Nasser, Hassan B.; Mitsak, Anna G.; Huq, Farhan S.; Rajendran, Vishnu; Green, Glenn E.; Hollister, Scott J.

    2015-01-01

    Objective The mechanical properties of normal auricular cartilage provide a benchmark against which to characterize changes in auricular structure/function due to genetic defects creating phenotypic abnormalities in collage subtypes. Such properties also provide inputs/targets for auricular reconstruction scaffold design. Several studies report the biomechanical properties for septal, costal, and articular cartilage. However, analogous data for auricular cartilage is lacking. Therefore, our aim in this study was to characterize both whole ear and auricular cartilage mechanics by mechanically testing specimens and fitting the results to nonlinear constitutive models. Study Design Mechanical testing of whole ears and auricular cartilage punch biopsies. Methods Whole human cadaveric ear and auricular cartilage punch biopsies from both porcine and human cartilage were subjected to whole ear helix down compression and quasi-static unconfined compression tests. Common hyperelastic constitutive laws (widely used to characterize soft tissue mechanics) were evaluated for their ability to represent the stress-strain behavior of auricular cartilage. Results Load displacement curves for whole ear testing exhibited compliant linear behavior until after significant displacement where nonlinear stiffening occurred. All five commonly used 2-term hyperelastic soft tissue constitutive models successfully fit both human and porcine nonlinear elastic behavior (mean R2 fit greater than 0.95). Conclusion Auricular cartilage exhibits nonlinear strain stiffening elastic behavior that is similar to other soft tissues in the body. The whole ear exhibits compliant behavior with strain stiffening at high displacement. The constants from the hyperelastic model fits provide quantitative baselines for both human and porcine (a commonly used animal model for auricular tissue engineering) auricular mechanics. PMID:25891012

  12. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds.

    PubMed

    Rowland, Christopher R; Colucci, Lina A; Guilak, Farshid

    2016-06-01

    The native extracellular matrix of cartilage contains entrapped growth factors as well as tissue-specific epitopes for cell-matrix interactions, which make it a potentially attractive biomaterial for cartilage tissue engineering. A limitation to this approach is that the native cartilage extracellular matrix possesses a pore size of only a few nanometers, which inhibits cellular infiltration. Efforts to increase the pore size of cartilage-derived matrix (CDM) scaffolds dramatically attenuate their mechanical properties, which makes them susceptible to cell-mediated contraction. In previous studies, we have demonstrated that collagen crosslinking techniques are capable of preventing cell-mediated contraction in CDM disks. In the current study, we investigated the effects of CDM concentration and pore architecture on the ability of CDM scaffolds to resist cell-mediated contraction. Increasing CDM concentration significantly increased scaffold mechanical properties, which played an important role in preventing contraction, and only the highest CDM concentration (11% w/w) was able to retain the original scaffold dimensions. However, the increase in CDM concentration led to a concomitant decrease in porosity and pore size. Generating a temperature gradient during the freezing process resulted in unidirectional freezing, which aligned the formation of ice crystals during the freezing process and in turn produced aligned pores in CDM scaffolds. These aligned pores increased the pore size of CDM scaffolds at all CDM concentrations, and greatly facilitated infiltration by mesenchymal stem cells (MSCs). These methods were used to fabricate of anatomically-relevant CDM hemispheres. CDM hemispheres with aligned pores supported uniform MSC infiltration and matrix deposition. Furthermore, these CDM hemispheres retained their original architecture and did not contract, warp, curl, or splay throughout the entire 28-day culture period. These findings demonstrate that given the

  13. Growing Three-Dimensional Cartilage-Cell Cultures

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F.; Prewett, Tacey L.; Goodwin, Thomas J.

    1995-01-01

    Process for growing three-dimensional cultures of mammalian cartilage from normal mammalian cells devised. Effected using horizontal rotating bioreactor described in companion article, "Simplified Bioreactor for Growing Mammalian Cells" (MSC-22060). Bioreactor provides quiescent environment with generous supplies of nutrient and oxygen. Initiated with noncartilage cells. Artificially grown tissue resembles that in mammalian cartilage. Potential use in developing therapies for damage to cartilage by joint and back injuries and by such inflammatory diseases as arthritis and temporal-mandibular joint disease. Also used to test nonsteroid anti-inflammation medicines.

  14. CT and MRI of aggressive osteoblastoma of thyroid cartilage

    SciTech Connect

    Agarwala, R.; Graham, R.J.; Panella, J.S.

    1996-01-01

    We present a unique case of aggressive osteoblastoma arising from thyroid cartilage. A 52-year-old man presented with a 10 month history of neck discomfort but without frank pain. CT and MR examinations disclosed a well defined mass arising from the thyroid cartilage. This lesion had areas of coarse calcifications and a central area of lucency. The appearance suggested chondrosarcoma. Hemilaryngectomy was performed to remove the mass en bloc. Surgical pathology diagnosed aggressive osteoblastoma arising from thyroid cartilage. 8 refs., 2 figs.

  15. Techniques for diced cartilage with deep temporalis fascia graft.

    PubMed

    Calvert, Jay; Kwon, Edwin

    2015-02-01

    Diced cartilage with deep temporalis fascia (DC-F) graft has become a popular technique for reconstruction of the nasal dorsum. Cartilage can be obtained from the septum, ear, or costal cartilage when employing the DC-F technique. The complications seen with DC-F grafts tend to occur early in the surgeon's implementation of this technique. Management of the complications varies depending on the severity of the problem. This article gives an overview of both the technique and the complications commonly encountered.

  16. Prenatal caffeine exposure induces a poor quality of articular cartilage in male adult offspring rats via cholesterol accumulation in cartilage

    PubMed Central

    Luo, Hanwen; Li, Jing; Cao, Hong; Tan, Yang; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-01-01

    Epidemiological investigations indicate that osteoarthritis is associated with intrauterine growth retardation (IUGR) and abnormal cholesterol metabolism. Our previous studies showed that prenatal caffeine exposure (PCE) induced chondrogenesis retardation in IUGR offspring rats. The current study sought to investigate the effects of PCE on male IUGR offspring rats’ articular cartilage, and the mechanisms associated with abnormal cholesterol metabolism. Based on the results from both male fetal and adult fed a high-fat diet (HFD) studies of rats that experienced PCE (120 mg/kg.d), the results showed a poor quality of articular cartilage and cholesterol accumulation in the adult PCE group. Meanwhile, the serum total cholesterol and low-density lipoprotein-cholesterol concentrations were increased in adult PCE offspring. We also observed lower expression of insulin-like growth factor1 (IGF1) and impaired cholesterol efflux in adult articular cartilage. Furthermore, the expression of cartilage functional genes, components of the IGF1 signaling pathway and cholesterol efflux pathway related genes were decreased in PCE fetal cartilage. In conclusion, PCE induced a poor quality of articular cartilage in male adult offspring fed a HFD. This finding was shown to be due to cholesterol accumulation in the cartilage, which may have resulted from intrauterine reduced activity of the IGF1 signaling pathway. PMID:26639318

  17. Prospective Clinical Trial for Septic Arthritis: Cartilage Degradation and Inflammation Are Associated with Upregulation of Cartilage Metabolites

    PubMed Central

    Bernstein, Anke; Pham, That Minh

    2016-01-01

    Background. Intra-articular infections can rapidly lead to osteoarthritic degradation. The aim of this clinical biomarker analysis was to investigate the influence of inflammation on cartilage destruction and metabolism. Methods. Patients with acute joint infections were enrolled in a prospective clinical trial and the cytokine composition of effusions (n = 76) was analyzed. Characteristics of epidemiology and disease severity were correlated with levels of cytokines with known roles in cartilage turnover and degradation. Results. Higher synovial IL-1β concentrations were associated with clinical parameters indicating a higher disease severity (p < 0.03) excluding the incidence of sepsis. Additionally, intra-articular IL-1β levels correlated with inflammatory serum parameters as leucocyte counts (LC) and C-reactive protein concentrations (p < 0.05) but not with age or comorbidity. Both higher LC and synovial IL-1β levels were associated with increased intra-articular collagen type II cleavage products (C2C) indicating cartilage degradation. Joints with preinfectious lesions had higher C2C levels. Intra-articular inflammation led to increased concentrations of typical cartilage metabolites as bFGF, BMP-2, and BMP-7. Infections with Staphylococcus species induced higher IL-1β expression but less cartilage destruction than other bacteria. Conclusion. Articular infections have bacteria-specific implications on cartilage metabolism. Collagen type II cleavage products reliably mark destruction, which is associated with upregulation of typical cartilage turnover cytokines. This trial is registered with DRKS00003536, MISSinG.

  18. Prenatal caffeine exposure induces a poor quality of articular cartilage in male adult offspring rats via cholesterol accumulation in cartilage.

    PubMed

    Luo, Hanwen; Li, Jing; Cao, Hong; Tan, Yang; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-12-07

    Epidemiological investigations indicate that osteoarthritis is associated with intrauterine growth retardation (IUGR) and abnormal cholesterol metabolism. Our previous studies showed that prenatal caffeine exposure (PCE) induced chondrogenesis retardation in IUGR offspring rats. The current study sought to investigate the effects of PCE on male IUGR offspring rats' articular cartilage, and the mechanisms associated with abnormal cholesterol metabolism. Based on the results from both male fetal and adult fed a high-fat diet (HFD) studies of rats that experienced PCE (120 mg/kg.d), the results showed a poor quality of articular cartilage and cholesterol accumulation in the adult PCE group. Meanwhile, the serum total cholesterol and low-density lipoprotein-cholesterol concentrations were increased in adult PCE offspring. We also observed lower expression of insulin-like growth factor1 (IGF1) and impaired cholesterol efflux in adult articular cartilage. Furthermore, the expression of cartilage functional genes, components of the IGF1 signaling pathway and cholesterol efflux pathway related genes were decreased in PCE fetal cartilage. In conclusion, PCE induced a poor quality of articular cartilage in male adult offspring fed a HFD. This finding was shown to be due to cholesterol accumulation in the cartilage, which may have resulted from intrauterine reduced activity of the IGF1 signaling pathway.

  19. Prospective Clinical Trial for Septic Arthritis: Cartilage Degradation and Inflammation Are Associated with Upregulation of Cartilage Metabolites

    PubMed Central

    Bernstein, Anke; Pham, That Minh

    2016-01-01

    Background. Intra-articular infections can rapidly lead to osteoarthritic degradation. The aim of this clinical biomarker analysis was to investigate the influence of inflammation on cartilage destruction and metabolism. Methods. Patients with acute joint infections were enrolled in a prospective clinical trial and the cytokine composition of effusions (n = 76) was analyzed. Characteristics of epidemiology and disease severity were correlated with levels of cytokines with known roles in cartilage turnover and degradation. Results. Higher synovial IL-1β concentrations were associated with clinical parameters indicating a higher disease severity (p < 0.03) excluding the incidence of sepsis. Additionally, intra-articular IL-1β levels correlated with inflammatory serum parameters as leucocyte counts (LC) and C-reactive protein concentrations (p < 0.05) but not with age or comorbidity. Both higher LC and synovial IL-1β levels were associated with increased intra-articular collagen type II cleavage products (C2C) indicating cartilage degradation. Joints with preinfectious lesions had higher C2C levels. Intra-articular inflammation led to increased concentrations of typical cartilage metabolites as bFGF, BMP-2, and BMP-7. Infections with Staphylococcus species induced higher IL-1β expression but less cartilage destruction than other bacteria. Conclusion. Articular infections have bacteria-specific implications on cartilage metabolism. Collagen type II cleavage products reliably mark destruction, which is associated with upregulation of typical cartilage turnover cytokines. This trial is registered with DRKS00003536, MISSinG. PMID:27688601

  20. Aggrecan: Beyond cartilage and into the brain.

    PubMed

    Morawski, M; Brückner, G; Arendt, T; Matthews, R T

    2012-05-01

    Aggrecan is well-studied in cartilage but its expression and function in the central nervous system has only recently begun to be appreciated. Aggrecan plays an important role in the organization of the neural extracellular space by binding and organizing hyaluronan to the cell surface through interactions with link protein and tenascins forming a large aggregated quaternary complex. While all members of the lectican family to which aggrecan belongs are thought to mediate similar roles in organizing the neural matrix, aggrecan is unique in that it is the only family member found almost exclusively in an enigmatic matrix substructure called the perineuronal net. Current work has established a critical role for perineuronal nets and aggrecan in regulating developmental neural plasticity and in the recover from injury. In this review we focus on the structure, expression and function of aggrecan in the central nervous system.

  1. Association of postpartum maternal tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine administration and timeliness of infant immunization.

    PubMed

    Kaur, Ishminder; George, Krissa J; Pena-Ricardo, Carolina; Kelly, Barbara A; Watson, Barbara

    2013-11-01

    A retrospective cohort study was conducted on infants of mothers delivering at an inner-city hospital in October 2009 where postpartum maternal tetanus toxoid, reduced diptheria toxoid and acellular pertussis (Tdap) vaccination had been initiated in May 2008. We compared mothers and infants in a Tdap intervention group discharged July 2008 (n=250) with a pre-Tdap control group discharged July 2007 (n=238). Postpartum maternal Tdap impacted positively timeliness of early infant immunization.

  2. Possible role of dentin matrix in region-specific deposition of cellular and acellular extrinsic fibre cementum.

    PubMed

    Takano, Yoshiro; Sakai, Hideo; Watanabe, Eiko; Ideguchi-Ohma, Noriko; Jayawardena, Chantha K; Arai, Kazumi; Asawa, Yukiyo; Nakano, Yukiko; Shuda, Yoko; Sakamoto, Yujiro; Terashima, Tatsuo

    2003-01-01

    The mechanism whereby a region-specific deposition of the two types of cementum (cellular cementum and acellular extrinsic fibre cementum) is regulated on the growing root surface was tested using bisphosphonate-affected teeth of young rats and guinea pigs. The animals were injected subcutaneously with 8 or 10 mg P x kg body weight(-1) x day(-1) of 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) for 1 or 2 weeks. In rat molars, HEBP prevented mineralization of newly formed root dentin matrix and totally inhibited de novo deposition of acellular extrinsic fibre cementum. Instead, thick cellular cementum was induced on the non-mineralized root dentin surface, irrespective of the position of the root. In both animals, cellular cementum was also induced on the non-mineralized surface of root analogue dentin in HEBP-affected incisors, where only acellular extrinsic fibre cementum is deposited under normal conditions. In normal rat molars, dentin sialoprotein (DSP) was concentrated along the dentin-cellular cementum border, but not that of dentin and acellular extrinsic fibre cementum. In HEBP-affected rat incisors, DSP was shown to penetrate through the non-mineralized dentin into the surrounding tissues, but not through the mineralized portions. These data suggest that, at the site of cellular cementum formation, putative inducing factors for cellular cementum might diffuse into the periodontal space through the newly deposited mantle dentin matrix before it is mineralized. At earlier stages of root formation, mantle dentin might mineralize more promptly not to allow such diffusion. The timing of mineralization of mantle dentin matrix might be the key determinant of the types of the cementum deposited on the growing root surface. PMID:14756246

  3. Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold.

    PubMed

    Feng, Yuping; Wang, Jiao; Ling, Shixin; Li, Zhuo; Li, Mingsheng; Li, Qiongyi; Ma, Zongren; Yu, Sijiu

    2014-11-15

    The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined specific neuronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuronal-specific proteins, including βIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differentiation medium differentiated into a multilayered neural network-like structure with long nerve fibers that was composed of several parallel microfibers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sectioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve.

  4. Use of peracetic acid to sterilize human donor skin for production of acellular dermal matrices for clinical use.

    PubMed

    Huang, Qizhi; Dawson, Rebecca A; Pegg, David E; Kearney, John N; Macneil, Sheila

    2004-01-01

    We previously reported methods for sterilizing human skin for clinical use. In a comparison of gamma-irradiation, glycerol, and ethylene oxide, sterilization with ethylene oxide after treatment with glycerol provided the most satisfactory dermis in terms of structure and its ability to produce reconstructed skin with many of the characteristics of normal skin. However, the use of ethylene oxide is becoming less common in the United Kingdom due to concerns about its possible genotoxicity. The aim of this study was to evaluate peracetic acid as an alternative sterilizing agent. Skin sterilized with peracetic acid was compared with skin sterilized using glycerol alone or glycerol with ethylene oxide. The effect of subsequently storing peracetic acid sterilized skin in glycerol or propylene glycol was also examined. Acellular dermal matrices were produced after removal of the epidermis and cells in the dermis, processed for histological and ultrastructural analysis, and the biological function was evaluated by reconstitution with keratinocytes and fibroblasts. Results showed that sterilized acellular matrices retained the integrity of dermal structure and major components of the basement membrane. There were no overall significant differences in the ability of these matrices to form reconstructed skin, but peracetic acid alone gave a lower histologic score than when combined with glycerol or propylene glycol. We conclude that peracetic acid sterilization followed by preservation in glycerol or propylene glycol offers a convenient alternative protocol for processing of human skin. It is suggested that this sterile acellular dermis may be suitable for clinical use.

  5. Microcomponent sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K..; McDonald, C.E.

    1997-03-18

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 14 figs.

  6. Microcomponent sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; McDonald, Carolyn E.

    1997-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  7. [Tribological assessment of articular cartilage. A system for the analysis of the friction coefficient of cartilage, regenerates and tissue engineering constructs; initial results].

    PubMed

    Schwarz, M L R; Schneider-Wald, B; Krase, A; Richter, W; Reisig, G; Kreinest, M; Heute, S; Pott, P P; Brade, J; Schütte, A

    2012-10-01

    Values for the friction coefficient of articular cartilage are given in ranges of percentage and lower and are calculated as a quotient of the friction force and the perpendicular loading force acting on it. Thus, a sophisticated system has to be provided for analysing the friction coefficient under different conditions in particular when cartilage should be coupled as friction partner. It is possible to deep-freeze articular cartilage before measuring the friction coefficient as the procedure has no influence on the results. The presented tribological system was able to distinguish between altered and native cartilage. Furthermore, tissue engineered constructs for cartilage repair were differentiated from native cartilage probes by their friction coefficient. In conclusion a tribological equipment is presented to analyze the friction coefficient of articular cartilage, in vivo generated cartilage regenerates and in vitro tissue engineered constructs regarding their biomechanical properties for quality assessment.

  8. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse

    PubMed Central

    Siddiqui, Nauman; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  9. Unpredicted effects of Ankaferd® on cartilage tissue

    PubMed Central

    Evren, Cenk; Uğur, Mehmet Birol; Yıldırım, Burhan; Bektaş, Sibel; Yiğit, Volkan Bilge; Çınar, Fikret

    2015-01-01

    Objective: This study aims to investigate the histopathological changes secondary to the administration of Ankaferd Blood Stopper® (ABS) into the auricular cartilage. Materials and methods: Both of the auricular cartilages of thirty New Zealand rabbits were marked with tattoo ink. A 0.2-cc ABS (study group, n: 30) and 0.2 cc physiological saline (control group, n: 30) were subcutaneously infused into the right auricle and left auricle, respectively. All layers were removed at 14 days. Results: The ABS group had significantly higher level of fibrosis, necrosis, foreign body reaction, inflammation, and cartilage degeneration, compared to the controls. Conclusion: Our study results showed that ABS administration into a closed cavity led to a significantly increased fibrosis and necrosis in the auricular cartilage. PMID:25785076

  10. [T-cartilage tympanoplasty for an open oval window].

    PubMed

    Helms, J; Mlynski, R; Phleps, G

    2011-08-01

    A T shaped cartilage, placed into the open oval window, functions as a stapes. The transvers part of the T prevents a too deep insertion into the vestibule. If necessary small stripes of connective tissue seal the vestibule. PMID:21850613

  11. Three-dimensional collagen architecture in bovine articular cartilage.

    PubMed

    Jeffery, A K; Blunn, G W; Archer, C W; Bentley, G

    1991-09-01

    The three-dimensional architecture of bovine articular cartilage collagen and its relationship to split lines has been studied with scanning electron microscopy. In the middle and superficial zones, collagen was organised in a layered or leaf-like manner. The orientation was vertical in the intermediate zone, curving to become horizontal and parallel to the articular surface in the superficial zone. Each leaf consisted of a fine network of collagen fibrils. Adjacent leaves merged or were closely linked by bridging fibrils and were arranged according to the split-line pattern. The surface layer (lamina splendens) was morphologically distinct. Although ordered, the overall collagen structure was different in each plane (anisotropic) a property described in previous morphological and biophysical studies. As all components of the articular cartilage matrix interact closely, the three-dimensional organisation of collagen is important when considering cartilage function and the processes of cartilage growth, injury and repair. PMID:1894669

  12. Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells.

    PubMed

    Yamashita, Akihiro; Liu, Shiying; Woltjen, Knut; Thomas, Bradley; Meng, Guoliang; Hotta, Akitsu; Takahashi, Kazutoshi; Ellis, James; Yamanaka, Shinya; Rancourt, Derrick E

    2013-01-01

    Safety is the foremost issue in all human cell therapies, but human induced pluripotent stem cells (iPSCs) currently lack a useful safety indicator. Studies in chimeric mice have demonstrated that certain lines of iPSCs are tumorigenic; however a similar screen has not been developed for human iPSCs. Here, we show that in vitro cartilage tissue engineering is an excellent tool for screening human iPSC lines for tumorigenic potential. Although all human embryonic stem cells (ESCs) and most iPSC lines tested formed cartilage safely, certain human iPSCs displayed a pro-oncogenic state, as indicated by the presence of secretory tumors during cartilage differentiation in vitro. We observed five abnormal iPSC clones amoungst 21 lines derived from five different reprogramming methods using three cellular origins. We conclude that in vitro cartilage tissue engineering is a useful approach to identify abnormal human iPSC lines.

  13. Application of stem cells for articular cartilage regeneration.

    PubMed

    Hwang, Nathaniel S; Elisseeff, Jennifer

    2009-01-01

    Articular cartilage is a highly organized tissue lacking self-regeneration capacity upon lesion. Current surgical intervention by application of in vitro-expanded autologous chondrocytes transplantation procedure is associated with several disadvantages, including donor-site morbidity and inferior fibrocartilage formation at the defect site. However, recent advancements in tissue engineering have provided notable strategies for stem cell-based therapies and articular cartilage tissue engineering. In this review, we discuss the current strategies to engineer cartilage tissues from adult stem cells and human embryonic stem cell-derived cells. The characteristics of adult stem cells, the microenvironmental control of cell fate determination, and the limitation imposed by the intrinsic nature of stem cells are discussed. The strategy to commit the stem cells for functional cartilage tissues in vivo is also discussed.

  14. Cartilage (Bovine and Shark) (PDQ®)—Patient Version

    Cancer.gov

    Expert-reviewed information summary about the use of bovine and shark cartilage as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  15. Cartilage (Bovine and Shark) (PDQ®)—Health Professional Version

    Cancer.gov

    Expert-reviewed information summary about the use of bovine and shark cartilage as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  16. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse.

    PubMed

    Dasa, Osama; Siddiqui, Nauman; Ruzieh, Mohammed; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  17. Namaste (counterbalancing) technique: Overcoming warping in costal cartilage

    PubMed Central

    Agrawal, Kapil S.; Bachhav, Manoj; Shrotriya, Raghav

    2015-01-01

    Background: Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG) which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. Materials and Methods: We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. Results: No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Conclusion: Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage. PMID:26424973

  18. Effect of passive motion on articular cartilage in rat osteoarthritis.

    PubMed

    Qian, Jie; Liang, Jun; Wang, Yubin; Wang, Huifang

    2014-08-01

    The aim of the present study was to investigate the effect of moderate passive motion on articular cartilage in osteoarthritis (OA) caused by knee fracture. Sprague-Dawley rats (age, 8 weeks) with knee fractures were used to construct rat knee early- and middle-stage OA models. The stages were fixed for three and six weeks, with 20 rats analyzed at each stage. The experimental groups were exercised daily for 15 m/min with a specified duration. Following the completion of exercise, the effects of proper passive motion on cartilage thickness, the Mankin rating, cartilage collagen matrix, proteoglycan content and the morphological structure of the cartilage in the rat OA models were measured at the various degenerative stages caused by knee fracture. The proteoglycan content of the cartilage matrix, type II collagen fibers and the number of cartilage cells undergoing apoptosis were semiquantified. For early- and middle-stage OA, the cartilage layers in the three- or six-week experimental groups were significantly thicker and the levels of proteoglycans and type II collagen fibers in the weight-bearing area of the cartilage were significantly higher when compared with the control groups (P<0.05). In addition, the Mankin ratings were lower and ligament tension was increased when compared with the control group (P<0.05). In the early-stage OA group, significantly decreased apoptotic rates (P<0.05) were observed in the three- and six-week experimental groups, however, no significant decrease was observed in the middle-stage OA group. In the early-stage OA rats, the thickness of the cartilage layer, as well as the levels of proteoglycans and type II collagen fibers, in the six-week experimental group, were significantly higher compared with the control and three-week subgroups, and a decreased apoptotic rate was observed (P<0.05). In the six-week experimental middle-stage OA group, significant differences were observed in the content of proteoglycans and type II collagen

  19. Improved Visualization of Cartilage Canals Using Quantitative Susceptibility Mapping

    PubMed Central

    Nissi, Mikko J.; Tóth, Ferenc; Wang, Luning; Carlson, Cathy S.; Ellermann, Jutta M.

    2015-01-01

    Purpose Cartilage canal vessels are critical to the normal function of epiphyseal (growth) cartilage and damage to these vessels is demonstrated or suspected in several important developmental orthopaedic diseases. High-resolution, three-dimensional (3-D) visualization of cartilage canals has recently been demonstrated using susceptibility weighted imaging (SWI). In the present study, a quantitative susceptibility mapping (QSM) approach is evaluated for 3-D visualization of the cartilage canals. It is hypothesized that QSM post-processing improves visualization of the cartilage canals by resolving artifacts present in the standard SWI post-processing while retaining sensitivity to the cartilage canals. Methods Ex vivo distal femoral specimens from 3- and 8-week-old piglets and a 1-month-old human cadaver were scanned at 9.4 T with a 3-D gradient recalled echo sequence suitable for SWI and QSM post-processing. The human specimen and the stifle joint of a live, 3-week-old piglet also were scanned at 7.0 T. Datasets were processed using the standard SWI method and truncated k-space division QSM approach. To compare the post-processing methods, minimum/maximum intensity projections and 3-D reconstructions of the processed datasets were generated and evaluated. Results Cartilage canals were successfully visualized using both SWI and QSM approaches. The artifactual splitting of the cartilage canals that occurs due to the dipolar phase, which was present in the SWI post-processed data, was eliminated by the QSM approach. Thus, orientation-independent visualization and better localization of the cartilage canals was achieved with the QSM approach. Combination of GRE with a mask based on QSM data further improved visualization. Conclusions Improved and artifact-free 3-D visualization of the cartilage canals was demonstrated by QSM processing of the data, especially by utilizing susceptibility data as an enhancing mask. Utilizing tissue-inherent contrast, this method allows

  20. The Importance of the Upper Lateral Cartilage in Rhinoplasty.

    PubMed

    Rohrich, Rod J; Pulikkottil, Benson J; Stark, Ran Y; Amirlak, Bardia; Pezeshk, Ronnie A

    2016-02-01

    The upper lateral cartilages are instrumental in obtaining optimal outcomes in aesthetic and functional rhinoplasty. Knowledgeable manipulation of the upper lateral cartilages can take advantage of the crucial malleable parameters of projection, width, nasal dorsal shape, and tip rotation. A lucid understanding of the anatomical intricacies in this portion of the cartilaginous framework permits the surgeon to use their unique characteristics to consistently achieve the desired results. PMID:26818282

  1. Cryoprotectant kinetic analysis of a human articular cartilage vitrification protocol.

    PubMed

    Shardt, Nadia; Al-Abbasi, Khaled K; Yu, Hana; Jomha, Nadr M; McGann, Locksley E; Elliott, Janet A W

    2016-08-01

    We recently published a protocol to vitrify human articular cartilage and a method of cryoprotectant removal in preparation for transplantation. The current study's goal was to perform a cryoprotectant kinetic analysis and theoretically shorten the procedure used to vitrify human articular cartilage. First, the loading of the cryoprotectants was modeled using Fick's law of diffusion, and this information was used to predict the kinetics of cryoprotectant efflux after the cartilage sample had been warmed. We hypothesized that diffusion coefficients obtained from the permeation of individual cryoprotectants into porcine articular cartilage could be used to provide a reasonable prediction of the cryoprotectant loading and of the combined cryoprotectant efflux from vitrified human articular cartilage. We tested this hypothesis with experimental efflux measurements. Osteochondral dowels from three patients were vitrified, and after warming, the articular cartilage was immersed in 3 mL X-VIVO at 4 °C in two consecutive solutions, each for 24 h, with the solution osmolality recorded at various times. Measured equilibrium values agreed with theoretical values within a maximum of 15% for all three samples. The results showed that diffusion coefficients for individual cryoprotectants determined from experiments with 2-mm thick porcine cartilage can be used to approximate the rate of efflux of the combined cryoprotectants from vitrified human articular cartilage of similar thickness. Finally, Fick's law of diffusion was used in a computational optimization to shorten the protocol with the constraint of maintaining the theoretical minimum cryoprotectant concentration needed to achieve vitrification. The learning provided by this study will enable future improvements in tissue vitrification.

  2. Polarised light sheet tomography.

    PubMed

    Reidt, Sascha L; O'Brien, Daniel J; Wood, Kenneth; MacDonald, Michael P

    2016-05-16

    The various benefits of light sheet microscopy have made it a widely used modality for capturing three-dimensional images. It is mostly used for fluorescence imaging, but recently another technique called light sheet tomography solely relying on scattering was presented. The method was successfully applied to imaging of plant roots in transparent soil, but is limited when it comes to more turbid samples. This study presents a polarised light sheet tomography system and its advantages when imaging in highly scattering turbid media. The experimental configuration is guided by Monte Carlo radiation transfer methods, which model the propagation of a polarised light sheet in the sample. Images of both reflecting and absorbing phantoms in a complex collagenous matrix were acquired, and the results for different polarisation configurations are compared. Focus scanning methods were then used to reduce noise and produce three-dimensional reconstructions of absorbing targets.

  3. Cerebral Aneurysms Fact Sheet

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS Cerebral Aneurysms Fact Sheet See a list of all NINDS ... I get more information? What is a cerebral aneurysm? A cerebral aneurysm (also known as an intracranial ...

  4. Global ice sheet modeling

    SciTech Connect

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  5. Avian Fact Sheet

    SciTech Connect

    NWCC Wildlife Work Group

    2004-12-01

    OAK-B135 After conducting four national research meetings, producing a document guiding research: Metrics and Methods for Determining or Monitoring Potential Impacts on Birds at Existing and Proposed Wind Energy Sites, 1999, and another paper, Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States, 2001, the subcommittee recognized a need to summarize in a short fact sheet what is known about avian-wind interaction and what questions remain. This fact sheet attempts to summarize in lay terms the result of extensive discussion about avian-wind interaction on land. This fact sheet does not address research conducted on offshore development. This fact sheet is not intended as a conclusion on the subject; rather, it is a summary as of Fall/Winter 2002.

  6. Polarised light sheet tomography.

    PubMed

    Reidt, Sascha L; O'Brien, Daniel J; Wood, Kenneth; MacDonald, Michael P

    2016-05-16

    The various benefits of light sheet microscopy have made it a widely used modality for capturing three-dimensional images. It is mostly used for fluorescence imaging, but recently another technique called light sheet tomography solely relying on scattering was presented. The method was successfully applied to imaging of plant roots in transparent soil, but is limited when it comes to more turbid samples. This study presents a polarised light sheet tomography system and its advantages when imaging in highly scattering turbid media. The experimental configuration is guided by Monte Carlo radiation transfer methods, which model the propagation of a polarised light sheet in the sample. Images of both reflecting and absorbing phantoms in a complex collagenous matrix were acquired, and the results for different polarisation configurations are compared. Focus scanning methods were then used to reduce noise and produce three-dimensional reconstructions of absorbing targets. PMID:27409945

  7. Biodiesel Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2014-06-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  8. Energy information sheets

    SciTech Connect

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  9. CCN1 Regulates Chondrocyte Maturation and Cartilage Development

    PubMed Central

    Zhang, Yongchun; Sheu, Tzong-jen; Hoak, Donna; Shen, Jie; Hilton, Matthew J; Zuscik, Michael J; Jonason, Jennifer H; O’Keefe, Regis J

    2016-01-01

    WNT/β-CATENIN signaling is involved in multiple aspects of skeletal development, including chondrocyte differentiation and maturation. Although the functions of β-CATENIN in chondrocytes have been extensively investigated through gain-of-function and loss-of-function mouse models, the precise downstream effectors through which β-CATENIN regulates these processes are not well defined. Here, we report that the matricellular protein, CCN1, is induced by WNT/β-CATENIN signaling in chondrocytes. Specifically, we found that β-CATENIN signaling promotes CCN1 expression in isolated primary sternal chondrocytes and both embryonic and postnatal cartilage. Additionally, we show that, in vitro, CCN1 overexpression promotes chondrocyte maturation, whereas inhibition of endogenous CCN1 function inhibits maturation. To explore the role of CCN1 on cartilage development and homeostasis in vivo, we generated a novel transgenic mouse model for conditional Ccn1 overexpression and show that cartilage-specific CCN1 overexpression leads to chondrodysplasia during development and cartilage degeneration in adult mice. Finally, we demonstrate that CCN1 expression increases in mouse knee joint tissues after meniscal/ligamentous injury (MLI) and in human cartilage after meniscal tear. Collectively, our data suggest that CCN1 is an important regulator of chondrocyte maturation during cartilage development and homeostasis. PMID:26363286

  10. Hydrogels for the Repair of Articular Cartilage Defects

    PubMed Central

    Maher, Suzanne A.; Lowman, Anthony M.

    2011-01-01

    The repair of articular cartilage defects remains a significant challenge in orthopedic medicine. Hydrogels, three-dimensional polymer networks swollen in water, offer a unique opportunity to generate a functional cartilage substitute. Hydrogels can exhibit similar mechanical, swelling, and lubricating behavior to articular cartilage, and promote the chondrogenic phenotype by encapsulated cells. Hydrogels have been prepared from naturally derived and synthetic polymers, as cell-free implants and as tissue engineering scaffolds, and with controlled degradation profiles and release of stimulatory growth factors. Using hydrogels, cartilage tissue has been engineered in vitro that has similar mechanical properties to native cartilage. This review summarizes the advancements that have been made in determining the potential of hydrogels to replace damaged cartilage or support new tissue formation as a function of specific design parameters, such as the type of polymer, degradation profile, mechanical properties and loading regimen, source of cells, cell-seeding density, controlled release of growth factors, and strategies to cause integration with surrounding tissue. Some key challenges for clinical translation remain, including limited information on the mechanical properties of hydrogel implants or engineered tissue that are necessary to restore joint function, and the lack of emphasis on the ability of an implant to integrate in a stable way with the surrounding tissue. Future studies should address the factors that affect these issues, while using clinically relevant cell sources and rigorous models of repair. PMID:21510824

  11. ADAMTS-12 Associates with and Degrades Cartilage Oligomeric Matrix Protein*

    PubMed Central

    Liu, Chuan-ju; Kong, Wei; Xu, Ke; Luan, Yi; Ilalov, Kiril; Sehgal, Bantoo; Yu, Shuang; Howell, Ronald D.; Cesare, Paul E. Di

    2006-01-01

    Loss of articular cartilage because of extracellular matrix breakdown is the hallmark of arthritis. Degradative fragments of cartilage oligomeric matrix protein (COMP), a prominent noncollagenous matrix component in articular cartilage, have been observed in the cartilage, synovial fluid, and serum of arthritis patients. The molecular mechanism of COMP degradation and the enzyme(s) responsible for it, however, remain largely unknown. ADAMTS-12 (a disintegrin and metalloprotease with thrombospondin motifs) was shown to associate with COMP both in vitro and in vivo. ADAMTS-12 selectively binds to only the epidermal growth factor-like repeat domain of COMP of the four functional domains tested. The four C-terminal TSP-1-like repeats of ADAMTS-12 are shown to be necessary and sufficient for its interaction with COMP. Recombinant ADAMTS-12 is capable of digesting COMP in vitro. The COMP-degrading activity of ADAMTS-12 requires the presence of Zn2+ and appropriate pH (7.5-9.5), and the level of ADAMTS-12 in the cartilage and synovium of patients with both osteoarthritis and rheumatoid arthritis is significantly higher than in normal cartilage and synovium. Together, these findings indicate that ADAMTS-12 is a new COMP-interacting and -degrading enzyme and thus may play an important role in the COMP degradation in the initiation and progression of arthritis. PMID:16611630

  12. The Role of miRNAs in Cartilage Homeostasis

    PubMed Central

    Li, Yong Ping; Wei, Xiao Chun; Li1, Peng Cu; Chen, Chun Wei; Wang, Xiao Hu; Jiao, Qiang; Wang, Dong Ming; Wei, Fang Yuan; Zhang, Jian Zhong; Wei, Lei

    2015-01-01

    Osteoarthritis (OA) is an age-related disease with poorly understood pathogenesis. Recent studies have demonstrated that miRNA might play a key role in OA initiation and development. We reviewed recent publications and elucidated the connection between miRNA and OA cartilage anabolic and catabolic signals, including four signaling pathways: TGF-β/Smads and BMPs signaling, associated with cartilage anabolism; and MAPK and NF-KB signaling, associated with cartilage catabolism. We also explored the relationships with MMP, ADAMTS and NOS (NitricOxide Synthases) families, as well as with the catabolic cytokines IL-1 and TNF-α. The potential role of miRNAs in biological processes such as cartilage degeneration, chondrocyte proliferation, and differentiation is discussed. Collective evidence indicates that miRNAs play a critical role in cartilage degeneration. These findings will aid in understanding the molecular network that governs articular cartilage homeostasis and in to elucidate the role of miRNA in the pathogenesis of OA. PMID:27019614

  13. [Molecular mechanisms of cartilage formation and chondrocyte maturation].

    PubMed

    Tamamura, Yoshihiro; Iwamoto, Masahiro

    2004-07-01

    Cartilage plays multiple roles in vertebrate animals. In an embryonic stage and early postnatal life, cartilage is important not only as a structural support of early embryo but also as a template of endochondral bone. In a later postnatal life, cartilage provides smooth joint movement and tissue elasticity. A number of critical signaling molecules that regulate cartilage formation and chondrocytes maturation in endochondral bone formation have been identified to date. The interplay of those important molecules is also actively studied. However, several fundamental questions still remain unsolved. What signal initiates mesenchymal cell condensation? Does condensation enough to make cells competent for BMP-induced chondrogenesis? Is there chondrocyte stem cell in cartilage? Likewise, it is not known which factor triggers chondrocytes maturation. In this review article, we summarized the action of several key factors including BMP, hedgehog, PTHrP, and Wnt in condensation, chondrogenenic differentiation and maturation of chondrocytes. Towards further understanding of above fundamental questions, this review article also tried to propose future direction of cartilage biology research. PMID:15577071

  14. Site-1 protease is required for cartilage development in zebrafish.

    PubMed

    Schlombs, Kornelia; Wagner, Thomas; Scheel, Jochen

    2003-11-25

    gonzo (goz) is a zebrafish mutant with defects in cartilage formation. The goz phenotype comprises cartilage matrix defects and irregular chondrocyte morphology. Expression of endoderm, mesoderm, and cartilage marker genes is, however, normal, indicating a defect in chondrocyte morphogenesis. The mutated gene responsible for the goz phenotype, identified by positional cloning and confirmed by phosphomorpholino knockdown, encodes zebrafish site-1 protease (s1p). S1P has been shown to process and activate sterol regulatory element-binding proteins (SREBPs), which regulate expression of key enzymes of lipid biosynthesis or transport. This finding is consistent with the abnormal distribution of lipids in goz embryos. Knockdown of site-2 protease, which is also involved in activation of SREBPs, results in similar lipid and cartilage phenotypes as S1P knockdown. However, knockdown of SREBP cleavage-activating protein, which forms a complex with SREBP and is essential for S1P cleavage, results only in lipid phenotypes, whereas cartilage appears normal. This indicates that the cartilage phenoptypes of goz are caused independently of the lipid defects. PMID:14612568

  15. Site-1 protease is required for cartilage development in zebrafish

    PubMed Central

    Schlombs, Kornelia; Wagner, Thomas; Scheel, Jochen

    2003-01-01

    gonzo (goz) is a zebrafish mutant with defects in cartilage formation. The goz phenotype comprises cartilage matrix defects and irregular chondrocyte morphology. Expression of endoderm, mesoderm, and cartilage marker genes is, however, normal, indicating a defect in chondrocyte morphogenesis. The mutated gene responsible for the goz phenotype, identified by positional cloning and confirmed by phosphomorpholino knockdown, encodes zebrafish site-1 protease (s1p). S1P has been shown to process and activate sterol regulatory element-binding proteins (SREBPs), which regulate expression of key enzymes of lipid biosynthesis or transport. This finding is consistent with the abnormal distribution of lipids in goz embryos. Knockdown of site-2 protease, which is also involved in activation of SREBPs, results in similar lipid and cartilage phenotypes as S1P knockdown. However, knockdown of SREBP cleavage-activating protein, which forms a complex with SREBP and is essential for S1P cleavage, results only in lipid phenotypes, whereas cartilage appears normal. This indicates that the cartilage phenoptypes of goz are caused independently of the lipid defects. PMID:14612568

  16. Rapid isolation of intact, viable fetal cartilage models

    SciTech Connect

    Schmidt, R.R.; Chepenik, K.P.; Paynton, B.V.; Cotler, J.M.

    1982-04-01

    A rapid procedure is described for the isolation of viable, intact, femoral cartilage models (humeri and femora) obtained from pregnant rats on the 18th day of gestation. Viability of these models is demonstrated in an in vitro system where the incorporation of /sup 35/S-sulfate was linear with time of incubation and with numbers of cartilage models utilized. Treatment of cartilage models with ice-cold trichloroacetic acid and a boiling water bath prior to incubation with radiolabel, reduced the amount of radioactivity incorporated to 1.3% of that observed for models incubated by routine procedures. Furthermore, digestion of cartilage model homogenates with protease yielded a supernatant from which 51% to 57% of the radioactivity was precipitated as GAG. This method may also be used to isolate fetal cartilage models as early as the 16th day of gestation. with this system, specific biochemical parameters of mammalian fetal chondrogenesis may be surveyed in normally and abnormally developing fetal cartilage free of surrounding soft tissue.

  17. Depth Dependence of Shear Properties in Articular Cartilage

    NASA Astrophysics Data System (ADS)

    Buckley, Mark; Gleghorn, Jason; Bonassar, Lawrence; Cohen, Itai

    2007-03-01

    Articular cartilage is a highly complex and heterogeneous material in its structure, composition and mechanical behavior. Understanding these spatial variations is a critical step in designing replacement tissue and developing methods to diagnose and treat tissue affected by damage or disease. Existing techniques in particle image velocimetry (PIV) have been used to map the shear properties of complex materials; however, these methods have yet to be applied to understanding shear behavior in cartilage. In this talk, we will show that confocal microscopy in conjunction with PIV techniques can be used to determine the depth dependence of the shear properties of articular cartilage. We will show that the shear modulus of this tissue varies by over an order of magnitude over its depth, with the least stiff region located about 200 microns from the surface. Furthermore, our data indicate that the shear strain profile of articular cartilage is sensitive to both the degree of compression and the total applied shear strain. In particular, we find that cartilage strain stiffens most dramatically in a region 200-500 microns below the surface. Finally, we will describe a physical model that accounts for this behavior by taking into account the local buckling of collagen fibers just below the cartilage surface and present second harmonic generation (SHG) imaging data addressing the collagen orientation before and after shear.

  18. Quasi-static elastography comparison of hyaline cartilage structures

    NASA Astrophysics Data System (ADS)

    McCredie, A. J.; Stride, E.; Saffari, N.

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  19. Specific premature epigenetic aging of cartilage in osteoarthritis

    PubMed Central

    Vidal-Bralo, Laura; Lopez-Golan, Yolanda; Mera-Varela, Antonio; Rego-Perez, Ignacio; Horvath, Steve; Zhang, Yuhua; del Real, Álvaro; Zhai, Guangju; Blanco, Francisco J; Riancho, Jose A.; Gomez-Reino, Juan J; Gonzalez, Antonio

    2016-01-01

    Osteoarthritis (OA) is a disease affecting multiple tissues of the joints in the elderly, but most notably articular cartilage. Premature biological aging has been described in this tissue and in blood cells, suggesting a systemic component of premature aging in the pathogenesis of OA. Here, we have explored epigenetic aging in OA at the local (cartilage and bone) and systemic (blood) levels. Two DNA methylation age-measures (DmAM) were used: the multi-tissue age estimator for cartilage and bone; and a blood-specific biomarker for blood. Differences in DmAM between OA patients and controls showed an accelerated aging of 3.7 years in articular cartilage (95 % CI = 1.1 to 6.3, P = 0.008) of OA patients. By contrast, no difference in epigenetic aging was observed in bone (0.04 years; 95 % CI = −1.8 to 1.9, P = 0.3) and in blood (−0.6 years; 95 % CI = −1.5 to 0.3, P = 0.2) between OA patients and controls. Therefore, premature epigenetic aging according to DNA methylation changes was specific of OA cartilage, adding further evidence and insight on premature aging of cartilage as a component of OA pathogenesis that reflects damage and vulnerability. PMID:27689435

  20. The surface of articular cartilage contains a progenitor cell population.

    PubMed

    Dowthwaite, Gary P; Bishop, Joanna C; Redman, Samantha N; Khan, Ilyas M; Rooney, Paul; Evans, Darrell J R; Haughton, Laura; Bayram, Zubeyde; Boyer, Sam; Thomson, Brian; Wolfe, Michael S; Archer, Charles W

    2004-02-29

    It is becoming increasingly apparent that articular cartilage growth is achieved by apposition from the articular surface. For such a mechanism to occur, a population of stem/progenitor cells must reside within the articular cartilage to provide transit amplifying progeny for growth. Here, we report on the isolation of an articular cartilage progenitor cell from the surface zone of articular cartilage using differential adhesion to fibronectin. This population of cells exhibits high affinity for fibronectin, possesses a high colony-forming efficiency and expresses the cell fate selector gene Notch 1. Inhibition of Notch signalling abolishes colony forming ability whilst activated Notch rescues this inhibition. The progenitor population also exhibits phenotypic plasticity in its differentiation pathway in an embryonic chick tracking system, such that chondroprogenitors can engraft into a variety of connective tissue types including bone, tendon and perimysium. The identification of a chondrocyte subpopulation with progenitor-like characteristics will allow for advances in our understanding of both cartilage growth and maintenance as well as provide novel solutions to articular cartilage repair. PMID:14762107

  1. Resurfacing Damaged Articular Cartilage to Restore Compressive Properties

    PubMed Central

    Grenier, Stephanie; Donnelly, Patrick E.; Gittens, Jamila; Torzilli, Peter A.

    2014-01-01

    Surface damage to articular cartilage is recognized as the initial underlying process causing the loss of mechanical function in early-stage osteoarthritis. In this study, we developed structure-modifying treatments to potentially prevent, stabilize or reverse the loss in mechanical function. Various polymers (chondroitin sulfate, carboxymethylcellulose, sodium hyaluronate) and photoinitiators (riboflavin, irgacure 2959) were applied to the surface of collagenase-degraded cartilage and crosslinked in situ using UV light irradiation. While matrix permeability and deformation significantly increased following collagenase-induced degradation of the superficial zone, resurfacing using tyramine-substituted sodium hyaluronate and riboflavin decreased both values to a level comparable to that of intact cartilage. Repetitive loading of resurfaced cartilage showed minimal variation in the mechanical response over a 7 day period. Cartilage resurfaced using a low concentration of riboflavin had viable cells in all zones while a higher concentration resulted in a thin layer of cell death in the uppermost superficial zone. Our approach to repair surface damage initiates a new therapeutic advance in the treatment of injured articular cartilage with potential benefits that include enhanced mechanical properties, reduced susceptibility to enzymatic degradation and reduced adhesion of macrophages. PMID:25468298

  2. In Vitro Engineering of High Modulus Cartilage-Like Constructs

    PubMed Central

    Seedhom, Bahaa B.; Carey, Duane O.; Bulpitt, Andy J.; Treanor, Darren E.; Kirkham, Jennifer

    2016-01-01

    To date, the outcomes of cartilage repair have been inconsistent and have frequently yielded mechanically inferior fibrocartilage, thereby increasing the chances of damage recurrence. Implantation of constructs with biochemical composition and mechanical properties comparable to natural cartilage could be advantageous for long-term repair. This study attempted to create such constructs, in vitro, using tissue engineering principles. Bovine synoviocytes were seeded on nonwoven polyethylene terephthalate fiber scaffolds and cultured in chondrogenic medium for 4 weeks, after which uniaxial compressive loading was applied using an in-house bioreactor for 1 h per day, at a frequency of 1 Hz, for a further 84 days. The initial loading conditions, determined from the mechanical properties of the immature constructs after 4 weeks in chondrogenic culture, were strains ranging between 13% and 23%. After 56 days (sustained at 84 days) of loading, the constructs were stained homogenously with Alcian blue and for type-II collagen. Dynamic compressive moduli were comparable to the high end values for native cartilage and proportional to Alcian blue staining intensity. We suggest that these high moduli values were attributable to the bioreactor setup, which caused the loading regime to change as the constructs developed, that is, the applied stress and strain increased with construct thickness and stiffness, providing continued sufficient cell stimulation as further matrix was deposited. Constructs containing cartilage-like matrix with response to load similar to that of native cartilage could produce long-term effective cartilage repair when implanted. PMID:26850081

  3. Cartilage change after arthroscopic repair for an isolated meniscal tear.

    PubMed

    Soejima, Takashi; Murakami, Hidetaka; Inoue, Takashi; Kanazawa, Tomonoshin; Katouda, Michihiro; Nagata, Kensei

    2005-01-01

    To investigate the direct effect to the cartilage caused by the meniscal repair, we examined patients who underwent an isolated meniscal repair without any other abnormalities by arthroscopic examination. A total of 17 patients were examined by second-look arthroscopy after an average interval of 9 months from the meniscal repair, and have been evaluated the status of the repaired meniscus and of the relative femoral condylar cartilage. Changes in the severity of the cartilage lesion between at the time of meniscal repair and the time of the second-look arthroscopy were considered based on the status of the repaired meniscus. Regardless of the healing status of the repair site, it was possible to prevent degeneration in the cartilage in 9 of the 10 patients who demonstrated no degeneration in the meniscal body. Of the 7 patients who demonstrated degeneration in the meniscal body, progression in cartilage degeneration was noted as 1 grade in 2 patients and 2 grades in another 3 patients. Even in those in which stable fusion of the repair site was achieved, the condition of the inner meniscal body was not necessarily maintained favorably in all cases, indicating that degeneration in the meniscal body was a risk factor for cartilage degeneration. It was concluded that recovery could not be expected even at 9 months after the repair if the lesion had already demonstrated degeneration in the meniscal body at the time of repair.

  4. Computational aspects in mechanical modeling of the articular cartilage tissue.

    PubMed

    Mohammadi, Hadi; Mequanint, Kibret; Herzog, Walter

    2013-04-01

    This review focuses on the modeling of articular cartilage (at the tissue level), chondrocyte mechanobiology (at the cell level) and a combination of both in a multiscale computation scheme. The primary objective is to evaluate the advantages and disadvantages of conventional models implemented to study the mechanics of the articular cartilage tissue and chondrocytes. From monophasic material models as the simplest form to more complicated multiscale theories, these approaches have been frequently used to model articular cartilage and have contributed significantly to modeling joint mechanics, addressing and resolving numerous issues regarding cartilage mechanics and function. It should be noted that attentiveness is important when using different modeling approaches, as the choice of the model limits the applications available. In this review, we discuss the conventional models applicable to some of the mechanical aspects of articular cartilage such as lubrication, swelling pressure and chondrocyte mechanics and address some of the issues associated with the current modeling approaches. We then suggest future pathways for a more realistic modeling strategy as applied for the simulation of the mechanics of the cartilage tissue using multiscale and parallelized finite element method.

  5. Biphasic surface amorphous layer lubrication of articular cartilage.

    PubMed

    Graindorge, Simon; Ferrandez, Wendy; Jin, Zhongmin; Ingham, Eileen; Grant, Colin; Twigg, Peter; Fisher, John

    2005-12-01

    The biphasic nature of articular cartilage has been acknowledged for some time and is known to play an important role in many of the biomechanical functions performed by this unique tissue. From the lubrication point of view however, a simple biphasic model is unable to account for the extremely low friction coefficients that have been recorded experimentally, particularly during start-up. In addition, research over the last decade has indicated the presence of a surface amorphous layer on top of articular cartilage. Here, we present results from a finite element model of articular cartilage that includes a thin, soft, biphasic surface amorphous layer (BSAL). The results of this study show that a thin BSAL, with lower elastic modulus, dramatically altered the load sharing between the solid and liquid phases of articular cartilage, particularly in the near-surface regions of the underlying bulk cartilage and within the surface amorphous layer itself where the fluid load support exceeded 85%. By transferring the load from the solid phase to the fluid phase, the biphasic surface layer improves lubrication and reduces friction, whilst also protecting the underlying cartilage surface by 'shielding' the solid phase from elevated stresses. The increase in lubrication effectiveness is shown to be greatest during short duration loading scenarios, such as shock loads.

  6. Expression of Superficial Zone Protein in Mandibular Condyle Cartilage

    PubMed Central

    Ohno, S; Schmid, T; Tanne, Y; Kamiya, T; Honda, K; Ohno-Nakahara, M; Swentko, N; Desai, T A; Tanne, K; Knudson, CB; Knudson, W

    2011-01-01

    Objective Superficial zone protein (SZP) has been shown to function in the boundary lubrication of articular cartilages of the extremities. However, the expression of SZP has not been clarified in mandibular cartilage which is a tissue that includes a thick fibrous layer on the surface. This study was conducted to clarify the distribution of SZP on the mandibular condyle and the regulatory effects of humoral factors on the expression in both explants and fibroblasts derived from mandibular condyle. Methods The distribution of SZP was determined in bovine mandibular condyle cartilage, and the effects of IL-1β and TGF-β on SZP expression were examined in condyle explants and, fibroblasts derived from the fibrous zone of condyle cartilage. Results SZP was highly distributed in the superficial zone of intact condyle cartilage. The SZP expression was up-regulated by TGF-β in both explants and cultured fibroblasts, whereas the expression was slightly down-regulated by IL-1β. A significant increase in accumulation of SZP protein was also observed in the culture medium of the fibroblasts treated with TGF-β. Conclusions These results suggest that SZP plays an important role in boundary lubrication of mandible condylar cartilage, is synthesized locally within the condyle itself and, exhibits differential regulation by cell mediators relevant to mandibular condyle repairing and pathologies. PMID:16563813

  7. Transporter for Treated Sheet Materials

    NASA Technical Reports Server (NTRS)

    Pollack, M., H.

    1983-01-01

    Plastic spacers keep parts separated during transport or storage. Cart with rods and spacers holds sheets with delicate finishes for storage or transport. Sheets supported vertically by rods, or horizontally. Spacers keep sheets separated. Designed to eliminate time and expense of tapping, wrapping, and sometimes refinishing aluminum sheets with delicate anodized finished.

  8. Chemical composition of human femoral and head cartilage: influence of topographical position and fibrillation.

    PubMed Central

    Venn, M F

    1979-01-01

    Topographical variations in the composition of cartilage have been described in post-mortem femoral head cartilage. Weight bearing cartilage of the superior region was considerably thicker and had a higher glycosaminoglycan content and lower water and collagen content than cartilage at the periphery and below the fovea. These topographical variations in composition may result both from variations in thickness of the cartilage and from regional areas of degeneration. The composition of cartilage at different depths and with different surface characteristics from different areas of the femoral head was measured. Fibrillated cartilage both from the inferior and superior perifoveal areas had a reduced glycosaminoglycan content and higher water content than intact post-mortem specimens. Cartilage adjacent to fibrillated areas from the superior region did not differ in composition from intact areas of cartilage from the zenith of the femoral head. PMID:434948

  9. Cell and matrix modulation in prenatal and postnatal equine growth cartilage, zones of Ranvier and articular cartilage.

    PubMed

    Löfgren, Maria; Ekman, Stina; Svala, Emilia; Lindahl, Anders; Ley, Cecilia; Skiöldebrand, Eva

    2014-11-01

    Formation of synovial joints includes phenotypic changes of the chondrocytes and the organisation of their extracellular matrix is regulated by different factors and signalling pathways. Increased knowledge of the normal processes involved in joint development may be used to identify similar regulatory mechanisms during pathological conditions in the joint. Samples of the distal radius were collected from prenatal and postnatal equine growth plates, zones of Ranvier and articular cartilage with the aim of identifying Notch signalling components and cells with stem cell-like characteristics and to follow changes in matrix protein localisation during joint development. The localisation of the Notch signalling components Notch1, Delta4, Hes1, Notch dysregulating protein epidermal growth factor-like domain 7 (EGFL7), the stem cell-indicating factor Stro-1 and the matrix molecules cartilage oligomeric matrix protein (COMP), fibromodulin, matrilin-1 and chondroadherin were studied using immunohistochemistry. Spatial changes in protein localisations during cartilage maturation were observed for Notch signalling components and matrix molecules, with increased pericellular localisation indicating new synthesis and involvement of these proteins in the formation of the joint. However, it was not possible to characterise the phenotype of the chondrocytes based on their surrounding matrix during normal chondrogenesis. The zone of Ranvier was identified in all horses and characterised as an area expressing Stro-1, EGFL7 and chondroadherin with an absence of COMP and Notch signalling. Stro-1 was also present in cells close to the perichondrium, in the articular cartilage and in the fetal resting zone, indicating stem cell-like characteristics of these cells. The presence of stem cells in the articular cartilage will be of importance for the repair of damaged cartilage. Perivascular chondrocytes and hypertrophic cells of the cartilage bone interface displayed positive staining for

  10. Cell and matrix modulation in prenatal and postnatal equine growth cartilage, zones of Ranvier and articular cartilage

    PubMed Central

    Löfgren, Maria; Ekman, Stina; Svala, Emilia; Lindahl, Anders; Ley, Cecilia; Skiöldebrand, Eva

    2014-01-01

    Formation of synovial joints includes phenotypic changes of the chondrocytes and the organisation of their extracellular matrix is regulated by different factors and signalling pathways. Increased knowledge of the normal processes involved in joint development may be used to identify similar regulatory mechanisms during pathological conditions in the joint. Samples of the distal radius were collected from prenatal and postnatal equine growth plates, zones of Ranvier and articular cartilage with the aim of identifying Notch signalling components and cells with stem cell-like characteristics and to follow changes in matrix protein localisation during joint development. The localisation of the Notch signalling components Notch1, Delta4, Hes1, Notch dysregulating protein epidermal growth factor-like domain 7 (EGFL7), the stem cell-indicating factor Stro-1 and the matrix molecules cartilage oligomeric matrix protein (COMP), fibromodulin, matrilin-1 and chondroadherin were studied using immunohistochemistry. Spatial changes in protein localisations during cartilage maturation were observed for Notch signalling components and matrix molecules, with increased pericellular localisation indicating new synthesis and involvement of these proteins in the formation of the joint. However, it was not possible to characterise the phenotype of the chondrocytes based on their surrounding matrix during normal chondrogenesis. The zone of Ranvier was identified in all horses and characterised as an area expressing Stro-1, EGFL7 and chondroadherin with an absence of COMP and Notch signalling. Stro-1 was also present in cells close to the perichondrium, in the articular cartilage and in the fetal resting zone, indicating stem cell-like characteristics of these cells. The presence of stem cells in the articular cartilage will be of importance for the repair of damaged cartilage. Perivascular chondrocytes and hypertrophic cells of the cartilage bone interface displayed positive staining for

  11. Calcification resistance for photooxidatively crosslinked acellular bovine jugular vein conduits in right-side heart implantation.

    PubMed

    Lü, Wei-Dong; Wang, An-Ping; Wu, Zhong-Shi; Zhang, Ming; Hu, Tie-Hui; Lei, Guang-Yan; Hu, Ye-Rong

    2012-10-01

    This study aimed to investigate the effect of decellularization plus photooxidative crosslinking and ethanol pretreatment on bioprosthetic tissue calcification. Photooxidatively crosslinked acellular (PCA) bovine jugular vein conduits (BJVCs) and their photooxidized controls (n = 5 each) were sterilized in a graded concentration of ethanol solutions for 4 h, and used to reconstruct dog right ventricular outflow tracts. At 1-year implantation, echocardiography showed similar hemodynamic performance, but obvious calcification for the photooxidized BJVC walls. Further histological examination showed intense calcium deposition colocalized with slightly degraded elastic fibers in the photooxidized BJVC walls, with sparsely distributed punctate calcification in the valves and other areas of walls. But PCA BJVCs had apparent degradation of elastic fibers in the walls, with only sparsely distributed punctate calcification in the walls and valves. Content assay demonstrated comparable calcium content for the two groups at preimplantation, whereas less calcium for the PCA group in the walls and similar calcium in the valvular leaflets compared with the photooxidized group at 1-year retrieval. Elastin content assay presented the conduit walls of PCA group had less elastin content at preimplantation, but similar content at 1-year retrieval compared with the photooxidized group. Phospholipid analysis showed phospholipid extraction by ethanol for the PCA group was more efficacious than the photooxidized group. These results indicate that PCA BJVCs resist calcification in right-side heart implantation owing to decellularization, further photooxidative crosslinking, and subsequent phospholipid extraction by ethanol at preimplantation. PMID:22615255

  12. Overview of currently available Japanese acellular pertussis vaccines and future problems.

    PubMed

    Kamiya, H; Nii, R

    1988-01-01

    Acellular pertussis diphtheria, tetanus vaccine (APDT) was licensed in 1981 in Japan. This vaccine contains pertussis toxin (PT), filamentous hemagglutinin (FHA) and agglutinogen (AGG) as the main protective antigens. The new APDT vaccine produced by each company differs slightly in composition. There are two representative types of vaccine. One vaccine (B type) contains PT and FHA in a ratio of 1 to 1 and the other one (T type) contains PT and FHA in a ratio of 4 to 1 or 9 to 1 and also contains different amounts of AGG. We have been comparing the effectiveness of these two types of vaccine. The adverse reactions of APDT were local reactions such as redness and swelling, with a few febrile cases. No central nervous system adverse reactions were observed. The antibody protective level of this vaccine is also being investigated. After we changed from conventional vaccine to APDT, the frequency of serious adverse reactions was reduced and the number of pertussis infections also gradually decreased. This vaccine should be used for the children world-wide. PMID:3273618

  13. Using genipin-crosslinked acellular porcine corneal stroma for cosmetic corneal lens implants.

    PubMed

    Liu, Zhao; Zhou, Qiang; Zhu, Jixiang; Xiao, Jianhui; Wan, Pengxia; Zhou, Chenjing; Huang, Zheqian; Qiang, Na; Zhang, Wei; Wu, Zheng; Quan, Daping; Wang, Zhichong

    2012-10-01

    Acellular porcine corneal stroma (APCS) has been proven to maintain the matrix microenvironment and is therefore an ideal biomaterial for the repair and reconstruction of corneal stroma. This study aims to develop a method to prepare cosmetic corneal lens implants for leukoma using genipin-crosslinked APCS (Gc-APCS). The Gc-APCS was prepared from APCS immersed in 1.0% genipin aqueous solution (pH 5.5) for 4 h at 37 °C, followed by lyophilization at -10 °C. The color of the Gc-APCS gradually deepened to dark-blue. The degree of crosslinking was 45.7 ± 4.6%, measured by the decrease of basic and hydroxy amino acids. The porous structure and ultrastructure of collagenous lamellae were maintained, and the porosity and BET SSA were 72.7 ± 4.6% and 23.01 ± 3.45 m(2)/g, respectively. The Gc-APCS rehydrated to the physiological water content within 5 min and was highly resistant to collagenase digestion. There were no significant differences in the areal modulus and curvature variation between Gc-APCS and nature porcine cornea. The dark-blue pigments were stable to pH, light and implantation in vivo. Gc-APCS extracts had no inhibitory effects on the proliferation of keratocytes. Corneal neovascularization, graft degradation and corneal rejection were not observed within 6 months.

  14. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix.

    PubMed

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua

    2016-07-01

    The objective of this study was to extract and characterize an advanced collagen aggregate (Ag-col) from porcine acellular dermal matrix (pADM). Based on histological examination, scanning electron microscopy (SEM) and atomic force microscope (AFM), Ag-col was composed of the D-periodic cross-striated collagen fibrils and thick collagen fiber bundles with uneven diameters and non-orientated arrangement. Fourier transform infrared (FTIR) spectra of pADM, Ag-col and Col were similar and revealed the presence of the triple helix. Circular dichroism (CD) analysis exhibited a slightly higher content of α-helix but inappreciably less amount of random coil structure in Ag-col compared to Col. Moreover, imino acid contents of pADM, Ag-col and Col were 222.43, 218.30 and 190.01 residues/1000 residues, respectively. From zeta potential analysis, a net charge of zero was found at pH 6.45 and 6.11 for Ag-col and Col, respectively. Differential scanning calorimetry (DSC) study suggested that the Td of Ag-col was 20°C higher than that of Col as expected, and dynamic mechanical analysis (DMA) indicated that Ag-col possessed a higher storage modulus but similar loss factor compared to Col. Therefore, the collagen aggregate from pADM could serve as a better alternative source of collagens for further applications in food and biological industries. PMID:27039117

  15. Acellular dermal matrix slings in tissue expander breast reconstruction: are there substantial benefits?

    PubMed

    Collis, George N; TerKonda, Sarvam P; Waldorf, James C; Perdikis, Galen

    2012-05-01

    Acellular dermal matrix (ADM) slings in breast reconstruction are increasingly used but are not yet validated. This study compares immediate, expander-based breast reconstruction with and without the use of inferolateral ADM slings. There were 63 patients (106 breasts) in the ADM group and 42 patients (68 breasts) in the control group. Initial intraoperative fill volumes were significantly greater in the ADM group, median 69% full (250 mL) versus 50% full (180 mL; P < 0.001). However, the number of days to complete expansion between the 2 groups was similar. One less office visit was required to complete the fills in the ADM group (P < 0.01). Drains were removed 3 days later in the ADM group (P < 0.01). Overall complication rate was greater in the ADM group (18.9% vs. 7.4%, P < 0.05), with a slightly higher percentage of expanders requiring removal due to infection in the ADM group (5.7% vs. 4.4%, P = NS). This study suggests inferolateral ADM slings in expander-based breast reconstruction allow for significantly increased initial fill volumes and may offer an aesthetic advantage; however, its use is costly and increases complications.

  16. Changing from whole-cell to acellular pertussis vaccines would trade superior tolerability for inferior protection.

    PubMed

    Herzog, Christian

    2015-01-01

    Notifications of infant deaths, assumed to be related to the introduction of new pentavalent DTwP-Hib-HBV childhood vaccines, caused, during 2008-2010 in few Asian countries, temporary interruptions of the respective vaccination programs. The sudden appearance of fatal cases was due to increased awareness/publicity and improved safety monitoring/reporting in countries with relatively high background infant mortalities. WHO investigations could not establish any causal relationships and vaccinations were again resumed. Recently, questions were raised in one concerned country as to why not to change to less reactogenic acellular pertussis (aP)-containing vaccines that are available in private practice and are generally perceived as 'better'. For resource-poor countries, the financial impacts render such a switch impossible and would also not be supported by external funding. Furthermore, it would be a disservice to the children, as in recent years evidence of inferior long-term efficacy of aP vaccines has accumulated. This report summarizes current knowledge on comparative whole-cell pertussis (wP) and aP vaccine performance, outlines the new July 2014 WHO guidance on the choice of pertussis vaccines and presents recent data on outbreak protection, antibody waning, long-term protection, wP-priming, pathogen adaptation, transmission and herd immunity.

  17. Purification design and practice for pertactin, the third component of acellular pertussis vaccine, from Bordetella pertussis.

    PubMed

    Li, Zenglan; Zhang, Yan; Wang, Qi; Li, Zhengjun; Liu, Yongdong; Zhang, Songping; Zhang, Guifeng; Ma, Guanghui; Luo, Jian; Su, Zhiguo

    2016-07-25

    Development of acellular pertussis vaccine (aPV) requires purification of several components from Bordetella pertussis. While the components pertussis toxin (PT) and filamentous hemagglutinin (FHA) have been successfully purified, the third component, pertactin, proves to be a difficult target due to its very low concentration. In order to solve its purification problem, we performed the surface potential analysis with GRASP2 program. The results demonstrated that there are two major charge patches, one negative and one positive, which are located separately on this linear protein. For this special feature, we designed a dual ion exchange chromatography strategy including an anionic exchange and a cationic exchange process for separation of pertactin from the heat extract of B. pertussis. The initial anionic exchange chromatography concentrated the product from 1.7% to 14.6%, with recovery of 80%. The second cationic exchange chromatography increased the purity to 33%, with recovery of 83%. The final purification was accomplished by hydrophobic interaction chromatography, yielding a purity of 96%. The total recovery of the three columns was 61%. Characterization of the purified antigen was performed with CD, intrinsic fluorescence, HP-SEC and western-blot, showing that the purified protein kept its natural conformation and immune-reactivity. The rationally designed process proved to be feasible, and it is suitable for large-scale preparation of the third aPV component pertactin.

  18. Tetanus, diphtheria, and acellular pertussis vaccination among women of childbearing age-United States, 2013.

    PubMed

    O'Halloran, Alissa C; Lu, Peng-Jun; Williams, Walter W; Ding, Helen; Meyer, Sarah A

    2016-07-01

    The incidence of pertussis in the United States has increased since the 1990s. Tetanus, diphtheria, and acellular pertussis (Tdap) vaccination of pregnant women provides passive protection to infants. Tdap vaccination is currently recommended for pregnant women during each pregnancy, but coverage among pregnant women and women of childbearing age has been suboptimal. Data from the 2013 Behavioral Risk Factor Surveillance System (BRFSS) and 2013 National Health Interview Survey (NHIS) were used to determine national and state-specific Tdap vaccination coverage among women of childbearing age by self-reported pregnancy status at the time of the survey. Although this study could not assess coverage of Tdap vaccination received during pregnancy because questions on whether Tdap vaccination was received during pregnancy were not asked in BRFSS and NHIS, demographic and access-to-care factors associated with Tdap vaccination coverage in this population were assessed. Tdap vaccination coverage among all women 18-44 years old was 38.4% based on the BRFSS and 23.3% based on the NHIS. Overall, coverage did not differ by pregnancy status at the time of the survey. Coverage among all women 18-44 years old varied widely by state. Age, race and ethnicity, education, number of children in the household, and access-to-care characteristics were independently associated with Tdap vaccination in both surveys. We identified associations of demographic and access-to-care characteristics with Tdap vaccination that can guide strategies to improve vaccination rates in women during pregnancy. PMID:27372388

  19. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    PubMed Central

    Di Liddo, Rosa; Aguiari, Paola; Barbon, Silvia; Bertalot, Thomas; Mandoli, Amit; Tasso, Alessia; Schrenk, Sandra; Iop, Laura; Gandaglia, Alessandro; Parnigotto, Pier Paolo; Conconi, Maria Teresa; Gerosa, Gino

    2016-01-01

    Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary evaluation of heart valve prosthetic functionality. PMID:27789941

  20. Production of an acellular matrix from amniotic membrane for the synthesis of a human skin equivalent.

    PubMed

    Sanluis-Verdes, Anahí; Yebra-Pimentel Vilar, Maria Teresa; García-Barreiro, Juan Javier; García-Camba, Marta; Ibáñez, Jacinto Sánchez; Doménech, Nieves; Rendal-Vázquez, Maria Esther

    2015-09-01

    Human amniotic membrane (HAM) has useful properties as a dermal matrix substitute. The objective of our work was to obtain, using different enzymatic or chemical treatments to eliminate cells, a scaffold of acellular HAM for later use as a support for the development of a skin equivalent. The HAM was separated from the chorion, incubated and cryopreserved. The membrane underwent different enzymatic and chemical treatments to eliminate the cells. Fibroblasts and keratinocytes were separately obtained from skin biopsies of patients following a sequential double digestion with first collagenase and then trypsin-EDTA (T/E). A skin equivalent was then constructed by seeding keratinocytes on the epithelial side and fibroblasts on the chorionic side of the decellularizated HAM. Histological, immunohistochemical, inmunofluorescent and molecular biology studies were performed. Treatment with 1% T/E at 37 °C for 30 min totally removed epithelial and mesenchymal cells. The HAM thus treated proved to be a good matrix to support adherence of cells and allowed the achievement of an integral and intact scaffold for development of a skin equivalent, which could be useful as a skin substitute for clinical use.

  1. A new candidate substrate for cell-matrix adhesion study: the acellular human amniotic matrix.

    PubMed

    Guo, Qianchen; Lu, Xuya; Xue, Yuan; Zheng, Hong; Zhao, Xiaotao; Zhao, Huajian

    2012-01-01

    In vivo adhesions between cells and the extracellular matrix play a crucial role in cell differentiation, proliferation, and migration as well as tissue remodeling. Natural three-dimensional (3D) matrices, such as self-assembling matrices and Matrigel, have limitations in terms of their biomechanical properties. Here, we present a simple method to produce an acellular human amniotic matrix (AHAM) with preserved biomechanical properties and a favorable adhesion potential. On the stromal side of the AHAM, human foreskin fibroblasts (HFFs) attached and extended with bipolar spindle-shaped morphology proliferated to multilayer networks, invaded into the AHAM, and migrated in a straight line. Moreover, αV integrin, paxillin, and fibronectin were observed to colocalize after 24 h of HFF culture on the stromal side of the AHAM. Our results indicate that the AHAM may be an ideal candidate as a cell-matrix adhesion substrate to study cell adhesion and invasion as well as other functions in vitro under a tensile force that mimics the in vivo environment.

  2. Three-dimensional Reconstruction of the Microstructure of Human Acellular Nerve Allograft.

    PubMed

    Zhu, Shuang; Zhu, Qingtang; Liu, Xiaolin; Yang, Weihong; Jian, Yutao; Zhou, Xiang; He, Bo; Gu, Liqiang; Yan, Liwei; Lin, Tao; Xiang, Jianping; Qi, Jian

    2016-01-01

    The exact inner 3D microstructure of the human peripheral nerve has been a mystery for decades. Therefore, it has been difficult to solve several problems regarding peripheral nerve injury and repair. We used high-resolution X-ray computed microtomography (microCT) to scan a freeze-dried human acellular nerve allograft (hANA). The microCT images were then used to reconstruct a 3D digital model, which was used to print a 3D resin model of the nerve graft. The 3D digital model of the hANA allowed visualization of all planes. The magnified 3D resin model clearly showed the nerve bundles and basement membrane tubes of the hANA. Scanning electron microscopy (SEM) was used to analyse the microstructure of the hANA. Compared to the SEM images, the microCT image clearly demonstrated the microstructure of the hANA cross section at a resolution of up to 1.2 μm. The 3D digital model of the hANA facilitates a clear and easy understanding of peripheral nerve microstructure. Furthermore, the enlarged 3D resin model duplicates the unique inner structure of each individual hANA. This is a crucial step towards achieving 3D printing of a hANA or nerve that can be used as a nerve graft. PMID:27476584

  3. Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study.

    PubMed

    Ferrando, Pietro Maria; Balmativola, Davide; Cambieri, Irene; Scalzo, Maria Stella; Bergallo, Massimiliano; Annaratone, Laura; Casarin, Stefania; Fumagalli, Mara; Stella, Maurizio; Sapino, Anna; Castagnoli, Carlotta

    2016-01-01

    Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco's Modified Eagle's Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties. PMID:26918526

  4. Brainless but Multi-Headed: Decision Making by the Acellular Slime Mould Physarum polycephalum.

    PubMed

    Beekman, Madeleine; Latty, Tanya

    2015-11-20

    Because of its peculiar biology and the ease with which it can be cultured, the acellular slime mould Physarum polycephalum has long been a model organism in a range of disciplines. Due to its macroscopic, syncytial nature, it is no surprise that it has been a favourite amongst cell biologists. Its inclusion in the experimental tool kit of behavioural ecologists is much more recent. These recent studies have certainly paid off. They have shown that, for an organism that lacks a brain or central nervous system, P. polycephalum shows rather complex behaviour. For example, it is capable of finding the shortest path through a maze, it can construct networks as efficient as those designed by humans, it can solve computationally difficult puzzles, it makes multi-objective foraging decisions, it balances its nutrient intake and it even behaves irrationally. Are the slime mould's achievements simply "cute", worthy of mentioning in passing but nothing to take too seriously? Or do they hint at the fundamental processes underlying all decision making? We will address this question after reviewing the decision-making abilities of the slime mould.

  5. Does Acellular Dermal Matrix Thickness Affect Complication Rate in Tissue Expander Based Breast Reconstruction?

    PubMed Central

    2016-01-01

    Background. While the benefits of using acellular dermal matrices (ADMs) in breast reconstruction are well described, their use has been associated with additional complications. The purpose of this study was to determine if ADM thickness affects complications in breast reconstruction. Methods. A retrospective chart review was performed including all tissue expander based breast reconstructions with AlloDerm (LifeCell, Branchburg, NJ) over 4 years. We evaluated preoperative characteristics and assessed postoperative complications including seroma, hematoma, infection, skin necrosis, and need for reintervention. We reviewed ADM thickness and time to Jackson-Pratt (JP) drain removal. Results. Fifty-five patients underwent 77 ADM-associated tissue expander based breast reconstructions, with average age of 48.1 years and average BMI of 25.9. Average ADM thickness was 1.21 mm. We found higher complication rates in the thick ADM group. Significant associations were found between smokers and skin necrosis (p < 0.0001) and seroma and prolonged JP drainage (p = 0.0004); radiated reconstructed breasts were more likely to suffer infections (p = 0.0085), and elevated BMI is a significant predictor for increased infection rate (p = 0.0037). Conclusion. We found a trend toward increased complication rates with thicker ADMs. In the future, larger prospective studies evaluating thickness may provide more information. PMID:27190645

  6. Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study

    PubMed Central

    Ferrando, Pietro Maria; Balmativola, Davide; Cambieri, Irene; Scalzo, Maria Stella; Bergallo, Massimiliano; Annaratone, Laura; Casarin, Stefania; Fumagalli, Mara; Stella, Maurizio; Sapino, Anna; Castagnoli, Carlotta

    2016-01-01

    Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco’s Modified Eagle’s Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties. PMID:26918526

  7. Three-dimensional Reconstruction of the Microstructure of Human Acellular Nerve Allograft.

    PubMed

    Zhu, Shuang; Zhu, Qingtang; Liu, Xiaolin; Yang, Weihong; Jian, Yutao; Zhou, Xiang; He, Bo; Gu, Liqiang; Yan, Liwei; Lin, Tao; Xiang, Jianping; Qi, Jian

    2016-01-01

    The exact inner 3D microstructure of the human peripheral nerve has been a mystery for decades. Therefore, it has been difficult to solve several problems regarding peripheral nerve injury and repair. We used high-resolution X-ray computed microtomography (microCT) to scan a freeze-dried human acellular nerve allograft (hANA). The microCT images were then used to reconstruct a 3D digital model, which was used to print a 3D resin model of the nerve graft. The 3D digital model of the hANA allowed visualization of all planes. The magnified 3D resin model clearly showed the nerve bundles and basement membrane tubes of the hANA. Scanning electron microscopy (SEM) was used to analyse the microstructure of the hANA. Compared to the SEM images, the microCT image clearly demonstrated the microstructure of the hANA cross section at a resolution of up to 1.2 μm. The 3D digital model of the hANA facilitates a clear and easy understanding of peripheral nerve microstructure. Furthermore, the enlarged 3D resin model duplicates the unique inner structure of each individual hANA. This is a crucial step towards achieving 3D printing of a hANA or nerve that can be used as a nerve graft.

  8. Does tetanus-diphtheria-acellular pertussis vaccination interfere with serodiagnosis of pertussis infection?

    PubMed

    Pawloski, Lucia C; Kirkland, Kathryn B; Baughman, Andrew L; Martin, Monte D; Talbot, Elizabeth A; Messonnier, Nancy E; Tondella, Maria Lucia

    2012-06-01

    An anti-pertussis toxin (PT) IgG enzyme-linked immunosorbent assay (ELISA) was analytically validated for the diagnosis of pertussis at a cutoff of 94 ELISA units (EU)/ml. Little was known about the performance of this ELISA in the diagnosis of adults recently vaccinated with tetanus-diphtheria-acellular pertussis (Tdap) vaccine, which contains PT. The goal of this study was to determine when the assay can be used following Tdap vaccination. A cohort of 102 asymptomatic health care personnel (HCP) vaccinated with Tdap (Adacel; Sanofi Pasteur) were aged 19 to 79 years (median, 47 years) at vaccination. For each HCP, specimens were available for evaluation at 2 to 10 time points (prevaccination to 24 months postvaccination), and geometric mean concentrations (GMC) for the cohort were calculated at each time point. Among 97 HCP who responded to vaccination, a mixed-model analysis with prediction and tolerance intervals was performed to estimate the time at which serodiagnosis can be used following vaccination. The GMCs were 8, 21, and 9 EU/ml at prevaccination and 4 and 12 months postvaccination, respectively. Eight (8%) of the 102 HCP reached antibody titers of ≥94 EU/ml during their peak response, but none had these titers by 6 months postvaccination. The calculated prediction and tolerance intervals were <94 EU/ml by 45 and 75 days postvaccination, respectively. Tdap vaccination 6 months prior to testing did not confound result interpretation. This seroassay remains a valuable diagnostic tool for adult pertussis.

  9. Tetanus, diphtheria, and acellular pertussis vaccination among women of childbearing age-United States, 2013.

    PubMed

    O'Halloran, Alissa C; Lu, Peng-Jun; Williams, Walter W; Ding, Helen; Meyer, Sarah A

    2016-07-01

    The incidence of pertussis in the United States has increased since the 1990s. Tetanus, diphtheria, and acellular pertussis (Tdap) vaccination of pregnant women provides passive protection to infants. Tdap vaccination is currently recommended for pregnant women during each pregnancy, but coverage among pregnant women and women of childbearing age has been suboptimal. Data from the 2013 Behavioral Risk Factor Surveillance System (BRFSS) and 2013 National Health Interview Survey (NHIS) were used to determine national and state-specific Tdap vaccination coverage among women of childbearing age by self-reported pregnancy status at the time of the survey. Although this study could not assess coverage of Tdap vaccination received during pregnancy because questions on whether Tdap vaccination was received during pregnancy were not asked in BRFSS and NHIS, demographic and access-to-care factors associated with Tdap vaccination coverage in this population were assessed. Tdap vaccination coverage among all women 18-44 years old was 38.4% based on the BRFSS and 23.3% based on the NHIS. Overall, coverage did not differ by pregnancy status at the time of the survey. Coverage among all women 18-44 years old varied widely by state. Age, race and ethnicity, education, number of children in the household, and access-to-care characteristics were independently associated with Tdap vaccination in both surveys. We identified associations of demographic and access-to-care characteristics with Tdap vaccination that can guide strategies to improve vaccination rates in women during pregnancy.

  10. Brainless but Multi-Headed: Decision Making by the Acellular Slime Mould Physarum polycephalum.

    PubMed

    Beekman, Madeleine; Latty, Tanya

    2015-11-20

    Because of its peculiar biology and the ease with which it can be cultured, the acellular slime mould Physarum polycephalum has long been a model organism in a range of disciplines. Due to its macroscopic, syncytial nature, it is no surprise that it has been a favourite amongst cell biologists. Its inclusion in the experimental tool kit of behavioural ecologists is much more recent. These recent studies have certainly paid off. They have shown that, for an organism that lacks a brain or central nervous system, P. polycephalum shows rather complex behaviour. For example, it is capable of finding the shortest path through a maze, it can construct networks as efficient as those designed by humans, it can solve computationally difficult puzzles, it makes multi-objective foraging decisions, it balances its nutrient intake and it even behaves irrationally. Are the slime mould's achievements simply "cute", worthy of mentioning in passing but nothing to take too seriously? Or do they hint at the fundamental processes underlying all decision making? We will address this question after reviewing the decision-making abilities of the slime mould. PMID:26189159

  11. Glottic Regeneration with Tissue Engineering Technique Using Acellular Extracellular Matrix Scaffold in Canine Model

    PubMed Central

    Kitamura, Morimasa; Hirano, Shigeru; Kanemaru, Shin-ichi; Kitani, Yoshiharu; Ohno, Satoshi; Kojima, Tsuyoshi; Nakamura, Tatsuo; Ito, Juichi; Rosen, Clark A.; Gilbert, Thomas W.

    2014-01-01

    Acellular extracellular matrix scaffold derived from porcine urinary bladder (UBM) is decellularized material that has shown success for constructive remodeling of various tissues and organs. The regenerative effects of UBM were reported for the tympanic membrane, esophagus, trachea, larynx, pleura, and pericardium in animal studies with promising results. The aim of this study was to investigate regenerative effects of UBM to regenerate hemilarynx using a canine model. A left partial hemilaryngectomy was performed, and the surgical defects were reconstructed by insertion of UBM scaffold. Although local infection was observed in one dog in a week after implantation of the scaffold, all dogs showed good re-epithelialization with minimum complication in one month. The effect of regeneration of the larynx was evaluated 6 months after the operation. The excised larynx experiments were performed to measure phonation threshold pressure (PTP), normalized mucosal wave amplitude (NMWA), and normalized glottal gap (NGG). The results of the measurements showed that PTP was normal or near normal in 2 cases, NMWA was within normal range in 3 cases, although there were individual variations. Histologic examination was completed to evaluate structural changes of the scaffold with appearance of new cartilaginous structure. However the regenerated vocal fold mucosa is mostly scarred. The UBM scaffold has shown to be biocompatible, biodegradable, and useful for tissue regeneration of the hemilarynx with possible restoration of the vocal fold function. The vocal fold mucosa was scarred, which is the next challenge to improve. PMID:24403099

  12. Acellular Dermal Allograft for Sellar Repair after Transsphenoidal Approach to Pituitary Adenomas

    PubMed Central

    Gaynor, Brandon G.; Benveniste, Ronald J.; Lieberman, Seth; Casiano, Roy; Morcos, Jacques J.

    2013-01-01

    Objectives Our practice has transitioned from using fat autograft to acellular dermal matrix (AlloDerm, LifeCell Corp, Woodlands, Texas, USA). We present the largest series to our knowledge of AlloDerm for sellar floor repair after transsphenoidal approach to pituitary adenoma and compare rates of postoperative cerebrospinal fluid (CSF) leak with an earlier cohort of patients whose CSF leaks were repaired with fat autograft. Design This is a retrospective cohort study comparing sellar repair with fat autograft versus inlay Alloderm between the years 2003 and 2012. The primary end point was postoperative CSF leak. Results A total of 429 patients (368 primary; 83 revision operations) without intraoperative lumbar drainage were included. A total of 18 postoperative CSF leaks were observed (3.9%). Intraoperative CSF leak occurred in 160 cases (35.5%). Among this subset of patients with intraoperative CSF leak, 95 underwent repair with AlloDerm and 46 underwent repair with fat autograft, with postoperative CSF leak rates of 8.4% and 15.2%, respectively (p = 0.34, chi-square test); 19 patients underwent repair with other techniques or no repair at all, with postoperative leak rate of 0%. Conclusions AlloDerm is an effective alternative to fat autograft in cases of low-flow CSF leak following transsphenoidal resection of pituitary adenoma. PMID:24436906

  13. Three-dimensional Reconstruction of the Microstructure of Human Acellular Nerve Allograft

    PubMed Central

    Zhu, Shuang; Zhu, Qingtang; Liu, Xiaolin; Yang, Weihong; Jian, Yutao; Zhou, Xiang; He, Bo; Gu, Liqiang; Yan, Liwei; Lin, Tao; Xiang, Jianping; Qi, Jian

    2016-01-01

    The exact inner 3D microstructure of the human peripheral nerve has been a mystery for decades. Therefore, it has been difficult to solve several problems regarding peripheral nerve injury and repair. We used high-resolution X-ray computed microtomography (microCT) to scan a freeze-dried human acellular nerve allograft (hANA). The microCT images were then used to reconstruct a 3D digital model, which was used to print a 3D resin model of the nerve graft. The 3D digital model of the hANA allowed visualization of all planes. The magnified 3D resin model clearly showed the nerve bundles and basement membrane tubes of the hANA. Scanning electron microscopy (SEM) was used to analyse the microstructure of the hANA. Compared to the SEM images, the microCT image clearly demonstrated the microstructure of the hANA cross section at a resolution of up to 1.2 μm. The 3D digital model of the hANA facilitates a clear and easy understanding of peripheral nerve microstructure. Furthermore, the enlarged 3D resin model duplicates the unique inner structure of each individual hANA. This is a crucial step towards achieving 3D printing of a hANA or nerve that can be used as a nerve graft. PMID:27476584

  14. Xenogeneic acellular dermal matrix in combination with pectoralis major myocutaneous flap reconstructs hypopharynx and cervical esophagus.

    PubMed

    Yin, Danhui; Tang, Qinglai; Wang, Shuang; Li, Shisheng; He, Xiangbo; Liu, Jiajia; Liu, Bingbing; Yang, Mi; Yang, Xinming

    2015-11-01

    The aim of this study was to explore xenogeneic acellular dermal matrix (ADM) in combination with pectoralis major myocutaneous flap in hypopharynx and cervical esophagus reconstruction. A total of five patients were treated with this surgical method to reconstruct hypopharynx and cervical esophagus in Second Xiangya Hospital between January 2012 and April 2013. Four of them had hypopharyngeal carcinoma with laryngeal and cervical esophageal invasion, while the fifth patient with hypopharyngeal cancer had developed scars and atresia after postoperative radiotherapy. The defect length after hypopharyngeal and cervical esophageal resection was 6-8 cm, and was repaired by a combination of ADM and pectoralis major myocutaneous flap by our team. Interestingly, the four patients had primary healing and regained their eating function about 2-3 weeks after surgery, the fifth individual suffered from pharyngeal fistula, but recovered after dressing change about 2 months. Postoperative esophageal barium meals revealed that the pharynx and esophagus were unobstructed in all five patients. Xenogeneic ADM in combination with pectoralis major myocutaneous flap for hypopharynx and cervical esophagus reconstruction is a simple, safe and effective method with fewer complications. Nevertheless, according to the defect length of the cervical esophagus, the patients need to strictly follow the medical advice.

  15. Closure of the abdominal wall with acellular dermal allograft in intestinal transplantation.

    PubMed

    Mangus, R S; Kubal, C A; Tector, A J; Fridell, J A; Klingler, K; Vianna, R M

    2012-12-01

    Loss of abdominal domain is a common problem in intestinal transplantation. Several surgical options are available perioperatively for abdominal wall reconstruction. This study reports the management and complications for intestinal transplant patients with abdominal wall closure either primarily or with foreign material. This single center study reviews the records of intestinal transplant patients between 2004 and 2010. Study outcomes included reoperation for dehiscence, hernia or enterocutaneous fistula. There were 37 of 146 patients (25%) who required implantation of foreign material at transplant. Of these 37, 30 (81%) had implantation of acellular dermal allograft (ADA) and 7 (19%) implantation of another mesh. Perioperative dehiscence was rare with 2/109 (2%) for primary closure, 0/30 (0%) for ADA and 1/7 (14%) for other mesh. There were 12/146 (8%) patients who underwent ventral hernia repair: primary closure 7/109 (6%), ADA 3/30 (10%) and other mesh 2/7 (28%). There were 4/146 (3%) patients who required surgery for enterocutaneous fistulas: 2/109 (2%) primary closure, 1/30 (3%) ADA and 1/7 (14%) synthetic mesh. Abdominal wall reconstruction with ADA biologic mesh provides an expeditious means of performing a tension-free closure of the fascial layer after intestinal transplantation with complications similar to those seen for primary closure.

  16. Spatial variation in T1 of healthy human articular cartilage of the knee joint

    PubMed Central

    Wiener, E; Pfirrmann, C W A; Hodler, J

    2010-01-01

    The longitudiual relaxation time T1 of native cartilage is frequently assumed to be constant. To redress this, the spatial variation of T1 in unenhanced healthy human knee cartilage in different compartments and cartilage layers was investigated. Knees of 25 volunteers were examined on a 1.5 T MRI system. A three-dimensional gradient-echo sequence with a variable flip angle, in combination with parallel imaging, was used for rapid T1 mapping of the whole knee. Regions of interest (ROIs) were defined in five different cartilage segments (medial and lateral femoral cartilage, medial and lateral tibial cartilage and patellar cartilage). Pooled histograms and averaged profiles across the cartilage thickness were generated. The mean values were compared for global variance using the Kruskal–Wallis test and pairwise using the Mann–Whitney U-test. Mean T1 decreased from 900–1100 ms in superficial cartilage to 400–500 ms in deep cartilage. The averaged T1 value of the medial femoral cartilage was 702±68 ms, of the lateral femoral cartilage 630±75 ms, of the medial tibial cartilage 700±87 ms, of the lateral tibial cartilage 594±74 ms and of the patellar cartilage 666±78 ms. There were significant differences between the medial and lateral compartment (p<0.01). In each cartilage segment, T1 decreased considerably from superficial to deep cartilage. Only small variations of T1 between different cartilage segments were found but with a significant difference between the medial and lateral compartments. PMID:19723767

  17. Anomalous NMR relaxation in cartilage matrix components and native cartilage: Fractional-order models

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Li, Weiguo; Pilar Velasco, M.; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.

    2011-06-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena ( T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter ( α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for micro-structural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues.

  18. Bioreactors for Tissue Engineering of Cartilage

    NASA Astrophysics Data System (ADS)

    Concaro, S.; Gustavson, F.; Gatenholm, P.

    The cartilage regenerative medicine field has evolved during the last decades. The first-generation technology, autologous chondrocyte transplantation (ACT) involved the transplantation of in vitro expanded chondrocytes to cartilage defects. The second generation involves the seeding of chondrocytes in a three-dimensional scaffold. The technique has several potential advantages such as the ability of arthroscopic implantation, in vitro pre-differentiation of cells and implant stability among others (Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L, N Engl J Med 331(14):889-895, 1994; Henderson I, Francisco R, Oakes B, Cameron J, Knee 12(3):209-216, 2005; Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A, Clin Orthop (374):212-234, 2000; Nagel-Heyer S, Goepfert C, Feyerabend F, Petersen JP, Adamietz P, Meenen NM, et al. Bioprocess Biosyst Eng 27(4):273-280, 2005; Portner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM, J Biosci Bioeng 100(3):235-245, 2005; Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM, Portner R, J Biotechnol 121(4):486-497, 2006; Heyland J, Wiegandt K, Goepfert C, Nagel-Heyer S, Ilinich E, Schumacher U, et al. Biotechnol Lett 28(20):1641-1648, 2006). The nutritional requirements of cells that are synthesizing extra-cellular matrix increase along the differentiation process. The mass transfer must be increased according to the tissue properties. Bioreactors represent an attractive tool to accelerate the biochemical and mechanical properties of the engineered tissues providing adequate mass transfer and physical stimuli. Different reactor systems have been [5] developed during the last decades based on different physical stimulation concepts. Static and dynamic compression, confined and nonconfined compression-based reactors have been described in this review. Perfusion systems represent an attractive way of culturing constructs under dynamic conditions. Several groups showed increased matrix

  19. An In Situ Hybridization Study of Perlecan, DMP1, and MEPE in Developing Condylar Cartilage of the Fetal Mouse Mandible and Limb Bud Cartilage

    PubMed Central

    Fujikawa, K.; Yokohama-Tamaki, T.; Morita, T.; Baba, O.; Qin, C.; Shibata, S.

    2015-01-01

    The main purpose of this in situ hybridization study was to investigate mRNA expression of three bone/cartilage matrix components (perlecan, DMP1, and MEPE) in developing primary (tibial) and secondary (condylar) cartilage. Perlecan mRNA expression was first detected in newly formed chondrocytes in tibial cartilage at E13.0, but this expression decreased in hypertrophic chondrocytes at E14.0. In contrast, at E15.0, perlecan mRNA was first detected in the newly formed chondrocytes of condylar cartilage; these chondrocytes had characteristics of hypertrophic chondrocytes, which confirmed the previous observation that progenitor cells of developing secondary cartilage rapidly differentiate into hypertrophic chondrocytes. DMP1 mRNA was detected in many chondrocytes within the lower hypertrophic cell zone in tibial cartilage at E14.0. In contrast, DMP1 mRNA expression was only transiently detected in a few chondrocytes of condylar cartilage at E15.0. Thus, DMP1 may be less important in the developing condylar cartilage than in the tibial cartilage. Another purpose of this study was to test the hypothesis that MEPE may be a useful marker molecule for cartilage. MEPE mRNA was not detected in any chondrocytes in either tibial or condylar cartilage; however, MEPE immunoreactivity was detected throughout the cartilage matrix. Western immunoblot analysis demonstrated that MEPE antibody recognized two bands, one of 67 kDa and another of 59 kDa, in cartilage-derived samples. Thus MEPE protein may gradually accumulate in the cartilage, even though mRNA expression levels were below the limits of detection of in situ hybridization. Ultimately, we could not designate MEPE as a marker molecule for cartilage, and would modify our original hypothesis. PMID:26428891

  20. Permanence of diced cartilage, bone dust and diced cartilage/bone dust mixture in experimental design in twelve weeks.

    PubMed

    Islamoglu, Kemal; Dikici, Mustafa Bahadir; Ozgentas, Halil Ege

    2006-09-01

    Bone dust and diced cartilage are used for contour restoration because their minimal donor site morbidity. The purpose of this study is to investigate permanence of bone dust, diced cartilage and bone dust/diced cartilage mixture in rabbits over 12 weeks. New Zealand white rabbits were used for this study. There were three groups in the study: Group I: 1 mL bone dust. Group II: 1 mL diced cartilage. Group III: 0.5 mL bone dust + 0.5 mL diced cartilage mixture. They were placed into subcutaneous tissue of rabbits and removed 12 weeks later. The mean volumes of groups were 0.23 +/- 0.08 mL in group I, 0.60 +/- 0.12 mL in group II and 0.36 +/- 0.10 mL in group III. The differences between groups were found statistically significant. In conclusion, diced cartilage was found more reliable than bone dust aspect of preserving its volume for a long period in this study.

  1. Potential regulation of cartilage metabolism in osteoarthritis by fibronectin fragments.

    PubMed

    Homandberg, G A

    1999-10-15

    There are few candidates for biochemical pathways that either initiate or amplify catabolic processes involved in osteoarthritis (OA). Perhaps, one of the most likely sources for such pathways may be within the extracellular matrix itself. This review focuses on an example of how specific degradation products of the extracellular matrix of cartilage, produced during proteolytic damage, have the potential to enhance OA-like processes. In this example, these products can induce or activate other factors, such as catabolic cytokines, that amplify the damage. The damage, in turn, enhances levels of the degradation products themselves, as in a positive feedback loop. Since these products are derived from the cartilage matrix, they could be considered barometers of the health of the cartilage that signal to the chondrocyte, through outside to inside signaling, the health or status of the surrounding matrix. The best example and most characterized system is that of fragments of the matrix protein, fibronectin (Fn), although as discussed later, other recently discovered fragment systems may also have the potential to regulate cartilage metabolism. In the case of Fn fragments (Fn-fs), the Fn-fs enhance levels of catabolic cytokines as in OA and, thus, are potentially earlier damage mediators than catabolic cytokines. The Fn-fs up-regulate matrix metalloproteinase (MMP) expression, significantly enhance degradation and loss of proteoglycan (PG) from cartilage and temporarily suppress PG synthesis, all events observed in OA. However, this Fn-f system may be involved in normal cartilage homeostasis as well. For example, low concentrations of Fn-fs enhance anabolic activities and could play a role in normal homeostasis. This system may also be involved in not only amplifying damage but also coupling damage to repair. For example, high concentrations of Fn-fs that might arise in OA temporarily offset the anabolic response of lower Fn-f concentrations and cause short

  2. Characteristics of rib cartilage calcification in Asian patients.

    PubMed

    Sunwoo, Woong Sang; Choi, Hyo Geun; Kim, Dae Woo; Jin, Hong-Ryul

    2014-01-01

    IMPORTANCE Rib cartilage from the sixth, seventh, and eighth ribs offers a long cartilaginous curvature, making the material reliable for grafting. Calcification of cartilage causes unexpected absorption, difficult manipulation, and donor site morbidity. Most studies of calcification were performed in Western countries. OBJECTIVE To investigate the incidence, degree, and pattern of rib cartilage calcification in Asian patients. DESIGN, SETTING, AND PARTICIPANTS Retrospective study of computed tomographic scans of the chest in 120 patients (60 male and 60 female). The incidence, degree, and pattern of cartilage calcification of the sixth through eighth ribs were noted. The patients were stratified into 6 age groups, and 20 patients (10 male and 10 female) were selected for each group. The degree of calcification was assessed as 0%, 1% to 25%, 26% to 50%, 51% to 75%, and 76% to 100%. Meaningful calcification was defined as 26% or greater. The pattern of calcification was classified as marginal, granular, and central. EXPOSURE Computed tomographic scans of the chest. MAIN OUTCOMES AND MEASURES Degree of calcification, presence of meaningful calcification, and calcification pattern. RESULTS Overall, 50.8% of cartilage was calcified, and female patients showed more frequent calcification than male patients (59.4% vs 42.2% [P < .001]). Calcification rates of the sixth and seventh rib cartilage were higher than those of the eighth rib cartilage in all age groups except teenagers, who had a similar rate for all 3 ribs. Calcification of the sixth and seventh rib cartilage significantly increased with age. A meaningful calcification rate was very low in males younger than 60 years, whereas the rate was relatively higher in females than males for all age groups. Males predominantly had the marginal type of calcification, whereas females predominantly had a granular type. The rate and pattern of calcification had no relationship to age. CONCLUSIONS AND RELEVANCE In Asian

  3. Potential regulation of cartilage metabolism in osteoarthritis by fibronectin fragments.

    PubMed

    Homandberg, G A

    1999-10-15

    There are few candidates for biochemical pathways that either initiate or amplify catabolic processes involved in osteoarthritis (OA). Perhaps, one of the most likely sources for such pathways may be within the extracellular matrix itself. This review focuses on an example of how specific degradation products of the extracellular matrix of cartilage, produced during proteolytic damage, have the potential to enhance OA-like processes. In this example, these products can induce or activate other factors, such as catabolic cytokines, that amplify the damage. The damage, in turn, enhances levels of the degradation products themselves, as in a positive feedback loop. Since these products are derived from the cartilage matrix, they could be considered barometers of the health of the cartilage that signal to the chondrocyte, through outside to inside signaling, the health or status of the surrounding matrix. The best example and most characterized system is that of fragments of the matrix protein, fibronectin (Fn), although as discussed later, other recently discovered fragment systems may also have the potential to regulate cartilage metabolism. In the case of Fn fragments (Fn-fs), the Fn-fs enhance levels of catabolic cytokines as in OA and, thus, are potentially earlier damage mediators than catabolic cytokines. The Fn-fs up-regulate matrix metalloproteinase (MMP) expression, significantly enhance degradation and loss of proteoglycan (PG) from cartilage and temporarily suppress PG synthesis, all events observed in OA. However, this Fn-f system may be involved in normal cartilage homeostasis as well. For example, low concentrations of Fn-fs enhance anabolic activities and could play a role in normal homeostasis. This system may also be involved in not only amplifying damage but also coupling damage to repair. For example, high concentrations of Fn-fs that might arise in OA temporarily offset the anabolic response of lower Fn-f concentrations and cause short

  4. The effects of acellular amniotic membrane matrix on osteogenic differentiation and ERK1/2 signaling in human dental apical papilla cells.

    PubMed

    Chen, Yi-Jane; Chung, Min-Chun; Jane Yao, Chung-Chen; Huang, Chien-Hsun; Chang, Hao-Hueng; Jeng, Jiiang-Huei; Young, Tai-Horng

    2012-01-01

    The amniotic membrane (AM) has been widely used in the field of tissue engineering because of the favorable biological properties for scaffolding material. However, little is known about the effects of an acellular AM matrix on the osteogenic differentiation of mesenchymal stem cells. In this study, it was found that both basement membrane side and collagenous stroma side of the acellular AM matrix were capable of providing a preferential environment for driving the osteogenic differentiation of human dental apical papilla cells (APCs) with proven stem cell characteristics. Acellular AM matrix potentiated the induction effect of osteogenic supplements (OS) such as ascorbic acid, β-glycerophosphate, and dexamethasone and enhanced the osteogenic differentiation of APCs, as seen by increased core-binding factor alpha 1 (Cbfa-1) phosphorylation, alkaline phosphatase activity, mRNA expression of osteogenic marker genes, and mineralized matrix deposition. Even in the absence of soluble OS, acellular AM matrix also could exert the substrate-induced effect on initiating APCs' differentiation. Especially, the collagenous stroma side was more effective than the basement membrane side. Moreover, the AM-induced effect was significantly inhibited by U0126, an inhibitor of extracellular signaling-regulated kinase 1/2 (ERK1/2) signaling. Taken together, the osteogenic differentiation promoting effect on APCs is AM-specific, which provides potential applications of acellular AM matrix in bone/tooth tissue engineering.

  5. Distinctive expression of extracellular matrix molecules at mRNA and protein levels during formation of cellular and acellular cementum in the rat.

    PubMed

    Sasano, Y; Maruya, Y; Sato, H; Zhu, J X; Takahashi, I; Mizoguchi, I; Kagayama, M

    2001-02-01

    Little is known about differential expression of extracellular matrices secreted by cementoblasts between cellular and acellular cementum. We hypothesize that cementoblasts lining acellular cementum express extracellular matrix genes differently from those lining cellular cementum, thereby forming two distinct types of extracellular matrices. To test this hypothesis, we investigated spatial and temporal gene expression of selected extracellular matrix molecules, that is type I collagen, bone sialoprotein, osteocalcin and osteopontin, during formation of both cellular and acellular cementum using in situ hybridization. In addition, their extracellularly deposited and accumulated proteins were examined immunohistochemically. The mRNA transcripts of pro-alpha1 (I) collagen were primarily localized in cementoblasts of cellular cementum and cementocytes, while those of bone sialoprotein were predominantly seen in cementoblasts lining acellular cementum. In contrast, osteocalcin was expressed by both types of cementoblasts and cementocytes and so was osteopontin but only transiently. Our immunohistochemical examination revealed that translated proteins were localized extracellularly where the genes had been expressed intracellularly. The present study demonstrated the distinctive expression of genes and proteins of the extracellular matrix molecules between cellular and acellular cementum. PMID:11432645

  6. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy.

    PubMed

    Li, Kuei-Chang; Hu, Yu-Chen

    2015-05-01

    Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy.

  7. Nasal reconstruction with articulated irradiated rib cartilage

    SciTech Connect

    Murakami, C.S.; Cook, T.A.; Guida, R.A. )

    1991-03-01

    Nasal structural reconstruction is a formidable task in cases where there is loss of support to both the nasal dorsum and tip. A multitude of surgical approaches and materials have been used for the correction of the saddle-nose deformity with varying degrees of success. Articulated irradiated rib cartilage inserted through an external rhinoplasty approach was used to reconstruct nasal deformities in 18 patients over a 6-year period. Simultaneous use of a midline forehead flap to reconstruct the overlying soft tissue was required in four cases. Follow-up ranged from 1 to 6 years (mean, 2.8 years). Results were rewarding in most cases with marked improvement in nasal support and airway. Revision and/or replacement secondary to trauma or warping of the graft was required in four cases. None of the patients exhibited infection, extrusion, or noticeable resorption. A description of the surgical technique, review of all the cases, and recommendation for continued use of this graft material are discussed.

  8. Rehabilitation after cell transplantation for cartilage defects.

    PubMed

    Deszczynski, J; Slynarski, K

    2006-01-01

    Rehabilitation is a key element of successful treatment of cartilage defects with cell transplantation. The process of graft maturation takes approximately 18 months and cannot be accelerated, but requires carefully introduced steps leading to early recovery of joint function. Rehabilitation starts at 8 hours after surgery with the continuous passive motion (CPM) exercises and physiotherapy. For the first 6 weeks, patients continue with CPM in the range of 0 degrees to 45 degrees for femoral and tibial defects and 0 degrees to 30 degrees for patellofemoral joint reconstruction. Isometric muscle training and scar manual therapy are introduced. Patients are allowed to weight-bear as tolerated from the second week after surgery. After this initial phase, from 6 to 8 weeks after surgery, rehabilitation is accelerated with increased load-bearing and progressive range of motion to full flexion. Usually patients are able to walk without crutches in this time. Proprioceptive training is introduced with the advance of pain-free full range of motion and no discomfort with full weight-bearing. At 6 months after surgery, most patients recover joint function, making it possible for them to return to daily living activities. However, they need to continue with muscle, proprioceptive, and sports-specific rehabilitation exercises. The rehabilitation process is complicated, requiring close cooperation between the patient and surgeon-physiotherapist team to understand the symptoms and address them in a timely fashion. PMID:16504734

  9. Knee cartilage defect: marrow stimulating techniques.

    PubMed

    Mirza, M Zain; Swenson, Richard D; Lynch, Scott A

    2015-12-01

    Painful chondral defects of the knee are very difficult problems. The incidence of these lesions in the general population is not known since there is likely a high rate of asymptomatic lesions. The rate of lesions found during arthroscopic exam is highly variable, with reports ranging from 11 to 72 % Aroen (Aroen Am J Sports Med 32: 211-5, 2004); Curl(Arthroscopy13: 456-60, 1997); Figueroa(Arthroscopy 23(3):312-5, 2007;); Hjelle(Arthroscopy 18: 730-4, 2002). Examples of current attempts at cartilage restoration include marrow stimulating techniques, ostochondral autografts, osteochondral allografts, and autologous chondrocyte transplantation. Current research in marrow stimulating techniques has been focused on enhancing and guiding the biology of microfracture and other traditional techniques. Modern advances in stem cell biology and biotechnology have provided many avenues for exploration. The purpose of this work is to review current techniques in marrow stimulating techniques as it relates to chondral damage of the knee. PMID:26411978

  10. The pathology of cartilage in chondrodysplasias.

    PubMed

    Hwang, W S; Tock, E P; Tan, K L; Tan, L K

    1979-01-01

    The pathology of four types of chondrodysplasias, viz., type II achondrogenesis, thanatophoric dwarfism, Saldino-Noonan syndrome, and chondrodysplasia punctata were studied. In each of these disorders, cells with features similar to the chief and dark chondrocytes of normal hyaline cartilage were seen to be altered in different ways. There was a total absence of chief cells in type II achondrogenesis. All the chondrocytes present were of one variety at different states of maturation, with the fully matured cell having features of dark chondrocytes. The absence of chief cells was associated with marked diminution of interlacunar matrix and failure of growth plate development. The chief chondrocytes in thanatophoric dwarfism appeared diminished in number. They were probably abnormal functionally as evident by their lack of cytoplasmic vacuolation and the formation of thick, occasionally branched collagen in the matrix. The growth plate was stunted and poorly developed. Striking changes involving the dark cells were noted in Saldino-Noonan syndrome, where unusually elongated dark cells were found in groups within abnormal cystic spaces. The chief cells were large and contained abnormal cytoplasmic filaments. There was no formation of a growth plate. In chondrodysplasia punctata, the chief cells were enlarged and abnormally vacuolated. The matrix showed excessive aggregates of coarse granular material. In addition, there were focal accumulations of highly abnormal chief and dark cells with abnormal matrix which contained increased amount of keratan sulphate and culminated in spotty calcification. PMID:469631

  11. Hyaline-cell cartilage (chondroid) in the heads of teleosts.

    PubMed

    Benjamin, M

    1989-01-01

    The structure and distribution of hyaline-cell cartilage (chondroid) (HCC) in the heads of teleosts has been studied in 48 species from 16 families. The tissue is pale-staining and has closely-packed, hyaline cells that are separated by a small quantity of matrix. The matrix has only a mild affinity for alcian blue and the cells are not shrunken within lacunae. Two subtypes of the tissue are here described--fibrohyaline-cell cartilage (chondroid) where collagen fibres are prominent in the matrix, and lipohyaline-cell cartilage where fat and hyaline cells are intermingled. An elastic hyaline-cell cartilage has been described previously. Associations of HCC with dense fibrous connective tissue, mucochondroid, hyaline cartilage and bone are described. Lists are provided of membrane and cartilages bones to which the tissue is attached and of species in which it is common. Suitable 'type examples' for reference and for further study include the cartilage in the rostral folds of the red-tailed black shark, Labeo bicolor and the flying fox, Epalzeorhynchus kalopterus. HCC occurs in lips and rostral folds, in pre-palatine and submaxillary menisci, in ligaments, at the anterior end of the basihyal, in the pectoral girdle, in adhesive discs, in gill arches, beneath the basioccipital chewing pad, in barbels, next to the facial nerve, around the olfactory region and in the core of the nasal skin flaps. It is a particularly important tissue in cyprinids and related fish, and enormous masses of it are present in the black shark, Morulius chrysophekadion and the Hong Kong pleco, Pseudogastromyzon myersi. It acts as a damper against the contractions of the heart or the pressure of occluding pharyngeal teeth, and it provides the mouth region of bottom-dwelling, algal eaters with flexible support. In relation to Schaffer's classification of supporting tissues, I confirm a distinction between HCC and Zellknorpel.

  12. Cartilage Degeneration and Alignment in Severe Varus Knee Osteoarthritis

    PubMed Central

    Mukai, Shogo; Yabumoto, Hiromitsu; Tarumi, Eri; Nakamura, Takashi

    2015-01-01

    Objectives The aim of this study was to examine the relationship between cartilage, ligament, and meniscus degeneration and radiographic alignment in severe varus knee osteoarthritis in order to understand the development of varus knee osteoarthritis. Design Fifty-three patients (71 knees) with primary varus knee osteoarthritis and who underwent total knee arthroplasty were selected for this study. There were 6 men and 47 women, with 40 right knees and 31 left knees studied; their mean age at operation was 73.5 years. The ligament, meniscus, degeneration of joint cartilage, and radiographic alignments were examined visually. Results The tibial plateau–tibial shaft angle was larger if the condition of the cartilage in the lateral femoral condyle was worse. The femorotibial angle and tibial plateau–tibial shaft angle were larger if the conditions of the lateral meniscus or the cartilage in the lateral tibial plateau were worse. Conclusion Based on the results of this study, progression of varus knee osteoarthritis may occur in the following manner: medial knee osteoarthritis starts in the central portion of the medial tibial plateau, and accompanied by medial meniscal extrusion and anterior cruciate ligament rupture, cartilage degeneration expands from the anterior to the posterior in the medial tibial plateau. Bone attrition occurs in the medial tibial plateau, and the femoro-tibial angle and tibial plateau–tibial shaft angle increase. Therefore, the lateral intercondylar eminence injures the cartilage of the lateral femoral condyle in the longitudinal fissure type. Thereafter, the cartilage degeneration expands in the whole of the knee joints. PMID:26425258

  13. Increasing the Dose of Autologous Chondrocytes Improves Articular Cartilage Repair

    PubMed Central

    Guillén-García, Pedro; Rodríguez-Iñigo, Elena; Guillén-Vicente, Isabel; Caballero-Santos, Rosa; Guillén-Vicente, Marta; Abelow, Stephen; Giménez-Gallego, Guillermo

    2014-01-01

    Background: We hypothesized that implanting cells in a chondral defect at a density more similar to that of the intact cartilage could induce them to synthesize matrix with the features more similar to that of the uninjured one. Methods: We compared the implantation of different doses of chondrocytes: 1 million (n = 5), 5 million (n = 5), or 5 million mesenchymal cells (n = 5) in the femoral condyle of 15 sheep. Tissue generated by microfracture at the trochlea, and normal cartilage from a nearby region, processed as the tissues resulting from the implantation, were used as references. Histological and molecular (expression of type I and II collagens and aggrecan) studies were performed. Results: The features of the cartilage generated by implantation of mesenchymal cells and elicited by microfractures were similar and typical of a poor repair of the articular cartilage (presence of fibrocartilage, high expression of type I collagen and a low mRNA levels of type II collagen and aggrecan). Nevertheless, in the samples obtained from tissues generated by implantation of chondrocytes, hyaline-like cartilage, cell organization, low expression rates of type I collagen and high levels of mRNA corresponding to type II collagen and aggrecan were observed. These histological features, show less variability and are more similar to those of the normal cartilage used as control in the case of 5 million cells implantation than when 1 million cells were used. Conclusions: The implantation of autologous chondrocytes in type I/III collagen membranes at high density could be a promising tool to repair articular cartilage. PMID:26069691

  14. Correlation between Focal Nodular Low Signal Changes in Hoffa's Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication

    PubMed Central

    Ng, Wuey Min

    2016-01-01

    Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa's fat pad adjacent to anterior femoral cartilage of the knee (FNMHF) and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA) sagittal and axial images of the B1 and C1 region (described later) of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p = 0.00) between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%). Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory. PMID:27213085

  15. Preliminary investigation of intrinsic UV fluorescence spectroscopic changes associated with proteolytic digestion of bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre

    2016-03-01

    Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.

  16. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    PubMed

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p < 0.001). With calcified cartilage included, the correlation was ρ = 0.85 (p < 0.001). The mean cartilage SOS (1,636 m/s) was in agreement with the literature. However, SOS and the other properties of cartilage lacked any statistically significant correlation. Interpretation - OCT can give an accurate measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  17. An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology.

    PubMed

    Klika, Václav; Gaffney, Eamonn A; Chen, Ying-Chun; Brown, Cameron P

    2016-09-01

    There is a long history of mathematical and computational modelling with the objective of understanding the mechanisms governing cartilage׳s remarkable mechanical performance. Nonetheless, despite sophisticated modelling development, simulations of cartilage have consistently lagged behind structural knowledge and thus the relationship between structure and function in cartilage is not fully understood. However, in the most recent generation of studies, there is an emerging confluence between our structural knowledge and the structure represented in cartilage modelling. This raises the prospect of further refinement in our understanding of cartilage function and also the initiation of an engineering-level understanding for how structural degradation and ageing relates to cartilage dysfunction and pathology, as well as informing the potential design of prospective interventions. Aimed at researchers entering the field of cartilage modelling, we thus review the basic principles of cartilage models, discussing the underlying physics and assumptions in relatively simple settings, whilst presenting the derivation of relatively parsimonious multiphase cartilage models consistent with our discussions. We proceed to consider modern developments that start aligning the structure captured in the models with observed complexities. This emphasises the challenges associated with constitutive relations, boundary conditions, parameter estimation and validation in cartilage modelling programmes. Consequently, we further detail how both experimental interrogations and modelling developments can be utilised to investigate and reduce such difficulties before summarising how cartilage modelling initiatives may improve our understanding of cartilage ageing, pathology and intervention. PMID:27195911

  18. Intra-Articular Injections of Polyphenols Protect Articular Cartilage from Inflammation-Induced Degradation: Suggesting a Potential Role in Cartilage Therapeutics.

    PubMed

    Natarajan, Venkatachalam; Madhan, Balaraman; Tiku, Moti L

    2015-01-01

    Arthritic diseases, such as osteoarthritis and rheumatoid arthritis, inflict an enormous health care burden on society. Osteoarthritis, a degenerative joint disease with high prevalence among older people, and rheumatoid arthritis, an autoimmune inflammatory disease, both lead to irreversible structural and functional damage to articular cartilage. The aim of this study was to investigate the effect of polyphenols such as catechin, quercetin, epigallocatechin gallate, and tannic acid, on crosslinking type II collagen and the roles of these agents in managing in vivo articular cartilage degradation. The thermal, enzymatic, and physical stability of bovine articular cartilage explants following polyphenolic treatment were assessed for efficiency. Epigallocatechin gallate and tannic acid-treated explants showed >12 °C increase over native cartilage in thermal stability, thereby confirming cartilage crosslinking. Polyphenol-treated cartilage also showed a significant reduction in the percentage of collagen degradation and the release of glycosaminoglycans against collagenase digestion, indicating the increase physical integrity and resistance of polyphenol crosslinked cartilage to enzymatic digestion. To examine the in vivo cartilage protective effects, polyphenols were injected intra-articularly before (prophylactic) and after (therapeutic) the induction of collagen-induced arthritis in rats. The hind paw volume and histomorphological scoring was done for cartilage damage. The intra-articular injection of epigallocatechin gallate and tannic acid did not significantly influence the time of onset or the intensity of joint inflammation. However, histomorphological scoring of the articular cartilage showed a significant reduction in cartilage degradation in prophylactic- and therapeutic-groups, indicating that intra-articular injections of polyphenols bind to articular cartilage and making it resistant to degradation despite ongoing inflammation. These studies establish

  19. Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects: biomechanics and validation of mathematical models

    PubMed Central

    Li, Ya-jun; Zhao, Bao-lin; Lv, Hao-ze; Qin, Zhi-gang; Luo, Min

    2016-01-01

    We hypothesized that a chemically extracted acellular allogeneic nerve graft used in combination with bone marrow mesenchymal stem cell transplantation would be an effective treatment for long-segment sciatic nerve defects. To test this, we established rabbit models of 30 mm sciatic nerve defects, and treated them using either an autograft or a chemically decellularized allogeneic nerve graft with or without simultaneous transplantation of bone marrow mesenchymal stem cells. We compared the tensile properties, electrophysiological function and morphology of the damaged nerve in each group. Sciatic nerves repaired by the allogeneic nerve graft combined with stem cell transplantation showed better recovery than those repaired by the acellular allogeneic nerve graft alone, and produced similar results to those observed with the autograft. These findings confirm that a chemically extracted acellular allogeneic nerve graft combined with transplantation of bone marrow mesenchymal stem cells is an effective method of repairing long-segment sciatic nerve defects. PMID:27651781

  20. Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects: biomechanics and validation of mathematical models

    PubMed Central

    Li, Ya-jun; Zhao, Bao-lin; Lv, Hao-ze; Qin, Zhi-gang; Luo, Min

    2016-01-01

    We hypothesized that a chemically extracted acellular allogeneic nerve graft used in combination with bone marrow mesenchymal stem cell transplantation would be an effective treatment for long-segment sciatic nerve defects. To test this, we established rabbit models of 30 mm sciatic nerve defects, and treated them using either an autograft or a chemically decellularized allogeneic nerve graft with or without simultaneous transplantation of bone marrow mesenchymal stem cells. We compared the tensile properties, electrophysiological function and morphology of the damaged nerve in each group. Sciatic nerves repaired by the allogeneic nerve graft combined with stem cell transplantation showed better recovery than those repaired by the acellular allogeneic nerve graft alone, and produced similar results to those observed with the autograft. These findings confirm that a chemically extracted acellular allogeneic nerve graft combined with transplantation of bone marrow mesenchymal stem cells is an effective method of repairing long-segment sciatic nerve defects.

  1. Tracheal reconstruction with a composite graft: fascial flap-wrapped allogenic aorta with external cartilage-ring support

    PubMed Central

    Wurtz, Alain; Hysi, Ilir; Kipnis, Eric; Zawadzki, Christophe; Hubert, Thomas; Jashari, Ramadan; Copin, Marie-Christine; Jude, Brigitte

    2013-01-01

    OBJECTIVES Animal and clinical studies have demonstrated the feasibility of tracheal replacement by silicone-stented allogenic aortas. In clinical trials, however, this graft did not show mature cartilage regeneration into the grafts as was observed in animal models. To solve this issue, we investigated tracheal replacement with a composite graft based on a fascial flap-wrapped allogenic aorta with external cartilage-ring support in a rabbit model. METHODS Seven male 'Géant des Flandres' and 'New Zealand' rabbits served as donors of aortas and cartilage rings, respectively. Nineteen female 'New Zealand' rabbits were used as recipients. First, in nine animals, neoangiogenesis of the composite graft following a wrap using a pedicled lateral thoracic fascial flap and implantation under the skin of the chest wall was investigated. Animal sacrifice was scheduled at regular intervals up to 38 days. Second, 10 animals underwent tracheal replacement with the composite graft after a 7-to-9 day revascularization period, and were followed-up to death. Macroscopic and microscopic examinations were used to study the morphology, stiffness and viability of the construct. RESULTS There was one operative death after tracheal replacement. The first group of animals was found to have a satisfactory tubular morphology and stiffness of their construct associated with preserved histological structure of cartilages and moderate to severe aortic ischaemic lesions. In the group of rabbits having undergone tracheal replacement, the anatomical results were characterized by a discrepancy between the severity of ischaemic lesions involving both allogenic aorta and cartilage rings and the satisfactory biomechanical characteristics of the graft in 7 of 10 animals, probably due to cartilage calcification deposits associated with inflammatory scar tissue ensuring the stiffness of the construct. CONCLUSIONS Our investigations demonstrate the feasibility of the replacement of circumferential

  2. Energy information sheets

    SciTech Connect

    Not Available

    1993-12-02

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  3. Light sheet microscopy.

    PubMed

    Weber, Michael; Mickoleit, Michaela; Huisken, Jan

    2014-01-01

    This chapter introduces the concept of light sheet microscopy along with practical advice on how to design and build such an instrument. Selective plane illumination microscopy is presented as an alternative to confocal microscopy due to several superior features such as high-speed full-frame acquisition, minimal phototoxicity, and multiview sample rotation. Based on our experience over the last 10 years, we summarize the key concepts in light sheet microscopy, typical implementations, and successful applications. In particular, sample mounting for long time-lapse imaging and the resulting challenges in data processing are discussed in detail.

  4. Boundary mode lubrication of articular cartilage by recombinant human lubricin.

    PubMed

    Gleghorn, Jason P; Jones, Aled R C; Flannery, Carl R; Bonassar, Lawrence J

    2009-06-01

    Lubrication of cartilage involves a variety of physical and chemical factors, including lubricin, a synovial glycoprotein that has been shown to be a boundary lubricant. It is unclear how lubricin boundary lubricates a wide range of bearings from tissue to artificial surfaces, and if the mechanism is the same for both soluble and bound lubricin. In the current study, experiments were conducted to investigate the hypothesis that recombinant human lubricin (rh-lubricin) lubricates cartilage in a dose-dependent manner and that soluble and bound fractions of rh-lubricin both contribute to the lubrication process. An rh-lubricin dose response was observed with maximal lubrication achieved at concentrations of rh-lubricin greater than 50 microg/mL. A concentration-response variable-slope model was fit to the data, and indicated that rh-lubricin binding to cartilage was not first order. The pattern of decrease in equilibrium friction coefficient indicated that aggregation of rh-lubricin or steric arrangement may regulate boundary lubrication. rh-lubricin localized at the cartilage surface was found to lubricate a cartilage-glass interface in boundary mode, as did soluble rh-lubricin at high concentrations (150 microg/mL); however, the most effective lubrication occurred when both soluble and bound rh-lubricin were present at the interface. These findings point to two distinct mechanisms by which rh-lubricin lubricates, one mechanism involving lubricin bound to the tissue surface and the other involving lubricin in solution.

  5. Quantitative proteomic profiling of human articular cartilage degradation in osteoarthritis.

    PubMed

    Lourido, Lucía; Calamia, Valentina; Mateos, Jesús; Fernández-Puente, Patricia; Fernández-Tajes, Juan; Blanco, Francisco J; Ruiz-Romero, Cristina

    2014-12-01

    Osteoarthritis (OA) is the most common rheumatic pathology and is characterized primarily by articular cartilage degradation. Despite its high prevalence, there is no effective therapy to slow disease progression or regenerate the damaged tissue. Therefore, new diagnostic and monitoring tests for OA are urgently needed, which would also promote the development of alternative therapeutic strategies. In the present study, we have performed an iTRAQ-based quantitative proteomic analysis of secretomes from healthy human articular cartilage explants, comparing their protein profile to those from unwounded (early disease) and wounded (advanced disease) zones of osteoarthritic tissue. This strategy allowed us to identify a panel of 76 proteins that are distinctively released by the diseased tissue. Clustering analysis allowed the classification of proteins according to their different profile of release from cartilage. Among these proteins, the altered release of osteoprotegerin (decreased in OA) and periostin (increased in OA), both involved in bone remodelling processes, was verified in further analyses. Moreover, periostin was also increased in the synovial fluid of OA patients. Altogether, the present work provides a novel insight into the mechanisms of human cartilage degradation and a number of new cartilage-characteristic proteins with possible biomarker value for early diagnosis and prognosis of OA.

  6. A vision on the future of articular cartilage repair.

    PubMed

    Cucchiarini, M; Madry, H; Guilak, F; Saris, D B; Stoddart, M J; Koon Wong, M; Roughley, P

    2014-05-06

    An AO Foundation (Davos, Switzerland) sponsored workshop "Cell Therapy in Cartilage Repair" from the Symposium "Where Science meets Clinics" (September 5-7, 2013, Davos) gathered leaders from medicine, science, industry, and regulatory organisations to debate the vision of cell therapy in articular cartilage repair and the measures that could be taken to narrow the gap between vision and current practice. Cell-based therapy is already in clinical use to enhance the repair of cartilage lesions, with procedures such as microfracture and articular chondrocyte implantation. However, even though long term follow up is good from a clinical perspective and some of the most rigorous randomised controlled trials in the regenerative medicine/orthopaedics field show beneficial effect, none of these options have proved successful in restoring the original articular cartilage structure and functionality in patients so far. With the remarkable recent advances in experimental research in cell biology (new sources for chondrocytes, stem cells), molecular biology (growth factors, genes), biomaterials, biomechanics, and translational science, a combined effort between scientists and clinicians with broad expertise may allow development of an improved cell therapy for cartilage repair. This position paper describes the current state of the art in the field to help define a procedure adapted to the clinical situation for upcoming translation in the patient.

  7. A high throughput mechanical screening device for cartilage tissue engineering.

    PubMed

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput.

  8. Strategies for Controlled Delivery of Biologics for Cartilage Repair

    PubMed Central

    Lam, Johnny; Lu, Steven; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    The delivery of biologics is an important component in the treatment of osteoarthritis and the functional restoration of articular cartilage. Numerous factors have been implicated in the cartilage repair process, but the uncontrolled delivery of these factors may not only reduce their full reparative potential and can also cause unwanted morphological effects. It is therefore imperative to consider the type of biologic to be delivered, the method of delivery, and the temporal as well as spatial presentation of the biologic to achieve the desired effect in cartilage repair. Additionally, the delivery of a single factor may not be sufficient in guiding neo-tissue formation, motivating recent research towards the delivery of multiple factors. This review will discuss the roles of various biologics involved in cartilage repair and the different methods of delivery for appropriate healing responses. A number of spatiotemporal strategies will then be emphasized for the controlled delivery of single and multiple bioactive factors in both in vitro and in vivo cartilage tissue engineering applications. PMID:24993610

  9. Targeting TGFβ Signaling in Subchondral Bone and Articular Cartilage Homeostasis

    PubMed Central

    Zhen, Gehau; Cao, Xu

    2014-01-01

    Osteoarthritis (OA) is the most common degenerative joint disease, and there is no disease-modifying therapy for OA currently available. Targeting of articular cartilage alone may not be sufficient to halt this disease progression. Articular cartilage and subchondral bone act as a functional unit. Increasing evidence indicates that transforming growth factor β (TGFβ) plays a crucial role in maintaining homeostasis of both articular cartilage and subchondral bone. Activation of extracellular matrix latent TGFβ at the appropriate time and location is the prerequisite for its function. Aberrant activation of TGFβ in the subchondral bone in response to abnormal mechanical loading environment induces formation of osteroid islets at onset of osteoarthritis. As a result, alteration of subchondral bone structure changes the stress distribution on the articular cartilage and leads to its degeneration. Thus, inhibition of TGFβ activity in the subchondral bone may provide a new avenue of treatment for OA. In this review, we will respectively discuss the role of TGFβ in homeostasis of articular cartilage and subchondral bone as a novel target for OA therapy. PMID:24745631

  10. Evidence for a negative Pasteur effect in articular cartilage.

    PubMed

    Lee, R B; Urban, J P

    1997-01-01

    Uptake of external glucose and production of lactate were measured in freshly-excised bovine articular cartilage under O2 concentrations ranging from 21% (air) to zero (N2-bubbled). Anoxia (O2 concentration < 1% in the gas phase) severely inhibited both glucose uptake and lactate production. The decrease in lactate formation correlated closely with the decrease in glucose uptake, in a mole ratio of 2:1. This reduction in the rate of glycolysis in anoxic conditions is seen as evidence of a negative Pasteur effect in bovine articular cartilage. Anoxia also suppressed glycolysis in articular cartilage from horse, pig and sheep. Inhibitors acting on the glycolytic pathway (2-deoxy-D-glucose, iodoacetamide or fluoride) strongly decreased aerobic lactate production and ATP concentration, consistent with the belief that articular cartilage obtains its principal supply of ATP from substrate-level phosphorylation in glycolysis. Azide or cyanide lowered the ATP concentration in aerobic cartilage to approximately the same extent as did anoxia but, because glycolysis (lactate production) was also inhibited by these treatments, the importance of any mitochondrial ATP production could not be assessed. A negative Pasteur effect would make chondrocytes particularly liable to suffer a shortage of energy under anoxic conditions. Incorporation of [35S]sulphate into proteoglycan was severely curtailed by treatments, such as anoxia, which decreased the intracellular concentration of ATP.

  11. Matrilin-3 Role in Cartilage Development and Osteoarthritis

    PubMed Central

    Muttigi, Manjunatha S.; Han, Inbo; Park, Hun-Kuk; Park, Hansoo; Lee, Soo-Hong

    2016-01-01

    The extracellular matrix (ECM) of cartilage performs essential functions in differentiation and chondroprogenitor cell maintenance during development and regeneration. Here, we discuss the vital role of matrilin-3, an ECM protein involved in cartilage development and potential osteoarthritis pathomechanisms. As an adaptor protein, matrilin-3 binds to collagen IX to form a filamentous network around cells. Matrilin-3 is an essential component during cartilage development and ossification. In addition, it interacts directly or indirectly with transforming growth factor β (TGF-β), and bone morphogenetic protein 2 (BMP2) eventually regulates chondrocyte proliferation and hypertrophic differentiation. Interestingly, matrilin-3 increases interleukin receptor antagonists (IL-Ra) in chondrocytes, suggesting its role in the suppression of IL-1β-mediated inflammatory action. Matrilin-3 downregulates the expression of matrix-degrading enzymes, such as a disintegrin metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and ADAMTS5, matrix metalloproteinase 13 (MMP13), and collagen X, a hypertrophy marker during development and inflammatory conditions. Matrilin-3 essentially enhances collagen II and aggrecan expression, which are required to maintain the tensile strength and elasticity of cartilage, respectively. Interestingly, despite these attributes, matrilin-3 induces osteoarthritis-associated markers in chondrocytes in a concentration-dependent manner. Existing data provide insights into the critical role of matrilin-3 in inflammation, matrix degradation, and matrix formation in cartilage development and osteoarthritis. PMID:27104523

  12. 5. Historic American Buildings Survey Taken from drawing sheet, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Taken from drawing sheet, SHEET #21, Showing the house as restored since Survey. (Dormer windows omitted as not authentic) - Samuel des Marest House, River Road, New Milford, Bergen County, NJ

  13. 71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLEARCHED DAM: STRESS SHEET, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLE-ARCHED DAM: STRESS SHEET, SHEET 3; DECEMBER 20, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  14. Acellular Dermal Matrix as a Core Strut for Projection in Nipple Reconstruction: Approaches for Three Different Methods of Breast Reconstruction

    PubMed Central

    Park, Gui-Yong; Cho, Hee-Eun; Lee, Byung-Il; Park, Seung-Ha

    2016-01-01

    Background The objective of this paper was to describe a novel technique for improving the maintenance of nipple projection in primary nipple reconstruction by using acellular dermal matrix as a strut in one of three different configurations, according to the method of prior breast reconstruction. The struts were designed to best fill the different types of dead spaces in nipple reconstruction depending on the breast reconstruction method. Methods A total of 50 primary nipple reconstructions were performed between May 2012 and May 2015. The prior breast reconstruction methods were latissimus dorsi (LD) flap (28 cases), transverse rectus abdominis myocutaneous (TRAM) flap (10 cases), or tissue expander/implant (12 cases). The nipple reconstruction technique involved the use of local flaps, including the C-V flap or star flap. A 1×2-cm acellular dermal matrix was placed into the core with O-, I-, and L-shaped struts for prior LD, TRAM, and expander/implant methods, respectively. The projection of the reconstructed nipple was measured at the time of surgery and at 3, 6, and 9 months postoperatively. Results The nine-month average maintenance of nipple projection was 73.0%±9.67% for the LD flap group using an O-strut, 72.0%±11.53% for the TRAM flap group using an I-strut, and 69.0%±10.82% for the tissue expander/implant group using an L-strut. There were no cases of infection, wound dehiscence, or flap necrosis. Conclusions The application of an acellular dermal matrix with a different kind of strut for each of 3 breast reconstruction methods is an effective addition to current techniques for improving the maintenance of long-term projection in primary nipple reconstruction. PMID:27689049

  15. Structural and redox behavior of OxyVita, a zero-linked polymeric hemoglobin: comparison with natural acellular polymeric hemoglobins.

    PubMed

    Harrington, John P; Orlik, Kseniya; Orlig, Kseniya; Zito, Samantha L; Wollocko, Jacek; Wollocko, Hanna

    2010-04-01

    A zero-linked polymeric hemoglobin (OxyVita Hb) has been developed for application as an acellular therapeutic hemoglobin-based-oxygen-carrier (HBOC). For effective and safe oxygen binding, transport and delivery, an HBOC must meet essential molecular requirements related to its structural integrity and redox stability. OxyVita is a super polymer possessing an average M.wt. of 17 x 10(6) Da. Structural integrity was determined by unfolding studies of OxyVita in the presence of increasing concentrations of urea. The unfolding midpoints (D(1/2)) of different preparations of OxyVita (solution and powder forms) were compared to Lumbricus Hb (LtHb) and Arenicola Hb (ArHb), natural acellular polymeric hemoglobins, which are serving as models for an effective and safe acellular HBOC. Reduction studies of OxyVita Hb using endogenous reducing agents were also investigated. Results from these studies indicate that: 1) OxyVita Hb exhibits greater resistance to conformational change than either LtHb or ArHb in the reduced (oxyHb) state; and 2) the reduction of met OxyVita Hb to oxyHb occurs slowly in the presence of either ascorbic acid (70% reduction in 560 min.) or beta-NADH (40% reduction in 90 min.). These studies provide consistent evidence that OxyVita Hb possesses physiochemical properties that exhibit structural integrity and redox behavior necessary for functioning as an effective and safe HBOC within clinical applications. These results are in agreement with observations made by other investigators as to the reduction in heme-loss of OxyVita Hb, essential for the reversible binding/release of molecular oxygen within the circulatory system. PMID:20196683

  16. Structural and redox behavior of OxyVita, a zero-linked polymeric hemoglobin: comparison with natural acellular polymeric hemoglobins.

    PubMed

    Harrington, John P; Orlik, Kseniya; Orlig, Kseniya; Zito, Samantha L; Wollocko, Jacek; Wollocko, Hanna

    2010-04-01

    A zero-linked polymeric hemoglobin (OxyVita Hb) has been developed for application as an acellular therapeutic hemoglobin-based-oxygen-carrier (HBOC). For effective and safe oxygen binding, transport and delivery, an HBOC must meet essential molecular requirements related to its structural integrity and redox stability. OxyVita is a super polymer possessing an average M.wt. of 17 x 10(6) Da. Structural integrity was determined by unfolding studies of OxyVita in the presence of increasing concentrations of urea. The unfolding midpoints (D(1/2)) of different preparations of OxyVita (solution and powder forms) were compared to Lumbricus Hb (LtHb) and Arenicola Hb (ArHb), natural acellular polymeric hemoglobins, which are serving as models for an effective and safe acellular HBOC. Reduction studies of OxyVita Hb using endogenous reducing agents were also investigated. Results from these studies indicate that: 1) OxyVita Hb exhibits greater resistance to conformational change than either LtHb or ArHb in the reduced (oxyHb) state; and 2) the reduction of met OxyVita Hb to oxyHb occurs slowly in the presence of either ascorbic acid (70% reduction in 560 min.) or beta-NADH (40% reduction in 90 min.). These studies provide consistent evidence that OxyVita Hb possesses physiochemical properties that exhibit structural integrity and redox behavior necessary for functioning as an effective and safe HBOC within clinical applications. These results are in agreement with observations made by other investigators as to the reduction in heme-loss of OxyVita Hb, essential for the reversible binding/release of molecular oxygen within the circulatory system.

  17. Acellular Dermal Matrix as a Core Strut for Projection in Nipple Reconstruction: Approaches for Three Different Methods of Breast Reconstruction

    PubMed Central

    Park, Gui-Yong; Cho, Hee-Eun; Lee, Byung-Il; Park, Seung-Ha

    2016-01-01

    Background The objective of this paper was to describe a novel technique for improving the maintenance of nipple projection in primary nipple reconstruction by using acellular dermal matrix as a strut in one of three different configurations, according to the method of prior breast reconstruction. The struts were designed to best fill the different types of dead spaces in nipple reconstruction depending on the breast reconstruction method. Methods A total of 50 primary nipple reconstructions were performed between May 2012 and May 2015. The prior breast reconstruction methods were latissimus dorsi (LD) flap (28 cases), transverse rectus abdominis myocutaneous (TRAM) flap (10 cases), or tissue expander/implant (12 cases). The nipple reconstruction technique involved the use of local flaps, including the C-V flap or star flap. A 1×2-cm acellular dermal matrix was placed into the core with O-, I-, and L-shaped struts for prior LD, TRAM, and expander/implant methods, respectively. The projection of the reconstructed nipple was measured at the time of surgery and at 3, 6, and 9 months postoperatively. Results The nine-month average maintenance of nipple projection was 73.0%±9.67% for the LD flap group using an O-strut, 72.0%±11.53% for the TRAM flap group using an I-strut, and 69.0%±10.82% for the tissue expander/implant group using an L-strut. There were no cases of infection, wound dehiscence, or flap necrosis. Conclusions The application of an acellular dermal matrix with a different kind of strut for each of 3 breast reconstruction methods is an effective addition to current techniques for improving the maintenance of long-term projection in primary nipple reconstruction.

  18. Physical mechanisms underlying the strain-rate-dependent mechanical behavior of kangaroo shoulder cartilage

    NASA Astrophysics Data System (ADS)

    Thibbotuwawa, Namal; Oloyede, Adekunle; Li, Tong; Singh, Sanjleena; Senadeera, Wijitha; Gu, YuanTong

    2015-09-01

    Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of the kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages, it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to the studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.

  19. The effect of calcification on the structural mechanics of the costal cartilage.

    PubMed

    Forman, Jason L; Kent, Richard W

    2014-01-01

    The costal cartilage often undergoes progressive calcification with age. This study sought to investigate the effects of calcification on the structural mechanics of whole costal cartilage segments. Models were developed for five costal cartilage specimens, including representations of the cartilage, the perichondrium, calcification, and segments of the rib and sternum. The material properties of the cartilage were determined through indentation testing; the properties of the perichondrium were determined through optimisation against structural experiments. The calcified regions were then expanded or shrunk to develop five different sensitivity analysis models for each. Increasing the relative volume of calcification from 0% to 24% of the cartilage volume increased the stiffness of the costal cartilage segments by a factor of 2.3-3.8. These results suggest that calcification may have a substantial effect on the stiffness of the costal cartilage which should be considered when modelling the chest, especially if age is a factor.

  20. Some biochemical characteristics and water exchange in human articular cartilage in osteoarthrosis.

    PubMed

    Nikolaeva, S S; Roshchina, A A; Zon Chkhol, Kim; Bykov, V A; Rebrova, G A; Koroleva, O A; Yakovleva, L V; Abramov, Yu V; Rebrov, L B

    2002-05-01

    Rearrangement of intra- and intermolecular bonds in collagen molecule, disaggregation of proteoglycans and their elimination from cartilage involved in osteoarthrosis are responsible for water accumulation and its increased mobility in cartilage.

  1. Cartilage Grown in Lab Might One Day Help Younger Arthritis Sufferers

    MedlinePlus

    ... it's promising because the cartilage is only partially artificial -- it also includes the patient's stem cells -- and ... find a way to engineer a kind of artificial cartilage that could be used to "resurface" joints, ...

  2. Plastic Surgery and Acellular Dermal Matrix: Highlighting Trends from 1999 to 2013.

    PubMed

    Daar, David A; Gandy, Jessica R; Clark, Emily G; Mowlds, Donald S; Paydar, Keyianoosh Z; Wirth, Garrett A

    2016-05-01

    The last decade has ushered in a rapidly expanding global discussion regarding acellular dermal matrix (ADM) applications, economic analyses, technical considerations, benefits, and risks, with recent emphasis on ADM use in breast surgery. This study aims to evaluate global trends in ADM research using bibliometric analysis. The top nine Plastic Surgery journals were determined by impact factor (IF). Each issue of the nine journals between 1999 and 2013 was accessed to compile a database of articles discussing ADM. Publications were further classified by IF, authors' geographic location, study design, and level of evidence (LOE, I-V). Productivity index and productivity share were calculated for each region. In total, 256 ADM articles were accessed. The annual global publication volume increased significantly by 4.2 (0.87) articles per year (p<0.001), with a mean productivity index of 36.3 (59.0). The mean impact factor of the nine journals increased significantly from 0.61 (0.11) to 2.47 (0.99) from 1993 to 2013 (p<0.001). Despite this increase in the global ADM literature, the majority of research was of weaker LOE (level I: 2.29% and level II: 9.17%). USA contributed the most research (87%), followed by Asia (4.76%) and Western Europe (4.71%). USA contributed the greatest volume of research. Regarding clinical application of ADM, the majority of publications focused on ADM use in breast surgery, specifically breast reconstruction (154 articles, 60.2%). The majority of research was of lower LOE; thus, efforts should be made to strengthen the body of literature, particularly with regard to cost analysis.

  3. A Complication Analysis of 2 Acellular Dermal Matrices in Prosthetic-based Breast Reconstruction

    PubMed Central

    Page, Eugenia K.; Hart, Alexandra; Rudderman, Randall; Carlson, Grant W.; Losken, Albert

    2016-01-01

    Background: Acellular dermal matrices (ADM) are now routine in postmastectomy prosthetic-based breast reconstruction. The goal of the current study was to compare the complications of 2 ADM products—AlloDerm and Cortiva. Methods: A retrospective analysis of prosthetic-based breast reconstruction in Atlanta, Ga., over 5 years. Inclusion criteria were the use of the ADM types (AlloDerm or Cortiva) and use of a tissue expander or implant. Statistical analysis compared group demographics, risk factors, and early complications. Results: Of the 298 breast reconstructions, 174 (58.4%) used AlloDerm and 124 (41.6%) used Cortiva. There was no difference in overall complication frequency (16 AlloDerm and 18 Cortiva; P = 0.195). Within specific categories, there was a difference in mastectomy skin flap necrosis, but, based on further regression analysis, this was attributable to differences in body mass index (P = 0.036). Furthermore, there were no differences in the rates of infection (6 AlloDerm and 5 Cortiva; P = 1.0), seroma/hematoma (9 AlloDerm and 7 Cortiva; P = 1.0), or drain duration (13.2 day AlloDerm and 14.2 day Cortiva, P = 0.2). By using a general estimating equation for binomial logistical regression, it was found that only current tobacco use (P = 0.033) was a significant predictor for a complication. Trending predictors were body mass index (P = 0.074) and age (P = 0.093). The type of matrix was not a significant predictor for any of the recorded complication (P = 0.160). Conclusions: Although AlloDerm is well established, we have shown that Cortiva has an equivalent complication frequency. Future work will focus on long-term outcome measures and histological evaluation of vascularization and integration. PMID:27536479

  4. Histologic, Molecular, and Clinical Evaluation of Explanted Breast Prostheses, Capsules, and Acellular Dermal Matrices for Bacteria

    PubMed Central

    Poppler, Louis; Cohen, Justin; Dolen, Utku Can; Schriefer, Andrew E.; Tenenbaum, Marissa M.; Deeken, Corey; Chole, Richard A.; Myckatyn, Terence M.

    2015-01-01

    Background Subclinical infections, manifest as biofilms, are considered an important cause of capsular contracture. Acellular dermal matrices (ADMs) are frequently used in revision surgery to prevent recurrent capsular contractures. Objective We sought to identify an association between capsular contracture and biofilm formation on breast prostheses, capsules, and ADMs in a tissue expander/implant (TE/I) exchange clinical paradigm. Methods Biopsies of the prosthesis, capsule, and ADM from patients (N = 26) undergoing TE/I exchange for permanent breast implant were evaluated for subclinical infection. Capsular contracture was quantified with Baker Grade and intramammary pressure. Biofilm formation was evaluated with specialized cultures, rtPCR, bacterial taxonomy, live:dead staining, and scanning electron microscopy (SEM). Collagen distribution, capsular histology, and ADM remodeling were quantified following fluorescent and light microscopy. Results Prosthetic devices were implanted from 91 to 1115 days. Intramammary pressure increased with Baker Grade. Of 26 patients evaluated, one patient had a positive culture and one patient demonstrated convincing evidence of biofilm morphology on SEM. Following PCR amplification 5 samples randomly selected for 16S rRNA gene sequencing demonstrated an abundance of suborder Micrococcineae, consistent with contamination. Conclusions Our data suggest that bacterial biofilms likely contribute to a proportion, but not all diagnosed capsular contractures. Biofilm formation does not appear to differ significantly between ADMs or capsules. While capsular contracture remains an incompletely understood but common problem in breast implant surgery, advances in imaging, diagnostic, and molecular techniques can now provide more sophisticated insights into the pathophysiology of capsular contracture. Level of Evidence PMID:26229126

  5. Plastic Surgery and Acellular Dermal Matrix: Highlighting Trends from 1999 to 2013.

    PubMed

    Daar, David A; Gandy, Jessica R; Clark, Emily G; Mowlds, Donald S; Paydar, Keyianoosh Z; Wirth, Garrett A

    2016-05-01

    The last decade has ushered in a rapidly expanding global discussion regarding acellular dermal matrix (ADM) applications, economic analyses, technical considerations, benefits, and risks, with recent emphasis on ADM use in breast surgery. This study aims to evaluate global trends in ADM research using bibliometric analysis. The top nine Plastic Surgery journals were determined by impact factor (IF). Each issue of the nine journals between 1999 and 2013 was accessed to compile a database of articles discussing ADM. Publications were further classified by IF, authors' geographic location, study design, and level of evidence (LOE, I-V). Productivity index and productivity share were calculated for each region. In total, 256 ADM articles were accessed. The annual global publication volume increased significantly by 4.2 (0.87) articles per year (p<0.001), with a mean productivity index of 36.3 (59.0). The mean impact factor of the nine journals increased significantly from 0.61 (0.11) to 2.47 (0.99) from 1993 to 2013 (p<0.001). Despite this increase in the global ADM literature, the majority of research was of weaker LOE (level I: 2.29% and level II: 9.17%). USA contributed the most research (87%), followed by Asia (4.76%) and Western Europe (4.71%). USA contributed the greatest volume of research. Regarding clinical application of ADM, the majority of publications focused on ADM use in breast surgery, specifically breast reconstruction (154 articles, 60.2%). The majority of research was of lower LOE; thus, efforts should be made to strengthen the body of literature, particularly with regard to cost analysis. PMID:27579264

  6. Randomized controlled trial of minimally invasive surgery using acellular dermal matrix for complex anorectal fistula

    PubMed Central

    A ba-bai-ke-re, Ma-Mu-Ti-Jiang; Wen, Hao; Huang, Hong-Guo; Chu, Hui; Lu, Ming; Chang, Zhong-Sheng; Ai, Er-Ha-Ti; Fan, Kai

    2010-01-01

    AIM: To compare the efficacy and safety of acellular dermal matrix (ADM) bioprosthetic material and endorectal advancement flap (ERAF) in treatment of complex anorectal fistula. METHODS: Ninety consecutive patients with complex anorectal fistulae admitted to Anorectal Surgical Department of First Affiliated Hospital, Xinjiang Medical University from March 2008 to July 2009, were enrolled in this study. Complex anorectal fistula was diagnosed following its clinical, radiographic, or endoscopic diagnostic criteria. Under spinal anesthesia, patients underwent identification and irrigation of the fistula tracts using hydrogen peroxide. ADM was securely sutured at the secondary opening to the primary opening using absorbable suture. Outcomes of ADM and ERAF closure were compared in terms of success rate, fecal incontinence rate, anorectal deformity rate, postoperative pain time, closure time and life quality score. Success was defined as closure of all external openings, absence of drainage without further intervention, and absence of abscess formation. Follow-up examination was performed 2 d, 2, 4, 6, 12 wk, and 5 mo after surgery, respectively. RESULTS: No patient was lost to follow-up. The overall success rate was 82.22% (37/45) 5.7 mo after surgery. ADM dislodgement occured in 5 patients (11.11%), abscess formation was found in 1 patient, and fistula recurred in 2 patients. Of the 13 patients with recurrent fistula using ERAF, 5 (11.11%) received surgical drainage because of abscess formation. The success rate, postoperative pain time and closure time of ADM were significantly higher than those of ERAF (P < 0.05). However, no difference was observed in fecal incontinence rate and anorectal deformity rate after treatment with ADM and ERAF. CONCLUSION: Closure of fistula tract opening with ADM is an effective procedure for complex anorectal fistula. ADM should be considered a first line treatment for patients with complex anorectal fistula. PMID:20614483

  7. Plastic Surgery and Acellular Dermal Matrix: Highlighting Trends from 1999 to 2013

    PubMed Central

    Daar, David A; Gandy, Jessica R; Clark, Emily G; Mowlds, Donald S; Paydar, Keyianoosh Z; Wirth, Garrett A

    2016-01-01

    The last decade has ushered in a rapidly expanding global discussion regarding acellular dermal matrix (ADM) applications, economic analyses, technical considerations, benefits, and risks, with recent emphasis on ADM use in breast surgery. This study aims to evaluate global trends in ADM research using bibliometric analysis. The top nine Plastic Surgery journals were determined by impact factor (IF). Each issue of the nine journals between 1999 and 2013 was accessed to compile a database of articles discussing ADM. Publications were further classified by IF, authors’ geographic location, study design, and level of evidence (LOE, I-V). Productivity index and productivity share were calculated for each region. In total, 256 ADM articles were accessed. The annual global publication volume increased significantly by 4.2 (0.87) articles per year (p<0.001), with a mean productivity index of 36.3 (59.0). The mean impact factor of the nine journals increased significantly from 0.61 (0.11) to 2.47 (0.99) from 1993 to 2013 (p<0.001). Despite this increase in the global ADM literature, the majority of research was of weaker LOE (level I: 2.29% and level II: 9.17%). USA contributed the most research (87%), followed by Asia (4.76%) and Western Europe (4.71%). USA contributed the greatest volume of research. Regarding clinical application of ADM, the majority of publications focused on ADM use in breast surgery, specifically breast reconstruction (154 articles, 60.2%). The majority of research was of lower LOE; thus, efforts should be made to strengthen the body of literature, particularly with regard to cost analysis. PMID:27579264

  8. Improved Peripheral Nerve Regeneration Using Acellular Nerve Allografts Loaded with Platelet-Rich Plasma

    PubMed Central

    Zheng, Canbin; Huang, Xijun; He, Caifeng; Jiang, Li; Quan, Daping

    2014-01-01

    Acellular nerve allografts (ANAs) behave in a similar manner to autografts in supporting axonal regeneration in the repair of short peripheral nerve defects but fail in larger defects. The objective of this article is to evaluate the effect of ANA supplemented with platelet-rich plasma (PRP) to improve nerve regeneration after surgical repair and to discuss the mechanisms that underlie this approach. Autologous PRP was obtained from rats by double-step centrifugation and was characterized by determining platelet numbers and the release of growth factors. Forty-eight Sprague–Dawley rats were randomly divided into 4 groups (12/group), identified as autograft, ANA, ANA loaded with PRP (ANA+PRP), and ANA loaded with platelet-poor plasma (PPP, ANA+PPP). All grafts were implanted to bridge long-gap (15 mm) sciatic nerve defects. We found that PRP with a high platelet concentration exhibited a sustained release of growth factors. Twelve weeks after surgery, the autograft group displayed the highest level of reinnervation, followed by the ANA+PRP group. The ANA+PRP group showed a better electrophysiology response for amplitude and conduction velocity than the ANA and ANA+PPP groups. Based on histological evaluation, the ANA+PRP and autograft groups had higher numbers of regenerating nerve fibers. Quantitative real-time polymerase chain reaction (qRT-PCR) demonstrated that PRP boosted expression of neurotrophins in the regenerated nerves. Moreover, the ANA+PRP and autograft groups showed excellent physiological outcomes in terms of the prevention of muscle atrophy. In conclusion, ANAs loaded with PRP as tissue-engineered scaffolds can enhance nerve regeneration and functional recovery after the repair of large nerve gaps nearly as well as autografts. PMID:24901030

  9. Direct Hospital Cost of Outcome Pathways in Implant-Based Reconstruction with Acellular Dermal Matrices

    PubMed Central

    Qureshi, Ali A.; Broderick, Kristen; Funk, Susan; Reaven, Nancy; Tenenbaum, Marissa M.

    2016-01-01

    Background: Current cost data on tissue expansion followed by exchange for permanent implant (TE/I) reconstruction lack a necessary assessment of the experience of a heterogenous breast cancer patient population and their multiple outcome pathways. We extend our previous analysis to that of direct hospital cost as bundling of payments is likely to follow the changing centralization of cancer care at the hospital level. Methods: We performed a retrospective analysis (2003–2009) of TE/I reconstructions with or without an acellular dermal matrix (ADM), namely Alloderm RTM. Postreconstructive events were analyzed and organized into outcome pathways as previously described. Aggregated and normalized inpatient and outpatient hospital direct costs and physician reimbursement were generated for each outcome pathway with or without ADM. Results: Three hundred sixty-seven patients were analyzed. The average 2-year hospital direct cost per TE/I breast reconstruction patient was $11,862 in the +ADM and $12,319 in the −ADM groups (P > 0.05). Initial reconstructions were costlier in the +ADM ($6,868) than in the −ADM ($5,615) group, but the average cost of subsequent postreconstructive events within 2 years was significantly lower in +ADM ($5,176) than −ADM ($6,704) patients (P < 0.05). When a complication occurred, but reconstruction was still completed within 2 years, greater costs were incurred in the −ADM than in the +ADM group for most scenarios, leading to a net equalization of cost between study groups. Conclusion: Although direct hospital cost is an important factor for resource and fund allocation, it should not remain the sole factor when deciding to use ADM in TE/I reconstruction.

  10. Incidence of Seromas and Infections Using Fenestrated versus Nonfenestrated Acellular Dermal Matrix in Breast Reconstructions

    PubMed Central

    Palaia, David A.; Arthur, Karen S.; Cahan, Anthony C.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) provide clinical benefits in breast reconstruction but have been associated with increased postoperative complications, most frequently seromas. Fenestration of the ADM before insertion into the reconstructed breast may reduce the incidence of postoperative complications. In this retrospective analysis, postoperative complications were assessed after breast reconstruction with or without fenestrated ADMs. Methods: Patients who underwent immediate 2-staged implant breast reconstructions using ADM at a single center were assessed. The number of reconstructed breasts was stratified by ADM fenestration status and ADM type. The incidence of seroma, infection, extrusion, and explantation, and cosmetic score, was compared within the 2 stratified groups. A multivariable regression was performed to identify independent risk factors associated with these complications and aesthetic outcome. Results: In total, data from 450 patients who had 603 breast reconstructions using either AlloDerm or FlexHD demonstrated a significantly higher incidence of seroma with nonfenestrated ADMs (20%) versus fenestrated ADMs (11%; P = 0.0098). Rates of infection and explantation, and cosmetic score, were not influenced by fenestration status. In the multivariable analysis, ADM fenestration remained a significant protective factor for seroma formation. FlexHD also yielded a lower incidence of extrusion (P = 0.0031) and a higher cosmetic score (P = 0.0466) compared with AlloDerm after adjusting for other risk factors. Conclusions: The results of this study support ADM fenestration for reduction of seroma incidence in breast reconstruction, without affecting cosmetic results. Additionally, the choice of ADM may reduce extrusion incidence and improve aesthetic outcomes. PMID:26893994

  11. A New Approach to Minimize Acellular Dermal Matrix Use in Prosthesis-based Breast Reconstruction

    PubMed Central

    Hadad, Ivan; Liu, Allen S.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) are often used to improve lower-pole contour, as well as allow for single-stage reconstruction, but numerous studies have shown an increased complication rate using ADM. As such, our group has developed a minimal-ADM-use technique to lower complications while effectively recreating lower-pole contour. Methods: A total of 380 postmastectomy prosthesis-based breast reconstructions were performed in 265 patients by a single surgeon. One hundred eight reconstructions were performed using the traditional ADM technique, with a large piece of ADM along the entire inferior and lateral borders. Two hundred twenty-five reconstructions were performed with the minimal-use technique, patching only the lateral area of the reconstruction. Thirty-five reconstructions were performed without the use of any ADM for high-risk reconstructions, most often in morbidly obese patients. Results: Comparing the traditional technique with the minimal-use technique, the seroma rate dropped from 3% to 0%. The rate of infection and reconstruction loss fell from 9% to 1%. Upon greatly reducing or eliminating the use of ADM use in obese patients, the seroma rate decreased from 15.4% to 5.7%, and the reconstruction loss rate decreased from 38% to 9%. Conclusions: This article describes a new surgical approach to minimize the amount of ADM necessary to create an aesthetically pleasing breast reconstruction. We believe that this approach helps avoid the complications of seroma, infection, and loss of the reconstruction. In certain obese patients, total avoidance of ADM may be the better choice. PMID:26301161

  12. Different T cell memory in preadolescents after whole-cell or acellular pertussis vaccination.

    PubMed

    Smits, Kaatje; Pottier, Gaelle; Smet, Julie; Dirix, Violette; Vermeulen, Françoise; De Schutter, Iris; Carollo, Maria; Locht, Camille; Ausiello, Clara Maria; Mascart, Françoise

    2013-12-17

    To better understand vaccine-induced protection and its potential failure in light of recent whooping cough resurgence, we evaluated quantity as well as quality of memory T cell responses in B. pertussis-vaccinated preadolescent children. Using a technique based on flow cytometry to detect proliferation, cytokine production and phenotype of antigen-specific cells, we evaluated residual T cell memory in a cohort of preadolescents who received a whole-cell pertussis (wP; n=11) or an acellular pertussis vaccine (aP; n=13) during infancy, and with a median of 4 years elapsed from the last pertussis booster vaccine, which was aP for all children. We demonstrated that B. pertussis-specific memory T cells are detectable in the majority of preadolescent children several years after vaccination. CD4(+) and CD8(+) T cell proliferation in response to pertussis toxin and/or filamentous hemagglutinin was detected in 79% and 60% of the children respectively, and interferon-γ or tumor necrosis factor-α producing CD4(+) T cells were detected in 65% and 53% of the children respectively. Phenotyping of the responding cells showed that the majority of antigen-specific cells, whether defined by proliferation or cytokine production, were CD45RA(-)CCR7(-) effector memory T cells. Although the time since the last booster vaccine was significantly longer for wP-compared to aP-vaccinated children, their proliferation capacity in response to antigenic stimulation was comparable, and more children had a detectable cytokine response after wP- compared to aP-vaccination. This study supports at the immunological level recent epidemiological studies indicating that infant vaccination with wP induces longer lasting immunity than vaccination with aP-vaccines. PMID:24176499

  13. Ex vivo evaluation of acellular and cellular collagen-glycosaminoglycan flowable matrices.

    PubMed

    Hodgkinson, Tom; Bayat, Ardeshir

    2015-08-01

    Collagen-glycosaminoglycan flowable matrices (CGFM) are increasingly finding utility in a diversifying number of cutaneous surgical procedures. Cellular in-growth and vascularisation of CGFM remain rate-limiting steps, increasing cost and decreasing efficacy. Through in vitro and ex vivo culture methods, this study investigated the improvement of injectable CGFM by the incorporation of hyaluronan (HA) and viable human cells (primary human dermal fibroblasts (PHDFs) and bone marrow-derived mesenchymal stem cells (BM-MSCs)). Ex vivo investigations included the development and evaluation of a human cutaneous wound healing model for the comparison of dermal substitutes. Cells mixed into the Integra Flowable Wound Matrix (IFWM), a commercially available CGFM, were confirmed to be viable and proliferative through MTT assays (p  <  0.05). PHDFs proliferated with greater rapidity than BM-MSCs up to 1 week in culture (p  <  0.05), with PHDF proliferation further enhanced by HA supplementation (p  <  0.05). After scaffold mixing, gene expression was not significantly altered (qRT-PCR). PHDF and BM-MSC incorporation into ex vivo wound models significantly increased re-epithelialisation rate, with maximal effects observed for BM-MSC supplemented IFWM. HA supplementation to PHDF populated IFWM increased re-epithelialisation but had no significant effect on BM-MSC populated IFWM. In conclusion, when combined with PHDF, HA increased re-epithelialisation in IFWM. BM-MSC incorporation significantly improved re-epithelialisation in ex vivo models over acellular and PHDF populated scaffolds. Viable cell incorporation into IFWM has potential to significantly benefit wound healing in chronic and acute cutaneous injuries by allowing a point-of-care matrix to be formed from autologous or allogenic cells and bioactive molecules. PMID:26181360

  14. Direct Hospital Cost of Outcome Pathways in Implant-Based Reconstruction with Acellular Dermal Matrices

    PubMed Central

    Qureshi, Ali A.; Broderick, Kristen; Funk, Susan; Reaven, Nancy; Tenenbaum, Marissa M.

    2016-01-01

    Background: Current cost data on tissue expansion followed by exchange for permanent implant (TE/I) reconstruction lack a necessary assessment of the experience of a heterogenous breast cancer patient population and their multiple outcome pathways. We extend our previous analysis to that of direct hospital cost as bundling of payments is likely to follow the changing centralization of cancer care at the hospital level. Methods: We performed a retrospective analysis (2003–2009) of TE/I reconstructions with or without an acellular dermal matrix (ADM), namely Alloderm RTM. Postreconstructive events were analyzed and organized into outcome pathways as previously described. Aggregated and normalized inpatient and outpatient hospital direct costs and physician reimbursement were generated for each outcome pathway with or without ADM. Results: Three hundred sixty-seven patients were analyzed. The average 2-year hospital direct cost per TE/I breast reconstruction patient was $11,862 in the +ADM and $12,319 in the −ADM groups (P > 0.05). Initial reconstructions were costlier in the +ADM ($6,868) than in the −ADM ($5,615) group, but the average cost of subsequent postreconstructive events within 2 years was significantly lower in +ADM ($5,176) than −ADM ($6,704) patients (P < 0.05). When a complication occurred, but reconstruction was still completed within 2 years, greater costs were incurred in the −ADM than in the +ADM group for most scenarios, leading to a net equalization of cost between study groups. Conclusion: Although direct hospital cost is an important factor for resource and fund allocation, it should not remain the sole factor when deciding to use ADM in TE/I reconstruction. PMID:27622099

  15. Root Coverage in Smokers with Acellular Dermal Matrix Graft and Enamel Matrix Derivative: A 12-Month Randomized Clinical Trial.

    PubMed

    Costa, Priscila Paganini; Alves, Luciana Bastos; Souza, Sérgio Luís; Grisi, Márcio Fernando; Palioto, Daniela Bazan; Taba, Mario; Novaes, Arthur Belém

    2016-01-01

    This study investigated whether enamel matrix derivative (EMD) contributes to root coverage of gingival recessions performed with acellular dermal matrix graft (ADMG) in smokers during a 12-month follow-up. A sample of 19 smokers presenting bilateral Miller Class I or II gingival recessions were included. Selected sites randomly received both ADMG and EMD (test) or ADMG alone (control). Probing depth, clinical attachment level, gingival recession height, keratinized tissue, and root coverage were evaluated. Mean gain in recession height (P < .05), sites with complete root coverage (P < .05), and percentage of root coverage (59.7% and 52.8%, respectively) favored the test group compared with the control group. PMID:27333010

  16. The amphoteric effect on friction between the bovine cartilage/cartilage surfaces under slightly sheared hydration lubrication mode.

    PubMed

    Pawlak, Zenon; Gadomski, Adam; Sojka, Michal; Urbaniak, Wieslaw; Bełdowski, Piotr

    2016-10-01

    The amphoteric effect on the friction between the bovine cartilage/cartilage contacts has been found to be highly sensitive to the pH of an aqueous solution. The cartilage surface was characterized using a combination of the pH, wettability, as well as the interfacial energy and friction coefficient testing methods to support lamellar-repulsive mechanism of hydration lubrication. It has been confirmed experimentally that phospholipidic multi-bilayers are essentially described as lamellar frictionless lubricants protecting the surface of the joints against wear. At the hydrophilicity limit, the low friction would then be due to (a) lamellar slippage of bilayers and (b) a short-range (nanometer-scale) repulsion between the interfaces of negatively charged (PO4(-)) cartilage surfaces, and in addition, contribution of the extracellular matrix (ECM) collagen fibers, hyaluronate, proteoglycans aggregates (PGs), glycoprotein termed lubricin and finally, lamellar PLs phases. In this paper we demonstrate experimentally that the pH sensitivity of cartilage to friction provides a novel concept in joint lubrication on charged surfaces.

  17. Low friction hydrogel for articular cartilage repair: evaluation of mechanical and tribological properties in comparison with natural cartilage tissue.

    PubMed

    Blum, Michelle M; Ovaert, Timothy C

    2013-10-01

    The mechanical and tribological properties of a novel biomaterial, a boundary lubricant functionalized hydrogel, were investigated and compared to natural cartilage tissue. This low friction hydrogel material was developed for use as a synthetic replacement for focal defects in articular cartilage. The hydrogel was made by functionalizing the biocompatible polymer polyvinyl alcohol with a carboxylic acid derivative boundary lubricant molecule. Two different gel processing techniques were used to create the hydrogels. The first method consisted of initially functionalizing the boundary lubricant to the polyvinyl alcohol and then creating hydrogels by physically crosslinking the reacted polymer. The second method consisted of creating non-functionalized polyvinyl alcohol hydrogels and then performing the functionalization reaction on the fully formed gel. Osteochondral bovine samples were collected and replicate experiments were conducted to compare the mechanical and tribological performance of the boundary lubricant functionalized hydrogels to non-functionalized hydrogels and native cartilage. Friction experiments displayed a maximum decrease in friction coefficient of 70% for the functionalized hydrogels compared to neat polyvinyl alcohol. Indentation investigated the elastic modulus of the hydrogels, demonstrating that stability of the hydrogel was affected by processing method. Hydrogel performance was within the lower ranges of natural cartilage tested under the exact same conditions, showing the potential of the boundary lubricant functionalized hydrogels to perform as a biomimetic synthetic articular cartilage replacement.

  18. The amphoteric effect on friction between the bovine cartilage/cartilage surfaces under slightly sheared hydration lubrication mode.

    PubMed

    Pawlak, Zenon; Gadomski, Adam; Sojka, Michal; Urbaniak, Wieslaw; Bełdowski, Piotr

    2016-10-01

    The amphoteric effect on the friction between the bovine cartilage/cartilage contacts has been found to be highly sensitive to the pH of an aqueous solution. The cartilage surface was characterized using a combination of the pH, wettability, as well as the interfacial energy and friction coefficient testing methods to support lamellar-repulsive mechanism of hydration lubrication. It has been confirmed experimentally that phospholipidic multi-bilayers are essentially described as lamellar frictionless lubricants protecting the surface of the joints against wear. At the hydrophilicity limit, the low friction would then be due to (a) lamellar slippage of bilayers and (b) a short-range (nanometer-scale) repulsion between the interfaces of negatively charged (PO4(-)) cartilage surfaces, and in addition, contribution of the extracellular matrix (ECM) collagen fibers, hyaluronate, proteoglycans aggregates (PGs), glycoprotein termed lubricin and finally, lamellar PLs phases. In this paper we demonstrate experimentally that the pH sensitivity of cartilage to friction provides a novel concept in joint lubrication on charged surfaces. PMID:27395038

  19. Quick Information Sheets. 1988.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    The Trace Center gathers and organizes information on communication, control, and computer access for handicapped individuals. The information is disseminated in the form of brief sheets describing print, nonprint, and organizational resources and listing addresses and telephone numbers for ordering or for additional information. This compilation…

  20. Quick Information Sheets.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    This compilation of "Trace Quick Sheets" provides descriptions, prices, and ordering information for products and services that assist with communication, control, and computer access for disabled individuals. Product descriptions or product sources are included for: adaptive toys and toy modifications; head pointers, light pointers, and…

  1. Ethanol Myths Fact Sheet

    SciTech Connect

    2009-10-27

    Ethanol is a clean, renewable fuel that is helping to reduce our nation’s dependence on oil and can offer additional economic and environmental benefits in the future. This fact sheet is intended to address some common misconceptions about this important alternative fuel.

  2. Insulation Fact Sheet.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Heating and cooling account for 50-70% of the energy consumed in the average American home. Heating water accounts for another 20%. A poorly insulated home loses much of this energy, causing drafty rooms and high energy bills. This fact sheet discusses how to determine if your home needs more insulation, the additional thermal resistance (called…

  3. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  4. Reading Recovery. [Fact Sheets].

    ERIC Educational Resources Information Center

    Reading Recovery Council of North America, Columbus, OH.

    This set of 10 fact sheets (each 2 to 4 pages long) addresses aspects of Reading Recovery, a program that helps children to be proficient readers and writers by the end of the first grade. It discusses the basic facts of Reading Recovery; Reading Recovery for Spanish literacy; Reading Recovery lessons; Reading Recovery professional development;…

  5. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  6. Imaging Strategies for Assessing Cartilage Composition in Osteoarthritis

    PubMed Central

    Matzat, Stephen J.; Kogan, Feliks; Fong, Grant W.; Gold, Garry E.

    2015-01-01

    Efforts to reduce the ever-increasing rates of osteoarthritis (OA) in the developed world require the ability to non-invasively detect the degradation of joint tissues before advanced damage has occurred. This is particularly relevant for damage to articular cartilage because this soft tissue lacks the capacity to repair itself following major damage and is essential to proper joint function. While conventional magnetic resonance imaging (MRI) provides sufficient contrast to visualize articular cartilage morphology, more advanced imaging strategies are necessary for understanding the underlying biochemical composition of cartilage that begins to break down in the earliest stages of OA. This review discusses the biochemical basis and the advantages and disadvantages associated with each of these techniques. Recent implementations for these techniques are touched upon, and future considerations for improving the research and clinical power of these imaging technologies are also discussed. PMID:25218737

  7. Hydrogel-Based Controlled Delivery Systems for Articular Cartilage Repair

    PubMed Central

    Madry, Henning

    2016-01-01

    Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic action and raise undesired effects. The use of controlled delivery systems has the potential of overcoming these hurdles by promoting the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required. This review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for cartilage repair. PMID:27642587

  8. Hydrogel-Based Controlled Delivery Systems for Articular Cartilage Repair.

    PubMed

    Rey-Rico, Ana; Madry, Henning; Cucchiarini, Magali

    2016-01-01

    Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic action and raise undesired effects. The use of controlled delivery systems has the potential of overcoming these hurdles by promoting the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required. This review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for cartilage repair. PMID:27642587

  9. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration

    NASA Astrophysics Data System (ADS)

    Wang, Dong-An; Varghese, Shyni; Sharma, Blanka; Strehin, Iossif; Fermanian, Sara; Gorham, Justin; Fairbrother, D. Howard; Cascio, Brett; Elisseeff, Jennifer H.

    2007-05-01

    A biologically active, high-strength tissue adhesive is needed for numerous medical applications in tissue engineering and regenerative medicine. Integration of biomaterials or implants with surrounding native tissue is crucial for both immediate functionality and long-term performance of the tissue. Here, we use the biopolymer chondroitin sulphate (CS), one of the major components of cartilage extracellular matrix, to develop a novel bioadhesive that is readily applied and acts quickly. CS was chemically functionalized with methacrylate and aldehyde groups on the polysaccharide backbone to chemically bridge biomaterials and tissue proteins via a twofold covalent link. Three-dimensional hydrogels (with and without cells) bonded to articular cartilage defects. In in vitro and in vivo functional studies this approach led to mechanical stability of the hydrogel and tissue repair in cartilage defects.

  10. [Structure of the articular cartilage in the middle aged].

    PubMed

    Kop'eva, T N; Mul'diiarov, P Ia; Bel'skaia, O B; Pastel', V B

    1983-10-01

    In persons 17-83 years of age having no articular disorders 39 samples of the patellar articular cartilage, the articulated surface and the femoral head have been studied histochemically, histometrically and electron microscopically. Age involution of the articular cartilage is revealed after 40 years of age as a progressive decrease in chondrocytes density in the superficial and (to a less degree) in the intermediate zones. This is accompanied with a decreasing number of 3- and 4-cellular lacunae and with an increasing number of unicellular and hollow lacunae. In some chondrocytes certain distrophic and necrotic changes are revealed. In the articular matrix the zone with the minimal content of glycosaminoglycans becomes thicker and keratansulfate content in the territorial matrix of the cartilage deep zone grows large.

  11. AMIC Cartilage Repair in a Professional Soccer Player.

    PubMed

    Bark, S; Riepenhof, H; Gille, J

    2012-01-01

    We report a case of a professional soccer player suffering from a traumatic cartilage lesion grade IV according to the Outerbridge classification at the femoral condyle treated with an enhanced microfracture technique (AMIC). Autologous Matrix-Induced Chondrogenesis (AMIC) is an innovative treatment for localized full-thickness cartilage defects combining the well-known microfracturing with collagen scaffold and fibrin glue. Because of the cartilage lesion (3 cm(2)), an AMIC procedure was performed followed by a rehabilitation program according to the protocols in the literature, (Steadman et al.; 2003). After 8 months of rehabilitation, the player returned to team training and after 10 months to competition. Altogether he returned to the same skill level for almost one year after the index operation. He is very satisfied with the clinical results after AMIC, which corresponds with the Lysholm score of 90 points at 12 months.

  12. [Effect of chronic vitamin D deficiency on joint cartilage].

    PubMed

    Gyarmati, J; Földes, I; Varga, S; Kiss, I; Kern, M; Gyarmati, J

    1984-01-01

    The effect of six-months rachitic diet on the articular cartilage of 12 white Whistar male rats has been studied using light, polarisation, and electronmicroscopes. On the basis of our observations radical changes could be noticed. The intracellular accumulation of glycogen and lipid and the necrosis of cells in the proof/inner/zone indicate the modifications of the cell's structure. The effect of permanent diet on the ground substance of articular cartilage was identified by irregular collagen fibers, and quantitative and qualitative changes of GAGs. On the basis of several author's argumentations it can be supposed that different illness/insufficiency of liver and kidney, and disturbance of resorption in human/can induce similar changes of articular cartilage which was produced by a long term rachitic diet. The cytological picture after long lasting rachitic diet is comparable with the arthrosis.

  13. Reconstruction of traumatic orbital floor defects using irradiated cartilage homografts.

    PubMed

    Bevivino, J R; Nguyen, P N; Yen, L J

    1994-07-01

    The important role of orbital shape and volume reconstruction has been studied by many investigators. There is, however, no consensus on the material that should be used in the reconstruction of the orbit. Both biologic and alloplastic materials have been used, each with its advantages and disadvantages. Here we report our experience with irradiated costal cartilage homograft in the reconstruction of the orbital floor. Irradiated cartilage grafts were used in 31 patients with significant traumatic defects in the orbital floor. Long-term follow-up in 21 patients up to 48 months revealed no incidence of graft infections, extrusions, or clinically detectable graft distortion or resorption. Irradiated cartilage homograft appears to be an excellent material for reconstruction of the orbital floor. PMID:7944194

  14. Hydrogel-Based Controlled Delivery Systems for Articular Cartilage Repair

    PubMed Central

    Madry, Henning

    2016-01-01

    Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic action and raise undesired effects. The use of controlled delivery systems has the potential of overcoming these hurdles by promoting the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required. This review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for cartilage repair.

  15. Rubella - Fact Sheet for Parents

    MedlinePlus

    ... this page: About CDC.gov . Redirect for the Rubella fact sheet page. The current fact sheet can ... http://www.cdc.gov/vaccines/parents/diseases/child/rubella.html Print page Share Compartir File Formats Help: ...

  16. The effect of mesenchymal stem cell sheets on structural allograft healing of critical-sized femoral defects in mice

    PubMed Central

    Long, Teng; Zhu, Zhenan; Awad, Hani A.; Schwarz, Edward M.; Hilton, Matthew J.; Dong, Yufeng

    2014-01-01

    Structural bone allografts are widely used in the clinic to treat critical sized bone defects, despite lacking the osteoinductive characteristics of live autografts. To address this, we generated revitalized structural allografts wrapped with mesenchymal stem/progenitor cell (MSC) sheets, which were produced by expanding primary syngenic bone marrow derived cells on temperature-responsive plates, as a tissue engineered periosteum. In vitro assays demonstrated maintenance of the MSC phenotype in the sheets, suggesting that short-term culturing of MSC sheets is not detrimental. To test their efficacy in vivo, allografts wrapped with MSC sheets were transplanted into 4-mm murine femoral defects and compared to allografts with direct seeding of MSCs and allografts without cells. Evaluations consisted of x-ray plain radiography, 3D microCT, histology, and biomechanical testing at 4- and 6-weeks post-surgery. Our findings demonstrate that MSC sheets induce prolonged cartilage formation at the graft-host junction and enhanced bone callus formation, as well as graft-host osteointegration. Moreover, a large periosteal callus was observed spanning the allografts with MSC sheets, which partially mimics live autograft healing. Finally, biomechanical testing showed a significant increase in the structural and functional properties of MSC sheet grafted femurs. Taken together, MSC sheets exhibit enhanced osteogenicity during critical sized bone defect repair, demonstrating the feasibility of this tissue engineering solution for massive allograft healing. PMID:24393269

  17. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site

    PubMed Central

    Wang, Zhifa; Li, Zhijin; Dai, Taiqiang; Zong, Chunlin; Liu, Yanpu; Liu, Bin

    2016-01-01

    To determine the effect of adipose-derived stem cells (ADSCs) added to bone marrow-derived mesenchymal stem cell (MSC) sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID) mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration. PMID:26848656

  18. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site.

    PubMed

    Wang, Zhifa; Li, Zhijin; Dai, Taiqiang; Zong, Chunlin; Liu, Yanpu; Liu, Bin

    2016-01-01

    To determine the effect of adipose-derived stem cells (ADSCs) added to bone marrow-derived mesenchymal stem cell (MSC) sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID) mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.

  19. The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice.

    PubMed

    Long, Teng; Zhu, Zhenan; Awad, Hani A; Schwarz, Edward M; Hilton, Matthew J; Dong, Yufeng

    2014-03-01

    Structural bone allografts are widely used in the clinic to treat critical sized bone defects, despite lacking the osteoinductive characteristics of live autografts. To address this, we generated revitalized structural allografts wrapped with mesenchymal stem/progenitor cell (MSC) sheets, which were produced by expanding primary syngenic bone marrow derived cells on temperature-responsive plates, as a tissue-engineered periosteum. In vitro assays demonstrated maintenance of the MSC phenotype in the sheets, suggesting that short-term culturing of MSC sheets is not detrimental. To test their efficacy in vivo, allografts wrapped with MSC sheets were transplanted into 4-mm murine femoral defects and compared to allografts with direct seeding of MSCs and allografts without cells. Evaluations consisted of X-ray plain radiography, 3D microCT, histology, and biomechanical testing at 4- and 6-weeks post-surgery. Our findings demonstrate that MSC sheets induce prolonged cartilage formation at the graft-host junction and enhanced bone callus formation, as well as graft-host osteointegration. Moreover, a large periosteal callus was observed spanning the allografts with MSC sheets, which partially mimics live autograft healing. Finally, biomechanical testing showed a significant increase in the structural and functional properties of MSC sheet grafted femurs. Taken together, MSC sheets exhibit enhanced osteogenicity during critical sized bone defect repair, demonstrating the feasibility of this tissue engineering solution for massive allograft healing.

  20. Analysis of cartilage-polydioxanone foil composite grafts.

    PubMed

    Kim, James H; Wong, Brian

    2013-12-01

    This study presents an analytical investigation into the mechanical behavior of a cartilage-polydioxanone (PDS) plate composite grafts. Numerical methods are used to provide a first-order, numerical model of the flexural stiffness of a cartilage-PDS graft. Flexural stiffness is a measure of resistance to bending and is inversely related to the amount of deformation a structure may experience when subjected to bending forces. The cartilage-PDS graft was modeled as a single composite beam. Using Bernoulli-Euler beam theory, a closed form equation for the theoretical flexural stiffness of the composite graft was developed. A parametric analysis was performed to see how the flexural properties of the composite model changed with varying thicknesses of PDS foil. The stiffness of the cartilage-PDS composite using 0.15-mm-thick PDS was four times higher than cartilage alone. The composite with a 0.5-mm-thick PDS graft was only 1.7 times stiffer than the composite with the 0.15-mm-thick PDS graft. Although a thicker graft material will yield higher flexural stiffness for the composite, the relationship between composite stiffness and PDS thickness is nonlinear. After a critical point, increments in graft thickness produce gradually smaller improvements in flexural stiffness. The small increase in stiffness when using the thicker PDS foils versus the 0.15 mm PDS foil may not be worth the potential complications (prolonged foreign body reaction, reduction in nutrient diffusion to cartilage) of using thicker artificial grafts. PMID:24327249

  1. Experimental tracheal replacement using tissue-engineered cartilage.

    PubMed

    Vacanti, C A; Paige, K T; Kim, W S; Sakata, J; Upton, J; Vacanti, J P

    1994-02-01

    The authors tested the feasibility of using tissue-engineered cartilage, grown in the shape of cylinders, for replacing large circumferential defects of the cervical trachea in rats. Chondrocytes obtained from the shoulder of newborn calves were seeded onto a synthetic nonwoven mesh, 100 microns thick, of polyglycolic acid fibers 15 microns in diameter, cut into pieces of 2.5 x 4 cm. Twenty cell-polymer constructs were wrapped around silastic tubes and implanted into 10 nude mice for 4 weeks. Specimens were then excised and evaluated grossly and histologically for the presence of new cartilage, and biomechanically for their ability to resist collapse upon application of negative pressure. Six cylinders of tissue-engineered cartilage were then sutured into large circumferential defects created in the cervical tracheas of nude rats to replace the excised trachea. Implantation of cell-polymer constructs resulted in the formation of cylinders of hyaline cartilage. When placed within the lumen of a segment of bowel denuded of its mucosal lining, the hollow cylinders resisted collapse in all instances upon administration of negative 200 mm Hg pressure. The cartilage was grossly and histologically identical to that from which the cells had been initially isolated. Four of the six animals receiving these cartilage cylinders as tracheal replacements survived the procedure and were able to breathe in an unassisted fashion. Three of these animals never recovered fully from the anesthetic and the operation, and expired at 24, 48, and 72 hours. The fourth animal fully recovered from the procedure, and breathed spontaneously for 1 week, with no apparent limitations. Increasing respiratory distress then developed, and the animal died.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Expression of novel extracellular sulfatases Sulf-1 and Sulf-2 in normal and osteoarthritic articular cartilage

    PubMed Central

    Otsuki, Shuhei; Taniguchi, Noboru; Grogan, Shawn P; D'Lima, Darryl; Kinoshita, Mitsuo; Lotz, Martin

    2008-01-01

    Introduction Changes in sulfation of cartilage glycosaminoglycans as mediated by sulfatases can regulate growth factor signaling. The aim of this study was to analyze expression patterns of recently identified extracellular sulfatases Sulf-1 and Sulf-2 in articular cartilage and chondrocytes. Methods Sulf-1 and Sulf-2 expressions in human articular cartilage from normal donors and patients with osteoarthritis (OA) and in normal and aged mouse joints were analyzed by real-time polymerase chain reaction, immunohistochemistry, and Western blotting. Results In normal articular cartilage, Sulf-1 and Sulf-2 mRNAs and proteins were expressed predominantly in the superficial zone. OA cartilage showed significantly higher Sulf-1 and Sulf-2 mRNA expression as compared with normal human articular cartilage. Sulf protein expression in OA cartilage was prominent in the cell clusters. Western blotting revealed a profound increase in Sulf protein levels in human OA cartilage. In normal mouse joints, Sulf expression was similar to human cartilage, and with increasing age, there was a marked upregulation of Sulf. Conclusion The results show low levels of Sulf expression, restricted to the superficial zone in normal articular cartilage. Sulf mRNA and protein levels are increased in aging and OA cartilage. This increased Sulf expression may change the sulfation patterns of heparan sulfate proteoglycans and growth factor activities and thus contribute to abnormal chondrocyte activation and cartilage degradation in OA. PMID:18507859

  3. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold

    PubMed Central

    Musumeci, G.; Loreto, C.; Carnazza, M.L.; Coppolino, F.; Cardile, V.; Leonardi, R.

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease. PMID:22073377

  4. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold.

    PubMed

    Musumeci, G; Loreto, C; Carnazza, M L; Coppolino, F; Cardile, V; Leonardi, R

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  5. Ultrasonographic Measurement of the Femoral Cartilage Thickness in Hemiparetic Patients after Stroke

    ERIC Educational Resources Information Center

    Tunc, Hakan; Oken, Oznur; Kara, Murat; Tiftik, Tulay; Dogu, Beril; Unlu, Zeliha; Ozcakar, Levent

    2012-01-01

    The aim of the study was to evaluate the femoral cartilage thicknesses of hemiparetic patients after stroke using musculoskeletal ultrasonography and to determine whether there is any correlation between cartilage thicknesses and the clinical characteristics of the patients. Femoral cartilage thicknesses of both knees were measured in 87 (33…

  6. Nasal reconstruction with autologous rib cartilage: a 43-year follow-up.

    PubMed

    Horton, C E; Matthews, M S

    1992-01-01

    Autogenous costal cartilage has long been a popular material for nasal augmentation. The history of autogenous cartilage transplantation is reviewed. Two patients are presented who underwent nasal augmentation with autologous costal cartilage with a 43-year follow-up on each patient. PMID:1727245

  7. Lateral compartment cartilage changes and lateral elbow pain.

    PubMed

    Rajeev, Aysha; Pooley, Joseph

    2009-02-01

    The aim of our study is to document the arthroscopic findings in resistant lateral elbow pain. We have reviewed the findings in a consecutive series of 117 elbow arthroscopies performed on patients with lateral elbow pain resistant to conservative treatment. We found established degenerative changes involving articular cartilage in 68 patients (59%). In 60 of these 68 patients (88%) the degenerative changes were confined to the lateral compartment and contrasted with a normal appearance of the articular cartilage of the medial compartment. Primary lateral compartment arthritis is more common than previously thought, it mostly affects a young population and could easily be misdiagnosed as lateral epicondylitis.

  8. Skill Sheets for Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    This set of 33 skill sheets for agricultural mechanics was developed for use in high school and vocational school agricultural mechanics programs. Some sheets teach operational procedures while others are for simple projects. Each skill sheet covers a single topic and includes: (1) a diagram, (2) a step-by-step construction or operational…

  9. The Physics of Ice Sheets

    ERIC Educational Resources Information Center

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  10. Cell bricks-enriched platelet-rich plasma gel for injectable cartilage engineering - an in vivo experiment in nude mice.

    PubMed

    Zhu, Jun; Cai, Bolei; Ma, Qin; Chen, Fulin; Wu, Wei

    2013-10-01

    Clinical application of platelet-rich plasma (PRP)-based injectable tissue engineering is limited by weak mechanical properties and a rapid fibrinolytic rate. We proposed a new strategy, a cell bricks-stabilized PRP injectable system, to engineer and regenerate cartilage with stable morphology and structure in vivo. Chondrocytes from the auricular cartilage of rabbits were isolated and cultured to form cell bricks (fragmented cell sheet) or cell expansions. Fifteen nude mice were divided evenly (n = 5) into cells-PRP (C-P), cell bricks-PRP (CB-P) and cell bricks-cells-PRP (CB-C-P) groups. Cells, cell bricks or a cell bricks/cells mixture were suspended in PRP and were injected subcutaneously in animals. After 8 weeks, all the constructs were replaced by white resilient tissue; however, specimens from the CB-P and CB-C-P groups were well maintained in shape, while the C-P group appeared distorted, with a compressed outline. Histologically, all groups presented lacuna-like structures, glycosaminoglycan-enriched matrices and positive immunostaining of collagen type II. Different from the uniform structure presented in CB-C-P samples, CB-P presented interrupted, island-like chondrogenesis and contracted structure; fibrous interruption was shown in the C-P group. The highest percentage of matrix was presented in CB-C-P samples. Collagen and sGAG quantification confirmed that the CB-C-P constructs had statistically higher amounts than the C-P and CB-P groups; statistical differences were also found among the groups in terms of biomechanical properties and gene expression. We concluded that cell bricks-enriched PRP gel sufficiently enhanced the morphological stability of the constructs, maintained chondrocyte phenotypes and favoured chondrogenesis in vivo, which suggests that such an injectable, completely biological system is a suitable cell carrier for cell-based cartilage repair.

  11. In vitro targeted magnetic delivery and tracking of superparamagnetic iron oxide particles labeled stem cells for articular cartilage defect repair.

    PubMed

    Feng, Yong; Jin, Xuhong; Dai, Gang; Liu, Jun; Chen, Jiarong; Yang, Liu

    2011-04-01

    To assess a novel cell manipulation technique of tissue engineering with respect to its ability to augment superparamagnetic iron oxide particles (SPIO) labeled mesenchymal stem cells (MSCs) density at a localized cartilage defect site in an in vitro phantom by applying magnetic force. Meanwhile, non-invasive imaging techniques were use to track SPIO-labeled MSCs by magnetic resonance imaging (MRI). Human bone marrow MSCs were cultured and labeled with SPIO. Fresh degenerated human osteochondral fragments were obtained during total knee arthroplasty and a cartilage defect was created at the center. Then, the osteochondral fragments were attached to the sidewalls of culture flasks filled with phosphate-buffered saline (PBS) to mimic the human joint cavity. The SPIO-labeled MSCs were injected into the culture flasks in the presence of a 0.57 Tesla (T) magnetic force. Before and 90 min after cell targeting, the specimens underwent T2-weighted turbo spin-echo (SET2WI) sequence of 3.0 T MRI. MRI results were compared with histological findings. Macroscopic observation showed that SPIO-labeled MSCs were steered to the target region of cartilage defect. MRI revealed significant changes in signal intensity (P<0.01). HE staining exibited that a great number of MSCs formed a three-dimensional (3D) cell "sheet" structure at the chondral defect site. It was concluded that 0.57 T magnetic force permits spatial delivery of magnetically labeled MSCs to the target region in vitro. High-field MRI can serve as an very sensitive non-invasive technique for the visualization of SPIO-labeled MSCs.

  12. [iPS cells for the generation of cartilage and for regenerative medicine and disease modeling of cartilage diseases].

    PubMed

    Tsumaki, Noriyuki

    2016-04-01

    The development of induced pluripotent stem cells(iPSCs)has enabled the acquisition of patient-specific chondrocytes by converting somatic cells, such as dermal fibroblasts or blood cells, from patients to iPSCs and then differentiating them toward chondrocytes. We can further generate cartilage tissue from iPSC-derived chondrocytes. Studies on iPSC-derived chondrocytes/cartilage for the regeneration of articular cartilage injury are ongoing. These studies will in the future use autologous iPSCs and allogenic iPSCs from an iPSC stock prepared from donor cells. Drug discovery research for related diseases such as skeletal dysplasia is also being conducted. PMID:27013630

  13. Comparison of different autografts for aural cartilage in aesthetic rhinoplasty: is the tragal cartilage graft a viable alternative?

    PubMed

    Zinser, Max J; Siessegger, Mathias; Thamm, Oliver; Theodorou, Panangiotis; Maegele, Mark; Ritter, Lutz; Kreppel, Matthias; Sailer, Martin H; Zöller, Joachim E; Mischkowski, Robert A

    2013-12-01

    Auricular cartilage is an important source of grafts for various reconstructive procedures such as aesthetic rhinoplasty. The purpose of this investigation was to compare tragal cartilage with auricular cartilage harvested from the concha and scapha, and describe its clinical viability, indications, and morbidity in rhinoplasty. A total of 150 augmentation rhinoplasties with a total of 170 grafts were included. The donor sites were tragus (n=136), concha (n=26), and scapha (n=8). The time needed to harvest the grafts, the donor site morbidity, and the indications for operation were recorded. The anthropometric changes to 4 auricular variables after the cartilage had been harvested were analysed and compared with those on the opposite side in 48 patients using Student's paired t-test. Intraobserver reliability was assessed using Pearson's intraclass correlation. The mean (SD) harvesting time was 27 (8) min for the concha, 4.5 (1.4) min for the tragus, and 5.7 (1.6) min for the scapha. The largest graft was taken from the concha (28×19 mm), followed by the tragus (20×12 mm), and the scapha (18×6 mm). The grafts were placed at the following sites: tip grafts (n=123), columella struts (n=80), shield (n=20), rim (n=17), and dorsal onlay (n=15). Harvesting tragal cartilage is safe, simple, fast, and has a low morbidity, but it can affect the patient's ability to wear earphones. Tragal cartilage is a good alternative for nasal reconstruction if a graft of no longer than 20 mm is required.

  14. Associations between the properties of the cartilage matrix and findings from quantitative MRI in human osteoarthritic cartilage of the knee.

    PubMed

    Wei, Bo; Du, Xiaotao; Liu, Jun; Mao, Fengyong; Zhang, Xiang; Liu, Shuai; Xu, Yan; Zang, Fengchao; Wang, Liming

    2015-01-01

    The aim of this study was to investigate the associations between the properties of the cartilage matrix and the results of T2 mapping and delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) in human knee osteoarthritic cartilage. Osteochondral samples were harvested from the middle part of the femoral condyle and tibial plateaus of 20 patients with knee osteoarthritis (OA) during total knee arthroplasty. Sagittal T2 mapping, T1pre, and T1Gd were performed using 7.0T magnetic resonance imaging (MRI). Glycosaminoglycan (GAG) distribution was evaluated by OARSI, collagen anisotropy was assessed by polarized light microscopy (PLM), and biochemical analyses measured water, GAG, and collagen content. Associations between properties of the cartilage matrix and T2 and ΔR1 (1/T1Gd-1/T1pre) values were explored using correlation analysis. T2 and ΔR1 values were significantly correlated with the degree of cartilage degeneration (OARSI grade; Ρ = 0.53 and 0.77). T2 values were significantly correlated with water content (r = 0.69; P < 0.001), GAG content (r = -0.43; P < 0.001), and PLM grade (r = 0.47; P < 0.001), but not with collagen content (r = -0.02; P = 0.110). ΔR1 values were significantly correlated with GAG content (r = -0.84; P < 0.001) and PLM grade (r = 0.41; P < 0.001). Taken together, T2 mapping and dGEMRIC results were correlated with the properties of the cartilage matrix in human knee osteoarthritic cartilage. Combination T2 mapping and dGEMRIC represents a potential non-invasive monitoring technique to detect the progress of knee OA. PMID:26097577

  15. Surgical Outcomes of Deep Superior Sulcus Augmentation Using Acellular Human Dermal Matrix in Anophthalmic or Phthisis Socket.

    PubMed

    Cho, Won-Kyung; Jung, Su-Kyung; Paik, Ji-Sun; Yang, Suk-Woo

    2016-07-01

    Patients with anophthalmic or phthisis socket suffer from cosmetic problems. To resolve those problems, the authors present the surgical outcomes of deep superior sulcus (DSS) augmentation using acellular dermal matrix in patients with anophthalmic or phthisis socket. The authors retrospectively reviewed anophthalmic or phthisis patients who underwent surgery for DSS augmentation using acellular dermal matrix. To evaluate surgical outcomes, the authors focused on 3 aspects: the possibility of wearing contact prosthesis, the degree of correction of the DSS, and any surgical complications. The degree of correction of DSS was classified as excellent: restoration of superior sulcus enough to remove sunken sulcus shadow; fair: gain of correction effect but sunken shadow remained; or fail: no effect of correction at all. Ten eyes of 10 patients were included. There was a mean 21.3 ± 37.1-month period from evisceration or enucleation to the operation for DSS augmentation. All patients could wear contact prosthesis after the operation (100%). The degree of correction was excellent in 8 patients (80%) and fair in 2. Three of 10 (30%) showed complications: eyelid entropion, upper eyelid multiple creases, and spontaneous wound dehiscence followed by inflammation after stitch removal. Uneven skin surface and paresthesia in the forehead area of the affected eye may be observed after surgery. The overall surgical outcomes were favorable, showing an excellent degree of correction of DSS and low surgical complication rates. This procedure is effective for patients who have DSS in the absence or atrophy of the eyeball.

  16. Mortality and morbidity from invasive bacterial infections during a clinical trial of acellular pertussis vaccines in Sweden.

    PubMed

    Storsaeter, J; Olin, P; Renemar, B; Lagergård, T; Norberg, R; Romanus, V; Tiru, M

    1988-09-01

    A double blind placebo-controlled efficacy trial of two acellular pertussis vaccines was conducted in 3801 6- to 11-month-old children. Four vaccinated children died during 7 to 9 months follow-up as a result of Haemophilus influenzae type b meningitis, heroin intoxication with concomitant pneumonia, suspected septicemia, and Neisseria meningitidis Group B septicemia. From the actual death rate in children belonging to the same birth cohort in Sweden that could have been eligible for the trial, one death was expected among vaccinated children. Several investigations were carried out to examine the possibility that the deaths could be causally related to the vaccination. The relative risk for hospitalization due to systemic or respiratory infections was 1.07 (95% confidence interval, 0.95 to 1.20) and 0.83 (95% confidence interval, 0.64 to 1.08) in the vaccine groups as compared with the placebo group. Subsets of the population were studied for signs of immunosuppression. There was no indication of immunoglobulin deficiency or any sign of clinically significant leukopenia or lymphocytosis in vaccine recipients. The results of this analysis provide no evidence for a causal relation between vaccination with the studied acellular pertussis vaccines and altered resistance to invasive disease caused by encapsulated bacteria. The hypothesis that the two variables are related, however, cannot be refuted from these data.

  17. Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix

    PubMed Central

    2011-01-01

    We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic-co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy. PMID:21711840

  18. The initial attachment of cemental fibrils to the root dentin surface in acellular and cellular cementogenesis in rat molars.

    PubMed

    Yamamoto, T; Domon, T; Takahashi, S; Islam, M N; Suzuki, R

    2001-03-01

    To elucidate the initial attachment mechanism of cemental fibrils to the root dentin surface in acellular and cellular cementogenesis, developing rat molars were observed by light microscopy and scanning electron microscopy combined with NaOH maceration. The NaOH maceration was used to observe details of the positional association of cemental and dentinal fibrils during cementogenesis. An initial hematoxylin stained, cementum layer began to form on the root dentin surface with the first dentin mineralization in both acellular and cellular cementogenesis. The initial attachment of cemental fibrils to the dentin surface also began at this point. At the initial attachment the intermingling of cemental and dentinal fibrils occurred only in places. With advanced cementogenesis the initial cementum layer became the fibril-poor cemento-dentinal junction. This suggests that cemental fibrils attach on the initial cementum layer, and not directly on dentinal fibrils, so that the layer results in the fibril-poor cemento-dentinal junction. The present study suggests that an intervening adhesive is necessary for the cemento-dentinal attachment at any stage of cementogenesis in rat molars. PMID:11325058

  19. In Vivo Confocal Microscopic Observation of Lamellar Corneal Transplantation in the Rabbit Using Xenogenic Acellular Corneal Scaffolds as a Substitute

    PubMed Central

    Feng, Yun; Wang, Wei

    2015-01-01

    Background: The limiting factor to corneal transplantation is the availability of donors. Research has suggested that xenogenic acellular corneal scaffolds (XACS) may be a possible alternative to transplantation. This study aimed to investigate the viability of performing lamellar corneal transplantation (LCT) in rabbits using canine XACS. Methods: Fresh dog corneas were decellularized by serial digestion, and LCT was performed on rabbit eyes using xenogeneic decellularized corneal matrix. Cellular and morphological changes were observed by slit-lamp, light, and scanning electron microscopy at 7, 30 and 90 days postoperatively. Immunocytochemical staining for specific markers such as keratin 3, vimentin and MUC5AC, was used to identify cells in the graft. Results: Decellularized xenogenic corneal matrix remained transparent for about 1-month after LCT. The recipient cells were able to survive and proliferate into the grafts. Three months after transplantation, grafts had merged with host tissue, and graft epithelialization and vascularization had occurred. Corneal nerve fibers were able to grow into the graft in rabbits transplanted with XACS. Conclusions: Xenogenic acellular corneal scaffolds can maintain the transparency of corneal grafts about 1-month and permit growth of cells and nerve fibers, and is, therefore, a potential substitute or carrier for a replacement cornea. PMID:25836615

  20. Surgical Outcomes of Deep Superior Sulcus Augmentation Using Acellular Human Dermal Matrix in Anophthalmic or Phthisis Socket.

    PubMed

    Cho, Won-Kyung; Jung, Su-Kyung; Paik, Ji-Sun; Yang, Suk-Woo

    2016-07-01

    Patients with anophthalmic or phthisis socket suffer from cosmetic problems. To resolve those problems, the authors present the surgical outcomes of deep superior sulcus (DSS) augmentation using acellular dermal matrix in patients with anophthalmic or phthisis socket. The authors retrospectively reviewed anophthalmic or phthisis patients who underwent surgery for DSS augmentation using acellular dermal matrix. To evaluate surgical outcomes, the authors focused on 3 aspects: the possibility of wearing contact prosthesis, the degree of correction of the DSS, and any surgical complications. The degree of correction of DSS was classified as excellent: restoration of superior sulcus enough to remove sunken sulcus shadow; fair: gain of correction effect but sunken shadow remained; or fail: no effect of correction at all. Ten eyes of 10 patients were included. There was a mean 21.3 ± 37.1-month period from evisceration or enucleation to the operation for DSS augmentation. All patients could wear contact prosthesis after the operation (100%). The degree of correction was excellent in 8 patients (80%) and fair in 2. Three of 10 (30%) showed complications: eyelid entropion, upper eyelid multiple creases, and spontaneous wound dehiscence followed by inflammation after stitch removal. Uneven skin surface and paresthesia in the forehead area of the affected eye may be observed after surgery. The overall surgical outcomes were favorable, showing an excellent degree of correction of DSS and low surgical complication rates. This procedure is effective for patients who have DSS in the absence or atrophy of the eyeball. PMID:27258711

  1. SHEET PLASMA DEVICE

    DOEpatents

    Henderson, O.A.

    1962-07-17

    An ion-electron plasma heating apparatus of the pinch tube class was developed wherein a plasma is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a sheet of plasma between two conductive plates disposed parallel and adjacent to the plasma sheet. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat plasma configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)

  2. Plasma Sheet Energy Distributions

    NASA Astrophysics Data System (ADS)

    Sotirelis, T.; Lee, A. R.; Newell, P. T.

    2009-12-01

    Energy spectra of electrons and ions, as observed by DMSP, are fit to various distributions. The goal is to characterize the inner edge of the plasma sheet, so the focus is on large scale plasma sheet properties. Lower energy electron populations are ignored as they appear to be small-scale transients. Maxwellian, kappa and power-law distributed spectra are considered. Non-thermal ion distributions appear with greater frequency than anticipated. In order to be thermally distributed the differential energy flux must rise with a slope of ~2 toward a peak, after which the flux should fall sharply. The figure shows an apparently non-thermal ion distribution, together with a Maxwellian fit. The results from fits for one full year are presented.

  3. Recellularizing of human acellular dermal matrices imaged by high-definition optical coherence tomography.

    PubMed

    Boone, Marc A L M; Draye, Jean Pierre; Verween, Gunther; Aiti, Annalisa; Pirnay, Jean-Paul; Verbeken, Gilbert; De Vos, Daniel; Rose, Thomas; Jennes, Serge; Jemec, Gregor B E; Del Marmol, Veronique

    2015-05-01

    High-definition optical coherence tomography (HD-OCT) permits real-time 3D imaging of the impact of selected agents on human skin allografts. The real-time 3D HD-OCT assessment of (i) the impact on morphological and cellular characteristics of the processing of human acellular dermal matrices (HADMs) and (ii) repopulation of HADMs in vitro by human fibroblasts and remodelling of the extracellular matrix by these cells. Four different skin decellularization methods, Dispase II/Triton X-100, Dispase II/SDS (sodium dodecyl sulphate), NaCl/Triton X-100 and NaCl/SDS, were analysed by HD-OCT. HD-OCT features of epidermal removal, dermo-epidermal junction (DEJ) integrity, cellularity and dermal architecture were correlated with reflectance confocal microscopy (RCM), histopathology and immunohistochemistry. Human adult dermal fibroblasts were in vitro seeded on the NaCl/Triton X-100 processed HADMs, cultured up to 19 days and evaluated by HD-OCT in comparison with MTT proliferation test and histology. Epidermis was effectively removed by all treatments. DEJ was best preserved after NaCl/Triton X-100 treatment. Dispase II/SDS treatment seemed to remove all cellular debris in comparison with NaCl/Triton X-100 but disturbed the DEJ severely. The dermal micro-architectural structure and vascular spaces of (sub)papillary dermis were best preserved with the NaCl/Triton X-100. The impact on the 3D structure and vascular holes was detrimental with Dispase II/SDS. Elastic fibre fragmentation was only observed after Dispase II incubation. HD-OCT showed that NaCl/Triton X-100 processed matrices permitted in vitro repopulation by human dermal fibroblasts (confirmed by MTT test and histology) and underwent remodelling upon increasing incubation time. Care must be taken in choosing the appropriate processing steps to maintain selected properties of the extracellular matrix in HADMs. Processing HADMs with NaCl/Triton X-100 permits in vitro the proliferation and remodelling activity of

  4. Clean Cities Fact Sheet

    SciTech Connect

    Not Available

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  5. Topographical atlas sheets

    USGS Publications Warehouse

    Wheeler, George Montague

    1876-01-01

    The following topographical atlas sheets, accompanying Appendix J.J. of the Annual Report of the Chief of Engineers, U.S. Army-being Annual Report upon U. S. Geographical Surveys-have been published during the fiscal year ending June 30, 1876, and are a portion of the series projected to embrace the territory of the United States lying west of the 100th meridian.

  6. Biomolecular Science (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  7. Effect of thiram on chicken growth plate cartilage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thiram is a general use dithiocarbamate pesticide. It causes tibial dyschondroplasia, a growth plate cartilage defect in poultry characterized by growth plate broadening due to the accumulation of nonviable chondrocytes which lead to lameness. Since proteins play significant roles in all aspects cel...

  8. [Preliminary functional results of tympanoplasty with palisade cartilage].

    PubMed

    Bernal Sprekelsen, M; Tomás Barberán, M; Romaguera Lliso, M D

    1997-01-01

    Total or subtotal reconstruction of the tympanic membrane with cartilage palisades counteracts the tendency to retraction observed in ears with functional problems of the tube or altered gas exchange of the mucosa, in contrast with "soft" autologous materials such as temporal fascia or perichondrium. Because of its low turnover, cartilage is more resistant to the prolonged absence of neovascularization from the periphery in (sub) total perforation making it more resistant to infection. However, the use of palisade cartilage has been questioned for the functional recuperation of the middle ear because of its rigidity and thickness. A retrospective study was made of the functional results of 148 type III tympanoplasties with partial or complete reconstruction with cartilage after a one-stage procedure. A comparison of 108 ears with a mean postoperative follow-up of 20 months and 40 ears with a mean follow-up of more than 6 months showed no statistically significant difference in the overall functional results. A "social" hearing level (GAP < 30 dB) was achieved in 83.2%: the gain was 1-30 dB in 75.6% of cases (n = 112). No statistically significant differences were found between the functional results of primary surgery and re-operation. Statistically significant differences were found in the functional results of canal wall down and canal wall up procedures.

  9. CD59 mediates cartilage patterning during spontaneous tail regeneration.

    PubMed

    Bai, Xue; Wang, Yingjie; Man, Lili; Zhang, Qing; Sun, Cheng; Hu, Wen; Liu, Yan; Liu, Mei; Gu, Xiaosong; Wang, Yongjun

    2015-08-04

    The regeneration-competent adult animals have ability to regenerate their lost complex appendages with a near-perfect replica, owing to the positional identity acquired by the progenitor cells in the blastema, i.e. the blastemal cells. CD59, a CD59/Ly6 family member, has been identified as a regulator of positional identity in the tail blastemal cells of Gekko japonicus. To determine whether this function of CD59 is unique to the regenerative amniote(s) and how CD59 mediates PD axis patterning during tail regeneration, we examined its protective role on the complement-mediated cell lysis and intervened CD59 expression in the tail blastemal cells using an in vivo model of adenovirus transfection. Our data revealed that gecko CD59 was able to inhibit complement-mediated cell lysis. Meanwhile, CD59 functioned on positional identity through expression in cartilage precursor cells. Intervening positional identity by overexpression or siRNA knockdown of CD59 resulted in abnormal cartilaginous cone patterning due to the decreased differentiation of blastemal cells to cartilage precursor cells. The cartilage formation-related genes were found to be under the regulation of CD59. These results indicate that CD59, an evolutionarily transitional molecule linking immune and regenerative regulation, affects tail regeneration by mediating cartilage patterning.

  10. Near Infrared Spectroscopic Evaluation Of Water In Hyaline Cartilage

    PubMed Central

    Padalkar, MV; Spencer, RG; Pleshko, N

    2013-01-01

    In diseased conditions of cartilage such as osteoarthritis, there is typically an increase in water content from the average normal of 60–85% to greater than 90%. As cartilage has very little capability for self-repair, methods of early detection of degeneration are required, and assessment of water could prove to be a useful diagnostic method. Current assessment methods are either destructive, time consuming or have limited sensitivity. Here, we investigated the hypotheses that non-destructive near infrared spectroscopy (NIRS) of articular cartilage can be used to differentiate between free and bound water, and to quantitatively assess water content. The absorbances centered at 5200 cm−1 and 6890 cm−1 were attributed to a combination of free and bound water, and to free water only, respectively. The integrated areas of both absorbance bands were found to correlate linearly with the absolute water content (R=0.87 and R= 0.86) and with percent water content (R=0.97 and R=0.96) of the tissue. Partial least square models were also successfully developed and were used to predict water content, and percent free water. These data demonstrate that NIRS can be utilized to quantitatively determine water content in articular cartilage, and may aid in early detection of degenerative tissue changes in a laboratory setting, and with additional validations, possibly in a clinical setting. PMID:23824216

  11. Cartilage from Nose Used to Repair Bum Knees

    MedlinePlus

    ... In small trial, patients were able to grow new cartilage in the joint To use the sharing features on this page, please enable JavaScript. (*this news item will not be available after 01/19/2017) Friday, October 21, 2016 THURSDAY, Oct. 20, 2016 ( ...

  12. CD59 mediates cartilage patterning during spontaneous tail regeneration

    PubMed Central

    Bai, Xue; Wang, Yingjie; Man, Lili; Zhang, Qing; Sun, Cheng; Hu, Wen; Liu, Yan; Liu, Mei; Gu, Xiaosong; Wang, Yongjun

    2015-01-01

    The regeneration-competent adult animals have ability to regenerate their lost complex appendages with a near-perfect replica, owing to the positional identity acquired by the progenitor cells in the blastema, i.e. the blastemal cells. CD59, a CD59/Ly6 family member, has been identified as a regulator of positional identity in the tail blastemal cells of Gekko japonicus. To determine whether this function of CD59 is unique to the regenerative amniote(s) and how CD59 mediates PD axis patterning during tail regeneration, we examined its protective role on the complement-mediated cell lysis and intervened CD59 expression in the tail blastemal cells using an in vivo model of adenovirus transfection. Our data revealed that gecko CD59 was able to inhibit complement-mediated cell lysis. Meanwhile, CD59 functioned on positional identity through expression in cartilage precursor cells. Intervening positional identity by overexpression or siRNA knockdown of CD59 resulted in abnormal cartilaginous cone patterning due to the decreased differentiation of blastemal cells to cartilage precursor cells. The cartilage formation-related genes were found to be under the regulation of CD59. These results indicate that CD59, an evolutionarily transitional molecule linking immune and regenerative regulation, affects tail regeneration by mediating cartilage patterning. PMID:26238652

  13. Collagen VI enhances cartilage tissue generation by stimulating chondrocyte proliferation.

    PubMed

    Smeriglio, Piera; Dhulipala, Lakshmi; Lai, Janice H; Goodman, Stuart B; Dragoo, Jason L; Smith, Robert L; Maloney, William J; Yang, Fan; Bhutani, Nidhi

    2015-02-01

    Regeneration of human cartilage is inherently inefficient. Current cell-based approaches for cartilage repair, including autologous chondrocytes, are limited by the paucity of cells, associated donor site morbidity, and generation of functionally inferior fibrocartilage rather than articular cartilage. Upon investigating the role of collagen VI (Col VI), a major component of the chondrocyte pericellular matrix (PCM), we observe that soluble Col VI stimulates chondrocyte proliferation. Interestingly, both adult and osteoarthritis chondrocytes respond to soluble Col VI in a similar manner. The proliferative effect is, however, strictly due to the soluble Col VI as no proliferation is observed upon exposure of chondrocytes to immobilized Col VI. Upon short Col VI treatment in 2D monolayer culture, chondrocytes maintain high expression of characteristic chondrocyte markers like Col2a1, agc, and Sox9 whereas the expression of the fibrocartilage marker Collagen I (Col I) and of the hypertrophy marker Collagen X (Col X) is minimal. Additionally, Col VI-expanded chondrocytes show a similar potential to untreated chondrocytes in engineering cartilage in 3D biomimetic hydrogel constructs. Our study has, therefore, identified soluble Col VI as a biologic that can be useful for the expansion and utilization of scarce sources of chondrocytes, potentially for autologous chondrocyte implantation. Additionally, our results underscore the importance of further investigating the changes in chondrocyte PCM with age and disease and the subsequent effects on chondrocyte growth and function.

  14. Tissue engineering: revolution and challenge in auricular cartilage reconstruction.

    PubMed

    Nayyer, Leila; Patel, Kavi H; Esmaeili, Ali; Rippel, Radoslaw A; Birchall, Martin; Oʼtoole, Gregory; Butler, Peter E; Seifalian, Alexander M

    2012-05-01

    External ear reconstruction for congenital deformity such as microtia or following trauma remains one of the greatest challenges for reconstructive plastic surgeons. The problems faced in reconstructing the intricate ear framework are highly complex. A durable, inert material that is resistant to scar contracture is required. To date, no material, autologous or prosthetic, is available that perfectly mimics the shapely elastic cartilage found in the ear. Current procedure involves autologous costal cartilage that is sculpted to create a framework for the overlying soft tissues. However, this is associated with donor-site morbidity, and few surgeons worldwide are skilled in the techniques required to obtain excellent results. Various alloplastic materials have therefore been used as a framework. However, a degree of immunogenicity and infection and extrusion are inevitable, and results are often disappointing. Tissue-engineered cartilage is an alternative approach but, despite significant progress in this area, many problems remain. These need to be addressed before routine clinical application will become possible. The current tissue-engineered options are fragile and inflexible. The next generation of auricular cartilage engineering is promising, with smart materials to enhance cell growth and integration, and the application of stem cells in a clinical setting. More recently, the authors' team designed the world's first entirely synthetic trachea composed of a novel nanocomposite material seeded with the patient's own stem cells. This was successfully transplanted in a patient at the Karolinska Hospital in Sweden and may translate into a tissue-engineered auricle in the future.

  15. Endodermal Wnt signaling is required for tracheal cartilage formation

    PubMed Central

    Snowball, John; Ambalavanan, Manoj; Whitsett, Jeffrey; Sinner, Debora

    2015-01-01

    Tracheobronchomalacia is a common congenital defect in which the walls of the trachea and bronchi lack of adequate cartilage required for support of the airways. Deletion of Wls, a cargo receptor mediating Wnt ligand secretion, in the embryonic endoderm using ShhCre mice inhibited formation of tracheal-bronchial cartilaginous rings. The normal dorsal-ventral patterning of tracheal mesenchyme was lost. Smooth muscle cells, identified by Acta2 staining, were aberrantly located in ventral mesenchyme of the trachea, normally the region of Sox9 expression in cartilage progenitors. Wnt/β-catenin activity, indicated by Axin2 LacZ reporter, was decreased in tracheal mesenchyme of Wlsf/f;ShhCre/+ embryos. Proliferation of chondroblasts was decreased and reciprocally, proliferation of smooth muscle cells was increased in Wlsf/f;ShhCre/+ tracheal tissue. Expression of Tbx4, Tbx5, Msx1 and Msx2, known to mediate cartilage and muscle patterning, were decreased in tracheal mesenchyme of Wlsf/f;ShhCre/+ embryos. Ex vivo studies demonstrated that Wnt7b and Wnt5a, expressed by the epithelium of developing trachea, and active Wnt/β-catenin signaling are required for tracheal chondrogenesis before formation of mesenchymal condensations. In conclusion, Wnt ligands produced by the tracheal epithelium pattern the tracheal mesenchyme via modulation of gene expression and cell proliferation required for proper tracheal cartilage and smooth muscle differentiation. PMID:26093309

  16. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    NASA Technical Reports Server (NTRS)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  17. The MAGIC syndrome (mouth and genital ulcers with inflamed cartilage).

    PubMed

    Orme, R L; Nordlund, J J; Barich, L; Brown, T

    1990-07-01

    We describe a 42-year-old man with features of both Behçet's disease and relapsing polychondritis. The term MAGIC syndrome (mouth and genital ulcers with inflamed cartilage) has previously been used to describe similarly affected patients. We discuss the diagnostic criteria and pathogenetic mechanisms.

  18. Repair of the superior sulcus deformity using autogenous costal cartilage.

    PubMed

    Sutula, F C; Thomas, O

    1982-05-01

    Superior sulcus deformity is a late sequela of surgical anophthalmos. Many methods have been proposed to treat this difficult problem. A technique using autogenous costal cartilage that has resulted in satisfactory repair is presented. In addition to standard photographs and exophthalmometry measurements to follow these patients, a specific device to accurately measure orbital volume gain after operation was fashioned. PMID:7099560

  19. Postoperative Imaging of the Knee: Meniscus, Cartilage, and Ligaments.

    PubMed

    Walz, Daniel M

    2016-09-01

    This article reviews the normal and abnormal postoperative imaging appearance of frequently performed surgical procedures of the meniscus, articular cartilage, and ligaments. Imaging algorithms and protocols are discussed with particular attention to MR imaging techniques. Attention is paid to surgical procedures and the expected postoperative appearance as well to commonly identified recurrent and residual disorders and surgical complications. PMID:27545429

  20. A Semi-Degradable Composite Scaffold for Articular Cartilage Defects

    PubMed Central

    Scholten, Paul M.; Ng, Kenneth W.; Joh, Kiwon; Serino, Lorenzo P.; Warren, Russell F.; Torzilli, Peter A.; Maher, Suzanne A.

    2010-01-01

    Few options exist to replace or repair damaged articular cartilage. The optimal solution that has been suggested is a scaffold that can carry load and integrate with surrounding tissues; but such a construct has thus far been elusive. The objectives of this study were to manufacture and characterize a non-degradable hydrated scaffold. Our hypothesis was that the polymer content of the scaffold can be used to control its mechanical properties, while an internal porous network augmented with biological agents can facilitate integration with the host tissue. Using a two-step water-in-oil emulsion process a porous poly-vinyl alcohol (PVA) hydrogel scaffold combined with alginate microspheres was manufactured. The scaffold had a porosity of 11–30% with pore diameters of 107–187 μm, which readily allowed for movement of cells through the scaffold. Alginate microparticles were evenly distributed through the scaffold and allowed for the slow release of biological factors. The elastic modulus (Es) and Poisson’s ratio (υ), Aggregate modulus (Ha) and dynamic modulus (ED) of the scaffold were significantly affected by % PVA, as it varied from 10% to 20% wt/vol. Es and υ were similar to that of articular cartilage for both polymer concentrations, while Ha and ED were similar to that of cartilage only at 20% PVA. The ability to control scaffold mechanical properties, while facilitating cellular migration suggest that this scaffold is a potentially viable candidate for the functional replacement of cartilage defects. PMID:21308980