Science.gov

Sample records for acellular nerve grafts

  1. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    PubMed Central

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone. PMID:25221592

  2. Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects: biomechanics and validation of mathematical models

    PubMed Central

    Li, Ya-jun; Zhao, Bao-lin; Lv, Hao-ze; Qin, Zhi-gang; Luo, Min

    2016-01-01

    We hypothesized that a chemically extracted acellular allogeneic nerve graft used in combination with bone marrow mesenchymal stem cell transplantation would be an effective treatment for long-segment sciatic nerve defects. To test this, we established rabbit models of 30 mm sciatic nerve defects, and treated them using either an autograft or a chemically decellularized allogeneic nerve graft with or without simultaneous transplantation of bone marrow mesenchymal stem cells. We compared the tensile properties, electrophysiological function and morphology of the damaged nerve in each group. Sciatic nerves repaired by the allogeneic nerve graft combined with stem cell transplantation showed better recovery than those repaired by the acellular allogeneic nerve graft alone, and produced similar results to those observed with the autograft. These findings confirm that a chemically extracted acellular allogeneic nerve graft combined with transplantation of bone marrow mesenchymal stem cells is an effective method of repairing long-segment sciatic nerve defects. PMID:27651781

  3. Human acellular dermal matrix grafts for rhinoplasty.

    PubMed

    Sherris, David A; Oriel, Brad S

    2011-09-01

    Rhinoplasty often relies on graft material for structural support in the form of cartilage, bone grafts, or fascia. In addition, pliable grafts are often helpful for contouring and can function as a barrier. Unfortunately, grafts carry the disadvantage of requiring an additional donor site, with associated complications. Human acellular dermal matrix (ADM) biological implants offer an exciting alternative for structural support and nonstructural implantation in rhinoplasty procedures. To examine the efficacy of ADM placement in rhinoplasty and septoplasty, the authors report the results from a series of 51 patients. In this series, there were no cases of infection, skin discoloration, seroma formation, septal perforation, significant resorption, extrusion, or other complications related to ADM placement. Therefore, the authors believe that ADM offers a safe and effective alternative to traditional grafting methods for functional and aesthetic rhinoplasty.

  4. Adjuvant neurotrophic factors in peripheral nerve repair with chondroitin sulfate proteoglycan-reduced acellular nerve allografts

    PubMed Central

    Boyer, Richard B.; Sexton, Kevin W.; Rodriguez-Feo, Charles L.; Nookala, Ratnam; Pollins, Alonda C.; Cardwell, Nancy L.; Tisdale, Keonna Y.; Nanney, Lillian B.; Shack, R. Bruce; Thayer, Wesley P.

    2014-01-01

    count (P < 0.01), while significantly reducing IB4+ nociceptor axon count (P < 0.01). There were no significant differences produced by in vivo adjuvant GDNF. Conclusions This study provides initial evidence that CSPG-reduced nerve grafts may disinhibit the pro-survival effects of NGF in vivo, promoting motor axon outgrowth and reducing regeneration of specific nociceptive neurons. Our results support further investigation of adjuvant NGF therapy in CSPG-reduced acellular nerve grafts. PMID:25438961

  5. Acellular dermal graft reinforcement at the hiatus.

    PubMed

    Freedman, Bruce

    2012-11-01

    The ideal technique to repair large hiatal and diaphragmatic defects remains controversial. Due to high recurrence rates with primary repair alone, attempts at crural reinforcement with various products has been investigated. Initial evaluation of synthetic mesh at the hiatus in retrospective studies led to the conclusion that there were too many serious complications with these products. The next step was to see how biologic grafts fared in this location. Beginning with porcine intestine submucosa in a laminated array and progressing through human and porcine acellular dermal matrices, multiple, retrospective studies looked at the efficacy and safety of these products. Unfortunately, most of these studies evaluated a small sample size with a relatively short follow-up period. The one study followed out to 5 years failed to show any benefit using the biologic (porcine intestinal submucosa) compared with the primary repair alone. Additional, prospective, randomized studies with ample numbers carried out for years will be necessary to see which biologic graft is not only safe but also successful in preventing recurrent herniations.

  6. Three-dimensional Reconstruction of the Microstructure of Human Acellular Nerve Allograft

    PubMed Central

    Zhu, Shuang; Zhu, Qingtang; Liu, Xiaolin; Yang, Weihong; Jian, Yutao; Zhou, Xiang; He, Bo; Gu, Liqiang; Yan, Liwei; Lin, Tao; Xiang, Jianping; Qi, Jian

    2016-01-01

    The exact inner 3D microstructure of the human peripheral nerve has been a mystery for decades. Therefore, it has been difficult to solve several problems regarding peripheral nerve injury and repair. We used high-resolution X-ray computed microtomography (microCT) to scan a freeze-dried human acellular nerve allograft (hANA). The microCT images were then used to reconstruct a 3D digital model, which was used to print a 3D resin model of the nerve graft. The 3D digital model of the hANA allowed visualization of all planes. The magnified 3D resin model clearly showed the nerve bundles and basement membrane tubes of the hANA. Scanning electron microscopy (SEM) was used to analyse the microstructure of the hANA. Compared to the SEM images, the microCT image clearly demonstrated the microstructure of the hANA cross section at a resolution of up to 1.2 μm. The 3D digital model of the hANA facilitates a clear and easy understanding of peripheral nerve microstructure. Furthermore, the enlarged 3D resin model duplicates the unique inner structure of each individual hANA. This is a crucial step towards achieving 3D printing of a hANA or nerve that can be used as a nerve graft. PMID:27476584

  7. Management of gingival recession with acellular dermal matrix graft: A clinical study

    PubMed Central

    Balaji, V. R.; Ramakrishnan, T.; Manikandan, D.; Lambodharan, R.; Karthikeyan, B.; Niazi, Thanvir Mohammed; Ulaganathan, G.

    2016-01-01

    Aims and Objectives: Obtaining root coverage has become an important part of periodontal therapy. The aims of this studyare to evaluate the clinical efficacy of acellular dermal matrix graft in the coverage of denuded roots and also to examine the change in the width of keratinized gingiva. Materials and Methods: A total of 20 sites with more than or equal to 2 mm of recession depth were taken into the study, for treatment with acellular dermal matrix graft. The clinical parameters such as recession depth, recession width, width of keratinized gingiva, probing pocket depth (PD), and clinical attachment level (CAL) were measured at the baseline, 8th week, and at the end of the study (16th week). The defects were treated with a coronally positioned pedicle graft combined with acellular dermal matrix graft. Results: Out of 20 sites treated with acellular dermal matrix graft, seven sites showed complete root coverage (100%), and the mean root coverage obtained was 73.39%. There was a statistically significant reduction in recession depth, recession width, and probing PD. There was also a statistically significant increase in width of keratinized gingiva and also gain in CAL. The postoperative results were both clinically and statistically significant (P < 0.0001). Conclusion: The results of this study were esthetically acceptable to the patients and clinically acceptable in all cases. From this study, it may be concluded that acellular dermal matrix graft is an excellent substitute for autogenous graft in coverage of denuded roots. PMID:27829749

  8. Molecular examination of bone marrow stromal cells and chondroitinase ABC-assisted acellular nerve allograft for peripheral nerve regeneration

    PubMed Central

    Wang, Ying; Jia, Hua; Li, Wen-Yuan; Guan, Li-Xin; Deng, Lingxiao; Liu, Yan-Cui; Liu, Gui-Bo

    2016-01-01

    The present study aimed to evaluate the molecular mechanisms underlying combinatorial bone marrow stromal cell (BMSC) transplantation and chondroitinase ABC (Ch-ABC) therapy in a model of acellular nerve allograft (ANA) repair of the sciatic nerve gap in rats. Sprague Dawley rats (n=24) were used as nerve donors and Wistar rats (n=48) were randomly divided into the following groups: Group I, Dulbecco's modified Eagle's medium (DMEM) control group (ANA treated with DMEM only); Group II, Ch-ABC group (ANA treated with Ch-ABC only); Group III, BMSC group (ANA seeded with BMSCs only); Group IV, Ch-ABC + BMSCs group (Ch-ABC treated ANA then seeded with BMSCs). After 8 weeks, the expression of nerve growth factor, brain-derived neurotrophic factor and vascular endothelial growth factor in the regenerated tissues were detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Axonal regeneration, motor neuron protection and functional recovery were examined by immunohistochemistry, horseradish peroxidase retrograde neural tracing and electrophysiological and tibialis anterior muscle recovery analyses. It was observed that combination therapy enhances the growth response of the donor nerve locally as well as distally, at the level of the spinal cord motoneuron and the target muscle organ. This phenomenon is likely due to the propagation of retrograde and anterograde transport of growth signals sourced from the graft site. Collectively, growth improvement on the donor nerve, target muscle and motoneuron ultimately contribute to efficacious axonal regeneration and functional recovery. Thorough investigation of molecular peripheral nerve injury combinatorial strategies are required for the optimization of efficacious therapy and full functional recovery following ANA. PMID:27698684

  9. Tissue-engineered rhesus monkey nerve grafts for the repair of long ulnar nerve defects: similar outcomes to autologous nerve grafts

    PubMed Central

    Jiang, Chang-qing; Hu, Jun; Xiang, Jian-ping; Zhu, Jia-kai; Liu, Xiao-lin; Luo, Peng

    2016-01-01

    Acellular nerve allografts can help preserve normal nerve structure and extracellular matrix composition. These allografts have low immunogenicity and are more readily available than autologous nerves for the repair of long-segment peripheral nerve defects. In this study, we repaired a 40-mm ulnar nerve defect in rhesus monkeys with tissue-engineered peripheral nerve, and compared the outcome with that of autograft. The graft was prepared using a chemical extract from adult rhesus monkeys and seeded with allogeneic Schwann cells. Pathomorphology, electromyogram and immunohistochemistry findings revealed the absence of palmar erosion or ulcers, and that the morphology and elasticity of the hypothenar eminence were normal 5 months postoperatively. There were no significant differences in the mean peak compound muscle action potential, the mean nerve conduction velocity, or the number of neurofilaments between the experimental and control groups. However, outcome was significantly better in the experimental group than in the blank group. These findings suggest that chemically extracted allogeneic nerve seeded with autologous Schwann cells can repair 40-mm ulnar nerve defects in the rhesus monkey. The outcomes are similar to those obtained with autologous nerve graft. PMID:28123431

  10. Co-Graft of Acellular Dermal Matrix and Autogenous Microskin in a Child with Extensive Burns

    PubMed Central

    Chen, X.L.; Xia, Z.F.; Fang, L.S.; Wang, Y.J.; Wang, C.H.

    2008-01-01

    Summary A 6-yr-old boy was the victim of a burns accident in a public bathhouse. The burns involved the face, neck, upper and lower extremities, anterior and posterior trunk, and both buttocks, covering 72% of the total body surface area (TBSA). The lesions in the lower extremities and parts of the right upper extremity were deep partial-thickness, comprising 40% TBSA. On day 5 post-burn, the lesions in both lower extremities were excised to the extent of the fascia under general anaesthesia. Meshed J1 Jayya Acellular Dermis®, a kind of acellular allodermal (ADM) matrix, was then placed on the left knee joint. The right knee joint served as control. The wounds in both lower extremities were then overlaid with microskin autografting. At 19 days post-application, the lesions in both lower extremities had almost completely resurfaced. Follow-up at six months revealed well-healed and stable skin of acellular ADM and microskin autografts on the left knee. However, the skin of the right knee was unstable and there was a chronic residual ulcer. Both legs showed some significant hypertrophic scars. The left knee joint (acellular ADM grafted site) showed mild contractures, while the right knee joint developed a significant contracture. The "skin" of the co-graft covered site appeared thicker and more elastic. The movement range of the left knee joint was much larger than that of the right knee joint. These results suggest that co-graft of acellular dermal matrix and autogenous microskin may be an effective way to repair this functional site in children with extensive burns and to improve the functional and cosmetic results. PMID:21991120

  11. Acellular Endocardium as a Novel Biomaterial for the Intima of Tissue-Engineered Small-Caliber Vascular Grafts.

    PubMed

    Wang, Feng; Guan, Xin; Wu, TianYi; Qiao, JianOu; Han, ZhaoQing; Wu, JinLong; Yu, XiaoWei; You, QingJun

    2016-12-01

    We aimed to investigate whether acellular endocardium can be used as a useful biomaterial for the intima of engineered small-caliber vascular grafts. Fresh endocardium was harvested from the swine left atrium and was decellularized by digestion with the decellularization solution of Triton X-100 and SDS containing DNase I and RNase A. Surface morphological characteristics and Young's modulus were evaluated. To analyze the effect of mechanical characteristics on cell adhesion, the decellularized endocardium was stiffened with 2.5% glutaraldehyde. Small-caliber vascular grafts were constructed using decellularized endocardium treated with or without glutaraldehyde as the intima. CD34+ cells were seeded onto the luminal surface of the vascular grafts and linked to bioreactors that simulate a pulsatile blood stream. Acellular endocardium had distinct surface morphological characteristics, which were quite different from those of other materials. The compliance of acellular endocardium was higher than that of other materials tested by Young's modulus. CD34+ cells formed a monolayer structure and adhered to the inner face of the acellular endocardium. The glutaraldehyde treatment stiffened the acellular endocardium but had little impact on the surface morphological characteristics or static adhesiveness of the cells. Data from the bioreactor study showed that the detachment of the cells from the surface of glutaraldehyde-treated acellular endocardium increased dramatically when the pressure was equal or higher than 40 mm Hg, while the cells on the untreated acellular endocardium remained well and formed confluent monolayers and tight junctions under the same pressure. Acellular endocardium has distinct structures and mechanical characteristics that are beneficial for CD34+ cell adhesion and retention under dynamic fluid perfusion. Thus, it can be used as a useful biomaterial for the construction of the intima of engineered small-caliber vascular grafts.

  12. Nerve regeneration in nerve grafts conditioned by vibration exposure.

    PubMed

    Bergman, S; Widerberg, A; Danielsen, N; Lundborg, G; Dahlin, L B

    1995-01-01

    Regeneration distances were studied in nerves from vibration-exposed limbs. One hind limb of anaesthetized rats was attached to a vibration exciter and exposed to vibration (80 Hz/32 m/s2) for 5 h/day for 2 or 5 days. Seven days after the latest vibration period a 10-mm long nerve graft was taken from the vibrated sciatic nerve and sutured into a corresponding defect in the con-tralateral sciatic nerve and vice versa, thereby creating two different models within the same animal: (i) regeneration from a freshly transected unvibrated nerve into a vibrated graft and (ii) regeneration from a vibrated nerve into a fresh nerve graft (vibrated recipient side). Four, 6 or 8 days postoperatively (p.o.) the distances achieved by the regenerating axons were determined using the pinch reflex test. Two days of vibration did not influence the regeneration, but 5 days of vibration reduced the initial delay period and a slight reduction of regeneration rate was observed. After 5 days of vibration an increased regeneration distance was observed in both models at day 4 p.o. and at day 6 p.o. in vibrated grafts. This study demonstrates that vibration can condition peripheral nerves and this may be caused by local changes in the peripheral nerve trunk and in the neuron itself.

  13. End-to-Side Neurorrhaphy as Schwann Cells Provider to Acellular Nerve Allograft and Its Suitable Application

    PubMed Central

    Yoshizawa, Hidekazu; Senda, Daiki; Natori, Yuhei; Tanaka, Rica; Mizuno, Hiroshi; Hayashi, Ayato

    2016-01-01

    Axonal regeneration relies on support from proliferating host Schwann cells (SCs), and previous studies on acellular nerve allografts (ANGs) suggest that axons can regenerate into ANGs within a limited distance. Numerous studies have demonstrated that the supplementation of ANGs with exogenous factors, such as cultured SCs, stem cells, and growth factors, promote nerve regeneration in ANGs. However, there are several problems associated with their utilization. In this study, we investigated whether end-to-side (ETS) neurorrhaphy, which is an axonal provider, could be useful as an SC provider to support axonal elongation in ANGs. We found that ETS neurorrhaphy effectively promoted SC migration into ANGs when an epineurium window combined with partial neurectomy was performed, and the effectiveness increased when it was applied bilaterally. When we transplanted ANGs containing migrated SCs via ETS neurorrhaphy (hybrid ANGs) to the nerve gap, hybrid ANGs increased the number of regenerated axons and facilitated rapid axonal elongation, particularly when ETS neurorrhaphy was applied to both edges of the graft. This approach may represent a novel application of ETS neurorrhaphy and lead to the development of hybrid ANGs, making ANGs more practical in a clinical setting. PMID:27907118

  14. Acellular Vascular Grafts Generated from Collagen and Elastin Analogues

    PubMed Central

    Kumar, Vivek A.; Caves, Jeffrey M.; Haller, Carolyn A.; Dai, Erbin; Li, Liying; Grainger, Stephanie; Chaikof, Elliot L.

    2013-01-01

    Tissue engineered vascular grafts require long fabrication times, in part, due to the requirement of cells from a variety of cell sources to produce a robust load bearing, extracellular matrix. Herein, we propose a design strategy for the fabrication of tubular conduits comprised of collagen fiber networks and elastin-like protein polymers to mimic native tissue structure and function. Dense fibrillar collagen networks exhibited an ultimate tensile strength (UTS) of 0.71 ± 0.06 MPa, strain to failure of 37.1 ± 2.2%, and Young’s modulus of 2.09 ± 0.42 MPa, comparing favorably to an UTS and a Young’s modulus for native blood vessels of 1.4 – 11.1 MPa and 1.5 ± 0.3 MPa, respectively. Resilience, a measure of recovered energy during unloading of matrices, demonstrated that 58.9 ± 4.4% of the energy was recovered during loading-unloading cycles. Rapid fabrication of multilayer tubular conduits with maintenance of native collagen ultrastructure was achieved with internal diameters ranging between 1 to 4 mm. Compliance and burst pressures exceeded 2.7 ± 0.3%/100 mmHg and 830 ± 131 mmHg, respectively, with a significant reduction in observed platelet adherence as compared to ePTFE (6.8 ± 0.05 × 105 vs. 62 ± 0.05 × 105 platelets/mm2, p < 0.01). Using a rat aortic interposition model, early in vivo responses were evaluated at 2 weeks via Doppler ultrasound and CT angiography with immunohistochemistry confirming a limited early inflammatory response (n=8). Engineered collagen-elastin composites represent a promising strategy for fabricating synthetic tissues with defined extracellular matrix content, composition, and architecture. PMID:23743129

  15. Surgical Outcomes of Porcine Acellular Dermis Graft in Anophthalmic Socket: Comparison with Oral Mucosa Graft

    PubMed Central

    Teo, Livia; Woo, Young Jun; Kim, Dong Kyu; Kim, Chang Yeom

    2017-01-01

    Purpose We describe our experience with the Permacol graft in anophthalmic socket reconstruction, and compare it to the autologous buccal mucosal graft, emphasizing the postoperative vascularization and contraction of each graft. Methods This was a retrospective comparative study. We measured the time necessary for the graft surface to be completely vascularized, as well as the fornix depth of the conjunctival sac in anophthalmic patients. Results Ten patients underwent Permacol graft reconstruction, with 44 undergoing buccal mucosal graft reconstruction. Seven eyelids (70%) in the Permacol group had a good outcome, with improvement in lower eyelid position and prosthesis retention. Nine out of 10 eyelids (90%) in this group showed complete vascularization of the graft at 2.6 ± 1.9 months postoperatively, while the grafted buccal mucosa was fully vascularized at 1.1 ± 0.3 months postoperatively (p < 0.01). Postoperative fornix depth in the Permacol group was 9.1 ± 2.2 mm, compared to 14.9 ± 4.5 mm in the buccal mucosal graft group (p < 0.01). Mean increases in fornix depth were 33.1% and 67.9% of the mean vertical length of the implanted graft. Conclusions The Permacol graft can be useful as spacer graft material in anophthalmic socket patients. It takes longer to vascularize, and undergoes greater graft shrinkage with time, compared to the buccal mucosal graft. PMID:28243018

  16. Cross-facial nerve grafting for facial reanimation.

    PubMed

    Peng, Grace Lee; Azizzadeh, Babak

    2015-04-01

    Dynamic facial reanimation is the gold standard treatment for a paralyzed face. Over the last century, multiple nerves have been utilized for grafting to the facial nerve in an attempt to produce improved movement. However, in recent years, the use of cross facial nerve grafting with a second stage gracilis free flap has gained popularity due to the ability to generate a spontaneous smile and facial movement. Preoperative history taking and careful examination, as well as pre-surgical planning, are imperative to whether cross facial nerve grafting with a second stage gracilis free flap is appropriate for the patient. A sural nerve graft is ideal given the accessibility of the nerve, the length, as well as the reliability and ease of the nerve harvest. The nerve can be harvested using a small incision, which leaves the patient with minimal post operative morbidity. In this chapter, we highlight the pearls and pitfalls of cross facial nerve grafting.

  17. Vascularized Nerve Grafts and Vascularized Fascia for Upper Extremity Nerve Reconstruction

    PubMed Central

    Kostopoulos, Vasileios K.

    2009-01-01

    Since 1976, experimental and clinical studies have suggested the superiority of vascularized nerve grafts. In this study, a 27-year experience of the senior author is presented regarding vascularized nerve grafts and fascia for complex upper extremity nerve reconstruction. The factors influencing outcomes as well as a comparison with conventional nerve grafts is presented. Since 1981, 21 vascularized nerve grafts, other than vascularized ulnar nerve, were used for reconstruction of nerve injuries in the upper extremity. Indications were prolonged denervation time, failure of the previously used conventional nerve grafts, and excessive scar in the recipient site. Injury was in the hand/wrist area (n = 5), in the forearm (n = 4), in the elbow (n = 2), in the arm (n = 4), or in the plexus (n = 6). Vascularized sural (n = 9), saphenous (n = 8), superficial radial (n = 3), and peroneal (superficial and deep) nerves were used. The mean follow-up was 31.4 months. Vascularized nerve grafts for upper extremity injuries provided good to excellent sensory return in severely scarred upper extremities in patients in whom conventional nerve grafts had failed. They have also provided relief of causalgia after painful neuroma resection and motor function recovery in selective cases even for above the elbow injuries. Small diameter vascularized nerve grafts should be considered for bridging long nerve gaps in regions of excessive scar or for reconstructions where conventional nerve grafts have failed. PMID:19381727

  18. Clinical application and long-term follow-up study of porcine acellular dermal matrix combined with autoskin grafting.

    PubMed

    Jiong, Chen; Jiake, Chai; Chunmao, Han; Yingen, Pan; Qiuhe, Wu; Zhouxi, Fang; Xiangsheng, Feng

    2010-01-01

    The purpose of this study was to investigate the clinical effects of porcine acellular dermal matrix combined with autoskin grafting on full-thickness skin defects using long-term clinical follow-up study and histologic examination. One hundred fifty-two patients with deep burn or trauma hospitalized from February 2000 to July 2003 were repaired with porcine acellular dermal matrix and split-thickness autoskin graft. Take rate of the grafts was calculated on 1 week after operation. Scar hyperplasia was examined on 1, 3, 6, and 12 months after operation. At the same time, the contracture rates of grafted areas were also calculated. Skin biopsy was performed on five patients for histologic examination, as well as transmission electron microscopy 78 months after operation. The take rate of grafts of 116 patients (76.3%) was 100%, and the take rate of the rest of the patients (36 patients, 23.7%) was more than 95%. No one needed skin transplantation for the second time. One hundred twenty-seven patients were followed up on 1 month after operation; grafts showed mild contraction. There was slight cicatricle at skin junction with tender texture. There was no obvious pruritus and blister. One hundred one patients were followed up on 3 months after operation. The graft contraction showed obvious relief with good articular function. Eighty-two patients were followed up on 6 months after operation. The color and texture of the grafts were similar to normal skin without obvious cicatricial hyperplasia. Fifty-eight patients were followed up on 12 months after operation. The grafts were similar to normal skin without obvious rejection. There were no significant differences between the contracture rates at 3, 6, and 12 months and 1 month after the second surgery. Sixteen patients were followed up on 78 months after operation. The appearance of grafts was slightly dry compared with normal skin. Tissue structure of grafts was similar to normal skin with sweat gland-like structure

  19. Acceleration of Regeneration of Large Gap-Peripheral Nerve Injuries Using Acellular Nerve Allografts Plus Amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2015-10-01

    amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Thomas L. Smith, PhD CONTRACTING ORGANIZATION: Wake Forest University Health Sciences...Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS). 5a. CONTRACT NUMBER W81XWH-13-1-0309 5b. GRANT NUMBER OR120157 5c...year include successful seeding of AFS into ANA. This accomplishment also documented that these cells remained viable up to 72 hours after seeding. The

  20. Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold

    PubMed Central

    Feng, Yuping; Wang, Jiao; Ling, Shixin; Li, Zhuo; Li, Mingsheng; Li, Qiongyi; Ma, Zongren; Yu, Sijiu

    2014-01-01

    The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined specific neuronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuronal-specific proteins, including βIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differentiation medium differentiated into a multilayered neural network-like structure with long nerve fibers that was composed of several parallel microfibers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sectioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve. PMID:25598779

  1. Tissue-Engineered Nanofibrous Nerve Grafts for Enhancing the Rate of Nerve Regeneration

    DTIC Science & Technology

    2014-10-01

    bioactivity, transport features and mechanics ideal for enhancing the rate of nerve regeneration and healing critical sized nerve defects. We further...scaffolds in bioreactors prior to implantation in rat critical sized nerve defect model. 2. KEYWORDS: nerve regeneration, nerve guidance conduit...for an optimal nerve graft (Figure 1; Figure 2). Different wall thickness was achieved by using 6 different salt sizes . The 0.1mm wall thickness

  2. KLF7-transfected Schwann cell graft transplantation promotes sciatic nerve regeneration.

    PubMed

    Wang, Ying; Li, Wen-Yuan; Jia, Hua; Zhai, Feng-Guo; Qu, Wen-Rui; Cheng, Yong-Xia; Liu, Yan-Cui; Deng, Ling-Xiao; Guo, Su-Fen; Jin, Zai-Shun

    2017-01-06

    Our former study demonstrated that Krüppel-like Factor 7 (KLF7) is a transcription factor that stimulates axonal regeneration after peripheral nerve injury. Currently, we used a gene therapy approach to overexpress KLF7 in Schwann cells (SCs) and assessed whether KLF7-transfected SCs graft could promote sciatic nerve regeneration. SCs were transfected by adeno-associated virus 2 (AAV2)-KLF7 in vitro. Mice were allografted by an acellular nerve (ANA) with either an injection of DMEM (ANA group), SCs (ANA+SCs group) or AAV2-KLF7-transfected SCs (ANA+KLF7-SCs group) to assess repair of a sciatic nerve gap. The results indicate that KLF7 overexpression promoted the proliferation of both transfected SCs and native SCs. The neurite length of the dorsal root ganglia (DRG) explants was enhanced. Several beneficial effects were detected in the ANA+KLF7-SCs group including an increase in the compound action potential amplitude, sciatic function index score, enhanced expression of PKH26-labeling transplant SCs, peripheral myelin protein 0, neurofilaments, S-100, and myelinated regeneration nerve. Additionally, HRP-labeled motoneurons in the spinal cord, CTB-labeled sensory neurons in the DRG, motor endplate density and the weight ratios of target muscles were increased by the treatment while thermal hyperalgesia was diminished. Finally, expression of KLF7, NGF, GAP43, TrkA and TrkB were enhanced in the grafted SCs, which may indicate that several signal pathways may be involved in conferring the beneficial effects from KLF7 overexpression. We concluded that KLF7-overexpressing SCs promoted axonal regeneration of the peripheral nerve and enhanced myelination, which collectively proved KLF-SCs as a novel therapeutic strategy for injured nerves.

  3. Biofabrication and testing of a fully cellular nerve graft.

    PubMed

    Owens, Christopher M; Marga, Francoise; Forgacs, Gabor; Heesch, Cheryl M

    2013-12-01

    Rupture of a nerve is a debilitating injury with devastating consequences for the individual's quality of life. The gold standard of repair is the use of an autologous graft to bridge the severed nerve ends. Such repair however involves risks due to secondary surgery at the donor site and may result in morbidity and infection. Thus the clinical approach to repair often involves non-cellular solutions, grafts composed of synthetic or natural materials. Here we report on a novel approach to biofabricate fully biological grafts composed exclusively of cells and cell secreted material. To reproducibly and reliably build such grafts of composite geometry we use bioprinting. We test our grafts in a rat sciatic nerve injury model for both motor and sensory function. In particular we compare the regenerative capacity of the biofabricated grafts with that of autologous grafts and grafts made of hollow collagen tubes by measuring the compound action potential (for motor function) and the change in mean arterial blood pressure as consequence of electrically eliciting the somatic pressor reflex. Our results provide evidence that bioprinting is a promising approach to nerve graft fabrication and as a consequence to nerve regeneration.

  4. A Combination of Schwann-Cell Grafts and Aerobic Exercise Enhances Sciatic Nerve Regeneration

    PubMed Central

    Souto, Allana; Oliveira, Júlia Teixeira; de Lima, Silmara; Tonda-Turo, Chiara; Marques, Suelen Adriani; de Almeida, Fernanda Martins; Martinez, Ana Maria Blanco

    2014-01-01

    Background Despite the regenerative potential of the peripheral nervous system, severe nerve lesions lead to loss of target-organ innervation, making complete functional recovery a challenge. Few studies have given attention to combining different approaches in order to accelerate the regenerative process. Objective Test the effectiveness of combining Schwann-cells transplantation into a biodegradable conduit, with treadmill training as a therapeutic strategy to improve the outcome of repair after mouse nerve injury. Methods Sciatic nerve transection was performed in adult C57BL/6 mice; the proximal and distal stumps of the nerve were sutured into the conduit. Four groups were analyzed: acellular grafts (DMEM group), Schwann cell grafts (3×105/2 µL; SC group), treadmill training (TMT group), and treadmill training and Schwann cell grafts (TMT + SC group). Locomotor function was assessed weekly by Sciatic Function Index and Global Mobility Test. Animals were anesthetized after eight weeks and dissected for morphological analysis. Results Combined therapies improved nerve regeneration, and increased the number of myelinated fibers and myelin area compared to the DMEM group. Motor recovery was accelerated in the TMT + SC group, which showed significantly better values in sciatic function index and in global mobility test than in the other groups. The TMT + SC group showed increased levels of trophic-factor expression compared to DMEM, contributing to the better functional outcome observed in the former group. The number of neurons in L4 segments was significantly higher in the SC and TMT + SC groups when compared to DMEM group. Counts of dorsal root ganglion sensory neurons revealed that TMT group had a significant increased number of neurons compared to DMEM group, while the SC and TMT + SC groups had a slight but not significant increase in the total number of motor neurons. Conclusion These data provide evidence that this combination of therapeutic strategies can

  5. Tissue-Engineered Nanofibrous Nerve Grafts for Enhancing the Rate of Nerve Regeneration

    DTIC Science & Technology

    2015-10-01

    wire electrodes connected to an electrical stimulator. A ground electrode was placed in the surrounding muscle tissues to remove conduction of...1 AD______________ AWARD NUMBER: W81XWH-13-1-0320 TITLE: Tissue -Engineered Nanofibrous Nerve Grafts for Enhancing the Rate of Nerve...3. DATES COVERED 15 September 2014-14 September 2015 4. TITLE AND SUBTITLE Tissue -Engineered Nanofibrous Nerve Grafts for Enhancing the Rate of

  6. Cross-Face Nerve Grafting with Infraorbital Nerve Pathway Protection: Anatomic and Histomorphometric Feasibility Study

    PubMed Central

    Catapano, Joseph; Demsey, Daniel R.B.; Ho, Emily S.; Zuker, Ronald M.

    2016-01-01

    Smiling is an important aspect of emotional expression and social interaction, leaving facial palsy patients with impaired social functioning and decreased overall quality of life. Although there are several techniques available for facial reanimation, staged facial reanimation using donor nerve branches from the contralateral, functioning facial nerve connected to a cross-face nerve graft (CFNG) is the only technique that can reliably reproduce an emotionally spontaneous smile. Although CFNGs provide spontaneity, they typically produce less smile excursion than when the subsequent free functioning muscle flap is innervated with the motor nerve to the masseter muscle. This may be explained in part by the larger number of donor motor axons when using the masseter nerve, as studies have shown that only 20% to 50% of facial nerve donor axons successfully cross the nerve graft to innervate their targets. As demonstrated in our animal studies, increasing the number of donor axons that grow into and traverse the CFNG to innervate the free muscle transfer increases muscle movement, and this phenomenon may provide patients with the benefit of improved smile excursion. We have previously shown in animal studies that sensory nerves, when coapted to a nerve graft, improve axonal growth through the nerve graft and improve muscle excursion. Here, we describe the feasibility of and our experience in translating these results clinically by coapting the distal portion of the CFNG to branches of the infraorbital nerve. PMID:27757349

  7. Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs

    PubMed Central

    Syedain, Zeeshan; Reimer, Jay; Lahti, Matthew; Berry, James; Johnson, Sandra; Bianco, Richard; Tranquillo, Robert T.

    2016-01-01

    Treatment of congenital heart defects in children requiring right ventricular outflow tract reconstruction typically involves multiple open-heart surgeries because all existing graft materials have no growth potential. Here we present an ‘off-the-shelf' vascular graft grown from donor fibroblasts in a fibrin gel to address this critical unmet need. In a proof-of-concept study, the decellularized grafts are implanted as a pulmonary artery replacement in three young lambs and evaluated to adulthood. Longitudinal ultrasounds document dimensional growth of the grafts. The lambs show normal growth, increasing body weight by 366% and graft diameter and volume by 56% and 216%, respectively. Explanted grafts display physiological strength and stiffness, complete lumen endothelialization and extensive population by mature smooth muscle cells. The grafts also show substantial elastin deposition and a 465% increase in collagen content, without signs of calcification, aneurysm or stenosis. Collectively, our data support somatic growth of this completely biological graft. PMID:27676438

  8. Nerve Wrapping of the Sciatic Nerve With Acellular Dermal Matrix in Chronic Complete Proximal Hamstring Ruptures and Ischial Apophyseal Avulsion Fractures

    PubMed Central

    Haus, Brian M.; Arora, Danny; Upton, Joseph; Micheli, Lyle J.

    2016-01-01

    Background: Patients with chronic injuries of the proximal hamstring can develop significant impairment because of weakness of the hamstring muscles, sciatic nerve compression from scar formation, or myositis ossificans. Purpose: To describe the surgical outcomes of patients with chronic injury of the proximal hamstrings who were treated with hamstring repair and sciatic neurolysis supplemented with nerve wrapping with acellular dermal matrix. Study Design: Retrospective case series; Level of evidence, 4. Methods: Fifteen consecutive patients with a diagnosis of chronic complete proximal hamstring rupture or chronic ischial tuberosity apophyseal avulsion fracture (mean age, 39.67 years; range, 14-69 years) were treated with proximal hamstring repair and sciatic neurolysis supplemented with nerve wrapping with acellular dermal matrix. Nine patients had preoperative sciatica, and 6 did not. Retrospective chart review recorded clinical outcomes measured by the degree of pain relief, the rate of return to activities, and associated postoperative complications. Results: All 15 patients were followed in the postoperative period for an average of 16.6 months. Postoperatively, there were 4 cases of transient sciatic nerve neurapraxia. Four patients (26%) required postoperative betamethasone sodium phosphate (Celestone Soluspan) injectable suspension USP 6 mg/mL. Among the 9 patients with preoperative sciatica, 6 (66%) had a good or excellent outcome and were able to return to their respective activities/sports; 3 (33%) had persistent chronic pain. One of these had persistent sciatic neuropathy that required 2 surgical reexplorations and scar excision after development of recurrent extraneural scar formation. Among the 6 without preoperative sciatica, 100% had a good or excellent outcomes and 83% returned to their respective activities/sports. Better outcomes were observed in younger patients, as the 3 cases of persistent chronic sciatic pain were in patients older than 45

  9. Axonal Growth Arrests After an Increased Accumulation of Schwann Cells Expressing Senescence Markers and Stromal Cells in Acellular Nerve Allografts.

    PubMed

    Poppler, Louis H; Ee, Xueping; Schellhardt, Lauren; Hoben, Gwendolyn M; Pan, Deng; Hunter, Daniel A; Yan, Ying; Moore, Amy M; Snyder-Warwick, Alison K; Stewart, Sheila A; Mackinnon, Susan E; Wood, Matthew D

    2016-07-01

    Acellular nerve allografts (ANAs) and other nerve constructs do not reliably facilitate axonal regeneration across long defects (>3 cm). Causes for this deficiency are poorly understood. In this study, we determined what cells are present within ANAs before axonal growth arrest in nerve constructs and if these cells express markers of cellular stress and senescence. Using the Thy1-GFP rat and serial imaging, we identified the time and location of axonal growth arrest in long (6 cm) ANAs. Axonal growth halted within long ANAs by 4 weeks, while axons successfully regenerated across short (3 cm) ANAs. Cellular populations and markers of senescence were determined using immunohistochemistry, histology, and senescence-associated β-galactosidase staining. Both short and long ANAs were robustly repopulated with Schwann cells (SCs) and stromal cells by 2 weeks. Schwann cells (S100β(+)) represented the majority of cells repopulating both ANAs. Overall, both ANAs demonstrated similar cellular populations with the exception of increased stromal cells (fibronectin(+)/S100β(-)/CD68(-) cells) in long ANAs. Characterization of ANAs for markers of cellular senescence revealed that long ANAs accumulated much greater levels of senescence markers and a greater percentage of Schwann cells expressing the senescence marker p16 compared to short ANAs. To establish the impact of the long ANA environment on axonal regeneration, short ANAs (2 cm) that would normally support axonal regeneration were generated from long ANAs near the time of axonal growth arrest ("stressed" ANAs). These stressed ANAs contained mainly S100β(+)/p16(+) cells and markedly reduced axonal regeneration. In additional experiments, removal of the distal portion (4 cm) of long ANAs near the time of axonal growth arrest and replacement with long isografts (4 cm) rescued axonal regeneration across the defect. Neuronal culture derived from nerve following axonal growth arrest in long ANAs revealed no

  10. Acellular human heart matrix: A critical step toward whole heart grafts.

    PubMed

    Sánchez, Pedro L; Fernández-Santos, M Eugenia; Costanza, Salvatore; Climent, Andreu M; Moscoso, Isabel; Gonzalez-Nicolas, M Angeles; Sanz-Ruiz, Ricardo; Rodríguez, Hugo; Kren, Stefan M; Garrido, Gregorio; Escalante, Jose L; Bermejo, Javier; Elizaga, Jaime; Menarguez, Javier; Yotti, Raquel; Pérez del Villar, Candelas; Espinosa, M Angeles; Guillem, María S; Willerson, James T; Bernad, Antonio; Matesanz, Rafael; Taylor, Doris A; Fernández-Avilés, Francisco

    2015-08-01

    The best definitive treatment option for end-stage heart failure currently is transplantation, which is limited by donor availability and immunorejection. Generating an autologous bioartificial heart could overcome these limitations. Here, we have decellularized a human heart, preserving its 3-dimensional architecture and vascularity, and recellularized the decellularized extracellular matrix (dECM). We decellularized 39 human hearts with sodium-dodecyl-sulfate for 4-8 days. Cell removal and architectural integrity were determined anatomically, functionally, and histologically. To assess cytocompatibility, we cultured human cardiac-progenitor cells (hCPC), bone-marrow mesenchymal cells (hMSCs), human endothelial cells (HUVECs), and H9c1 and HL-1 cardiomyocytes in vitro on dECM ventricles up to 21 days. Cell survival, gene expression, organization and/or electrical coupling were analyzed and compared to conventional 2-dimensional cultures. Decellularization removed cells but preserved the 3-dimensional cardiac macro and microstructure and the native vascular network in a perfusable state. Cell survival was observed on dECM for 21 days. hCPCs and hMSCs expressed cardiocyte genes but did not adopt cardiocyte morphology or organization; HUVECs formed a lining of endocardium and vasculature; differentiated cardiomyocytes organized into nascent muscle bundles and displayed mature calcium dynamics and electrical coupling in recellularized dECM. In summary, decellularization of human hearts provides a biocompatible scaffold that retains 3-dimensional architecture and vascularity and that can be recellularized with parenchymal and vascular cells. dECM promotes cardiocyte gene expression in stem cells and organizes existing cardiomyocytes into nascent muscle showing electrical coupling. These findings represent a first step toward manufacturing human heart grafts or matrix components for treating cardiovascular disease.

  11. Comparison of rabbit facial nerve regeneration in nerve growth factor-containing silicone tubes to that in autologous neural grafts.

    PubMed

    Spector, J G; Lee, P; Derby, A; Roufa, D G

    1995-11-01

    Previous reports suggest that nerve growth factor (NGF) enhanced nerve regeneration in rabbit facial nerves. We compared rabbit facial nerve regeneration in 10-mm silicone tubes prefilled with NGF or cytochrome C (Cyt C), bridging an 8-mm nerve gap, to regeneration of 8-mm autologous nerve grafts. Three weeks following implantation, NGF-treated regenerates exhibited a more mature fascicular organization and more extensive neovascularization than Cyt C-treated controls. Morphometric analysis at the middle of the tube of 3- and 5-week regenerates revealed no significant difference in the mean number of myelinated or unmyelinated axons between NGF- and Cyt C-treated implants. However, when the numbers of myelinated fibers in 5-week regenerates were compared to those in their respective preoperative controls, NGF-treated regenerates had recovered a significantly greater percentage of myelinated axons than Cyt C-treated implants (46% versus 18%, respectively). The number of regenerating myelinated axons in the autologous nerve grafts at 5 weeks was significantly greater than the number of myelinated axons in the silicone tubes. However, in the nerve grafts the majority of the axons were found in the extrafascicular connective tissue (66%). The majority of these myelinated fibers did not find their way into the distal nerve stump. Thus, although the number of regenerating myelinated axons within the nerve grafts is greater than that of axons within silicone tube implants, functional recovery of autologous nerve graft repairs may not be superior to that of intubational repairs.

  12. Using an end-to-side interposed sural nerve graft for facial nerve reinforcement after vestibular schwannoma resection. Technical note.

    PubMed

    Samii, Madjid; Koerbel, Andrei; Safavi-Abbasi, Sam; Di Rocco, Federico; Samii, Amir; Gharabaghi, Alireza

    2006-12-01

    Increasing rates of facial and cochlear nerve preservation after vestibular schwannoma surgery have been achieved in the last 30 years. However, the management of a partially or completely damaged facial nerve remains an important issue. In such a case, several immediate or delayed repair techniques have been used. On the basis of recent studies of successful end-to-side neurorrhaphy, the authors applied this technique in a patient with an anatomically preserved but partially injured facial nerve during vestibular schwannoma surgery. The authors interposed a sural nerve graft to reinforce the facial nerve whose partial anatomical continuity had been preserved. On follow-up examinations 18 months after surgery, satisfactory cosmetic results for facial nerve function were observed. The end-to-side interposed nerve graft appears to be a reasonable alternative in cases of partial facial nerve injury, and might be a future therapeutic option for other cranial nerve injuries.

  13. Clinical results and thoughts on sensory nerve repair by autologous vein graft in emergency hand reconstruction.

    PubMed

    Risitano, G; Cavallaro, G; Merrino, T; Coppolino, S; Ruggeri, F

    2002-05-01

    Lesions of the digital and other sensory nerves in the hand are common. Based on experimental studies on vein graft as a support for peripheral nerve regeneration, the Authors have been using a simple vein graft to bridge sensory nerve gaps when treating acute hand injuries. This is a retrospective study on the results of 22 sensory nerves repaired using vein grafts in cases in which primary suture was not feasible, in emergency hand reconstruction. Patients were informed that a secondary nerve graft could possibly be necessary in the future. Patients were reviewed by two independent observers at least one year after repair and evaluated using the Highest scale as modified by MacKinnon & Dellon. Evaluation chart included influence of repair on rehabilitation program and presence of painful neuromas and scars as well as patient satisfaction. Results were classified according to Sakellarides and 20/22 were classified as very good or good. Cases classified as poor were satisfied and no secondary nerve grafting has been carried out. Rehabilitation of the associated lesions (tendon lacerations or bone and soft tissue damage) was not influenced by the nerve repair and no painful neuroma was reported in the series. In conclusion, since the literature shows unsatisfactory results in repair of digital nerves with nerve grafts, since it's been demonstrated that an unrepaired sensory nerve leads to painful scar and painful neuroma and since we are reluctant to use nerve grafts in emergency procedures, we recommend this simple method because it is easy, low-cost and effective.

  14. A new type of Schwann cell graft transplantation to promote optic nerve regeneration in adult rats.

    PubMed

    Fang, Yuan; Mo, Xiaofen; Guo, Wenyi; Zhang, Meng; Zhang, Peihua; Wang, Yan; Rong, Xianfang; Tian, Jie; Sun, Xinghuai

    2010-12-01

    Like other parts of the central nervous system, the adult mammalian optic nerve is difficult to regenerate after injury. Transplantation of the peripheral nerve or a Schwann cell (SC) graft can promote injured axonal regrowth. We tried to develop a new type of tissue-engineered SC graft that consisted of SCs seeded onto a poly(lactic-co-glycolic acid)/chitosan conduit. Meanwhile, SCs were transfected along the ciliary neurotrophic factor (CNTF) gene in vitro by electroporation to increase their neurotrophic effect. Four weeks after transplantation, GAP-43 labelled regenerating axons were found in the SC grafts, and axons in the CNTF-SC graft were longer than those in the SC graft. Tissue-engineered SC grafts can provide a feasible environment for optic nerve regeneration and may become an alternative for bridging damaged nerves and repairing nerve defects in the future.

  15. Results of nerve grafting in radial nerve injuries occurring proximal to the humerus, including those within the posterior cord.

    PubMed

    Bertelli, Jayme Augusto; Ghizoni, Marcos Flávio

    2016-01-01

    OBJECT Results of radial nerve grafting are largely unknown for lesions of the radial nerve that occur proximal to the humerus, including those within the posterior cord. METHODS The authors describe 13 patients with proximal radial nerve injuries who were surgically treated and then followed for at least 24 months. The patients' average age was 26 years and the average time between accident and surgery was 6 months. Sural nerve graft length averaged 12 cm. Recovery was scored according to the British Medical Research Council (BMRC) scale, which ranges from M0 to M5 (normal muscle strength). RESULTS After grafting, all 7 patients with an elbow extension palsy recovered elbow extension, scoring M4. Six of the 13 recovered M4 wrist extension, 6 had M3, and 1 had M2. Thumb and finger extension was scored M4 in 3 patients, M3 in 2, M2 in 2, and M0 in 6. CONCLUSIONS The authors consider levels of strength of M4 for elbow and wrist extension and M3 for thumb and finger extension to be good results. Based on these criteria, overall good results were obtained in only 5 of the 13 patients. In proximal radial nerve lesions, the authors now advocate combining nerve grafts with nerve or tendon transfers to reconstruct wrist, thumb, and finger extension.

  16. [Comparison of cross face nerve graft with masseteric nerve as donor nerves for free functional muscle transfers in facial reanimation surgery].

    PubMed

    Eisenhardt, S U; Thiele, J R; Stark, G B; Bannasch, H

    2013-08-01

    Several surgical techniques have been proposed for the reconstruction of the smile in facial paralysis. The 2-stage approach utilising a cross-facial nerve graft (CFNG) and subsequent free functional muscle transfer represents the "gold standard". A single-stage alternative is the use of the masseteric nerve as donor nerve. Here we have retrospectively analysed the outcome of 8 patients who were treated with either of these procedures (4 per treatment group). We compared the oral commisure excursion between the 2 groups. Use of the masseteric nerve led to reinnervation of the muscle graft within 3 months. The 2-stage procedure required more than 12 months from the first procedure until first muscle contractions could be observed. A spontaneous smile could not be achieved in all patients when the masseteric nerve was used. The oral commisure excursion was symmetrical when compared to the healthy side in both groups, however the excursion was significantly higher in the masseteric nerve group compared to the CFNG group of patients. Most patients with the masseteric nerve as a donor nerve underwent a secondary procedure, which involved thinning of the muscle flap. In conclusion, the use of the masseteric nerve as a donor nerve for facial reanimation surgery is a single-stage alternative to the use of a CFNG as donor nerve. It delivers reliable results with strong muscle contractions with limitations in regard to achieving a spontaneous smile.

  17. Behavioral evaluation of regenerated rat sciatic nerve by a nanofibrous PHBV conduit filled with Schwann cells as artificial nerve graft.

    PubMed

    Biazar, Esmaeil; Heidari Keshel, Saeed; Pouya, Majid

    2013-10-01

    The aim of this study is to develop a nanofibrous polymeric nerve conduit with Schwann cells (SCs) and to evaluate its efficiency on the promotion of functional and locomotive activities in rats. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the rats were monitored and evaluated by behavioral analyses such as toe out angle, toe spreading analysis, walking track analysis, extensor postural thrust, open-field analysis, swimming test and nociceptive function, four months post surgery. Four months post-operatively, the results from behavioral analyses demonstrated that in the grafted groups especially in the grafted group with SCs, the rat sciatic nerve trunk had been reconstructed with functional recovery such as walking, swimming and recovery of nociceptive function. This study proves the feasibility of artificial conduit with SCs for nerve regeneration by bridging a longer defect in the rat model.

  18. Repair of multiple cervical root avulsion with sural nerve graft.

    PubMed

    Hsu, Sanford P C; Shih, Yang-Hsin; Huang, Ming-Chao; Chuang, Tien-Yow; Huang, Wen-Cheng; Wu, Hsiu-Mei; Lin, Pei-Hsin; Lee, Liang-Shong; Cheng, Henrich

    2004-09-01

    To obtain easier access to avulsed roots in the intradural space for patients suffering cervical root avulsion, the authors of this study developed a novel repair method. This involves using nerve grafts to bridge corresponding segments of the spinal cord and the trunk or cord level of the plexus, respectively, in two surgical stages. All eight patients admitted to this study received pre- and post-operative workups of electrophysiological evaluations and muscle power grading through Medical Research Council (MRC) scores. The degrees of impairment were also graded according to a modified version of Dumitru's and Wilbourn's scale (mild = 1; moderate = 2; severe = 3). The preoperative versus post-operative differences in the severity of the injuries and in the grading of the target muscle power were calculated according to the Wilcoxon signed-rank test. The preoperative degree of the severity of the injuries, as measured by electromyography (EMG), was 3.00 +/- 0.00 (mean +/- S.D.). The post-operative result was 2.125 +/- 0.641. Significant change took place after repair (P = 0.0313). Moreover, although little improvement was observed in the triceps, brachioradialis (BR), extensor carpi radialis (ECR), flexor digitorum profundus (FDP) and intrinsic hand muscles, the MRC grading showed significant yet not prominent motor recovery in the deltoid and biceps brachii (both P = 0.0313). We were impressed that the initial significant statistical results of differences in pre- and post-operative severity of the injuries and muscle power grading, demonstrated that regeneration does occur with this repair strategy.

  19. Ketoprofen combined with artery graft entubulization improves functional recovery of transected peripheral nerves.

    PubMed

    Mohammadi, Rahim; Mehrtash, Moein; Nikonam, Nima; Mehrtash, Moied; Amini, Keyvan

    2014-12-01

    The objective was to assess the local effect of ketoprofen on sciatic nerve regeneration and functional recovery. Eighty healthy male white Wistar rats were randomized into four experimental groups of 20 animals each: In the transected group (TC), the left sciatic nerve was transected and nerve cut ends were fixed in the adjacent muscle. In the treatment group the defect was bridged using an artery graft (AG/Keto) filled with 10 microliter ketoprofen (0.1 mg/kg). In the artery graft group (AG), the graft was filled with phosphated-buffer saline alone. In the sham-operated group (SHAM), the sciatic nerve was exposed and manipulated. Each group was subdivided into four subgroups of five animals each and regenerated nerve fibres were studied at 4, 8, 12 and 16 weeks post operation. Behavioural testing, sciatic nerve functional study, gastrocnemius muscle mass and morphometric indices showed earlier regeneration of axons in AG/Keto than in AG group (p < 0.05). Immunohistochemical study clearly showed more positive location of reactions to S-100 in AG/Keto than in AG group. When loaded in an artery graft, ketoprofen improved functional recovery and morphometric indices of the sciatic nerve. Local usage of this easily accessible therapeutic medicine is cost saving and avoids the problems associated with systemic administration.

  20. Sexual function in women after rectocele repair with acellular porcine dermis graft vs site-specific rectovaginal fascia repair.

    PubMed

    Novi, Joseph M; Bradley, Catherine S; Mahmoud, Najjia N; Morgan, Mark A; Arya, Lily A

    2007-10-01

    The objective of the study was to compare preoperative and postoperative sexual function between women undergoing rectocele repair with porcine dermis graft and women undergoing site-specific repair of rectovaginal fascia. A standardized, validated questionnaire (Pelvic Organ Prolapse/Urinary Incontinence Sexual Function Questionnaire [PISQ]) was used to collect preoperative sexual function data from 100 patients with rectocele pelvic organ prolapse quantification stage 2 or greater. Fifty women underwent rectocele repair utilizing porcine dermis graft (group 1) and 50 women underwent a site-specific repair of the rectovaginal fascia (group 2). The same questionnaire was administered to all subjects 6 months after surgery. The two groups were similar in age, race, parity, prior hysterectomy, and postmenopausal hormone use. Preoperative sexual function scores were similar in the two groups (group 1 81.4+/-7.3 and group 2: 83.6+/-8.2, p=1.0). Six months after surgery, PISQ scores in group 1 significantly increased (score increase 19.9+/-2.2, p=0.01). The mean increase in PISQ scores for group 2 was 6.9+/-3.1 (p=0.08). When compared with group 2, subjects undergoing rectocele repair with porcine dermis graft scored significantly higher on the PISQ 6 months after surgery (group 1 101.3+/-6.4 and group 2 89.7+/-7.1, p=0.01). We conclude that rectocele repair using porcine dermis graft is associated with improved sexual functioning when compared with site-specific rectovaginal fascia repair.

  1. Pre-implanted Sensory Nerve Could Enhance the Neurotization in Tissue-Engineered Bone Graft.

    PubMed

    Wu, Yan; Jing, Da; Ouyang, Hongwei; Li, Liang; Zhai, Mingming; Li, Yan; Bi, Long; Guoxian, Pei

    2015-08-01

    In our previous study, it was found that implanting the sensory nerve tract into the tissue-engineered bone to repair large bone defects can significantly result in better osteogenesis effect than tissue-engineered bone graft (TEBG) alone. To study the behavior of the preimplanted sensory nerve in the TEBG, the TEBG was constructed by seeding bone mesenchymal stem cells into β-tricalcium phosphate scaffold with (treatment group) or without (blank group) implantation of the sensory nerve. The expression of calcitonin gene-related peptide (CGRP), which helps in the healing of bone defect in the treatment group was significantly higher than the blank group at 4, 8, and 12 weeks. The expression of growth-associated protein 43 (GAP43), which might be expressed during nerve healing in the treatment group, was significantly higher than the blank group at 4 and 8 weeks. The nerve tracts of the preimplanted sensory nerve were found in the scaffold by the nerve tracing technique. The implanted sensory nerve tracts grew into the pores of scaffolds much earlier than the vascular. The implanted sensory nerve tracts traced by Dil could be observed at 4 weeks, but at the same time, no vascular was observed. In conclusion, the TEBG could be benefited from the preimplanted sensory nerve through the healing behavior of the sensory nerve. The sensory nerve fibers could grow into the pores of the TEBG rapidly, and increase the expression of CGRP, which is helpful in regulating the bone formation and the blood flow.

  2. A nanofibrous PHBV tube with Schwann cell as artificial nerve graft contributing to rat sciatic nerve regeneration across a 30-mm defect bridge.

    PubMed

    Biazar, Esmaeil; Heidari Keshel, Saeed

    2013-02-01

    A nanofibrous PHBV nerve conduit has been used to evaluate its efficiency based on the promotion of nerve regeneration in rats. The designed conduits were investigated by physical, mechanical and microscopic analyses. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the regenerated nerves were evaluated by macroscopic assessments and histology. This polymeric conduit had sufficiently high mechanical properties to serve as a nerve guide. The results demonstrated that in the nanofibrous graft with cells, the sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. For the grafts especially the nanofibrous conduits with cells, muscle cells of gastrocnemius on the operated side were uniform in their size and structures. This study proves the feasibility of artificial conduit with Schwann cells for nerve regeneration by bridging a longer defect in a rat model.

  3. A comparative evaluation of the effectiveness of subpedicle acellular dermal matrix allograft with subepithelial connective tissue graft in the treatment of isolated marginal tissue recession: A clinical study

    PubMed Central

    Shori, Tony; Kolte, Abhay; Kher, Vishal; Dharamthok, Swarup; Shrirao, Tushar

    2013-01-01

    Introduction: The most common problem encountered in our day to day practice is exposed root surface or a tooth getting long. The main indication for root coverage procedures are esthetics and/or cosmetic demands followed by the management of root hypersensitivity, root caries or when it hampers proper plaque removal. Over the years, various techniques have been used to achieve root coverage. Aim and Objectives: The aim of this study was to compare the effectiveness of subpedicle acellular dermal matrix allograft (ADMA) with subepithelial connective tissue graft (SCTG) in the treatment of isolated marginal tissue recession. Materials and Methods: Twenty systemically healthy patients aged between 18 to 50 years (mean age29.7±4.35 years) with a recession defect on the labial and the buccal surfaces of any teeth were selected for the study. Ten patients received the test treatment (ADMA), ten patients received the control treatment (SCTG). Clinical recordings assessed at baseline, three months and six months post surgery, included Plaque index (PI), Papillary bleeding index (PBI), Gingival recession (REC), Probing pocket depth (PPD), Clinical attachment level (CAL) and Width of keratinized gingival (WKG). Results: Test group (ADMA) showed 86.93% mean root coverage while control group (SCTG) showed 84.72% at six months post surgery. Mean increase in the width of keratinized gingiva was significantly greater in the SCTG group (3.3±0.48mm) compared to ADMA group (2.4±0.51mm). Conclusion: Both the treatment produced a significant reduction in gingival recession and probing pocket depth and significant gain in clinical attachment level and width of keratinised gingiva. PMID:23633778

  4. Recovery of erectile function comparing autologous nerve grafts, unseeded conduits, Schwann-cell-seeded guidance tubes and GDNF-overexpressing Schwann cell grafts

    PubMed Central

    Buchner, Alexander; Matiasek, Kaspar; Schlenker, Boris; Stief, Christian; Weidner, Norbert

    2016-01-01

    ABSTRACT Dissection of the cavernous nerves during radical prostatectomy for prostate cancer eliminates spontaneous erections. Using the rat as an experimental model, we compared the regenerative capacity of autologous nerve grafts and Schwann-cell-seeded nerve guides. After bilateral excision of cavernous nerve segments, cavernous nerves were reconstructed using unseeded silicon tubes, nerve autografts and silicon tubes seeded with either Glial-cell-line-derived (GDNF)-overexpressing or green fluorescent protein (GFP)-expressing Schwann cells (SCs) (16 study nerves per group). Control groups underwent either a sham operation or bilateral excision of cavernous nerve segments without repair. After 12 weeks erectile function was assessed by neurostimulation and intracavernous pressure (ICP) measurement. The reconstructed nerve segments were excised and histologically analyzed. We demonstrated an intact erectile response upon neurostimulation in 25% (4/16) of autologous nerve grafts, in 50% (8/16) of unseeded tubes, in 75% (12/16) of the Schwann-cell–GFP group and in 93.75% (15/16) of the GDNF group. ICP was significantly increased when comparing the Schwann-cell–GFP group with nerve autografts, unseeded conduits and negative controls (P<0.005). In conclusion, Schwann-cell-seeded scaffolds combined with neurotrophic factors are superior to unseeded tubes and autologous nerve grafts. They present a promising therapeutic approach for the repair of erectile nerve gaps. PMID:27874834

  5. Rat sciatic nerve reconstruction across a 30 mm defect bridged by an oriented porous PHBV tube with Schwann cell as artificial nerve graft.

    PubMed

    Karimi, Mina; Biazar, Esmaeil; Keshel, Saeed Heidari; Ronaghi, Abdolaziz; Doostmohamadpour, Jafar; Janfada, Alireza; Montazeri, Arash

    2014-01-01

    An oriented poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit has been used to evaluate its efficiency based on the promotion of peripheral nerve regeneration in rats. The oriented porous micropatterned artificial nerve conduit was designed onto the micropatterned silicon wafers, and then their surfaces were modified with oxygen plasma to increase cell adhesion. The designed conduits were investigated by cell culture analyses with Schwann cells (SCs). The conduits were implanted into a 30 mm gap in sciatic nerves of rats. Four months after surgery, the regenerated nerves were monitored and evaluated by macroscopic assessments and histology and behavioral analyses. Results of cellular analyses showed suitable properties of designed conduit for nerve regeneration. The results demonstrated that in the polymeric graft with SCs, the rat sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. Histological results demonstrated the presence of Schwann and glial cells in regenerated nerves. Functional recovery such as walking, swimming, and recovery of nociceptive function was illustrated for all the grafts especially conduits with SCs. This study proves the feasibility of the artificial nerve graft filled with SCs for peripheral nerve regeneration by bridging a longer defect in an animal model.

  6. Rat Sciatic Nerve Reconstruction Across a 30 mm Defect Bridged by an Oriented Porous PHBV Tube With Schwann Cell as Artificial Nerve Graft

    PubMed Central

    2014-01-01

    An oriented poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit has been used to evaluate its efficiency based on the promotion of peripheral nerve regeneration in rats. The oriented porous micropatterned artificial nerve conduit was designed onto the micropatterned silicon wafers, and then their surfaces were modified with oxygen plasma to increase cell adhesion. The designed conduits were investigated by cell culture analyses with Schwann cells (SCs). The conduits were implanted into a 30 mm gap in sciatic nerves of rats. Four months after surgery, the regenerated nerves were monitored and evaluated by macroscopic assessments and histology and behavioral analyses. Results of cellular analyses showed suitable properties of designed conduit for nerve regeneration. The results demonstrated that in the polymeric graft with SCs, the rat sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. Histological results demonstrated the presence of Schwann and glial cells in regenerated nerves. Functional recovery such as walking, swimming, and recovery of nociceptive function was illustrated for all the grafts especially conduits with SCs. This study proves the feasibility of the artificial nerve graft filled with SCs for peripheral nerve regeneration by bridging a longer defect in an animal model. PMID:24399063

  7. Repair of ocular-oral synkinesis of postfacial paralysis using cross-facial nerve grafting.

    PubMed

    Zhang, Bo; Yang, Chuan; Wang, Wei; Li, Wei

    2010-08-01

    We present the surgical techniques and results of cross-facial nerve grafting that have been developed in the repair of ocular-oral synkinesis after facial paralysis. Eleven patients with ocular-oral synkinesis after facial paralysis underwent the cross-facial nerve grafting with facial nerve transposition at a tertiary academic hospital between 2003 and 2009. The patient selection for the study was based on the degree of disfigurement and facial function parameter rating using the Toronto Facial Grading System. The procedures used were surgeries done in two stages. All cases were followed up for 2 months to 6 years after the second surgery. The degree of improvement was evaluated at 6 to 7 months after the procedures. Six of the patients were followed up for more than 2 years after the stage-two surgery and demonstrated significant reduction in the ocular-oral synkinetic movements. The Toronto Facial Grading System scores from the postoperative follow-ups increased an average of 16 points (28%), and the patients had achieved symmetrical facial movement. We concluded that cross-facial nerve grafting with facial nerve branch transposition is effective and can be considered as an option for the repair of ocular-oral synkinesis after facial paralysis in select patients.

  8. A double transgenic mouse used to track migrating Schwann cells and regenerating axons following engraftment of injured nerves

    PubMed Central

    Hayashi, Ayato; Koob, Jason W; Liu, Daniel Z; Tong, Alice Y; Hunter, Daniel A.; Parsadanian, Alexander; Mackinnon, Susan E.; Myckatyn, Terence M.

    2007-01-01

    We propose that double transgenic thy1-CFP(23)/S100-GFP mice whose Schwann cells constitutively express green fluorescent protein (GFP) and axons express cyan fluorescent protein (CFP) can be used to serially evaluate the temporal relationship between nerve regeneration and Schwann cell migration through acellular nerve grafts. Thy1-CFP(23)/S100-GFP and S100-GFP mice received non-fluorescing cold preserved nerve allografts from immunologically disparate donors. In vivo fluorescent imaging of these grafts was then performed at multiple points. The transected sciatic nerve was reconstructed with a 1 cm nerve allograft harvested from a Balb-C mouse and acellularized via 7 weeks of cold preservation prior to transplantation. The presence of regenerated axons and migrating Schwann cells was confirmed with confocal and electron microscopy on fixed tissue. Schwann cells migrated into the acellular graft (163 ± 15 intensity units) from both proximal and distal stumps, and bridged the whole graft within 10 days (388 ± 107 intensity units in the central 4-6 mm segment). Nerve regeneration lagged behind Schwann cell migration with 5 or 6 axons imaged traversing the proximal 4 mm of the graft under confocal microcopy within 10 days, and up to 21 labeled axons crossing the distal coaptation site by 15 days. Corroborative electron and light microscopy 5 mm into the graft demonstrated relatively narrow diameter myelinated (431±31) and unmyelinated (64±9) axons by 28 but not 10 days. Live imaging of the double-transgenic thy1-CFP(23)/S100-GFP murine line enabled serial assessment of Schwann cell-axonal relationships in traumatic nerve injuries reconstructed with acellular nerve allografts. PMID:17628544

  9. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts Plus Amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2014-09-01

    505. 2. Ma J, Smith BP, Smith TL, Walker FO, Rosencrance E, Koman LA. Juvenile and adult rat neuromuscular junctions: density, distribution, and...occur in neuromuscular junctions following delayed nerve injury/repair will be studied. If successful, the potential for the denervated muscle to...2002, 2007). In addition, axon morphology will be assessed and compared between treatment groups. Analysis of neuromuscular junction (NMJ) density

  10. Recent advances in acellular regenerative tissue scaffolds.

    PubMed

    Protzman, Nicole M; Brigido, Stephen A

    2015-01-01

    The management of chronic wounds is a considerable challenge for foot and ankle surgeons. The well-established tenets of adequate vascular supply, debridement with eradication of infection, and offloading must be employed in the management of all extremity wounds. Regenerative scaffolds are a viable means of reestablishing a favorable wound environment. The matrix facilitates cell migration, chemoattraction, angiogenesis, wound bed granulation, and expedited wound closure. Although studies have demonstrated success with acellular matrices, a multimodal approach should always be employed to improve healing success. Negative pressure wound therapy, compression, offloading, and antibiotics are advocated to improve outcomes. Acellular graft selection requires a multifactorial analysis, taking into consideration the specific patient and wound characteristics as well as the differences between acellular matrices. Patient age, comorbidities, activity level, and ability to comply with protocol as well as wound etiology, duration, depth, surface area, exudate, bacterial burden, location, vascular status, ischemic status, and presentation are all critical components. To effectively choose a matrix, the clinician must have a comprehensive understanding of the products available and the data validating their use. The mechanisms by which the acellular matrix accelerates wound healing and increases the likelihood of wound healing continue to be investigated. However, it is clear that these acellular biologic tissue scaffolds are incorporating into the host tissue, with resultant revascularization and cellular repopulation. Moving forward, additional investigations examining the effectiveness of acellular biologic tissue scaffolds to improve healing in complex, nondiabetic wounds are warranted.

  11. Methods of Producing Freeze-Dried Acellular Vascular, Peripheral Nerve and Generic Tissue Grafts for the Treatment of Combat Casualties

    DTIC Science & Technology

    1998-02-01

    research using animals , the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals ," prepared by the Committee on Care and Use of...Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985). For the protection... animals thus far. Completion of this in vivo study will be in the second year of this proposal. Also in the second year, we will optimize these processing

  12. The effects of free fat grafts on the stiffness of the rat sciatic nerve and perineural scar.

    PubMed

    Dumanian, G A; McClinton, M A; Brushart, T M

    1999-01-01

    We developed a new quantitative rat sciatic nerve model to test whether free fat grafts can reduce postoperative perineural scar formation. Epineurectomies of sciatic nerves were performed to create scar. The force required to distract the nerve a unit distance was measured after surgery to determine the time of maximal scar formation. Nerve stiffness normalized for rat weight was statistically greater at 2 months after the initial dissection (0.097+/-0.009 g/mm/g rat weight; n = 10 limbs) than rat limbs that had not undergone a previous dissection (0.075+/-0.012 g/mm/g rat weight). Perineural scar thickness was thicker at 2 months than the perineural tissue in preoperative controls. Free fat grafts decreased nerve stiffness at 2 months (0.078+/-0.012 g/mm/g rat weight) in comparison to the contralateral surgical control limb without a fat graft (0.094+/-0.014 g/mm/g rat weight). Free fat grafts reduced the strength of postoperative perineural scar in this surgical model; however, they were associated with an unexpected finding of substantial postoperative neuropathy.

  13. Assessment of in vivo behavior of polymer tube nerve grafts simultaneously with the peripheral nerve regeneration process using scanning electron microscopy technique.

    PubMed

    Szarek, Dariusz; Marycz, Krzysztof; Laska, Jadwiga; Bednarz, Paulina; Jarmundowicz, Włodzimierz

    2013-01-01

    In this study, scanning electron microscopy (SEM) has been applied for instantaneous assessment of processes occurring at the site of regenerating nerve. The technique proved to be especially useful when an artificial implant should have been observed but have not yet been extensively investigated before for assessment of nerve tissue. For in vivo studies, evaluation of implant's morphology and its neuroregenerative properties is of great importance when new prototype is developed. However, the usually applied histological techniques require separate and differently prepared samples, and therefore, the results are never a 100% comparable. In our research, we found SEM as a technique providing detailed data both on an implant behavior and the nerve regeneration process inside the implant. Observations were carried out during 12-week period on rat sciatic nerve injury model reconstructed with nerve autografts and different tube nerve grafts. Samples were analyzed with haematoxylin-eosin (HE), immunocytochemical staining for neurofillament and S-100 protein, SEM, TEM, and the results were compared. SEM studies enabled to obtain characteristic pictures of the regeneration process similarly to TEM and histological studies. Schwann cell transformation and communication as well as axonal outgrowth were identified, newly created and matured axons could be recognized. Concurrent analysis of biomaterial changes in the implant (degradation, collapsing of the tube wall, migration of alginate gel) was possible. This study provides the groundwork for further use of the described technique in the nerve regeneration studies.

  14. Modulation of NMDA receptor expression in the rat spinal cord by peripheral nerve injury and adrenal medullary grafting.

    PubMed

    Hama, A T; Unnerstall, J R; Siegan, J B; Sagen, J

    1995-07-31

    Excessive activation of N-methyl-D-aspartate (NMDA) receptors in the spinal cord consequent to peripheral injury has been implicated in the initiation of neuropathologic events leading to a state of chronic hyperexcitability and persistence of exaggerated sensory processing. In other CNS disease or injury states, NMDA-mediated neurotoxic damage is associated with a loss of NMDA receptors, and outcome may be improved by agents reducing NMDA activation. Previous findings in our laboratory have demonstrated that the transplantation of adrenal medullary tissue into the spinal subarachnoid space can alleviate sensory abnormalities and reduce the induction of a putative nitric oxide synthase consequent to peripheral nerve injury. In order to determine changes in NMDA receptor expression in the spinal cord following peripheral nerve injury and adrenal medullary grafting, NMDA receptor binding using a high-affinity competitive NMDA receptor antagonist, CGP-39653, and NMDAR1 subunit distribution using immunocytochemistry were investigated. Two weeks following peripheral nerve injury by loose ligation of the right sciatic nerve, either adrenal medullary or striated muscle (control) tissue pieces were implanted in the spinal subarachnoid space. Binding studies revealed a marked reduction in [3H]CGP-39653 binding at L4-L5 levels ipsilateral to peripheral nerve injury in control transplanted animals. In contrast, NMDA binding was normalized in adrenal medullary grafted animals. In addition, NMDAR1 immunoreactivity was reduced in both the dorsal horn neuropil and motor neurons of the ventral horn in animals with peripheral nerve injury, while levels in adrenal medullary grafted animals appeared similar to intact controls. These results suggest that adrenal medullary transplants reduce abnormal sensory processing resulting from peripheral injury by intervening in the spinal NMDA-excitotoxicity cascade.

  15. Data from acellular human heart matrix.

    PubMed

    Sánchez, Pedro L; Fernández-Santos, M Eugenia; Espinosa, M Angeles; González-Nicolas, M Angeles; Acebes, Judith R; Costanza, Salvatore; Moscoso, Isabel; Rodríguez, Hugo; García, Julio; Romero, Jesús; Kren, Stefan M; Bermejo, Javier; Yotti, Raquel; Del Villar, Candelas Pérez; Sanz-Ruiz, Ricardo; Elizaga, Jaime; Taylor, Doris A; Fernández-Avilés, Francisco

    2016-09-01

    Perfusion decellularization of cadaveric hearts removes cells and generates a cell-free extracellular matrix scaffold containing acellular vascular conduits, which are theoretically sufficient to perfuse and support tissue-engineered heart constructs. This article contains additional data of our experience decellularizing and testing structural integrity and composition of a large series of human hearts, "Acellular human heart matrix: a critical step toward whole heat grafts" (Sanchez et al., 2015) [1]. Here we provide the information about the heart decellularization technique, the valve competence evaluation of the decellularized scaffolds, the integrity evaluation of epicardial and myocardial coronary circulation, the pressure volume measurements, the primers used to assess cardiac muscle gene expression and, the characteristics of donors, donor hearts, scaffolds and perfusion decellularization process.

  16. Wound healing effect of acellular artificial dermis containing extracellular matrix secreted by human skin fibroblasts.

    PubMed

    Seo, Young-Kwon; Song, Kye-Yong; Kim, Young-Jin; Park, Jung-Keug

    2007-07-01

    In this study, an acellular artificial dermis, composed of human collagen and glycosaminoglycan (GAG) secreted by cultured human fibroblasts on a bovine collagen sponge, was developed. Much of the newly secreted extracellular matrix (ECM) remained after the cell removal process. The main theme of this study focused on the matrix, rather than the viable cell components of the skin, as the major dermal deficit in the wound. Both the acellular artificial and bioartificial dermises, containing viable cells with ECM, were significantly less soluble than the collagen sponge, and the relative GAG content in the bioartificial and acellular artificial dermises was approximately 115-120% of the chondroitin-6-sulfate (CS) content found in the collagen sponge. In the group receiving the collagen sponge, the wound area gradually decreased to approximately 10% of its original area, while in the groups receiving the bioartificial and acellular artificial dermises, the wound area also gradually decreased to approximately 60 and 50%, respectively, of the original size over the 5 weeks after grafting. Both the bioartificial and acellular artificial dermises formed thicker, denser collagen fibers; more new blood vessel formation was observed in both cases. The basement membrane of the regenerated epidermal-dermal junction was thicker and more linear in the acellular artificial dermis graft than in the collagen sponge graft. In conclusion, the wound healing effects of acellular artificial dermis are no less than those of the bioartificial dermis, and much better than the collagen sponge graft with respect to wound contraction, angiogenesis, collagen formation, and basement membrane repair.

  17. Use of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid)-based scaffold included with bone marrow mesenchymal cells for bridging 50-mm dog sciatic nerve gaps.

    PubMed

    Ding, Fei; Wu, Jian; Yang, Yumin; Hu, Wen; Zhu, Qi; Tang, Xin; Liu, Jie; Gu, Xiaosong

    2010-12-01

    Bone marrow mesenchymal cells (MSCs) have attracted increasing research interest due to their possible use as support cells for nerve tissue-engineering approaches. We developed a novel design of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid) (PLGA)-based neural scaffold included with autologous MSCs. The graft was used as an alternative to nerve autografts for bridging 50-mm-long gaps in dog sciatic nerve, and the repair outcome at 6 months after nerve grafting was evaluated by a combination of electrophysiological assessment, FluoroGold retrograde tracing, and histological investigation to regenerated nerve tissue and reinnervated target muscle. The experimental results indicated that introduction of autologous MSCs to the chitosan/PLGA-based neural scaffold promoted sciatic nerve regeneration and functional recovery, demonstrating significant efficacy that was, to a certain degree, close to that by nerve autografting, a gold standard for treating large peripheral nerve gaps, and better than that by grafting with the chitosan/PLGA-based scaffold alone.

  18. Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery

    PubMed Central

    Knipfer, Christian; Hadlock, Tessa

    2016-01-01

    Peripheral nerve injury is a common clinical entity, which may arise due to traumatic, tumorous, or even iatrogenic injury in craniomaxillofacial surgery. Despite advances in biomaterials and techniques over the past several decades, reconstruction of nerve gaps remains a challenge. Autografts are the gold standard for nerve reconstruction. Using autografts, there is donor site morbidity, subsequent sensory deficit, and potential for neuroma development and infection. Moreover, the need for a second surgical site and limited availability of donor nerves remain a challenge. Thus, increasing efforts have been directed to develop artificial nerve guidance conduits (ANCs) as new methods to replace autografts in the future. Various synthetic conduit materials have been tested in vitro and in vivo, and several first- and second-generation conduits are FDA approved and available for purchase, while third-generation conduits still remain in experimental stages. This paper reviews the current treatment options, summarizes the published literature, and assesses future prospects for the repair of peripheral nerve injury in craniomaxillofacial surgery with a particular focus on facial nerve regeneration. PMID:27556032

  19. Effect of FGF-2 and sciatic nerve grafting on ChAT expression in dorsal root ganglia neurons of spinal cord transected rats.

    PubMed

    Guzen, Fausto Pierdoná; de Araújo, Dayane Pessoa; Lucena, Eudes Euler de Souza; de Morais, Hécio Henrique Araújo; Cavalcanti, José Rodolfo Lopes de Paiva; do Nascimento, Expedito Silva; Costa, Miriam Stela Maris de Oliveira; Cavalcante, Jeferson Sousa

    2016-03-11

    Neurotrophic factors and peripheral nerves are known to be good substrates for bridging CNS trauma. The involvement of fibroblast growth factor-2 (FGF-2) activation in the dorsal root ganglion (DRG) was examined following spinal cord injury in the rat. We evaluated whether FGF-2 increases the ability of a sciatic nerve graft to enhance neuronal plasticity, in a gap promoted by complete transection of the spinal cord. The rats were subjected to a 4mm-long gap at low thoracic level and were repaired with saline (Saline or control group, n=10), or fragment of the sciatic nerve (Nerve group, n=10), or fragment of the sciatic nerve to which FGF-2 (Nerve+FGF-2 group, n=10) had been added immediately after lesion. The effects of the FGF-2 and fragment of the sciatic nerve grafts on neuronal plasticity were investigated using choline acetyl transferase (ChAT)-immunoreactivity of neurons in the dorsal root ganglion after 8 weeks. Preservation of the area and diameter of neuronal cell bodies in dorsal root ganglion (DRG) was seen in animals treated with the sciatic nerve, an effect enhanced by the addition of FGF-2. Thus, the addition of exogenous FGF-2 to a sciatic nerve fragment grafted in a gap of the rat spinal cord submitted to complete transection was able to improve neuroprotection in the DRG. The results emphasized that the manipulation of the microenvironment in the wound might amplify the regenerative capacity of peripheral neurons.

  20. Conduction Properties Of Decellularized Nerve Biomaterials

    PubMed Central

    Urbanchek, M.G.; Shim, B.S.; Baghmanli, Z.; Wei, B.; Schroeder, K.; Langhals, N.B.; Miriani, R.M.; Egeland, B.M.; Kipke, D.R.; Martin, D.C.; Cederna, P.S.

    2011-01-01

    The purpose of this study is to optimize poly(3,4,-ethylenedioxythiophene) (PEDOT) polymerization into decellular nerve scaffolding for interfacing to peripheral nerves. Our ultimate aim is to permanently implant highly conductive peripheral nerve interfaces between amputee, stump, nerve fascicles and prosthetic electronics. Decellular nerve (DN) scaffolds are an FDA approved biomaterial (Axogen ) with the flexible tensile properties needed for successful permanent coaptation to peripheral nerves. Biocompatible, electroconductive, PEDOT facilitates electrical conduction through PEDOT coated acellular muscle. New electrochemical methods were used to polymerize various PEDOT concentrations into DN scaffolds without the need for a final dehydration step. DN scaffolds were then tested for electrical impedance and charge density. PEDOT coated DN scaffold materials were also implanted as 15–20mm peripheral nerve grafts. Measurement of in-situ nerve conduction immediately followed grafting. DN showed significant improvements in impedance for dehydrated and hydrated, DN, polymerized with moderate and low PEDOT concentrations when they were compared with DN alone (a ≤ 0.05). These measurements were equivalent to those for DN with maximal PEDOT concentrations. In-situ, nerve conduction measurements demonstrated that DN alone is a poor electro-conductor while the addition of PEDOT allows DN scaffold grafts to compare favorably with the “gold standard”, autograft (Table 1). Surgical handling characteristics for conductive hydrated PEDOT DN scaffolds were rated 3 (pliable) while the dehydrated models were rated 1 (very stiff) when compared with autograft ratings of 4 (normal). Low concentrations of PEDOT on DN scaffolds provided significant increases in electro active properties which were comparable to the densest PEDOT coatings. DN pliability was closely maintained by continued hydration during PEDOT electrochemical polymerization without compromising

  1. A novel artificial nerve graft for repairing long-distance sciatic nerve defects: a self-assembling peptide nanofiber scaffold-containing poly(lactic-co-glycolic acid) conduit

    PubMed Central

    Wang, Xianghai; Pan, Mengjie; Wen, Jinkun; Tang, Yinjuan; Hamilton, Audra D.; Li, Yuanyuan; Qian, Changhui; Liu, Zhongying; Wu, Wutian; Guo, Jiasong

    2014-01-01

    In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-long sciatic nerve defect in the rat. Retrograde tracing, behavioral testing and histomorphometric analyses showed that compared with the empty PLGA conduit implantation group, the SPC implantation group had a larger number of growing and extending axons, a markedly increased diameter of regenerated axons and a greater thickness of the myelin sheath in the conduit. Furthermore, there was an increase in the size of the neuromuscular junction and myofiber diameter in the target muscle. These findings suggest that the novel artificial SPC nerve graft can promote axonal regeneration and remyelination in the transected peripheral nerve and can be used for repairing peripheral nerve injury. PMID:25657734

  2. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Carriel, Víctor; Garrido-Gómez, Juan; Hernández-Cortés, Pedro; Garzón, Ingrid; García-García, Salomé; Sáez-Moreno, José Antonio; Sánchez-Quevedo, María del Carmen; Campos, Antonio; Alaminos, Miguel

    2013-04-01

    Objective. The objective was to study the effectiveness of a commercially available collagen conduit filled with fibrin-agarose hydrogels alone or with fibrin-agarose hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs) in a rat sciatic nerve injury model. Approach. A 10 mm gap was created in the sciatic nerve of 48 rats and repaired using saline-filled collagen conduits or collagen conduits filled with fibrin-agarose hydrogels alone (acellular conduits) or with hydrogels containing ADMSCs (ADMSC conduits). Nerve regeneration was assessed in clinical, electrophysiological and histological studies. Main results. Clinical and electrophysiological outcomes were more favorable with ADMSC conduits than with the acellular or saline conduits, evidencing a significant recovery of sensory and motor functions. Histological analysis showed that ADMSC conduits produce more effective nerve regeneration by Schwann cells, with higher remyelination and properly oriented axonal growth that reached the distal areas of the grafted conduits, and with intensely positive expressions of S100, neurofilament and laminin. Extracellular matrix was also more abundant and better organized around regenerated nerve tissues with ADMSC conduits than those with acellular or saline conduits. Significance. Clinical, electrophysiological and histological improvements obtained with tissue-engineered ADMSC conduits may contribute to enhancing axonal regeneration by Schwann cells.

  3. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    NASA Astrophysics Data System (ADS)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  4. Reinnervation of Paralyzed Muscle by Nerve-Muscle-Endplate Band Grafting

    DTIC Science & Technology

    2015-10-01

    deficits. Plast Reconstr Surg. 2000;105(6):2003- 2009. 49. Goding GS Jr, Cummings CW, Bright DA. Extension of neuromuscular pedicles and direct nerve...Majed AA, Neumann CM, Brushart TM, Gordon T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci... CT S.A. LeMaire, MD Editor of the Journal of Surgical Research Baylor College of Medicine, Houston, Texas, USA Dear Drs. McFadden and

  5. Sympathetic ganglion transcutaneous electrical nerve stimulation after coronary artery bypass graft surgery improves femoral blood flow and exercise tolerance.

    PubMed

    Cipriano, Gerson; Neder, J Alberto; Umpierre, Daniel; Arena, Ross; Vieira, Paulo J C; Chiappa, Adriana M Güntzel; Ribeiro, Jorge P; Chiappa, Gaspar R

    2014-09-15

    We tested the hypothesis that transcutaneous electrical nerve stimulation (TENS) over the stellate ganglion region would reduce sympathetic overstimulation and improve femoral blood flow (FBF) after coronary artery bypass graft surgery. Thirty-eight patients (20 men, 24 New York Heart Association class III-IV) were randomized to 5-day postoperative TENS (n = 20; 4 times/day; 30 min/session) or sham TENS (n = 18) applied to the posterior cervical region (C7-T4). Sympathetic nervous system was stimulated by the cold pressor test, with FBF being measured by ultrasound Doppler. Femoral vascular conductance (FVC) was calculated as FBF/mean arterial pressure (MAP). Six-min walking distance established patients' functional capacity. Before and after the intervention periods, pain scores, opiate requirements, and circulating β-endorphin levels were determined. As expected, preoperative MAP increased and FBF and FVC decreased during the cold pressor test. Sham TENS had no significant effect on these variables (P > 0.05). In contrast, MAP decreased in the TENS group (125 ± 12 vs. 112 ± 10 mmHg). This finding, in association with a consistent increase in FBF (95 ± 5 vs. 145 ± 14 ml/min), led to significant improvements in FVC (P < 0.01). Moreover, 6-min walking distance improved only with TENS (postsurgery-presurgery = 35 ± 12 vs. 6 ± 10 m; P < 0.01). TENS was associated with lesser postoperative pain and opiate requirements but greater circulating β-endorphin levels (P < 0.05). In conclusion, stellate ganglion TENS after coronary artery bypass graft surgery positively impacted on limb blood flow during a sympathetic stimulation maneuver, a beneficial effect associated with improved clinical and functional outcomes.

  6. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps.

    PubMed

    Gu, Yun; Zhu, Jianbin; Xue, Chengbin; Li, Zhenmeiyu; Ding, Fei; Yang, Yumin; Gu, Xiaosong

    2014-02-01

    Extracellular matrix (ECM) plays a prominent role in establishing and maintaining an ideal microenvironment for tissue regeneration, and ECM scaffolds are used as a feasible alternative to cellular and molecular therapy in the fields of tissue engineering. Because of their advantages over tissue-derived ECM scaffolds, cultured cell-derived ECM scaffolds are beginning to attract attention, but they have been scarcely studied for peripheral nerve repair. Here we aimed to develop a tissue engineered nerve scaffold by reconstituting nerve cell-derived ECM with natural biomaterials. A protocol was adopted to prepare and characterize the cultured Schwann cell (SC)-derived ECM. A chitosan conduit and silk fibroin (SF) fibers were prepared, cultured with SCs for ECM deposition, and subjected to decellularization, followed by assembly into a chitosan/SF-based, SC-derived ECM-modified scaffold, which was used to bridge a 10 mm rat sciatic nerve gap. The results from morphological analysis as well as electrophysiological examination indicated that regenerative outcomes achieved by our developed scaffold were similar to those by an acellular nerve graft (namely a nerve tissue-derived ECM scaffold), but superior to those by a plain chitosan/SF scaffold. Moreover, blood and histopathological parameters confirmed the safety of scaffold modification by SC-derived ECM. Therefore, a hybrid scaffold based on joint use of acellular and classical biomaterials represents a promising approach to nerve tissue engineering.

  7. Biopolymer gel matrix as acellular scaffold for enhanced dermal tissue regeneration.

    PubMed

    Judith, Rangasamy; Nithya, Mariappan; Rose, Chellan; Mandal, Asit Baran

    2012-07-01

    Biological grafts have drawbacks such as donor scarcity, disease transmission, tissue infection, while the scaffolds of either collagen or chitosan fabrics fail to become part of the tissue at the wound site, though they favor the formation of connective tissue matrix. This study developed a novel composite consisting of the combination of atelocollagen and chitosan in order to provide a biodegradable molecular matrix in gel form as a biomimetic surface for cell attachment, to promote the wound healing in excision wounds. We found that the topical application of biopolymer composite on the wound promoted cell proliferation, migration and collagen deposition overtime. The enhanced cellular activity in the collagen-chitosan treated wound tissue was also assed by increased levels of Platelet derived growth factor (PDGF) and Nerve growth factor (NGF) associated with elevated levels of antioxidants and decreased level of lipid peroxidation. The acellular matrix-like topical application material is designed to guide the eventual re-establishment of an anatomically normal skin. The results of this study demonstrate the feasibility of multi-cell regeneration on a molecular system that mimics tissue engineering in vivo.

  8. Long-term facial nerve function following facial reanimation after translabyrinthine vestibular schwannoma surgery: A comparison between sural grafting and VII-XII anastomosis.

    PubMed

    Wang, Zhaoyan; Zhang, Zhihua; Huang, Qi; Yang, Jun; Wu, Hao

    2013-07-01

    The aim of this study was to compare the recovery of long-term facial nerve function between patients who received sural grafts and those who underwent hypoglossal-facial anastomosis techniques following translabyrinthine vestibular schwannoma surgery. This study included 25 patients with vestibular schwannomas treated with translabyrinthine tumor removal. All patients had large tumors with a mean tumor size of 3.12 cm. Of these patients, six had progressive tumor enlargement symptoms and had been treated previously with stereotactic irradiation. Preoperatively, all patients had normal facial functions, and total tumor removal with a translabyrinthine approach was achieved in all cases. During surgery, the facial nerve was interrupted in all 25 patients. Two types of facial reanimation were performed. Sural grafts were placed in 13 patients and hypoglossal-facial (VII-XII) anastomosis was performed in the other 12. Facial nerve function and surgical outcomes were observed upon discharge, in the short term (one year following surgery), and in the long term (three years following surgery). Total facial paresis was observed in all patients upon discharge. In the sural graft group, House-Brackmann grade III facial function was achieved in four patients upon short-term evaluation and in ten upon long-term evaluation, while House-Brackmann grade IV facial function was achieved in nine patients upon short-term evaluation and three in the long term. In the VII-XII anastomosis group, House-Brackmann grade III facial function was achieved in two patients in the short term and eight in the long term, and House-Brackmann grade IV facial function was achieved in ten patients in the short term and four in the long term. There was a statistically significant difference in the facial recovery results between the short- and long-term follow-up periods. The sural graft group exhibited a marked improvement in results compared with the VII-XII anastomosis group, but no statistically

  9. Cross-face nerve grafting for reanimation of incomplete facial paralysis: quantitative outcomes using the FACIAL CLIMA system and patient satisfaction.

    PubMed

    Hontanilla, Bernardo; Marre, Diego; Cabello, Alvaro

    2014-01-01

    Although in most cases Bell palsy resolves spontaneously, approximately one-third of patients will present sequela including facial synkinesis and paresis. Currently, the techniques available for reanimation of these patients include hypoglossal nerve transposition, free muscle transfer, and cross-face nerve grafting (CFNG). Between December 2008 and March 2012, eight patients with incomplete unilateral facial paralysis were reanimated with two-stage CFNG. Gender, age at surgery, etiology of paralysis denervation time, donor and recipient nerves, presence of facial synkinesis, and follow-up were registered. Commissural excursion and velocity and patient satisfaction were evaluated with the FACIAL CLIMA and a questionnaire, respectively. Mean age at surgery was 33.8 ± 11.5 years; mean time of denervation was 96.6 ± 109.8 months. No complications requiring surgery were registered. Follow-up period ranged from 7 to 33 months with a mean of 19 ± 9.7 months. FACIAL CLIMA showed improvement of both commissural excursion and velocity greater than 75% in 4 patients, greater than 50% in 2 patients, and less than 50% in the remaining two patients. Qualitative evaluation revealed a high grade of satisfaction in six patients (75%). Two-stage CFNG is a reliable technique for reanimation of incomplete facial paralysis with a high grade of patient satisfaction.

  10. Acellular ostrich corneal stroma used as scaffold for construction of tissue-engineered cornea

    PubMed Central

    Liu, Xian-Ning; Zhu, Xiu-Ping; Wu, Jie; Wu, Zheng-Jie; Yin, Yong; Xiao, Xiang-Hua; Su, Xin; Kong, Bin; Pan, Shi-Yin; Yang, Hua; Cheng, Yan; An, Na; Mi, Sheng-Li

    2016-01-01

    AIM To assess acellular ostrich corneal matrix used as a scaffold to reconstruct a damaged cornea. METHODS A hypertonic saline solution combined with a digestion method was used to decellularize the ostrich cornea. The microstructure of the acellular corneal matrix was observed by transmission electron microscopy (TEM) and hematoxylin and eosin (H&E) staining. The mechanical properties were detected by a rheometer and a tension machine. The acellular corneal matrix was also transplanted into a rabbit cornea and cytokeratin 3 was used to check the immune phenotype. RESULTS The microstructure and mechanical properties of the ostrich cornea were well preserved after the decellularization process. In vitro, the methyl thiazolyl tetrazolium results revealed that extracts of the acellular ostrich corneas (AOCs) had no inhibitory effects on the proliferation of the corneal epithelial or endothelial cells or on the keratocytes. The rabbit lamellar keratoplasty showed that the transplanted AOCs were transparent and completely incorporated into the host cornea while corneal turbidity and graft dissolution occurred in the acellular porcine cornea (APC) transplantation. The phenotype of the reconstructed cornea was similar to a normal rabbit cornea with a high expression of cytokeratin 3 in the superficial epithelial cell layer. CONCLUSION We first used AOCs as scaffolds to reconstruct damaged corneas. Compared with porcine corneas, the anatomical structures of ostrich corneas are closer to those of human corneas. In accordance with the principle that structure determines function, a xenograft lamellar keratoplasty also confirmed that the AOC transplantation generated a superior outcome compared to that of the APC graft. PMID:27158598

  11. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2015-10-01

    regeneration using our approach with an acellular nerve allograft to be equivalent to standard autograft repair in rodent models. An ongoing large animal ...be clinically acceptable for use in the animal studies in Aim 2. The anatomy of HAM is shown pictorially in Figure 7. In vivo, the epithelial...product. Given that the large animal studies with large caliber nerves in Aim 3 will use AxoGuard we feel that the single layer SIS material is totally

  12. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Accellular Nerve Allografts Plus Amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2015-09-01

    Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Li, Zhongyu CONTRACTING ORGANIZATION: Wake Forest...Gap Peripheral Nerve Injuries Using 5a. CONTRACT NUMBER Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS). 5b. GRANT NUMBER...Major accomplishments this year include successful seeding of AFS into ANA. This accomplishment also documented that these cells remained viable up

  13. In vitro assessment of biodurability: acellular systems.

    PubMed Central

    de Meringo, A; Morscheidt, C; Thélohan, S; Tiesler, H

    1994-01-01

    The assessment of biodurability of man-made vitreous fibers is essential to the limitation of health hazards associated with human exposure to environments in which respirable fibers are present. In vitro acellular systems provide effective test methods of measuring fiber solubility provided care is taken to select the most suitable solvent and test conditions for the specific fiber type and dimension. PMID:7882955

  14. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2015-10-01

    approach with an acellular nerve allograft to be equivalent to standard autograft repair in rodent models. An ongoing large animal validation study...the animal studies in Aim 2. The anatomy of HAM is shown pictorially in Figure 7. In vivo, the epithelial layer is in contact with the amniotic...AxoGuard and Oasis SIS products are manufactured by Cook Medical. AxoGuard is simply a multi-layered SIS product. Given that the large animal studies with

  15. Pathophysiology of nerve regeneration and nerve reconstruction in burned patients.

    PubMed

    Coert, J Henk

    2010-08-01

    In extensive burns peripheral nerves can be involved. The injury to the nerve can be direct by thermal or electrical burns, but nerves can also be indirectly affected by the systemic reaction that follows the burn. Mediators will be released causing a neuropathy to nerves remote from the involved area. Involved mediators and possible therapeutic options will be discussed. In burned patients nerves can be reconstructed using autologous nerve grafts or nerve conduits. A key factor is an adequate wound debridement and a well-vascularized bed to optimize the outgrowth of the axons. Early free tissue transfers have shown promising results.

  16. Nerve Degeneration and Regeneration Associated with NF1 Tumors

    DTIC Science & Technology

    2014-09-01

    Infiltrating peripheral nerve sheath tumors (PNST) are associated with significant neurological deficits and nerve damage. An initial aim of this project is...nerve graft implanted to bridge the gap and restore nerve continuity. 15. SUBJECT TERMS peripheral nerve sheath tumor, neurofibroma, photodynamic...7 1 INTRODUCTION Infiltrating   peripheral  nerve  sheath  tumors  (PNST

  17. Meaningful power grip recovery after salvage reconstruction of a median nerve avulsion injury with a pedicled vascularized ulnar nerve

    PubMed Central

    Van Slyke, Aaron C; Jansen, Leigh A; Hynes, Sally; Hicks, Jane; Bristol, Sean; Carr, Nicholas

    2015-01-01

    In cases of median nerve injury alongside an unsalvageable ulnar nerve, a vascularized ulnar nerve graft to reconstruct the median nerve is a viable option. While restoration of median nerve sensation is consistently reported, recovery of significant motor function is less frequently observed. The authors report a case involving a previously healthy man who sustained upper arm segmental median and ulnar nerve injuries and, after failure of sural nerve grafts, was treated with a pedicled vascularized ulnar nerve graft to restore median nerve function. Long-term follow-up showed near full fist, with 12 kg of grip strength, key pinch with 1.5 kg of strength and protective sensation in the median nerve distribution. The present case demonstrates that pedicled ulnar vascularized nerve grafts can provide significant improvements to median nerve sensory and motor function in a heavily scarred environment. PMID:26665144

  18. Non-Immunogenic Structurally and Biologically Intact Tissue Matrix Grafts for the Immediate Repair of Ballistic-Induced Vascular and Nerve Tissue Injury in Combat

    DTIC Science & Technology

    2004-12-01

    15 3 I. Introduction: In the first two years of this work the production of decellularized ...Obiective 3: Demonstrate that umbilical vessel grafts transplanted, as carotid interposition implants, in an animal model system maintain patency in...warranted re-evaluation in vivo. V. Obiective 4: Demonstrate in an animal model that these umbilical vessel matrix grafts maintain patency in clinically

  19. Decellularisation and histological characterisation of porcine peripheral nerves

    PubMed Central

    Zilic, Leyla

    2016-01-01

    ABSTRACT Peripheral nerve injuries affect a large proportion of the global population, often causing significant morbidity and loss of function. Current treatment strategies include the use of implantable nerve guide conduits (NGC's) to direct regenerating axons between the proximal and distal ends of the nerve gap. However, NGC's are limited in their effectiveness at promoting regeneration Current NGCs are not suitable as substrates for supporting either neuronal or Schwann cell growth, as they lack an architecture similar to that of the native extracellular matrix (ECM) of the nerve. The aim of this study was to create an acellular porcine peripheral nerve using a novel decellularisation protocol, in order to eliminate the immunogenic cellular components of the tissue, while preserving the three‐dimensional histoarchitecture and ECM components. Porcine peripheral nerve (sciatic branches were decellularised using a low concentration (0.1%; w/v) sodium dodecyl sulphate in conjunction with hypotonic buffers and protease inhibitors, and then sterilised using 0.1% (v/v) peracetic acid. Quantitative and qualitative analysis revealed a ≥95% (w/w) reduction in DNA content as well as preservation of the nerve fascicles and connective tissue. Acellular nerves were shown to have retained key ECM components such as collagen, laminin and fibronectin. Slow strain rate to failure testing demonstrated the biomechanical properties of acellular nerves to be comparable to fresh controls. In conclusion, we report the production of a biocompatible, biomechanically functional acellular scaffold, which may have use in peripheral nerve repair. Biotechnol. Bioeng. 2016;113: 2041–2053. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc. PMID:26926914

  20. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  1. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: Case series of 14 patients

    PubMed Central

    Amr, Sherif M.; Gouda, Ashraf; Koptan, Wael T.; Galal, Ahmad A.; Abdel-Fattah, Dina Sabry; Rashed, Laila A.; Atta, Hazem M.; Abdel-Aziz, Mohammad T.

    2014-01-01

    Objective To investigate the effect of bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells. Methods In 14 patients with chronic paraplegia caused by spinal cord injury, cord defects were grafted and stem cells injected into the whole construct and contained using a chitosan-laminin paste. Patients were evaluated using the International Standards for Classification of Spinal Cord Injuries. Results Chitosan disintegration leading to post-operative seroma formation was a complication. Motor level improved four levels in 2 cases and two levels in 12 cases. Sensory-level improved six levels in two cases, five levels in five cases, four levels in three cases, and three levels in four cases. A four-level neurological improvement was recorded in 2 cases and a two-level neurological improvement occurred in 12 cases. The American Spinal Impairment Association (ASIA) impairment scale improved from A to C in 12 cases and from A to B in 2 cases. Although motor power improvement was recorded in the abdominal muscles (2 grades), hip flexors (3 grades), hip adductors (3 grades), knee extensors (2–3 grades), ankle dorsiflexors (1–2 grades), long toe extensors (1–2 grades), and plantar flexors (0–2 grades), this improvement was too low to enable them to stand erect and hold their knees extended while walking unaided. Conclusion Mesenchymal stem cell-derived neural stem cell-like cell transplantation enhances recovery in chronic spinal cord injuries with defects bridged by sural nerve grafts combined with a chitosan-laminin scaffold. PMID:24090088

  2. Non-Immunogenic Structurally and Biologically Intact Tissue Matrix Grafts for the Immediate Repair of Ballistic-Induced Vascular and Nerve Tissue Injury in Combat Casualty Care

    DTIC Science & Technology

    2005-07-01

    Iliac /femoral artery to the femoral vein. Needle access was planned as a possible endpoint to demonstrate the potential for a chronic multi-stick model...animal to the graft. The study demonstrated that the umbilical vein graft (UVG) can be implanted as an arteriovenous shunt from the iliac artery to the...as an AV shunt from the Iliac /femoral artery to the femoral vein. Needle access was planned as a possible endpoint to demonstrate the potential for

  3. Creation and implantation of acellular rat renal ECM-based scaffolds

    PubMed Central

    Peloso, Andrea; Ferrario, Jacopo; Maiga, Benedetta; Benzoni, Ilaria; Bianco, Carolina; Citro, Antonio; Currao, Manuela; Malara, Alessandro; Gaspari, Annalisa; Balduini, Alessandra; Abelli, Massimo; Piemonti, Lorenzo; Dionigi, Paolo; Orlando, Giuseppe; Maestri, Marcello

    2015-01-01

    Abstract Kidney transplantation is the only potentially curative treatment for patient facing end-stage renal disease, and it is now routinely used. Its use is mainly limited by the supply of transplantable donor organs, which far exceeds the demand. Regenerative medicine and tissue engineering offer promising means for overcoming this shortage. In the present study, we developed and validated a protocol for producing acellular rat renal scaffolds. Left kidneys were removed from 26 male Lewis rats (weights: 250–350 g) and decellularized by means of aortic anterograde perfusion with ionic and anionic detergents (Triton X-100 1% and SDS 1%, respectively). 19 scaffolds thus obtained (and contralateral native kidneys as controls) were deeply characterized in order to evaluate the decellularization quality, the preservation of extracellular matrix components and resultant micro-angioarchitecture structure. The other 7 were transplanted into 7 recipient rats that had undergone unilateral nephrectomy. Recipients were sacrificed on post-transplantation day 7 and the scaffolds subjected to histologic studies. The dual-detergent protocol showed, with only 5 h of perfusion per organ, to obtain thoroughly decellularized renal scaffolds consisting almost exclusively of extracellular matrix. Finally the macro- and the microarchitecture of the renal parenchyma were well preserved, and the grafts were implanted with ease. Seven days after transplant, the scaffolds were morphologically intact although all vascular structures were obstructed with thrombi. Production and implantation of acellular rat renal scaffolds is a suitable platform for further studies on regenerative medicine and tissue engineering. PMID:26186418

  4. Nerve transfers in brachial plexus birth palsies: indications, techniques, and outcomes.

    PubMed

    Kozin, Scott H

    2008-11-01

    The advent of nerve transfers has greatly increased surgical options for children who have brachial plexus birth palsies. Nerve transfers have considerable advantages, including easier surgical techniques, avoidance of neuroma resection, and direct motor and sensory reinnervation. Therefore, any functioning nerve fibers within the neuroma are preserved. Furthermore, a carefully selected donor nerve results in little or no clinical deficit. However, some disadvantages and unanswered questions remain. Because of a lack of head-to-head comparison between nerve transfers and nerve grafting, the window of opportunity for nerve grafting may be missed, which may degrade the ultimate outcome. Time will tell the ultimate role of nerve transfer or nerve grafting.

  5. Cadaveric nerve allotransplantation in the treatment of persistent thoracic neuralgia.

    PubMed

    Barbour, John R; Yee, Andrew; Moore, Amy M; Trulock, Elbert P; Buchowski, Jacob M; Mackinnon, Susan E

    2015-04-01

    When relief from neuralgia cannot be achieved with traditional methods, neurectomy may be considered to abate the stimulus, and primary opposition of the terminal nerve ending is recommended to prevent neuroma. Nerve repair with autograft is limited by autologous nerves available for large nerve defects. Cadaveric allografts provide an unlimited graft source without donor-site morbidities, but are rapidly rejected unless appropriate immunosuppression is achieved. An optimal treatment method for nerve allograft transplantation would minimize rejection while simultaneously permitting nerve regeneration. This report details a novel experience of nerve allograft transplantation using cadaveric nerve grafts to desensitize persistent postoperative thoracic neuralgia.

  6. A Silk Fibroin/Collagen Nerve Scaffold Seeded with a Co-Culture of Schwann Cells and Adipose-Derived Stem Cells for Sciatic Nerve Regeneration.

    PubMed

    Xu, Yunqiang; Zhang, Zhenhui; Chen, Xuyi; Li, Ruixin; Li, Dong; Feng, Shiqing

    2016-01-01

    As a promising alternative to autologous nerve grafts, tissue-engineered nerve grafts have been extensively studied as a way to bridge peripheral nerve defects and guide nerve regeneration. The main difference between autogenous nerve grafts and tissue-engineered nerve grafts is the regenerative microenvironment formed by the grafts. If an appropriate regenerative microenvironment is provided, the repair of a peripheral nerve is feasible. In this study, to mimic the body's natural regenerative microenvironment closely, we co-cultured Schwann cells (SCs) and adipose-derived stem cells (ADSCs) as seed cells and introduced them into a silk fibroin (SF)/collagen scaffold to construct a tissue-engineered nerve conduit (TENC). Twelve weeks after the three different grafts (plain SF/collagen scaffold, TENC, and autograft) were transplanted to bridge 1-cm long sciatic nerve defects in rats, a series of electrophysiological examinations and morphological analyses were performed to evaluate the effect of the tissue-engineered nerve grafts on peripheral nerve regeneration. The regenerative outcomes showed that the effect of treatment with TENCs was similar to that with autologous nerve grafts but superior to that with plain SF/collagen scaffolds. Meanwhile, no experimental animals had inflammation around the grafts. Based on this evidence, our findings suggest that the TENC we developed could improve the regenerative microenvironment and accelerate nerve regeneration compared to plain SF/collagen and may serve as a promising strategy for peripheral nerve repair.

  7. Bone graft

    MedlinePlus

    Autograft - bone; Allograft - bone; Fracture - bone graft; Surgery - bone graft; Autologous bone graft ... Fuse joints to prevent movement Repair broken bones (fractures) that have bone loss Repair injured bone that ...

  8. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering.

    PubMed

    Zilic, Leyla; Garner, Philippa E; Yu, Tong; Roman, Sabiniano; Haycock, John W; Wilshaw, Stacy-Paul

    2015-09-01

    Current nerve tissue engineering applications are adopting xenogeneic nerve tissue as potential nerve grafts to help aid nerve regeneration. However, there is little literature that describes the exact location, anatomy and physiology of these nerves to highlight their potential as a donor graft. The aim of this study was to identify and characterise the structural and extracellular matrix (ECM) components of porcine peripheral nerves in the hind leg. Methods included the dissection of porcine nerves, localisation, characterisation and quantification of the ECM components and identification of nerve cells. Results showed a noticeable variance between porcine and rat nerve (a commonly studied species) in terms of fascicle number. The study also revealed that when porcine peripheral nerves branch, a decrease in fascicle number and size was evident. Porcine ECM and nerve fascicles were found to be predominately comprised of collagen together with glycosaminoglycans, laminin and fibronectin. Immunolabelling for nerve growth factor receptor p75 also revealed the localisation of Schwann cells around and inside the fascicles. In conclusion, it is shown that porcine peripheral nerves possess a microstructure similar to that found in rat, and is not dissimilar to human. This finding could extend to the suggestion that due to the similarities in anatomy to human nerve, porcine nerves may have utility as a nerve graft providing guidance and support to regenerating axons.

  9. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering

    PubMed Central

    Zilic, Leyla; Garner, Philippa E; Yu, Tong; Roman, Sabiniano; Haycock, John W; Wilshaw, Stacy-Paul

    2015-01-01

    Current nerve tissue engineering applications are adopting xenogeneic nerve tissue as potential nerve grafts to help aid nerve regeneration. However, there is little literature that describes the exact location, anatomy and physiology of these nerves to highlight their potential as a donor graft. The aim of this study was to identify and characterise the structural and extracellular matrix (ECM) components of porcine peripheral nerves in the hind leg. Methods included the dissection of porcine nerves, localisation, characterisation and quantification of the ECM components and identification of nerve cells. Results showed a noticeable variance between porcine and rat nerve (a commonly studied species) in terms of fascicle number. The study also revealed that when porcine peripheral nerves branch, a decrease in fascicle number and size was evident. Porcine ECM and nerve fascicles were found to be predominately comprised of collagen together with glycosaminoglycans, laminin and fibronectin. Immunolabelling for nerve growth factor receptor p75 also revealed the localisation of Schwann cells around and inside the fascicles. In conclusion, it is shown that porcine peripheral nerves possess a microstructure similar to that found in rat, and is not dissimilar to human. This finding could extend to the suggestion that due to the similarities in anatomy to human nerve, porcine nerves may have utility as a nerve graft providing guidance and support to regenerating axons. PMID:26200940

  10. Aligned bacterial PHBV nanofibrous conduit for peripheral nerve regeneration.

    PubMed

    Demirbilek, Murat; Sakar, Mustafa; Karahaliloğlu, Zeynep; Erdal, Ebru; Yalçın, Eda; Bozkurt, Gökhan; Korkusuz, Petek; Bilgiç, Elif; Temuçin, Çağrı Mesut; Denkbaş, Emir Baki

    2015-01-01

    The conventional method of peripheral nerve gap treatment is autografting. This method is limited. In this study, an aligned nanofibrous graft was formed using microbial polyester, Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The regenerative effect of the graft was compared with that of autografting in vivo. To determine the regenerative effect, rats were assessed with sciatic nerve functional index, electromyographic evaluation, and histological evaluation. Results found in this study include PHBV grafts stimulated progressive nerve regeneration, although regeneration was not comparable with that of autografting. We conclude that the study results were promising for aligned bacterial polymeric grafts for peripheral nerve regeneration.

  11. Angiogenic response induced by acellular femoral matrix in vivo

    PubMed Central

    Conconi, Maria Teresa; Nico, Beatrice; Rebuffat, Piera; Crivellato, Enrico; Parnigotto, Pier Paolo; Nussdorfer, Gastone G; Ribatti, Domenico

    2005-01-01

    We investigated the angiogenic response induced by acellular femoral matrices implanted in vivo on to the chick embryo chorioallantoic membrane (CAM), a useful model for such investigation. The results showed that acellular matrices were able to induce a strong angiogenic response, comparable with that of fibroblast growth factor-2 (FGF-2), a well-known angiogenic cytokine. The angiogenic response was further increased when exogenous FGF-2 or transforming growth factor beta-1 (TGF-β1) was added to the matrices and inhibited by the addition of anti-FGF-2 or anti-TGF-β1 antibodies. The response may be considered to be dependent on a direct angiogenic effect exerted by the matrices, and also in part by the presence of FGF-2 and TGF-β1 in the acellular matrices. PMID:16011546

  12. Complications of acellular dermal matrices in breast surgery.

    PubMed

    Israeli, Ron

    2012-11-01

    Acellular dermal matrices have been used in breast surgery for a decade. They are widely used in implant-based breast reconstruction to provide coverage of the inferolateral aspects of the prosthesis. Numerous benefits have been reported with this approach including improved fold control, better support and control of the implant pocket with concomitant reduced risk of malposition, and improved lower pole expansion. Seroma, infection, mastectomy skin necrosis, and expander/implant loss are the most commonly reported complications with this approach, and the incidences vary widely among studies. Patient selection and adherence to established intraoperative technique principles related to acellular dermal matrix use are both critical to minimizing the risk of complications. Acellular dermal matrices are also being used in aesthetic breast surgery, revision breast surgery, and nipple reconstruction, but clinical experience is limited. This article reviews the complications associated with the use of matrices in breast surgery from the published literature.

  13. Creeping attachment: autogenous graft vs dermal matrix allograft.

    PubMed

    Haeri, A; Parsell, D

    2000-09-01

    For many years, free autogenous grafts have been used as a method of gaining keratinized tissue around teeth with mucogingival problems. Creeping attachment using autogenous graft material has been actively studied. In addition, biocompatible, acellular connective-tissue material has recently been used as an alternative to free gingival grafts to increase the zone of keratinization. This report presents a patient with bilateral mucogingival defects in the canine and premolar areas. The patient received an autogenous graft on one side and a dermal matrix allograft on the contralateral side. Creeping attachments were measured and compared at 3 months and 12 months after surgery. After 12 months of healing, an average of 1.23 mm of creeping attachment was measured on the free gingival graft side and 0.96 mm of creeping attachment was measured with the dermal matrix allograft.

  14. Platform technologies for decellularization, tunic-specific cell seeding, and in vitro conditioning of extended length, small diameter vascular grafts.

    PubMed

    Fercana, George; Bowser, Devon; Portilla, Margarita; Langan, Eugene M; Carsten, Christopher G; Cull, David L; Sierad, Leslie N; Simionescu, Dan T

    2014-12-01

    The aim of this study was to generate extended length, small diameter vascular scaffolds that could serve as potential grafts for treatment of acute ischemia. Biological tissues are considered excellent scaffolds, which exhibit adequate biological, mechanical, and handling properties; however, they tend to degenerate, dilate, and calcify after implantation. We hypothesized that chemically stabilized acellular arteries would be ideal scaffolds for development of vascular grafts for peripheral surgery applications. Based on promising historical data from our laboratory and others, we chose to decellularize bovine mammary and femoral arteries and test them as scaffolds for vascular grafting. Decellularization of such long structures required development of a novel "bioprocessing" system and a sequence of detergents and enzymes that generated completely acellular, galactose-(α1,3)-galactose (α-Gal) xenoantigen-free scaffolds with preserved collagen, elastin, and basement membrane components. Acellular arteries exhibited excellent mechanical properties, including burst pressure, suture holding strength, and elastic recoil. To reduce elastin degeneration, we treated the scaffolds with penta-galloyl glucose and then revitalized them in vitro using a tunic-specific cell approach. A novel atraumatic endothelialization protocol using an external stent was also developed for the long grafts and cell-seeded constructs were conditioned in a flow bioreactor. Both decellularization and revitalization are feasible but cell retention in vitro continues to pose challenges. These studies support further efforts toward clinical use of small diameter acellular arteries as vascular grafts.

  15. The role of peripheral nerve ECM components in the tissue engineering nerve construction.

    PubMed

    Gao, Xupeng; Wang, Yu; Chen, Jifeng; Peng, Jiang

    2013-01-01

    The extracellular matrix (ECM) is the naturally occurring substrate that provides a support structure and an attachment site for cells. It also produces a biological signal, which plays an important role in and has significant impact on cell adhesion, migration, proliferation, differentiation, and gene expression. Peripheral nerve repair is a complicated process involving Schwann cell proliferation and migration, 'bands of Büngner' formation, and newborn nerve extension. In the ECM of peripheral nerves, macromolecules are deposited among cells; these constitute the microenvironment of Schwann cell growth. Such macromolecules include collagen (I, III, IV, V), laminin, fibronectin, chondroitin sulfate proteoglycans (CSPGs), and other nerve factors. Collagen, the main component of ECM, provides structural support and guides newborn neurofilament extension. Laminin, fibronectin, CSPGs, and neurotrophic factors, are promoters or inhibitors, playing different roles in nerve repair after injury. By a chemical decellularization process, acellular nerve allografting eliminates the antigens responsible for allograft rejection and maintains most of the ECM components, which can effectively guide and enhance nerve regeneration. Thus, the composition and features of peripheral nerve ECM suggest its superiority as nerve repair material. This review focuses on the structure, function, and application in the tissue engineering nerve construction of the peripheral nerve ECM components.

  16. Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study

    PubMed Central

    Ferrando, Pietro Maria; Balmativola, Davide; Cambieri, Irene; Scalzo, Maria Stella; Bergallo, Massimiliano; Annaratone, Laura; Casarin, Stefania; Fumagalli, Mara; Stella, Maurizio; Sapino, Anna; Castagnoli, Carlotta

    2016-01-01

    Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco’s Modified Eagle’s Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties. PMID:26918526

  17. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes.

    PubMed

    Sachdeva, Rahul; Theisen, Catherine C; Ninan, Vinu; Twiss, Jeffery L; Houlé, John D

    2016-02-01

    Insufficient regeneration of central nervous system (CNS) axons contributes to persisting neurological dysfunction after spinal cord injury (SCI). Peripheral nerve grafts (PNGs) support regeneration by thousands of injured intraspinal axons and help them bypass some of the extracellular barriers that form after SCI. However this number represents but a small portion of the total number of axons that are injured. Here we tested if rhythmic sensory stimulation during cycling exercise would boost the intrinsic regenerative state of neurons to enhance axon regeneration into PNGs after a lower thoracic (T12) spinal transection of adult rats. Using True Blue retrograde tracing, we show that 4 weeks of cycling improves regeneration into a PNG from lumbar interneurons but not by primary sensory neurons. The majority of neurons that regenerate their axon are within 5 mm of the lesion and their number increased 70% with exercise. Importantly propriospinal neurons in more distant regions (5-20 mm from the lesion) that routinely exhibit very limited regeneration responded to exercise by increasing the number of regenerating neurons by 900%. There was no exercise-associated increase in regeneration from sensory neurons. Analyses using fluorescent in situ hybridization showed that this increase in regenerative response is associated with changes in levels of mRNAs encoding the regeneration associated genes (RAGs) GAP43, β-actin and Neuritin. While propriospinal neurons showed increased mRNA levels in response to SCI alone and then to grafting and exercise, sensory neurons did not respond to SCI, but there was a response to the presence of a PNG. Thus, exercise is a non-invasive approach to modulate gene expression in injured neurons leading to an increase in regeneration. This sets the stage for future studies to test whether exercise will promote axon outgrowth beyond the PNG and reconnection with spinal cord neurons, thereby demonstrating a potential clinical application of

  18. Transfer of the extensor indicis proprius branch of posterior interosseous nerve to reconstruct ulnar nerve and median nerve injured proximally: an anatomical study

    PubMed Central

    Wang, Pei-ji; Zhang, Yong; Zhao, Jia-ju; Zhou, Ju-pu; Zuo, Zhi-cheng; Wu, Bing-bing

    2017-01-01

    Proximal or middle lesions of the ulnar or median nerves are responsible for extensive loss of hand motor function. This occurs even when the most meticulous microsurgical techniques or nerve grafts are used. Previous studies had proposed that nerve transfer was more effective than nerve grafting for nerve repair. Our hypothesis is that transfer of the posterior interosseous nerve, which contains mainly motor fibers, to the ulnar or median nerve can innervate the intrinsic muscles of hands. The present study sought to investigate the feasibility of reconstruction of the deep branch of the ulnar nerve and the thenar branch of median nerve by transferring the extensor indicis proprius branch of the posterior interosseous nerve obtained from adult cadavers. The results suggested that the extensor indicis proprius branch of the posterior interosseous nerve had approximately similar diameters and number of fascicles and myelinated nerve fibers to those of the deep branch of ulnar nerve and the thenar branch of the median nerve. These confirm the feasibility of extensor indicis proprius branch of posterior interosseous nerve transfer for reconstruction of the deep branch of the ulnar nerve and the thenar branch of median nerve. This procedure could be a novel and effective method for the functional recovery of the intrinsic muscles of hands after ulnar nerve or median nerve injury. PMID:28250760

  19. Evaluation of lymphangiogenesis in acellular dermal matrix

    PubMed Central

    Cherubino, Mario; Pellegatta, Igor; Tamborini, Federico; Cerati, Michele; Sessa, Fausto; Valdatta, Luigi

    2014-01-01

    Introduction: Much attention has been directed towards understanding the phenomena of angiogenesis and lymphangiogenesis in wound healing. Thanks to the manifold dermal substitute available nowadays, wound treatment has improved greatly. Many studies have been published about angiogenesis and cell invasion in INTEGRA®. On the other hand, the development of the lymphatic network in acellular dermal matrix (ADM) is a more obscure matter. In this article, we aim to characterize the different phases of host cell invasion in ADM. Special attention was given to lymphangiogenic aspects. Materials and Methods: Among 57 rats selected to analyse the role of ADM in lymphangiogenesis, we created four groups. We performed an excision procedure on both thighs of these rats: On the left one we did not perform any action except repairing the borders of the wound; while on the right one we used INTEGRA® implant. The excision biopsy was performed at four different times: First group after 7 days, second after 14 days, third after 21 days and fourth after 28 days. For our microscopic evaluation, we used the classical staining technique of haematoxylin and eosin and a semi-quantitative method in order to evaluate cellularity counts. To assess angiogenesis and lymphangiogenesis development we employed PROX-1 Ab and CD31/PECAM for immunohistochemical analysis. Results: We found remarkable wound contraction in defects that healed by secondary intention while minor wound contraction was observed in defects treated with ADM. At day 7, optical microscopy revealed a more plentiful cellularity in the granulation tissue compared with the dermal regeneration matrix. The immunohistochemical process highlighted vascular and lymphatic cells in both groups. After 14 days a high grade of fibrosis was noticeable in the non-treated group. At day 21, both lymphatic and vascular endothelial cells were better developed in the group with a dermal matrix application. At day 28, lymphatic endothelial

  20. Relationship of immunogenicity to protective potency in acellular pertussis vaccines.

    PubMed

    Xing, Dorothy; Asokanathan, Catpagavalli; Xu, Ying Hua; Bolgiano, Barbara; Douglas-Bardsley, Alex; Zhang, Shumin; Wang, Junzhi; Corbel, Michael

    2014-01-01

    Comparison of the immunogenicity response and resistance to challenge in the modified intracerebral challenge assay induced by various acellular pertussis vaccines showed that these were not closely linked. The immunogenicity assay was effective for confirming the presence of specific antigenic components and was invaluable for detecting minor components present in co-purified vaccines. However, the magnitude of antibody responses was not consistently related to antigen concentration nor did it correlate with protection in the modified intracerebral challenge assay. The immunogenicity assay detected degradation of pertussis toxin and pertactin components but not of filamentous haemagglutinin or fimbriae 2 and 3 in denatured acellular pertussis vaccines. The modified intracerebral challenge assay was effective in detecting antigen degradation in all types of acellular pertussis vaccines including those of European/North American origin but was dominated by the response to pertussis toxin. Aerosol challenge was more sensitive in detecting denaturation of filamentous haemagglutinin or fimbriae. The modified intracerebral challenge assay was the only assay that provided a quantitative indication of protective activity. Both immunogenicity and challenge assays provided useful data on acellular pertussis vaccine properties but were complementary and not alternatives.

  1. Relationship of immunogenicity to protective potency in acellular pertussis vaccines

    PubMed Central

    Xing, Dorothy; Asokanathan, Catpagavalli; Xu, Ying Hua; Bolgiano, Barbara; Douglas-Bardsley, Alex; Zhang, Shumin; Wang, Junzhi; Corbel, Michael

    2014-01-01

    Comparison of the immunogenicity response and resistance to challenge in the modified intracerebral challenge assay induced by various acellular pertussis vaccines showed that these were not closely linked. The immunogenicity assay was effective for confirming the presence of specific antigenic components and was invaluable for detecting minor components present in co-purified vaccines. However, the magnitude of antibody responses was not consistently related to antigen concentration nor did it correlate with protection in the modified intracerebral challenge assay. The immunogenicity assay detected degradation of pertussis toxin and pertactin components but not of filamentous haemagglutinin or fimbriae 2 and 3 in denatured acellular pertussis vaccines. The modified intracerebral challenge assay was effective in detecting antigen degradation in all types of acellular pertussis vaccines including those of European/North American origin but was dominated by the response to pertussis toxin. Aerosol challenge was more sensitive in detecting denaturation of filamentous haemagglutinin or fimbriae. The modified intracerebral challenge assay was the only assay that provided a quantitative indication of protective activity. Both immunogenicity and challenge assays provided useful data on acellular pertussis vaccine properties but were complementary and not alternatives. PMID:25424817

  2. [Bone grafts using tissue engineering].

    PubMed

    Delloye, C

    2001-01-01

    An overview of bone grafts and, in particular, the allografts is presented. The availability of bone allografts, has promoted their use at the expense of the autograft. However, the loss of the cellular activity in an allograft, makes them less performant than an autograft. The use of an allograft in a small size defect can be advocated provided that the implantation technique is stringent. In case of a large segmental bone defect, an allograft can be considered whereas an autograft is not anymore possible. A massive bone allograft allows an anatomical reconstruction and the preservation of strong tendon insertions. In tumor surgery, a bone allograft has become one of the best options to reshape the skeleton. To offset the poor remodeling of the massive bone allografts, and to improve the take of small size bone allografts, researches are presently carried on, using tissue engineering in order to recover a cellular population. The aim is to combine an acellular bone graft with the cells of the recipient. Cells are procured from the bone marrow. Stromal cells are isolated, cultured, so that they will grow with an osteoblastic phenotype. They can be used alone or in association with a bone graft. It is believed that tomorrow such cellular therapy will become a routine procedure.

  3. Acellular and glutaraldehyde-preserved tendon allografts for reconstruction of superficial digital flexor tendon in bovines: Part I--Clinical, radiological and angiographical observations.

    PubMed

    Ramesh, R; Kumar, N; Sharma, A K; Maiti, S K; Singh, G R

    2003-12-01

    Sixteen tenorrhaphies were performed at the mid-metatarsal region in eight buffalo calves under lignocaine epidural analgesia. A 2 cm long gap was created in the superficial digital flexor (SDF) tendon and immediately repaired with acellular grafts in animals of group I, 1% glutaraldehyde-preserved tendon allografts in group II. In group III, the defect was repaired with autografts. This group served as control. The contralateral limb in each animal was operated after an interval of 60 days and the animals underwent the same procedure according to the designed groups. Diclofenac sodium and Enrofloxacin was given post-operatively for 5 days. Clinical examination revealed significant increase (P < 0.05) in rectal temperature, heart and respiratory rate for 3-4 postoperative days in all the animals. Mild pain and exudation as well as early restoration of tendon gliding movements and weight-bearing were observed earlier in group I in comparison with group II. Air-tendograms revealed early organization, minimal adhesion formation and lesser thickening of tendon at the reconstructive site in the acellular group whereas in the glutaraldehyde group dense homogenous swelling with adhesions was seen along the flexors. Angiography on day 30 showed that the area of proximal and distal host tendon graft junction appeared hypervascularized, whereas the area occupied by the graft appeared relatively less vascularized. Normal vascularization was observed on day 90 in all the three groups.

  4. Design and development of multilayer vascular graft

    NASA Astrophysics Data System (ADS)

    Madhavan, Krishna

    2011-07-01

    strength, showed that the multilayer graft possessed properties mimicking those of native vessels. Achieving these FDA-required functional properties is essential because they play critical roles in graft performances in vivo such as thrombus formation, occlusion, healing, and bleeding. In addition, cell studies and animal studies have been performed on the multilayer graft. Our results show that the multilayer graft support mimetic vascular culture of cells and the acellular graft serves as an artery equivalent in vivo to sustain the physiological conditions and promote appropriate cellular activity. In conclusion, the newly-developed hybrid multilayer graft provides a proper balance of biomechanical and biochemical properties and demonstrates the potential for the use of vascular tissue engineering and regeneration.

  5. Rat-derived processed nerve allografts support more axon regeneration in rat than human-derived processed nerve xenografts.

    PubMed

    Wood, Matthew D; Kemp, Stephen W P; Liu, Edward H; Szynkaruk, Mark; Gordon, Tessa; Borschel, Gregory H

    2014-04-01

    Processed nerve allografts are increasingly used as "off the shelf" nerve replacements for surgically bridging nerve gaps. Benchmarking the regenerative capacity of a commercially available human-derived nerve or xenograft in a rat nerve injury model would provide a convenient platform for future studies seeking to modify the processed nerve graft. Human and rat processed nerve grafts were used to bridge a 14 mm defect in a Sprague-Dawley rat sciatic nerve. Reversed autografts served as a positive control group. Twelve weeks following surgery, the distal nerve stumps were retrograde labeled and harvested for histology and histomorphometry. The cross-sectional areas of the human- and rat-derived processed nerve grafts were similar. Neuron counts and myelinated axon counts following use of the human-derived processed xenografts were decreased compared with those obtained from both the rat-derived processed nerve allografts and the autografts; the rat-derived processed nerve allografts were statistically equivalent to autografts. Measures of nerve fiber diameter and myelination revealed inferior axon regeneration maturity in both processed nerve grafts compared with autografts. Processed xenografts showed significantly reduced regeneration compared with autografts or processed allografts indicating that cross-species immunological reactions are important considerations in this rat model.

  6. Evaluation of tissue-engineered bone constructs using rabbit fetal osteoblasts on acellular bovine cancellous bone matrix

    PubMed Central

    Rashmi; Pathak, Rekha; Amarpal; Aithal, H. P.; Kinjavdekar, P.; Pawde, A. M.; Tiwari, A. K.; Sangeetha, P.; Tamilmahan, P.; Manzoor, A. B.

    2017-01-01

    Aim: The aim of this study was to generate composite bone graft and investigate the rabbit fetal osteoblasts adhesion, proliferation and penetration on acellular matrices of cancellous bone. Materials and Methods: Acellular cancellous bone was prepared and developed as in the previous study with little modification. These matrices were decellularized by rapid freeze and thaw cycle. To remove the cell debris, they were then treated with hydrogen peroxide (3%) and ethanol to remove antigenic cellular and nuclear materials from the scaffold. Primary osteoblast cells were harvested from 20 to 22 days old rabbit fetal long and calvarial bone. These cells were cultured and characterized using a specific marker. The third passaged fetal osteoblast cells were then seeded on the scaffold and incubated for 14 days. The growth pattern of the cells was observed. Scanning electron microscope and hematoxylin and eosin staining were used to investigate cells proliferation. Results: The cells were found to be growing well on the surface of the scaffold and were also present in good numbers with the matrix filopodial extensions upto inside of the core of the tissue. Conclusion: Thus, a viable composite scaffold of bone could be developed which has a great potential in the field of bone tissue engineering. PMID:28344398

  7. Comparative study of the efficacy of decellularization treatment of allogenic and xenogeneic nerves as nerve conduits.

    PubMed

    Wang, Wei; Itoh, Soichiro; Takakuda, Kazuo

    2016-02-01

    The objective of this study was to compare the results of allogenic and xenogeneic nerve grafts that were treated using decellularization. The sciatic nerves of Sprague-Dawley rats and the median nerves of Japanese white rabbits were decellularized with sodium dodecyl sulfate and Triton X-100 and examined with a scanning electron microscope and immunofluorescence staining. A bridge-graft into the sciatic nerve in Wistar rats was performed with the decellularized nerves (10 mm in length for short-term evaluation; 15 mm in length for long-term evaluation). As a control, an isograft was performed. The specimens were harvested at 4 weeks postoperatively and prepared for immunohistochemistry. Function, electrophysiological and histomorphological analyses were performed to evaluate nerve recovery at 24 weeks postoperatively. The 3-dimensional structure of the basal lamina column, on which the cell adhesion molecules were integrated, was preserved through the decellularization protocols. Limited ED1-positive macrophage invasion was observed, and abundant NF 160-positive axons, which were accompanied by S-100-positive Schwann cells, penetrated through the implanted nerves. The sciatic nerve function and electrophysiological and histomorphological analyses suggest that the xenogeneic nerve graft was statistically indistinguishable from the allogenic nerve graft but slightly inferior to the isograft in supporting the axonal regeneration and functional recovery.

  8. Tetanus–diphtheria–acellular pertussis vaccination for adults: an update

    PubMed Central

    2017-01-01

    Although tetanus and diphtheria have become rare in developed countries, pertussis is still endemic in some developed countries. These are vaccine-preventable diseases and vaccination for adults is important to prevent the outbreak of disease. Strategies for tetanus, diphtheria, and pertussis vaccines vary from country to country. Each country needs to monitor consistently epidemiology of the diseases and changes vaccination policies accordingly. Recent studies showed that tetanus–diphtheria–acellular pertussis vaccine for adults is effective and safe to prevent pertussis disease in infants. However, vaccine coverage still remains low than expected and seroprevalence of protective antibodies levels for tetanus, diphtheria, and pertussis decline with aging. The importance of tetanus–diphtheria–acellular pertussis vaccine administration should be emphasized for the protection of young adult and elderly people also, not limited to children. PMID:28168170

  9. Optimization and Implementation of Long Nerve Allografts

    DTIC Science & Technology

    2013-03-01

    mimics the production of the human nerve allograft product used clinically. This includes detergent decellularization , treatment with...is  on  schedule.     The  early  Milestone  to  obtain  ACURO  approval  for   animal  use  was  accomplished...months  1-­‐6):       Task  1a.    Collect,  process  ( decellularize )  and  prepare  7  cm  acellular  allografts

  10. Bone grafts.

    PubMed

    Hubble, Matthew J W

    2002-09-01

    Bone grafts are used in musculoskeletal surgery to restore structural integrity and enhance osteogenic potential. The demand for bone graft for skeletal reconstruction in bone tumor, revision arthroplasty, and trauma surgery, couple with recent advances in understanding and application of the biology of bone transplantation, has resulted in an exponential increase in the number of bone-grafting procedures performed over the last decade. It is estimated that 1.5 million bone-grafting procedures are currently performed worldwide each year, compared to a fraction of that number 20 years ago. Major developments also have resulted in the harvesting, storage, and use of bone grafts and production of graft derivatives, substitutes, and bone-inducing agents.

  11. Genes and nerves.

    PubMed

    Dieu, Tam; Johnstone, Bruce R; Newgreen, Don F

    2005-04-01

    The unpredictability of a brachial plexus graft, a median nerve repair, or a facial-nerve reconstruction is well known. No matter how precise the technical skills, a perfect recovery from a peripheral-nerve lesion is elusive. To resolve this problem, understanding of the normal development of the peripheral nervous system is needed. Presently, the development of the innervation in the upper limb is complex and not fully understood. However, many of the genes involved in this process are now known, and the link between anatomy and genetics is becoming clearer. This short review aims to acquaint the clinical surgeon with some of the main genes. The principal steps in the establishment of neural circuits will be summarized, in particular, the specification and development of neurons and glia, the pathfinding of cells and axons towards their target, and the downstream molecules that control the circuitry of these neurons.

  12. Poly(lactic-co-glycolic acid) conduit for repair of injured sciatic nerve: A mechanical analysis

    PubMed Central

    Yu, Tao; Zhao, Changfu; Li, Peng; Liu, Guangyao; Luo, Min

    2013-01-01

    Tensile stress and tensile strain directly affect the quality of nerve regeneration after bridging nerve defects by poly(lactic-co-glycolic acid) conduit transplantation and autogenous nerve grafting for sciatic nerve injury. This study collected the sciatic nerve from the gluteus maximus muscle from fresh human cadaver, and established 10-mm-long sciatic nerve injury models by removing the ischium, following which poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts were transplanted. Scanning electron microscopy revealed that the axon and myelin sheath were torn, and the vessels of basilar membrane were obstructed in the poly(lactic-co-glycolic acid) conduit-repaired sciatic nerve following tensile testing. There were no significant differences in tensile tests with autogenous nerve graft-repaired sciatic nerve. Following poly(lactic-co-glycolic acid) conduit transplantation for sciatic nerve repair, tensile test results suggest that maximum tensile load, maximum stress, elastic limit load and elastic limit stress increased compared with autogenous nerve grafts, but elastic limit strain and maximum strain decreased. Moreover, the tendencies of stress-strain curves of sciatic nerves were similar after transplantation of poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts. Results showed that after transplantation in vitro for sciatic nerve injury, poly(lactic-co-glycolic acid) conduits exhibited good intensity, elasticity and plasticity, indicating that poly(lactic-co-glycolic acid) conduits are suitable for sciatic nerve injury repair. PMID:25206505

  13. Poly(lactic-co-glycolic acid) conduit for repair of injured sciatic nerve: A mechanical analysis.

    PubMed

    Yu, Tao; Zhao, Changfu; Li, Peng; Liu, Guangyao; Luo, Min

    2013-07-25

    Tensile stress and tensile strain directly affect the quality of nerve regeneration after bridging nerve defects by poly(lactic-co-glycolic acid) conduit transplantation and autogenous nerve grafting for sciatic nerve injury. This study collected the sciatic nerve from the gluteus maximus muscle from fresh human cadaver, and established 10-mm-long sciatic nerve injury models by removing the ischium, following which poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts were transplanted. Scanning electron microscopy revealed that the axon and myelin sheath were torn, and the vessels of basilar membrane were obstructed in the poly(lactic-co-glycolic acid) conduit-repaired sciatic nerve following tensile testing. There were no significant differences in tensile tests with autogenous nerve graft-repaired sciatic nerve. Following poly(lactic-co-glycolic acid) conduit transplantation for sciatic nerve repair, tensile test results suggest that maximum tensile load, maximum stress, elastic limit load and elastic limit stress increased compared with autogenous nerve grafts, but elastic limit strain and maximum strain decreased. Moreover, the tendencies of stress-strain curves of sciatic nerves were similar after transplantation of poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts. Results showed that after transplantation in vitro for sciatic nerve injury, poly(lactic-co-glycolic acid) conduits exhibited good intensity, elasticity and plasticity, indicating that poly(lactic-co-glycolic acid) conduits are suitable for sciatic nerve injury repair.

  14. In vivo bone tunnel evaluation of nanoparticle-grafts using an ACL reconstruction rabbit model.

    PubMed

    Grant, Sheila A; Smith, Sarah E; Schmidt, Hilary; Pfeiffer, Ferris; Kuroki, Kei; Sherman, Seth; White, Richard; Grant, David A

    2017-04-01

    Acellular human gracilis tendons conjugated with gold nanoparticles (AuNP) and hydroxyapatite nanoparticles (nano-HAp) were used as a graft in an anterior cruciate ligament (ACL) reconstruction rabbit model. The ACLs of 11 New Zealand rabbits were reconstructed using grafts conjugated without nanoparticles, with AuNP only, and with both AuNP and nano-HAp. Semi-quantitative histological scoring of bone tunnel portion of grafts was performed after 14 weeks. Bone tunnels were scored for graft degeneration, graft remodeling, percentage of new host fibrous connective, collateral connection, head-to-head connection, graft collagen fiber organization, new host fibrous connective tissue organization, and graft and interface vascularity. All grafts were intact at 14 weeks. Results of bone tunnel scoring indicate remodeling in all graft types with new organized host fibrous connective tissue, head-to-head connection to bone and mild inflammation associated with remodeling. Components of the 20 nm AuNP grafts have significantly more graft degeneration, more new host fibrous connective tissue, and more vascularity compared to crosslinked grafts. Comparison between femoral and tibial tunnel scores indicate more degeneration in femoral tunnels compared to tibial tunnels. Overall results indicated potentially enhanced remodeling from the use of 20 nm AuNP grafts. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1071-1082, 2017.

  15. Drug Delivery for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2014-09-01

    require special bridging strategies for tension-free repair. Autologous nerve grafts serve as the state-of-the-art in repairing such gaps but numerous...the regenerating nerves and can allow for tension free bridging without the need to harvest donor nerve. A number of research groups have proposed...Optimize nanoporous membrane dimensions ......................(Gale)(months 2-3) c. Optimize reservoir dimensions

  16. Using genipin-crosslinked acellular porcine corneal stroma for cosmetic corneal lens implants.

    PubMed

    Liu, Zhao; Zhou, Qiang; Zhu, Jixiang; Xiao, Jianhui; Wan, Pengxia; Zhou, Chenjing; Huang, Zheqian; Qiang, Na; Zhang, Wei; Wu, Zheng; Quan, Daping; Wang, Zhichong

    2012-10-01

    Acellular porcine corneal stroma (APCS) has been proven to maintain the matrix microenvironment and is therefore an ideal biomaterial for the repair and reconstruction of corneal stroma. This study aims to develop a method to prepare cosmetic corneal lens implants for leukoma using genipin-crosslinked APCS (Gc-APCS). The Gc-APCS was prepared from APCS immersed in 1.0% genipin aqueous solution (pH 5.5) for 4 h at 37 °C, followed by lyophilization at -10 °C. The color of the Gc-APCS gradually deepened to dark-blue. The degree of crosslinking was 45.7 ± 4.6%, measured by the decrease of basic and hydroxy amino acids. The porous structure and ultrastructure of collagenous lamellae were maintained, and the porosity and BET SSA were 72.7 ± 4.6% and 23.01 ± 3.45 m(2)/g, respectively. The Gc-APCS rehydrated to the physiological water content within 5 min and was highly resistant to collagenase digestion. There were no significant differences in the areal modulus and curvature variation between Gc-APCS and nature porcine cornea. The dark-blue pigments were stable to pH, light and implantation in vivo. Gc-APCS extracts had no inhibitory effects on the proliferation of keratocytes. Corneal neovascularization, graft degradation and corneal rejection were not observed within 6 months.

  17. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers

    PubMed Central

    Yalom, Anisa; Berns, Eric J.; Stephanopoulos, Nicholas; McClendon, Mark T.; Segovia, Luis A.; Spigelman, Igor; Stupp, Samuel I.; Jarrahy, Reza

    2014-01-01

    Peripheral nerve injuries can result in lifelong disability. Primary coaptation is the treatment of choice when the gap between transected nerve ends is short. Long nerve gaps seen in more complex injuries often require autologous nerve grafts or nerve conduits implemented into the repair. Nerve grafts, however, cause morbidity and functional loss at donor sites, which are limited in number. Nerve conduits, in turn, lack an internal scaffold to support and guide axonal regeneration, resulting in decreased efficacy over longer nerve gap lengths. By comparison, peptide amphiphiles (PAs) are molecules that can self-assemble into nanofibers, which can be aligned to mimic the native architecture of peripheral nerve. As such, they represent a potential substrate for use in a bioengineered nerve graft substitute. To examine this, we cultured Schwann cells with bioactive PAs (RGDS-PA, IKVAV-PA) to determine their ability to attach to and proliferate within the biomaterial. Next, we devised a PA construct for use in a peripheral nerve critical sized defect model. Rat sciatic nerve defects were created and reconstructed with autologous nerve, PLGA conduits filled with various forms of aligned PAs, or left unrepaired. Motor and sensory recovery were determined and compared among groups. Our results demonstrate that Schwann cells are able to adhere to and proliferate in aligned PA gels, with greater efficacy in bioactive PAs compared to the backbone-PA alone. In vivo testing revealed recovery of motor and sensory function in animals treated with conduit/PA constructs comparable to animals treated with autologous nerve grafts. Functional recovery in conduit/PA and autologous graft groups was significantly faster than in animals treated with empty PLGA conduits. Histological examinations also demonstrated increased axonal and Schwann cell regeneration within the reconstructed nerve gap in animals treated with conduit/PA constructs. These results indicate that PA nanofibers may

  18. Peripheral nerve conduits: technology update

    PubMed Central

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  19. In vivo integration of poly(ε-caprolactone)/gelatin nanofibrous nerve guide seeded with teeth derived stem cells for peripheral nerve regeneration.

    PubMed

    Beigi, Mohammad-Hossein; Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Karbalaie, Khadijeh; Azadeh, Hamid; Ramakrishna, Seeram; Baharvand, Hossein; Nasr-Esfahani, Mohammad-Hossein

    2014-12-01

    Artificial nanofiber nerve guides have gained huge interest in bridging nerve gaps and associated peripheral nerve regeneration due to its high surface area, flexibility and porous structure. In this study, electrospun poly (ε-caprolactone)/gelatin (PCL/Gel) nanofibrous mats were fabricated, rolled around a copper wire and fixed by medical grade adhesive to obtain a tubular shaped bio-graft, to bridge 10 mm sciatic nerve gap in in vivo rat models. Stem cells from human exfoliated deciduous tooth (SHED) were transplanted to the site of nerve injury through the nanofibrous nerve guides. In vivo experiments were performed in animal models after creating a sciatic nerve gap, such that the nerve gap was grafted using (i) nanofiber nerve guide (ii) nanofiber nerve guide seeded with SHED (iii) suturing, while an untreated nerve gap remained as the negative control. In vitro cell culture study was carried out for primary investigation of SHED-nanofiber interaction and its viability within the nerve guides after 2 and 16 weeks of implantation time. Walking track analysis, plantar test, electrophysiology and immunohistochemistry were performed to evaluate functional recovery during nerve regeneration. Vascularization was also investigated by hematoxilin/eosine (H&E) staining. Overall results showed that the SHED seeded on nanofibrous nerve guide could survive and promote axonal regeneration in rat sciatic nerves, whereby the biocompatible PCL/Gel nerve guide with cells can support axonal regeneration and could be a promising tissue engineered graft for peripheral nerve regeneration.

  20. Whooping cough, twenty years from acellular vaccines introduction.

    PubMed

    Greco, D; Esposito, S; Tozzi, A; Pandolfi, E; Icardi, G; Giammanco, A

    2015-01-01

    Clinical pertussis resulting from infection with B. pertussis is a significant medical and public health problem, despite the huge success of vaccination that has greatly reduced its incidence. The whole cell vaccine had an undeniable success over the last 50 years, but its acceptance was strongly inhibited by fear, only partially justified, of severe side effects, but also, in the Western world, by the difficulty to enter in combination with other vaccines: today multi-vaccine formulations are essential to maintain a high vaccination coverage. The advent of acellular vaccines was greeted with enthusiasm by the public health world: in the Nineties, several controlled vaccine trials were carried out: they demonstrated a high safety and good efficacy of new vaccines. In fact, in the Western world, the acellular vaccines completely replaced the whole cells ones. In the last years, ample evidence on the variety of protection of these vaccines linked to the presence of different antigens of Bordetella pertussis was collected. It also became clear that the protection provided, on average around 80%, leaves every year a significant cohort of vaccinated susceptible even in countries with a vaccination coverage of 95%, such as Italy. Finally, it was shown that, as for the pertussis disease, protection decreases over time, to leave a proportion of adolescents and adults unprotected. Waiting for improved pertussis vaccines, the disease control today requires a different strategy that includes a booster at 5 years for infants, but also boosters for teenagers and young adults, re-vaccination of health care personnel, and possibly of pregnant women and of those who are in contact with infants (cocooning). Finally, the quest for better vaccines inevitably tends towards pertussis acellular vaccines with at least three components, which have demonstrated superior effectiveness and have been largely in use in Italy for fifteen years.

  1. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    PubMed

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity.

  2. Nerve biopsy

    MedlinePlus

    ... Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis Risks Allergic reaction to the local anesthetic Discomfort ... Neurosarcoidosis Peripheral neuropathy Primary amyloidosis Radial nerve dysfunction Sarcoidosis Tibial nerve dysfunction Review Date 6/1/2015 ...

  3. Skin graft

    MedlinePlus

    ... that need skin grafts to heal Venous ulcers, pressure ulcers , or diabetic ulcers that do not heal Very ... chap 17. Read More Burns Patient Instructions Preventing pressure ulcers Surgical wound care - open Review Date 3/13/ ...

  4. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.

    PubMed

    Xie, Hongjian; Yang, Wen; Chen, Jianghai; Zhang, Jinxiang; Lu, Xiaochen; Zhao, Xiaobo; Huang, Kun; Li, Huili; Chang, Panpan; Wang, Zheng; Wang, Lin

    2015-10-28

    Peripheral nerve gap defects lead to significant loss of sensory or motor function. Tissue engineering has become an important alternative to nerve repair. Sericin, a major component of silk, is a natural protein whose value in tissue engineering has just begun to be explored. Here, the first time use of sericin in vivo is reported as a long-term implant for peripheral nerve regeneration. A sericin nerve guidance conduit is designed and fabricated. This conduit is highly porous with mechanical strength matching peripheral nerve tissue. It supports Schwann cell proliferation and is capable of up-regulating the transcription of glial cell derived neurotrophic factor and nerve growth factor in Schwann cells. The sericin conduit wrapped with a silicone conduit (sericin/silicone double conduits) is used for bridging repair of a 5 mm gap in a rat sciatic nerve transection model. The sericin/silicone double conduits achieve functional recovery comparable to that of autologous nerve grafting as evidenced by drastically improved nerve function and morphology. Importantly, this improvement is mainly attributed to the sericin conduit as the silicone conduit alone only produces marginal functional recovery. This sericin/silicone-double-conduit strategy offers an efficient and valuable alternative to autologous nerve grafting for repairing damaged peripheral nerve.

  5. Human acellular dermal wound matrix: evidence and experience.

    PubMed

    Kirsner, Robert S; Bohn, Greg; Driver, Vickie R; Mills, Joseph L; Nanney, Lillian B; Williams, Marie L; Wu, Stephanie C

    2015-12-01

    A chronic wound fails to complete an orderly and timely reparative process and places patients at increased risk for wound complications that negatively impact quality of life and require greater health care expenditure. The role of extracellular matrix (ECM) is critical in normal and chronic wound repair. Not only is ECM the largest component of the dermal skin layer, but also ECM proteins provide structure and cell signalling that are necessary for successful tissue repair. Chronic wounds are characterised by their inflammatory and proteolytic environment, which degrades the ECM. Human acellular dermal matrices, which provide an ECM scaffold, therefore, are being used to treat chronic wounds. The ideal human acellular dermal wound matrix (HADWM) would support regenerative healing, providing a structure that could be repopulated by the body's cells. Experienced wound care investigators and clinicians discussed the function of ECM, the evidence related to a specific HADWM (Graftjacket(®) regenerative tissue matrix, Wright Medical Technology, Inc., licensed by KCI USA, Inc., San Antonio, TX), and their clinical experience with this scaffold. This article distills these discussions into an evidence-based and practical overview for treating chronic lower extremity wounds with this HADWM.

  6. Nerve root replantation.

    PubMed

    Carlstedt, Thomas

    2009-01-01

    Traumatic avulsion of nerve roots from the spinal cord is a devastating event that usually occurs in the brachial plexus of young adults following motor vehicle or sports accidents or in newborn children during difficult childbirth. A strategy to restore motor function in the affected arm by reimplanting into the spinal cord the avulsed ventral roots or autologous nerve grafts connected distally to the avulsed roots has been developed. Surgical outcome is good and useful recovery in shoulder and proximal arm muscles occurs. Pain is alleviated with motor recovery but sensory improvement is poor when only motor conduits have been reconstructed. In experimental studies, restoration of sensory connections with general improvement in the outcome from this surgery is pursued.

  7. Common peroneal nerve dysfunction

    MedlinePlus

    Neuropathy - common peroneal nerve; Peroneal nerve injury; Peroneal nerve palsy ... type of peripheral neuropathy (damage to nerves outside the brain ... nerve injuries. Damage to the nerve disrupts the myelin sheath ...

  8. Rehabilitation of the trigeminal nerve

    PubMed Central

    Iro, Heinrich; Bumm, Klaus; Waldfahrer, Frank

    2005-01-01

    When it comes to restoring impaired neural function by means of surgical reconstruction, sensory nerves have always been in the role of the neglected child when compared with motor nerves. Especially in the head and neck area, with its either sensory, motor or mixed cranial nerves, an impaired sensory function can cause severe medical conditions. When performing surgery in the head and neck area, sustaining neural function must not only be highest priority for motor but also for sensory nerves. In cases with obvious neural damage to sensory nerves, an immediate neural repair, if necessary with neural interposition grafts, is desirable. Also in cases with traumatic trigeminal damage, an immediate neural repair ought to be considered, especially since reconstructive measures at a later time mostly require for interposition grafts. In terms of the trigeminal neuralgia, commonly thought to arise from neurovascular brainstem compression, a pharmaceutical treatment is considered as the state of the art in terms of conservative therapy. A neurovascular decompression of the trigeminal root can be an alternative in some cases when surgical treatment is sought after. Besides the above mentioned therapeutic options, alternative treatments are available. PMID:22073060

  9. Bilateral high radial nerve compressions: a case report.

    PubMed

    Chuangsuwanich, A; Muangsombut, S; Sangruchi, T

    2000-06-01

    A 40-year-old woman with bilateral high radial nerve compressions by non-traumatic cause was reported. It occurred first at the right radial nerve which was explored after a period of investigation and conservative treatment. Two constricted sites 2.0 cm apart of the right radial nerve crossed by branches of the radial collateral artery beneath the lateral head of the triceps were found. The constricted sites including tissue in between was resected and replaced with a sural nerve graft. One year later the patient had the same episode on the left side. The operative finding was the same as the previous one. Sural nerve graft was performed after neurolysis had failed. The patient's normal radial nerve function returned in one year. This is the first reported case in the literature of bilateral high radial nerve compressions by branches of the radial collateral artery.

  10. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits

    PubMed Central

    Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.

    2017-01-01

    Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739

  11. Nanofibrous nerve conduits for repair of 30-mm-long sciatic nerve defects

    PubMed Central

    Biazar, Esmaeil; Keshel, Saeed Heidari; Pouya, Majid; Rad, Hadi; Nava, Melody Omrani; Azarbakhsh, Mohammad; Hooshmand, Shirin

    2013-01-01

    It has been confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit can promote peripheral nerve regeneration in rats. However, its efficiency in repair of over 30-mm-long sciatic nerve defects needs to be assessed. In this study, we used a nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit to bridge a 30-mm-long gap in the rat sciatic nerve. At 4 months after nerve conduit implantation, regenerated nerves were cally observed and histologically assessed. In the nanofibrous graft, the rat sciatic nerve trunk had been reconstructed by restoration of nerve continuity and formation of myelinated nerve fiber. There were Schwann cells and glial cells in the regenerated nerves. Masson's trichrome staining showed that there were no pathological changes in the size and structure of gastrocnemius muscle cells on the operated side of rats. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit is suitable for repair of long-segment sciatic nerve defects. PMID:25206536

  12. Polymeric biomaterials for nerve regeneration: fabrication and implantation of a biodegradable nerve guide.

    PubMed

    Sivak, Wesley N; Bliley, Jacqueline M; Marra, Kacey G

    2014-01-01

    Optimizing the quantity, quality, and speed of axon regeneration is important in maximizing functional outcomes following peripheral nerve injury. When severed, injured nerves must be able to regenerate and reconnect to the structures they previously controlled within 12-18 months before sensation and motion are permanently lost. Nerve sprouts from the proximal stump will spontaneously migrate toward the distal stump in the event of a nerve transection. However, surgical intervention remains necessary to repair transection injuries. Regeneration becomes particularly troublesome with large gaps, where autologous nerve grafts or nerve guides are used to repair transected nerves. Nerve conduits function as therapeutic adjuncts, guiding axonal regeneration across gap defects. Despite the availability of several FDA-approved nerve conduits, functional outcomes following their use remain less than optimal. Much work has been focused on developing nerve conduits to improve peripheral nerve repair outcomes. This chapter describes fabrication of a poly(caprolactone) nerve guide and demonstrates its use in a rat sciatic nerve model.

  13. Treatment of an 8-mm Myxoma Using Acellular Corneal Tissue

    PubMed Central

    Lim, Kyung Sup; Wee, Sung Wook

    2014-01-01

    A myxoma is a benign tumor found in the heart and in various soft tissues; however, a corneal myxoma is rare. A mucinous mass of unknown etiology was observed on the left cornea of a 32-year-old male patient. We performed deep anterior lamellar keratoplasty using acellular corneal tissue and concurrent amniotic membrane transplantation. Hematoxylin and eosin staining revealed vacuolation of the parenchyma and myxoid change in the corneal tissue that occurred in the anterior half of the corneal parenchyma. We identified a myxoid stroma by Alcian blue staining and observed collagen fibers with denatured stroma by Masson trichrome staining. The patient's visual acuity improved from light perception to 20 / 200, and the intraocular pressure remained within the normal range for one year after surgery. The transplanted cornea survived successfully with well-maintained transparency, and recurrence was not observed one year after surgery. PMID:24505204

  14. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery

    PubMed Central

    Hirata, Maki; Nakajima, Nobuyuki; Saito, Kosuke; Hashimoto, Hiroyuki; Soeda, Shuichi; Uchiyama, Yoshiyasu; Watanabe, Masahiko

    2016-01-01

    Losses in vital functions of the somatic motor and sensory nervous system are induced by severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions, whereas the prognosis is not always favorable. Here, we use human skeletal muscle-derived stem cells (Sk-SCs) to reconstitute the function after long nerve-gap injury. Muscles samples were obtained from the amputated legs from 9 patients following unforeseen accidents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as CD34+/45- (Sk-34) and CD34-/45-/29+ (Sk-DN/29+) cells. Cells were separately cultured/expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice sciatic nerve long-gap model (7-mm) bridging an acellular conduit. After 8–12 weeks, active cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferential differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation of the myelin sheath and perineurium/endoneurium surrounding regenerated axons, resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and endothelial cells) were also observed. A significant tetanic tension recovery (over 90%) of downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of the gap) was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon) and functional (80% vs. 60% in tetanus) recovery than control were observed. Noteworthy, significant increase in the formation of vascular networks in the conduit during the early stage (first 2 weeks) of recovery was observed in both groups with the expression of key factors (mRNA and protein levels), suggesting the paracrine effects to angiogenesis. These results suggested that the human Sk

  15. The role of exosomes in peripheral nerve regeneration

    PubMed Central

    Ching, Rosanna C.; Kingham, Paul J.

    2015-01-01

    Peripheral nerve injuries remain problematic to treat, with poor functional recovery commonly observed. Injuries resulting in a nerve gap create specific difficulties for axonal regeneration. Approaches to address these difficulties include autologous nerve grafts (which are currently the gold standard treatment) and synthetic conduits, with the latter option being able to be impregnated with Schwann cells or stem cells which provide an appropriate micro-environment for neuronal regeneration to occur. Transplanting stem cells, however, infers additional risk of malignant transformation as well as manufacturing difficulties and ethical concerns, and the use of autologous nerve grafts and Schwann cells requires the sacrifice of a functioning nerve. A new approach utilizing exosomes, secreted extracellular vesicles, could avoid these complications. In this review, we summarize the current literature on exosomes, and suggest how they could help to improve axonal regeneration following peripheral nerve injury. PMID:26109947

  16. Human acellular dermal matrix allograft: A randomized, controlled human trial for the long-term evaluation of patients with extensive burns.

    PubMed

    Li, Xueyong; Meng, Xianghai; Wang, Xiaolin; Li, Yuejun; Li, Wangzhou; Lv, Xiaoxing; Xu, Xiaoli; Lei, Zhanjun; Li, Jinqing

    2015-06-01

    The potential of acellular dermal matrix (ADM) to improve cosmetic and functional outcomes has been demonstrated; however, there have been few clinical comparative studies assessing the long-term morphological, histological and functional changes after ADM placement. This study was designed to retrospectively evaluate the long-term outcomes of the cograft acellular dermal matrix with autologous thin split-thickness skin for the coverage of wounds in extensively burned patients. Thirty burn patients treated with a composite graft of ADM with autologous split-thickness skin from January 2007 to December 2009 were enrolled in this study. Another group of thirty patients who received only an autogenous split-thickness skin implant served as the control. Our study revealed that the collagen in the dermis treated with ADM were ordered, and the proportion of collagen III/I was much higher in the control group than in the ADM group. The basement membrane was prominent and continuous. Meanwhile, the VBSS (Vancouver Burn Skin Score) was used to evaluate skin quality, which shows a significant differences between the two group (P<0.001). Then the functional level was evaluated by the BI (Barthel Index), and the ADM group was much better than the control group (P=0.005). Based on these results, we concluded that the composite graft of ADM with autologous thin split-thickness skin was suitable for repairing the defects in functional areas after a burn. This technique might facilitate wound management with acceptable esthetic outcomes, good functional recovery and less scar hyperplasia at the donor site.

  17. Proximal Tibial Bone Graft

    MedlinePlus

    ... All Site Content AOFAS / FootCareMD / Treatments Proximal Tibial Bone Graft Page Content What is a bone graft? Bone grafts may be needed for various ... the proximal tibia. What is a proximal tibial bone graft? Proximal tibial bone graft (PTBG) is a ...

  18. Nerve Blocks

    MedlinePlus

    ... Sometimes the needle has to be inserted fairly deep to reach the nerve causing your problem. This ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  19. Coronary Artery Bypass Grafting

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Coronary Artery Bypass Grafting? Coronary artery bypass grafting (CABG) is ... bypass multiple coronary arteries during one surgery. Coronary Artery Bypass Grafting Figure A shows the location of ...

  20. In vivo effects of human adipose-derived stem cells reseeding on acellular bovine pericardium in nude mice

    PubMed Central

    Dai, Miao; Xu, Peirong; Hou, Min; Teng, Yincheng; Feng, Jie

    2015-01-01

    Tissue-engineered biologic products may be a viable option in the reconstruction of pelvic organ prolapse (POP). This study was based on the hypothesis that human adipose-derived stem cells (hASCs) are viable in acellular bovine pericardium (ABP), when reseeded by two different techniques, and thus, aid in the reconstruction. To investigate the reseeding of hASCs on ABP grafts by using non-invasive bioluminescence imaging (BLI), and to identify the effective hASCs–scaffold combinations that enabled regeneration. Thirty female athymic nude mice were randomly divided into three groups: In the VIVO group, ABPs were implanted in the subcutaneous pockets and enhanced green fluorescent protein luciferase (eGFP·Luc)-hASCs (1 × 106 cells/50 µL) were injected on the ABP at the same time. In the VITRO group, the mice were implanted with grafts that ABP were co-cultured with eGFP·Luc-hASCs in vitro. The BLANK group mice were implanted with ABP only. The eGFP·Luc-hASCs reseeded on ABP were analyzed by BLI, histology, and immunohistochemistry. The eGFP·Luc-hASCs reseeded on ABP could be visualized at 12 weeks in vivo. Histology revealed that the VIVO group displayed the highest cell ingrowths, small vessels, and percent of collagen content per unit area. Desmin and α-smooth muscle actin were positive at the same site in the VIVO group cells. However, few smooth muscles were observed in the VITRO and BLANK groups. These results suggest that hASCs reseeded on ABP in vivo during surgery may further enhance the properties of ABP and may promote regeneration at the recipient site, resulting in a promising treatment option for POP. PMID:26253192

  1. In vivo effects of human adipose-derived stem cells reseeding on acellular bovine pericardium in nude mice.

    PubMed

    Wu, Qingkai; Dai, Miao; Xu, Peirong; Hou, Min; Teng, Yincheng; Feng, Jie

    2016-01-01

    Tissue-engineered biologic products may be a viable option in the reconstruction of pelvic organ prolapse (POP). This study was based on the hypothesis that human adipose-derived stem cells (hASCs) are viable in acellular bovine pericardium (ABP), when reseeded by two different techniques, and thus, aid in the reconstruction. To investigate the reseeding of hASCs on ABP grafts by using non-invasive bioluminescence imaging (BLI), and to identify the effective hASCs-scaffold combinations that enabled regeneration. Thirty female athymic nude mice were randomly divided into three groups: In the VIVO group, ABPs were implanted in the subcutaneous pockets and enhanced green fluorescent protein luciferase (eGFP·Luc)-hASCs (1 × 10(6) cells/50 µL) were injected on the ABP at the same time. In the VITRO group, the mice were implanted with grafts that ABP were co-cultured with eGFP·Luc-hASCs in vitro. The BLANK group mice were implanted with ABP only. The eGFP·Luc-hASCs reseeded on ABP were analyzed by BLI, histology, and immunohistochemistry. The eGFP·Luc-hASCs reseeded on ABP could be visualized at 12 weeks in vivo. Histology revealed that the VIVO group displayed the highest cell ingrowths, small vessels, and percent of collagen content per unit area. Desmin and α-smooth muscle actin were positive at the same site in the VIVO group cells. However, few smooth muscles were observed in the VITRO and BLANK groups. These results suggest that hASCs reseeded on ABP in vivo during surgery may further enhance the properties of ABP and may promote regeneration at the recipient site, resulting in a promising treatment option for POP.

  2. A prospective, randomised, controlled, multicentre clinical trial examining healing rates, safety and cost to closure of an acellular reticular allogenic human dermis versus standard of care in the treatment of chronic diabetic foot ulcers.

    PubMed

    Zelen, Charles M; Orgill, Dennis P; Serena, Thomas; Galiano, Robert; Carter, Marissa J; DiDomenico, Lawrence A; Keller, Jennifer; Kaufman, Jarrod; Li, William W

    2017-04-01

    Acellular dermal matrices can successfully heal wounds. This study's goal was to compare clinical outcomes of a novel, open-structure human reticular acellular dermis matrix (HR-ADM) to facilitate wound closure in non-healing diabetic foot ulcers (DFUs) versus DFUs treated with standard of care (SOC). Following a 2-week screening period in which DFUs were treated with offloading and moist wound care, patients were randomised to either SOC alone or HR-ADM plus SOC applied weekly for up to 12 weeks. At 6 weeks, the primary outcome time, 65% of the HR-ADM-treated DFUs healed (13/20) compared with 5% (1/20) of DFUs that received SOC alone. At 12 weeks, the proportions of DFUs healed were 80% and 20%, respectively. Mean time to heal within 12 weeks was 40 days for the HR-ADM group compared with 77 days for the SOC group. There was no incidence of increased adverse or serious adverse events between groups or any adverse events related to the graft. Mean and median graft costs to closure per healed wound in the HR-ADM group were $1475 and $963, respectively. Weekly application of HR-ADM is an effective intervention for promoting closure of non-healing DFUs.

  3. Grafted dopamine neurons: Morphology, neurochemistry, and electrophysiology.

    PubMed

    Strömberg, Ingrid; Bickford, Paula; Gerhardt, Greg A

    2010-02-09

    Grafting of dopamine-rich tissue to counteract the symptoms in Parkinson's disease became a promising tool for future treatment. This article discusses how to improve the functional outcome with respect to graft outgrowth and functions of dopamine release and electrophysiological responses to graft implantation in the host brain striatal target. It has been documented that a subpopulation of the dopamine neurons innervates the host brain in a target-specific manner, while some of the grafted dopamine neurons never project to the host striatum. Neurochemical studies have demonstrated that the graft-induced outgrowth synthesize, store, metabolize and release dopamine and possibly other neurotransmitters such as 5-HT. Furthermore, the released dopamine affects the dopamine-depleted brain in areas that are larger than the graft-derived nerve fibers reach. While stem cells will most likely be the future source of cells to be used in grafting, it is important to find the guiding cues for how to reinnervate the dopamine-depleted striatum in a proper way with respect to the dopamine subpopulations of A9 and A10 to efficiently treat the motor abnormalities seen in Parkinson's disease.

  4. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    PubMed

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  5. Peripheral nerve regeneration following transection injury to rat sciatic nerve by local application of adrenocorticotropic hormone.

    PubMed

    Mohammadi, Rahim; Yadegarazadi, Mohammad-Javad; Amini, Keyvan

    2014-09-01

    The objective of this study was to assess local effect of adrenocorticotropic hormone (ACTH) on the functional recovery of the sciatic nerve in a transection model. Sixty male healthy white Wistar rats were randomized into four experimental groups of 15 animals each: In the sham-operated group (SHAM), the sciatic nerve was exposed and manipulated. In the transected group (TC), the left sciatic nerve was transected and the cut nerve ends were fixed in the adjacent muscle. In the silicone graft group (SIL) a 10-mm defect was made and bridged using a silicone tube. The graft was filled with phosphated-buffer saline alone. In the treatment group a silicone tube (SIL/ACTH) was filled with 10 μL ACTH (0.1 mg/mL). Each group was subdivided into three subgroups of five animals each and regenerated nerve fibres were studied at 4, 8 and 12 weeks post operation. Behavioral testing, functional, gastrocnemius muscle mass and morphometric indices showed earlier regeneration of axons in SIL/ACTH than in SIL group (p < 0.05). Immunohistochemistry clearly showed more positive location of reactions to S-100 in SIL/ACTH than in SIL group. ACTH improved functional recovery and morphometric indices of sciatic nerve. This finding supports role of ACTH after peripheral nerve repair and may have clinical implications for the surgical management of patients after nerve transection.

  6. A new material for tissue engineered vagina reconstruction: Acellular porcine vagina matrix.

    PubMed

    Zhang, Jing-Kun; Du, Run-Xuan; Zhang, Lin; Li, Ya-Nan; Zhang, Ming-le; Zhao, Shuo; Huang, Xiang-Hua; Xu, Yan-Fang

    2017-03-10

    Acellular matrix materials have been widely used to repair various tissues and organs. According to the plastic principle, when a part of the body is lost, it should be replaced with a similar material. Therefore, the use of a homologous organ-specific acellular vaginal tissue in vagina reconstruction repair surgery may show good results. However, the acellular vagina matrix (AVM) form large vertebrates is difficult to isolate. In this study, we described a multi-step method to prepare porcine AVM and evaluated the efficacy of acellularization. We also investigated the biomechanical properties, biological activity elements and biocompatibility of the porcine AVM. We then used this material to reconstruct a rat vagina and performed further morphologic and functional analyses. Small intestinal submucosa (SIS), which is a commonly used acellular matrix material, was used in a control group. Histological examination, DNA content analysis and agarose gel electrophoresis revealed that the decellularization procedure was effective. The AVM had acceptable biomechanical properties and sufficient growth factor production (VEGF, FGF, TGF-β1 and PDGF-BB) compared with that of the SIS. Subcutaneous transplantation in rats showed that the AVM had good biocompatibility. The tissue-engineered vagina using the AVM more resembled normal-appearing tissue than did that using SIS following morphologic and functional analyses. The AVM has great potential for application in vaginal reconstructive surgery. This article is protected by copyright. All rights reserved.

  7. Adult motor axons preferentially reinnervate predegenerated muscle nerve.

    PubMed

    Abdullah, M; O'Daly, A; Vyas, A; Rohde, C; Brushart, T M

    2013-11-01

    Preferential motor reinnervation (PMR) is the tendency for motor axons regenerating after repair of mixed nerve to reinnervate muscle nerve and/or muscle rather than cutaneous nerve or skin. PMR may occur in response to the peripheral nerve pathway alone in juvenile rats (Brushart, 1993; Redett et al., 2005), yet the ability to identify and respond to specific pathway markers is reportedly lost in adults (Uschold et al., 2007). The experiments reported here evaluate the relative roles of pathway and end organ in the genesis of PMR in adult rats. Fresh and 2-week predegenerated femoral nerve grafts were transferred in correct or reversed alignment to replace the femoral nerves of previously unoperated Lewis rats. After 8 weeks of regeneration the motoneurons projecting through the grafts to recipient femoral cutaneous and muscle branches and their adjacent end organs were identified by retrograde labeling. Motoneuron counts were subjected to Poisson regression analysis to determine the relative roles of pathway and end organ identity in generating PMR. Transfer of fresh grafts did not result in PMR, whereas substantial PMR was observed when predegenerated grafts were used. Similarly, the pathway through which motoneurons reached the muscle had a significant impact on PMR when grafts were predegenerated, but not when they were fresh. Comparison of the relative roles of pathway and end organ in generating PMR revealed that neither could be shown to be more important than the other. These experiments demonstrate unequivocally that adult muscle nerve and cutaneous nerve differ in qualities that can be detected by regenerating adult motoneurons and that can modify their subsequent behavior. They also reveal that two weeks of Wallerian degeneration modify the environment in the graft from one that provides no modality-specific cues for motor neurons to one that actively promotes PMR.

  8. Optic Nerve Decompression

    MedlinePlus

    ... Nerve Decompression Dacryocystorhinostomy (DCR) Disclosure Statement Printer Friendly Optic Nerve Decompression John Lee, MD Introduction Optic nerve decompression is a surgical procedure aimed at ...

  9. Ulnar nerve dysfunction

    MedlinePlus

    Neuropathy - ulnar nerve; Ulnar nerve palsy; Mononeuropathy; Cubital tunnel syndrome ... compressed in the elbow, a problem called cubital tunnel syndrome may result. When damage destroys the nerve ...

  10. Extracranial spinal accessory nerve injury.

    PubMed

    Donner, T R; Kline, D G

    1993-06-01

    Eighty-three consecutive patients with extracranial accessory nerve injury seen over a 12-year period are reviewed. The most common etiology was iatrogenic injury to the nerve at the time of previous surgery. Such operations were usually minor in nature and often related to lymph node or benign tumor removal. Examination usually distinguished winging due to trapezius weakness from that of serratus anterior palsy. Trapezius weakness was seen in all cases. Sternocleidomastoid weakness was unusual. Patients with accessory palsy were evaluated by both clinical and electromyographic studies. Patients who exhibited no clinical or electrical evidence of regeneration were operated on (44 cases). Based on intraoperative nerve action potential studies, 8 lesions in continuity had neurolysis alone. Resection with repair either by end-to-end suture or by grafts was necessary in 31 cases. One case had suture removed from nerve, two had nerve placed into target muscle, and two had more proximal neurotization. Function was usually improved in both operative and nonoperative patients. Related anatomy is discussed.

  11. Pertactin deficient Bordetella pertussis present a better fitness in mice immunized with an acellular pertussis vaccine.

    PubMed

    Hegerle, N; Dore, G; Guiso, N

    2014-11-20

    Bordetella pertussis is the etiologic agent of whooping cough and has been the target of vaccination for over fifty years. The latest strategies include the use of acellular pertussis vaccines that induce specific immunity against few virulence factors amongst which pertactin is included in three and five component acellular pertussis vaccines. Recently, it has been reported that B. pertussis clinical isolates loose the production of this adhesin in regions reaching high vaccine coverage with vaccines targeting this virulence factor. We here demonstrate that isolates not producing pertactin are capable of sustaining longer infection as compared to pertactin producing isolates in an in vivo model of acellular pertussis immunization. Loosing pertactin production might thus provide a selective advantage to these isolates in this background, which could account for the upraise in prevalence of these pertactin deficient isolates in the population.

  12. Acellular comet assay: a tool for assessing variables influencing the alkaline comet assay.

    PubMed

    Kennedy, Erin K; McNamee, James P; Prud'homme Lalonde, Louise; Jones, Trevor; Wilkinson, Diana

    2012-01-01

    In this study, an acellular modification to the alkaline comet assay to further evaluate key variables within the assay that may influence the outcome of genotoxicity studies is described. This acellular comet assay can detect differences of 0.2 Gy of (60)Co gamma-ray radiation between 0 and 1 Gy and differences of 1 Gy between 0 and 8 Gy; thus, this assay is applicable for a wide range of DNA damage levels. It is also shown that DNA damage from different radiation energies was not significantly different from (60)Co gamma-ray. This assay displayed a statistical increase in DNA damage due to uncontrolled exposure to natural light; however, the slope of the dose-response curve for light-exposed samples was similar to that for samples protected from light. A comparison of the alkaline comet assay with the acellular comet assay allowed for the intrinsic repair capacity of the alkaline comet assay to be quantified.

  13. Extracellular matrix components in peripheral nerve regeneration.

    PubMed

    Gonzalez-Perez, Francisco; Udina, Esther; Navarro, Xavier

    2013-01-01

    Injured axons of the peripheral nerve are able to regenerate and, eventually, reinnervate target organs. However, functional recovery is usually poor after severe nerve injuries. The switch of Schwann cells to a proliferative state, secretion of trophic factors, and the presence of extracellular matrix (ECM) molecules (such as collagen, laminin, or fibronectin) in the distal stump are key elements to create a permissive environment for axons to grow. In this review, we focus attention on the ECM components and their tropic role in axonal regeneration. These components can also be used as molecular cues to guide the axons through artificial nerve guides in attempts to better mimic the natural environment found in a degenerating nerve. Most used scaffolds tested are based on natural molecules that form the ECM, but use of synthetic polymers and functionalization of hydrogels are bringing new options. Progress in tissue engineering will eventually lead to the design of composite artificial nerve grafts that may replace the use of autologous nerve grafts to sustain regeneration over long gaps.

  14. Facial Nerve Trauma: Evaluation and Considerations in Management

    PubMed Central

    Gordin, Eli; Lee, Thomas S.; Ducic, Yadranko; Arnaoutakis, Demetri

    2014-01-01

    The management of facial paralysis continues to evolve. Understanding the facial nerve anatomy and the different methods of evaluating the degree of facial nerve injury are crucial for successful management. When the facial nerve is transected, direct coaptation leads to the best outcome, followed by interpositional nerve grafting. In cases where motor end plates are still intact but a primary repair or graft is not feasible, a nerve transfer should be employed. When complete muscle atrophy has occurred, regional muscle transfer or free flap reconstruction is an option. When dynamic reanimation cannot be undertaken, static procedures offer some benefit. Adjunctive tools such as botulinum toxin injection and biofeedback can be helpful. Several new treatment modalities lie on the horizon which hold potential to alter the current treatment algorithm. PMID:25709748

  15. Surgical treatment of painful lesions of the inferior alveolar nerve.

    PubMed

    Biglioli, Federico; Allevi, Fabiana; Lozza, Alessandro

    2015-10-01

    Nerve-related complications are being reported with increasing frequency following oral and dental surgery, and typically involve the inferior alveolar nerve (IAN). We assess herein the etiology of neuropathic pain related to IAN injuries, and describe the various surgical treatment techniques available. Between 2007 and 2013, 19 patients were referred to the Maxillofacial Surgery Department of San Paolo Hospital (Milan, Italy) with pain in the area supplied by the IAN, which developed following endodontic treatment, oral surgery and maxillofacial surgery. All patients underwent IAN surgery by several different microsurgical procedures. Most of the patients affected by pain before surgery experienced complete or partial amelioration of symptoms. All patients receiving sural nerve grafts were pain-free 12 months after surgery. In five patients the operation was unsuccessful. In 78.94% of cases, a significant increase in nerve function was observed. Pain following IAN surgical damage may be addressed by microsurgery; nerve substitution with a sural nerve interpositional graft appears to represent the most efficacious procedure. Scar releasing, nerve decompression and nerve substitution using vein grafts are less effective. Removal of endodontic material extravasated into the mandibular canal is mandatory and effective in patients experiencing severe pain. Surgery should be performed within 12 months postoperatively, ideally during the first few weeks after symptoms onset.

  16. Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration.

    PubMed

    Lai, Po-Hong; Chang, Yen; Chen, Sung-Ching; Wang, Chung-Chi; Liang, Huang-Chien; Chang, Wei-Chun; Sung, Hsing-Wen

    2006-09-01

    It was found in our previous study that acellular tissues derived from bovine pericardia consist primarily of insoluble collagen, elastin, and tightly bound glycosaminoglycans (GAGs). It is speculated that the inherent GAGs in acellular tissues may serve as a reservoir for loading basic fibroblast growth factor (bFGF) and promote angiogenesis and tissue regeneration. This study was therefore designed to investigate effects of the content of GAGs in acellular bovine pericardia on the binding of bFGF and its release profile in vitro while its stimulation in angiogenesis and tissue regeneration in vivo were evaluated subcutaneously in a rat model. To control the content of GAGs, acellular tissues were treated additionally with hyaluronidase for 1 (Hase-D1), 3 (Hase-D3), or 5 days (Hase-D5). The in vitro results indicated that a higher content of GAGs in the acellular tissue resulted in an increase in bFGF binding and in a more gradual and sustained release of the growth factor. The in vivo results obtained at 1 week postoperatively showed that the density and the depth of neo-vessels infiltrated into the acellular tissue loaded with bFGF (acellular/bFGF) were significantly greater than the other test samples. At 1 month postoperatively, vascularized neo-connective tissues were found to fill the pores within each test sample, particularly for the acellular/bFGF tissue. These results suggested that the sustained release of bFGF from the acellular/ bFGF tissue continued to be effective in enhancing angiogenesis and generation of new tissues. In conclusion, the inherent GAGs present in acellular tissues may be used for binding and sustained release of bFGF to enhance angiogenesis and tissue regeneration.

  17. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering.

    PubMed

    Horst, Maya; Milleret, Vincent; Noetzli, Sarah; Gobet, Rita; Sulser, Tullio; Eberli, Daniel

    2017-04-01

    Poly(lactic-co-glycolic acid) (PLGA) based biomaterials for soft tissue engineering have inherent disadvantages, such as a relative rigidity and a limited variability in the mechanical properties and degradation rates. In this study, a novel electrospun biomaterial based on degradable polyesterurethane (PEU) (DegraPol(®) ) was investigated for potential use for bladder engineering in vitro and in vivo. Hybrid microfibrous PEU and PLGA scaffolds were produced by direct electrospinning of the polymer onto a bladder acellular matrix. The scaffold morphology of the scaffold was analyzed, and the biological performance was tested in vitro and in vivo using a rat cystoplasty model. Anatomical and functional outcomes after implantation were analyzed macroscopically, histologically and by cystometry, respectively. Scanning electron microscopy analysis showed that PEU samples had a lower porosity (p < 0.001) and were slightly thinner (p = 0.009) than the PGLA samples. Proliferation and survival of the seeded smooth muscle cells in vitro were comparable on PEU and PLGA scaffolds. After 8 weeks in vivo, the PEU scaffolds exhibited no shrinkage. However, cystometry of the reconstructed bladders exhibited a slightly greater functional bladder capacity in the PLGA group. Morphometric analyses revealed significantly better tissue healing (p < 0.05) and, in particular, better smooth muscle regeneration, as well as a lower rate of inflammatory responses at 8 weeks in the PEU group. Collectively, the results indicated that PEU-hybrid scaffolds promote bladder tissue formation with excellent tissue integration and a low inflammatory reaction in vivo. PEU is a promising biomaterial, particularly with regard to functional tissue engineering of the bladder and other hollow organs. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 658-667, 2017.

  18. Vagus Nerve Stimulation

    MedlinePlus

    Vagus nerve stimulation Overview By Mayo Clinic Staff Vagus nerve stimulation is a procedure that involves implantation of a device that stimulates the vagus nerve with electrical impulses. There's one vagus nerve on ...

  19. Nerve biopsy (image)

    MedlinePlus

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  20. Re-innervation of facial nerve territory using a composite hypoglossal nerve--muscle autograft--facial nerve bridge. An experimental model in sheep.

    PubMed

    Drew, S J; Fullarton, A C; Glasby, M A; Mountain, R E; Murray, J A

    1995-04-01

    The hypoglossal nerve has been used both entirely and in part to repair the facial nerve. Using the partial technique it may be difficult to obtain sufficient length and a free interposed graft is then required to extend the hypoglossal element. In six sheep the facial nerve was excised between its emergence from the stylomastoid foramen and its bifurcation in the parotid gland. The hypoglossal nerve was exposed and split longitudinally producing a limb which was reflected towards the distal stump of the facial nerve. This left a gap of 4-5 cm which was bridged with a freeze-thawed coaxially aligned skeletal muscle autograft. The sheep were examined at 8 months. Laser doppler blood-flow studies showed the blood-flow distal to the graft to be about 25% of that at an equivalent site on the normal side. Peak nerve conduction velocities were also reduced on the repaired side but stimulation of the proximal hypoglossal nerve was nevertheless capable of causing adequate contraction of both facial and tongue muscles. Histological comparison of the repaired facial nerves with equivalent sites on the normal side showed a reduction in mean axon and fibre diameters with normal myelin sheath thickness for the regenerated axon sizes. All of these features are to be expected in a regenerated nerve and are consistent with a good level of recovery of function.

  1. Nerve growth factor combined with an epineural conduit for bridging a short nerve gap (10 mm). A study in rabbits.

    PubMed

    Barmpitsioti, Antonia; Konofaos, Petros; Ignatiadis, Ioannis; Papalois, Apostolos; Zoubos, Aristides B; Soucacos, Panagiotis N

    2011-10-01

    The purpose of this study was to evaluate the effect of direct administration of nerve growth factor (NGF) into an epineural conduit across a short nerve gap (10 mm) in a rabbit sciatic nerve model. The animals were divided into two groups. In group 1, n = 6, a 10-mm defect was created in the sciatic nerve and bridged with an epineural flap. A dose of 1 μg of NGF was locally administered daily for the first 21 days. NGF administration was made inside the epineural flap using a silicone reservoir connected to a silicone tube. In group 2, n = 6, the 10-mm defect was bridged with a nerve graft. This group did not receive any further treatment. At 13 weeks, all animals, before euthanasia, underwent electromyography (EMG) studies and then specimen sent for histology morphometric analysis. NGF administration ensured a significantly increased average number of myelinated axons per μm(2) (P = 0.028) and promoted fiber maturation (P = 0.031) and better EMG results (P = 0.046 for latency P = 0.048 for amplitude), compared with the control group. Although nerve grafts remain the gold standard for peripheral nerve repair, NGF-treated epineural conduits represent a good alternative, particularly when an unfavorable environment for nerve grafts is present.

  2. An in vitro model of adult mammalian nerve repair.

    PubMed

    Vyas, Alka; Li, Zhaobo; Aspalter, Manuela; Feiner, Jeffrey; Hoke, Ahmet; Zhou, Chunhua; O'Daly, Andres; Abdullah, Madeel; Rohde, Charles; Brushart, Thomas M

    2010-05-01

    The role of pathway-derived growth factors in the support of peripheral axon regeneration remains elusive. Few appropriate knock-out mice are available, and gene silencing techniques are rarely 100% effective. To overcome these difficulties, we have developed an in vitro organotypic co-culture system that accurately models peripheral nerve repair in the adult mammal. Spinal cord sections from P4 mice that express YFP in their neurons are used to innervate segments of P4 peripheral nerve. This reconstructed ventral root is then transected and joined to a nerve graft. Growth of axons across the nerve repair and into the graft can be imaged repeatedly with fluorescence microscopy to define regeneration speed, and parent neurons can be labeled in retrograde fashion to identify contributing neurons. Nerve graft harvested from adult mice remains viable in culture by both morphologic and functional criteria. Motoneurons are supported with GDNF for the first week in culture, after which they survive axotomy, and are thus functionally adult. This platform can be modified by using motoneurons from any genetically modified mouse that can be bred to express XFP, by harvesting nerve graft from any source, or by treating the culture systemically with antibodies, growth factors, or pathway inhibitors. The regeneration environment is controlled to a degree not possible in vivo, and the use of experimental animals is reduced substantially. The flexibility and control offered by this technique should thus make it a useful tool for the study of regeneration biology.

  3. Immunogenicity and safety of a monovalent, multicomponent acellular pertussis vaccine in 15 month-6-year-old German children. Monovalent Acellular Pertussis Vaccine Study Group.

    PubMed

    Stehr, K; Heininger, U; Uhlenbusch, R; Angersbach, P; Hackell, J; Eckhardt, T

    1995-03-01

    Immunization against pertussis has been re-recommended for healthy children in Germany in 1991. In addition the former restriction of immunizing only in the first 2 years of life was abolished. In children born before 1991 immunization rates against pertussis were 15% or less. With the new recommendations physicians are now faced with an increasing demand of parents for catch-up vaccinations in these children. Since they were immunized against diphtheria and tetanus previously monovalent pertussis vaccines are needed for this indication. Therefore a monovalent, multicomponent acellular pertussis vaccine was studied in 249 German children 15 months to 6 years of age. Three doses were administered at 6-10 week intervals. Reactogenicity and antibody responses against the vaccine antigens pertussis toxin (PT), filamentous haemagglutinin (FHA), 69-kd antigen (pertactin) and fimbriae-2 (agglutinogen) were investigated. Local and systemic reactions were minimal in frequency and severity. Antibody responses against all vaccine antigens were pronounced with 93%-100% of vaccinees demonstrating at least four fold titre rises above pre-immunization after the third dose. These findings indicate that this monovalent, multicomponent acellular pertussis vaccine with excellent immunogenicity and low reactogenicity is an appropriate candidate for closing immunization gaps in older children in countries with previously low vaccination rates against pertussis. Based on the results of this study the monovalent acellular pertussis vaccine was licensed in Germany in January 1994.

  4. How I do it: Simple and effortless approach to identify thoracodorsal nerve on axillary clearance procedure

    PubMed Central

    Zin, T; Maw, M; Oo, SM; Pai, DR; Paijan, RB; Kyi, M

    2012-01-01

    Breast cancer surgery frequently involves an axillary clearance procedure for nodal metastases. Injury to the thoracodorsal nerve is one of the complications related to the axillary dissection. The thoracodorsal nerve innervates the latissimus dorsi muscle which facilitates in certain movements of the arm. Moreover, it can be used as a nerve graft in long thoracic nerve injury whether in trauma or surgery. Understanding the anatomy structures and good surgical technique in the axillary clearance procedure can identify and prevent such an injury to the thoracodorsal nerve. Here, we demonstrate a simple and effortless technique for identification of the thoracodorsal nerve during axillary surgery. PMID:22675404

  5. Electrostrictive Graft Elastomers

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor); St.Clair, Terry L. (Inventor)

    2003-01-01

    An electrostrictive graft elastomer has a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules. The polar graft moieties have been rotated by an applied electric field, e.g., into substantial polar alignment. The rotation is sustained until the electric field is removed. In another embodiment, a process for producing strain in an elastomer includes: (a) providing a graft elastomer having a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules; and (b) applying an electric field to the graft elastomer to rotate the polar graft moieties, e.g., into substantial polar alignment.

  6. Repairing Peripheral Nerves: Is there a Role for Carbon Nanotubes?

    PubMed

    Oprych, Karen M; Whitby, Raymond L D; Mikhalovsky, Sergey V; Tomlins, Paul; Adu, Jimi

    2016-06-01

    Peripheral nerve injury continues to be a major global health problem that can result in debilitating neurological deficits and neuropathic pain. Current state-of-the-art treatment involves reforming the damaged nerve pathway using a nerve autograft. Engineered nerve repair conduits can provide an alternative to the nerve autograft avoiding the inevitable tissue damage caused at the graft donor site. Commercially available nerve repair conduits are currently only considered suitable for repairing small nerve lesions; the design and performance of engineered conduits requires significant improvements to enable their use for repairing larger nerve defects. Carbon nanotubes (CNTs) are an emerging novel material for biomedical applications currently being developed for a range of therapeutic technologies including scaffolds for engineering and interfacing with neurological tissues. CNTs possess a unique set of physicochemical properties that could be useful within nerve repair conduits. This progress report aims to evaluate and consolidate the current literature pertinent to CNTs as a biomaterial for supporting peripheral nerve regeneration. The report is presented in the context of the state-of-the-art in nerve repair conduit design; outlining how CNTs may enhance the performance of next generation peripheral nerve repair conduits.

  7. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model.

    PubMed

    Boecker, Arne Hendrik; van Neerven, Sabien Geraldine Antonia; Scheffel, Juliane; Tank, Julian; Altinova, Haktan; Seidensticker, Katrin; Deumens, Ronald; Tolba, Rene; Weis, Joachim; Brook, Gary Anthony; Pallua, Norbert; Bozkurt, Ahmet

    2016-02-01

    Many bioartificial nerve guides have been investigated pre-clinically for their nerve regeneration-supporting function, often in comparison to autologous nerve transplantation, which is still regarded as the current clinical gold standard. Enrichment of these scaffolds with cells intended to support axonal regeneration has been explored as a strategy to boost axonal regeneration across these nerve guides Ansselin et al. (1998). In the present study, 20 mm rat sciatic nerve defects were implanted with a cell-seeded microstructured collagen nerve guide (Perimaix) or an autologous nerve graft. Under the influence of seeded, pre-differentiated mesenchymal stromal cells, axons regenerated well into the Perimaix nerve guide. Myelination-related parameters, like myelin sheath thickness, benefitted from an additional seeding with pre-differentiated mesenchymal stromal cells. Furthermore, both the number of retrogradely labelled sensory neurons and the axon density within the implant were elevated in the cell-seeded scaffold group with pre-differentiated mesenchymal stromal cells. However, a pre-differentiation had no influence on functional recovery. An additional cell seeding of the Perimaix nerve guide with mesenchymal stromal cells led to an extent of functional recovery, independent of the differentiation status, similar to autologous nerve transplantation. These findings encourage further investigations on pre-differentiated mesenchymal stromal cells as a cellular support for peripheral nerve regeneration.

  8. Optic Nerve.

    PubMed

    Gordon, Lynn K

    2016-10-28

    Optic nerve diseases arise from many different etiologies including inflammatory, neoplastic, genetic, infectious, ischemic, and idiopathic. Understanding some of the characteristics of the most common optic neuropathies along with therapeutic approaches to these diseases is helpful in designing recommendations for individual patients. Although many optic neuropathies have no specific treatment, some do, and it is those potentially treatable or preventable conditions which need to be recognized in order to help patients regain their sight or develop a better understanding of their own prognosis. In this chapter several diseases are discussed including idiopathic intracranial hypertension, optic neuritis, ischemic optic neuropathies, hereditary optic neuropathies, trauma, and primary tumors of the optic nerve. For each condition there is a presentation of the signs and symptoms of the disease, in some conditions the evaluation and diagnostic criteria are highlighted, and where possible, current therapy or past trials are discussed.

  9. Chitosan nerve conduits seeded with autologous bone marrow mononuclear cells for 30 mm goat peroneal nerve defect

    PubMed Central

    Muheremu, Aikeremujiang; Chen, Lin; Wang, Xiyuan; Wei, Yujun; Gong, Kai; Ao, Qiang

    2017-01-01

    In the current research, to find if the combination of chitosan nerve conduits seeded with autologous bone marrow mononuclear cells (BM-MNCs) can be used to bridge 30 mm long peroneal nerve defects in goats, 15 animals were separated into BM-MNC group (n = 5), vehicle group (n = 5), and autologous nerve graft group (n = 5). 12 months after the surgery, animals were evaluated by behavioral observation, magnetic resonance imaging tests, histomorphological and electrophysiological analysis. Results revealed that animals in BM-MNC group and autologous nerve graft group achieved fine functional recovery; magnetic resonance imaging tests and histomorphometry analysis showed that the nerve defect was bridged by myelinated nerve axons in those animals. No significant difference was found between the two groups concerning myelinated axon density, axon diameter, myelin sheath thickness and peroneal nerve action potential. Animals in vehicle group failed to achieve significant functional recovery. The results indicated that chitosan nerve conduits seeded with autologous bone marrow mononuclear cells have strong potential in bridging long peripheral nerve defects and could be applied in future clinical trials. PMID:28287100

  10. Chitosan nerve conduits seeded with autologous bone marrow mononuclear cells for 30 mm goat peroneal nerve defect.

    PubMed

    Muheremu, Aikeremujiang; Chen, Lin; Wang, Xiyuan; Wei, Yujun; Gong, Kai; Ao, Qiang

    2017-03-13

    In the current research, to find if the combination of chitosan nerve conduits seeded with autologous bone marrow mononuclear cells (BM-MNCs) can be used to bridge 30 mm long peroneal nerve defects in goats, 15 animals were separated into BM-MNC group (n = 5), vehicle group (n = 5), and autologous nerve graft group (n = 5). 12 months after the surgery, animals were evaluated by behavioral observation, magnetic resonance imaging tests, histomorphological and electrophysiological analysis. Results revealed that animals in BM-MNC group and autologous nerve graft group achieved fine functional recovery; magnetic resonance imaging tests and histomorphometry analysis showed that the nerve defect was bridged by myelinated nerve axons in those animals. No significant difference was found between the two groups concerning myelinated axon density, axon diameter, myelin sheath thickness and peroneal nerve action potential. Animals in vehicle group failed to achieve significant functional recovery. The results indicated that chitosan nerve conduits seeded with autologous bone marrow mononuclear cells have strong potential in bridging long peripheral nerve defects and could be applied in future clinical trials.

  11. Comparative Host Response of 2 Human Acellular Dermal Matrices in a Primate Implant Model

    PubMed Central

    Sandor, Maryellen; Singh, Devinder; Silverman, Ronald P.; Xu, Hui; De Deyne, Patrick G.

    2014-01-01

    Objective: We examined the differences in capsule formation between 2 commercially available human acellular dermal matrices in a nonhuman primate model. Methods: Primates were implanted dorsally with a subcutaneously placed tissue expander and randomized into 3 groups, receiving skin coverage only, coverage with non-irradiated freeze-dried human acellular dermal matrix, or coverage with gamma-irradiated human acellular dermal matrix. After 9 weeks, soft tissue around the tissue expander was excised and evaluated qualitatively and quantitatively to assess extent of inflammation (CD68 antibodies and interleukin-6 levels), degradation and fibrosis (matrix metalloproteinase-1 and procollagen-1 staining), and mechanical (tensile) strength. Results: Histological evaluation of tissue around the tissue expander indicated differences in host response, suggesting capsule presence in the gamma-irradiated matrix group but not the freeze-dried matrix group. The extent of local inflammation was much higher in the gamma-irradiated matrix group which demonstrated mean (standard deviation) localized interleukin-6 concentration of 67.3 (53.6) vs 16.3 (6.7) pg/mg protein in the non-irradiated matrix group. There was robust degradation and fibrotic response in the gamma-irradiated matrix group versus the freeze-dried matrix group. Mechanical testing indicated mean (standard deviation) ultimate tensile strength of 12.0 (7.1) N in the gamma-irradiated matrix group versus 99.3 (48.8) N in the freeze-dried matrix group. Conclusions: Enclosure of a tissue expander with human acellular dermal matrix untreated by gamma irradiation led to minimal inflammation and minimal evidence of fibrosis/capsule around the tissue expander compared with robust capsule formation around the tissue expander that was covered by a gamma-irradiated human acellular dermal matrix. PMID:24570768

  12. Development and Characterization of Acellular Porcine Pulmonary Valve Scaffolds for Tissue Engineering

    PubMed Central

    Korossis, Sotirios A.; Wilshaw, Stacy-Paul; Jennings, Louise M; Fisher, John; Ingham, Eileen

    2014-01-01

    Currently available replacement heart valves all have limitations. This study aimed to produce and characterize an acellular, biocompatible porcine pulmonary root conduit for reconstruction of the right ventricular outflow tract e.g., during Ross procedure. A process for the decellularization of porcine pulmonary roots was developed incorporating trypsin treatment of the adventitial surface of the scraped pulmonary artery and sequential treatment with hypotonic Tris buffer (HTB; 10 mM Tris pH 8.0, 0.1% (w/v) EDTA, and 10 KIU aprotinin), 0.1% (w/v) sodium dodecyl sulfate in HTB, two cycles of DNase and RNase, and sterilization with 0.1% (v/v) peracetic acid. Histology confirmed an absence of cells and retention of the gross histoarchitecture. Immunohistochemistry further confirmed cell removal and partial retention of the extracellular matrix, but a loss of collagen type IV. DNA levels were reduced by more than 96% throughout all regions of the acellular tissue and no functional genes were detected using polymerase chain reaction. Total collagen levels were retained but there was a significant loss of glycosaminoglycans following decellularization. The biomechanical, hydrodynamic, and leaflet kinematics properties were minimally affected by the process. Both immunohistochemical labeling and antibody absorption assay confirmed a lack of α-gal epitopes in the acellular porcine pulmonary roots and in vitro biocompatibility studies indicated that acellular leaflets and pulmonary arteries were not cytotoxic. Overall the acellular porcine pulmonary roots have excellent potential for development of a tissue substitute for right ventricular outflow tract reconstruction e.g., during the Ross procedure. PMID:24786313

  13. Effects of the decellularization method on the local stiffness of acellular lungs.

    PubMed

    Melo, Esther; Garreta, Elena; Luque, Tomas; Cortiella, Joaquin; Nichols, Joan; Navajas, Daniel; Farré, Ramon

    2014-05-01

    Lung bioengineering, a novel approach to obtain organs potentially available for transplantation, is based on decellularizing donor lungs and seeding natural scaffolds with stem cells. Various physicochemical protocols have been used to decellularize lungs, and their performance has been evaluated in terms of efficient decellularization and matrix preservation. No data are available, however, on the effect of different decellularization procedures on the local stiffness of the acellular lung. This information is important since stem cells directly sense the rigidity of the local site they are engrafting to during recellularization, and it has been shown that substrate stiffness modulates cell fate into different phenotypes. The aim of this study was to assess the effects of the decellularization procedure on the inhomogeneous local stiffness of the acellular lung on five different sites: alveolar septa, alveolar junctions, pleura, and vessels' tunica intima and tunica adventitia. Local matrix stiffness was measured by computing Young's modulus with atomic force microscopy after decellularizing the lungs of 36 healthy rats (Sprague-Dawley, male, 250-300 g) with four different protocols with/without perfusion through the lung circulatory system and using two different detergents (sodium dodecyl sulfate [SDS] and 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate [CHAPS]). The local stiffness of the acellular lung matrix significantly depended on the site within the matrix (p<0.001), ranging from ∼ 15 kPa at the alveolar septum to ∼ 60 kPa at the tunica intima. Acellular lung stiffness (p=0.003) depended significantly, albeit modestly, on the decellularization process. Whereas perfusion did not induce any significant differences in stiffness, the use of CHAPS resulted in a ∼ 35% reduction compared with SDS, the influence of the detergent being more important in the tunica intima. In conclusion, lung matrix stiffness is considerably inhomogeneous, and

  14. Optimization and Implementation of Long Nerve Allografts

    DTIC Science & Technology

    2014-02-01

    decellularized allografts tested did not perform well in this repair model. Additional evaluations and...2c  was  completed.    All   animals  were  assessed  weekly  until  termination  26  weeks  after   receiving  the...the  engrafted  nerves  were  examined  for  nerve-­‐graft  continuity.     Animals  with  a  loss  of   continuity

  15. Ectopic bone formation in rapidly fabricated acellular injectable dense collagen-Bioglass hybrid scaffolds via gel aspiration-ejection.

    PubMed

    Miri, Amir K; Muja, Naser; Kamranpour, Neysan O; Lepry, William C; Boccaccini, Aldo R; Clarke, Susan A; Nazhat, Showan N

    2016-04-01

    Gel aspiration-ejection (GAE) has recently been introduced as an effective technique for the rapid production of injectable dense collagen (IDC) gel scaffolds with tunable collagen fibrillar densities (CFDs) and microstructures. Herein, a GAE system was applied for the advanced production and delivery of IDC and IDC-Bioglass(®) (IDC-BG) hybrid gel scaffolds for potential bone tissue engineering applications. The efficacy of GAE in generating mineralizable IDC-BG gels (from an initial 75-25 collagen-BG ratio) produced through needle gauge numbers 8G (3.4 mm diameter and 6 wt% CFD) and 14G (1.6 mm diameter and 14 wt% CFD) was investigated. Second harmonic generation (SHG) imaging of as-made gels revealed an increase in collagen fibril alignment with needle gauge number. In vitro mineralization of IDC-BG gels was confirmed where carbonated hydroxyapatite was detected as early as day 1 in simulated body fluid, which progressively increased up to day 14. In vivo mineralization of, and host response to, acellular IDC and IDC-BG gel scaffolds were further investigated following subcutaneous injection in adult rats. Mineralization, neovascularization and cell infiltration into the scaffolds was enhanced by the addition of BG and at day 21 post injection, there was evidence of remodelling of granulation tissue into woven bone-like tissue in IDC-BG. SHG imaging of explanted scaffolds indicated collagen fibril remodelling through cell infiltration and mineralization over time. In sum, the results suggest that IDC-BG hybrid gels have osteoinductive properties and potentially offer a novel therapeutic approach for procedures requiring the injectable delivery of a malleable and dynamic bone graft that mineralizes under physiological conditions.

  16. Multifunctional Silk Nerve Guides for Axon Outgrowth

    NASA Astrophysics Data System (ADS)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long

  17. Peroneal nerve palsy after compression stockings application

    PubMed Central

    Kim, Jun Hyun; Kim, Won Il; Kim, Ji Yeon; Choe, Won Joo

    2016-01-01

    Peroneal nerve palsy can be caused by various etiology. We report unilateral peroneal nerve palsy after compression stockings application. A 64-year-old man underwent off-pump coronary bypass graft. Surgeon did not use saphenous vein for the bypass graft. Sedation was stopped after 3 h postoperative. After 16 h, for prophylaxis of deep vein thrombosis, knee-high elastic stocking was applied. After 1 h, he took off right stocking because of numbness but left stocking was kept. After 24 h postoperative, (8 h after stocking application) patient complained suddenly left foot drop. Manual muscle test revealed 0/5 of ankle dorsiflexion, ankle eversion, and toe extension. Sensory was decreased to 70% in lower half of anterolateral aspect of tibia, foot dorsum, and toes. Foot drop and sensory abnormality decreased in 3 weeks. Cardiac surgery patients already have many risk factors for peripheral neuropathy. Clinicians should be careful when applying stockings on those patients. PMID:27833497

  18. Peroneal nerve palsy after compression stockings application.

    PubMed

    Kim, Jun Hyun; Kim, Won Il; Kim, Ji Yeon; Choe, Won Joo

    2016-01-01

    Peroneal nerve palsy can be caused by various etiology. We report unilateral peroneal nerve palsy after compression stockings application. A 64-year-old man underwent off-pump coronary bypass graft. Surgeon did not use saphenous vein for the bypass graft. Sedation was stopped after 3 h postoperative. After 16 h, for prophylaxis of deep vein thrombosis, knee-high elastic stocking was applied. After 1 h, he took off right stocking because of numbness but left stocking was kept. After 24 h postoperative, (8 h after stocking application) patient complained suddenly left foot drop. Manual muscle test revealed 0/5 of ankle dorsiflexion, ankle eversion, and toe extension. Sensory was decreased to 70% in lower half of anterolateral aspect of tibia, foot dorsum, and toes. Foot drop and sensory abnormality decreased in 3 weeks. Cardiac surgery patients already have many risk factors for peripheral neuropathy. Clinicians should be careful when applying stockings on those patients.

  19. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    PubMed

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-01-10

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  20. Engineered Composite Tissue as a Bioartificial Limb Graft

    PubMed Central

    Jank, Bernhard J.; Xiong, Linjie; Moser, Philipp T.; Guyette, Jacques P.; Ren, Xi; Leonard, David A.; Fernandez, Leopoldo; Ott, Harald C.

    2015-01-01

    The loss of an extremity is a disastrous injury with tremendous impact on a patient’s life. Current mechanical prostheses are technically highly sophisticated, but only partially replace physiologic function and aesthetic appearance. As a biologic alternative, approximately 70 patients have undergone allogeneic hand transplantation to date worldwide. While outcomes are favorable, risks and side effects of transplantation and long-term immunosuppression pose a significant ethical dilemma. An autologous, bio-artificial graft based on native extracellular matrix and patient derived cells could be produced on demand and would not require immunosuppression after transplantation. To create such a graft, we decellularized rat and primate forearms by detergent perfusion and yielded acellular scaffolds with preserved composite architecture. We then repopulated muscle and vasculature with cells of appropriate phenotypes, and matured the composite tissue in a perfusion bioreactor under electrical stimulation in vitro. After confirmation of composite tissue formation, we transplanted the resulting bio-composite grafts to confirm perfusion in vivo. PMID:26004237

  1. Peripheral nerve surgery--today and looking ahead.

    PubMed

    McQuarrie, I G

    1986-04-01

    The trend in peripheral nerve surgery is toward earlier definitive treatment of the lesion, based on the optimal use of preoperative and intraoperative electrodiagnostic techniques. Newer diagnostic tools include computed tomography (CT) and thermography. Knowledge is still being gained about the technology and limitations of the autogenous nerve grafts that are being used to overcome nerve gaps. The technique of nerve anastomosis is undergoing rapid improvement, and better methods have been developed for identifying motor and sensory fascicles at the time of operation. Research activity into the problem of nerve damage produced at the time of trimming nerve stumps promises to change to the technology of nerve repair in the near future. For benign nerve sheath tumors (schwannoma, neurofibroma), the trend is away from nerve excision and in the direction of tumor enucleation. Histologic methods for diagnosing malignant nerve tumors have been improved, making it possible to embark on radical excision with less hesitation. The pain syndromes (causalgia, phantom limb pain, and stump pain) that may follow nerve injury continue to present a problem in management, but steady progress is being made toward a rational program of management. A more distant prospect is for pharmacologic and electrophysiologic methods to accelerate axonal regeneration.

  2. Handcrafted multilayer PDMS microchannel scaffolds for peripheral nerve regeneration.

    PubMed

    Hossain, Ridwan; Kim, Bongkyun; Pankratz, Rachel; Ajam, Ali; Park, Sungreol; Biswal, Sibani L; Choi, Yoonsu

    2015-12-01

    Injuries that result in the loss of limb functionality may be caused by the severing of the peripheral nerves within the affected limb. Several bioengineered peripheral nerve scaffolds have been developed in order to provide the physical support and topographical guidance necessary for the naturally disorganized axon outgrowth to reattach to distal nerve stumps as an alternative to other procedures, like nerve grafting. PDMS has been chosen for the base material of the scaffolds due to its biocompatibility, flexibility, transparency, and well-developed fabrication techniques. The process of observing the axon outgrowth across the nerve gaps with PDMS scaffolds has been challenging due to the limited number and fineness of longitudinal sections that can be extracted from harvested nerve tissue samples after implantation. To address this, multilayer microchannel scaffolds were developed with the object of providing more refined longitudinal observation of axon outgrowth by longitudinally 'sectioning' the device during fabrication, removing the need for much of the sample preparation process. This device was then implanted into the sciatic nerves of Lewis rats, and then harvested after two and four weeks to analyze the difference in nerve regeneration between two different time periods. The present layer by layer structure, which is separable after nerve regeneration and is treated as an individual layer during the histology process, provides the details of biological events during axonal regeneration. Confocal microscopic imaging showed the details of peripheral nerve regeneration including nerve branches and growth cones observable from within the microchannels of the multilayer PDMS microchannel scaffolds.

  3. Causes of Secondary Radial Nerve Palsy and Results of Treatment

    PubMed Central

    Reichert, Paweł; Wnukiewicz, Witold; Witkowski, Jarosław; Bocheńska, Aneta; Mizia, Sylwia; Gosk, Jerzy; Zimmer, Krzysztof

    2016-01-01

    Background The aim of this study was to analyze the causes that lead to secondary damage of the radial nerve and to discuss the results of reconstructive treatment. Material/Methods The study group consisted of 33 patients treated for radial nerve palsy after humeral fractures. Patients were diagnosed based on clinical examinations, ultrasonography, electromyography, or nerve conduction velocity. During each operation, the location and type of nerve damage were analyzed. During the reconstructive treatment, neurolysis, direct neurorrhaphy, or reconstruction with a sural nerve graft was used. The outcomes were evaluated using the Medical Research Council (MRC) scales and the quick DASH score. Results Secondary radial nerve palsy occurs after open reduction and internal fixation (ORIF) by plate, as well as by closed reduction and internal fixation (CRIF) by nail. In the case of ORIF, it most often occurs when the lateral approach is used, as in the case of CRIF with an insertion interlocking screws. The results of the surgical treatment were statistically significant and depended on the time between nerve injury and revision (reconstruction) surgery, type of damage to the radial nerve, surgery treatment, and type of fixation. Treatment results were not statistically significant, depending on the type of fracture or location of the nerve injury. Conclusions The potential risk of radial nerve neurotmesis justifies an operative intervention to treat neurological complications after a humeral fracture. Adequate surgical treatment in many of these cases allows for functional recovery of the radial nerve. PMID:26895570

  4. A Biosynthetic Nerve Guide Conduit Based on Silk/SWNT/Fibronectin Nanocomposite for Peripheral Nerve Regeneration

    PubMed Central

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Zaminy, Arash; Kokabi, Mehrdad; Soleimani, Masoud; Mirahmadi, Fereshteh

    2013-01-01

    As a contribution to the functionality of nerve guide conduits (NGCs) in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs) has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN) containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV) and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts. PMID:24098649

  5. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration.

    PubMed

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Zaminy, Arash; Kokabi, Mehrdad; Soleimani, Masoud; Mirahmadi, Fereshteh; Shokrgozar, Mohammad Ali; Sadeghizadeh, Majid

    2013-01-01

    As a contribution to the functionality of nerve guide conduits (NGCs) in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs) has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN) containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV) and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts.

  6. Synergistic motor nerve fiber transfer between different nerves through the use of end-to-side coaptation.

    PubMed

    Schmidhammer, R; Nógrádi, A; Szabó, A; Redl, H; Hausner, T; van der Nest, D G; Millesi, H

    2009-06-01

    End-to-end nerve repair is a widely used and successful experimental microsurgical technique via which a denervated nerve stump is supplied with reinnervating motor or sensory axons. On the other hand, questions are still raised as concerns the reliability and usefulness of the end-to-side coaptation technique. This study had the aim of the reinnervation of the denervated forearm flexor muscles in baboons through the use of an end-to-side coaptation technique and the synergistic action of the radial nerve. The median and ulnar nerves were transected, and the motor branch of the radial nerve supplying the extensor carpi radialis muscles (MBECR) was used as an axon donor for the denervated superficial forearm flexors. A nerve graft was connected to the axon donor nerve through end-to-side coaptation, while at the other end of the graft an end-to-end connection was established so as to reinnervate the motor branch of the forearm flexors. Electrophysiological investigations and functional tests indicated successful reinnervation of the forearm flexors and recovery of the flexor function. The axon counts in the nerve segments proximal (1038+/-172 S.E.M.) and distal (1050+/-116 S.E.M.) to the end-to-side coaptation site and in the nerve graft revealed that motor axon collaterals were given to the graft without the loss or appreciable misdirection of the axons in the MBECR nerve distal to the coaptation site. The nerve graft was found to contain varying, but satisfactory numbers of axons (269+/-59 S.E.M.) which induced morphological reinnervation of the end-plates in the flexor muscles. Accordingly, we have provided evidence that end-to-side coaptation can be a useful technique when no free donor nerve is available. This technique is able to induce limited, but still useful reinnervation for the flexor muscles, thereby producing a synergistic action of the flexor and extensor muscles which allows the hand to achieve a basic gripping function.

  7. Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects

    PubMed Central

    Kornfeld, Tim; Vogt, Peter M.; Bucan, Vesna; Peck, Claas-Tido; Reimers, Kerstin; Radtke, Christine

    2016-01-01

    Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of either natural or artificial materials represent this alternative. Several biomaterials are being explored and preclinical and clinical applications are ongoing. Unfortunately, nerve conduits with successful enhancement of axonal regeneration for nerve defects measuring over 4.0 cm are sparse and no conduits are available for nerve defects extending to 10.0 cm. In this study, spider silk nerve conduits seeded with Schwann cells were investigated for in vitro regeneration on defects measuring 4.0 cm, 10.0 cm and 15.0 cm in length. Schwann cells (SCs) were isolated, cultured and purified. Cell purity was determined by immunofluorescence. Nerve grafts were constructed out of spider silk from Nephila edulis and decellularized ovine vessels. Finally, spider silk implants were seeded with purified Schwann cells. Cell attachment was observed within the first hour. After 7 and 21 days of culture, immunofluorescence for viability and determination of Schwann cell proliferation and migration throughout the conduits was performed. Analyses revealed that SCs maintained viable (>95%) throughout the conduits independent of construct length. SC proliferation on the spider silk was determined from day 7 to day 21 with a proliferation index of 49.42% arithmetically averaged over all conduits. This indicates that spider silk nerve conduits represent a favorable environment for SC attachment, proliferation and distribution over a distance of least 15.0 cm in vitro. Thus spider silk nerve implants are a highly adequate biomaterial for nerve reconstruction. PMID:27916868

  8. Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects.

    PubMed

    Kornfeld, Tim; Vogt, Peter M; Bucan, Vesna; Peck, Claas-Tido; Reimers, Kerstin; Radtke, Christine

    2016-11-30

    Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of either natural or artificial materials represent this alternative. Several biomaterials are being explored and preclinical and clinical applications are ongoing. Unfortunately, nerve conduits with successful enhancement of axonal regeneration for nerve defects measuring over 4.0 cm are sparse and no conduits are available for nerve defects extending to 10.0 cm. In this study, spider silk nerve conduits seeded with Schwann cells were investigated for in vitro regeneration on defects measuring 4.0 cm, 10.0 cm and 15.0 cm in length. Schwann cells (SCs) were isolated, cultured and purified. Cell purity was determined by immunofluorescence. Nerve grafts were constructed out of spider silk from Nephila edulis and decellularized ovine vessels. Finally, spider silk implants were seeded with purified Schwann cells. Cell attachment was observed within the first hour. After 7 and 21 days of culture, immunofluorescence for viability and determination of Schwann cell proliferation and migration throughout the conduits was performed. Analyses revealed that SCs maintained viable (>95%) throughout the conduits independent of construct length. SC proliferation on the spider silk was determined from day 7 to day 21 with a proliferation index of 49.42% arithmetically averaged over all conduits. This indicates that spider silk nerve conduits represent a favorable environment for SC attachment, proliferation and distribution over a distance of least 15.0 cm in vitro. Thus spider silk nerve implants are a highly adequate biomaterial for nerve reconstruction.

  9. Prevalence and clinical significance of acellular mucin in locally advanced rectal cancer patients showing pathologic complete response to preoperative chemoradiotherapy.

    PubMed

    Lim, Seok-Byung; Hong, Seung-Mo; Yu, Chang Sik; Hong, Yong Sang; Kim, Tae Won; Park, Jin-hong; Kim, Jong Hoon; Kim, Jin Cheon

    2013-01-01

    Occasionally, patients with locally advanced rectal adenocarcinoma who receive preoperative chemoradiotherapy (CRT) show acellular mucin in resection specimens that had shown pathologic complete response (pCR), but the clinical and prognostic significance of this finding has been controversial. This study analyzed data from 217 consecutive patients showing pCR to preoperative CRT followed by resection to evaluate the clinicopathologic features and prognostic significance of acellular mucin. Patients were categorized according to the presence of acellular mucin, as identified by pathologic analysis. The clinicopathologic findings and oncologic results were compared. Acellular mucins were identified in 35 (16.1%) of 217 pCR patients. Acellular mucins were found predominantly in male patients (20.8% vs. 9.8%, P=0.039) and in those with mucinous/signet ring cell differentiation (66.7% vs. 15.1%, P=0.008). The presence of acellular mucin was more frequent in patients with a shorter (<42 d) CRT-operation interval (22.6% vs. 10.3%, P=0.017). With a mean follow-up of 41 months (range, 2 to 119 mo), the 3-year overall survival (96.8% with mucin vs. 95.9% without mucin, P=0.314) and the 3-year disease-free survival (97.0% with mucin vs. 93.0% without mucin, P=0.131) did not differ between the groups. The presence of acellular mucin in rectal cancer patients showing pCR to preoperative CRT is associated with male sex and mucinous differentiation and does not have a significant impact on oncologic outcomes. Acellular mucins are also associated with the CRT-operation interval as a phenomenon of time-dependent response to CRT.

  10. Comparison of structural, architectural and mechanical aspects of cellular and acellular bone in two teleost fish.

    PubMed

    Cohen, Liat; Dean, Mason; Shipov, Anna; Atkins, Ayelet; Monsonego-Ornan, Efrat; Shahar, Ron

    2012-06-01

    The histological diversity of the skeletal tissues of fishes is impressive compared with that of other vertebrate groups, yet our understanding of the functional consequences of this diversity is limited. In particular, although it has been known since the mid-1800s that a large number of fish species possess acellular bones, the mechanical advantages and consequences of this structural characteristic - and therefore the nature of the evolution of this feature - remain unclear. Although several studies have examined the material properties of fish bone, these have used a variety of techniques and there have been no direct contrasts of acellular and cellular bone. We report on a comparison of the structural and mechanical properties of the ribs and opercula between two freshwater fish - the common carp Cyprinus carpio (a fish with cellular bone) and the tilapia Oreochromis aureus (a fish with acellular bone). We used light microscopy to show that the bones in both fish species exhibit poor blood supply and possess discrete tissue zones, with visible layering suggesting differences in the underlying collagen architecture. We performed identical micromechanical testing protocols on samples of the two bone types to determine the mechanical properties of the bone material of opercula and ribs. Our data support the consensus of literature values, indicating that Young's moduli of cellular and acellular bones are in the same range, and lower than Young's moduli of the bones of mammals and birds. Despite these similarities in mechanical properties between the bone tissues of the fish species tested here, cellular bone had significantly lower mineral content than acellular bone; furthermore, the percentage ash content and bone mineral density values (derived from micro-CT scans) show that the bone of these fishes is less mineralized than amniote bone. Although we cannot generalize from our data to the numerous remaining teleost species, the results presented here suggest

  11. Nerve conduction velocity

    MedlinePlus

    ... polyneuropathy Tibial nerve dysfunction Ulnar nerve dysfunction Any peripheral neuropathy can cause abnormal results. Damage to the spinal ... Herniated disk Lambert-Eaton syndrome Mononeuropathy Multiple ... azotemia Primary amyloidosis Radial nerve dysfunction Sciatica ...

  12. New Insights on the Composition and the Structure of the Acellular Extrinsic Fiber Cementum by Raman Analysis

    PubMed Central

    Colard, Thomas; Falgayrac, Guillaume; Bertrand, Benoit; Naji, Stephan; Devos, Olivier; Balsack, Clara; Delannoy, Yann; Penel, Guillaume

    2016-01-01

    Acellular extrinsic fiber cementum is a mineralized tissue that covers the cervical half of the tooth root surface. It contains mainly extrinsic or Sharpey’s fibers that run perpendicular to the root surface to anchor the tooth via the periodontal ligament. Acellular cementum is continuously and slowly produced throughout life and exhibits an alternating bright and dark pattern under light microscopy. However, although a better understanding of the structural background of acellular cementum is relevant to many fields, such as cementochronology, periodontology and tissue engineering, acellular cementum remains rarely studied and poorly understood. In this work, we studied the acellular cementum at the incremental line scale of five human mandibular canines using polarized Raman spectroscopy. We provided Raman imaging analysis and polarized acquisitions as a function of the angular orientation of the sample. The results showed that mineral crystals were always parallel to collagen fibrils, and at a larger scale, we proposed an organizational model in which we found radial collagen fibers, “orthogonal” to the cementum surface, and “non-orthogonal” fibers, which consist of branching and bending radial fibers. Concerning the alternating pattern, we observed that the dark lines corresponded to smaller, more mineralized and probably more organized bands, which is consistent with the zoological assumption that incremental lines are produced during a winter rest period of acellular cementum growth. PMID:27936010

  13. Poly-3-hydroxybutyrate strips seeded with regenerative cells are effective promoters of peripheral nerve repair.

    PubMed

    Schaakxs, Dominique; Kalbermatten, Daniel F; Pralong, Etienne; Raffoul, Wassim; Wiberg, Mikael; Kingham, Paul J

    2017-03-01

    Peripheral nerve injuries are often associated with loss of nerve tissue and require a graft to bridge the gap. Autologous nerve grafts are still the 'gold standard' in reconstructive surgery but have several disadvantages, such as sacrifice of a functional nerve, neuroma formation and loss of sensation at the donor site. Bioengineered grafts represent a promising approach to address this problem. In this study, poly-3-hydroxybutyrate (PHB) strips were used to bridge a 10 mm rat sciatic nerve gap and their effects on long-term (12 weeks) nerve regeneration were compared. PHB strips were seeded with different cell types, either primary Schwann cells (SCs) or SC-like differentiated adipose-derived stem cells (dASCs) suspended in a fibrin glue matrix. The control group was PHB and fibrin matrix without cells. Functional and morphological properties of the regenerated nerve were assessed using walking track analysis, EMGs, muscle weight ratios and muscle and nerve histology. The animals treated with PHB strips seeded with SCs or dASCs showed significantly better functional ability than the control group. This correlated with less muscle atrophy and greater axon myelination in the cell groups. These findings suggest that the PHB strip seeded with cells provides a beneficial environment for nerve regeneration. Furthermore, dASCs, which are abundant and easily accessible, constitute an attractive cell source for future applications of cell therapy for the clinical repair of traumatic nerve injuries. Copyright © 2015 John Wiley & Sons, Ltd.

  14. An animal model of peripheral nerve regeneration after the application of a collagen-polyvinyl alcohol scaffold and mesenchymal stem cells.

    PubMed

    Marinescu, Silviu Adrian; Zărnescu, Otilia; Mihai, Ioana Ruxandra; Giuglea, Carmen; Sinescu, Ruxandra Diana

    2014-01-01

    Extensive nerve injuries often leading to nerve gaps can benefit, besides the gold standard represented by autologous nerve grafts, by the inciting field of tissue engineering. To enhance the role of biomaterials in nerve regeneration, the nerve conduits are associated with Schwann or Schwann-like cells. In this study, we evaluated rat sciatic nerve regeneration, by using a biodegradable nerve guide composed of Collagen (COL) and Polyvinyl Alcohol (PVA), associated with mesenchymal stem cells (MSC). After the exposure of the rat sciatic nerve, a nerve gap was created by excising 1 cm of the nerve. Three experimental groups were used for nerve gap bridging: autografts, nerve conduits filled with medium culture and nerve conduits filled with MSC. The methods of sensory and motor assessment consisted of the functional evaluation of sciatic nerve recovery - toe-spread, pinprick tests and gastrocnemius muscle index (GMI). The histological and immunocytochemical analysis of the probes that were harvested from the repair site was performed at 12 weeks. Successful nerve regeneration was noted in all three groups at the end of the 12th week. The functional and immunocytochemical results suggested that COL-PVA tubes supported with mesenchymal stem cells could be considered similar to autologous nerve grafts in peripheral nerve regeneration, without the drawbacks of the last ones. The functional results were better for the autografts and the ultrastructural data were better for the nerve conduits, but there were not noticed any statistical differences.

  15. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  16. Development of a Regenerative Peripheral Nerve Interface for Control of a Neuroprosthetic Limb

    PubMed Central

    Frost, Christopher M.; Martin, David C.; Larkin, Lisa M.

    2016-01-01

    Background. The purpose of this experiment was to develop a peripheral nerve interface using cultured myoblasts within a scaffold to provide a biologically stable interface while providing signal amplification for neuroprosthetic control and preventing neuroma formation. Methods. A Regenerative Peripheral Nerve Interface (RPNI) composed of a scaffold and cultured myoblasts was implanted on the end of a divided peroneal nerve in rats (n = 25). The scaffold material consisted of either silicone mesh, acellular muscle, or acellular muscle with chemically polymerized poly(3,4-ethylenedioxythiophene) conductive polymer. Average implantation time was 93 days. Electrophysiological tests were performed at endpoint to determine RPNI viability and ability to transduce neural signals. Tissue samples were examined using both light microscopy and immunohistochemistry. Results. All implanted RPNIs, regardless of scaffold type, remained viable and displayed robust vascularity. Electromyographic activity and stimulated compound muscle action potentials were successfully recorded from all RPNIs. Physiologic efferent motor action potentials were detected from RPNIs in response to sensory foot stimulation. Histology and transmission electron microscopy revealed mature muscle fibers, axonal regeneration without neuroma formation, neovascularization, and synaptogenesis. Desmin staining confirmed the preservation and maturation of myoblasts within the RPNIs. Conclusions. RPNI demonstrates significant myoblast maturation, innervation, and vascularization without neuroma formation. PMID:27294122

  17. Development of a Regenerative Peripheral Nerve Interface for Control of a Neuroprosthetic Limb.

    PubMed

    Urbanchek, Melanie G; Kung, Theodore A; Frost, Christopher M; Martin, David C; Larkin, Lisa M; Wollstein, Adi; Cederna, Paul S

    2016-01-01

    Background. The purpose of this experiment was to develop a peripheral nerve interface using cultured myoblasts within a scaffold to provide a biologically stable interface while providing signal amplification for neuroprosthetic control and preventing neuroma formation. Methods. A Regenerative Peripheral Nerve Interface (RPNI) composed of a scaffold and cultured myoblasts was implanted on the end of a divided peroneal nerve in rats (n = 25). The scaffold material consisted of either silicone mesh, acellular muscle, or acellular muscle with chemically polymerized poly(3,4-ethylenedioxythiophene) conductive polymer. Average implantation time was 93 days. Electrophysiological tests were performed at endpoint to determine RPNI viability and ability to transduce neural signals. Tissue samples were examined using both light microscopy and immunohistochemistry. Results. All implanted RPNIs, regardless of scaffold type, remained viable and displayed robust vascularity. Electromyographic activity and stimulated compound muscle action potentials were successfully recorded from all RPNIs. Physiologic efferent motor action potentials were detected from RPNIs in response to sensory foot stimulation. Histology and transmission electron microscopy revealed mature muscle fibers, axonal regeneration without neuroma formation, neovascularization, and synaptogenesis. Desmin staining confirmed the preservation and maturation of myoblasts within the RPNIs. Conclusions. RPNI demonstrates significant myoblast maturation, innervation, and vascularization without neuroma formation.

  18. Engineered neural tissue for peripheral nerve repair.

    PubMed

    Georgiou, Melanie; Bunting, Stephen C J; Davies, Heather A; Loughlin, Alison J; Golding, Jonathan P; Phillips, James B

    2013-10-01

    A new combination of tissue engineering techniques provides a simple and effective method for building aligned cellular biomaterials. Self-alignment of Schwann cells within a tethered type-1 collagen matrix, followed by removal of interstitial fluid produces a stable tissue-like biomaterial that recreates the aligned cellular and extracellular matrix architecture associated with nerve grafts. Sheets of this engineered neural tissue supported and directed neuronal growth in a co-culture model, and initial in vivo tests showed that a device containing rods of rolled-up sheets could support neuronal growth during rat sciatic nerve repair (5 mm gap). Further testing of this device for repair of a critical-sized 15 mm gap showed that, at 8 weeks, engineered neural tissue had supported robust neuronal regeneration across the gap. This is, therefore, a useful new approach for generating anisotropic engineered tissues, and it can be used with Schwann cells to fabricate artificial neural tissue for peripheral nerve repair.

  19. Lateralization Technique and Inferior Alveolar Nerve Transposition

    PubMed Central

    Sanches, Marco Antonio; Ramalho, Gabriel Cardoso; Manzi, Marcello Roberto

    2016-01-01

    Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics. PMID:27433360

  20. [Effect of two different acellular lung matrices on α-SMA expression in A549 cells].

    PubMed

    Chen, C; Wang, Z Y; Weng, J; Wang, Z B; Mei, J; Du, X H; Wang, L

    2017-01-24

    Objective: To explore the effect of acellular normal and fibrotic lung matrices on alpha smooth muscle actin (α-SMA) expression in human lung adenocarcinoma cell line A549. Methods: Twenty adult SD rats were randomly divided into normal group and idiopathic pulmonary fibrosis(IPF)group (n=10 each). The pulmonary fibrosis was induced by Bleomycin. Normal and fibrotic decellularized lungs were made, then sections with 500 μm thick were cut by a standard Vibratome. None scaffold was set as control group. A549 cells were seeded dropwise into different slices (normal and fibrotic scaffolds), and cultured for one week in vitro. The expression of α-SMA was measured by immunofluorescence staining and quantitative real time polymerase chain reaction (qRT-PCR). Results: In control group, the expression of α-SMA protein was positive in A549 cells by immunofluorescence staining. However, it expressed weakly both in normal and fibrotic scaffold group, and the fluorescence intensity in fibrotic scaffold group was significant lower than that in normal group (P<0.05). The relative expression amount of α-SMA mRNA in normal and fibrotic scaffold group were (0.70±0.11) and (0.55±0.12), which were significant lower than that of control group (1.28±0.21) (P<0.05). Moreover, the relative expression of α-SMA mRNA in fibrotic scaffold group was decreased compared to that in normal scaffold group (P<0.05). Conclusions: Acellular normal and fibrotic lung scaffold can downregulate the expression of α-SMA in human lung adenocarcinoma cell line A549. It may inhibit the movement of A549 cells in acellular normal and fibrotic lung matrices, especially in acellular fibrotic lung scaffold.

  1. Reconstruction of posterior interosseous nerve injury following biceps tendon repair: case report and cadaveric study.

    PubMed

    Mokhtee, David B; Brown, Justin M; Mackinnon, Susan E; Tung, Thomas H

    2009-06-01

    Surgical repair of distal biceps tendon rupture is a technically challenging procedure that has the potential for devastating and permanently disabling complications. We report two cases of posterior interosseous nerve (PIN) injury following successful biceps tendon repair utilizing both the single-incision and two-incision approaches. We also describe our technique of posterior interosseous nerve repair using a medial antebrachial cutaneous nerve graft (MABC) and a new approach to the terminal branches of the posterior interosseous nerve that makes this reconstruction possible. Finally, we advocate consideration for identification of the posterior interosseous nerve prior to reattachment of the biceps tendon to the radial tuberosity.

  2. Mesenchymal stem cells seeded on cross-linked and noncross-linked acellular porcine dermal scaffolds for long-term full-thickness hernia repair in a small animal model.

    PubMed

    Mestak, Ondrej; Matouskova, Eva; Spurkova, Zuzana; Benkova, Kamila; Vesely, Pavel; Mestak, Jan; Molitor, Martin; Pombinho, Antonio; Sukop, Andrej

    2014-07-01

    Biological meshes are biomaterials consisting of extracellular matrix that are used in surgery particularly for hernia treatment, thoracic wall reconstruction, or silicone implant-based breast reconstruction. We hypothesized that combination of extracellular matrices with autologous mesenchymal stem cells used for hernia repair would result in increased vascularization and increased strength of incorporation. We cultured autologous adipose-derived stem cells harvested from the inguinal region of Wistar rats on cross-linked and noncross-linked porcine extracellular matrices. In 24 Wistar rats, a standardized 2×4 cm fascial defect was created and repaired with either cross-linked or noncross-linked grafts enriched with stem cells. Non-MSC-enriched grafts were used as controls. The rats were sacrificed at 3 months of age. The specimens were examined for the strength of incorporation, vascularization, cell invasion, foreign body reaction, and capsule formation. Both materials showed cellular ingrowth and neovascularization. Comparison of both tested groups with the controls showed no significant differences in the capsule thickness, foreign body reaction, cellularization, or vascularization. The strength of incorporation of the stem cell-enriched cross-linked extracellular matrix specimens was higher than in acellular specimens, but this result was statistically nonsignificant. In the noncross-linked extracellular matrix, the strength of incorporation was significantly higher in the stem cell group than in the acellular group. Seeding of biological meshes with stem cells does not significantly contribute to their increased vascularization. In cross-linked materials, it does not ensure increased strength of incorporation, in contrast to noncross-linked materials. Owing to the fact that isolation and seeding of stem cells is a very complex procedure, we do not see sufficient benefits for its use in the clinical setting.

  3. Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering.

    PubMed

    Du, Liqun; Wu, Xinyi

    2011-07-01

    Our aim was to produce a natural, acellular matrix from porcine cornea for use as a scaffold in developing a tissue-engineered cornea replacement. Full-thickness, intact porcine corneas were decellularized by immersion in 0.5% (wt/vol) sodium dodecyl sulfate. The resulting acellular matrices were then characterized and examined specifically for completeness of the decellularization process. Histological analyses of decellularized corneal stromas showed that complete cell and α-Gal removal was achieved, while the major structural proteins including collagen type I and IV, laminin, and fibronectin were retained. DAPI staining did not detect any residual DNA within the matrix, and the DNA contents, which reflect the presence of cellular materials, were significantly diminished in the decellularized cornea. The collagen content of the decellularized cornea was well maintained compared with native tissues. Uniaxial tensile testing indicated that decellularization did not significantly compromise the ultimate tensile strength of the tissue (P > 0.05). In vitro cytotoxicity assays using rabbit corneal fibroblast cultures excluded the presence of soluble toxins in the biomaterial. In vivo implantation to rabbit interlamellar stromal pockets showed good biocompability. In summary, a full-thickness natural acellular matrix retaining the major structural components and strength of the cornea has been successfully developed. The matrix is biocompatible with cornea-derived cells and has potential for use in corneal transplantation and tissue-engineering applications.

  4. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation.

    PubMed

    Uriarte, Juan J; Nonaka, Paula N; Campillo, Noelia; Palma, Renata K; Melo, Esther; de Oliveira, Luis V F; Navajas, Daniel; Farré, Ramon

    2014-12-01

    Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering.

  5. Generation and characterization of a human acellular meniscus scaffold for tissue engineering.

    PubMed

    Sandmann, G H; Eichhorn, S; Vogt, S; Adamczyk, C; Aryee, S; Hoberg, M; Milz, S; Imhoff, A B; Tischer, T

    2009-11-01

    Meniscus tears are frequent indications for arthroscopic evaluation which can result in partial or total meniscectomy. Allografts or synthetic meniscus scaffolds have been used with varying success to prevent early degenerative joint disease in these cases. Problems related to reduced initial and long-term stability, as well as immunological reactions prevent widespread clinical use so far. Therefore, the aim of this study was to develop a new construct for tissue engineering of the human meniscus based on an acellular meniscus allograft. Human menisci (n = 16) were collected and acellularized using the detergent sodium dodecyl sulfate as the main ingredient or left untreated as control group. These acellularized menisci were characterized biomechanically using a repetitive ball indentation test (Stiffness N/mm, residual force N, relative compression force N) and by histological (hematoxylin-eosin, phase-contrast) as well as immunohistochemical (collagen I, II, VI) investigation. The processed menisci histologically appeared cell-free and had biomechanical properties similar to the intact meniscus samples (p > 0.05). The collagen fiber arrangement was not altered, according to phase-contrast microscopy and immunohistochemical labeling. The removal of the immunogenic cell components combined with the preservation of the mechanically relevant parts of the extracellular matrix could make these scaffolds ideal implants for future tissue engineering of the meniscus.

  6. Preparation and characterization of an acellular bovine pericardium intended for manufacture of valve bioprostheses.

    PubMed

    Goissis, Gilberto; Giglioti, Aparecida de Fátima; Braile, Domingo Marcolino

    2011-05-01

    Major problems with biological heart valves post-implantation are associated with progressive structural deterioration and calcification attributed to glutaraldehyde processing, dead cells, and cell fragments present in the native tissue. In spite of these problems, glutaraldehyde still is the reagent of choice. The results with acellular matrix xenograft usually prepared by detergent treatment in association with enzymes are rather conflicting because while preserving mechanical properties, tissue morphology and collagen structure are process dependent. This work describes a chemical approach for the preparation of an acellular bovine pericardium matrix intended for the manufacture of heart valve bioprostheses. Cell removal was performed by an alkaline extraction in the presence of calcium salts for periods ranging from 6 to 48 h. The results showed that cell removal was achieved after 12 h, with swelling and negative charge increasing with processing time. Nevertheless, collagen fibril structure, ability to form fibrils, and stability to collagenase were progressive after 24-h processing. There was no denaturation of the collagen matrix. A process is described for the preparation of acellular bovine pericardium matrices with preserved fibril structure and morphology for the manufacture of cardiac valve bioprostheses and may be used in other applications for tissue reconstruction.

  7. Regenerating Fish Optic Nerves and a Regeneration-Like Response in Injured Optic Nerves of Adult Rabbits

    NASA Astrophysics Data System (ADS)

    Schwartz, M.; Belkin, M.; Harel, A.; Solomon, A.; Lavie, V.; Hadani, M.; Rachailovich, I.; Stein-Izsak, C.

    1985-05-01

    Regeneration of fish optic nerve (representing regenerative central nervous system) was accompanied by increased activity of regeneration-triggering factors produced by nonneuronal cells. A graft of regenerating fish optic nerve, or a ``wrap-around'' implant containing medium conditioned by it, induced a response associated with regeneration in injured optic nerves of adult rabbits (representing a nonregenerative central nervous system). This response was manifested by an increase of general protein synthesis and of selective polypeptides in the retinas and by the ability of the retina to sprout in culture.

  8. Rehabilitation, Using Guided Cerebral Plasticity, of a Brachial Plexus Injury Treated with Intercostal and Phrenic Nerve Transfers

    PubMed Central

    Dahlin, Lars B.; Andersson, Gert; Backman, Clas; Svensson, Hampus; Björkman, Anders

    2017-01-01

    Recovery after surgical reconstruction of a brachial plexus injury using nerve grafting and nerve transfer procedures is a function of peripheral nerve regeneration and cerebral reorganization. A 15-year-old boy, with traumatic avulsion of nerve roots C5–C7 and a non-rupture of C8–T1, was operated 3 weeks after the injury with nerve transfers: (a) terminal part of the accessory nerve to the suprascapular nerve, (b) the second and third intercostal nerves to the axillary nerve, and (c) the fourth to sixth intercostal nerves to the musculocutaneous nerve. A second operation—free contralateral gracilis muscle transfer directly innervated by the phrenic nerve—was done after 2 years due to insufficient recovery of the biceps muscle function. One year later, electromyography showed activation of the biceps muscle essentially with coughing through the intercostal nerves, and of the transferred gracilis muscle by deep breathing through the phrenic nerve. Voluntary flexion of the elbow elicited clear activity in the biceps/gracilis muscles with decreasing activity in intercostal muscles distal to the transferred intercostal nerves (i.e., corresponding to eighth intercostal), indicating cerebral plasticity, where neural control of elbow flexion is gradually separated from control of breathing. To restore voluntary elbow function after nerve transfers, the rehabilitation of patients operated with intercostal nerve transfers should concentrate on transferring coughing function, while patients with phrenic nerve transfers should focus on transferring deep breathing function. PMID:28316590

  9. Histological differences between invasive ductal carcinoma with a large central acellular zone and matrix-producing carcinoma of the breast.

    PubMed

    Sasaki, Yuka; Tsuda, Hitoshi; Ueda, Shigeto; Asakawa, Hideki; Seki, Kunihiko; Murata, Tetsuya; Kuriki, Ken; Tamai, Seiichi; Matsubara, Osamu

    2009-06-01

    Carcinoma with a large central acellular zone (central acellular carcinoma, CAC) and matrix-producing carcinoma (MPC) have been recently noted as basal-like-type breast cancers, but the two entities are often confused. To clarify their histological differences, the histopathological sections of 15 CAC and seven MPC were examined and the following features were compared by reviewing slides: (i) mode of invasion; (ii) alteration of cancer cell adhesion in the transitional area between cellular and acellular zones; (iii) staining of the stromal matrix; (iv) lymphocyte infiltration; and (v) tumor grade. Complete agreement was required between two observers for the assessments of these features. All CAC had relatively sharp margins but showed infiltrative growth accompanied by eosinophilic intercellular matrix. In CAC there was abrupt transition between peripheral cellular and central acellular zones without alteration of cancer cell adhesion. In contrast, all MPC showed expansive growth with a well circumscribed margin, accompanied by basophilic and myxoid intercellular matrix. In MPC there was gradual transition from cellular to acellular areas with gradual loss of cancer cell adhesion. Histological grade 3 and peripheral lymphocyte infiltration were common features. It is suggested that CAC and MPC are histologically distinct entities, and that the aforementioned features are helpful for differential diagnosis.

  10. Evaluating acellular versus cellular perfusate composition during prolonged ex vivo lung perfusion after initial cold ischaemia for 24 hours.

    PubMed

    Becker, Simon; Steinmeyer, Jasmin; Avsar, Murat; Höffler, Klaus; Salman, Jawad; Haverich, Axel; Warnecke, Gregor; Ochs, Matthias; Schnapper, Anke

    2016-01-01

    Normothermic ex vivo lung perfusion (EVLP) has developed as a powerful technique to evaluate particularly marginal donor lungs prior to transplantation. In this study, acellular and cellular perfusate compositions were compared in an identical experimental setting as no consensus has been reached on a preferred technique yet. Porcine lungs underwent EVLP for 12 h on the basis of an acellular or a cellular perfusate composition after 24 h of cold ischaemia as defined organ stress. During perfusion, haemodynamic and respiratory parameters were monitored. After EVLP, the lung condition was assessed by light and transmission electron microscopy. Aerodynamic parameters did not show significant differences between groups and remained within the in vivo range during EVLP. Mean oxygenation indices were 491 ± 39 in the acellular group and 513 ± 53 in the cellular group. Groups only differed significantly in terms of higher pulmonary artery pressure and vascular resistance in the cellular group. Lung histology and ultrastructure were largely well preserved after prolonged EVLP and showed only minor structural alterations which were similarly present in both groups. Prolonged acellular and cellular EVLP for 12 h are both feasible with lungs prechallenged by ischaemic organ stress. Physiological and ultrastructural analysis showed no superiority of either acellular or cellular perfusate composition.

  11. Calcar bone graft

    SciTech Connect

    Bargar, W.L.; Paul, H.A.; Merritt, K.; Sharkey, N.

    1986-01-01

    A canine model was developed to investigate the use of an autogeneic iliac bone graft to treat the calcar deficiency commonly found at the time of revision surgery for femoral component loosening. Five large male mixed-breed dogs had bilateral total hip arthroplasty staged at three-month intervals, and were sacrificed at six months. Prior to cementing the femoral component, an experimental calcar defect was made, and a bicortical iliac bone graft was fashioned to fill the defect. Serial roentgenograms showed the grafts had united with no resorption. Technetium-99 bone scans showed more uptake at three months than at six months in the graft region. Disulfine blue injection indicated all grafts were perfused at both three and six months. Thin section histology, fluorochromes, and microradiographs confirmed graft viability in all dogs. Semiquantitative grading of the fluorochromes indicated new bone deposition in 20%-50% of each graft at three months and 50%-80% at six months. Although the calcar bone graft was uniformly successful in this canine study, the clinical application of this technique should be evaluated by long-term results in humans.

  12. Chitosan-cross-linked nanofibrous PHBV nerve guide for rat sciatic nerve regeneration across a defect bridge.

    PubMed

    Biazar, Esmaeil; Keshel, Saeed Heidari

    2013-01-01

    The aim of this study was to produce a chitosan-cross-linked nanofibrous biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit. The artificial nerve scaffold designed by electrospinning method and cross-linked with chitosan by chemical method. Afterwards, the scaffolds were evaluated by microscopic, physical, and mechanical analyses and cell culture assays with Schwann cells. The conduits were implanted into a 10 mm gap in the sciatic nerves of the rats. Four months after surgery, the regenerated nerves were evaluated by macroscopic assessments and histology. This polymeric conduit had sufficiently good mechanical properties to serve as a nerve guide. Cellular experiments showed a better cell adhesion, growth, and proliferation inside the cross-linked nanofibrous scaffolds compared with un-cross-linked ones, also Schwann cells well attached on chitosan-cross-linked nanofibrous surface. The in vivo results demonstrated that in the nanofibrous graft, the sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. This neural conduit appears to have the right organization for testing in vivo nerve tissue engineering studies.

  13. Grafts in "closed" rhinoplasty.

    PubMed

    Scattolin, A; D'Ascanio, L

    2013-06-01

    Rhinoplasty is a fascinating and complex surgical procedure aiming at attaining a well-functioning and aesthetically pleasant nose. The use of grafts is of the utmost importance for the nasal surgeon to achieve such results. However, the philosophy and technical use of nasal grafts are different in "closed" and "open" rhinoplasty. The aim of this paper is not detailed description of the numerous grafts reported in the literature; we will describe the main principles of grafts use in "closed" rhinoplasty derived from our experience, with special reference to the philosophical and technical differences in their employment between "closed" and "open" rhinoplasty. Some cases are reported as an example of graft use in "endonasal" approach rhinoplasty.

  14. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    NASA Astrophysics Data System (ADS)

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate

  15. In vivo evaluation of polysialic acid as part of tissue-engineered nerve transplants.

    PubMed

    Haastert-Talini, Kirsten; Schaper-Rinkel, Janett; Schmitte, Ruth; Bastian, Rode; Mühlenhoff, Martina; Schwarzer, David; Draeger, Gerald; Su, Yi; Scheper, Thomas; Gerardy-Schahn, Rita; Grothe, Claudia

    2010-10-01

    With the aim to develop new biomaterials for peripheral nerve grafts, the current study used bioidentical polysialic acid (polySia) as complement in synthetic conduits. polySia provides an important guidance cue during nervous system development and regeneration. First in vivo results on the use of cell-free and Schwann cell-containing synthetic peripheral nerve grafts complemented with soluble exogenous K1-polySia are presented. Reconstructing 10 mm rat sciatic nerve gaps, K1-polySia complementation significantly improved structural nerve regeneration in comparison to cell-free and K1-polySia-free grafts. Subsequently, long nerve gaps (13 mm) were reconstructed by Schwann cell transplants plus K1-polySia and compared to nerve autotransplantation. Structural but also functional regeneration could be observed using K1-polySia transplants; however, autotransplantation was still significantly more successful. Overall, the current study demonstrates that exogenous K1-polySia has no negative but rather regeneration promoting effects. This is important novel evidence on the applicability of exogenous polySia in vivo. Further studies are required to develop solid three-dimensional polySia-based scaffolds for nerve tissue engineering. Biocompatible and assessable biodegrading materials will ensure long-lasting presence of polySia to allow its applicability and prolonged efficacy in the slow regenerating scenario of human peripheral nerve reconstruction.

  16. A Novel Cytokine Pathway Suppresses Glial Cell Melanogenesis after Injury to Adult Nerve

    PubMed Central

    Rizvi, Tilat A.; Huang, Yuan; Sidani, Amer; Atit, Radhika; Largaespada, David A.; Boissy, Raymond E.; Ratner, Nancy

    2006-01-01

    The neural crest gives rise to numerous cell types, including Schwann cells, neurons, and melanocytes. The extent to which adult neural crest-derived cells retain plasticity has not been tested previously. We report that cutting adult mouse sciatic nerve induces pigmentation around nerve fascicles, among muscle bundles, and in the hypodermis. Pigmented cells are derived from adult nerve, because pigmentation occurs even when nerve fragments are grafted into tyrosinase null albino mice. Pigmentation defects are pervasive in patients with neurofibromatosis type 1 (NF1). Mice hemizygous for Nf1 mutations show enhanced pigmentation after nerve lesion and occasionally form pigmented and unpigmented tumors. The Nf1 nerve and the Nf1 host environment both contribute to enhanced pigmentation. Grafted purified Nf1 mutant glial cells [S100+–p75NGFR+–GFAP+–EGFR+ or S100+–p75NGFR+–GFAP+–EGFR−] mimic nerve-derived pigmentation. The NF1 protein, neurofibromin, is a Ras-GAP that acts downstream of a few defined receptor tyrosine kinases, including [β-common (βc)] the shared common receptor for granulocyte and monocyte colony-stimulating factor, interleukin-3 (IL3), and IL5. Cytokines in the environment have the potential to suppress pigmentation as shown by nerve injury experiments in null mice; when is βc absent or Nf1 is mutant, melanogenesis is increased. Thus, the adult nerve glial cell phenotype is maintained after nerve injury by response to cytokines, through neurofibromin. PMID:12427839

  17. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  18. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  19. Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds.

    PubMed

    Lynam, Daniel A; Shahriari, Dena; Wolf, Kayla J; Angart, Phillip A; Koffler, Jacob; Tuszynski, Mark H; Chan, Christina; Walton, Patrick; Sakamoto, Jeffrey

    2015-05-01

    Agarose nerve guidance scaffolds (NGS) seeded with cells expressing brain derived neurotrophic factor (BDNF) have demonstrated robust nerve regeneration in the rat central nervous system. The purpose of this work was to explore whether agarose NGS coated with hydrogen-bonded layer-by-layer (HLbL) could provide an acellular method of delivering prolonged and consistent dosages of active BDNF. Our results show that HLbL-coated agarose NGS could release BDNF over 10days in consistent dosages averaging 80.5±12.5(SD)ng/mL. Moreover, the BDNF released from HLbL was confirmed active by in vitro cell proliferation assays. To our knowledge, this is the first report demonstrating that HLbL assembled onto a hydrogel can provide consistent, prolonged release of active BDNF in clinically relevant dosages.

  20. Bone graft substitutes.

    PubMed

    Bhatt, Reena A; Rozental, Tamara D

    2012-11-01

    Replacement of missing bone stock is a reconstructive challenge to upper extremity surgeons and decision-making with regards to available choices remains difficult. Preference is often given to autograft in the form of cancellous, cortical, or corticocancellous grafts from donor sites. However, the available volume from such donor sites is limited and fraught with potential complications. Advances in surgical management and medical research have produced a wide array of potential substances that can be used for bone graft substitute. Considerations in selecting bone grafts and substitutes include characteristic capabilities, availability, patient morbidity, immunogenicity, potential disease transmission, and cost variability.

  1. Optic Nerve Pit

    MedlinePlus

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Optic Nerve Pit What is optic nerve pit? An optic nerve pit is a ... may be seen in both eyes. How is optic pit diagnosed? If the pit is not affecting ...

  2. Axonal regeneration and remyelination evaluation of chitosan/gelatin-based nerve guide combined with transforming growth factor-β1 and Schwann cells.

    PubMed

    Nie, Xin; Deng, Manjing; Yang, Maojin; Liu, Luchuan; Zhang, Yongjie; Wen, Xiujie

    2014-01-01

    Despite efforts in peripheral nerve injury and regeneration, it is difficult to achieve a functional recovery following extended peripheral nerve lesions. Even if artificial nerve conduit, cell components and growth factors can enhance nerve regeneration, integration in peripheral nerve repair and regeneration remains yet to be explored. For this study, we used chitosan/gelatin nerve graft constructed with collagenous matrices as a vehicle for Schwann cells and transforming growth factor-β1 to bridge a 10-mm gap of the sciatic nerve and explored the feasibility of improving regeneration and reinnervation in rats. The nerve regeneration was assessed with functional recovery, electrophysiological test, retrograde labeling, and immunohistochemistry analysis during the post-operative period of 16 weeks. The results showed that the internal sides of the conduits were compact enough to prevent the connective tissues from ingrowth. Nerve conduction velocity, average regenerated myelin area, and myelinated axon count were similar to those treated with autograft (p > 0.05) but significantly higher than those bridged with chitosan/gelatin nerve graft alone (p < 0.05). Evidences from retrograde labeling and immunohistochemistry analysis are further provided in support of improving axonal regeneration and remyelination. A designed graft incorporating all of the tissue-engineering strategies for peripheral nerve regeneration may provide great progress in tissue engineering for nerve repair.

  3. Acellular components of Chlamydia pneumoniae stimulate cytokine production in human blood mononuclear cells.

    PubMed

    Netea, M G; Selzman, C H; Kullberg, B J; Galama, J M; Weinberg, A; Stalenhoef, A F; Van der Meer, J W; Dinarello, C A

    2000-02-01

    Accumulating evidence suggest that infection with Chlamydia pneumoniae is associated with atherosclerosis, but the mechanisms involved remain unclear. Inflammation is important in the initial phase of atherogenesis, and cytokines are important in the initiation and progression of inflammation. The aim of this study was to assess the capacity of acellular components of C. pneumoniae to stimulate the production of pro-inflammatory cytokines and chemokines. Peripheral blood mononuclear cells were stimulated in vitro with sonicated C. pneumoniae. Significant amounts of TNF-alpha, IL-1, IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) were produced. Inhibition of endotoxin using polymyxin B revealed that chlamydial endotoxin plays a minor role in the cytokine induction. Neutralization of TNF by TNF-binding protein and blockade of IL-1 receptors by IL-1 receptor antagonist revealed that TNF, IL-1 and IL-6 production was independent from each other, whereas IL-8 synthesis was strongly dependent on endogenous TNF and IL-1. In contrast, synthesis of MCP-1 and MIP-1alpha was dependent on endogenous TNF, but not IL-1. In conclusion, acellular components of C. pneumoniae are a potent stimulus for cytokine production, and this mechanism may have an important role in the inflammatory aspects of atherogenesis.

  4. Cellular Immune Responses of Preterm Infants after Vaccination with Whole-Cell or Acellular Pertussis Vaccines▿

    PubMed Central

    Vermeulen, Françoise; Verscheure, Virginie; Damis, Eliane; Vermeylen, Danièle; Leloux, Gaëlle; Dirix, Violette; Locht, Camille; Mascart, Françoise

    2010-01-01

    Based on studies reporting specific antibody titers, it is recommended to vaccinate preterm infants against Bordetella pertussis according to their chronological age. However, as specific T-cell responses also are involved in the protection against B. pertussis, we have determined whether highly preterm infants (<31 weeks) are able to mount these immune responses during vaccination. Forty-eight premature infants were vaccinated at 2, 3, and 4 months of their chronological age with an acellular (Pa; n = 24) or a whole-cell (Pw; n = 24) tetravalent diphtheria-tetanus-pertussis-polio vaccine, and blood samples were collected at 2, 3, and 6 months of age. Most of the Pa- and Pw-vaccinated infants developed at 3 or 6 months of age a gamma interferon (IFN-γ) response to the B. pertussis antigens, accompanied by an interleukin-5 (IL-5) and IL-13 secretion for the Pa-vaccinated infants. No association was found between a very low infant birth weight, the occurrence of severe infections, and corticosteroid treatment or the administration of gammaglobulins with a low level of antigen-induced IFN-γ secretion. We conclude that like full-term infants, most preterm infants are able to mount a specific cellular immune response to the administration of the first doses of an acellular or a whole-cell pertussis vaccine. PMID:20016042

  5. Acellular Urethra Bioscaffold: Decellularization of Whole Urethras for Tissue Engineering Applications.

    PubMed

    Simões, Irina N; Vale, Paulo; Soker, Shay; Atala, Anthony; Keller, Daniel; Noiva, Rute; Carvalho, Sandra; Peleteiro, Conceição; Cabral, Joaquim M S; Eberli, Daniel; da Silva, Cláudia L; Baptista, Pedro M

    2017-02-06

    Patients with stress urinary incontinence mainly suffer from malfunction of the urethra closure mechanism. We established the decellularization of porcine urethras to produce acellular urethra bioscaffolds for future tissue engineering applications, using bioscaffolds or bioscaffold-derived soluble products. Cellular removal was evaluated by H&E, DAPI and DNA quantification. The presence of specific ECM proteins was assessed through immunofluorescence staining and colorimetric assay kits. Human skeletal muscle myoblasts, muscle progenitor cells and adipose-derived stromal vascular fractions were used to evaluate the recellularization of the acellular urethra bioscaffolds. The mechanochemical decellularization system removed ~93% of tissue's DNA, generally preserving ECM's components and microarchitecture. Recellularization was achieved, though methodological advances are required regarding cell seeding strategies and functional assessment. Through microdissection and partial digestion, different urethra ECM-derived coating substrates were formulated (i.e. containing smooth or skeletal muscle ECM) and used to culture MPCs in vitro. The skeletal muscle ECM substrates enhanced fiber formation leading to the expression of the main skeletal muscle-related proteins and genes, as confirmed by immunofluorescence and RT-qPCR. The described methodology produced a urethra bioscaffold that retained vital ECM proteins and was liable to cell repopulation, a crucial first step towards the generation of urethra bioscaffold-based Tissue Engineering products.

  6. Alternatives to HIST for acellular pertussis vaccines: progress and challenges in replacement

    PubMed Central

    Arciniega, J.; Wagner, L.; Prymula, R.; Sebo, P.; Isbrucker, R.; Descampe, B.; Chapsal, J.M.; Costanzo, A.; Hendriksen, C.; Hoonaker, M.; Nelson, S.; Lidster, K.; Casey, W.; Allen, D.

    2016-01-01

    The ‘International Workshop on Alternatives to the Murine Histamine Sensitization Test for Acellular Pertussis Vaccines: Progress and Challenges in the Replacement of HIST’ was held on 24 August 2014, in Prague, Czech Republic, as a satellite meeting to the 9 th World Congress on Alternatives and Animal Use in the Life Sciences. Participants discussed the progress and challenges associated with the development, validation, and implementation of in vitro assays as replacements for the histamine sensitisation test (HIST) for acellular pertussis vaccines. Discussions focused on the consistency approach, the necessary framework for regulatory acceptance of a harmonised method, and recent international efforts towards the development of in vitro assays to replace the HIST. Workshop participants agreed that acceptable alternatives to the HIST should be based on ADP ribosylation-mediated cell intoxication and therefore that the CHO cell clustering assay, which measures cell intoxication, should be further pursued and developed as a possible replacement for the HIST. Participants also agreed to continue ongoing multinational discussions involving national and international standardisation authorities to reach consensus and to organise collaborative studies in this context for assay characterisation and calibration of reference materials. PMID:27506225

  7. Acellular Urethra Bioscaffold: Decellularization of Whole Urethras for Tissue Engineering Applications

    PubMed Central

    Simões, Irina N.; Vale, Paulo; Soker, Shay; Atala, Anthony; Keller, Daniel; Noiva, Rute; Carvalho, Sandra; Peleteiro, Conceição; Cabral, Joaquim M. S.; Eberli, Daniel; da Silva, Cláudia L.; Baptista, Pedro M.

    2017-01-01

    Patients with stress urinary incontinence mainly suffer from malfunction of the urethra closure mechanism. We established the decellularization of porcine urethras to produce acellular urethra bioscaffolds for future tissue engineering applications, using bioscaffolds or bioscaffold-derived soluble products. Cellular removal was evaluated by H&E, DAPI and DNA quantification. The presence of specific ECM proteins was assessed through immunofluorescence staining and colorimetric assay kits. Human skeletal muscle myoblasts, muscle progenitor cells and adipose-derived stromal vascular fractions were used to evaluate the recellularization of the acellular urethra bioscaffolds. The mechanochemical decellularization system removed ~93% of tissue’s DNA, generally preserving ECM’s components and microarchitecture. Recellularization was achieved, though methodological advances are required regarding cell seeding strategies and functional assessment. Through microdissection and partial digestion, different urethra ECM-derived coating substrates were formulated (i.e. containing smooth or skeletal muscle ECM) and used to culture MPCs in vitro. The skeletal muscle ECM substrates enhanced fiber formation leading to the expression of the main skeletal muscle-related proteins and genes, as confirmed by immunofluorescence and RT-qPCR. The described methodology produced a urethra bioscaffold that retained vital ECM proteins and was liable to cell repopulation, a crucial first step towards the generation of urethra bioscaffold-based Tissue Engineering products. PMID:28165009

  8. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study.

    PubMed

    Cheng, Hai-Ling Margaret; Loai, Yasir; Beaumont, Marine; Farhat, Walid A

    2010-08-01

    Bladder acellular matrices (ACMs) derived from natural tissue are gaining increasing attention for their role in tissue engineering and regeneration. Unlike conventional scaffolds based on biodegradable polymers or gels, ACMs possess native biomechanical and many acquired biologic properties. Efforts to optimize ACM-based scaffolds are ongoing and would be greatly assisted by a noninvasive means to characterize scaffold properties and monitor interaction with cells. MRI is well suited to this role, but research with MRI for scaffold characterization has been limited. This study presents initial results from quantitative MRI measurements for bladder ACM characterization and investigates the effects of incorporating hyaluronic acid, a natural biomaterial useful in tissue-engineering and regeneration. Measured MR relaxation times (T(1), T(2)) and diffusion coefficient were consistent with increased water uptake and glycosaminoglycan content observed on biochemistry in hyaluronic acid ACMs. Multicomponent MRI provided greater specificity, with diffusion data showing an acellular environment and T(2) components distinguishing the separate effects of increased glycosaminoglycans and hydration. These results suggest that quantitative MRI may provide useful information on matrix composition and structure, which is valuable in guiding further development using bladder ACMs for organ regeneration and in strategies involving the use of hyaluronic acid.

  9. Deficiency in acellular cementum and periodontal attachment in bsp null mice.

    PubMed

    Foster, B L; Soenjaya, Y; Nociti, F H; Holm, E; Zerfas, P M; Wimer, H F; Holdsworth, D W; Aubin, J E; Hunter, G K; Goldberg, H A; Somerman, M J

    2013-02-01

    Bone sialoprotein (BSP) is an extracellular matrix protein found in mineralized tissues of the skeleton and dentition. BSP is multifunctional, affecting cell attachment and signaling through an RGD integrin-binding region, and acting as a positive regulator for mineral precipitation by nucleating hydroxyapatite crystals. BSP is present in cementum, the hard tissue covering the tooth root that anchors periodontal ligament (PDL) attachment. To test our hypothesis that BSP plays an important role in cementogenesis, we analyzed tooth development in a Bsp null ((-/-)) mouse model. Developmental analysis by histology, histochemistry, and SEM revealed a significant reduction in acellular cementum formation on Bsp (-/-) mouse molar and incisor roots, and the cementum deposited appeared hypomineralized. Structural defects in cementum-PDL interfaces in Bsp (-/-) mice caused PDL detachment, likely contributing to the high incidence of incisor malocclusion. Loss of BSP caused progressively disorganized PDL and significantly increased epithelial down-growth with aging. Bsp (-/-) mice displayed extensive root and alveolar bone resorption, mediated by increased RANKL and the presence of osteoclasts. Results collected here suggest that BSP plays a non-redundant role in acellular cementum formation, likely involved in initiating mineralization on the root surface. Through its importance to cementum integrity, BSP is essential for periodontal function.

  10. Deficiency in Acellular Cementum and Periodontal Attachment in Bsp Null Mice

    PubMed Central

    Foster, B.L.; Soenjaya, Y.; Nociti, F.H.; Holm, E.; Zerfas, P.M.; Wimer, H.F.; Holdsworth, D.W.; Aubin, J.E.; Hunter, G.K.; Goldberg, H.A.; Somerman, M.J.

    2012-01-01

    Bone sialoprotein (BSP) is an extracellular matrix protein found in mineralized tissues of the skeleton and dentition. BSP is multifunctional, affecting cell attachment and signaling through an RGD integrin-binding region, and acting as a positive regulator for mineral precipitation by nucleating hydroxyapatite crystals. BSP is present in cementum, the hard tissue covering the tooth root that anchors periodontal ligament (PDL) attachment. To test our hypothesis that BSP plays an important role in cementogenesis, we analyzed tooth development in a Bsp null (-/-) mouse model. Developmental analysis by histology, histochemistry, and SEM revealed a significant reduction in acellular cementum formation on Bsp-/- mouse molar and incisor roots, and the cementum deposited appeared hypomineralized. Structural defects in cementum-PDL interfaces in Bsp-/- mice caused PDL detachment, likely contributing to the high incidence of incisor malocclusion. Loss of BSP caused progressively disorganized PDL and significantly increased epithelial down-growth with aging. Bsp-/- mice displayed extensive root and alveolar bone resorption, mediated by increased RANKL and the presence of osteoclasts. Results collected here suggest that BSP plays a non-redundant role in acellular cementum formation, likely involved in initiating mineralization on the root surface. Through its importance to cementum integrity, BSP is essential for periodontal function. PMID:23183644

  11. Polymer scaffolds with preferential parallel grooves enhance nerve regeneration.

    PubMed

    Mobasseri, Atefeh; Faroni, Alessandro; Minogue, Ben M; Downes, Sandra; Terenghi, Giorgio; Reid, Adam J

    2015-03-01

    We have modified the surface topography of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) blended films to improve cell proliferation and to guide the regeneration of peripheral nerves. Films with differing shaped grooves were made using patterned silicon templates, sloped walls (SL), V-shaped (V), and square-shaped (SQ), and compared with nongrooved surfaces with micropits. The solvent cast films were tested in vitro using adult adipose-derived stem cells differentiated to Schwann cell-like cells. Cell attachment, proliferation, and cell orientation were all improved on the grooved surfaces, with SL grooves giving the best results. We present in vivo data on Sprague-Dawley rat sciatic nerve injury with a 10-mm gap, evaluating nerve regeneration at 3 weeks across a polymer nerve conduit modified with intraluminal grooves (SL, V, and SQ) and differing wall thicknesses (70, 100, 120, and 210 μm). The SL-grooved nerve conduit showed a significant improvement over the other topographical-shaped grooves, while increasing the conduit wall thickness saw no positive effect on the biological response of the regenerating nerve. Furthermore, the preferred SL-grooved conduit (C) with 70 μm wall thickness was compared with the current clinical gold standard of autologous nerve graft (Ag) in the rat 10-mm sciatic nerve gap model. At 3 weeks postsurgery, all nerve gaps across both groups were bridged with regenerated nerve fibers. At 16 weeks, features of regenerated axons were comparable between the autograft (Ag) and conduit (C) groups. End organ assessments of muscle weight, electromyography, and skin reinnervation were also similar between the groups. The comparable experimental outcome between conduit and autograft, suggests that the PCL/PLA conduit with inner lumen microstructured grooves could be used as a potential alternative treatment for peripheral nerve repair.

  12. Optic Nerve Elongation

    PubMed Central

    Alvi, Aijaz; Janecka, Ivo P.; Kapadia, Silloo; Johnson, Bruce L.; McVay, William

    1996-01-01

    The length of the optic nerves is a reflection of normal postnatal cranio-orbital development. Unilateral elongation of an optic nerve has been observed in two patients with orbital and skull base neoplasms. In the first case as compared to the patient's opposite, normal optic nerve, an elongated length of the involved optic nerve of 45 mm was present. The involved optic nerve in the second patient was 10 mm longer than the normal opposite optic nerve. The visual and extraocular function was preserved in the second patient. The first patient had only light perception in the affected eye. In this paper, the embryology, anatomy, and physiology of the optic nerve and its mechanisms of stretch and repair are discussed. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9Figure 10Figure 11Figure 13 PMID:17170975

  13. Assessment of nerve morphology in nerve activation during electrical stimulation

    NASA Astrophysics Data System (ADS)

    Gomez-Tames, Jose; Yu, Wenwei

    2013-10-01

    The distance between nerve and stimulation electrode is fundamental for nerve activation in Transcutaneous Electrical Stimulation (TES). However, it is not clear the need to have an approximate representation of the morphology of peripheral nerves in simulation models and its influence in the nerve activation. In this work, depth and curvature of a nerve are investigated around the middle thigh. As preliminary result, the curvature of the nerve helps to reduce the simulation amplitude necessary for nerve activation from far field stimulation.

  14. Transplantation of embryonic spinal cord neurons to the injured distal nerve promotes axonal regeneration after delayed nerve repair.

    PubMed

    Zhang, Wenming; Fang, Xinyu; Zhang, Chaofan; Li, Wen; Wong, Wai Man; Xu, Yejun; Wu, Wutian; Lin, Jianhua

    2017-03-01

    Peripheral nerve injury (PNI) usually results in poor functional recovery. Nerve repair is the common clinical treatment for PNI but is always obstructed by the chronic degeneration of the distal stump and muscle. Cell transplantation can alleviate the muscle atrophy after PNI, but the subsequent recovery of the locomotive function is seldom described. In this study, we combined cell transplantation and nerve repair to investigate whether the transplantation of embryonic spinal cord cells could benefit the delayed nerve repair. The experiment consisted of 3 stages: transection of the tibial nerve to induce 'pre-degeneration', a second surgery performed 2 weeks later for transplantation of E14 embryonic spinal cord cells or vehicle (culture medium) at the distal end of the injured nerve, and, 3 months later, the removal of the grafted cells and the cross-suturing of the residual distal end to the proximal end of a freshly cut ipsilateral common peroneal (CP) nerve. Cell survival and fate after the transplantation were investigated, and the functional recovery after the cross-suturing was compared between the groups. The grafted cells could survive and generate motor neurons, extending axons that were subsequently myelinated and forming synapses with the muscle. After the cross-suturing, the axonal regeneration from the proximal stump of the injured CP nerve and the functional recovery of the denervated gastrocnemius muscle were significantly promoted in the group receiving the cells. Our study presents a new perspective indicating that the transplantation of embryonic spinal cord neurons may be a valuable therapeutic strategy for PNI.

  15. Modulation of brain dead induced inflammation by vagus nerve stimulation.

    PubMed

    Hoeger, S; Bergstraesser, C; Selhorst, J; Fontana, J; Birck, R; Waldherr, R; Beck, G; Sticht, C; Seelen, M A; van Son, W J; Leuvenink, H; Ploeg, R; Schnuelle, P; Yard, B A

    2010-03-01

    Because the vagus nerve is implicated in control of inflammation, we investigated if brain death (BD) causes impairment of the parasympathetic nervous system, thereby contributing to inflammation. BD was induced in rats. Anaesthetised ventilated rats (NBD) served as control. Heart rate variability (HRV) was assessed by ECG. The vagus nerve was electrically stimulated (BD + STIM) during BD. Intestine, kidney, heart and liver were recovered after 6 hours. Affymetrix chip-analysis was performed on intestinal RNA. Quantitative PCR was performed on all organs. Serum was collected to assess TNFalpha concentrations. Renal transplantations were performed to address the influence of vagus nerve stimulation on graft outcome. HRV was significantly lower in BD animals. Vagus nerve stimulation inhibited the increase in serum TNFalpha concentrations and resulted in down-regulation of a multiplicity of pro-inflammatory genes in intestinal tissue. In renal tissue vagal stimulation significantly decreased the expression of E-selectin, IL1beta and ITGA6. Renal function was significantly better in recipients that received a graft from a BD + STIM donor. Our study demonstrates impairment of the parasympathetic nervous system during BD and inhibition of serum TNFalpha through vagal stimulation. Vagus nerve stimulation variably affected gene expression in donor organs and improved renal function in recipients.

  16. Grafting in revision rhinoplasty.

    PubMed

    Bussi, M; Palonta, F; Toma, S

    2013-06-01

    Rhinoplasty is one of the most difficult aesthetic surgery procedures with a high rate of revision. In revision rhinoplasty the surgeon should explore the patient's concerns and then verify the possibility to satisfy expectations after complete internal and external examination of the nose. For the vast majority of complex secondaries, an open approach is the only reasonable method. In fact, in secondary nasal surgery, because of the scarring process following the primary operation, dissection is tedious, and landmarks are lost. One of the main objectives for the surgeon who approaches secondary rhinoplasty is to restore the structural support of the nose and to replace the lost volume of soft tissues. To achieve this purpose, the surgeon must often rely on grafts. An ideal grafting material must be easy to sculpt, resistant to trauma, infection and extrusion, mechanically stable, inert and readily available. For all these reasons, autogenous cartilage grafts harvested from septum, auricular concha and rib represent the first choice in rhinoplasty. In order to obtain a camouflage graft that provides natural contouring to the nose, temporalis fascia can be used. All these carefully trimmed grafts are useful in tip revision surgery, in secondary surgery of the dorsum and to resolve or reduce functional problems.

  17. [Treatment of congenital facial paralysis with crossed innervation of facial nerve and electric field stimulation].

    PubMed

    Ysunza-Rivera, A; Iñigo-Muñoz, F; Drucker-Colín, R; Ortiz-Monasterio, F; Pesqueira, T

    1992-04-01

    Congenital facial palsy is a devastating deformity. At present time there are no reports of the early treatment of this disorder. The treatment may be to supply contralateral auto reinnervation to the affected muscles through a sural-facial nerve graft enhanced by electric field stimulation. The purpose of this paper is to report 5 cases of congenital facial palsy treated by a crossed sural-facial nerve graft, enhanced by electric field stimulation. One year after surgery, clinical and electrodiagnostic examinations indicate appropriate reinnervation activity in all the patients.

  18. Grafts for Ridge Preservation

    PubMed Central

    Jamjoom, Amal; Cohen, Robert E.

    2015-01-01

    Alveolar ridge bone resorption is a biologic phenomenon that occurs following tooth extraction and cannot be prevented. This paper reviews the vertical and horizontal ridge dimensional changes that are associated with tooth extraction. It also provides an overview of the advantages of ridge preservation as well as grafting materials. A Medline search among English language papers was performed in March 2015 using alveolar ridge preservation, ridge augmentation, and various graft types as search terms. Additional papers were considered following the preliminary review of the initial search that were relevant to alveolar ridge preservation. The literature suggests that ridge preservation methods and augmentation techniques are available to minimize and restore available bone. Numerous grafting materials, such as autografts, allografts, xenografts, and alloplasts, currently are used for ridge preservation. Other materials, such as growth factors, also can be used to enhance biologic outcome. PMID:26262646

  19. Treatment of Peroneal Nerve Injuries in the Multiligament Injured/Dislocated Knee.

    PubMed

    O'Malley, Michael P; Pareek, Ayoosh; Reardon, Patrick; Krych, Aaron; Stuart, Michael J; Levy, Bruce A

    2016-05-01

    Tibiofemoral knee dislocations are typically a consequence of high-energy mechanisms, causing significant damage to the soft tissue and osseous structures of the knee. Concomitant neurovascular injuries such as popliteal artery and peroneal nerve injuries are also common and can have significant long-term consequences. The mechanism typically involves a traction injury to the peroneal nerve subsequent to an extreme varus moment applied to the knee. Complete nerve injuries typically hold a worse prognosis than incomplete palsies. Rates of functional recovery in the setting of a complete palsy following a knee dislocation event have been dismal. A period of observation and nonoperative treatment is initially performed, utilizing orthotic devices to assist with lower extremity deficits. Surgical treatment options include neurolysis, nerve grafting, tendon transfer, arthrodesis, and direct motor nerve transfers. Motor nerve transfers continue to be explored with initial reports showing promising results.

  20. End-to-side neurorrhaphy as a salvage procedure for irreparable nerve injuries. Technical note.

    PubMed

    Oğün, Tunç C; Ozdemir, Mustafa; Senaran, Hakan; Ustün, Mehmet E

    2003-07-01

    After a few reports on end-to-side nerve repair at the beginning of the last century, the technique was put aside until its recent reintroduction. The authors present their results in three patients with median nerve defects that were between 15 and 22 cm long and treated using end-to-side median-to-ulnar neurorrhaphy through an epineurial window. The follow-up times were between 32 and 38 months. Sensory evaluation involved superficial touch, pinprick, and two-point discrimination tests. Motor evaluation was completed by assessing the presence of opposition and by palpating the abductor pollicis brevis muscle. Sensory recovery was observed in all patients in the median nerve dermatome, and motor recovery was absent, except in Case 1. End-to-side nerve repair can be a viable alternative to nerve grafting in patients with long gaps between the ends of the injured nerve.

  1. Long-term survival and integration of transplanted engineered nervous tissue constructs promotes peripheral nerve regeneration.

    PubMed

    Huang, Jason H; Cullen, D Kacy; Browne, Kevin D; Groff, Robert; Zhang, Jun; Pfister, Bryan J; Zager, Eric L; Smith, Douglas H

    2009-07-01

    Although peripheral nerve injury is a common consequence of trauma or surgery, there are insufficient means for repair. In particular, there is a critical need for improved methods to facilitate regeneration of axons across major nerve lesions. Here, we engineered transplantable living nervous tissue constructs to provide a labeled pathway to guide host axonal regeneration. These constructs consisted of stretch-grown, longitudinally aligned living axonal tracts inserted into poly(glycolic acid) tubes. The constructs (allogenic) were transplanted to bridge an excised segment of sciatic nerve in the rat, and histological analyses were performed at 6 and 16 weeks posttransplantation to determine graft survival, integration, and host regeneration. At both time points, the transplanted constructs were found to have maintained their pretransplant geometry, with surviving clusters of graft neuronal somata at the extremities of the constructs spanned by tracts of axons. Throughout the transplanted region, there was an intertwining plexus of host and graft axons, suggesting that the transplanted axons mediated host axonal regeneration across the lesion. By 16 weeks posttransplant, extensive myelination of axons was observed throughout the transplant region. Further, graft neurons had extended axons beyond the margins of the transplanted region, penetrating into the host nerve. Notably, this survival and integration of the allogenic constructs occurred in the absence of immunosuppression therapy. These findings demonstrate the promise of living tissue-engineered axonal constructs to bridge major nerve lesions and promote host regeneration, potentially by providing axon-mediated axonal outgrowth and guidance.

  2. Gravity related behavior of the acellular slime mold Physarum polycephalum (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Block, I.

    1992-01-01

    The objective of the experiment is to investigate the effect of near weightlessness on a single cell. The test object is the acellular slime mold Physarum polycephalum. This cell is composed of a network of protoplastic strands which perform rhythmic contractions in the minute range. These contractions of the strands' ectoplastic walls generate the force to drive the vigorous shuttle streaming of fluid protoplasm inside the strands (hydrostatic pressure flow). A net transport of protoplasm in one direction determines the direction of the cell's locomotion itself. In this way, gravity modifies the contraction rhythm of the strands, the streaming velocity of protoplasm in the strands, and the direction of locomotion of the whole slime mold (geotaxis). The other parts of this experiment will address the major question of how this cell, which does not possess any specialized gravireceptors, gets the information about the direction of the gravity vector. Details of the experimental setup are given.

  3. Graft-versus-host disease

    MedlinePlus

    GVHD; Bone marrow transplant - graft-versus-host disease; Stem cell transplant - graft-versus-host disease; Allogeneic transplant - ... GVHD may occur after a bone marrow, or stem cell, transplant in which someone receives bone marrow ...

  4. Is Sterile Better Than Aseptic? Comparing the Microbiology of Acellular Dermal Matrices

    PubMed Central

    Klein, Gabriel M.; Nasser, Ahmed E.; Phillips, Brett T.; Gersch, Robert P.; Fourman, Mitchell S.; Lilo, Sarit E.; Fritz, Jason R.; Khan, Sami U.; Dagum, Alexander B.

    2016-01-01

    Introduction: Postoperative infections are a major complication associated with tissue-expander-based breast reconstruction. The use of acellular dermal matrix (ADM) in this surgery has been identified as a potential reservoir of infection, prompting the development of sterile ADM. Although aseptic and sterile ADMs have been investigated, no study has focused on the occurrence and clinical outcome of bacterial colonization before implantation. Methods: Samples of aseptic AlloDerm, sterile Ready-To-Use AlloDerm, and AlloMax were taken before implantation. These samples were incubated in Tryptic soy broth overnight before being streaked on Trypticase soy agar, MacConkey agar, and 5% blood agar plates for culture and incubated for 48 hours. Culture results were cross-referenced with patient outcomes for 1 year postoperatively. Results: A total of 92 samples of ADM were collected from 63 patients. There were 15 cases of postoperative surgical site infection (16.3%). Only 1 sample of ADM (AlloMax) showed growth of Escherichia coli, which was likely a result of contamination. That patient did not develop any infectious sequelae. Patient outcomes showed no difference in the incidence of seroma or infection between sterile and aseptic ADMs. Conclusions: This study evaluates the microbiology of acellular dermal matrices before use in breast reconstruction. No difference was found in the preoperative bacterial load of either aseptic or sterile ADM. No significant difference was noted in infection or seroma formation. Given these results, we believe aseptic processing used on ADMs is equivalent to sterile processing in our patient cohort in terms of clinical infection and seroma occurrence postoperatively. PMID:27482500

  5. Adaptive bone formation in acellular vertebrae of sea bass (Dicentrarchus labrax L.).

    PubMed

    Kranenbarg, Sander; van Cleynenbreugel, Tim; Schipper, Henk; van Leeuwen, Johan

    2005-09-01

    Mammalian bone is an active tissue in which osteoblasts and osteoclasts balance bone mass. This process of adaptive modelling and remodelling is probably regulated by strain-sensing osteocytes. Bone of advanced teleosts is acellular yet, despite the lack of osteocytes, it is capable of an adaptive response to physical stimuli. Strenuous exercise is known to induce lordosis. Lordosis is a ventrad curvature of the vertebral column, and the affected vertebrae show an increase in bone formation. The effects of lordosis on the strain distribution in sea bass (Dicentrarchus labrax L.) vertebrae are assessed using finite element modelling. The response of the local tissue is analyzed spatially and ontogenetically in terms of bone volume. Lordotic vertebrae show a significantly increased strain energy due to the increased load compared with normal vertebrae when loaded in compression. High strain regions are found in the vertebral centrum and parasagittal ridges. The increase in strain energy is attenuated by a change in architecture due to the increased bone formation. The increased bone formation is seen mainly at the articular surfaces of the vertebrae, although some extra bone is formed in the vertebral centrum. Regions in which the highest strains are found do not spatially correlate with regions in which the most extensive bone apposition occurs in lordotic vertebrae of sea bass. Mammalian-like strain-regulated bone modelling is probably not the guiding mechanism in adaptive bone modelling of acellular sea bass vertebrae. Chondroidal ossification is found at the articular surfaces where it mediates a rapid adaptive response, potentially attenuating high stresses on the dorsal zygapophyses.

  6. Gallic acid grafting modulates the oxidative potential of ferrimagnetic bioactive glass-ceramic SC-45.

    PubMed

    Corazzari, Ingrid; Tomatis, Maura; Turci, Francesco; Ferraris, Sara; Bertone, Elisa; Prenesti, Enrico; Vernè, Enrica

    2016-12-01

    Magnetite-containing glass-ceramics are promising bio-materials for replacing bone tissue after tumour resection. Thanks to their ferrimagnetic properties, they generate heat when subjected to an alternated magnetic field. In virtue of this they can be employed for the hyperthermic treatment of cancer. Moreover, grafting anti-cancer drugs onto their surface produces specific anti-neoplastic activity in these biomaterials. Gallic acid (GA) exhibits antiproliferative activity which renders it a promising candidate for anticancer applications. In the present paper, the reactivity of ferrimagnetic glass-ceramic SC-45 grafted with GA (SC-45+GA) was studied in terms of ROS release, rupture of the C-H bond of the formate molecule and Fenton reactivity by EPR/spin trapping in acellular systems. The ability of these materials to cause lipid peroxidation was assessed by UV-vis/TBA assay employing linoleic acid as a model of membrane lipid. The results, compared to those obtained with SC-45, showed that GA grafting (i) significantly enhanced the Fenton reactivity and (ii) restored the former reactivity of SC-45 towards both the C-H bond and linoleic acid which had been completely suppressed by prolonged contact with water. Fe(2+) centres at the surface are probably implicated. GA, acting as a pro-oxidant, reduces Fe(3+) to Fe(2+) by maintaining a supply of Fe(2+) at the surface of SC-45+GA.

  7. Effect of schedule on reactogenicity and antibody persistence of acellular and whole-cell pertussis vaccines: value of laboratory tests as predictors of clinical performance.

    PubMed

    Miller, E; Ashworth, L A; Redhead, K; Thornton, C; Waight, P A; Coleman, T

    1997-01-01

    The performance of four acellular pertussis vaccines containing between two and five pertussis antigens combined with diphtheria and tetanus toxoids was compared with that of British whole-cell diphtheria/tetanus/pertussis (DTP) vaccine both in laboratory assays for potency, toxicity and immunogenicity, and for reactogenicity and immunogenicity in infants. Clinical responses were evaluated in double blind randomized Phase II trials using 3/5/9 month and 2/3/4 month schedules. The acellular DTPs had much lower toxicity than whole-cell DTP in laboratory tests and were significantly less pyrogenic than whole-cell DTP under both schedules. Local reactions were not consistently lower in acellular than whole-cell vaccinees and varied with the source of the diphtheria and tetanus antigens used. Differences in endotoxin level and content of active pertussis toxin (PT) between acellular DTP vaccines were not clinically significant. The reactogenicity advantage of the acellular vaccines was substantially reduced under the 2/3/4 month schedule due to the reduced reactogenicity of the whole-cell DTP vaccine when given at a younger age. There was no relationship between antigen content measured in micrograms per dose and ELISA antibody responses to filamentous haemagglutinin (FHA) and PT in infants, nor was murine immunogenicity predictive of immunogenicity in humans. Antibody response to PT was attenuated in the whole-cell group under the 2/3/4 month schedule but was unaffected in the group receiving acellular vaccines with individually purified components; antibody response to pertactin (69 kDa antigen) was similar in recipients of the whole-cell and component acellular vaccines under the 2/3/4 month schedule. PT antibody persistence until 4-5 years of age was significantly better in recipients of the component acellular than either the whole-cell vaccine or the co-purified acellular vaccine under the 3/5/9 month schedule. However, diphtheria antitoxin levels were reduced in

  8. Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration.

    PubMed

    Evans, Gregory R D; Brandt, Keith; Katz, Steven; Chauvin, Priscilla; Otto, Lisa; Bogle, Melissa; Wang, Bao; Meszlenyi, Rudolph K; Lu, Lichun; Mikos, Antonios G; Patrick, Charles W

    2002-02-01

    This study attempted to enhance the efficacy of peripheral nerve regeneration using our previously tested poly(L-lactic acid) (PLLA) conduits by incorporating them with allogeneic Schwann cells (SCs). The SCs were harvested, cultured to obtain confluent monolayers and two concentrations (1 x 10(4) and 1 x 10(6) SC/ml) were combined with a collagen matrix (Vitrogen) and injected into the PLLA conduits. The conduits were then implanted into a 12 mm right sciatic nerve defect in rats. Three control groups were used: isografts, PLLA conduits filled with collagen alone and empty silicone tubes. The sciatic functional index (SFI) was calculated monthly through four months. At the end of second and fourth months, the gastrocnemius muscle was harvested and weighed for comparison and the graft conduit and distal nerve were harvested for histomorphologic analysis. The mean SFI demonstrated no group differences from isograft control. By four months, there was no significant difference in gastrocnemius muscle weight between the experimental groups compared to isograft controls. At four months, the distal nerve demonstrated a statistically lower number of axons mm2 for the high and low SC density groups and collagen control. The nerve fiber density was significantly lower in all of the groups compared to isograft controls by four months. The development of a "bioactive" nerve conduit using tissue engineering to replace autogenous nerve grafts offers a potential approach to improved patient care. Although equivalent nerve regeneration to autografts was not achieved, this study provides promising results for further investigation.

  9. Bone Grafts in Craniofacial Surgery

    PubMed Central

    Elsalanty, Mohammed E.; Genecov, David G.

    2009-01-01

    Reconstruction of cranial and maxillofacial defects is a challenging task. The standard reconstruction method has been bone grafting. In this review, we shall describe the biological principles of bone graft healing, as pertinent to craniofacial reconstruction. Different types and sources of bone grafts will be discussed, as well as new methods of bone defect reconstruction. PMID:22110806

  10. Grafting effects on vegetable quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States, vegetable grafting is rare and few experiments have been done to determine optimal grafting procedures and production practices for different geographical and climatic regions in America. Grafting vegetables to control soilborne disease is a common practice in Asia, parts of E...

  11. Masseteric-facial nerve neurorrhaphy: results of a case series.

    PubMed

    Biglioli, Federico; Colombo, Valeria; Rabbiosi, Dimitri; Tarabbia, Filippo; Giovanditto, Federica; Lozza, Alessandro; Cupello, Silvia; Mortini, Pietro

    2017-01-01

    OBJECTIVE Facial palsy is a well-known functional and esthetic problem that bothers most patients and affects their social relationships. When the time between the onset of paralysis and patient presentation is less than 18 months and the proximal stump of the injured facial nerve is not available, another nerve must be anastomosed to the facial nerve to reactivate its function. The masseteric nerve has recently gained popularity over the classic hypoglossus nerve as a new motor source because of its lower associated morbidity rate and the relative ease with which the patient can activate it. The aim of this work was to evaluate the effectiveness of masseteric-facial nerve neurorrhaphy for early facial reanimation. METHODS Thirty-four consecutive patients (21 females, 13 males) with early unilateral facial paralysis underwent masseteric-facial nerve neurorrhaphy in which an interpositional nerve graft of the great auricular or sural nerve was placed. The time between the onset of paralysis and surgery ranged from 2 to 18 months (mean 13.3 months). Electromyography revealed mimetic muscle fibrillations in all the patients. Before surgery, all patients had House-Brackmann Grade VI facial nerve dysfunction. Twelve months after the onset of postoperative facial nerve reactivation, each patient underwent a clinical examination using the modified House-Brackmann grading scale as a guide. RESULTS Overall, 91.2% of the patients experienced facial nerve function reactivation. Facial recovery began within 2-12 months (mean 6.3 months) with the restoration of facial symmetry at rest. According to the modified House-Brackmann grading scale, 5.9% of the patients had Grade I function, 61.8% Grade II, 20.6% Grade III, 2.9% Grade V, and 8.8% Grade VI. The morbidity rate was low; none of the patients could feel the loss of masseteric nerve function. There were only a few complications, including 1 case of postoperative bleeding (2.9%) and 2 local infections (5.9%), and a few

  12. Skin graft - slideshow

    MedlinePlus

    ... anatomy URL of this page: //medlineplus.gov/ency/presentations/100100.htm Skin graft - series—Normal anatomy To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 4 Go to slide 2 ...

  13. Acrylonitrile grafted to PVDF

    SciTech Connect

    Yang, Jin; Eitouni, Hany Basam

    2015-03-31

    PVDF-g-PAN has been synthesized by grafting polyacrylonitrile onto polyvinylidene fluoride using an ATRP/AGET method. The novel polymer is ionically conducive and has much more flexibility than PVDF alone, making it especially useful either as a binder in battery cell electrodes or as a polymer electrolyte in a battery cell.

  14. Grafting for disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary purpose of grafting vegetables worldwide has been to provide resistance to soilborne diseases. The potential loss of methyl bromide as a soil fumigant combined with pathogen resistance to commonly used pesticides will make resistance to soil born pathogens even more important in the futu...

  15. Grafting for disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary purpose of grafting vegetables worldwide has been to provide resistance to soil-borne diseases. The potential loss of methyl bromide as a soil fumigant combined with pathogen resistance to commonly used pesticides will make resistance to soil-borne pathogens even more important in the fu...

  16. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects.

    PubMed

    Wang, Yang; Li, Zheng-Wei; Luo, Min; Li, Ya-Jun; Zhang, Ke-Qiang

    2015-06-01

    found with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel grafts than with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells grafts and the autologous nerve grafts.

  17. Peripheral nerve surgery.

    PubMed

    McQuarrie, I G

    1985-05-01

    In treating the three main surgical problems of peripheral nerves--nerve sheath tumors, entrapment neuropathies, and acute nerve injuries--the overriding consideration is the preservation and restoration of neurologic function. Because of this, certain other principles may need to be compromised. These include achieving a gross total excision of benign tumors, employing conservative therapy as long as a disease process is not clearly progressing, and delaying repair of a nerve transection until the skin wound has healed. Only three pathophysiologic processes need be considered: neurapraxia (focal segmental dymyelination), axonotmesis (wallerian degeneration caused by a lesion that does not disrupt fascicles of nerve fibers), and neurotmesis (wallerian degeneration caused by a lesion that interrupts fascicles). With nerve sheath tumors and entrapment neuropathies, the goal is minimize the extent to which neurapraxia progresses to axonotmesis. The compressive force is relieved without carrying out internal neurolysis, a procedure that is poorly tolerated, presumably because a degree of nerve ischemia exists with any long-standing compression. When the nerve has sustained blunt trauma (through acute compression, percussion, or traction), the result can be a total loss of function and an extensive neuroma-in-continuity (scarring within the nerve). However, the neural pathophysiology may amount to nothing more than axonotmesis. Although this lesion, in time, leads to full and spontaneous recovery, it must be differentiated from the neuroma-in-continuity that contains disrupted fascicles requiring surgery. Finally, with open nerve transection, the priority is to match the fascicles of the proximal stump with those of the distal stump, a goal that is best achieved if primary neurorrhaphy is carried out.

  18. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    PubMed

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure.

  19. Dynamic Quantification of Host Schwann Cell Migration into Peripheral Nerve Allografts

    PubMed Central

    Whitlock, Elizabeth L.; Myckatyn, Terence M.; Tong, Alice Y.; Yee, Andrew; Yan, Ying; Magill, Christina K.; Johnson, Philip J.; Mackinnon, Susan E.

    2010-01-01

    Host Schwann cell (SC) migration into nerve allografts is the limiting factor in the duration of immunosuppression following peripheral nerve allotransplantation, and may be affected by different immunosuppressive regimens. Our objective was to compare SC migration patterns between clinical and experimental immunosuppression regimens both over time and at the harvest endpoint. Eighty mice that express GFP under the control of the Schwann cell specific S100 promoter were engrafted with allogeneic, nonfluorescent sciatic nerve grafts. Mice received immunosuppression with either tacrolimus (FK506), or experimental T-cell triple costimulation blockade (CSB), consisting of CTLA4-immunoglobulin fusion protein, anti-CD40 monoclonal antibody, and anti-inducible costimulator monoclonal antibody. Migration of GFP-expressing host SCs into wild-type allografts was assessed in vivo every 3 weeks until 15 weeks postoperatively, and explanted allografts were evaluated for immunohistochemical staining patterns to differentiate graft from host SCs. Immunosuppression with tacrolimus exhibited a plateau of SC migration, characterized by significant early migration (< 3 weeks) followed by a constant level of host SCs in the graft (15 weeks). At the endpoint, graft fluorescence was decreased relative to surrounding host nerve, and donor SCs persisted within the graft. CSB-treated mice displayed gradually increasing migration of host SCs into the graft, without the plateau noted in tacrolimus-treated mice, and also maintained a population of donor SCs at the 15-week endpoint. SC migration patterns are affected by immunosuppressant choice, particularly in the immediate postoperative period, and the use of a single treatment of CSB may allow for gradual population of nerve allografts with host SCs. PMID:20633557

  20. The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model

    PubMed Central

    Yurie, Hirofumi; Ikeguchi, Ryosuke; Aoyama, Tomoki; Kaizawa, Yukitoshi; Tajino, Junichi; Ito, Akira; Ohta, Souichi; Oda, Hiroki; Takeuchi, Hisataka; Akieda, Shizuka; Tsuji, Manami; Nakayama, Koichi; Matsuda, Shuichi

    2017-01-01

    Background Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit. Methods We developed six scaffold-free conduits from human normal dermal fibroblasts using a Bio 3D Printer. Twelve adult male rats with immune deficiency underwent mid-thigh-level transection of the right sciatic nerve. The resulting 5-mm nerve gap was bridged using 8-mm Bio 3D conduits (Bio 3D group, n = 6) and silicone tube (silicone group, n = 6). Several assessments were conducted to examine nerve regeneration eight weeks post-surgery. Results Kinematic analysis revealed that the toe angle to the metatarsal bone at the final segment of the swing phase was significantly higher in the Bio 3D group than the silicone group (-35.78 ± 10.68 versus -62.48 ± 6.15, respectively; p < 0.01). Electrophysiological studies revealed significantly higher compound muscle action potential in the Bio 3D group than the silicone group (53.60 ± 26.36% versus 2.93 ± 1.84%; p < 0.01). Histological and morphological studies revealed neural cell expression in all regions of the regenerated nerves and the presence of many well-myelinated axons in the Bio 3D group. The wet muscle weight of the tibialis anterior muscle was significantly higher in the Bio 3D group than the silicone group (0.544 ± 0.063 versus 0.396 ± 0.031, respectively; p < 0.01). Conclusions We confirmed that scaffold-free Bio 3D conduits composed entirely of fibroblast cells promote nerve regeneration in a rat sciatic nerve model. PMID:28192527

  1. The versatile autogenous rib graft in septorhinoplasty.

    PubMed

    Sherris, D A; Kern, E B

    1998-01-01

    In the graft depleted revision rhinoplasty patient and the patient with major tissue needs, alternatives to septal and conchal cartilage grafts are needed. The costal cartilage graft and rib bone/costal cartilage combination graft are excellent alternatives. In this study 14 patients received 40 grafts from 20 autogenous ribs harvested during septorhinoplasty. Materials were harvested for use as septal replacement grafts, cantilevered grafts, dorsal onlay grafts, columellar struts, and tip grafts. Patient followup was 6 to 31 months, and no evidence of graft resorption or warpage was evident during that period. Complications of harvest were minimal, and harvest techniques are detailed.

  2. Latissimus Dorsi Tendon Transfer with GraftJacket® Augmentation to Increase Tendon Length for an Irreparable Rotator Cuff Tear

    PubMed Central

    2017-01-01

    Massive irreparable rotator cuff tears can be reconstructed with latissimus dorsi tendon transfers (LDTT). Although uncommon, the natural length of the latissimus dorsi tendon (LDT) could be insufficient for transfer even after adequate soft tissue releases. Descriptions of cases where grafts were needed to lengthen the LDT are therefore rare. We located only two reports of the use of an acellular dermal matrix to increase effective tendon length in tendon transfers about the shoulder: (1) GraftJacket patch for a pectoralis major tendon reconstruction and (2) ArthroFlex® patch for LDTT. Both of these brands of allograft patches are obtained from human cadavers. These products are usually used to cover soft tissue repairs and offer supplemental support rather than for increasing tendon length. Extending the LDTT with GraftJacket to achieve adequate length, to our knowledge, has not been reported in the literature. We report the case of a 50-year-old male who had a massive, irreparable left shoulder rotator cuff tear that was reconstructed with a LDTT. The natural length of his LDT was insufficient for transfer. This unexpected situation was rectified by sewing two patches of GraftJacket to the LDT. The patient had greatly improved shoulder function at two-year follow-up. PMID:28194290

  3. Sciatic nerve repair with tissue engineered nerve: Olfactory ensheathing cells seeded poly(lactic-co-glygolic acid) conduit in an animal model

    PubMed Central

    Tan, C W; Ng, M H; Ohnmar, H; Lokanathan, Y; Nur-Hidayah, H; Roohi, S A; Ruszymah, BHI; Nor-Hazla, M H; Shalimar, A; Naicker, A S

    2013-01-01

    Background and Aim: Synthetic nerve conduits have been sought for repair of nerve defects as the autologous nerve grafts causes donor site morbidity and possess other drawbacks. Many strategies have been investigated to improve nerve regeneration through synthetic nerve guided conduits. Olfactory ensheathing cells (OECs) that share both Schwann cell and astrocytic characteristics have been shown to promote axonal regeneration after transplantation. The present study was driven by the hypothesis that tissue-engineered poly(lactic-co-glycolic acid) (PLGA) seeded with OECs would improve peripheral nerve regeneration in a long sciatic nerve defect. Materials and Methods: Sciatic nerve gap of 15 mm was created in six adult female Sprague-Dawley rats and implanted with PLGA seeded with OECs. The nerve regeneration was assessed electrophysiologically at 2, 4 and 6 weeks following implantation. Histopathological examination, scanning electron microscopic (SEM) examination and immunohistochemical analysis were performed at the end of the study. Results: Nerve conduction studies revealed a significant improvement of nerve conduction velocities whereby the mean nerve conduction velocity increases from 4.2 ΁ 0.4 m/s at week 2 to 27.3 ΁ 5.7 m/s at week 6 post-implantation (P < 0.0001). Histological analysis revealed presence of spindle-shaped cells. Immunohistochemical analysis further demonstrated the expression of S100 protein in both cell nucleus and the cytoplasm in these cells, hence confirming their Schwann-cell-like property. Under SEM, these cells were found to be actively secreting extracellular matrix. Conclusion: Tissue-engineered PLGA conduit seeded with OECs provided a permissive environment to facilitate nerve regeneration in a small animal model. PMID:24379458

  4. Bone Graft Substitution and Augmentation.

    PubMed

    Nauth, Aaron; Lane, Joseph; Watson, J Tracy; Giannoudis, Peter

    2015-12-01

    Selection of appropriate bone graft or bone graft substitute requires careful recognition of the bone healing needs of the patient's specific clinical problem and a thorough understanding of the different properties possessed by the available bone grafts and substitutes. Although autogenous iliac crest bone graft remains the gold standard of treatment for delayed unions, nonunions, and bone defects, there are a number of promising alternatives available, and emerging evidence suggests that they can be very effective when used in the proper setting. Among these, reamer-irrigator-aspirator bone graft, bone marrow concentrate, bone morphogenetic proteins, and calcium phosphate cements have received a great deal of attention in the literature. This review describes these grafts in detail along with the evidence for their use. In addition, a framework is provided for selecting the appropriate graft or substitute based on their provided properties.

  5. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration

    PubMed Central

    Wagner, Darcy E.; Bonenfant, Nicholas R.; Sokocevic, Dino; DeSarno, Michael; Borg, Zachary; Parsons, Charles; Brooks, Elice M.; Platz, Joseph; Khalpey, Zain; Hoganson, David M.; Deng, Bin; Lam, Ying Wai; Oldinski, Rachael A.; Ashikaga, Takamaru; Weiss, Daniel J.

    2014-01-01

    Acellular scaffolds from complex whole organs such as lung are being increasingly studied for ex vivo organ generation and for in vitro studies of cell-extracellular matrix interactions. We have established effective methods for efficient de- and recellularization of large animal and human lungs including techniques which allow multiple small segments (∼1–3cm3) to be excised that retain 3-dimensional lung structure. Coupled with the use of a synthetic pleural coating, cells can be selectively physiologically inoculated via preserved vascular and airway conduits. Inoculated segments can be further sliced for high throughput studies. Further, we demonstrate thermography as a powerful noninvasive technique for monitoring perfusion decellularization and for evaluating preservation of vascular and airway networks following human and porcine lung decellularization. Collectively, these techniques are a significant step forward as they allow high throughput in vitro studies from a single lung or lobe in a more biologically relevant, three-dimensional acellular scaffold. PMID:24411675

  6. THE POTENTIAL ROLES FOR ADIPOSE TISSUE IN PERIPHERAL NERVE REGENERATION

    PubMed Central

    Walocko, Frances M.; Khouri, Roger K.; Urbanchek, Melanie G.; Levi, Benjamin; Cederna, Paul S.

    2016-01-01

    Introduction This review summarizes current understanding about the role of adipose-derived tissues in peripheral nerve regeneration and discusses potential advances that would translate this approach into the clinic. Methods We searched PubMed for in vivo, experimental studies on the regenerative effects of adipose-derived tissues on peripheral nerve injuries. We summarized the methods and results for the 42 experiments. Results Adipose-derived tissues enhanced peripheral nerve regeneration in 86% of the experiments. Ninety-five percent evaluated purified, cultured, or differentiated adipose tissue. These approaches have regulatory and scaling burdens, restricting clinical usage. Only one experiment tested the ability of adipose tissue to enhance nerve regeneration in conjunction with nerve autografts, the clinical gold standard. Conclusion Scientific studies illustrate that adipose-derived tissues enhance regeneration of peripheral nerves. Before this approach achieves clinical acceptance, fat processing must become automated and regulatory approval achieved. Animal studies using whole fat grafts are greatly needed for clinical translation. PMID:26773850

  7. Long thoracic nerve injury due to an electric burn.

    PubMed

    Still, J M; Law, E J; Duncan, J W; Hughes, H F

    1996-01-01

    A 19-year-old white man was burned over 7.5% of his body when he sustained an electric injury from a transformer. There was no associated fall or loss of consciousness. Debridement and grafting were required. The patient had some transient weakness of the muscles of his right arm associated with lower cervical nerve-root injury. This subsequently improved. He also was found to have paralysis of the serratus anterior muscle, with winging of the scapula due to long thoracic nerve injury. This has not improved. A surgical procedure suggested to improve function of the shoulder was rejected by the patient. This is only the second case reported of long thoracic nerve injury due to an electric burn of which we are aware.

  8. Quadratus lumborum block for femoral–femoral bypass graft placement

    PubMed Central

    Watanabe, Kunitaro; Mitsuda, Shingo; Tokumine, Joho; Lefor, Alan Kawarai; Moriyama, Kumi; Yorozu, Tomoko

    2016-01-01

    Abstract Introduction: Atherosclerosis has a complex etiology that leads to arterial obstruction and often results in inadequate perfusion of the distal limbs. Patients with atherosclerosis can have severe complications of this condition, with widespread systemic manifestations, and the operations undertaken are often challenging for anesthesiologists. Case report: A 79-year-old woman with chronic heart failure and respiratory dysfunction presented with bilateral gangrene of the distal lower extremities with obstruction of the left common iliac artery due to atherosclerosis. Femoral–femoral bypass graft and bilateral foot amputations were planned. Spinal anesthesia failed due to severe scoliosis and deformed vertebrae. General anesthesia was induced after performing multiple nerve blocks including quadratus lumborum, sciatic nerve, femoral nerve, lateral femoral cutaneous nerve, and obturator nerve blocks. However, general anesthesia was abandoned because of deterioration in systemic perfusion. The surgery was completed; the patient remained comfortable and awake without the need for further analgesics. Conclusion: Quadratus lumborum block may be a useful anesthetic technique to perform femoral–femoral bypass. PMID:27583851

  9. Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering.

    PubMed

    Prabhakaran, Molamma P; Vatankhah, Elham; Ramakrishna, Seeram

    2013-10-01

    Nerve regeneration following the injury of nerve tissue remains a major issue in the therapeutic medical field. Various bio-mimetic strategies are employed to direct the nerve growth in vitro, among which the chemical and topographical cues elicited by the scaffolds are crucial parameters that is primarily responsible for the axon growth and neurite extension involved in nerve regeneration. We carried out electrospinning for the first time, to fabricate both random and aligned nanofibers of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate; PHBV) and composite PHBV/collagen nanofibers with fiber diameters in the range of 386-472 nm and 205-266 nm, respectively. To evaluate the potential of electrospun aligned nanofibers of PHBV and composite scaffolds as a substrate for nerve regeneration, we cultured nerve cells (PC12) and studied the biocompatibility effect along with neurite extension by immunostaining studies. Cell proliferation assays showed 40.01% and 5.48% higher proliferation of nerve cells on aligned PHBV/Coll50:50 nanofibers compared to cell proliferation on aligned PHBV and PHBV/Col75:25 nanofibers, respectively. Aligned nanofibers of PHBV/Coll provided contact guidance to direct the orientation of nerve cells along the direction of the fibers, thus endowing elongated cell morphology, with bi-polar neurite extensions required for nerve regeneration. Results showed that aligned PHBV/Col nanofibers are promising substrates than the random PHBV/Col nanofibers for application as bioengineered grafts for nerve tissue regeneration.

  10. Spider Silk Constructs Enhance Axonal Regeneration and Remyelination in Long Nerve Defects in Sheep

    PubMed Central

    Radtke, Christine; Allmeling, Christina; Waldmann, Karl-Heinz; Reimers, Kerstin; Thies, Kerstin; Schenk, Henning C.; Hillmer, Anja; Guggenheim, Merlin; Brandes, Gudrun; Vogt, Peter M.

    2011-01-01

    Background Surgical reapposition of peripheral nerve results in some axonal regeneration and functional recovery, but the clinical outcome in long distance nerve defects is disappointing and research continues to utilize further interventional approaches to optimize functional recovery. We describe the use of nerve constructs consisting of decellularized vein grafts filled with spider silk fibers as a guiding material to bridge a 6.0 cm tibial nerve defect in adult sheep. Methodology/Principal Findings The nerve constructs were compared to autologous nerve grafts. Regeneration was evaluated for clinical, electrophysiological and histological outcome. Electrophysiological recordings were obtained at 6 months and 10 months post surgery in each group. Ten months later, the nerves were removed and prepared for immunostaining, electrophysiological and electron microscopy. Immunostaining for sodium channel (NaV 1.6) was used to define nodes of Ranvier on regenerated axons in combination with anti-S100 and neurofilament. Anti-S100 was used to identify Schwann cells. Axons regenerated through the constructs and were myelinated indicating migration of Schwann cells into the constructs. Nodes of Ranvier between myelin segments were observed and identified by intense sodium channel (NaV 1.6) staining on the regenerated axons. There was no significant difference in electrophysiological results between control autologous experimental and construct implantation indicating that our construct are an effective alternative to autologous nerve transplantation. Conclusions/Significance This study demonstrates that spider silk enhances Schwann cell migration, axonal regrowth and remyelination including electrophysiological recovery in a long-distance peripheral nerve gap model resulting in functional recovery. This improvement in nerve regeneration could have significant clinical implications for reconstructive nerve surgery. PMID:21364921

  11. An international collaborative study of the effect of active pertussis toxin on the modified Kendrick test for acellular pertussis vaccines.

    PubMed

    Xing, Dorothy; Gaines Das, Rose; Douglas-Bardsley, Alex; Asokanathan, Catpagavalli; Corbel, Michael

    2014-03-01

    Speculation that the Japanese modified intra-cerebral challenge assay, which is used in several countries for control of acellular pertussis vaccines, depends on the presence of small amounts of active pertussis toxin led to an assumption that it may not be appropriate for highly toxoided or genetically detoxified vaccines. Consequently, at the recommendation of a World Health Organisation AD Hoc Working Group on mouse protection models for testing and control of acellular pertussis vaccine, the effect of pertussis toxin on the modified intra-cerebral challenge assay (modified Kendrick, MICA) was evaluated in an international collaborative study. Results of this study showed that for genetically detoxified vaccines both with and without active pertussis toxin the MICA clearly distinguished mice vaccinated with acellular vaccines from unvaccinated mice and gave a significant dose-response relationship. However, vaccine samples containing active pertussis toxin (5 or 50 ng/single human dose) appeared to be more potent than the equivalent sample without active pertussis toxin. Similar results were also given by two respiratory infection models (intranasal and aerosol) included in the study. The results also indicated that the effect of pertussis toxin may vary depending on mouse strain.

  12. Laparoscopic injury of the obturator nerve during fertility-sparing procedure for cervical cancer

    PubMed Central

    2012-01-01

    Background Intraoperative injury of the obturator nerve has rarely been reported in patients with gynecological malignancies undergoing extensive radical surgeries. Irreversible damage of this nerve causes thigh paresthesia and claudication. Intraoperative repair may be done by end-to-end anastomosis or grafting when achieving tension-free anastomosis is not possible. Case presentation A 28-year-old woman with stage IB cervical cancer underwent fertility–sparing surgery, including conization and bilateral pelvic lymphadenectomy. The left obturator nerve was damaged intraoperatively during pelvic dissection. Conclusion Immediate laparoscopic repair was successful and there was no functional deficit in the left thigh for six months postoperatively. PMID:22931409

  13. Glossopharyngeal Nerve Schwannoma

    PubMed Central

    Puzzilli, F.; Mastronardi, L.; Agrillo, U.; Nardi, P.

    1999-01-01

    Complete resection with conservation of cranial nerves is the primary goal of contemporary surgery for lower cranial nerve tumors. We describe the case of a patient with a schwannoma of the left glossopharyngeal nerve, operated on in our Neurosurgical Unit. The far lateral approach combined with laminectomy of the posterior arch of C1 was done in two steps. The procedure allowed total tumor resection and was found to be better than classic unilateral suboccipital or combined supra- and infratentorial approaches. The advantages and disadvantages of the far lateral transcondylar approach, compared to the other more common approaches, are discussed. ImagesFigure 1Figure 2 PMID:17171083

  14. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans.

    PubMed

    Gordon, Tessa

    2016-04-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.

  15. Carotid and cranial nerve reconstruction after removal of cavernous sinus lesions.

    PubMed

    Sekhar, L N; Sen, C N; Lanzino, G; Pomonis, S

    1991-12-01

    During the last 7 years, approximately 170 neoplasms, and 35 vascular lesions involving the cavernous sinus were treated by the first two authors. During the treatment of such lesions, the direct vein graft reconstruction of the internal carotid artery from the petrous to the supraclinoid or infraclinoid ICA was performed in 23 patients. Graft occlusion occurred in 3 patients and in one of these, it was successfully salvaged by placing a long venous graft from the extracranial ICA to the M3 segment of the middle cerebral artery. The latter 3 patients were neurologically normal. One patient with significant atherosclerotic disease suffered the dissection of the distal internal carotid artery with the graft being patent. The suturing technique. This patient eventually died. Two patients with severely compromised collateral circulation suffered minor strokes due to the temporary occlusion of the ICA. This has been avoided in the more recent patients by the adoption of brain protection techniques such as moderate hypothermia, induced hypertension, and barbiturate coma. Low dose heparin therapy during grafting and high dose intravenous steroids prior to the grafting also appear to be beneficial. Direct vein graft reconstruction of the intracavernous carotid artery is a valuable tool during the management of cavernous sinus lesions. The advantages and disadvantages of this technique as well as the pros and cons of other revascularization techniques will be discussed. During microsurgical removal of cavernous sinus lesions, the cranial nerves III-VI were reconstructed by direct resuture or by nerve grafting in 16 patients. In the majority of these patients, recovery of cranial nerve function was observed, which was very encouraging.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Collaborative study on a Guinea pig serological method for the assay of acellular pertussis vaccines.

    PubMed

    Winsnes, R; Sesardic, D; Daas, A; Terao, E; Behr-Gross, M-E

    2009-10-01

    An international collaborative study (coded BSP083) was performed under the aegis of the Biological Standardisation Programme supported by the Council of Europe and the European Commission, with the aim of replacing the in vivo challenge assays for potency determination of combined acellular pertussis (aP) vaccines by a refined procedure also allowing reduction of animal use. This study investigates whether the immunogenicity of aP vaccine components could be assayed in a guinea pig (gp) serology model, using the same vaccine immunising doses as for D and T components potency testing, instead of using separate animals as is currently done. The BSP83 project is a follow up of 3 former collaborative studies (coded BSP019, BSP034 and BSP035) on serological methods for the potency testing of tetanus (T) and diphtheria (D) vaccines for human use. The use of gp instead of mice serology has the advantage of providing a larger volume of good quality antiserum for the assay of several vaccine components in the same sample, hence providing the opportunity for animal sparing. The results of Phase I of the study demonstrated that gp serology may be a useful method for the immunogenicity assay of acellular pertussis vaccines. This was confirmed in Phase II of the study, using 7 different combined aP vaccines in an international collaborative study involving 17 laboratories from both public and private sectors. Clear dose-response relationships were observed for different vaccines by ELISA, for antibodies against aP antigens, i.e. pertussis toxin (PT), filamentous haemagglutinin (FHA), fimbrial agglutinogens-2/3 (Fim 2/3) and pertactin (PRN). Intra- and inter-laboratory variations of aP ELISA results were found to be within an acceptable range. For some combined vaccines, however, the range of vaccine dilutions for immunisation confirmed to be optimal for D and T potency testing may not provide optimal dose-response for all aP components. Method adjustments may thus be required

  17. Corneal grafting and banking.

    PubMed

    Ehlers, Niels; Hjortdal, Jesper; Nielsen, Kim

    2009-01-01

    Corneal transplantation was conceptualized at the end of the 18th century, but it took more than 100 years before human corneal grafting was introduced. The greatest step forward was the demonstration by Filatov that corneal tissue can be collected and used post mortem. The history of eye banking includes the development of preservation techniques. Storage in cold to minimize microbial growth and tissue disintegration was first choice but during the last 30 years this has been taken over by warm storage (organ culture) where the donor cornea proves its sterility and vitality before being transferred to the recipient. The long-term organ culture storage makes exchange between centres possible and allows for histocompatibility matching. The internationalization led to the establishing of the European Eye Bank Association but also to an increasing number of governmental regulations. Developments in years to come may lead to control of graft biomechanics and optics. This technical development tends to favour a centralization.

  18. [Grafting of carotid arteries].

    PubMed

    Belov, Iu V; Stepanenko, A B; Gens, A P; Bazylev, V V; Seleznev, M N; Savichev, D D

    2005-01-01

    Over 5-years, 167 reconstructive surgeries for stenosis of internal carotid arteries (ICA) were performed in 124 patients. Mean age of the patients was 63.5 years. One hundred and twenty-nine carotid endarterectomies (CEAE) in 86 patients and 38 reconstructive operations of ICA in 38 patients were performed. There were no lethal outcomes in short- and long-term postoperative period. In short-term period after prosthesis of ICA restenosis was revealed in 3% patients, after eversion CEAE in 3% patients the embolism was seen, after standard CEAE restenosis were diagnosed in 8% patients and thrombosis -- in 3%. In long-term period after grafting of ICA the strokes were seen in 3%, stenosis -- in 6% patients, after eversion endarterectomy -- in 0 and 3% patients, and after standard CEAE -- in 3 and 24% patients, respectively. It is concluded that grafting of ICA is adequate surgical method of reconstruction and stroke prevention in specific variants of carotid atherosclerosis.

  19. Dacron Graft Aneurysm Treated by Endovascular Stent-Graft

    SciTech Connect

    Ofer, Amos; Nitecki, Samy; Hoffman, Aaron; Engel, Ahuva

    2001-01-15

    A 72-year old man who underwent aorto-bifemoral bypass with insertion of a Dacron graft 18 years previously presented with an aneurysm in the left limb of his graft. Angiography also demonstrated a bilateral occlusion of the popliteal arteries. Computed tomography (CT) angiography was performed and showed a localized dilation of 3 cm in the left limb of the graft, which had a diameter of 14 mm throughout. In view of the technical difficulties of a surgical procedure, an endovascular stent was considered. Through a left femoral arteriotomy, a stent graft was inserted and deployed in the left limb of the graft. This resulted in total exclusion of the Dacron graft aneurysm. To the best of our knowledge, this is the first report of such a procedure.

  20. Siloxane-grafted membranes

    DOEpatents

    Friesen, D.T.; Obligin, A.S.

    1989-10-31

    Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional group. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

  1. Siloxane-grafted membranes

    DOEpatents

    Friesen, Dwayne T.; Obligin, Alan S.

    1989-01-01

    Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional groups. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

  2. Underestimating the safety benefits of a new vaccine: the impact of acellular pertussis vaccine versus whole-cell pertussis vaccine on health services utilization.

    PubMed

    Hawken, Steven; Manuel, Douglas G; Deeks, Shelley L; Kwong, Jeffrey C; Crowcroft, Natasha S; Wilson, Kumanan

    2012-12-01

    The population-level safety benefits of the acellular pertussis vaccine may have been underestimated because only specific adverse events were considered, not overall impact on health services utilization. Using the Vaccine and Immunization Surveillance in Ontario (VISION) system, the authors analyzed data on 567,378 children born between April 1994 and March 1996 (before introduction of acellular pertussis vaccine) and between April 1998 and March 2000 (after introduction of acellular pertussis vaccine) in Ontario, Canada. Using the self-controlled case series study design, they examined emergency room visits and hospital admissions occurring after routine pediatric vaccinations. The authors determined the relative incidence of events taking place before introduction of the acellular vaccine versus after introduction by calculating relative incidence ratios (RIRs). The observed RIRs demonstrated a highly statistically significant reduction in relative incidence after introduction of the acellular vaccine. RIRs for vaccine administered at ages 2, 4, 6, and 18 months were 1.82 (95% confidence interval (CI): 1.64, 2.01), 1.91 (95% CI: 1.71, 2.13), 1.54 (95% CI: 1.38, 1.72), and 1.51 (95% CI: 1.34, 1.69), respectively, comparing event rates before the introduction of acellular vaccine with those after introduction. The authors estimated that approximately 90 emergency room visits and 9 admissions per month were avoided by switching to the acellular vaccine, which is a 38-fold higher impact than when they considered only admissions for febrile and afebrile convulsions. Future analyses comparing vaccines for safety should examine specific endpoints and general health services utilization.

  3. Degenerative Nerve Diseases

    MedlinePlus

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many of these diseases are genetic. Sometimes the cause is a medical ...

  4. Optic Nerve Imaging

    MedlinePlus

    ... machines can help monitor and detect loss of optic nerve fibers. The Heidelberg Retina Tomograph (HRT) is a special ... keeping organized, you can establish a routine that works for you. Read more » Are You at Risk ...

  5. Axillary nerve dysfunction

    MedlinePlus

    ... Causes Axillary nerve dysfunction is a form of peripheral neuropathy . It occurs when there is damage to the ... Multiple mononeuropathy Muscle function loss Numbness and tingling Peripheral neuropathy Systemic Review Date 2/3/2015 Updated by: ...

  6. Tibial nerve dysfunction

    MedlinePlus

    ... Tibial nerve dysfunction is an unusual form of peripheral neuropathy . It occurs when there is damage to the ... PA: Elsevier Saunders; 2012:chap 76. Shy ME. Peripheral neuropathies. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  7. Vagus Nerve Stimulation.

    PubMed

    Howland, Robert H

    2014-06-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality.

  8. Ulnar nerve damage (image)

    MedlinePlus

    ... is commonly injured at the elbow because of elbow fracture or dislocation. The ulnar nerve is near the surface of the body where it crosses the elbow, so prolonged pressure on the elbow or entrapment ...

  9. Optic Nerve Disorders

    MedlinePlus

    ... of optic nerve disorders, including: Glaucoma is a group of diseases that are the leading cause of blindness in the United States. Glaucoma usually happens when the fluid pressure inside the eyes slowly rises and damages the ...

  10. Nerve Damage (Diabetic Neuropathies)

    MedlinePlus

    ... may include numbness or insensitivity to pain or temperature a tingling, burning, or prickling sensation sharp pains ... from working properly, the body cannot regulate its temperature as it should. Nerve damage can also cause ...

  11. Diabetes and nerve damage

    MedlinePlus

    Diabetic neuropathy; Diabetes - neuropathy; Diabetes - peripheral neuropathy ... In people with diabetes, the body's nerves can be damaged by decreased blood flow and a high blood sugar level. This condition is ...

  12. Vagus Nerve Stimulation

    PubMed Central

    Howland, Robert H.

    2014-01-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality. PMID:24834378

  13. Diabetic Nerve Problems

    MedlinePlus

    ... at the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get it. ... you change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. Controlling ...

  14. Nerves and Tissue Repair.

    DTIC Science & Technology

    1992-05-21

    complete dependence on nerves. Organ culture of sciatic nerves, combined with an assay for axolotl transferrin developed earlier, allows quantitative study...axonal release of various unknown proteins. Combining this approach with the ELISA for quantitative measurement of axolotl transferrin developed with...light microscope autoradiographic analysis following binding of radiolabelled Tf. Studies of Tf synthesis will employ cDNA probes for axolotl Tf mRNA

  15. Traumatic facial nerve injury.

    PubMed

    Lee, Linda N; Lyford-Pike, Sofia; Boahene, Kofi Derek O

    2013-10-01

    Facial nerve trauma can be a devastating injury resulting in functional deficits and psychological distress. Deciding on the optimal course of treatment for patients with traumatic facial nerve injuries can be challenging, as there are many critical factors to be considered for each patient. Choosing from the great array of therapeutic options available can become overwhelming to both patients and physicians, and in this article, the authors present a systematic approach to help organize the physician's thought process.

  16. Lower cranial nerves.

    PubMed

    Soldatos, Theodoros; Batra, Kiran; Blitz, Ari M; Chhabra, Avneesh

    2014-02-01

    Imaging evaluation of cranial neuropathies requires thorough knowledge of the anatomic, physiologic, and pathologic features of the cranial nerves, as well as detailed clinical information, which is necessary for tailoring the examinations, locating the abnormalities, and interpreting the imaging findings. This article provides clinical, anatomic, and radiological information on lower (7th to 12th) cranial nerves, along with high-resolution magnetic resonance images as a guide for optimal imaging technique, so as to improve the diagnosis of cranial neuropathy.

  17. Dissection of intercostal nerves by means of assisted video thoracoscopy: experimental study

    PubMed Central

    2013-01-01

    In total brachial plexus preganglionic lesions (C5-C6-C7-C8 and T1) different extraplexual neurotizations are indicated for partial motor function restitution. Mostly for the flexion of the elbow. Neurotization with intercostal nerves (ICN) to musculocutaneous nerve has been known and accepted during many years with different results 2 - 5. The customary technique as described by various authors is carried out by means of a large submammary incision to harvest three or four intercostal nerves (Figure 1). Then are connected by direct suture or grafts to the musculocutaneous nerve or its motor branches 6 - 7. In this article the authors described the possibility of dissection intercostal nerves by means of assisted video thoracoscopy. (VATS-videdo assisted thoracic surgery). PMID:23406448

  18. Optic nerve aspergillosis.

    PubMed

    Yuan, Lisi; Prayson, Richard A

    2015-07-01

    We report a 55-year-old woman with optic nerve Aspergillosis. Aspergillus is an ubiquitous airborne saprophytic fungus. Inhaled Aspergillus conidia are normally eliminated in the immunocompetent host by innate immune mechanisms; however, in immunosuppressed patients, they can cause disease. The woman had a past medical history of hypertension and migraines. She presented 1 year prior to death with a new onset headache behind the left eye and later developed blurred vision and scotoma. A left temporal artery biopsy was negative for giant cell arteritis. One month prior to the current admission, she had an MRI showing optic nerve thickening with no other findings. Because of the visual loss and a positive antinuclear antibody test, she was given a trial of high dose steroids and while it significantly improved her headache, her vision did not improve. At autopsy, the left optic nerve at the level of the cavernous sinus and extending into the optic chiasm was enlarged in diameter and there was a 1.3 cm firm nodule surrounding the left optic nerve. Histologically, an abscess surrounded and involved the left optic nerve. Acute angle branching, angioinvasive fungal hyphae were identified on Grocott's methenamine silver stained sections, consistent with Aspergillus spp. No gross or microscopic evidence of systemic vasculitis or infection was identified in the body. The literature on optic nerve Aspergillosis is reviewed.

  19. [New treatment for peripheral nerve defects: nerve elongation].

    PubMed

    Kou, Y H; Jiang, B G

    2016-10-18

    Peripheral nerve defects are still a major challenge in clinical practice, and the most commonly used method of treatment for peripheral nerve defects is nerve transplantation, which has certain limitations and shortcomings, so new repair methods and techniques are needed. The peripheral nerve is elongated in limb lengthening surgery without injury, from which we got inspirations and proposed a new method to repair peripheral nerve defects: peripheral nerve elongation. The peripheral nerve could beelongated by a certain percent, but the physiological change and the maximum elongation range were still unknown. This study discussed the endurance, the physiological and pathological change of peripheral nerve elongation in detail, and got a lot of useful data. First, we developed peripheral nerve extender which could match the slow and even extension of peripheral nerve. Then, our animal experiment result confirmed that the peripheral nerve had better endurance for chronic elongation than that of acute elongation and cleared the extensibility of peripheral nerve and the range of repair for peripheral nerve defects. Our result also revealed the histological basis and changed the rule for pathological physiology of peripheral nerve elongation: the most important structure foundation of peripheral nerve elongation was Fontana band, which was the coiling of nerve fibers under the epineurium, so peripheral nerve could be stretched for 8.5%-10.0% without injury because of the Fontana band. We confirmed that peripheral nerve extending technology could have the same repair effect as traditional nerve transplantation through animal experiments. Finally, we compared the clinical outcomes between nerve elongation and performance of the conventional method in the repair of short-distance transection injuries in human elbows, and the post-operative follow-up results demonstrated that early neurological function recovery was better in the nerve elongation group than in the

  20. Does Acellular Dermal Matrix Thickness Affect Complication Rate in Tissue Expander Based Breast Reconstruction?

    PubMed Central

    2016-01-01

    Background. While the benefits of using acellular dermal matrices (ADMs) in breast reconstruction are well described, their use has been associated with additional complications. The purpose of this study was to determine if ADM thickness affects complications in breast reconstruction. Methods. A retrospective chart review was performed including all tissue expander based breast reconstructions with AlloDerm (LifeCell, Branchburg, NJ) over 4 years. We evaluated preoperative characteristics and assessed postoperative complications including seroma, hematoma, infection, skin necrosis, and need for reintervention. We reviewed ADM thickness and time to Jackson-Pratt (JP) drain removal. Results. Fifty-five patients underwent 77 ADM-associated tissue expander based breast reconstructions, with average age of 48.1 years and average BMI of 25.9. Average ADM thickness was 1.21 mm. We found higher complication rates in the thick ADM group. Significant associations were found between smokers and skin necrosis (p < 0.0001) and seroma and prolonged JP drainage (p = 0.0004); radiated reconstructed breasts were more likely to suffer infections (p = 0.0085), and elevated BMI is a significant predictor for increased infection rate (p = 0.0037). Conclusion. We found a trend toward increased complication rates with thicker ADMs. In the future, larger prospective studies evaluating thickness may provide more information. PMID:27190645

  1. Acellular dermal matrix slings in tissue expander breast reconstruction: are there substantial benefits?

    PubMed

    Collis, George N; TerKonda, Sarvam P; Waldorf, James C; Perdikis, Galen

    2012-05-01

    Acellular dermal matrix (ADM) slings in breast reconstruction are increasingly used but are not yet validated. This study compares immediate, expander-based breast reconstruction with and without the use of inferolateral ADM slings. There were 63 patients (106 breasts) in the ADM group and 42 patients (68 breasts) in the control group. Initial intraoperative fill volumes were significantly greater in the ADM group, median 69% full (250 mL) versus 50% full (180 mL; P < 0.001). However, the number of days to complete expansion between the 2 groups was similar. One less office visit was required to complete the fills in the ADM group (P < 0.01). Drains were removed 3 days later in the ADM group (P < 0.01). Overall complication rate was greater in the ADM group (18.9% vs. 7.4%, P < 0.05), with a slightly higher percentage of expanders requiring removal due to infection in the ADM group (5.7% vs. 4.4%, P = NS). This study suggests inferolateral ADM slings in expander-based breast reconstruction allow for significantly increased initial fill volumes and may offer an aesthetic advantage; however, its use is costly and increases complications.

  2. Human keratinocyte growth and differentiation on acellular porcine dermal matrix in relation to wound healing potential.

    PubMed

    Zajicek, Robert; Mandys, Vaclav; Mestak, Ondrej; Sevcik, Jan; Königova, Radana; Matouskova, Eva

    2012-01-01

    A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7-10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs), CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing.

  3. Characterization of acellular dermal matrices (ADMs) prepared by two different methods.

    PubMed

    Walter, R J; Matsuda, T; Reyes, H M; Walter, J M; Hanumadass, M

    1998-03-01

    The efficacy of acellular dermal matrix (ADM) in the treatment of full-thickness skin injuries as a dermal substitute depends on its low antigenicity, capacity for rapid vascularization, and stability as a dermal template. These properties will be determined largely by the final composition of the ADM. We have treated human skin with either Dispase followed by Triton X-100 detergent or NaCl followed by SDS detergent, cryosectioned the resulting ADMs, and then characterized them immunohistochemically. Staining for cell-associated antigens (HLA-ABC, HLA-DR, vimentin, desmin, talin), extracellular matrix components (chondroitin sulfate, fibronectin, laminin, vitronectin, hyaluronic acid), elastin, and collagen type VII was dramatically reduced or absent from ADMs prepared by both methods. However, significant amounts of elastin, keratan sulfate, laminin, and collagen types III and IV were still observed in both ADMs. Both methods of ADM preparation resulted in extensive extraction of both cellular and extracellular components of the skin but retention of the basic dermal architecture. In general, ADM prepared by the NaCl-SDS method retained larger amounts of each antigen than did that prepared by the Dispase-Triton method. This was most evident for laminin and type VII collagen but larger amounts of type IV collagen, fibronectin, desmin, elastin, and HLA-DR were also evident in the NaCl-SDS ADM.

  4. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix.

    PubMed

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua

    2016-07-01

    The objective of this study was to extract and characterize an advanced collagen aggregate (Ag-col) from porcine acellular dermal matrix (pADM). Based on histological examination, scanning electron microscopy (SEM) and atomic force microscope (AFM), Ag-col was composed of the D-periodic cross-striated collagen fibrils and thick collagen fiber bundles with uneven diameters and non-orientated arrangement. Fourier transform infrared (FTIR) spectra of pADM, Ag-col and Col were similar and revealed the presence of the triple helix. Circular dichroism (CD) analysis exhibited a slightly higher content of α-helix but inappreciably less amount of random coil structure in Ag-col compared to Col. Moreover, imino acid contents of pADM, Ag-col and Col were 222.43, 218.30 and 190.01 residues/1000 residues, respectively. From zeta potential analysis, a net charge of zero was found at pH 6.45 and 6.11 for Ag-col and Col, respectively. Differential scanning calorimetry (DSC) study suggested that the Td of Ag-col was 20°C higher than that of Col as expected, and dynamic mechanical analysis (DMA) indicated that Ag-col possessed a higher storage modulus but similar loss factor compared to Col. Therefore, the collagen aggregate from pADM could serve as a better alternative source of collagens for further applications in food and biological industries.

  5. Does tetanus-diphtheria-acellular pertussis vaccination interfere with serodiagnosis of pertussis infection?

    PubMed

    Pawloski, Lucia C; Kirkland, Kathryn B; Baughman, Andrew L; Martin, Monte D; Talbot, Elizabeth A; Messonnier, Nancy E; Tondella, Maria Lucia

    2012-06-01

    An anti-pertussis toxin (PT) IgG enzyme-linked immunosorbent assay (ELISA) was analytically validated for the diagnosis of pertussis at a cutoff of 94 ELISA units (EU)/ml. Little was known about the performance of this ELISA in the diagnosis of adults recently vaccinated with tetanus-diphtheria-acellular pertussis (Tdap) vaccine, which contains PT. The goal of this study was to determine when the assay can be used following Tdap vaccination. A cohort of 102 asymptomatic health care personnel (HCP) vaccinated with Tdap (Adacel; Sanofi Pasteur) were aged 19 to 79 years (median, 47 years) at vaccination. For each HCP, specimens were available for evaluation at 2 to 10 time points (prevaccination to 24 months postvaccination), and geometric mean concentrations (GMC) for the cohort were calculated at each time point. Among 97 HCP who responded to vaccination, a mixed-model analysis with prediction and tolerance intervals was performed to estimate the time at which serodiagnosis can be used following vaccination. The GMCs were 8, 21, and 9 EU/ml at prevaccination and 4 and 12 months postvaccination, respectively. Eight (8%) of the 102 HCP reached antibody titers of ≥94 EU/ml during their peak response, but none had these titers by 6 months postvaccination. The calculated prediction and tolerance intervals were <94 EU/ml by 45 and 75 days postvaccination, respectively. Tdap vaccination 6 months prior to testing did not confound result interpretation. This seroassay remains a valuable diagnostic tool for adult pertussis.

  6. Speed-accuracy trade-offs during foraging decisions in the acellular slime mould Physarum polycephalum.

    PubMed

    Latty, Tanya; Beekman, Madeleine

    2011-02-22

    Speed-accuracy trade-offs (SATs) are thought to be a fundamental feature of biological information processing, yet most evidence of SATs comes from animals. Here, we examine SATs in the foraging decisions of an acellular, amoeboid organism: the slime mould Physarum polycephalum. Slime moulds were given a simple discrimination task: selecting the highest-quality food item from a set of three options. We investigated the effect of two stressors, light exposure and hunger, on the speed and accuracy of decision-making. We also examined the effect of task difficulty. When given a difficult discrimination task, stressed individuals tend to make faster decisions than non-stressed individuals. This effect was reversed in plasmodia given easy discrimination tasks, where stressed individuals made slower decisions than non-stressed individuals. We found evidence of SATs, such that individuals who made fast decisions were more likely to make costly errors by selecting the worst possible food option. Our results suggest that SATs occur in a wider range of taxa than previously considered.

  7. Tetanus, diphtheria, and acellular pertussis vaccination among women of childbearing age-United States, 2013.

    PubMed

    O'Halloran, Alissa C; Lu, Peng-Jun; Williams, Walter W; Ding, Helen; Meyer, Sarah A

    2016-07-01

    The incidence of pertussis in the United States has increased since the 1990s. Tetanus, diphtheria, and acellular pertussis (Tdap) vaccination of pregnant women provides passive protection to infants. Tdap vaccination is currently recommended for pregnant women during each pregnancy, but coverage among pregnant women and women of childbearing age has been suboptimal. Data from the 2013 Behavioral Risk Factor Surveillance System (BRFSS) and 2013 National Health Interview Survey (NHIS) were used to determine national and state-specific Tdap vaccination coverage among women of childbearing age by self-reported pregnancy status at the time of the survey. Although this study could not assess coverage of Tdap vaccination received during pregnancy because questions on whether Tdap vaccination was received during pregnancy were not asked in BRFSS and NHIS, demographic and access-to-care factors associated with Tdap vaccination coverage in this population were assessed. Tdap vaccination coverage among all women 18-44 years old was 38.4% based on the BRFSS and 23.3% based on the NHIS. Overall, coverage did not differ by pregnancy status at the time of the survey. Coverage among all women 18-44 years old varied widely by state. Age, race and ethnicity, education, number of children in the household, and access-to-care characteristics were independently associated with Tdap vaccination in both surveys. We identified associations of demographic and access-to-care characteristics with Tdap vaccination that can guide strategies to improve vaccination rates in women during pregnancy.

  8. Acellular Dermal Matrix in Reconstructive Breast Surgery: Survey of Current Practice among Plastic Surgeons

    PubMed Central

    Ibrahim, Ahmed M. S.; Koolen, Pieter G. L.; Ashraf, Azra A.; Kim, Kuylhee; Mureau, Marc A. M.; Lee, Bernard T.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) in plastic surgery have become increasingly popular particularly for breast reconstruction. Despite their advantages, questions exist regarding their association with a possible increased incidence of complications. We describe a collective experience of plastic surgeons’ use of ADMs in reconstructive breast surgery using an internet-based survey. Methods: Members of the American Society of Plastic Surgeons were recruited through voluntary, anonymous participation in an online survey. The web-based survey garnered information about participant demographics and their experience with ADM use in breast reconstruction procedures. After responses were collected, all data were anonymously processed. Results: Data were ascertained through 365 physician responses of which 99% (n = 361) completed the survey. The majority of participants were men (84.5%) between 51 and 60 years (37.4%); 84.2% used ADM in breast reconstruction, including radiated patients (79.7%). ADM use was not favored for nipple reconstruction (81.5%); 94.6% of participants used drains, and 87.8% administered antibiotics postoperatively. The most common complications were seroma (70.9%) and infection (16%), although 57.4% claimed anecdotally that overall complication rate was unchanged after incorporating ADM into their practice. High cost was a deterrent for ADM use (37.5%). Conclusions: Plastic surgeons currently use ADM in breast reconstruction for both immediate and staged procedures. Of those responding, a majority of plastic surgeons will incorporate drains and use postoperative antibiotics for more than 48 hours. PMID:25973359

  9. The histocompatibility research of hair follicle stem cells with bladder acellular matrix

    PubMed Central

    Li, Jia; Wang, Wenguang; Li, Jiuzhi; Rexiati, Mulati; An, Henqing; Wang, Feng; Wang, Yujie

    2016-01-01

    Abstract Background: Hair follicle stem cells (HFSCs) were reported to have multidirectional differentiation ability and could be differentiated into melanocytes, keratin cells, smooth muscle cells, and neurons. However, the functionality of HFSCs in bladder tissue regeneration is unknown. Methods: This study was conducted to build HFSCs vs bladder acellular matrix (BAM) complexes (HFSCs–BAM complexes) in vitro and evaluated whether HFSCs have well biocompatibility with BAM. HFSCs were separated from SD rats. BAM scaffold was prepared from the submucosa of rabbit bladder tissue. Afterwards, HFSCs were inoculated on BAM. Results: HFSCs–BAM complexes grew rapidly through inverted microscope observation. Cell growth curve showed the proliferation was in stagnate phase at 7th and 8th day. Cytotoxicity assay showed the toxicity grading of BAM was 0 or 1. Scanning electron microscopy, HE staining, and masson staining showed that cells have germinated on the surface of scaffold. Conclusion: The results provide evidence that HFSCs–BAM complexes have well biocompatibility and accumulate important experimental basis for clinical applying of tissue engineering bladder. PMID:27828841

  10. Development and characterization of an acellular porcine medial meniscus for use in tissue engineering.

    PubMed

    Stapleton, Thomas W; Ingram, Joanne; Katta, Jaynath; Knight, Richard; Korossis, Sotirios; Fisher, John; Ingham, Eileen

    2008-04-01

    The objectives of this study were to characterize fresh porcine menisci and develop a decellularization protocol with a view to the generation of a biocompatible and biomechanically functional scaffold for use in tissue engineering/regeneration of the meniscus. Menisci were decellularized by exposing the tissue to freeze-thaw cycles, incubation in hypotonic tris buffer, 0.1% (w/v) sodium dodecyl sulfate in hypotonic buffer plus protease inhibitors, nucleases, hypertonic buffer followed by disinfection using 0.1% (v/v) peracetic acid and final washing in phosphate-buffered saline. Histological, immunohistochemical, and biochemical analyses of the decellularized tissue confirmed the retention of the major structural proteins. There was, however, a 59.4% loss of glycosaminoglycans. The histoarchitecture was unchanged, and there was no evidence of the expression of the major xenogeneic epitope, galactose-alpha-1,3-galactose. Biocompatibility of the acellular scaffold was determined by using contact cytotoxicity and extract cytotoxicity tests. Decellularized tissue and extracts were not cytotoxic to cells. Biomechanical properties were determined by indentation and tensile tests, which confirmed the retention of biomechanical properties following decellularization. In conclusion, this study has generated data on the production of a biocompatible, biomechanically functional scaffold for use in meniscal repair.

  11. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    PubMed Central

    Di Liddo, Rosa; Aguiari, Paola; Barbon, Silvia; Bertalot, Thomas; Mandoli, Amit; Tasso, Alessia; Schrenk, Sandra; Iop, Laura; Gandaglia, Alessandro; Parnigotto, Pier Paolo; Conconi, Maria Teresa; Gerosa, Gino

    2016-01-01

    Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary evaluation of heart valve prosthetic functionality. PMID:27789941

  12. Changing from whole-cell to acellular pertussis vaccines would trade superior tolerability for inferior protection.

    PubMed

    Herzog, Christian

    2015-01-01

    Notifications of infant deaths, assumed to be related to the introduction of new pentavalent DTwP-Hib-HBV childhood vaccines, caused, during 2008-2010 in few Asian countries, temporary interruptions of the respective vaccination programs. The sudden appearance of fatal cases was due to increased awareness/publicity and improved safety monitoring/reporting in countries with relatively high background infant mortalities. WHO investigations could not establish any causal relationships and vaccinations were again resumed. Recently, questions were raised in one concerned country as to why not to change to less reactogenic acellular pertussis (aP)-containing vaccines that are available in private practice and are generally perceived as 'better'. For resource-poor countries, the financial impacts render such a switch impossible and would also not be supported by external funding. Furthermore, it would be a disservice to the children, as in recent years evidence of inferior long-term efficacy of aP vaccines has accumulated. This report summarizes current knowledge on comparative whole-cell pertussis (wP) and aP vaccine performance, outlines the new July 2014 WHO guidance on the choice of pertussis vaccines and presents recent data on outbreak protection, antibody waning, long-term protection, wP-priming, pathogen adaptation, transmission and herd immunity.

  13. Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges.

    PubMed

    Pfister, Bryan J; Gordon, Tessa; Loverde, Joseph R; Kochar, Arshneel S; Mackinnon, Susan E; Cullen, D Kacy

    2011-01-01

    Damage to the peripheral nervous system is surprisingly common and occurs primarily from trauma or a complication of surgery. Although recovery of nerve function occurs in many mild injuries, outcomes are often unsatisfactory following severe trauma. Nerve repair and regeneration presents unique clinical challenges and opportunities, and substantial contributions can be made through the informed application of biomedical engineering strategies. This article reviews the clinical presentations and classification of nerve injuries, in addition to the state of the art for surgical decision-making and repair strategies. This discussion presents specific challenges that must be addressed to realistically improve the treatment of nerve injuries and promote widespread recovery. In particular, nerve defects a few centimeters in length use a sensory nerve autograft as the standard technique; however, this approach is limited by the availability of donor nerve and comorbidity associated with additional surgery. Moreover, we currently have an inadequate ability to noninvasively assess the degree of nerve injury and to track axonal regeneration. As a result, wait-and-see surgical decisions can lead to undesirable and less successful "delayed" repair procedures. In this fight for time, degeneration of the distal nerve support structure and target progresses, ultimately blunting complete functional recovery. Thus, the most pressing challenges in peripheral nerve repair include the development of tissue-engineered nerve grafts that match or exceed the performance of autografts, the ability to noninvasively assess nerve damage and track axonal regeneration, and approaches to maintain the efficacy of the distal pathway and targets during the regenerative process. Biomedical engineering strategies can address these issues to substantially contribute at both the basic and applied levels, improving surgical management and functional recovery following severe peripheral nerve injury.

  14. Treatment of Foot and Ankle Neuroma Pain With Processed Nerve Allografts

    PubMed Central

    Souza, Jason M.; Purnell, Chad A.; Cheesborough, Jennifer E.; Kelikian, Armen S.; Dumanian, Gregory A.

    2016-01-01

    Background: Localized nerve pain in the foot and ankle can be a chronic source of disability after trauma and has been identified as the most common complication following operative interventions in the foot and ankle. The superficial location of the injured nerves and lack of suitable tissue for nerve implantation make this pain refractory to conventional methods of neuroma management. We describe a novel strategy for management using processed nerve allografts to bridge nerve gaps created by resection of both end neuromas and neuromas-in-continuity. Methods: A retrospective review of a prospectively maintained database was performed of all patients who received a processed nerve allograft for treatment of painful neuromas in the foot and ankle between May 2010 and June 2015. Patient demographic and operative information was obtained, as well as preoperative and postoperative pain assessments using a conventional ordinal scale and PROMIS (Patient Reported Outcomes Measurement Information System) Pain Behavior and Pain Interference assessments. Twenty-two patients were identified, with postoperative pain assessments occurring at a mean of 15.5 months after surgery. Results: Neuromas of the sural and superficial peroneal nerves were the most common diagnoses, with 3-cm nerve allografts being used as the interposition graft in the majority of cases. Eight patients had end neuromas and 18 patients had neuromas in continuity. Analysis of paired data demonstrated a mean ordinal pain score decrease of 2.6, with 24 and 31 percentage-point decreases in PROMIS Pain Behavior and Pain Interference measures, respectively. All changes were significant (P < .002). Conclusion: The painful sequelae of superficial nerve injuries in the foot and ankle was significantly improved with complete excision of the involved nerve segment followed by bridging of the resulting nerve gap with a processed nerve allograft. This approach limits surgery to the site of injury and reconstitutes the

  15. Nerve injury complicating multiligament knee injury: current concepts and treatment algorithm.

    PubMed

    Mook, William Randolph; Ligh, Cassandra A; Moorman, Claude T; Leversedge, Fraser J

    2013-06-01

    Multiligament knee injuries account for <0.02% of all orthopaedic injuries, and 16% to 40% of these patients suffer associated injury to the common peroneal nerve (CPN). The proximity of the CPN to the proximal fibula predisposes the nerve to injury during local trauma and dislocation; the nerve is highly vulnerable to stretch injury during varus stress, particularly in posterolateral corner injuries. CPN injuries have a poor prognosis compared with that of other peripheral nerve injuries. Management is determined based on the severity and location of nerve injury, timing of presentation, associated injuries requiring surgical management, and the results of serial clinical evaluations and electrodiagnostic studies. Nonsurgical treatment options include orthosis wear and physical therapy. Surgical management includes one or more of the following: neurolysis, primary nerve repair, intercalary nerve grafting, tendon transfer, and nerve transfer. Limited evidence supports the use of early one-stage nerve reconstruction combined with tendon transfer; however, optimal management of these rare injuries continues to change, and treatment should be individualized.

  16. Hydrogen-rich saline promotes motor functional recovery following peripheral nerve autografting in rats

    PubMed Central

    ZHANG, YONG-GUANG; SHENG, QING-SONG; WANG, ZHI-JUN; LV, LI; ZHAO, WEI; CHEN, JIAN-MEI; XU, HAO

    2015-01-01

    Despite the application of nerve grafts and considerable microsurgical innovations, the functional recovery across a long peripheral nerve gap is generally partial and unsatisfactory. Thus, additional strategies are required to improve nerve regeneration across long nerve gaps. Hydrogen possesses antioxidant and anti-apoptotic properties, which could be neuroprotective in the treatment of peripheral nerve injury; however, such a possibility has not been experimentally tested in vivo. The aim of the present study was to investigate the effectiveness of hydrogen-rich saline in promoting nerve regeneration after 10-mm sciatic nerve autografting in rats. The rats were randomly divided into two groups and intraperitoneally administered a daily regimen of 5 ml/kg hydrogen-rich or normal saline. Axonal regeneration and functional recovery were assessed through a combination of behavioral analyses, electrophysiological evaluations, Fluoro-Gold™ retrograde tracings and histomorphological observations. The data showed that rats receiving hydrogen-rich saline achieved better axonal regeneration and functional recovery than those receiving normal saline. These findings indicated that hydrogen-rich saline promotes nerve regeneration across long gaps, suggesting that hydrogen-rich saline could be used as a neuroprotective agent for peripheral nerve injury therapy. PMID:26622383

  17. Femoral impaction grafting

    PubMed Central

    Scanelli, John A; Brown, Thomas E

    2013-01-01

    Femoral impaction grafting is a reconstruction option applicable to both simple and complex femoral component revisions. It is one of the preferred techniques for reconstructing large femoral defects when the isthmus is non-supportive. The available level of evidence is primarily derived from case series, which shows a mean survivorship of 90.5%, with revision or re-operation as the end-point, with an average follow-up of 11 years. The rate of femoral fracture requiring re-operation or revision of the component varies between several large case series, ranging from 2.5% to 9%, with an average of 5.4%. PMID:23362469

  18. Spasm in Arterial Grafts in Coronary Artery Bypass Grafting Surgery.

    PubMed

    He, Guo-Wei; Taggart, David P

    2016-03-01

    Spasm of arterial grafts in coronary artery bypass grafting surgery is still a clinical problem, and refractory spasm can occasionally be lethal. Perioperative spasm in bypass grafts and coronary arteries has been reported in 0.43% of all coronary artery bypass grafting surgery, but this may be an underestimate. Spasm can develop not only in the internal mammary artery but more frequently in the right gastroepiploic and radial artery. The mechanism of spasm can involve many pathways, particularly those involving regulation of the intracellular calcium concentration. Endothelial dysfunction also plays a role in spasm. Depending on the clinical scenario, the possibility of spasm during and after coronary artery bypass grafting should be confirmed by angiography. If present, immediate intraluminal injection of vasodilators is often effective, although other procedures such as an intraaortic balloon pump or extracorporeal membrane oxygenation may also become necessary to salvage the patient. Prevention of spasm involves many considerations, and the principles are discussed in this review article.

  19. Barriers of the peripheral nerve

    PubMed Central

    Peltonen, Sirkku; Alanne, Maria; Peltonen, Juha

    2013-01-01

    This review introduces the traditionally defined anatomic compartments of the peripheral nerves based on light and electron microscopic topography and then explores the cellular and the most recent molecular basis of the different barrier functions operative in peripheral nerves. We also elucidate where, and how, the homeostasis of the normal human peripheral nerve is controlled in situ and how claudin-containing tight junctions contribute to the barriers of peripheral nerve. Also, the human timeline of the development of the barriers of the peripheral nerve is depicted. Finally, potential future therapeutic modalities interfering with the barriers of the peripheral nerve are discussed. PMID:24665400

  20. Neuromuscular ultrasound of cranial nerves.

    PubMed

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  1. Polyether/Polyester Graft Copolymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  2. Graft selection in cerebral revascularization.

    PubMed

    Baaj, Ali A; Agazzi, Siviero; van Loveren, Harry

    2009-05-01

    Cerebral revascularization constitutes an important treatment modality in the management of complex aneurysms, carotid occlusion, tumor, and moyamoya disease. Graft selection is a critical step in the planning of revascularization surgery, and depends on an understanding of graft and regional hemodynamics, accessibility, and patency rates. The goal of this review is to highlight some of these properties.

  3. Grafting effects on vegetable quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable grafting began in the 1920s to control soil-borne disease. It is now a common practice in Asia, parts of Europe, and the Middle East. In Japan and Korea most of the cucurbits and tomatoes (Lycopersicon esculentum Mill.) grown are grafted. This practice is rare in the U.S. and there have...

  4. Continuous ACL graft, results

    PubMed Central

    Díaz, Jorge Luis; Vega, Marcelo; Matesevach, Ivan

    2017-01-01

    Objectives: describe our technique using hamstring graft that respects the proximal continuity of Semitendinosus and uses the superior biological potential of the distal periosteum., preserving and stressing the ST reinforce the retropulsión and dynamic control of external rotation of the knee. Here the technique, results, difficulties and foundations. Methods: The sample of this research was composed of 229 cases operated between 01/03/97 and 01/03/13 in Arthroscopy Private Center., 166 male and 63 female, the postop follow-up was 86 months. Evaluated with IKDC, Lysholm, Hamstring EMG. Comparative histology study in rabbits. Results: IKDC and Lysholm score showed 93% of very good results. Conclusion: Dynamic ACL reconstruction achieves a static-dynamic stabilization of the knee. Grafts have a plus in their biological potential (proximal continuity - osteo-periosteal insertion of the tendons in the femoral tunnel). The hamstring maintains its functionality (EMG). 93% satisfactory results (IKDC, Lysholm). It is a valid surgical option in ACL injuries.

  5. Cell fouling resistance of PEG-grafted polyimide film for neural implant applications

    NASA Astrophysics Data System (ADS)

    Heo, Dong Nyoung; Yang, Dae Hyeok; Lee, Jung Bok; Bae, Min Su; Park, Ha Na; Kwon, Il Keun

    2012-04-01

    Recently, neural prosthetic electrodes covered with polyimide (PI) have been developed for chronic recording and stimulation of nervous system function. However, when these devices are implanted onto the nerve trunk, nerves might be damaged by the presence of the electrode due to the mechanical mismatch between the stiff probe and the soft biological tissue. Consequently, newly formed tissue layer may isolate the electrode from neural tissue, resulting in poor signal detection. In this study, we found a method to solve this problem. As the method, we designed and prepared poly(ethylene glycol) (PEG)-grafted PI film to function cell fouling resistance. The PEG-grafted PI film was characterized by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements. Protein adsorption experiment was carried out to evaluate protein fouling resistance because protein adsorption is closely related to cell adhesion. In vitro cell behavior on PEG-grafted PI film was evaluated by confocal laser scanning microscopy (CLSM) and CCK assays. The results showed that PEG-grafted PI film has characteristics of protein and cell fouling resistances as compared to bare and hydrolyzed PI films under in vitro. We suggested that PEG-grafted PI film can be useful for a neural implantable electrode.

  6. Cell fouling resistance of PEG-grafted polyimide film for neural implant applications

    NASA Astrophysics Data System (ADS)

    Heo, Dong Nyoung; Yang, Dae Hyeok; Lee, Jung Bok; Bae, Min Su; Park, Ha Na; Kwon, Il Keun

    2011-11-01

    Recently, neural prosthetic electrodes covered with polyimide (PI) have been developed for chronic recording and stimulation of nervous system function. However, when these devices are implanted onto the nerve trunk, nerves might be damaged by the presence of the electrode due to the mechanical mismatch between the stiff probe and the soft biological tissue. Consequently, newly formed tissue layer may isolate the electrode from neural tissue, resulting in poor signal detection. In this study, we found a method to solve this problem. As the method, we designed and prepared poly(ethylene glycol) (PEG)-grafted PI film to function cell fouling resistance. The PEG-grafted PI film was characterized by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements. Protein adsorption experiment was carried out to evaluate protein fouling resistance because protein adsorption is closely related to cell adhesion. In vitro cell behavior on PEG-grafted PI film was evaluated by confocal laser scanning microscopy (CLSM) and CCK assays. The results showed that PEG-grafted PI film has characteristics of protein and cell fouling resistances as compared to bare and hydrolyzed PI films under in vitro. We suggested that PEG-grafted PI film can be useful for a neural implantable electrode.

  7. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts.

    PubMed

    Elsayed, Y; Lekakou, C; Labeed, F; Tomlins, P

    2016-04-01

    It is increasingly recognised that biomimetic, natural polymers mimicking the extracellular matrix (ECM) have low thrombogenicity and functional motifs that regulate cell-matrix interactions, with these factors being critical for tissue engineered vascular grafts especially grafts of small diameter. Gelatin constitutes a low cost substitute of soluble collagen but gelatin scaffolds so far have shown generally low strength and suture retention strength. In this study, we have devised the fabrication of novel, electrospun, multilayer, gelatin fibre scaffolds, with controlled fibre layer orientation, and optimised gelatin crosslinking to achieve not only compliance equivalent to that of coronary artery but also for the first time strength of the wet tubular acellular scaffold (swollen with absorbed water) same as that of the tunica media of coronary artery in both circumferential and axial directions. Most importantly, for the first time for natural scaffolds and in particular gelatin, high suture retention strength was achieved in the range of 1.8-1.94 N for wet acellular scaffolds, same or better than that for fresh saphenous vein. The study presents the investigations to relate the electrospinning process parameters to the microstructural parameters of the scaffold, which are further related to the mechanical performance data of wet, crosslinked, electrospun scaffolds in both circumferential and axial tubular directions. The scaffolds exhibited excellent performance in human smooth muscle cell (SMC) proliferation, with SMCs seeded on the top surface adhering, elongating and aligning along the local fibres, migrating through the scaffold thickness and populating a transverse distance of 186 μm and 240 μm 9 days post-seeding for scaffolds of initial dry porosity of 74 and 83%, respectively.

  8. [Lumbosacral nerve bowstring disease].

    PubMed

    Shi, J G; Xu, X M; Sun, J C; Wang, Y; Guo, Y F; Yang, H S; Kong, Q J; Yang, Y; Shi, G D; Yuan, W; Jia, L S

    2017-03-21

    Objective: To define a novel disease-lumbosacral nerve bowstring disease, and propose the diagnostic criteria, while capsule surgery was performed and evaluated in the preliminary study. Methods: From June 2016 to December 2016, a total of 30 patients (22 male and 8 female; mean age of 55.1±9.7 years) with lumbosacral nerve bowstring disease were included in Department of Spine Surgery, Changzheng Hospital, the Second Military Medical University.Lumbosacral nerve bowstring disease was defined as axial hypertension of nerve root and spinal cord caused by congenital anomalies, which could be accompanied by other lesions as lumbar disc herniation, spinal cord stenosis or spondylolisthesis, or aggravated by iatrogenic lesions, resulting in neurological symptoms.This phenomenon is similar to a stretched string, the higher tension on each end the louder sound.Meanwhile, the shape of lumbosacral spine looks like a bow, thus, the disease is nominated as lumbosacral nerve bowstring disease.All the patients underwent capsule surgery and filled out Owestry disability index (ODI) and Tempa scale for kinesiophobia (TSK) before and after surgery. Results: The mean surgery time was (155±36) min, (4.3±0.4) segments were performed surgery.The pre-operative VAS, TSK and ODI scores were (7.6±0.8), (52.0±10.3) and (68.4±12.7), respectively.The post-operative VAS, TSK and ODI scores were (3.3±0.4), ( 24.6±5.2) and (32.1±7.4)(P<0.05, respectively), respectively. Conclusion: The definition and diagnostic criteria of lumbosacral nerve bowstring disease was proposed.Capsule surgery was an effective strategy with most patients acquired excellent outcomes as symptoms relieved and quality of life improved.

  9. [Stent Grafting for Aortic Dissection].

    PubMed

    Uchida, Naomichi

    2016-07-01

    The purpose of stent graft for aortic dissection is to terminate antegrade blood flow into the false lumen through primary entry. Early intervention for primary entry makes excellent aortic remodeling and emergent stent grafting for complicated acute type B aortic dissection is supported as a class I. On the other hand stent grafting for chronic aortic dissection is controversial. Early stent grafting is considered with in 6 months after on-set if the diameter of the descending aorta is more than 40 mm. Additional interventions for residual false lumen on the downstream aorta are still required. Stent graft for re-entry, candy-plug technique, and double stenting, other effective re-interventions were reported. Best treatment on the basis of each anatomical and physical characteristics should be selected in each institution. Frozen elephant trunk is alternative procedure for aortic dissection without the need to take account of proximal anatomical limitation and effective for acute type A aortic dissection.

  10. Nerve Transfers in Tetraplegia.

    PubMed

    Fox, Ida K

    2016-05-01

    Hand and upper extremity function is instrumental to basic activities of daily living and level of independence in cervical spinal cord injury (SCI). Nerve transfer surgery is a novel and alternate approach for restoring function in SCI. This article discusses the biologic basis of nerve transfers in SCI, patient evaluation, management, and surgical approaches. Although the application of this technique is not new; recent case reports and case series in the literature have increased interest in this field. The challenges are to improve function, achieve maximal gains in function, avoid complications, and to primum non nocere.

  11. Radiation grafting on natural films

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37-40 N mm-1) and puncture deformation (PD=6.5-9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282-296 N mm-1 and PD of 5.0-5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films.

  12. Acellular Dermal Matrix as a Core Strut for Projection in Nipple Reconstruction: Approaches for Three Different Methods of Breast Reconstruction

    PubMed Central

    Park, Gui-Yong; Cho, Hee-Eun; Lee, Byung-Il; Park, Seung-Ha

    2016-01-01

    Background The objective of this paper was to describe a novel technique for improving the maintenance of nipple projection in primary nipple reconstruction by using acellular dermal matrix as a strut in one of three different configurations, according to the method of prior breast reconstruction. The struts were designed to best fill the different types of dead spaces in nipple reconstruction depending on the breast reconstruction method. Methods A total of 50 primary nipple reconstructions were performed between May 2012 and May 2015. The prior breast reconstruction methods were latissimus dorsi (LD) flap (28 cases), transverse rectus abdominis myocutaneous (TRAM) flap (10 cases), or tissue expander/implant (12 cases). The nipple reconstruction technique involved the use of local flaps, including the C-V flap or star flap. A 1×2-cm acellular dermal matrix was placed into the core with O-, I-, and L-shaped struts for prior LD, TRAM, and expander/implant methods, respectively. The projection of the reconstructed nipple was measured at the time of surgery and at 3, 6, and 9 months postoperatively. Results The nine-month average maintenance of nipple projection was 73.0%±9.67% for the LD flap group using an O-strut, 72.0%±11.53% for the TRAM flap group using an I-strut, and 69.0%±10.82% for the tissue expander/implant group using an L-strut. There were no cases of infection, wound dehiscence, or flap necrosis. Conclusions The application of an acellular dermal matrix with a different kind of strut for each of 3 breast reconstruction methods is an effective addition to current techniques for improving the maintenance of long-term projection in primary nipple reconstruction. PMID:27689049

  13. Structural and redox behavior of OxyVita, a zero-linked polymeric hemoglobin: comparison with natural acellular polymeric hemoglobins.

    PubMed

    Harrington, John P; Orlik, Kseniya; Orlig, Kseniya; Zito, Samantha L; Wollocko, Jacek; Wollocko, Hanna

    2010-04-01

    A zero-linked polymeric hemoglobin (OxyVita Hb) has been developed for application as an acellular therapeutic hemoglobin-based-oxygen-carrier (HBOC). For effective and safe oxygen binding, transport and delivery, an HBOC must meet essential molecular requirements related to its structural integrity and redox stability. OxyVita is a super polymer possessing an average M.wt. of 17 x 10(6) Da. Structural integrity was determined by unfolding studies of OxyVita in the presence of increasing concentrations of urea. The unfolding midpoints (D(1/2)) of different preparations of OxyVita (solution and powder forms) were compared to Lumbricus Hb (LtHb) and Arenicola Hb (ArHb), natural acellular polymeric hemoglobins, which are serving as models for an effective and safe acellular HBOC. Reduction studies of OxyVita Hb using endogenous reducing agents were also investigated. Results from these studies indicate that: 1) OxyVita Hb exhibits greater resistance to conformational change than either LtHb or ArHb in the reduced (oxyHb) state; and 2) the reduction of met OxyVita Hb to oxyHb occurs slowly in the presence of either ascorbic acid (70% reduction in 560 min.) or beta-NADH (40% reduction in 90 min.). These studies provide consistent evidence that OxyVita Hb possesses physiochemical properties that exhibit structural integrity and redox behavior necessary for functioning as an effective and safe HBOC within clinical applications. These results are in agreement with observations made by other investigators as to the reduction in heme-loss of OxyVita Hb, essential for the reversible binding/release of molecular oxygen within the circulatory system.

  14. Alternatives to Acellular Dermal Matrix: Utilization of a Gore DualMesh Sling as a Cost-Conscious Adjunct for Breast Reconstruction

    PubMed Central

    Butterworth, James; Petty, Paul

    2017-01-01

    Objective: This study seeks an alternative to acellular dermal matrix in 2-staged breast reconstruction while minimizing cost. It was hypothesized that use of a Gore DualMesh would allow for similar intraoperative tissue expander fill volumes, time to second-stage reconstruction, and number of postoperative fills compared with acellular dermal matrix at only a fraction of the expense. Methods: Retrospective analysis comparing Gore DualMesh (59 breasts, 34 patients), acellular dermal matrix (13 breasts, 8 patients), and total muscle coverage (25 breasts, 14 patients) for postmastectomy breast reconstruction was performed. Time to second-stage reconstruction, number of expansions, and relative initial fill volumes were compared between the 3 groups. Secondarily, complication rates were also considered, including seroma, infection, expander/implant explantation, removal of mesh, and capsular contracture. Statistical analysis was performed utilizing the Fisher exact test and the χ2 test for categorical variables and the Mann-Whitney U test for continuous variables. Results: Relative initial fill volumes, number of expansions, and time to second-stage reconstruction showed no statistical difference between the acellular dermal matrix and Gore DualMesh groups (P = .494, P = .146, and P = .539, respectively). Furthermore, the Gore DualMesh group underwent significantly fewer fills (P < .001) and had a higher relative initial fill volume (P < .001) than the total muscle coverage group. The additional cost per breast as a result of including DualMesh was on average $385 versus $4287 for acellular dermal matrix. Complication rates were similar between all 3 groups without statistically significant differences. Conclusions: Gore DualMesh represents a safe alternative to acellular dermal matrix for breast reconstruction with similar aesthetic results in certain patients at a fraction of the cost. PMID:28261372

  15. Delayed primary closure of contaminated abdominal wall defects with non-crosslinked porcine acellular dermal matrix compared with conventional staged repair: a retrospective study

    PubMed Central

    2014-01-01

    Introduction Synthetic mesh has been used traditionally to repair abdominal wall defects, but its use is limited in the case of bacterial contamination. New biological materials are now being used successfully for delayed primary closure of contaminated abdominal wall defects. The costs of biological materials may prevent surgeons from using them. We compared the conventional staged repair of contaminated abdominal wall defects with a single-stage procedure using a non-crosslinked porcine acellular dermal matrix. Methods A total of 14 cases with Grade 3 contaminated abdominal wall defects underwent delayed primary closure of the abdomen using a non-crosslinked porcine acellular dermal matrix (Strattice™ Reconstructive Tissue Matrix, LifeCell Corp., Branchburg, NJ, USA). The results were compared with a group of 14 patients who had received conventional treatment for the repair of contaminated abdominal wall defects comprising a staged repair during two separate hospital admissions employing synthetic mesh. Treatment modalities, outcomes, and costs were compared. Results In all cases treated with delayed primary closure employing non-crosslinked porcine acellular dermal matrix, there were no complications related to its use. Two patients died due to unrelated events. Although treatment costs were estimated to be similar in the two groups, the patients treated with porcine acellular dermal matrix spent less time as an inpatient than those receiving conventional two-stage repair. Conclusions Delayed primary closure of contaminated abdominal wall defects using a non-crosslinked porcine acellular dermal matrix may be a suitable alternative to conventional staged repair. In our patients, it resulted in early restoration of abdominal wall function and shorter hospitalization. The costs for treating contaminated abdominal wall defects using porcine acellular dermal matrix during a single hospital admission were not higher than costs for conventional two-stage repair

  16. A New Approach to Minimize Acellular Dermal Matrix Use in Prosthesis-based Breast Reconstruction

    PubMed Central

    Hadad, Ivan; Liu, Allen S.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) are often used to improve lower-pole contour, as well as allow for single-stage reconstruction, but numerous studies have shown an increased complication rate using ADM. As such, our group has developed a minimal-ADM-use technique to lower complications while effectively recreating lower-pole contour. Methods: A total of 380 postmastectomy prosthesis-based breast reconstructions were performed in 265 patients by a single surgeon. One hundred eight reconstructions were performed using the traditional ADM technique, with a large piece of ADM along the entire inferior and lateral borders. Two hundred twenty-five reconstructions were performed with the minimal-use technique, patching only the lateral area of the reconstruction. Thirty-five reconstructions were performed without the use of any ADM for high-risk reconstructions, most often in morbidly obese patients. Results: Comparing the traditional technique with the minimal-use technique, the seroma rate dropped from 3% to 0%. The rate of infection and reconstruction loss fell from 9% to 1%. Upon greatly reducing or eliminating the use of ADM use in obese patients, the seroma rate decreased from 15.4% to 5.7%, and the reconstruction loss rate decreased from 38% to 9%. Conclusions: This article describes a new surgical approach to minimize the amount of ADM necessary to create an aesthetically pleasing breast reconstruction. We believe that this approach helps avoid the complications of seroma, infection, and loss of the reconstruction. In certain obese patients, total avoidance of ADM may be the better choice. PMID:26301161

  17. Histologic, Molecular, and Clinical Evaluation of Explanted Breast Prostheses, Capsules, and Acellular Dermal Matrices for Bacteria

    PubMed Central

    Poppler, Louis; Cohen, Justin; Dolen, Utku Can; Schriefer, Andrew E.; Tenenbaum, Marissa M.; Deeken, Corey; Chole, Richard A.; Myckatyn, Terence M.

    2015-01-01

    Background Subclinical infections, manifest as biofilms, are considered an important cause of capsular contracture. Acellular dermal matrices (ADMs) are frequently used in revision surgery to prevent recurrent capsular contractures. Objective We sought to identify an association between capsular contracture and biofilm formation on breast prostheses, capsules, and ADMs in a tissue expander/implant (TE/I) exchange clinical paradigm. Methods Biopsies of the prosthesis, capsule, and ADM from patients (N = 26) undergoing TE/I exchange for permanent breast implant were evaluated for subclinical infection. Capsular contracture was quantified with Baker Grade and intramammary pressure. Biofilm formation was evaluated with specialized cultures, rtPCR, bacterial taxonomy, live:dead staining, and scanning electron microscopy (SEM). Collagen distribution, capsular histology, and ADM remodeling were quantified following fluorescent and light microscopy. Results Prosthetic devices were implanted from 91 to 1115 days. Intramammary pressure increased with Baker Grade. Of 26 patients evaluated, one patient had a positive culture and one patient demonstrated convincing evidence of biofilm morphology on SEM. Following PCR amplification 5 samples randomly selected for 16S rRNA gene sequencing demonstrated an abundance of suborder Micrococcineae, consistent with contamination. Conclusions Our data suggest that bacterial biofilms likely contribute to a proportion, but not all diagnosed capsular contractures. Biofilm formation does not appear to differ significantly between ADMs or capsules. While capsular contracture remains an incompletely understood but common problem in breast implant surgery, advances in imaging, diagnostic, and molecular techniques can now provide more sophisticated insights into the pathophysiology of capsular contracture. Level of Evidence PMID:26229126

  18. Subcutaneous Implant-based Breast Reconstruction with Acellular Dermal Matrix/Mesh: A Systematic Review

    PubMed Central

    Salibian, Ara A.; Frey, Jordan D.; Choi, Mihye

    2016-01-01

    Background: The availability of acellular dermal matrix (ADM) and synthetic mesh products has prompted plastic surgeons to revisit subcutaneous implant-based breast reconstruction. The literature is limited, however, with regards to evidence on patient selection, techniques, and outcomes. Methods: A systematic review of the Medline and Cochrane databases was performed for original studies reporting breast reconstruction with ADM or mesh, and subcutaneous implant placement. Studies were analyzed for level of evidence, inclusion/exclusion criteria for subcutaneous reconstruction, reconstruction characteristics, and outcomes. Results: Six studies (186 reconstructions) were identified for review. The majority of studies (66.7%) were level IV evidence case series. Eighty percent of studies had contraindications for subcutaneous reconstruction, most commonly preoperative radiation, high body mass index, and active smoking. Forty percent of studies commenting on patient selection assessed mastectomy flap perfusion for subcutaneous reconstruction. Forty-five percent of reconstructions were direct-to-implant, 33.3% 2-stage, and 21.5% single-stage adjustable implant, with ADM utilized in 60.2% of reconstructions versus mesh. Pooled complication rates included: major infection 1.2%, seroma 2.9%, hematoma 2.3%, full nipple-areola complex necrosis 1.1%, partial nipple-areola complex necrosis 4.5%, major flap necrosis 1.8%, wound healing complication 2.3%, explantation 4.1%, and grade III/IV capsular contracture 1.2%. Conclusions: Pooled short-term complication rates in subcutaneous alloplastic breast reconstruction with ADM or mesh are low in preliminary studies with selective patient populations, though techniques and outcomes are variable across studies. Larger comparative studies and better-defined selection criteria and outcomes reporting are needed to develop appropriate indications for performing subcutaneous implant-based reconstruction. PMID:27975034

  19. Direct Hospital Cost of Outcome Pathways in Implant-Based Reconstruction with Acellular Dermal Matrices

    PubMed Central

    Qureshi, Ali A.; Broderick, Kristen; Funk, Susan; Reaven, Nancy; Tenenbaum, Marissa M.

    2016-01-01

    Background: Current cost data on tissue expansion followed by exchange for permanent implant (TE/I) reconstruction lack a necessary assessment of the experience of a heterogenous breast cancer patient population and their multiple outcome pathways. We extend our previous analysis to that of direct hospital cost as bundling of payments is likely to follow the changing centralization of cancer care at the hospital level. Methods: We performed a retrospective analysis (2003–2009) of TE/I reconstructions with or without an acellular dermal matrix (ADM), namely Alloderm RTM. Postreconstructive events were analyzed and organized into outcome pathways as previously described. Aggregated and normalized inpatient and outpatient hospital direct costs and physician reimbursement were generated for each outcome pathway with or without ADM. Results: Three hundred sixty-seven patients were analyzed. The average 2-year hospital direct cost per TE/I breast reconstruction patient was $11,862 in the +ADM and $12,319 in the −ADM groups (P > 0.05). Initial reconstructions were costlier in the +ADM ($6,868) than in the −ADM ($5,615) group, but the average cost of subsequent postreconstructive events within 2 years was significantly lower in +ADM ($5,176) than −ADM ($6,704) patients (P < 0.05). When a complication occurred, but reconstruction was still completed within 2 years, greater costs were incurred in the −ADM than in the +ADM group for most scenarios, leading to a net equalization of cost between study groups. Conclusion: Although direct hospital cost is an important factor for resource and fund allocation, it should not remain the sole factor when deciding to use ADM in TE/I reconstruction. PMID:27622099

  20. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix

    PubMed Central

    Ye, Ken; Traianedes, Kathy; Choong, Peter F. M.; Myers, Damian E.

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell–matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair. PMID:26858950

  1. Plastic Surgery and Acellular Dermal Matrix: Highlighting Trends from 1999 to 2013

    PubMed Central

    Daar, David A; Gandy, Jessica R; Clark, Emily G; Mowlds, Donald S; Paydar, Keyianoosh Z; Wirth, Garrett A

    2016-01-01

    The last decade has ushered in a rapidly expanding global discussion regarding acellular dermal matrix (ADM) applications, economic analyses, technical considerations, benefits, and risks, with recent emphasis on ADM use in breast surgery. This study aims to evaluate global trends in ADM research using bibliometric analysis. The top nine Plastic Surgery journals were determined by impact factor (IF). Each issue of the nine journals between 1999 and 2013 was accessed to compile a database of articles discussing ADM. Publications were further classified by IF, authors’ geographic location, study design, and level of evidence (LOE, I-V). Productivity index and productivity share were calculated for each region. In total, 256 ADM articles were accessed. The annual global publication volume increased significantly by 4.2 (0.87) articles per year (p<0.001), with a mean productivity index of 36.3 (59.0). The mean impact factor of the nine journals increased significantly from 0.61 (0.11) to 2.47 (0.99) from 1993 to 2013 (p<0.001). Despite this increase in the global ADM literature, the majority of research was of weaker LOE (level I: 2.29% and level II: 9.17%). USA contributed the most research (87%), followed by Asia (4.76%) and Western Europe (4.71%). USA contributed the greatest volume of research. Regarding clinical application of ADM, the majority of publications focused on ADM use in breast surgery, specifically breast reconstruction (154 articles, 60.2%). The majority of research was of lower LOE; thus, efforts should be made to strengthen the body of literature, particularly with regard to cost analysis. PMID:27579264

  2. Complication Rates With Human Acellular Dermal Matrices: Retrospective Review of 211 Consecutive Breast Reconstructions

    PubMed Central

    Carman, Claire M.; Tobin, Chase; Chase, Serena A.; Rossmeier, Kerri A.

    2016-01-01

    Background: Human acellular dermal matrix (HADM) is commonly used to provide coverage and support for breast reconstruction. The primary purpose of this study was to evaluate the complication rates associated with breast reconstruction procedures when performed in conjunction with multiple types of HADM in a consecutive series. Methods: After receiving institutional review board approval, medical records from a single surgeon were retrospectively reviewed for 126 consecutive patients (170 breasts and 211 procedures) who received a breast reconstruction or revision with implantation of HADM between 2012 and 2014. Patient demographics, surgical technique, and the complication profile of 4 major types of HADM were evaluated by procedure. Complication data were primarily evaluated for infection, seroma formation, necrosis, and other complications requiring additional surgery. Results: The total complication rate was 19.4%. The complication rates were not statistically different between all 4 types of HADM: Alloderm (n = 143); Alloderm RTU (n = 19); FlexHD (n = 18); hMatrix (n = 32) (P > 0.05). Smokers and large-breasted women (≥500 g) had a significantly higher complication rate than the rest of the population (P < 0.01 and P < 0.03, respectively). The complication rates associated with all other patient cohorts analyzed (age, body mass index, comorbid conditions, cancer diagnosis, prepectoral technique) showed no influence on complication rates (P > 0.05). Conclusions: In characteristically similar cohorts, there was no statistically significant difference in complication rates based on type of HADM; however, certain risk factors and anatomy should be considered before HADM-assisted breast reconstruction. PMID:27975023

  3. Application of bladder acellular matrix in urinary bladder regeneration: the state of the art and future directions.

    PubMed

    Pokrywczynska, Marta; Gubanska, Iga; Drewa, Gerard; Drewa, Tomasz

    2015-01-01

    Construction of the urinary bladder de novo using tissue engineering technologies is the "holy grail" of reconstructive urology. The search for the ideal biomaterial for urinary bladder reconstruction has been ongoing for decades. One of the most promising biomaterials for this purpose seems to be bladder acellular matrix (BAM). In this review we determine the most important factors, which may affect biological and physical properties of BAM and its regeneration potential in tissue engineered urinary bladder. We also point out the directions in modification of BAM, which include incorporation of exogenous growth factors into the BAM structure. Finally, we discuss the results of the urinary bladder regeneration with cell seeded BAM.

  4. Overview of the Cranial Nerves

    MedlinePlus

    ... and toxins. Some cranial nerve disorders interfere with eye movement. Eye movement is controlled by 3 pairs of muscles. These ... be able to move their eyes normally. How eye movement is affected depends on which nerve is affected. ...

  5. Nerve Injuries of the Upper Extremity

    MedlinePlus

    ... of individual nerve fibers and surrounding outer sheath (“insulation”) Figure 2: Nerve repair with realignment of bundles © ... of individual nerve fibers and surrounding outer sheath insulation Figure 2 - Nerve repair with realignment of bundles ...

  6. Optic nerve hypoplasia in children.

    PubMed Central

    Zeki, S. M.; Dutton, G. N.

    1990-01-01

    Optic nerve hypoplasia (ONH) is characterised by a diminished number of optic nerve fibres in the optic nerve(s) and until recently was thought to be rare. It may be associated with a wide range of other congenital abnormalities. Its pathology, clinical features, and the conditions associated with it are reviewed. Neuroendocrine disorders should be actively sought in any infant or child with bilateral ONH. Early recognition of the disorder may in some cases be life saving. Images PMID:2191713

  7. Iatrogenic Injury to the Long Thoracic Nerve

    PubMed Central

    Bizzarri, Federico; Davoli, Giuseppe; Bouklas, Dimitri; Oricchio, Luca; Frati, Giacomo; Neri, Eugenio

    2001-01-01

    After heart surgery, complications affecting the brachial plexus have been reported in 2% to 38% of cases. The long thoracic nerve is vulnerable to damage at various levels, due to its long and superficial course. This nerve supplies the serratus anterior muscle, which has an important role in the abduction and elevation of the superior limb; paralysis of the serratus anterior causes “winged scapula,” a condition in which the arm cannot be lifted higher than 90° from the side. Unfortunately, the long thoracic nerve can be damaged by a wide variety of traumatic and nontraumatic occurrences, ranging from viral or nonviral disease to improper surgical technique, to the position of the patient during transfer to a hospital bed. Our patient, a 62-year-old man with triple-vessel disease, underwent myocardial revascularization in which right and left internal thoracic arteries and the left radial artery were grafted to the right coronary, descending anterior, and obtuse marginal arteries, respectively. Despite strong recovery and an apparently good postoperative course, the patient sued for damages due to subsequent winging of the left scapula. In this instance, the legal case has less to do with the cause of the lesion (which remains unclear) than with failure to adequately inform the patient of possible complications at the expense of the nervous system. The lesson is that each patient must receive detailed written and oral explanation of the potential benefits and all conceivable risks of a procedure. (Tex Heart Inst J 2001;28:315–7) PMID:11777160

  8. Femoral nerve dysfunction

    MedlinePlus

    ... Read More Abscess Diabetes Mononeuropathy Multiple mononeuropathy Myelin Peripheral neuropathy Polyarteritis nodosa Systemic Tumor Review Date 1/5/ ... Related MedlinePlus Health Topics Leg Injuries and Disorders Peripheral Nerve Disorders Browse the Encyclopedia A.D.A.M., Inc. ...

  9. Nerves and Tissue Repair.

    DTIC Science & Technology

    1994-07-01

    axolotl limbs are transected the concentration of transferrin in the distal limb tissue declines rapidly and limb regeneration stops. These results...transferrin binding and expression of the transferrin gene in cells of axolotl peripheral nerve indicate that both uptake and synthesis of this factor occur

  10. Ischemic Nerve Block.

    ERIC Educational Resources Information Center

    Williams, Ian D.

    This experiment investigated the capability for movement and muscle spindle function at successive stages during the development of ischemic nerve block (INB) by pressure cuff. Two male subjects were observed under six randomly ordered conditions. The duration of index finger oscillation to exhaustion, paced at 1.2Hz., was observed on separate…

  11. Dermal Papilla Cells Improve the Wound Healing Process and Generate Hair Bud-Like Structures in Grafted Skin Substitutes Using Hair Follicle Stem Cells

    PubMed Central

    Leirós, Gustavo José; Kusinsky, Ana Gabriela; Drago, Hugo; Bossi, Silvia; Sturla, Flavio; Castellanos, María Lía; Stella, Inés Yolanda

    2014-01-01

    Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneration, and graft-take in nude mice. A porcine acellular dermal matrix was seeded with HFSCs alone and with HFSCs plus human DPCs or dermal fibroblasts (DFs). In vitro, the presence of DPCs induced a more regular and multilayered stratified epidermis with more basal p63-positive cells and invaginations. The DPC-containing constructs more accurately mimicked the skin architecture by properly stratifying the differentiating HFSCs and developing a well-ordered epithelia that contributed to more closely recapitulate an artificial human skin. This acellular dermal matrix previously repopulated in vitro with HFSCs and DFs or DPCs as the dermal component was grafted in nude mice. The presence of DPCs in the composite substitute not only favored early neovascularization, good assimilation and remodeling after grafting but also contributed to the neovascular network maturation, which might reduce the inflammation process, resulting in a better healing process, with less scarring and wound contraction. Interestingly, only DPC-containing constructs showed embryonic hair bud-like structures with cells of human origin, presence of precursor epithelial cells, and expression of a hair differentiation marker. Although preliminary, these findings have demonstrated the importance of the presence of DPCs for proper skin repair. PMID:25161315

  12. The masseteric nerve: a versatile power source in facial animation techniques.

    PubMed

    Bianchi, B; Ferri, A; Ferrari, S; Copelli, C; Salvagni, L; Sesenna, E

    2014-03-01

    The masseteric nerve has many advantages including low morbidity, its proximity to the facial nerve, the strong motor impulse, its reliability, and the fast reinnervation that is achievable in most patients. Reinnervation of a neuromuscular transplant is the main indication for its use, but it has been used for the treatment of recent facial palsies with satisfactory results. We have retrospectively evaluated 60 patients who had facial animation procedures using the masseteric nerve during the last 10 years. The patients included those with recent, and established or congenital, unilateral and bilateral palsies. The masseteric nerve was used for coaptation of the facial nerve either alone or in association with crossfacial nerve grafting, or for the reinnervation of gracilis neuromuscular transplants. Reinnervation was successful in all cases, the mean (range) time being 4 (2-5) months for facial nerve coaptation and 4 (3-7) months for neuromuscular transplants. Cosmesis was evaluated (moderate, n=10, good, n=30, and excellent, n=20) as was functional outcome (no case of impairment of masticatory function, all patients able to smile, and achievement of a smile independent from biting). The masseteric nerve has many uses, including in both recent, and established or congenital, cases. In some conditions it is the first line of treatment. The combination of combined techniques gives excellent results in unilateral palsies and should therefore be considered a valid option.

  13. Motor evoked potentials enable differentiation between motor and sensory branches of peripheral nerves in animal experiments.

    PubMed

    Turkof, Edvin; Jurasch, Nikita; Knolle, Erik; Schwendenwein, Ilse; Habib, Danja; Unger, Ewald; Reichel, Martin; Losert, Udo

    2006-10-01

    Differentiation between motor and sensory fascicles is frequently necessary in reconstructive peripheral nerve surgery. The goal of this experimental study was to verify if centrally motor evoked potentials (MEP) could be implemented to differentiate sensory from motor fascicles, despite the well-known intermingling between nerve fascicles along their course to their distant periphery. This new procedure would enable surgeons to use MEP for placing nerve grafts at corresponding fascicles in the proximal and distal stumps without the need to use time-consuming staining. In ten sheep, both ulnar nerves were exposed at the terminal bifurcation between the last sensory and motor branch. Animals were then relaxed to avoid volume conduction. On central stimulation, the evoked nerve compound action potentials were simultaneously recorded from both terminal branches. In all cases, neurogenic motor nerve action potentials were recorded only from the terminal motor branch. The conclusion was that MEPs can be used for intraoperative differentiation between sensory and motor nerves. Further studies are necessary to develop this method for in situ measurements on intact nerve trunks.

  14. Nerve Sharing Between the Lingual and Mental Nerve to Restore Lower Lip Sensation After Segmental Resection of the Mandible.

    PubMed

    Murata, Takuya; Abukawa, Harutsugi; Satomi, Takafumi; Chikazu, Daichi

    2016-09-01

    This report demonstrates a successful new procedure for reconstructing the inferior alveolar nerve by transplanting the great auricular nerve (GAN) between the mental nerve and the remaining submandibular ganglion to achieve nerve sharing of the lingual nerve. A 59-year-old woman with discomfort in the left mandibular retromolar region and ipsilateral neck was referred to our hospital by a local dentist. Physical examination showed mild swelling and redness at the left mandibular retromolar region. The histologic diagnosis showed central mucoepidermoid carcinoma of the jaw. With the patient under general anesthesia, segmental resection of the mandible followed by level 1 selective neck dissection was performed. The resected mandible was reconstructed with a titanium plate. The submandibular incision was extended to the lower edge of the tragus for harvesting of the GAN. The GAN was grafted, and an epineural neurorrhaphy was carried out with the mental nerve, as well as the submandibular ganglion, under a microscope. After the operation, submental sensation was evaluated with a Semmes-Weinstein pressure esthesiometer. The Semmes-Weinstein pressure esthesiometer test showed a loss of perception at the third week after surgery. Within 12 months, nerve sensation was substantially improved and the patient was free from discomfort.

  15. Are Aortic Stent Grafts Safe in Pregnancy?

    PubMed Central

    Khandanpour, Nader; Mehta, Tapan A.; Adiseshiah, M.; Meyer, Felicity J.

    2015-01-01

    Aortic stent grafts are increasingly used to treat aortic aneurysms and also other aortic pathologies. The safety of aortic stent grafts in pregnancy has never been studied or reported. We report on two cases of aortic stent grafts in pregnant women and discuss the effect of pregnancy on these aortic stent grafts. PMID:26229702

  16. Nanostructured Guidance for Peripheral Nerve Injuries: A Review with a Perspective in the Oral and Maxillofacial Area

    PubMed Central

    Sivolella, Stefano; Brunello, Giulia; Ferrarese, Nadia; Puppa, Alessandro Della; D’Avella, Domenico; Bressan, Eriberto; Zavan, Barbara

    2014-01-01

    Injury to peripheral nerves can occur as a result of various surgical procedures, including oral and maxillofacial surgery. In the case of nerve transaction, the gold standard treatment is the end-to-end reconnection of the two nerve stumps. When it cannot be performed, the actual strategies consist of the positioning of a nerve graft between the two stumps. Guided nerve regeneration using nano-structured scaffolds is a promising strategy to promote axon regeneration. Biodegradable electrospun conduits composed of aligned nanofibers is a new class of devices used to improve neurite extension and axon outgrowth. Self assembled peptide nanofibrous scaffolds (SAPNSs) demonstrated promising results in animal models for central nervous system injuries, and, more recently, for peripheral nerve injury. Aims of this work are (1) to review electrospun and self-assembled nanofibrous scaffolds use in vitro and in vivo for peripheral nerve regeneration; and (2) its application in peripheral nerve injuries treatment. The review focused on nanofibrous scaffolds with a diameter of less than approximately 250 nm. The conjugation in a nano scale of a natural bioactive factor with a resorbable synthetic or natural material may represent the best compromise providing both biological and mechanical cues for guided nerve regeneration. Injured peripheral nerves, such as trigeminal and facial, may benefit from these treatments. PMID:24562333

  17. New Chemically Functionalized Nanomaterials for Electrical Nerve Agents Sensors

    NASA Astrophysics Data System (ADS)

    Simonato, Jean-Pierre; Clavaguera, Simon; Carella, Alexandre; Delalande, Michael; Raoul, Nicolas; Lenfant, Stephane; Vuillaume, Dominique; Dubois, Emmanuel

    2011-08-01

    A chemical receptor specific to traces of organophosphorus nerve agents (OPs) has been synthesized and grafted to carbon nanotubes and silicon nanowires in order to make electrical sensors. Our results show that it is possible to detect efficiently sub-ppm traces of OPs with excellent selectivity notably with the use of silicon nanowires by monitoring the Drain-Source current of the SiNW-FET at an optimum back Gate voltage as a function of time. First developments of a prototype have also been realized.

  18. Acellular Dermal Matrices and Radiotherapy in Breast Reconstruction: A Systematic Review and Meta-Analysis of the Literature

    PubMed Central

    Valdatta, Luigi; Scamoni, Stefano; Minuti, Anna; Cherubino, Mario

    2014-01-01

    The increasing use of commercially available acellular dermis matrices for postmastectomy breast reconstruction seems to have simplified the surgical procedure and enhanced the outcome. These materials, generally considered to be highly safe or with only minor contraindications due to the necessary manipulation in preparatory phases, allow an easier one-phase surgical procedure, in comparison with autologous flaps, offering a high patient satisfaction. Unfortunately, the claim for a higher rate of complications associated with irradiation at the implant site, especially when the radiation therapy was given before the reconstructive surgery, suggested a careful behaviour when this technique is preferred. However, this hypothesis was never submitted to a crucial test, and data supporting it are often discordant or incomplete. To provide a comprehensive analysis of the field, we searched and systematically reviewed papers published after year 2005 and registered clinical trials. On the basis of a meta-analysis of data, we conclude that the negative effect of the radiotherapy on the breast reconstruction seems to be evident even in the case of acellular dermis matrices aided surgery. However, more trials are needed to make solid conclusions and clarify the poor comprehension of all the factors negatively influencing outcome. PMID:24987526

  19. A dynamic distention protocol for whole-organ bladder decellularization: histological and biomechanical characterization of the acellular matrix.

    PubMed

    Consolo, F; Brizzola, S; Tremolada, G; Grieco, V; Riva, F; Acocella, F; Fiore, G B; Soncini, M

    2016-02-01

    A combined physical-chemical protocol for whole full-thickness bladder decellularization is proposed, based on organ cyclic distention through repeated infusion/withdrawal of the decellularization agents through the urethra. The dynamic decellularization was intended to enhance cell removal efficiency, facilitating the delivery of detergents within the inner layers of the tissue and the removal of cell debris. The use of mild chemical detergents (hypotonic solution and non-ionic detergent) was employed to limit adverse effects upon matrix 3D ultrastructure. Inspection of the presence of residual DNA and RNA was carried out on decellularized matrices to verify effective cell removal. Histological investigation was focused on assessing the retention of adequate structural and functional components that regulate the biomechanical behaviour of the acellular tissue. Biomechanical properties were evaluated through uniaxial tensile loading tests of tissue strips and through ex vivo filling cystometry to evaluate the whole-organ mechanical response to a physiological-like loading state. According to our results, a dynamic decellularization protocol of 17 h duration with a 5 ml/min detergent infusion flow rate revealed higher DNA removal efficiency than standard static decellularization, resulting in residual DNA content < 50 ng/mg dry tissue weight. Furthermore, the collagen network and elastic fibres distribution were preserved in the acellular ECM, which exhibited suitable biomechanical properties in the perspective of its future use as an implant for bladder augmentation.

  20. Regeneration of optic nerve fibers of adult mammals.

    PubMed

    Watanabe, Masami

    2010-09-01

    The pathway from the retina to the brain in mammals provides a well-defined model system for investigation of not only surviving axotomy but also axonal regeneration of injured neurons. Here I introduce our recent works on axonal regeneration in the optic nerve (OpN) of adult cats. Fibers of retinal ganglion cells (RGCs) extend beyond the crush site of OpN with injections of a macrophage stimulator (oxidized galectin-1) or a Rho kinase (ROCK) inhibitor (Y-39983 or Y-27632) while axonal extension is blocked with injection of saline. Elongation of crushed optic fibers, however, is slowed after 2 weeks. Transplantation of peripheral nerve makes RGCs regenerate their transected axons into a graft but regenerated fibers extend only a few mm in the brain. Effectiveness of combination of the drugs and treatments has to be verified in future.

  1. Histoplasma infection of aortofemoral bypass graft.

    PubMed

    Patel, Nishit; Bronze, Michael S

    2014-05-01

    Histoplasma infection of vascular grafts is extremely rare. To our knowledge, there are only 4 cases reported with Histoplasma capsulatum infection of the aortic graft. All had previous disseminated histoplasmosis and atherosclerotic peripheral vascular disease. They were treated surgically with explantation of the infected graft and reimplantation of new graft in extra-anatomic uninfected site. The authors present a new case of H capsulatum infection of aortofemoral bypass graft, but unlike the other cases, this case was managed without surgical intervention.

  2. Mutual attraction between emigrant cells from transected denervated nerve.

    PubMed Central

    Abernethy, D A; Thomas, P K; Rud, A; King, R H

    1994-01-01

    It is known that regenerating axons emerging from the proximal stump of a transected nerve are attracted towards the distal stump. It is not certain whether this neurotropic effect is on the axons themselves or whether it is on supporting cells such as Schwann cells that the axons then follow. In order to investigate this question in rats, segments of the sciatic nerve were either isolated or removed and reinserted as grafts, and then sutured into the opposing ends of double-Y silicone tubes. In these tubes, a central conduit was formed by connecting the centrally facing limb of each Y tube. The nerve segments were sutured into one of the limbs at either end. The third limbs of the Y tubes formed side arms, one of which was left open; a plug of mobilised fatty connective tissue was sutured into the other. A gap of 6 mm was left between the cut ends and the fat pads (or openings from the side arms). After 2-3 wk a significantly greater outgrowth (P < 0.001) was found to link the nerve segments than to invade the side arms. The major cell component in the outgrowth was Schwann cells, supported by fibroblasts and capillaries and surrounded by a lamellated layer of flattened fibroblasts. The growth into the side arms had a looser cellular architecture and contained considerably fewer Schwann cells. The results strongly suggest the existence of mutual attraction between emigrant Schwann cells, or possibly endoneurial fibroblasts, from the 2 cut ends of transected nerves. This conclusion has implications for the guidance of axons across gaps in nerves. It does not exclude an additional neurotropic effect from the distal stump on axons. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8014117

  3. Capsular contracture in implant based breast reconstruction—the effect of porcine acellular dermal matrix

    PubMed Central

    Ho-Asjoe, Mark; Junge, Klaus; Farhadi, Jian

    2017-01-01

    Background Irradiation of implant-based breast reconstructions (BR) is known to increase capsular contracture (CC) rates on average by 4-fold over non-irradiated reconstructions. The use of acellular dermal matrix (ADM) has been associated with lower CC rates in non-irradiated reconstructions (0-3%). Experimental and clinical studies suggest that ADM may also reduce CC rates in irradiated breasts. The aim of this study was to evaluate CC rates in non-irradiated and irradiated one- and two-stage BRs performed with the assistance of porcine ADM (PADM). Methods A single centre, retrospective, cohort study was designed from December 2008 to October 2012. A total of 200 immediate implant-based BRs were performed using PADM for inferior pole reinforcement. We included non-irradiated BR with a minimum follow up of 6 month from primary surgery (one stage) or from explantation of expander and implantation of the definitive implant (two stage). Of the postoperatively irradiated BR we included patients with 1 year or more follow up time from termination of radiotherapy. CC was graded using the conventional Spear-Baker classification and modified version for irradiated BR. According to the literature Grade III and IV CC were defined as clinically significant CC. Results Of 200 BRs with PADM, 122 were included in this study (84 non-irradiated and 38 irradiated). Sixty-five BR were one stage and 57 were two stage BR. Grade III/IV CC was remarkable low in non-irradiated (6%) and irradiated BR (13%). There was a non-significant trend to increased Grade III and IV CC in irradiated BR vs. non-irradiated BR (13% vs. 6%, P=0.216). In this study follow up time (P<0.001) and the stage of ADM reconstruction (two vs. one stage, P=0.022) were significant risk factors for occurrence of grade III/IV CC on univariate analysis and remained significant for the follow up time (P=0.013) and remarkable for the stages (P=0.093) in multivariate analysis. Conclusions Our data support the current

  4. Combined application of acellular bovine pericardium and hyaluronic acid in prevention of postoperative pericardial adhesion.

    PubMed

    Shen, Jia; Xu, Zhi Wei

    2014-03-01

    An experiment was designed to find the suitable acellular bovine pericardium (ABP) patch in pericardial cavity reconstruction and to evaluate the effect of sodium hyaluronic acid (NaHA) on inflammatory reaction in prevention of pericardial adhesions. The pericardial adhesion model was established in 20 rabbits, weighing from 3.2 to 3.6 kg. Groups were classified as follows: Group A (n = 5), the control group, the pericardium was directly closed; Group B (n = 5), 0.15% glutaraldehyde-treated ABP (low cross-link degree); Group C, 0.3% glutaraldehyde-treated ABP (middle cross-link degree); Group D, 0.15% glutaraldehyde-treated ABP + NaHA solution. Blood samples were collected at 6 h, 24 h, 3 days, and 5 days, to assay postoperative inflammatory reaction. The tenacity and severity of adhesions were evaluated 2 months after operation, by macroscopic and microscopic examinations, and Q-PCR (real-time quantitative polymerase chain reaction) test was used to quantitatively analyze the associated genes with adhesion. Pericardium regeneration was demonstrated by immunohistochemical technique to identify mesothelial cells. In Group D, the serum concentration of tumor necrosis factor-α (TNF-α) was significantly lower in the early postoperative period, and the mean adhesion score (adhesion between the epicardium and ABP) was significantly lower compared with the control group (Groups D vs. A: 0.20 ± 0.45 vs. 2.00 ± 0.71, P = 0.009*). The signs of degradation of the ABPs were observed 2 months postoperation in Groups D and B. Immunohistochemically, the positive cytokeratin AE1 staining results demonstrated the relatively total regeneration of the pericardium in Group D. Signs of regeneration were observed in Group D. Compared with the control group, the level of TGF-β2 in Group D was significantly lower (0.00132 ± 0.00114, P = 0.022*). The TGF-β3 level was statistically significant, being highest in Group D (0.00805 ± 0.00136, P = 0.029*). The mean quantity of Smad6 in

  5. [Kidney grafts from elderly donors].

    PubMed

    Hiesse, Christian; Pessione, Fabienne; Cohen, Sophie

    2003-06-07

    FROM AN EPIDEMIOLOGICAL POINT OF VIEW: The epidemiology of renal transplantation had greatly changed over the past 10 years. The increasing number of patients with renal failure and candidates for transplantation increases the demand for grafts, whereas the sampling rate of organs remains stable. The mean age of the donors is rising, hence underlining the question of the use of organs of so-called "borderline" quality. THE WEAK POINTS OF ELDERLY GRAFTS: Aging of the kidneys affects the structure of the parenchyma and renal function, which decreases, notably in hypertensive persons. The elderly graft exhibits a critical mass of nephrons that is insufficient to fulfil the functional requirements of a poorly equipped recipient. The recipient is more sensitive to the added agressions: prolonged ischemia and immunological and medicinal agressions. THE RESULTS OF RENAL GRAFT FROM ELDERLY DONORS: They are quantitatively and qualitatively inferior to those of renal transplants from "ideal" donors. The donor's age is a significant factor influencing negatively influences the survival of the transplanted kidney, but dependent on past vascular history. Good results regarding the maintenance of dialysis are obtained by selecting the donors and by avoiding added risk factors. THE ASSESSMENT OF A GRAFT FROM AN ELDERLY DONOR: This, basically, relies on clinical criteria: donor's history, cause of death and accurate measurement of the renal function. A biopsy of the graft, at the time of sampling, provides useful information. TRANSPLANTATION STRATEGY OF A GRAFT FROM AN ELDERLY DONOR: Donor-recipient matching by age is a common approach. Grafting of both kidneys in the same recipient is a method presently under assessment. The episode of ischemia must be reduced and the immunosuppressive therapy adapted.

  6. Laminin Functionalized Biomimetic Nanofibers For Nerve Tissue Engineering

    PubMed Central

    Junka, Radoslaw; Valmikinathan, Chandra M; Kalyon, Dilhan M; Yu, Xiaojun

    2013-01-01

    Large-gap peripheral nerve injuries present a significant challenge for nerve regeneration due to lack of suitable grafts, insufficient cell penetration, and repair. Biomimetic nanofibrous scaffolds, functionalized on the surface with extracellular matrix proteins, can lead to novel therapies for repair and regeneration of damaged peripheral nerves. Here, nanofibrous scaffolds electrospun from blends of poly(caprolactone) (PCL) and chitosan were fabricated. Taking advantage of the amine groups on the chitosan, the surface of the scaffolds were functionalized with laminin by carbodiimide based crosslinking. Crosslinking allowed laminin to be attached to the surfaces of the PCL-chitosan nanofibers at relatively high concentrations that were not possible using conventional adsorption methods. The nanofibrous meshes were tested for wettability, mechanical properties and cell attachment and proliferation. Blending of chitosan with PCL provided more favorable surfaces for attachment of Schwann cells due to the reduction of the contact angle in comparison to neat PCL. Proliferation rates of Schwann cells grown on PCL-chitosan scaffolds with crosslinked laminin were significantly higher than the rates for PCL-chitosan nanofibrous matrices with adsorbed laminin. PCL-chitosan scaffolds with modified surfaces via crosslinking of laminin could potentially serves as versatile substrates with excellent mechanical and surface properties for in vivo cell delivery for nerve tissue engineering applications. PMID:24083073

  7. The treatment of peripheral nerve injuries using irradiated allografts and temporary host immunosuppression (in a rat model)

    SciTech Connect

    Easterling, K.J.; Trumble, T.E. )

    1990-10-01

    Irradiation of allografts prior to transplantation and host immunosuppression with cyclosporin-A were studied separately and in combination as means of lessening the rejection of transplanted peripheral nerve tissue. Lewis and Brown Norway rats were used in the animal model, as they differ at both major and minor histocompatibility loci. Sciatic nerve grafts (2.5 cm) were used and the animals were followed for 16 weeks after nerve grafting. The outcome was studied by functional measurements (sensory testing, gait analysis, joint flexion contracture, and muscle weight), as well as by measurements of biochemical and histologic parameters (hydroxyproline concentration and axon counts, respectively). Sensory testing was not reliable because of crossover innervation by the saphenous nerve. Evaluation by standard gait-testing techniques was found to be unsatisfactory. However, the allografted animals receiving cyclosporin-A had significantly smaller flexion contractures, compared to the allografted animals without immunosuppression (17 degrees +/- 12 degrees vs. 44 degrees +/- 13 degrees and 51 degrees +/- 13 degrees, p less than 0.005). Allografted animals receiving short-term cyclosporin-A had contractures that were not significantly different from those seen in isografted control animals (17 degrees +/- 12 degrees vs. 22 degrees +/- 15 degrees, NS). Muscle hydroxyproline concentration analysis revealed a lower hydroxyproline concentration among the allografted groups that received irradiated allografts, compared to groups receiving nonirradiated allogeneic grafts. The studies of muscle hydroxyproline concentration and muscle weight both showed substantial reinnervation, even in allografted animals without pretreatment of the grafts or immunosuppression of the recipient animal.

  8. Bone Grafting: Sourcing, Timing, Strategies, and Alternatives.

    PubMed

    Egol, Kenneth A; Nauth, Aaron; Lee, Mark; Pape, Hans-Christoph; Watson, J Tracy; Borrelli, Joseph

    2015-12-01

    Acute fractures, nonunions, and nonunions with bone defects or osteomyelitis often need bone graft to facilitate union. There are several factors to consider when it is determined that a bone graft is needed. These factors include the source of the bone graft (autograft vs. allograft), proper timing for placement of the bone graft, strategies to avoid further complications (particularly in the setting of osteomyelitis), and with the development of a variety of bone graft substitutes, whether alternatives to autograft are available and appropriate for the task at hand. Autograft bone has commonly been referred to as the "gold standard" of bone grafts, against which the efficacy of other grafts has been measured. The best timing for when to place a bone graft or substitute is also somewhat controversial, particularly after an open fracture or a potentially contaminated bed. The treatment of infected nonunions, particularly those that require a graft to facilitate healing, can be quite challenging. Typically, the infection is completely eradicated before placement of a bone graft, but achieving a sterile bed and the timing of a bone graft require strategic thinking and planning. This review outlines the benefits of autografts, the most suitable sites for harvesting bone grafts, the timing of bone graft procedures, the potential risks and benefits of grafting in the face of infection, and the currently available bone graft extenders.

  9. Costal Grafting in Mandibular Reconstruction

    PubMed Central

    Bourlet, Jerôme; Château, Joseph; Jacquemart, Mathieu; Dufour, Clémence; Mojallal, Ali; Gleizal, Arnaud

    2015-01-01

    Background: Reconstruction of mandibular bone defect is a common indication in craniomaxillofacial surgery, and free fibular flap is the gold standard for this indication. However, there are alternatives; nonvascular bone grafting is one of them, and we present the costal grafting for mandibular reconstruction, a classic technique that is reliable, efficient, and produced less morbidity than the technique of using composite free flaps. Method: A 9-year retrospective review of 54 patients treated surgically for mandibular reconstruction was performed. The criterion mainly analyzed was graft survival. The surgical technique was described in detail. Results: A total of 54 patients with mandibular bone defect were identified. Five symphysis, 46 corpus, and 20 ramus defects were considered. These patients underwent reconstruction by costal grafting, and the engrafting was successful in 92.6% of cases. Dental rehabilitation with dental implants was realized in 70% of cases. Conclusions: The approach described in this article allowed the authors to obtain good results with costal grafting for mandibular reconstruction and dental rehabilitation. Costal grafting is a good alternative for fibula free flap in specific indications. Reconstruction of mandibular bone defect is a common indication in craniomaxillofacial surgery. Since the 1980s, the gold standard for these defects is the use of free fibular flap.1 In some cases, this technique is contradicted; the surgeon then has several possibilities for the use of free osteomyocutaneous flaps (iliac crest, scapula, and serrato-costal flaps).2–8 PMID:26893990

  10. Interventions in Infrainguinal Bypass Grafts

    SciTech Connect

    Mueller-Huelsbeck, S. Order, B.-M.; Jahnke, T.

    2006-02-15

    The interventional radiologist plays an important role in the detection and prevention of infrainguinal bypass failure. Early detection and evaluation of flow-limiting lesions effectively preserve graft (venous bypass and polyester or expanded polytetrafluoroethylene bypass) patency by identifying stenoses before occlusion occurs. Delay in treatment of the at-risk graft may result in graft failure and a reduced chance of successful revascularization. For this reason, surveillance protocols form an important part of follow-up after infrainguinal bypass surgery. As well as having an understanding of the application of imaging techniques including ultrasound, MR angiography, CT angiography and digital subtraction angiography, the interventional radiologist should have detailed knowledge of the minimally invasive therapeutic options. Percutaneous transluminal angioplasty (PTA), or alternatively cutting balloon angioplasty, is the interventional treatment of choice in prevention of graft failure and occlusion. Further alternatives include metallic stent placement, fibrinolysis, and mechanical thrombectomy. Primary assisted patency rates following PTA can be up to 65% at 5 years. When the endovascular approach is unsuccessful, these therapeutic options are complemented by surgical procedures including vein patch revision, jump grafting, or placement of a new graft.

  11. Bilateral internal thoracic artery grafting

    PubMed Central

    2013-01-01

    The effectiveness of the left internal mammary artery graft to the anterior descending coronary artery as a surgical strategy has been shown to improve the survival rate and decrease the risk of adverse cardiac events in patients undergoing coronary bypass surgery. These clinical benefits appear to be related to the superior short and long-term patency rates of the internal thoracic artery graft. Although the advantages of using of both internal thoracic arteries (ITA) for bypass grafting have taken longer to prove, recent results from multiple data sets now support these findings. The major advantage of bilateral ITA grafting appears to be improved survival rate, while the disadvantages of complex ITA grafting include the increased complexity of operation, and an increased risk of wound complications. While these short-term disadvantages have been mitigated in contemporary surgical practice, they have not eliminated. Bilateral ITA grafting should be considered the procedure of choice for patients undergoing coronary bypass surgery that have a predicted survival rate of longer than ten years. PMID:23977627

  12. Microsurgical management of complex fingertip injuries: comparison to conventional skin grafting.

    PubMed

    Rose, E H; Norris, M S; Kowalski, T A

    1988-01-01

    In selected cases of severe fingertip injuries, an aggressive approach using microvascular and microneural techniques can yield functional results equal or superior to conventional methods of treatment in less severe injuries. A series of 20 patients were treated microsurgically from 1983 to 1986 for severe acute distal finger injuries or their early sequelae--five distal replantations, eight neurovascular free tissue transfers, and nine distal neurorrhaphies/nerve grafts with or without vascular conduit. Concurrently, 33 simpler tip avulsions were treated with full-thickness skin grafts for comparison. In the microsurgical series, one replant and the distal 1 cm of a free toe flap necrosed. Replants averaged two-point discrimination of 9.8 mm and pulp pinch 65 percent of normal; free toe transfers, two-point of 6 mm, pulp pinch 58 percent; distal nerve reconstruction, two-point 6 mm. Operating time per digit averaged 5.0 hours for replants, 4.3 hours for toe flaps, and 1.5 hours for nerve repair/grafts. All patients returned to full pre-injury employment within six months. None required revisional surgery for dysesthetic fingertips. In the conventional skin graft series, greater than six months follow-up is available in 17 patients. Average two-point was 7 mm (range: 3 to greater than 15 mm) and pulp pinch 83 percent of normal. There were seven poor results with cold intolerance, numbness, and paresthesias, three of which required revisional surgery. The data suggest that microsurgical management of fingertip injuries achieves results comparable to skin grafts, despite the greater complexity of the initial injury. This approach has resulted in fewer secondary tip revisions. Operative times are acceptable. Parameters of sensory return are similar, although pulp pinch is slightly less. Disability times are comparable to the average in major pulp losses. Of importance, final permanent partial factors of disability are diminished in rating, due to retained digital

  13. Combination of Local Transplantation of In Vitro Bone-marrow Stromal Cells and Pulsed Electromagnetic Fields Accelerate Functional Recovery of Transected Sciatic Nerve Regeneration: A Novel Approach in Transected Nerve Repair.

    PubMed

    Mohammadi, Rahim; Mahmoodzadeh, Sirvan

    2015-01-01

    Effect of combination of undifferentiated bone marrow stromal cells (BMSCs) and pulsed electromagnetic fields (PEMF) on transected sciatic nerve regeneration was assessed in rats. A 10 mm nerve segment was excised and a vein graft was used to bridge the gap. Twenty microliter undifferentiated BMSCs (2× 107 cells /mL) were administered into the graft inBMSC group with no exposure to PEMF. In BMSC/PEMF group the whole body was exposed to PEMF (0.3 mT, 2Hz) for 4h/day within 1-5 days. In PEMF group the transected nerve was bridged and phosphate buffered saline was administered into the graft. In authograft group (AUTO), the transected nervesegments were reimplanted reversely and the whole body was exposed to PEMF. The regenerated nerve fibers were studied within 12 weeks after surgery. Behavioral, functional, electrophysiological, biomechanical, gastrocnemius muscle mass findings, morphometric indices and immuonohistochemical reactions confirmed faster recovery of regenerated axons in BMSC/PEMF group compared to those in the other groups (P<0.05). The use of undifferentiated BMSCs with whole body exposure to PEMF improved functional recovery. Combination of local transplantation of in vitro bone-marrow stromal cells and pulsed electromagnetic fields could be considered as an effective, safe and tolerable treatment for peripheral nerve repair in clinical practice.

  14. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury.

    PubMed

    Witzel, Christian; Reutter, Werner; Stark, G Björn; Koulaxouzidis, Georgios

    2015-06-01

    Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005) and the number of arborizing axons (21% vs. 16%; P = 0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  15. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    PubMed Central

    Witzel, Christian; Reutter, Werner; Stark, G. Björn; Koulaxouzidis, Georgios

    2015-01-01

    Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005) and the number of arborizing axons (21% vs. 16%; P = 0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration. PMID:26199617

  16. First human experience with autologous Schwann cells to supplement sciatic nerve repair: report of 2 cases with long-term follow-up.

    PubMed

    Gersey, Zachary C; Burks, S Shelby; Anderson, Kim D; Dididze, Marine; Khan, Aisha; Dietrich, W Dalton; Levi, Allan D

    2017-03-01

    OBJECTIVE Long-segment injuries to large peripheral nerves present a challenge to surgeons because insufficient donor tissue limits repair. Multiple supplemental approaches have been investigated, including the use of Schwann cells (SCs). The authors present the first 2 cases using autologous SCs to supplement a peripheral nerve graft repair in humans with long-term follow-up data. METHODS Two patients were enrolled in an FDA-approved trial to assess the safety of using expanded populations of autologous SCs to supplement the repair of long-segment injuries to the sciatic nerve. The mechanism of injury included a boat propeller and a gunshot wound. The SCs were obtained from both the sural nerve and damaged sciatic nerve stump. The SCs were expanded and purified in culture by using heregulin β1 and forskolin. Repair was performed with sural nerve grafts, SCs in suspension, and a Duragen graft to house the construct. Follow-up was 36 and 12 months for the patients in Cases 1 and 2, respectively. RESULTS The patient in Case 1 had a boat propeller injury with complete transection of both sciatic divisions at midthigh. The graft length was approximately 7.5 cm. In the postoperative period the patient regained motor function (Medical Research Council [MRC] Grade 5/5) in the tibial distribution, with partial function in peroneal distribution (MRC Grade 2/5 on dorsiflexion). Partial return of sensory function was also achieved, and neuropathic pain was completely resolved. The patient in Case 2 sustained a gunshot wound to the leg, with partial disruption of the tibial division of the sciatic nerve at the midthigh. The graft length was 5 cm. Postoperatively the patient regained complete motor function of the tibial nerve, with partial return of sensation. Long-term follow-up with both MRI and ultrasound demonstrated nerve graft continuity and the absence of tumor formation at the repair site. CONCLUSIONS Presented here are the first 2 cases in which autologous SCs were

  17. Development of chitosan-crosslinked nanofibrous PHBV guide for repair of nerve defects.

    PubMed

    Biazar, Esmaeil; Heidari Keshel, Saeed

    2014-12-01

    The aim of this study was to produce a chitosan-crosslinked nanofibrous biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nerve conduit. The artificial scaffold was designed by electrospinning method, and cross-linked with chitosan by chemical method. The scaffolds were evaluated by microscopic, physical, and mechanical analyses, and cell culture assays with Schwann cells. Results of analyses showed a good resilience and compliance with movement as a neural graft. Cellular experiments showed a better cell adhesion and growth inside the crosslinked nanofibrous scaffolds compared with un-crosslinked ones. This neural conduit appears to have the right organization for testing in vivo nerve tissue engineering studies.

  18. [Graft or CVC? A prosthetic graft is the better choice].

    PubMed

    Cifarelli, M

    2009-01-01

    For more than 30 years, research and industry have attempted to introduce into clinical practice solutions and products that could remedy the impossibility to use native veins. Vascular grafts of various types have been created that would approach the ideal characteristics as closely as possible with low antigenic power, high resistance to infections, low risk of thrombosis, and easy pierceability but high resistance to puncturing. For this purpose various materials, either totally synthetic such as PTFE, biological homologous or heterologous, or biosynthetic with mixed components have been created. In addition, different configurations to improve the hemodynamic outline of synthetic grafts have been studied: grafts of varying caliber, conical or equipped with cuffs, and various systems of wall reinforcement to increase the resistance to punctures. But each of these types favors one aspect over another: biological grafts show better compliance with the native vein but offer less resistance to punctures and ectatic processes; synthetic grafts, instead, tend to be more vulnerable to intimal hyperplasia at the venous anastomosis, which is the Achilles' heel of grafts. In recent years, the use of tunneled central venous catheters (CVCs) has grown exponentially. This has offered a new, important solution to the vascular access problem, but the extensive use of CVCs is not always justified. In comparison with grafts, CVCs have various disadvantages including insertion-related complications, possible malfunctioning, risk of infections and thrombosis, but above all a high risk of steno-occlusion of central veins. Also in this field, research and industry are offering more and more reliable and secure products. More resistant, flexible, tolerable and less thrombogenic materials are being used and various configurations which would offer the best performance with the least insertion-related risks have been introduced: double-lumen CVCs with input and output staggered in oval

  19. Patency of femoropopliteal and femorotibial grafts after outflow revascularization (jump grafts) to bypass distal disease.

    PubMed

    Andros, G; Harris, R W; Dulawa, L B; Oblath, R W; Salles-Cunha, S X

    1984-11-01

    Repair of failing femorodistal bypass grafts with secondary distal "jump" grafts was performed 34 times in 33 patients. Indication for operation was limb salvage for all distal jump grafts and for 85% of the initial femorodistal bypass grafts. Autogenous vein bypass grafts were used in 28 of 33 initial femorodistal grafts (85%) and in 29 of 34 secondary jump grafts (85%). Sixteen of the 33 initial grafts in jeopardy extended to the infrapopliteal level (48%) and 19 of the jump grafts terminated in foot or ankle arteries (56%). The 12 jump grafts performed in the first 2 months of the initial graft were associated with high rates (9%) of graft thrombosis and amputation. Early loss of viability of initial grafts probably resulted from technical and judgment errors or underestimation of distal disease. Progression of distal disease produced late failure after 1 year of implantation of the initial grafts. The 1-year patency rate of the initial femorodistal grafts was 63% but only 32% of these grafted limbs were viable and were not at risk of amputation. Distal jump grafts produced a 49% improvement in limb viability (to an 81% limb salvage rate) and an 11% increase in the initial graft patency rate (to 74%) at 1 year.

  20. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer

    PubMed Central

    Sullivan, Robert; Dailey, Travis; Duncan, Kelsey; Abel, Naomi; Borlongan, Cesario V.

    2016-01-01

    Peripheral nerve injury can lead to great morbidity in those afflicted, ranging from sensory loss, motor loss, chronic pain, or a combination of deficits. Over time, research has investigated neuronal molecular mechanisms implicated in nerve damage, classified nerve injury, and developed surgical techniques for treatment. Despite these advancements, full functional recovery remains less than ideal. In this review, we discuss historical aspects of peripheral nerve injury and introduce nerve transfer as a therapeutic option, as well as an adjunct therapy to transplantation of Schwann cells and their stem cell derivatives for repair of the damaged nerve. This review furthermore, will provide an elaborated discussion on the sources of Schwann cells, including sites to harvest their progenitor and stem cell lines. This reflects the accessibility to an additional, concurrent treatment approach with nerve transfers that, predicated on related research, may increase the efficacy of the current approach. We then discuss the experimental and clinical investigations of both Schwann cells and nerve transfer that are underway. Lastly, we provide the necessary consideration that these two lines of therapeutic approaches should not be exclusive, but conversely, should be pursued as a combined modality given their mutual role in peripheral nerve regeneration. PMID:27983642

  1. Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration.

    PubMed

    Wu, Xiaoli; He, Liumin; Li, Wen; Li, Heng; Wong, Wai-Man; Ramakrishna, Seeram; Wu, Wutian

    2017-02-01

    Peripheral nerves are fragile and easily damaged, usually resulting in nervous tissue loss, motor and sensory function loss. Advances in neuroscience and engineering have been significantly contributing to bridge the damage nerve and create permissive environment for axonal regrowth across lesions. We have successfully designed two self-assembling peptides by modifying RADA 16-I with two functional motifs IKVAV and RGD. Nanofiber hydrogel formed when combing the two neutral solutions together, defined as RADA 16-Mix that overcomes the main drawback of RADA16-I associated with low pH. In the present study, we transplanted the RADA 16-Mix hydrogel into the transected rat sciatic nerve gap and effect on axonal regeneration was examined and compared with the traditional RADA16-I hydrogel. The regenerated nerves were found to grow along the walls of the large cavities formed in the graft of RADA16-I hydrogel, while the nerves grew into the RADA 16-Mix hydrogel toward distal position. RADA 16-Mix hydrogel induced more axons regeneration and Schwann cells immigration than RADA16-I hydrogel, resulting in better functional recovery as determined by the gait-stance duration percentage and the formation of new neuromuscular junction structures. Therefore, our results indicated that the functional SAP RADA16-Mix nanofibrous hydrogel provided a better environment for peripheral nerve regeneration than RADA16-I hydrogel and could be potentially used in peripheral nerve injury repair.

  2. Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration

    PubMed Central

    Wu, Xiaoli; He, Liumin; Li, Wen; Li, Heng; Wong, Wai-Man; Ramakrishna, Seeram; Wu, Wutian

    2017-01-01

    Peripheral nerves are fragile and easily damaged, usually resulting in nervous tissue loss, motor and sensory function loss. Advances in neuroscience and engineering have been significantly contributing to bridge the damage nerve and create permissive environment for axonal regrowth across lesions. We have successfully designed two self-assembling peptides by modifying RADA 16-I with two functional motifs IKVAV and RGD. Nanofiber hydrogel formed when combing the two neutral solutions together, defined as RADA 16-Mix that overcomes the main drawback of RADA16-I associated with low pH. In the present study, we transplanted the RADA 16-Mix hydrogel into the transected rat sciatic nerve gap and effect on axonal regeneration was examined and compared with the traditional RADA16-I hydrogel. The regenerated nerves were found to grow along the walls of the large cavities formed in the graft of RADA16-I hydrogel, while the nerves grew into the RADA 16-Mix hydrogel toward distal position. RADA 16-Mix hydrogel induced more axons regeneration and Schwann cells immigration than RADA16-I hydrogel, resulting in better functional recovery as determined by the gait-stance duration percentage and the formation of new neuromuscular junction structures. Therefore, our results indicated that the functional SAP RADA16-Mix nanofibrous hydrogel provided a better environment for peripheral nerve regeneration than RADA16-I hydrogel and could be potentially used in peripheral nerve injury repair. PMID:28149526

  3. Safety profile of sural nerve in posterolateral approach to the ankle joint: MRI study.

    PubMed

    Ellapparadja, Pregash; Husami, Yaya; McLeod, Ian

    2014-05-01

    The posterolateral approach to ankle joint is well suited for ORIF of posterior malleolar fractures. There are no major neurovascular structures endangering this approach other than the sural nerve. The sural nerve is often used as an autologous peripheral nerve graft and provides sensation to the lateral aspect of the foot. The aim of this paper is to measure the precise distance of the sural nerve from surrounding soft tissue structures so as to enable safe placement of skin incision in posterolateral approach. This is a retrospective image review study involving 64 MRI scans. All measurements were made from Axial T1 slices. The key findings of the paper is the safety window for the sural nerve from the lateral border of tendoachilles (TA) is 7 mm, 1.3 cm and 2 cm at 3 cm above ankle joint, at the ankle joint and at the distal tip of fibula respectively. Our study demonstrates the close relationship of the nerve in relation to TA and fibula in terms of exact measurements. The safety margins established in this study should enable the surgeon in preventing endangerment of the sural nerve encountered in this approach.

  4. Exposure Stress Induces Reversible Corneal Graft Opacity in Recipients With Herpes Simplex Virus-1 Infections

    PubMed Central

    Rowe, Alexander M.; Yun, Hongmin; Hendricks, Robert L.

    2017-01-01

    Purpose Most of the inflammation in murine herpes simplex virus type 1 (HSV-1)-induced stromal keratitis (HSK) is due to exposure stress resulting from loss of corneal nerves and blink reflex. Corneal grafts often fail when placed on corneal beds with a history of HSK. We asked if corneal exposure contributes to the severe pathology of corneal grafts on HSV-1–infected corneal beds. Methods Herpes simplex virus type 1–infected corneas were tested for blink reflex. Opacity and vascularization were monitored in allogeneic and syngeneic corneal grafts that were transplanted to corneal beds with no blink reflex or to those that retained blink reflex in at least one quadrant following infection. Results Retention of any level of blink reflex significantly reduced inflammation in HSV-1–infected corneas. Corneal allografts placed on HSV-1–infected beds lacking corneal blink reflex developed opacity faster and more frequently than those placed on infected beds that partially or completely retained blink reflex. Corneal grafts placed on infected corneal beds with no blink reflex rapidly became opaque to a level that would be considered rejection. However, protecting these grafts from exposure by tarsorrhaphy prevented or reversed the opacity in both syngeneic and allogenic grafts. Conclusions Exposure due to HSV-1–engendered hypoesthesia causes rapid, severe, persistent, but reversible opacification of both allogeneic and syngeneic corneal grafts. This opacity should not be interpreted as immunologic rejection. Exposure stress may contribute to the high rate of corneal graft pathology in patients with recurrent HSK. PMID:28055100

  5. Neuromuscular Ultrasound of Cranial Nerves

    PubMed Central

    Tawfik, Eman A.; Cartwright, Michael S.

    2015-01-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed. PMID:25851889

  6. Incorporation of Chitosan Microspheres into Collagen-Chitosan Scaffolds for the Controlled Release of Nerve Growth Factor

    PubMed Central

    Xiao, Wei; Qi, Fengyu; Huang, Jinghui; Luo, Zhuojing

    2014-01-01

    Background Artifical nerve scaffold can be used as a promising alternative to autologous nerve grafts to enhance the repair of peripheral nerve defects. However, current nerve scaffolds lack efficient microstructure and neurotrophic support. Methods Microsphere–Scaffold composite was developed by incorporating chitosan microspheres loaded with nerve growth factor (NGF–CMSs) into collagen-chitosan scaffolds (CCH) with longitudinally oriented microchannels (NGF–CMSs/CCH). The morphological characterizations, in vitro release kinetics study, neurite outgrowth assay, and bioactivity assay were evaluated. After that, a 15-mm-long sciatic nerve gap in rats was bridged by the NGF–CMSs/CCH, CCH physically absorbed NGF (NGF/CCH), CCH or nerve autograft. 16 weeks after implantation, electrophysiology, fluoro-gold retrograde tracing, and nerve morphometry were performed. Results The NGF–CMSs were evenly distributed throughout the longitudinally oriented microchannels of the scaffold. The NGF–CMSs/CCH was capable of sustained release of bioactive NGF within 28 days as compared with others in vitro. In vivo animal study demonstrated that the outcomes of NGF–CMSs/CCH were better than those of NGF/CCH or CCH. Conclusion Our findings suggest that incorporation of NGF–CMSs into the CCH may be a promising tool in the repair of peripheral nerve defects. PMID:24983464

  7. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    PubMed Central

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  8. Proximal versus Distal Nerve Transfer for Biceps Reinnervation—A Comparative Study in a Rat’s Brachial Plexus Injury Model

    PubMed Central

    McGrath, Aleksandra M.; Lu, Johnny Chuieng-Yi; Chang, Tommy Naj-Jen; Fang, Frank

    2016-01-01

    Background: The exact role of proximal and distal nerve transfers in reconstruction strategies of brachial plexus injury remains controversial. We compared proximal with distal nerve reconstruction strategies in a rat model of brachial plexus injury. Methods: In rats, the C6 spinal nerve with a nerve graft (proximal nerve transfer model, n = 30, group A) and 50% of ulnar nerve (distal nerve transfer model, n = 30, group B) were used as the donor nerves. The targets were the musculocutaneous nerve and the biceps muscle. Outcomes were recorded at 4, 8, 12, and 16 weeks postoperatively. Outcome parameters included grooming test, biceps muscle weight, compound muscle action potentials, tetanic contraction force, and axonal morphology of the donor and target nerves. Results: The axonal morphology of the 2 donor nerves revealed no significant difference. Time interval analysis in the proximal nerve transfer group showed peak axon counts at 12 weeks and a trend of improvement in all functional and physiologic parameters across all time points with statistically significant differences for grooming test, biceps compound action potentials, tetanic muscle contraction force, and muscle weight at 16 weeks. In contrast, in the distal nerve transfer group, the only statistically significant difference was observed between the 4 and 8 week time points, followed by a plateau from 8 to 16 weeks. Conclusions: Outcomes of proximal nerve transfers are ultimately superior to distal nerve transfers in our experimental model. Possible explanations for the superior results include a reduced need for cortical adaptation and higher proportions of motor units in the proximal nerve transfers. PMID:28293499

  9. Effect of local administration of platelet-derived growth factor B on functional recovery of peripheral nerve regeneration: A sciatic nerve transection model

    PubMed Central

    Golzadeh, Atefeh; Mohammadi, Rahim

    2016-01-01

    Background: Effects of platelet-derived growth factor B (PDGF-B) on peripheral nerve regeneration was studied using a rat sciatic nerve transection model. Materials and Methods: Forty-five male, white Wistar rats were divided into three experimental groups (n = 15), randomly: Normal control group (NC), silicon group (SIL), and PDGF-B treated group (SIL/PDGF). In NC group, left sciatic nerve was exposed through a gluteal muscle incision and after homeostasis muscle was sutured. In the SIL group, the left sciatic nerve was exposed in the same way and transected proximal to tibio-peroneal bifurcation leaving a 10-mm gap. Proximal and distal stumps were each inserted into a silicone conduit and filled with 10 μL phosphate buffered solution. In SIL/PDGF group, the silicon conduit was filled with 10 μL PDGF-B (0.5 ng/mL). Each group was subdivided into three subgroups of five and were studied in 4, 8, 12 weeks after surgery. Results: Behavioral testing, sciatic nerve functional study, gastrocnemius muscle mass, and histomorphometric studies showed earlier regeneration of axons in SIL/PDGF than in SIL group (P < 0.05). Conclusion: Local administration of PDGF-B combined with silicon grafting could accelerate functional recovery and may have clinical implications for the surgical management of patients after facial nerve transection. PMID:27274342

  10. Craniofacial Bone Grafting: Wolff's Law Revisited

    PubMed Central

    Oppenheimer, Adam J.; Tong, Lawrence; Buchman, Steven R.

    2008-01-01

    Bone grafts are used for the reconstruction of congenital and acquired deformities of the facial skeleton and, as such, comprise a vital component of the craniofacial surgeon's armamentarium. A thorough understanding of bone graft physiology and the factors that affect graft behavior is therefore essential in developing a more intelligent use of bone grafts in clinical practice. This article presents a review of the basic physiology of bone grafting along with a survey of pertinent concepts and current research. The factors responsible for bone graft survival are emphasized. PMID:22110789

  11. Nerve blocks for chronic pain.

    PubMed

    Hayek, Salim M; Shah, Atit

    2014-10-01

    Nerve blocks are often performed as therapeutic or palliative interventions for pain relief. However, they are often performed for diagnostic or prognostic purposes. When considering nerve blocks for chronic pain, clinicians must always consider the indications, risks, benefits, and proper technique. Nerve blocks encompass a wide variety of interventional procedures. The most common nerve blocks for chronic pain and that may be applicable to the neurosurgical patient population are reviewed in this article. This article is an introduction and brief synopsis of the different available blocks that can be offered to a patient.

  12. Nerves on magnetic resonance imaging.

    PubMed Central

    Collins, J. D.; Shaver, M. L.; Batra, P.; Brown, K.

    1989-01-01

    Nerves are often visualized on magnetic resonance imaging (MRI) studies of the soft tissues on the chest and shoulder girdle. To learn the reasons for the contrast between the nerves and adjacent tissues, the authors obtained a fresh specimen containing part of the brachial plexus nerves from the left axilla and compared MRI with x-ray projections and photomicrographs of histologic sections. The results suggest that the high signals from the nerves stand out in contrast to the low signals from their rich vascular supply. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6A Figure 6B Figure 7 PMID:2733051

  13. [Imaging anatomy of cranial nerves].

    PubMed

    Hermier, M; Leal, P R L; Salaris, S F; Froment, J-C; Sindou, M

    2009-04-01

    Knowledge of the anatomy of the cranial nerves is mandatory for optimal radiological exploration and interpretation of the images in normal and pathological conditions. CT is the method of choice for the study of the skull base and its foramina. MRI explores the cranial nerves and their vascular relationships precisely. Because of their small size, it is essential to obtain images with high spatial resolution. The MRI sequences optimize contrast between nerves and surrounding structures (cerebrospinal fluid, fat, bone structures and vessels). This chapter discusses the radiological anatomy of the cranial nerves.

  14. Anterior Cruciate Ligament Graft Choices

    PubMed Central

    Macaulay, Alec A.; Perfetti, Dean C.; Levine, William N.

    2012-01-01

    Context: Reconstruction of the anterior cruciate ligament (ACL) is a common surgical procedure; however, there is no consensus to what the best graft option is to replace the injured ACL. The main options available consist of allografts and autografts, which include patellar tendon, hamstring tendon, and quadriceps tendon autografts. Evidence Acquisition: The PubMed database was searched in August 2010 for English-language articles pertaining to ACL grafts. Results: Postoperative outcome variables were analyzed to determine similarities and differences among the different graft options. These variables include stability, strength, function, return to sports, patient satisfaction, complications, and cost. Conclusions: Both allografts and the 3 main options for autografts can provide excellent results in ACL reconstruction and lead to a high percentage of satisfied patients. However, differences exist among the graft choices. Both the similarities and the differences are important to discuss with a patient who will be undergoing ACL reconstruction so that he or she has the best information available when making a choice of graft. PMID:23016071

  15. Accessory nerve palsy.

    PubMed

    Olarte, M; Adams, D

    1977-11-01

    After apparently uncomplicated excision of benign lesions in the posterior cervical triangle, two patients had shoulder pain. In one, neck pain and trapezius weakness were not prominent until one month after surgery. Inability to elevate the arm above the horizontal without externally rotating it, and prominent scapular displacement on arm abduction, but not on forward pushing movements, highlighted the trapezius dysfunction and differentiated it from serratus anterior weakness. Spinal accessory nerve lesions should be considered when minor surgical procedures, lymphadenitis, minor trauma, or tumours involved the posterior triangle of the neck.

  16. Microcircuit formation following transplantation of mouse embryonic stem cell-derived neurons in peripheral nerve.

    PubMed

    Magown, Philippe; Rafuse, Victor F; Brownstone, Robert M

    2017-04-01

    Motoneurons derived from embryonic stem cells can be transplanted in the tibial nerve, where they extend axons to functionally innervate target muscle. Here, we studied spontaneous muscle contractions in these grafts 3 mo following transplantation. One-half of the transplanted grafts generated rhythmic muscle contractions of variable patterns, either spontaneously or in response to brief electrical stimulation. Activity generated by transplanted embryonic stem cell-derived neurons was driven by glutamate and was modulated by muscarinic and GABAergic/glycinergic transmission. Furthermore, rhythmicity was promoted by the same transmitter combination that evokes rhythmic locomotor activity in spinal cord circuits. These results demonstrate that there is a degree of self-assembly of microcircuits in these peripheral grafts involving embryonic stem cell-derived motoneurons and interneurons. Such spontaneous activity is reminiscent of embryonic circuit development in which spontaneous activity is essential for proper connectivity and function and may be necessary for the grafts to form functional connections with muscle.NEW & NOTEWORTHY This manuscript demonstrates that, following peripheral transplantation of neurons derived from embryonic stem cells, the grafts are spontaneously active. The activity is produced and modulated by a number of transmitter systems, indicating that there is a degree of self-assembly of circuits in the grafts.

  17. An in vitro assay system as a potential replacement for the histamine sensitisation test for acellular pertussis based combination vaccines.

    PubMed

    Yuen, Chun-Ting; Horiuchi, Yoshinobu; Asokanathan, Catpagavalli; Cook, Sarah; Douglas-Bardsley, Alexandra; Ochiai, Masaki; Corbel, Michael; Xing, Dorothy

    2010-05-07

    The histamine sensitisation test (HIST) for pertussis toxin is currently an official batch release test for acellular pertussis containing combination vaccines in Europe and North America. However, HIST, being a lethal endpoint assay, often leads to repeated tests due to large variations in test performance. Although a more precise HIST test based on measurement of temperature reduction after the histamine challenge is used in Asian countries, this test still uses animals. An in vitro test system based on a combination of enzyme coupled-HPLC and carbohydrate-binding assays with results analysed by a mathematical formula showed a good agreement with the in vivo HIST results based on measurement of temperature reduction after histamine challenge. The new in vitro test system was shown to be a potential alternative to the current in vivo HIST.

  18. Chapter 23: Manual stimulation of target muscles has different impact on functional recovery after injury of pure motor or mixed nerves.

    PubMed

    Sinis, Nektarios; Manoli, Thodora; Werdin, Frank; Kraus, Armin; Schaller, Hans E; Guntinas-Lichius, Orlando; Grosheva, Maria; Irintchev, Andrey; Skouras, Emanouil; Dunlop, Sarah; Angelov, Doychin N

    2009-01-01

    Direct coaptation and interpositional nerve grafting (IPNG) of an injured peripheral nerve is still associated with poor functional recovery. Main reasons for that are thought to be an extensive collateral axonal branching at the site of transection and the polyinnervation of motor endplates due to terminal axonal and intramuscular sprouting. Moreover, severe changes occurring within the muscle after long-term denervation, like loss of muscle bulk and circulation as well as progressive fibrosis, have a negative effect on the quality of functional recovery after reinnervation. We have recently shown that manual stimulation (MS) of paralyzed vibrissal muscles in rat promotes full recovery after facial nerve coaptation. Furthermore, MS improved functional recovery after hypoglossal nerve repair, hypoglossal-facial IPNG of the facial nerve in rat. In contrary, MS did not improve recovery after injury of the median nerve in rat, which is however a mixed peripheral nerve comparing to the facial nerve. It is speculated that manually stimulated recovery of motor function requires an intact sensory input, which is affected in case of mixed peripheral nerves but not in case of pure motor nerves. In this article, we summarize our results of MS in several peripheral nerve injury models in order to illustrate the application potential of this method and to give insights into further investigations on that field.

  19. Plant grafting: new mechanisms, evolutionary implications

    PubMed Central

    Goldschmidt, Eliezer E.

    2014-01-01

    Grafting, an old plant propagation practice, is still widely used with fruit trees and in recent decades also with vegetables. Taxonomic proximity is a general prerequisite for successful graft-take and long-term survival of the grafted, composite plant. However, the mechanisms underlying interspecific graft incompatibility are as yet insufficiently understood. Hormonal signals, auxin in particular, are believed to play an important role in the wound healing and vascular regeneration within the graft union zone. Incomplete and convoluted vascular connections impede the vital upward and downward whole plant transfer routes. Long-distance protein, mRNA and small RNA graft-transmissible signals currently emerge as novel mechanisms which regulate nutritional and developmental root/top relations and may play a pivotal role in grafting physiology. Grafting also has significant pathogenic projections. On one hand, stock to scion mechanical contact enables the spread of diseases, even without a complete graft union. But, on the other hand, grafting onto resistant rootstocks serves as a principal tool in the management of fruit tree plagues and vegetable soil-borne diseases. The ‘graft hybrid’ historic controversy has not yet been resolved. Recent evidence suggests that epigenetic modification of DNA-methylation patterns may account for certain graft-transformation phenomena. Root grafting is a wide spread natural phenomenon; both intraspecific and interspecific root grafts have been recorded. Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases. A more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system. This has led to the formation of alloploid cells that, under laboratory conditions, gave rise to a novel, alloploid Nicotiana species

  20. Physicochemical properties of iron oxide nanoparticles that contribute to cellular ROS-dependent signaling and acellular production of hydroxyl radical.

    PubMed

    Vogel, Christoph F A; Charrier, Jessica G; Wu, Dalei; McFall, Alexander S; Li, Wen; Abid, Aamir; Kennedy, Ian M; Anastasio, Cort

    2016-01-01

    While nanoparticles (NPs) are increasingly used in a variety of consumer products and medical applications, some of these materials have potential health concerns. Macrophages are the primary responders to particles that initiate oxidative stress and inflammatory reactions. Here, we utilized six flame-synthesized, engineered iron oxide NPs with various physicochemical properties (e.g. Fe oxidation state and crystal size) to study their interactions with RAW 264.7 macrophages, their iron solubilities, and their abilities to produce hydroxyl radical in an acellular assay. Both iron solubility and hydroxyl radical production varied between NPs depending on crystalline diameter and surface area of the particles, but not on iron oxidation state. Macrophage treatment with the iron oxide NPs showed a dose-dependent increase of heme oxygenase 1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO-1). The nuclear factor (NF)-erythroid-derived 2 (E2)-related factor 2 (Nrf2) modulates the transcriptional activity of antioxidant response element (ARE)-driven genes, such as HO-1 and NQO-1. Here, we show that the iron oxide NPs activate Nrf2, leading to its increased nuclear accumulation and enhanced Nrf2 DNA-binding activity in NP-treated RAW 264.7 macrophages. Iron solubility and acellular hydroxyl radical generation depend on the physical properties of the NPs, especially crystalline diameter; however, these properties are weakly linked to the activation of cellular signaling of Nrf2 and the expression of oxidative stress markers. Overall, our work shows for the first time that iron oxide nanoparticles induce cellular marker genes of oxidative stress and that this effect is transcriptionally mediated through the Nrf2-ARE signaling pathway in macrophages.

  1. Cross-Species Protection Mediated by a Bordetella bronchiseptica Strain Lacking Antigenic Homologs Present in Acellular Pertussis Vaccines▿

    PubMed Central

    Sukumar, Neelima; Sloan, Gina Parise; Conover, Matt S.; Love, Cheraton F.; Mattoo, Seema; Kock, Nancy D.; Deora, Rajendar

    2010-01-01

    The Bordetella species are Gram-negative bacterial pathogens that are characterized by long-term colonization of the mammalian respiratory tract and are causative agents of respiratory diseases in humans and animals. Despite widespread and efficient vaccination, there has been a world-wide resurgence of pertussis, which remains the leading cause of vaccine-preventable death in developed countries. It has been proposed that current acellular vaccines (Pa) composed of only a few bacterial proteins may be less efficacious because of vaccine-induced antigenic shifts and adaptations. To gain insight into the development of a newer generation of vaccines, we constructed a Bordetella bronchiseptica strain (LPaV) that does not express the antigenic homologs included in any of the Pa vaccines currently in use. This strain also lacks adenylate cyclase toxin, an essential virulence factor, and BipA, a surface protein. While LPaV colonized the mouse nose as efficiently as the wild-type strain, it was highly deficient in colonization of the lower respiratory tract and was attenuated in induction of inflammation and injury to the lungs. Strikingly, to our surprise, we found that in an intranasal murine challenge model, LPaV elicited cross-species protection against both B. bronchiseptica and Bordetella pertussis. Our data suggest the presence of immunogenic protective components other than those included in the pertussis vaccine. Combined with the whole-genome sequences of many Bordetella spp. that are available, the results of this study should serve as a platform for strategic development of the next generation of acellular pertussis vaccines. PMID:20176797

  2. Successful Endothelialization and Remodeling of a Cell-Free Small-Diameter Arterial Graft in a Large Animal Model

    PubMed Central

    Koobatian, Maxwell T.; Row, Sindhu; Smith, Randall; Koenigsknecht, Carmon; Andreadis, Stelios T.; Swartz, Daniel D.

    2015-01-01

    The large number of coronary artery bypass procedures necessitates development of off-the-shelf vascular grafts that do not require cell or tissue harvest from patients. However, immediate thrombus formation after implantation due to the absence of a healthy endothelium is very likely. Here we present the successful development of an Acellular Tissue Engineered Vessel (A-TEV) based on small intestinal submucosa that was functionalized sequentially with heparin and VEGF. A-TEVs were implanted into the carotid artery of an ovine model demonstrating high patency rates and significant host cell infiltration as early as one week post-implantation. At one month, a confluent and functional endothelium was present and the vascular wall showed significant infiltration of host smooth muscle cells exhibiting vascular contractility in response to vaso-agonists. After three months the endothelium aligned in the direction of flow and the medial layer comprised of circumferentially aligned smooth muscle cells. A-TEVs demonstrated high elastin and collagen content as well as impressive mechanical properties and vascular contractility comparable to native arteries. This is the first demonstration of successful endothelialization, remodeling, and development of vascular function of a cell-free vascular graft that was implanted in the arterial circulation of a pre-clinical animal model. PMID:26561932

  3. Long thoracic nerve injury.

    PubMed

    Wiater, J M; Flatow, E L

    1999-11-01

    Injury to the long thoracic nerve causing paralysis or weakness of the serratus anterior muscle can be disabling. Patients with serratus palsy may present with pain, weakness, limitation of shoulder elevation, and scapular winging with medial translation of the scapula, rotation of the inferior angle toward the midline, and prominence of the vertebral border. Long thoracic nerve dysfunction may result from trauma or may occur without injury. Fortunately, most patients experience a return of serratus anterior function with conservative treatment, but recovery may take as many as 2 years. Bracing often is tolerated poorly. Patients with severe symptoms in whom 12 months of conservative treatment has failed may benefit from surgical reconstruction. Although many surgical procedures have been described, the current preferred treatment is transfer of the sternal head of the pectoralis major tendon to the inferior angle of the scapula reinforced with fascia or tendon autograft. Many series have shown good to excellent results, with consistent improvement in function, elimination of winging, and reduction of pain.

  4. Types of Coronary Artery Bypass Grafting

    MedlinePlus

    ... from the NHLBI on Twitter. Types of Coronary Artery Bypass Grafting There are several types of coronary ... for you based on your needs. Traditional Coronary Artery Bypass Grafting Traditional CABG is used when at ...

  5. Who Needs Coronary Artery Bypass Grafting?

    MedlinePlus

    ... from the NHLBI on Twitter. Who Needs Coronary Artery Bypass Grafting? Coronary artery bypass grafting (CABG) is used to treat people ... or after a heart attack to treat blocked arteries. Your doctor may recommend CABG if other treatments, ...

  6. Costal Cartilage Grafts in Rhinoplasty.

    PubMed

    Fedok, Fred G

    2016-01-01

    Cartilage grafts are regularly used in rhinoplasty. Septal and auricular donor sites are commonly used. Many situations compel the surgeon to use other alternative donor sites, including revision rhinoplasty and trauma. Many patients have a small amount of native septal cartilage and are unable to provide adequate septal cartilage to be used for frequently performed rhinoplasty maneuvers. The rib cage provides an enormous reserve of costal cartilage that can be carved into a variety of necessary grafts. A description of the technique of harvesting costal cartilage, a review of complications and management, and illustrative cases examples are included.

  7. Facial nerve palsy due to birth trauma

    MedlinePlus

    Seventh cranial nerve palsy due to birth trauma; Facial palsy - birth trauma; Facial palsy - neonate; Facial palsy - infant ... infant's facial nerve is also called the seventh cranial nerve. It can be damaged just before or at ...

  8. Fibrin glue repair leads to enhanced axonal elongation during early peripheral nerve regeneration in an in vivo mouse model.

    PubMed

    Koulaxouzidis, Georgios; Reim, Gernot; Witzel, Christian

    2015-07-01

    Microsurgical suturing is the gold standard of nerve coaptation. Although literature on the usefulness of fibrin glue as an alternative is becoming increasingly available, it remains contradictory. Furthermore, no data exist on how both repair methods might influence the morphological aspects (arborization; branching) of early peripheral nerve regeneration. We used the sciatic nerve transplantation model in thy-1 yellow fluorescent protein mice (YFP; n = 10). Pieces of nerve (1cm) were grafted from YFP-negative mice (n = 10) into those expressing YFP. We performed microsuture coaptations on one side and used fibrin glue for repair on the contralateral side. Seven days after grafting, the regeneration distance, the percentage of regenerating and arborizing axons, the number of branches per axon, the coaptation failure rate, the gap size at the repair site and the time needed for surgical repair were all investigated. Fibrin glue repair resulted in regenerating axons travelling further into the distal nerve. It also increased the percentage of arborizing axons. No coaptation failure was detected. Gap sizes were comparable in both groups. Fibrin glue significantly reduced surgical repair time. The increase in regeneration distance, even after the short period of time, is in line with the results of others that showed faster axonal regeneration after fibrin glue repair. The increase in arborizing axons could be another explanation for better functional and electrophysiological results after fibrin glue repair. Fibrin glue nerve coaptation seems to be a promising alternative to microsuture repair.

  9. In vivo characterization of regenerative peripheral nerve interface function

    NASA Astrophysics Data System (ADS)

    Ursu, Daniel C.; Urbanchek, Melanie G.; Nedic, Andrej; Cederna, Paul S.; Gillespie, R. Brent

    2016-04-01

    Objective. Regenerative peripheral nerve interfaces (RPNIs) are neurotized free autologous muscle grafts equipped with electrodes to record myoelectric signals for prosthesis control. Viability of rat RPNI constructs have been demonstrated using evoked responses. In vivo RPNI characterization is the next critical step for assessment as a control modality for prosthetic devices. Approach. Two RPNIs were created in each of two rats by grafting portions of free muscle to the ends of divided peripheral nerves (peroneal in the left and tibial in the right hind limb) and placing bipolar electrodes on the graft surface. After four months, we examined in vivo electromyographic signal activity and compared these signals to muscular electromyographic signals recorded from autologous muscles in two rats serving as controls. An additional group of two rats in which the autologous muscles were denervated served to quantify cross-talk in the electrode recordings. Recordings were made while rats walked on a treadmill and a motion capture system tracked the hind limbs. Amplitude and periodicity of signals relative to gait were quantified, correlation between electromyographic and motion recording were assessed, and a decoder was trained to predict joint motion. Main Results. Raw RPNI signals were active during walking, with amplitudes of 1 mVPP, and quiet during standing, with amplitudes less than 0.1 mVPP. RPNI signals were periodic and entrained with gait. A decoder predicted bilateral ankle motion with greater than 80% reliability. Control group signal activity agreed with literature. Denervated group signals remained quiescent throughout all evaluations. Significance. In vivo myoelectric RPNI activity encodes neural activation patterns associated with gait. Signal contamination from muscles adjacent to the RPNI is minimal, as demonstrated by the low amplitude signals obtained from the Denervated group. The periodicity and entrainment to gait of RPNI recordings suggests the

  10. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  11. Neuromas of the calcaneal nerves.

    PubMed

    Kim, J; Dellon, A L

    2001-11-01

    A neuroma of a calcaneal nerve has never been reported. A series of 15 patients with heel pain due to a neuroma of a calcaneal nerve are reviewed. These patients previously had either a plantar fasciotomy (n = 4), calcaneal spur removal (n = 2), ankle fusion (n = 2), or tarsal tunnel decompression (n = 7). Neuromas occurred on calcaneal branches that arose from either the posterior tibial nerve (n = 1), lateral plantar nerve (n = 1), the medial plantar nerve (n = 9), or more than one of these nerves (n = 4). Operative approach was through an extended tarsal tunnel incision to permit identification of all calcaneal nerves. The neuroma was resected and implanted into the flexor hallucis longus muscle. Excellent relief of pain occurred in 60%, and good relief in 33%. One patient (17%) had no improvement and required resection of the lateral plantar nerve. Awareness that the heel may be innervated by multiple calcaneal branches suggests that surgery for heel pain of neural origin employ a surgical approach that permits identification of all possible calcaneal branches.

  12. [Rehabilitation of facial paralysis using autogenous fascia lata graft. Stable results over time].

    PubMed

    Graillon, N; Colson, T; Bardot, J

    2015-10-01

    Dynamic facial reanimation with free muscle or nerve transfers represents the mainstay of facial paralysis treatments particularly for perioral area and smile. These techniques are not always feasible, in such cases we perform a perioral suspension with fascia lata graft. However many teams blame this technique for short-term recurrence of the deformity. We describe in this paper details of our surgical technique, to improve the aesthetic result and stability over time, and the results and complications encountered. Fascia lata graft was sutured beyond the midline to the contralateral healthy lips, after tunneling through upper and lower orbicularis oris. Fascia lata graft was then tunneled through the buccal fat pad, then under the zygomatic arch to the temporal region, where the temporal aponeurosis was incised to make way for the fascia lata graft, which was fixed to the outer face of the temporal aponeurosis, applying slight overcorrection to the oral commissure. From 2003 to 2012, we performed this procedure on 8 patients. Results showed an immediate aesthetic improvement, stable over time. Perioral suspension with fascia lata graft is a surgical alternative when dynamic reanimation is not feasible.

  13. Organosiloxane-grafted natural polymer coatings

    DOEpatents

    Sugama, Toshifumi

    1998-01-01

    A new family of polysaccharide graft polymers are provided as corrosion resistant coatings having antimicrobial properties which are useful on light metals such as aluminum, magnesium, zinc, steel and their alloys. Methods of making the polysaccharide graft polymers are also included. The methods of making the polysaccharide graft polymers involve reacting a polysaccharide source with an antimicrobial agent under conditions of hydrolysis-condensation.

  14. Nerve glue for upper extremity reconstruction.

    PubMed

    Tse, Raymond; Ko, Jason H

    2012-11-01

    Nerve glue is an attractive alternative to sutures to improve the results of nerve repair. Improved axon alignment, reduced scar and inflammation, greater and faster reinnervation, and better functional results have been reported with the use of nerve glue. The different types of nerve glue and the evidence to support or oppose their use are reviewed. Although the ideal nerve glue has yet to be developed, fibrin sealants can be used as nerve glue in select clinical situations. Technology to allow suture-free nerve repair is one development that can potentially improve functional nerve recovery and the outcomes of upper extremity reconstruction.

  15. Facial nerve rerouting in skull base surgery.

    PubMed

    Parhizkar, Nooshin; Hiltzik, David H; Selesnick, Samuel H

    2005-08-01

    Facial nerve rerouting techniques were developed to facilitate re-section of extensive tumors occupying the skull base. Facial nerve rerouting has its own limitations and risks, requiring microsurgical expertise, additional surgical time, and often some degree of facial nerve paresis. This article presents different degrees of anterior and posterior facial nerve rerouting, techniques of facial nerve rerouting, and a comprehensive review of outcomes. It then reviews anatomic and functional preservation of the facial nerve in acoustic neuroma resection, technical aspects of facial nerve dissection, intracranial facial nerve repair options, and outcomes for successful acoustic neuroma surgery.

  16. Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts.

    PubMed

    Garreta, Elena; de Oñate, Lorena; Fernández-Santos, M Eugenia; Oria, Roger; Tarantino, Carolina; Climent, Andreu M; Marco, Andrés; Samitier, Mireia; Martínez, Elena; Valls-Margarit, Maria; Matesanz, Rafael; Taylor, Doris A; Fernández-Avilés, Francisco; Izpisua Belmonte, Juan Carlos; Montserrat, Nuria

    2016-08-01

    Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.

  17. Grafting efficiency of synthetic polymers onto biomaterials: a comparative study of grafting-from versus grafting-to.

    PubMed

    Hansson, Susanne; Trouillet, Vanessa; Tischer, Thomas; Goldmann, Anja S; Carlmark, Anna; Barner-Kowollik, Christopher; Malmström, Eva

    2013-01-14

    In the present study, the two grafting techniques grafting-from - by activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) - and grafting-to - by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) - were systematically compared, employing cellulose as a substrate. In order to obtain a meaningful comparison, it is crucial that the graft lengths of the polymers that are grafted from and to the substrates are essentially identical. Herein, this was achieved by utilizing the free polymer formed in parallel to the grafting-from reaction as the polymer for the grafting-to reaction. Four graft lengths were investigated, and the molar masses of the four free polymers (21 ≤ M(n) ≤ 100 kDa; 1.07 ≤ Đ(M) ≤ 1.26), i.e. the polymers subsequently employed in the grafting-to reaction, were shown to be in the same range as the molar masses of the polymers grafted from the surface (23 ≤ M(n) ≤ 87 kDa; 1.08 ≤ Đ(M) ≤ 1.31). The molecular weights of the chains grafted from the surface were established after cleavage from the cellulose substrates via size exclusion chromatography (SEC). High-resolution Fourier transform infrared microscopy (FT-IRM) was employed as an efficient tool to study the spatial distribution of the polymer content on the grafted substrates. In addition, the functionalized substrates were analyzed by X-ray photoelectron spectroscopy (XPS), contact angle (CA) measurements, and field-emission scanning electron microscopy (FE-SEM). For cellulose substrates modified via the grafting-from approach, the content of polymer on the surfaces increased with increasing graft length, confirming the possibility to tailor not only the length of the polymer grafts but also the polymeric content on the surface. In comparison, for the grafting-to reaction, the grafted content could not be controlled by varying the length of the preformed polymer: the polymer content was essentially the same for the four graft lengths

  18. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  19. Gait analysis in rats with peripheral nerve injury.

    PubMed

    Yu, P; Matloub, H S; Sanger, J R; Narini, P

    2001-02-01

    Rats are commonly used to study peripheral nerve repair and grafting. The traditional footprint method to assess functional recovery is messy, indirect, and not useful when contractures develop in the animal model. The aim of the present study was to establish an accurate, reproducible, but simple, method to assess dynamic limb function. The basic quantitative aspects of a normal gait were characterized from 59 recorded walks in 23 rats. The video was digitized and analyzed frame by frame on a personal computer. Seven parameters of the gait were assessed: (1) walking speed; (2) stance phase, swing phase and right to left stance/swing ratio; (3) step length and step length ratio; (4) ankle angles at terminal stance and midswing; (5) tail height; (6) midline deviation; and (7) tail deviation. These gait parameters were then applied to groups of animals with sciatic (group S), tibial (group T), and peroneal (group P) nerve injuries. A discriminant analysis was performed to analyze each parameter and to compute a functional score. We found that the video gait analysis was superior to the footprint method and believe it will be very useful in future studies on peripheral nerve injury.

  20. Delayed recurrent nerve paralysis following post-traumatic aortic pseudoaneurysm.

    PubMed

    Mesolella, Massimo; Ricciardiello, Filippo; Tafuri, Domenico; Varriale, Roberto; Testa, Domenico

    2016-01-01

    Blunt trauma to the neck or to the chest are increasingly observed in the emergency clinical practice. They usually follow motor vehicle accidents or may be work or sports related. A wide pattern of clinical presentation can be potentially encountered. We report the uncommon case of a patient who was referred to our observation presenting with hoarseness and disphagia. Twenty days before he had sustained a car accident with trauma to the chest, neck and the mandible. Laryngoscopy showed a left recurrent laryngeal nerve palsy. Further otolaryngo-logical examination showed no other abnormality. At CT and MR imaging a post-traumatic aortic pseudoaneurysm was revealed. The aortic pseudoaneurysm was consequently repaired by implantation of an endovascular stent graft under local anesthesia. The patient was discharged 10 days later. At 30-days follow-up laryngoscopy the left vocal cord palsy was completely resolved. Hoarseness associated with a dilated left atrium in a patient with mitral valve stenosis was initially described by Ortner more than a century ago. Since then several non malignant, cardiovascular, intrathoracic disease that results in embarrassment from recurrent laryngeal nerve palsy usually by stretching, pulling or compression; thus, the correlations of these pathologies was termed as cardiovocal syndrome or Ortner's syndrome. The reported case illustrates that life-threatening cardiovascular comorbidities can cause hoarseness and that an impaired recurrent laryngeal nerve might be correctable.

  1. Delayed recurrent nerve paralysis following post-traumatic aortic pseudoaneurysm

    PubMed Central

    Ricciardiello, Filippo; Tafuri, Domenico; Varriale, Roberto; Testa, Domenico

    2016-01-01

    Abstract Blunt trauma to the neck or to the chest are increasingly observed in the emergency clinical practice. They usually follow motor vehicle accidents or may be work or sports related. A wide pattern of clinical presentation can be potentially encountered. We report the uncommon case of a patient who was referred to our observation presenting with hoarseness and disphagia. Twenty days before he had sustained a car accident with trauma to the chest, neck and the mandible. Laryngoscopy showed a left recurrent laryngeal nerve palsy. Further otolaryngo-logical examination showed no other abnormality. At CT and MR imaging a post-traumatic aortic pseudoaneurysm was revealed. The aortic pseudoaneurysm was consequently repaired by implantation of an endovascular stent graft under local anesthesia. The patient was discharged 10 days later. At 30-days follow-up laryngoscopy the left vocal cord palsy was completely resolved. Hoarseness associated with a dilated left atrium in a patient with mitral valve stenosis was initially described by Ortner more than a century ago. Since then several non malignant, cardiovascular, intrathoracic disease that results in embarrassment from recurrent laryngeal nerve palsy usually by stretching, pulling or compression; thus, the correlations of these pathologies was termed as cardiovocal syndrome or Ortner’s syndrome. The reported case illustrates that life-threatening cardiovascular comorbidities can cause hoarseness and that an impaired recurrent laryngeal nerve might be correctable. PMID:28352797

  2. Lumbosacral nerve root avulsion.

    PubMed

    Chin, C H; Chew, K C

    1997-01-01

    Lumbosacral nerve root avulsion is a rare clinical entity. Since the first description in 1955, only 35 cases have been reported. It is often associated with pelvic fractures and may be missed in the initial clinical examination as these patients usually present with multiple injuries. We present three such cases with clinical and radiological findings. These patients were involved in road traffic accidents. Two had fractures of the sacroiliac joint with diastasis of the symphysis pubis (Tile type C 1.2) and one had fractures of the public rami (Tile type B 2.1). All three had various degrees of sensory and motor deficit of the lower limbs. Lumbar myelogram shows characteristic pseudomeningoceles in the affected lumboscral region. Magnetic resonance (MR) imaging provides an additional non-invasive modality to diagnose this condition.

  3. A Novel Reticular Dermal Graft Leverages Architectural and Biological Properties to Support Wound Repair

    PubMed Central

    Dasgupta, Anouska; Orgill, Dennis; Galiano, Robert D.; Zelen, Charles M.; Huang, Yen-Chen; Chnari, Evangelia; Li, William W.

    2016-01-01

    Background: Acellular dermal matrices (ADMs) are frequently used in reconstructive surgery and as scaffolds to treat chronic wounds. The 3-dimensional architecture and extracellular matrix provide structural and signaling cues for repair and remodeling. However, most ADMs are not uniformly porous, which can lead to heterogeneous host engraftment. In this study, we hypothesized that a novel human reticular ADM (HR-ADM; AlloPatch Pliable, Musculoskeletal Transplant Foundation, Edison, N.J.) when aseptically processed would have a more open uniform structure with retention of biological components known to facilitate wound healing. Methods: The reticular and papillary layers were compared through histology and scanning electron microscopy. Biomechanical properties were assessed through tensile testing. The impact of aseptic processing was evaluated by comparing unprocessed with processed reticular grafts. In vitro cell culture on fibroblasts and endothelial cells were performed to showcase functional cell activities on HR-ADMs. Results: Aseptically processed HR-ADMs have an open, interconnected uniform scaffold with preserved collagens, elastin, glycosaminoglycans, and hyaluronic acid. HR-ADMs had significantly lower ultimate tensile strength and Young’s modulus versus the papillary layer, with a higher percentage elongation at break, providing graft flexibility. These preserved biological components facilitated fibroblast and endothelial cell attachment, cell infiltration, and new matrix synthesis (collagen IV, fibronectin, von Willebrand factor), which support granulation and angiogenic activities. Conclusions: The novel HR-ADMs provide an open, interconnected scaffold with native dermal mechanical and biological properties. Furthermore, aseptic processing retains key extracellular matrix elements in an organized framework and supports functional activities of fibroblasts and endothelial cells. PMID:27826469

  4. Optic Nerve Sheath Meningiomas.

    PubMed

    Radhakrishnan, Sunita; Lee, Michael S

    2005-01-01

    Optic nerve sheath meningiomas (ONSMs) grow slowly and, if untreated, patients may have stable visual function for up to several years. Treatment of an ONSM may lead to vision loss (radiation retinopathy or optic neuropathy). Therefore, observation is recommended for a patient with ONSM and relatively preserved visual acuity, color vision, pupils, and visual fields. Follow-up every 4 to 6 months initially is recommended extending to annual examinations if visual function and tumor size remain stable for a few years. Neuroimaging can be repeated every 12 months. An undisputed decline in visual function or any intracranial extension warrants treatment of the ONSM. The treatment of choice for a tumor confined to the orbit is stereotactic fractionated radiation. Stereotactic fractionated radiation uses multiple small doses of radiation using tight margins. A reasonable alternative, three-dimensional conformal fractionated radiation uses computed tomography-guided planning but usually requires wider margins. Conventional radiation uses much wider margins and would not be recommended for treatment of ONSM. The radiation can be administered during 5 to 6 weeks in 28 daily fractions of 1.8 to 2 Gy/fraction to a total of 50.4 to 56 Gy. Many patients have improvement or stabilization of their visual function. Gamma knife radiosurgery does not have a role in ONSM because the required dose is toxic to the optic nerve. A tumor that extends intracranially may be treated with fractionated radiation if any vision remains. Surgical excision can be considered for significant intracranial extension but this often leads to complete vision loss in the ipsilateral eye. A blind, disfigured eye also may be treated with en bloc surgical resection of the meningioma.

  5. [Post-traumatic infraorbital nerve neuropathy].

    PubMed

    Sakavicius, Dalius; Kubilius, Ricardas; Sabalys, Gintautas

    2002-01-01

    The authors have investigated functional state of infraorbital nerve of 479 patients with zygomatic fractures. The degree of nerve damage was evaluated according to changes of pain threshold during damaged nerve stimulation. It was estimated that in 64.3% of zygomatic fractures the infraorbital nerve was affected. The nerve damage degree could be mild, moderate and severe. In 43.18% of moderate and severe nerve damage cases the neuropathy develops. The symptoms, signs and treatment of neuropathy have been described. The neuropathy with clinical symptoms as permanent soreness and paresthesias (itch, "running ant", fibrillations of cheek tissues etc.) in the infraorbital nerve innervation zone occur to 43.18% of the patients after moderate and severe damage of the nerve. The treatment of neuropathy was analysed. In cases of moderate and severe nerve damages, authors recommend to perform decompression of the nerve, because if not applied, the function of nerve does not recover.

  6. Ultrasound-guided Pulsed Radiofrequency Lesioning of the Phrenic Nerve in a Patient with Intractable Hiccup

    PubMed Central

    Kang, Keum Nae; Park, In Kyung; Suh, Jeong Hun; Leem, Jeong Gill

    2010-01-01

    Persistent and intractable hiccups (with respective durations of more than 48 hours and 1 month) can result in depression, fatigue, impaired sleep, dehydration, weight loss, malnutrition, and aspiration syndromes. The conventional treatments for hiccups are either non-pharmacological, pharmacological or a nerve block treatment. Pulsed radiofrequency lesioning (PRFL) has been proposed for the modulation of the excited nervous system pathway of pain as a safe and nondestructive treatment method. As placement of the electrode in close proximity to the targeted nerve is very important for the success of PRFL, ultrasound appears to be well suited for this technique. A 74-year-old man suffering from intractable hiccups that had developed after a coronary artery bypass graft and had continued for 7 years was referred to our pain clinic. He had not been treated with conventional methods or medications. We performed PRFL of the phrenic nerve guided by ultrasound and the hiccups disappeared. PMID:20830266

  7. [Paralysis of the femoral nerve complicating ilio-psoas hemorrhage after iliac bone transplantation (author's transl)].

    PubMed

    Mestdagh, H

    1982-03-11

    The author reported an unusual complication of iliac bone transplantation for grafting of a tibial pseudarthrosis. In a patient having anticoagulant therapy, a large iliac haematoma developed in the donor site and extended deep to the iliacus muscle and through the osteomuscular gap into the retroperitoneal space. Moreover it spread downwards and entrapped the femoral nerve as it lies behind the iliac fascia, above the inguinal ligament. Both a paralytic ileus and a femoral nerve injury commanded surgical exploration through an oblique iliac approach; emptying of the clotted haematoma, section of the inguinal ligament and liberation of the femoral nerve enable to avoid definitive sequelae to the quadriceps but the time required is varying: three years after the accident, recovery is not complete in the operated patient probably owing to delayed surgery (three weeks).

  8. Management of seventh and eighth nerve involvement by cerebellopontine angle tumors.

    PubMed

    Samii, M; Turel, K E; Penkert, G

    1985-01-01

    Microsurgical techniques have made a significant contribution in the advancement of surgery. Since then, the field of neurosurgery has made great and rapid strides. Neurosurgeons now venture through the deep and delicate regions of the brain where they dared not venture only a few years ago. In particular, the morbidity and mortality of surgery in the CPA has seen a progressive decrease. This presentation deals with 200 consecutive tumors in the CPA operated on using microsurgical techniques during the last 6 years. One hundred sixty-seven (83.5%) of them were acoustic neuromas (which included 12 patients with bilateral tumors). Of the remaining 33, there were 21 meningiomas, 10 epidermoids, and 2 angioblastomas. Preoperative investigation has been aimed at arriving at a diagnosis which is as exact as possible in order to plan the operative strategy. All patients, ranging in age from 16 to 84, have been operated upon in the lounging position (with the necessary precautions) through a unilateral suboccipital craniectomy. The basic surgical technique, irrespective of the tumor, is to decompress it from within in order to relieve its tension and pressure on surrounding nerves, vessels, and the brain stem. The structures which are only compressed are spontaneously relieved of compression. This helps define their full anatomic course. Having been identified, they are protected from damage. The most adherent points between tumor and nerves are recognized and handled last under direct vision when there is sufficient space to allow manipulation of the tumor. In the rare event of the facial nerve being interrupted, nerve graft procedures are attempted during the same operation. Our experience with the technique of intracranial-intratemporal facial nerve grafting has yielded excellent results. The cochlear nerve lacks a Schwann cell cover in the CPA and is more prone to being affected, either by tumor processes or surgical manipulation. Of our 167 acoustic nerve tumors, 60

  9. Synthesis and characterization of macromolecular layers grafted to polymer surfaces

    NASA Astrophysics Data System (ADS)

    Burtovyy, Oleksandr

    membranes modified with a reactive anchoring layer can be successfully used to build membrane assemblies by incorporating silica, aluminum, or titanium oxide microparticles as spacers. It is expected that the proposed approaches for the surface modification of the membranes and for the generation of multilayered membrane assemblies can be employed straightforwardly to provide an efficient platform for fabrication of breathable protective materials. Characterization of modified membranes with a cantilever-based method, which can be used for prediction of properties and behavior of thin grafted films, is reported. This technique can be used as a method for fast screening of modified membranes. The method is very robust and capable of detecting very small quantities of substance adsorbed; kinetics of the process can be tracked, as well. This approach can be further developed as a handheld sensor for early warning of the presence of chemical vapors and nerve agents.

  10. Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors.

    PubMed

    Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M

    2017-02-27

    The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.

  11. Skeletal muscle patch engineering on synthetic and acellular human skeletal muscle originated scaffolds.

    PubMed

    Ay, Birol; Karaoz, Erdal; Kesemenli, Cumhur C; Kenar, Halime

    2017-03-01

    The reconstruction of skeletal muscle tissue is currently performed by transplanting a muscle tissue graft from local or distant sites of the patient's body, but this practice leads to donor site morbidity in case of large defects. With the aim of providing an alternative treatment approach, skeletal muscle tissue formation potential of human myoblasts and human menstrual blood derived mesenchymal stem cells (hMB-MSCs) on synthetic [poly(l-lactide-co-caprolactone), 70:30] scaffolds with oriented microfibers, human muscle extracellular matrix (ECM), and their hybrids was investigated in this study. The reactive muscle ECM pieces were chemically crosslinked to the synthetic scaffolds to produce the hybrids. Cell proliferation assay WST-1, scanning electron microscopy (SEM), and immunostaining were carried out after culturing the cells on the scaffolds. The ECM and the synthetic scaffolds were effective in promoting spontaneous myotube formation from human myoblasts. Anisotropic muscle patch formation was more successful when human myoblasts were grown on the synthetic scaffolds. Nonetheless, spontaneous differentiation could not be induced in hMB-MSCs on any type of the scaffolds. Human myoblast-synthetic scaffold combination is promising as a skeletal muscle patch, and can be improved further to serve as a fast integrating functional patch by introducing vascular and neuronal networks to the structure. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 879-890, 2017.

  12. An acellular dermal matrix allograft (Alloderm®) for increasing keratinized attached gingiva: A case series

    PubMed Central

    Agarwal, Chitra; Kumar, Baron Tarun; Mehta, Dhoom Singh

    2015-01-01

    Context: Adequate amount of keratinized gingiva is necessary to keep gingiva healthy and free of inflammation. Autografts have been used for years with great success to increase the width of attached gingiva. Autografts, however, have the disadvantage of increasing postoperative morbidity and improper color match with the adjacent tissues. Alloderm® allograft has been introduced as an alternative to autografts to overcome these disadvantages. Aim: In this study, the efficacy of alloderm® in increasing the width of attached gingiva and the stability of gained attached gingiva was evaluated clinically. Materials and Methods: Five patients with sites showing inadequate width of attached gingiva (≤1 mm) were enrolled for the study. The width of keratinized gingiva and other clinical parameters were recorded at baseline and 9th month postoperatively. Result: In all cases, there is the average increase of about 2.5 mm of attached gingiva and was maintained for 9-month. Percentage shrinkage of the graft is about 75% at the end of 3rd month in all cases. Excellent colors match with adjacent tissue has been obtained. Conclusion: The study signifies that Alloderm® results in an adequate increase in the amount of attached gingiva and therefore can be used successfully in place of autografts. PMID:26015676

  13. Nanofibrous nerve conduit-enhanced peripheral nerve regeneration.

    PubMed

    Jiang, Xu; Mi, Ruifa; Hoke, Ahmet; Chew, Sing Yian

    2014-05-01

    Fibre structures represent a potential class of materials for the formation of synthetic nerve conduits due to their biomimicking architecture. Although the advantages of fibres in enhancing nerve regeneration have been demonstrated, in vivo evaluation of fibre size effect on nerve regeneration remains limited. In this study, we analyzed the effects of fibre diameter of electrospun conduits on peripheral nerve regeneration across a 15-mm critical defect gap in a rat sciatic nerve injury model. By using an electrospinning technique, fibrous conduits comprised of aligned electrospun poly (ε-caprolactone) (PCL) microfibers (981 ± 83 nm, Microfiber) or nanofibers (251 ± 32 nm, Nanofiber) were obtained. At three months post implantation, axons regenerated across the defect gap in all animals that received fibrous conduits. In contrast, complete nerve regeneration was not observed in the control group that received empty, non-porous PCL film conduits (Film). Nanofiber conduits resulted in significantly higher total number of myelinated axons and thicker myelin sheaths compared to Microfiber and Film conduits. Retrograde labeling revealed a significant increase in number of regenerated dorsal root ganglion sensory neurons in the presence of Nanofiber conduits (1.93 ± 0.71 × 10(3) vs. 0.98 ± 0.30 × 10(3) in Microfiber, p < 0.01). In addition, the compound muscle action potential (CMAP) amplitudes were higher and distal motor latency values were lower in the Nanofiber conduit group compared to the Microfiber group. This study demonstrated the impact of fibre size on peripheral nerve regeneration. These results could provide useful insights for future nerve guide designs.

  14. Radiation-induced grafting of diallyldimethylammonium chloride onto acrylic acid grafted polyethylene

    NASA Astrophysics Data System (ADS)

    Francis, Sanju; Dhanawade, B. R.; Mitra, D.; Varshney, Lalit; Sabharwal, Sunil

    2009-01-01

    Diallyldimethylammonium chloride (DADMAC) was grafted onto polyethylene (PE) films by a double grafting procedure. The PE film was initially modified by grafting acrylic acid (AA), through a mutual irradiation method. AA-g-PE film, thus obtained was subjected to subsequent radiation grafting reaction of DADMAC, to give a DADMAC-g-AA-g-PE film having a comb-type structure. The influence of different conditions, such as the extent of AA grafting, DADMAC concentration, absorbed dose and dose rate, on the grafting yield of DADMAC was investigated. A maximum DADMAC grafting of 30% was achieved. The equilibrium degree of swelling (EDS) of the grafted films were gravimetrically determined. TGA and FT-IR techniques were employed to characterize the grafted PE films.

  15. Composite and plain tubular synthetic graft conduits in right ventricle-pulmonary artery position: fate in growing lambs.

    PubMed

    Molina, J E; Edwards, J E; Bianco, R W; Clack, R W; Lang, G; Molina, J R

    1995-08-01

    Our goal was to identify the most appropriate material for right ventricle-pulmonary artery conduits in growing animals. We used 100 lambs that were 3 to 4 weeks old (mean weight 11.7 kg). Follow-up was up to 24 months. Group I received plain tubular conduits: (1) Dacron knitted fabric, (2) collagen-coated knitted fabric, (3) Milliknit and Microknit material, (4) woven Dacron fabric, (5) three-dimensional Dacron fabric (crossweave 500 and 800), or (6) polytetrafluoroethylene. Group II received either a (1) woven Dacron fabric conduit with a built-in tissue valve or (2) polytetrafluoroethylene graft with a built-in St. Jude Medical valve. We did angiograms and catheterizations every 3 to 6 months and killed the lambs at 6, 12, 18, or 24 months. Tubular Dacron fabric woven or knitted grafts, regardless of matrix, pore size, thickness, or coating, caused formation of a thick acellular pseudointima buildup, which led to progressive obstruction starting as early as 3 months. Polytetrafluoroethylene grafts in groups I and II showed the formation of thin inner and outer capsules (0.5 mm) and none developed obstruction despite wall calcification. Conduits of woven Dacron fabric with a built-in tissue valve degenerated rapidly, leading to calcification thrombosis and obstruction within 3 months; no lamb survived 12 months. Polytetrafluoroethylene conduits with a St. Jude Medical valve in lambs receiving anticoagulants remained free of obstruction and continued to function well. It appears that synthetic conduits of polytetrafluoroethylene perform well in either of the situations here tested and may be the best choice at present.

  16. Solitary fibrous tumour of the vagus nerve.

    PubMed

    Scholsem, Martin; Scholtes, Felix

    2012-04-01

    We describe the complete removal of a foramen magnum solitary fibrous tumour in a 36-year-old woman. It originated on a caudal vagus nerve rootlet, classically described as the 'cranial' accessory nerve root. This ninth case of immunohistologically confirmed cranial or spinal nerve SFT is the first of the vagus nerve.

  17. Modified and Grafted Coronectomy: A New Technique and a Case Report with Two-Year Followup

    PubMed Central

    Leizerovitz, Michael; Leizerovitz, Olga

    2013-01-01

    Purpose. A standard coronectomy (intentional partial odontectomy) is recommended for mandibular third molar (MTM) extraction cases with a high risk of inferior alveolar nerve injury (IANI). However, complications such as inadvertent intraoperative root removal, post-op root migration, second molar (MSM) periodontal defects and others do exist. This report presents a new technique, the Modified and Grafted Coronectomy (MGC), describes the measures to prevent or minimize the known drawbacks of the standard coronectomy, and reviews the literature for comparison with three other IANI-prevention techniques. Materials and Methods. MGC was performed on two MTMs with nerve involvement and severe periodontal pockets on the distal of MSM. Modifications were: stabilizing the root stump to prevent intraoperative movement, creation of a large intrabony space for bone graft material, and grafting for periodontal healing while minimizing the possibility of post-op root migration. Results. Excellent overall periodontal improvement, with probing depths reduced to 3-4 mm. Panoramic radiograph displayed remarkable bone regeneration. No residual root migration was evident at the two year follow up. Conclusion. MGC may be a good alternative, especially in cases with periodontal defects on the distal of MSM. It may also help to minimize inadvertent intraoperative root removal and postoperative root migration. PMID:23710376

  18. Bladder tissue regeneration using acellular bi-layer silk scaffolds in a large animal model of augmentation cystoplasty.

    PubMed

    Tu, Duong D; Chung, Yeun Goo; Gil, Eun Seok; Seth, Abhishek; Franck, Debra; Cristofaro, Vivian; Sullivan, Maryrose P; Di Vizio, Dolores; Gomez, Pablo; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2013-11-01

    Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a porcine model of augmentation cystoplasty. Two bi-layer matrix configurations were fabricated by solvent-casting/salt leaching either alone (Group 1) or in combination with silk film casting (Group 2) to yield porous foams buttressed by heterogeneous surface pore occlusions or homogenous silk films, respectively. Bladder augmentation was performed with each scaffold group (6 × 6 cm(2)) in juvenile Yorkshire swine for 3 m of implantation. Augmented animals exhibited high rates of survival (Group 1: 5/6, 83%; Group 2: 4/4, 100%) and voluntary voiding over the course of the study period. Urodynamic evaluations demonstrated mean increases in bladder capacity over pre-operative levels (Group 1: 277%; Group 2: 153%) which exceeded nonsurgical control gains (144%) encountered due to animal growth.In addition, animals augmented with both matrix configurations displayed increases in bladder compliance over pre-operative levels(Group 1: 357%; Group 2: 338%) similar to growth-related elevations observed in non-surgical controls (354%) [corrected]. Gross tissue evaluations revealed that both matrix configurations supported extensive de novo tissue formation throughout the entire original implantation site which exhibited ultimate tensile strength similar to nonsurgical counterparts. Histological and immunohistochemical analyses showed that both implant groups promoted comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within defect sites similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent cytokeratin, uroplakin, and p63 protein expression in both matrix groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by synaptophysin-positive neuronal

  19. Safety and immunogenicity of a combined Tetanus, Diphtheria, recombinant acellular Pertussis vaccine (TdaP) in healthy Thai adults

    PubMed Central

    Sirivichayakul, Chukiat; Chanthavanich, Pornthep; Limkittikul, Kriengsak; Siegrist, Claire-Anne; Wijagkanalan, Wassana; Chinwangso, Pailinrut; Petre, Jean; Hong Thai, Pham; Chauhan, Mukesh; Viviani, Simonetta

    2017-01-01

    ABSTRACT Background: An acellular Pertussis (aP) vaccine containing recombinant genetically detoxified Pertussis Toxin (PTgen), Filamentous Hemagglutinin (FHA) and Pertactin (PRN) has been developed by BioNet-Asia (BioNet). We present here the results of the first clinical study of this recombinant aP vaccine formulated alone or in combination with tetanus and diphtheria toxoids (TdaP). Methods: A phase I/II, observer-blind, randomized controlled trial was conducted at Mahidol University in Bangkok, Thailand in healthy adult volunteers aged 18–35 y. The eligible volunteers were randomized to receive one dose of either BioNet's aP or Tetanus toxoid-reduced Diphtheria toxoid-acellular Pertussis (TdaP) vaccine, or the Tdap Adacel® vaccine in a 1:1:1 ratio. Safety follow-up was performed for one month. Immunogenicity was assessed at baseline, at 7 and 28 d after vaccination. Anti-PT, anti-FHA, anti-PRN, anti-tetanus and anti-diphtheria IgG antibodies were assessed by ELISA. Anti-PT neutralizing antibodies were assessed also by CHO cell assay. Results: A total of 60 subjects (20 per each vaccine group) were enrolled and included in the safety analysis. Safety laboratory parameters, incidence of local and systemic post-immunization reactions during 7 d after vaccination and incidence of adverse events during one month after vaccination were similar in the 3 vaccine groups. One month after vaccination, seroresponse rates of anti-PT, anti-FHA and anti-PRN IgG antibodies exceeded 78% in all vaccine groups. The anti-PT IgG, anti-FHA IgG, and anti-PT neutralizing antibody geometric mean titers (GMTs) were significantly higher following immunization with BioNet's aP and BioNet's TdaP than Adacel® (P< 0.05). The anti-PRN IgG, anti-tetanus and anti-diphtheria GMTs at one month after immunization were comparable in all vaccine groups. All subjects had seroprotective titers of anti-tetanus and anti-diphtheria antibodies at baseline. Conclusion: In this first clinical study

  20. Surgical management of painful peripheral nerves.

    PubMed

    Elliot, David

    2014-07-01

    This article deals with the classification, assessment, and management of painful nerves of the distal upper limb. The author's preferred surgical and rehabilitation techniques in managing these conditions are discussed in detail and include (1) relocation of end-neuromas to specific sites, (2) division and relocation of painful nerves in continuity (neuromas-in-continuity and scar-tethered nerves) involving small nerves to the same sites, and (3) fascial wrapping of painful nerves in continuity involving larger nerves such as the median and ulnar nerves. The results of these treatments are presented as justification for current use of these techniques.

  1. Overview of Optic Nerve Disorders

    MedlinePlus

    ... where the problem is in the pathway. Visual Pathways and the Consequences of Damage Nerve signals travel ... eyes. Damage to an eye or the visual pathway causes different types of vision loss depending on ...

  2. Nerve entrapment and gene therapy.

    PubMed

    Sud, Vipul

    2002-01-01

    Peripheral entrapment neuropathy is a common cause of upper-extremity pain, paresthesias, and weakness. Although any of the major nerves can be affected, compression of the median nerve at the carpal tunnel is the commonest site of clinically significant nerve compression. Etiologically, carpal tunnel syndrome (CTS) has numerous causes, but the idiopathic group greatly outnumbers the rest. Moreover, the pathophysiology of CTS patients claiming work-related repetitive hand motion as a basis for their disorder has been the subject of intensive study because of its economic ramifications for industry. CTS can serve as a model for reviewing the pathophysiology and biochemical changes of the nerve and its exterior milieu at the cellular level, as well as the possibilities of modifying these changes at the molecular level.

  3. Schwannomatosis of Cervical Vagus Nerve

    PubMed Central

    Sasi, M. P.

    2016-01-01

    Cervical vagal schwannoma is a rare entity among lesions presenting as a neck mass. They are usually slow-growing benign lesions closely associated with the vagus nerve. They are usually solitary and asymptomatic. Multiple schwannomas occurring in patients without neurofibromatosis (NF) are rare and have recently been referred to as schwannomatosis. Here, we present a case of a neck mass that had imaging features suggestive of vagal schwannoma and was operated upon. Intraoperatively, it was discovered to be a case of multiple vagal cervical schwannoma, all directly related to the right vagus nerve, and could be resected from the nerve in toto preserving the function of the vagus nerve. Final HPR confirmed our pre-op suspicion of vagal schwannomatosis. PMID:27807496

  4. Short- and long-term peripheral nerve regeneration using a poly-lactic-co-glycolic-acid scaffold containing nerve growth factor and glial cell line-derived neurotrophic factor releasing microspheres.

    PubMed

    de Boer, Ralph; Borntraeger, Andreas; Knight, Andrew M; Hébert-Blouin, Marie-Noëlle; Spinner, Robert J; Malessy, Martijn J A; Yaszemski, Michael J; Windebank, Anthony J

    2012-08-01

    Addition of neural growth factors to bioengineered scaffolds may improve peripheral nerve regeneration. The aim of this study is to evaluate the short- and long term effect of microsphere delivered nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF) in the 10 mm rat sciatic nerve gap. Eighty-four rats were assigned to seven groups (n = 6) at two endpoints (6 and 16 weeks): saline, saline NGF, saline NGF-microspheres, saline GDNF, saline GDNF-microspheres, saline blank microspheres, and autologous nerve graft. Total fascicular area and total number of myelinated fibers at mid-tube increased in all conduit groups between 6 and 16 weeks. Autologous, saline NGF-microsphere and saline GDNF-microsphere groups reached maximal histomorphometric values by 6 weeks (p < 0.05). Compound muscle action potentials returned after 6 weeks for the autologous graft and continued to increase to a level of 3.6 ± 1.9 mV at endpoint. No significant differences were found between study groups as measured by ankle angle. These experiments show an initial beneficial effect of incorporation of NGF- or GDNF-microspheres in a PLGA 85/15 nerve conduit, since histomorphometric values reached their maximum by 6 weeks compared to control groups. These results do not yet extrapolate into improved electrophysiological or functional improvement.

  5. Grafting of water turbines runner

    SciTech Connect

    Yang, I.T.

    1983-12-01

    It is possible to graft upon or hybridize two different types of water turbines' runner in order to attain more perfect performance to meeting engineering needs. The answer is positive and very interesting, as shown in the research experiment in the Hydromachines Laboratory of Gansu University of Technology. Grafting a group of propeller blades (Ns=440 N.KW) on a Francis turbine runner (Ns=200) with certain boundary conditions in the flow areas, a new hybrid multiplex runner performance has been achieved. Its efficiency curve has been improved at high speed and large flow rate operating conditions that could be able to meet the engineering requirements when the head of the hydropower station is lower than normal. Its unit rotation speed is increased about 25% over that of the Francis. The general performance curve of this hybrid runner will be provided in this paper.

  6. WHO working group on standardisation and control of acellular pertussis vaccines--report of a meeting held on 16-17 March 2006, St. Albans, United Kingdom.

    PubMed

    Xing, D K L; Corbel, M J; Dobbelaer, R; Knezevic, I

    2007-04-12

    This report reflects the discussion and conclusions of a WHO group of experts from national regulatory authorities, national control laboratories, vaccine industry and other relevant institutions involved in standardisation and control of acellular pertussis vaccines, held on 16-17 March 2006, in St. Albans, UK. Following previous discussions (Bethesda, 2000; Ferney-Voltaire, 2003; Geneva, 2005) and collection of relevant data for quality control, on the one hand, and clinical evaluation of acellular pertussis vaccines, on the other, this meeting was intended to review the scientific basis for the revision of WHO guidelines adopted in 1996 [Guidelines for the production and control of the acellular pertussis component of monovalent or combined vaccines. In: WHO Expert Committee on Biological Standardisation. Forty-seventh report. Geneva, World Health Organisation, 1998 (WHO Technical Report Series, No. 878), Annex 2]. The discussion on animal protection models, immunogenicity and toxicity testing was focused on three main aspects: value of the assay for the purpose of licensing and/or lot release; validity criteria and potential optimisation of the assays. The group agreed that establishment of JNIH-3 as a potential International Standard (IS) for modified intra-cerebral challenge assay should be under consideration. It was suggested that the inclusion of a reference vaccine, such as JNIH-3 in the intra-nasal challenge model could improve the standardisation of this assay. It was proposed that the development of stable reference vaccines for immunogenicity testing should be encouraged. Further collection of the data from the countries with established lot release of acellular pertussis vaccines will be undertaken to prepare a solid basis for recommendations on toxicity tests. In the context of recommendations for clinical assessment of new vaccines, the group emphasised the importance of comparability studies with antigens that have already undergone efficacy

  7. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2013-10-01

    around the nerve ends performed following application of 0.1% Rose Bengal dye in saline to wrap and epineurium with illumination at 532 nm. The HAM...results obtained with the three fixation methods under study (a) epineurial suture, (b) fibrin glue and (c) photochemical tissue bonding (PTB) with a...wrap material. All methods induced bonding between the nerve segments with bond strength in the order of suture>PTB> fibrin glue. Conventional

  8. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2013-10-01

    performed following application of 0.1% Rose Bengal dye in saline to wrap and epineurium with illumination at 532 nm. The HAM wrap/nerve sample was then...the three fixation methods under study (a) epineurial suture, (b) fibrin glue and (c) photochemical tissue bonding (PTB) with a wrap material. All...methods induced bonding between the nerve segments with bond strength in the order of suture>PTB> fibrin glue. Conventional epineurial suturing using

  9. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2013-10-01

    harvested from donor rats immediately post-euthanasia (Task 1g) and bonding of the wrap around the nerve ends performed following application of 0.1...a) epineurial suture, (b) fibrin glue and (c) photochemical tissue bonding (PTB) with a wrap material. All methods induced bonding between the nerve...segments with bond strength in the order of suture>PTB> fibrin glue. Conventional epineurial suturing using six 10.0 nylon sutures resulted in the

  10. Ex Vivo Machine Perfusion in CTA with a Novel Oxygen Carrier System to Enhance Graft Preservation and Immunologic Outcomes

    DTIC Science & Technology

    2015-10-01

    muscle fibers c. decomposed endomysium d. decomposed epimysium e. edema 4. Nerves a. intramyelinic edema b. endoneural edema c. compression...lamina elastic f. vasa vasorum involvement g. perivascular edema h. erythrocyte extravasation i. leukocyte adhesion j. leukocyte infiltration...period. There were no signs of edema and/or endothelial cell damage in the VRAM grafts preserved with MP. Figure 15 displays 2 panels of serial

  11. [Peripheral Nerve Injuries in Sports].

    PubMed

    Tettenborn, B; Mehnert, S; Reuter, I

    2016-09-01

    Peripheral nerve injuries due to sports are relatively rare but the exact incidence is not known due to a lack of epidemiological studies. Particular sports activities tend to cause certain peripheral nerve injuries including direct acute compression or stretching, repetitive compression and stretching over time, or another mechanism such as ischemia or laceration. These nerve lesions may be severe and delay or preclude the athlete's return to sports, especially in cases with delayed diagnosis. Repetitive and vigorous use or overuse makes the athlete vulnerable to disorders of the peripheral nerves, and sports equipment may cause compression of the nerves. Depending on etiology, the treatment is primarily conservative and includes physiotherapy, modification of movements and sports equipment, shoe inserts, splinting, antiphlogistic drugs, sometimes local administration of glucocorticoids or, lately, the use of extracorporeal shock waves. Most often, cessation of the offending physical activity is necessary. Surgery is only indicated in the rare cases of direct traumatic nerve injury or when symptoms are refractory to conservative therapy. Prognosis mainly depends on the etiology and the available options of modifying measures.This article is based on the publications "Reuter I, Mehnert S. Engpasssyndrome peripherer Nerven bei Sportlern". Akt Neurol 2012;39:292-308 and Sportverl Sportschad 2013;27:130-146.

  12. The Effect of Sterile Acellular Dermal Matrix Use on Complication Rates in Implant-Based Immediate Breast Reconstructions

    PubMed Central

    Park, Youngsoo; Choi, Kyoung Wook; Chung, Kyu-Jin; Kim, Tae Gon; Kim, Yong-Ha

    2016-01-01

    Background The use of acellular dermal matrix (ADM) in implant-based immediate breast reconstruction has been increasing. The current ADMs available for breast reconstruction are offered as aseptic or sterile. No published studies have compared aseptic and sterile ADM in implant-based immediate breast reconstruction. The authors performed a retrospective study to evaluate the outcomes of aseptic versus sterile ADM in implant-based immediate breast reconstruction. Methods Implant-based immediate breast reconstructions with ADM conducted between April 2013 and January 2016 were included. The patients were divided into 2 groups: the aseptic ADM (AlloDerm) group and the sterile ADM (MegaDerm) group. Archived records were reviewed for demographic data and postoperative complication types and frequencies. The complications included were infection, flap necrosis, capsular contracture, seroma, hematoma, and explantation for any cause. Results Twenty patients were reconstructed with aseptic ADM, and 68 patients with sterile ADM. Rates of infection (15.0% vs. 10.3%), flap necrosis (5.0% vs. 7.4%), capsular contracture (20.0% vs. 14.7%), seroma (10.0% vs. 14.7%), hematoma (0% vs. 1.5%), and explantation (10.0% vs. 8.8%) were not significantly different in the 2 groups. Conclusions Sterile ADM did not provide better results regarding infectious complications than aseptic ADM in implant-based immediate breast reconstruction. PMID:27896182

  13. High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography

    NASA Astrophysics Data System (ADS)

    Hagen, Charlotte K.; Maghsoudlou, Panagiotis; Totonelli, Giorgia; Diemoz, Paul C.; Endrizzi, Marco; Rigon, Luigi; Menk, Ralf-Hendrik; Arfelli, Fulvia; Dreossi, Diego; Brun, Emmanuel; Coan, Paola; Bravin, Alberto; de Coppi, Paolo; Olivo, Alessandro

    2015-12-01

    Acellular scaffolds obtained via decellularization are a key instrument in regenerative medicine both per se and to drive the development of future-generation synthetic scaffolds that could become available off-the-shelf. In this framework, imaging is key to the understanding of the scaffolds’ internal structure as well as their interaction with cells and other organs, including ideally post-implantation. Scaffolds of a wide range of intricate organs (esophagus, lung, liver and small intestine) were imaged with x-ray phase contrast computed tomography (PC-CT). Image quality was sufficiently high to visualize scaffold microarchitecture and to detect major anatomical features, such as the esophageal mucosal-submucosal separation, pulmonary alveoli and intestinal villi. These results are a long-sought step for the field of regenerative medicine; until now, histology and scanning electron microscopy have been the gold standard to study the scaffold structure. However, they are both destructive: hence, they are not suitable for imaging scaffolds prior to transplantation, and have no prospect for post-transplantation use. PC-CT, on the other hand, is non-destructive, 3D and fully quantitative. Importantly, not only do we demonstrate achievement of high image quality at two different synchrotron facilities, but also with commercial x-ray equipment, which makes the method available to any research laboratory.

  14. Acellular Bone Marrow Extracts Significantly Enhance Engraftment Levels of Human Hematopoietic Stem Cells in Mouse Xeno-Transplantation Models

    PubMed Central

    Zibara, Kazem; Hamdan, Rima; Dib, Leila; Sindet-Pedersen, Steen; Kharfan-Dabaja, Mohamed; Bazarbachi, Ali; El-Sabban, Marwan

    2012-01-01

    Hematopoietic stem cells (HSC) derived from cord blood (CB), bone marrow (BM), or mobilized peripheral blood (PBSC) can differentiate into multiple lineages such as lymphoid, myeloid, erythroid cells and platelets. The local microenvironment is critical to the differentiation of HSCs and to the preservation of their phenotype in vivo. This microenvironment comprises a physical support supplied by the organ matrix as well as tissue specific cytokines, chemokines and growth factors. We investigated the effects of acellular bovine bone marrow extracts (BME) on HSC in vitro and in vivo. We observed a significant increase in the number of myeloid and erythroid colonies in CB mononuclear cells (MNC) or CB CD34+ cells cultured in methylcellulose media supplemented with BME. Similarly, in xeno-transplantation experiments, pretreatment with BME during ex-vivo culture of HSCs induced a significant increase in HSC engraftment in vivo. Indeed, we observed both an increase in the number of differentiated myeloid, lymphoid and erythroid cells and an acceleration of engraftment. These results were obtained using CB MNCs, BM MNCs or CD34+ cells, transplanted in immuno-compromised mice (NOD/SCID or NSG). These findings establish the basis for exploring the use of BME in the expansion of CB HSC prior to HSC Transplantation. This study stresses the importance of the mechanical structure and soluble mediators present in the surrounding niche for the proper activity and differentiation of stem cells. PMID:22768336

  15. Sclerotia of the acellular (true) slime mould Fuligo septica as a model to study melanization and anabiosis.

    PubMed

    Krzywda, Anna; Petelenz, Elzbieta; Michalczyk, Dominika; Płonka, Przemysław M

    2008-01-01

    Acellular (true) slime moulds (Myxomycetes) are capable of a transition to the stage of sclerotium - a dormant form of plasmodium produced under unfavourable environmental conditions. In this study, sclerotia of Fuligo septica were analyzed by means of electron paramagnetic resonance (EPR) spectroscopy. The moulds were cultivated in vitro on filter paper, fed with oat flour, and kept until the plasmodia began to produce sclerotia. The obtained sclerotia differed in colour from yellow through orange to dark-brown. The EPR spectra revealed a free radical, melanin-like signal correlated with the depth of the colour; it was strongest in the dark sclerotia. Sclerotization only took place when the plasmodia were starved and very slowly dried. Only the yellow sclerotia were able to regenerate into viable plasmodia. This suggests that myxomycete cytoplasm dehydration is an active process regulated metabolically. Plasmodial sclerotization may therefore serve as a convenient model system to study the regulation of cytoplasmatic water balance, and sclerotia as a convenient material for EPR measurements, combining the quality of plasmodia with the technical simplicity of the measurements characteristic of dry spores. Darkening of the sclerotia is most probably a pathological phenomenon connected with the impairment of water balance during sclerotization.

  16. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice

    PubMed Central

    Godin, Lindsay M.; Sandri, Brian J.; Wagner, Darcy E.; Meyer, Carolyn M.; Price, Andrew P.; Akinnola, Ifeolu; Weiss, Daniel J.; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases. PMID:26954258

  17. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice.

    PubMed

    Godin, Lindsay M; Sandri, Brian J; Wagner, Darcy E; Meyer, Carolyn M; Price, Andrew P; Akinnola, Ifeolu; Weiss, Daniel J; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.

  18. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells.

    PubMed

    Chang, Chih-Hung; Chen, Chia-Chun; Liao, Cheng-Hao; Lin, Feng-Huei; Hsu, Yuan-Ming; Fang, Hsu-Wei

    2014-07-01

    In our previous study, we found that cartilage fragments from osteoarthritic knee promoted chondrogenesis of mesenchymal stem cells. In this study, we further transformed the cartilage tissues into acellular cartilage matrix (ACM) and explored the feasibility of using ACM as a biological scaffold. Nonworn parts of cartilage tissues were obtained during total knee arthroplasty (TKA) surgery and were successfully fabricated into ACM powders. The ACM powders and human synovium-derived mesenchymal stem cells (SMSCs) were mixed into collagen gel for in vitro culture. Histological results showed a synergistic effect of ACM powders and chondrogenic growth factors in the formation of engineered cartilage. The findings of real-time polymerase chain reaction (PCR) suggested that ACM powders had the potential of promoting type II collagen gene expression in the growth factors-absent environment. Moreover, with growth factors induction, the ACM powders could reduce the hypertrophy in chondrogenesis of SMSCs. In summary, ACM powders could serve as a functional scaffold that benefited the chondrogenesis of SMSCs for cartilage tissue engineering.

  19. Persistence of T-cell immune response induced by two acellular pertussis vaccines in children five years after primary vaccination.

    PubMed

    Palazzo, Raffaella; Carollo, Maria; Bianco, Manuela; Fedele, Giorgio; Schiavoni, Ilaria; Pandolfi, Elisabetta; Villani, Alberto; Tozzi, Alberto E; Mascart, Françoise; Ausiello, Clara M

    2016-01-01

    The resurgence of pertussis suggests the need for greater efforts to understand the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of T memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac® vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa® (Infanrix) (Glaxo-SmithKline Biologicals). We evaluated magnitude and duration of T-cell responses to pertussis toxin (PT) by measuring T-cell proliferation, cytokines (IL-2 and IFNγ) production and memory subsets in two groups of children 5 years after primary vaccination. Some of the enrolled children received only primary vaccination, while others had the pre-school boost dose. Positive T-cell responses to PT were detected in 36% of children. Percentage of responsive children, T-cell proliferation and CD4IL-2+ cells were significantly higher in the children primed with Hexavac than in those who received Infanrix vaccine. No major effects of the boost on PT-specific proliferation were observed. Overall, our data documented a persistence of T-cell memory against PT in a minor fraction of children 5 years after primary vaccination. The different responses induced by Hexavac and Infanrix vaccine could rely on differences in PT inactivation process or excipients/adjuvants formulations.

  20. Xenogenic (porcine) acellular dermal matrix promotes growth of granulation tissues in the wound healing of Fournier gangrene.

    PubMed

    Zhang, Zhaoxin; Lv, Lei; Mamat, Masut; Chen, Zhao; Zhou, Zhitao; Liu, Lihua; Wang, Zhizhong

    2015-01-01

    This article investigates the application values of Xenogenic (porcine) acellular dermal matrix (XADM) in preparation of a Fournier gangrene wound bed. Thirty-six consecutive cases of patients with Fournier gangrene between 2002 and 2012 were enrolled in our department of our hospital. The patients were divided into two groups according to different methods of wound bed preparation after surgical débridement, including the experimental group (17 cases) and the control group (19 cases). The wounds in the experimental group were covered with XADM after surgical wound débridement, whereas the wounds were cleaned with hydrogen peroxide and sodium hypochlorite solution (one time/day) in the control group. The wound bed preparation time and hospital stay were then compared in the two groups. The wound preparation time was 13.64 ± 1.46 days and hospitalization period was 26.06 ± 0.83 days in the experimental XADM group. In the control group, the wound bed preparation time and hospitalization period were 22.37 ± 1.38 and 38.11 ± 5.60 days, respectively. The results showed statistical differences between these two groups. When used in wound débridement after Fournier gangrene, XADM protects interecological organizations, promotes the growth of granulation tissues, and maximally retains function and morphology of the perineum and penis.

  1. Preventing Phrenic Nerve Stimulation by a Patch Insulation in an Intact Swine Heart Model

    PubMed Central

    Hung, Yi-Wen; Hsieh, Yu-Cheng; Cheng, Chien-Ming; Wang, Kuo-Yang

    2014-01-01

    Introduction Phrenic nerve stimulation (PNS) could be prevented by a silastic patch over the epicardial lead. We studied the effects in preventing PNS by placing a silastic patch directly over an epicardial lead or placing a graft around the phrenic nerve (PN). Methods and Results Fourteen Lanyu swine were enrolled. A bipolar lead was placed epicardially on the left ventricle (LV) inferior to the PN. An implantable cardioverter-defibrillator (ICD) lead was placed into the right ventricle (RV). The maximal influential distance (MID) was measured under 3 pacing configurations to express the influential electrical field on the PN. The threshold of the LV and PN were evaluated epicardially. Then, PTFE patches of different sizes (10×10 mm, 20×20 mm and 30×30 mm) were placed between the LV lead and PN to study the rise in PN threshold in 7 swine. On the other hand, the PN were surrounded by a PTFE graft of different lengths (10 mm, 20 mm, and 30 mm) in the remaining 7 swine. LV-bipolar pacing showed the shortest MID when compared to the other 2 unipolar pacing configurations at pacing voltage of 10 V. The patch was most effective in preventing PNS during LV-bipolar pacing. PNS was prevented under all circumstances with a larger PTFE patch (30×30 mm) or long graft (30 mm). Conclusions PNS was avoided by placing a PTFE patch over the LV lead or a graft around the PN despite pacing configurations. Hence if PNS persisted during CRT implantation, a PTFE patch on the LV lead or a graft around the PN could be considered. PMID:25033271

  2. Platysma Motor Nerve Transfer for Restoring Marginal Mandibular Nerve Function

    PubMed Central

    Jensson, David; Weninger, Wolfgang J.; Schmid, Melanie; Meng, Stefan; Tzou, Chieh-Han John

    2016-01-01

    Background: Injuries of the marginal mandibular nerve (MMN) of the facial nerve result in paralysis of the lower lip muscle depressors and an asymmetrical smile. Nerve reconstruction, when possible, is the method of choice; however, in cases of long nerve gaps or delayed nerve reconstruction, conventional nerve repairs may be difficult to perform or may provide suboptimal outcomes. Herein, we investigate the anatomical technical feasibility of transfer of the platysma motor nerve (PMN) to the MMN for restoration of lower lip function, and we present a clinical case where this nerve transfer was successfully performed. Methods: Ten adult fresh cadavers were dissected. Measurements included the number of MMN and PMN branches, the maximal length of dissection of the PMN from the parotid, and the distance from the anterior border of the parotid to the facial artery. The PMN reach for direct coaptation to the MMN at the level of the crossing with the facial artery was assessed. We performed histomorphometric analysis of the MMN and PMN branches. Results: The anatomy of the MMN and PMN was consistent in all dissections, with an average number of subbranches of 1.5 for the MMN and 1.2 for the PMN. The average maximal length of dissection of the PMN was 46.5 mm, and in every case, tension-free coaptation with the MMN was possible. Histomorphometric analysis demonstrated that the MMN contained an average of 3,866 myelinated fiber counts per millimeter, and the PMN contained 5,025. After a 3-year follow-up of the clinical case, complete recovery of MMN function was observed, without the need of central relearning and without functional or aesthetic impairment resulting from denervation of the platysma muscle. Conclusions: PMN to MMN transfer is an anatomically feasible procedure for reconstruction of isolated MMN injuries. In our patient, by direct nerve coaptation, a faster and full recovery of lower lip muscle depressors was achieved without the need of central

  3. Conservative Pancreas Graft Preservation at the Extreme

    PubMed Central

    Laurence, Jerome Martin; Sapisochin, Gonzalo; Selzner, Markus; Norgate, Andrea; Kumar, Deepali; McGilvary, Ian D.; Preig, Paul D.; Schiff, Jeffrey; Cattral, Mark S.

    2016-01-01

    Because of the value some patients place in remaining insulin-independent after pancreas transplantation, they may be reluctant to undergo graft pancreatectomy, even in the face of extreme complications, such as graft thrombosis and duodenal segment leak. Partly, for this reason, a variety of complex salvage techniques have been described to save the graft in such circumstances. We report a case of a series of extreme complications related to a leak from the duodenal segment after a simultaneous pancreas and kidney transplant. These included infected thrombosis of the inferior vena cava associated with a graft venous thrombosis and a retroperitoneal fistula. The patient retained graft function with insulin independence and repeatedly declined graft pancreatectomy against the advice of the transplant team. Conservative treatment with percutaneous drainage, antibiotics, and anticoagulation was eventually successful. This outcome is unique in our experience and may be instructive to teams caring for pancreas transplant recipients. PMID:27500244

  4. Tissue engineering with peripheral blood-derived mesenchymal stem cells promotes the regeneration of injured peripheral nerves.

    PubMed

    Pan, Mengjie; Wang, Xianghai; Chen, Yijing; Cao, Shangtao; Wen, Jinkun; Wu, Guofeng; Li, Yuanyuan; Li, Lixia; Qian, Changhui; Qin, Zhenqi; Li, Zhenlin; Tan, Dandan; Fan, Zhihao; Wu, Wutian; Guo, Jiasong

    2017-03-07

    Peripheral nerve injury repair can be enhanced by Schwann cell (SC) transplantation, but clinical applications are limited by the lack of a cell source. Thus, alternative systems for generating SCs are desired. Herein, we found the peripheral blood-derived mesenchymal stem cells (PBMSCs) could be induced into SC like cells with expressing SC-specific markers (S100, P75NTR and CNPase) and functional factors (NGF, NT-3, c-Fos, and Krox20). When the induced PBMSCs (iPBMSCs) were transplanted into crushed rat sciatic nerves, they functioned as SCs by wrapping the injured axons and expressing myelin specific marker of MBP. Furthermore, iPBMSCs seeded in an artificial nerve conduit to bridge a 10-mm defect in a sciatic nerve achieved significant nerve regeneration outcomes, including axonal regeneration and remyelination, nerve conduction recovery, and restoration of motor function, and attenuated myoatrophy and neuromuscular junction degeneration in the target muscle. Overall, the data from this study indicated that PBMSCs can transdifferentiate towards SC-like cells and have potential as grafting cells for nerve tissue engineering.

  5. Grafting chitosan and polyHEMA on carbon nanotubes surfaces: "grafting to" and "grafting from" methods.

    PubMed

    Mahmoodian, Hossein; Moradi, Omid; Shariatzadeh, Behnam

    2014-02-01

    We report a simple method for engineering chitosan (CS) functionalized multi-walled carbon nanotube (MWCNT) composites with a biomedically important polymer, poly-2-hydroxyethyl methacrylate (polyHEMA), by chemical grafting HEMA monomers via free radical polymerization. Functionalization of CS and polyHEMA occurred in three steps. First, using microwave irradiation, CS was grafted onto the surface and sidewall of the carbon nanotubes. Second, HEMA monomers were grafted onto the polymeric matrix surface. The final step involved free radical polymerization of HEMA monomers. Composite synthesis was confirmed by Fourier transform infrared (FTIR) spectroscopy. Moreover, the presence of polyHEMA on the surface of the CS functionalized carbon nanotubes was confirmed by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and thermo gravimetric analysis (TGA) analyses. Furthermore, in the aqueous phase, our novel composites exhibited higher dispersibility compared with pristine MWCNTs. Considering the biomedical importance of polyHEMA and CS polymers, we expect these materials to be useful in the pharmaceutical industry as novel biomaterial composites with potential applications in drug delivery.

  6. Novel expansion techniques for skin grafts

    PubMed Central

    Kadam, Dinesh

    2016-01-01

    The quest for skin expansion is not restricted to cover a large area alone, but to produce acceptable uniform surfaces, robust engraftment to withstand mechanical shear and infection, with a minimal donor morbidity. Ease of the technique, shorter healing period and reproducible results are essential parameters to adopt novel techniques. Significant advances seen in four fronts of autologous grafting are: (1) Dermal–epidermal graft expansion techniques, (2) epidermal graft harvests technique, (3) melanocyte-rich basal cell therapy for vitiligo and (4) robust and faster autologous cell cultures. Meek's original concept that the sum of perimeter of smaller grafts is larger than the harvested graft, and smaller the graft size, the greater is the potential for regeneration is witnessed in newer modification. Further, as graft size becomes smaller or minced, these micrografts can survive on the wound bed exudate irrespective of their dermal orientation. Expansion produced by 4 mm × 4 mm sized Meek micrografts is 10-folds, similarly 0.8 mm × 0.8 mm size micrografts produce 100-fold expansion, which becomes 700-fold with pixel grafts of 0.3 mm × 0.3 mm size. Fractional skin harvest is another new technique with 700 μ size full thickness graft. These provide instant autologous non-cultured graft to cover extensive areas with similar quality of engraftment surface as split skin grafts. Newer tools for epidermal blister graft harvest quickly, with uniform size to produce 7-fold expansions with reproducible results. In addition, donor area heals faster with minimal scar. Melanocyte-rich cell suspension is utilised in vitiligo surgery tapping the potential of hair root melanocytes. Further advances in the cell culture to reduce the cultivation time and provide stronger epidermal sheets with dermal carrier are seen in trials. PMID:27274117

  7. Preoperative graft assessment in aortocoronary bypass surgery

    PubMed Central

    Tinica, Grigore; Vartic, Cristina Luca; Mocanu, Veronica; Baran, Dana; Butcovan, Doina

    2016-01-01

    Coronary artery bypass graft (CABG) is a surgical procedure able to improve the blood supply to the myocardium. In the present study, the distal segments of grafts taken from the internal thoracic artery (ITA), radial artery (RA) and saphenous vein (SV) for use in aortocoronary bypass surgery were examined. The morphologies of the grafts were investigated in order to draw conclusions concerning their patency and viability. In addition, clinical and laboratory risk factors considered to be significant predictors of lesion severity in graft vessels used in CABGs were investigated. In total, 54 distal graft segments of ITAs, RAs and SVs from 20 men and 6 women aged between 42 and 78 years, were evaluated. Histological analyses were used to visualize graft lesions. Morphometrically, the intimal thickness index (ITI) and luminal narrowing were assessed as an indication of graft patency. The histological changes observed in the graft vessel walls included the presence of distinct atheromatous plaques (fatty streaks in 2 cases) or thickening of the intima (20 cases) and media (17 cases). Morphometric analysis showed that the mean ITI of the vessel conduits was 0.37 in the SVs, 0.95 in the RAs, and 1.66 in the ITAs. No patient had >50% conduit stenosis. By assessing the association between risk factors and graft lesions, it was found that all the patients showed risk factors for atherosclerosis, such as age (61.54%), arterial hypertension (65.38%), hyperlipidemia (65.38%), smoking (34.61%), diabetes mellitus (38.46%) and obesity (15.38%). The presence of pre-existing lesions in bypass grafts may contribute to a reduction in their viability, particularly in the case of venous grafts. Further long-term follow-ups are mandatory to evaluate the consequences of such lesions upon the patency of the grafts. PMID:27446279

  8. Organosiloxane-grafted natural polymer coatings

    DOEpatents

    Sugama, Toshifumi

    1998-12-01

    A new family of polysaccharide graft polymers are provided as corrosion resistant coatings having antimicrobial properties which are useful on light metals such as aluminum, magnesium, zinc, steel and their alloys. Methods of making the polysaccharide graft polymers are also included. The methods of making the polysaccharide graft polymers involve reacting a polysaccharide source with an antimicrobial agent under conditions of hydrolysis-condensation. 17 figs.

  9. Interdigitating reticulum cells in human renal grafts.

    PubMed

    Wakabayashi, T; Onoda, H

    1991-01-01

    Seventeen human renal graft biopsies taken 1 h to 50 days after transplantation and 3 human renal non-graft biopsies (2 minimal change and 1 non-tumour portion of angiomyolipoma) were investigated with immunoelectron microscopy in order to identify interdigitating reticulum cells (IDC) or dendritic cells (DC) in renal tissues. The antibodies used consisted of a rabbit polyclonal antibody of antihuman S100 beta protein, mouse monoclonal antibodies of antihuman HLA-DR, anti-CD3, and anti-CD1a. IDC or DC were identified in 11 renal grafts. They were found both in the glomerular and interstitial (peritubular) capillary lumens but not in the interstitium of 1 case: both were present in the interstitial capillary lumens and interstitium of another case, and in the interstitium only of 9 cases. In the remaining 6 grafts and 3 non-grafts they were not detected. These 6 grafts and 3 non-grafts did not show any pathological change except for foot process fusion of the glomerular epithelia in 2 cases of minimal change. These findings suggest that IDC or DC are not normally present in human renal tissues. The presence of the cell in the glomerular and peritubular capillary lumens of a biopsy taken after 1 h and their presence in the interstitial capillary lumens of another graft biopsy, suggest that the IDC or DC in human renal grafts are derived from recipients, not donors, and that they migrate from the circulating blood toward the interstitium.

  10. Plant grafting: insights into tissue regeneration

    PubMed Central

    2016-01-01

    Abstract For millennia, people have cut and joined different plants together through a process known as grafting. The severed tissues adhere, the cells divide and the vasculature differentiates through a remarkable process of regeneration between two genetically distinct organisms as they become one. Grafting is becoming increasingly important in horticulture where it provides an efficient means for asexual propagation. Grafting also combines desirable roots and shoots to generate chimeras that are more vigorous, more pathogen resistant and more abiotic stress resistant. Thus, it presents an elegant and efficient way to improve plant productivity in vegetables and trees using traditional techniques. Despite this horticultural importance, we are only beginning to understand how plants regenerate tissues at the graft junction. By understanding grafting better, we can shed light on fundamental regeneration pathways and the basis for self/non‐self recognition. We can also better understand why many plants efficiently graft whereas others cannot, with the goal of improving grafting so as to broaden the range of grafted plants to create even more desirable chimeras. Here, I review the latest findings describing how plants graft and provide insight into future directions in this emerging field. PMID:28316790

  11. Late infection in Dacron arterial grafts.

    PubMed

    Harvey, D R; Bliss, B P

    1975-06-01

    We report a series of cases of late infection in Dacron arterial grafts. Late infection is defined as that presenting de novo 6 months or more after the patient's discharge from hospital with a clean healed wound. One hundred and ten patients were followed up and 6 cases of this type of infection occurred. The diagnosis was made on clinical grounds and usually pain, suppuration in the line of graft, or graft exposure were the presenting features. Secondary haemorrhage, common in early infection, did not occur. Conservative management failed in most cases and removal of the infected graft was necessary. The difficult problems associated with revascularization are discussed.

  12. What Protects Certain Nerves from Stretch Injury?

    PubMed

    Schraut, Nicholas B; Walton, Sharon; Bou Monsef, Jad; Shott, Susan; Serici, Anthony; Soulii, Lioubov; Amirouche, Farid; Gonzalez, Mark H; Kerns, James M

    2016-01-01

    The human tibial nerves is less prone to injury following joint arthroplasty compared with the peroneal nerves. Besides the anatomical distribution, other features may confer protection from stretch injury. We therefore examined the size, shape and connective tissue distribution for the two nerves. The tibial and peroneal nerves from each side of nine fresh human cadavers we reharvested mid-thigh. Proximal segments manually stretched 20%-25% were fixed in aldehyde, while the adjacent distal segments were fixed in their natural length. Paraffin sections stained by Masson's trichrome method for connective tissue were examined by light microscopy. Tibial nerves had 2X more fascicles compared with the peroneal, but the axonal content appeared similar. Analysis showed that neither nerve had a significant reduction in cross sectional area of the fascicles following stretch. However, fascicles from stretched tibial nerves become significantly more oval compared with those from unstretched controls and peroneal nerves. Tibial nerves had a greater proportion that was extrafascicular tissue (50-55%) compared with peroneal nerves (38%-42%). This epineurium was typically adipose tissue. Perineurial thickness in both nerves was directly related to fascicular size. Tibial nerves have several unique histological features associated with size, shape and tissue composition compared with the peroneal nerve. We suggest that more fascicles with their tightly bound perineurium and more robust epineurium afford protection against stretch injury. Mechanical studies should clarify how size and shape contribute to nerve protection and/or neurapraxia.

  13. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    PubMed Central

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  14. Masseteric-facial nerve transposition for reanimation of the smile in incomplete facial paralysis.

    PubMed

    Hontanilla, Bernardo; Marre, Diego

    2015-12-01

    Incomplete facial paralysis occurs in about a third of patients with Bell's palsy. Although their faces are symmetrical at rest, when they smile they have varying degrees of disfigurement. Currently, cross-face nerve grafting is one of the most useful techniques for reanimation. Transfer of the masseteric nerve, although widely used for complete paralysis, has not to our knowledge been reported for incomplete palsy. Between December 2008 and November 2013, we reanimated the faces of 9 patients (2 men and 7 women) with incomplete unilateral facial paralysis with transposition of the masseteric nerve. Sex, age at operation, cause of paralysis, duration of denervation, recipient nerves used, and duration of follow-up were recorded. Commissural excursion, velocity, and patients' satisfaction were evaluated with the FACIAL CLIMA and a questionnaire, respectively. The mean (SD) age at operation was 39 (±6) years and the duration of denervation was 29 (±19) months. There were no complications that required further intervention. Duration of follow-up ranged from 6-26 months. FACIAL CLIMA showed improvement in both commissural excursion and velocity of more than two thirds in 6 patients, more than one half in 2 patients and less than one half in one. Qualitative evaluation showed a slight or pronounced improvement in 7/9 patients. The masseteric nerve is a reliable alternative for reanimation of the smile in patients with incomplete facial paralysis. Its main advantages include its consistent anatomy, a one-stage operation, and low morbidity at the donor site.

  15. Cardiac autonomic nerve distribution and arrhythmia☆

    PubMed Central

    Liu, Quan; Chen, Dongmei; Wang, Yonggang; Zhao, Xin; Zheng, Yang

    2012-01-01

    OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia. DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation as the key words. SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included. MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated. RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system. CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in

  16. Imaging the ocular motor nerves.

    PubMed

    Ferreira, Teresa; Verbist, Berit; van Buchem, Mark; van Osch, Thijs; Webb, Andrew

    2010-05-01

    The ocular motor nerves (OMNs) comprise the oculomotor, trochlear and the abducens nerves. According to their course, they are divided into four or five anatomic segments: intra-axial, cisternal, cavernous and intra-orbital and, for the abducens nerve, an additional interdural segment. Magnetic resonance imaging is the imaging method of choice in the evaluation of the normal and pathologic ocular motor nerves. CT still plays a limited but important role in the evaluation of the intraosseous portions at the skull base and bony foramina. We describe for each segment of these cranial nerves, the normal anatomy, the most appropriate image sequences and planes, their imaging appearance and pathologic conditions. Magnetic resonance imaging with high magnetic fields is a developing and promising technique. We describe our initial experience with a Phillips 7.0T MRI scanner in the evaluation of the brainstem segments of the OMNs. As imaging becomes more refined, an understanding of the detailed anatomy is increasingly necessary, as the demand on radiology to diagnose smaller lesions also increases.

  17. Treatment of abdominal nerve entrapment syndrome using a nerve stimulator.

    PubMed Central

    McGrady, E. M.; Marks, R. L.

    1988-01-01

    Seventy-six patients treated at York Pain Relief Clinic for Abdominal Nerve Entrapment Syndrome (ANES) between 1982 and 1986, using aqueous phenol and nerve stimulator control are reviewed. A questionnaire was sent to all the patients who had been discharged from the clinic to try to confirm that the initial improvements had been maintained and 60 patients replied. Group A (n = 44) had been diagnosed with confidence; 95% had gained complete or partial relief of symptoms. Group B (n = 32) had other symptoms making the diagnosis less certain; 50% gained some relief. Clinical presentation of ANES and the method of treatment are described. Images Fig. 1 PMID:2970241

  18. Patient outcome after surgical management of the spinal accessory nerve injury: A long-term follow-up study

    PubMed Central

    Göransson, Harry; Leppänen, Olli V; Vastamäki, Martti

    2016-01-01

    Objectives: A lesion in the spinal accessory nerve is typically iatrogenic: related to lymph node biopsy or excision. This injury may cause paralysis of the trapezius muscle and thus result in a characteristic group of symptoms and signs, including depression and winging of the scapula, drooped shoulder, reduced shoulder abduction, and pain. The elements evaluated in this long-term follow-up study include range of shoulder motion, pain, patients’ satisfaction, delay of surgery, surgical procedure, occupational status, functional outcome, and other clinical findings. Methods: We reviewed the medical records of a consecutive 37 patients (11 men and 26 women) having surgery to correct spinal accessory nerve injury. Neurolysis was the procedure in 24 cases, direct nerve repair for 9 patients, and nerve grafting for 4. Time elapsed between the injury and the surgical operation ranged from 2 to 120 months. The patients were interviewed and clinically examined after an average of 10.2 years postoperatively. Results: The mean active range of movement of the shoulder improved at abduction 44° (43%) in neurolysis, 59° (71%) in direct nerve repair, and 30° (22%) in nerve-grafting patients. No or only slight atrophy of the trapezius muscle was observable in 75%, 44%, and 50%, and no or controllable pain was observable in 63%, 56%, and 50%. Restriction of shoulder abduction preceded deterioration of shoulder flexion. Patients’ overall dissatisfaction with the state of their upper extremity was associated with pain, lower strength in shoulder movements, and occupational problems. Conclusion: We recommend avoiding unnecessary delay in the exploration of the spinal accessory nerve, if a neural lesion is suspected. PMID:27152195

  19. What to Expect during Coronary Artery Bypass Grafting

    MedlinePlus

    ... NHLBI on Twitter. What To Expect During Coronary Artery Bypass Grafting Coronary artery bypass grafting (CABG) requires ... surgery to newer, less-invasive methods. Traditional Coronary Artery Bypass Grafting This type of surgery usually lasts ...

  20. Initiator Effects in Reactive Extrusion of Starch Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with water-soluble polymers such as polyacrylamide have potential applications including hydrogels, superabsorbents, and thickening agents. Reactive extrusion is a rapid, continuous method for production of starch graft copolymers with high reaction and grafting efficienc...

  1. Mouse models for graft arteriosclerosis.

    PubMed

    Qin, Lingfeng; Yu, Luyang; Min, Wang

    2013-05-14

    Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional

  2. Fat grafting in facial rejuvenation.

    PubMed

    Marten, Timothy J; Elyassnia, Dino

    2015-04-01

    Patients with significant facial atrophy and age-related loss of facial fat generally achieve suboptimal improvement from both surface treatments of facial skin and surgical lifts. Restoring lost facial volume by fat grafting is a powerful technique that is now acknowledged by most plastic surgeons and other physicians engaged in treating the aging face as one of the most important advances in aesthetic surgery. Properly performed, the addition of fat to areas of the face that have atrophied because of age or disease can produce a significant and sustained improvement in appearance that is unobtainable by other means.

  3. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  4. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  5. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -