Science.gov

Sample records for acellular simulated body

  1. Long-term in vitro degradation of PDLLA/bioglass bone scaffolds in acellular simulated body fluid.

    PubMed

    Blaker, J J; Nazhat, S N; Maquet, V; Boccaccini, A R

    2011-02-01

    The long-term (600days) in vitro degradation of highly porous poly(D,L-lactide) (PDLLA)/Bioglass-filled composite foams developed for bone tissue engineering scaffolds has been investigated in simulated body fluid (SBF). Foams of ∼93% porosity were produced by thermally induced phase separation (TIPS). The degradation profile for foams of neat PDLLA and the influence of Bioglass addition were comprehensively assessed in terms of changes in dimensional stability, pore morphology, weight loss, molecular weight and mechanical properties (dry and wet states). It is shown that the degradation process proceeded in several stages: (a) a quasi-stable stage, where water absorption and plasticization occurred together with weight loss due to Bioglass particle loss and dissolution, resulting in decreased wet mechanical properties; (b) a stage showing a slight increase in the wet mechanical properties and a moderate decrease in dimensions, with the properties remaining moderately constant until the onset of significant weight loss, whilst molecular weight continued to decrease; (c) an end stage of massive weight loss, disruption of the pore structure and the formation of blisters and embrittlement of the scaffold (evident on handling). The findings from this long-term in vitro degradation investigation underpin studies that have been and continue to be performed on highly porous poly(α-hydroxyesters) scaffolds filled with bioactive glasses for bone tissue engineering applications.

  2. Cosmological N-body Simulation

    NASA Astrophysics Data System (ADS)

    Lake, George

    1994-05-01

    .90ex> }}} The ``N'' in N-body calculations has doubled every year for the last two decades. To continue this trend, the UW N-body group is working on algorithms for the fast evaluation of gravitational forces on parallel computers and establishing rigorous standards for the computations. In these algorithms, the computational cost per time step is ~ 10(3) pairwise forces per particle. A new adaptive time integrator enables us to perform high quality integrations that are fully temporally and spatially adaptive. SPH--smoothed particle hydrodynamics will be added to simulate the effects of dissipating gas and magnetic fields. The importance of these calculations is two-fold. First, they determine the nonlinear consequences of theories for the structure of the Universe. Second, they are essential for the interpretation of observations. Every galaxy has six coordinates of velocity and position. Observations determine two sky coordinates and a line of sight velocity that bundles universal expansion (distance) together with a random velocity created by the mass distribution. Simulations are needed to determine the underlying structure and masses. The importance of simulations has moved from ex post facto explanation to an integral part of planning large observational programs. I will show why high quality simulations with ``large N'' are essential to accomplish our scientific goals. This year, our simulations have N >~ 10(7) . This is sufficient to tackle some niche problems, but well short of our 5 year goal--simulating The Sloan Digital Sky Survey using a few Billion particles (a Teraflop-year simulation). Extrapolating past trends, we would have to ``wait'' 7 years for this hundred-fold improvement. Like past gains, significant changes in the computational methods are required for these advances. I will describe new algorithms, algorithmic hacks and a dedicated computer to perform Billion particle simulations. Finally, I will describe research that can be enabled by

  3. Effect on the tensile strength of human acellular dermis (Epiflex®) of in-vitro incubation simulating an open abdomen setting

    PubMed Central

    2014-01-01

    Background The use of human acellular dermis (hAD) to close open abdomen in the treatment process of severe peritonitis might be an alternative to standard care. This paper describes an investigation of the effects of fluids simulating an open abdomen environment on the biomechanical properties of Epiflex® a cell-free human dermis transplant. Methods hAD was incubated in Ringers solution, blood, urine, upper gastrointestinal (upper GI) secretion and a peritonitis-like bacterial solution in-vitro for 3 weeks. At day 0, 7, 14 and 21 breaking strength was measured, tensile strength was calculated and standard fluorescence microscopy was performed. Results hAD incubated in all five of the five fluids showed a decrease in mean breaking strength at day 21 when compared to day 0. However, upper GI secretion was the only incubation fluid that significantly reduced the mechanical strength of Epiflex after 21days of incubation when compared to incubation in Ringer’s solution. Conclusion hAD may be a suitable material for closure of the open abdomen in the absence of upper GI leakage and pancreatic fistulae. PMID:24468201

  4. Simulation of Rings about Ellipsoidal Bodies

    NASA Astrophysics Data System (ADS)

    Gupta, Akash; Nadkarni-Ghosh, Sharvari; Sharma, Ishan

    2016-10-01

    Recent discovery of rings around Chariklo, a centaur orbiting the Sun (F. Braga-Ribas et al., 2014) and speculations of rings around minor planet, Chiron (Ortiz et al., 2015), Saturn's satellites, Rhea (Jones et al., 2008; Schenk et al., 2011), Iapetus (Ip, 2006) or exoplanets, suggest that rings about non-spherical bodies is perhaps a more general phenomenon than anticipated. As a first step towards understanding such systems, we examine the dynamical behavior of rings around similar bodies using N-body simulations. Our code employs the `local simulation method' (Wisdom & Tremaine, 1988; Salo, 1995) and accounts for particle interactions via collisions using Discrete Element Method (Cundall & Strack, 1978; Bhateja et al., 2016) and mutual gravitation. The central body has been modeled as an axisymmetric ellipsoid characterized by its axis ratio, or defined via characteristic frequencies (circular, vertical and epicyclic frequency) representing the gravitational field of an axisymmetric body. We vary the central body's characterizing parameter and observe the change in various ring properties like the granular temperature, impact frequency, radial width and vertical thickness. We also look into the effect on ring properties upon variation in the size of the central body-ring system. Further, we investigate the role of characteristic frequencies in dictating the ring dynamics, and how this could help in qualitatively estimating the ring dynamics about any arbitrary central body with symmetry about the equatorial plane and the axis normal to it.

  5. Bodies Falling with Air Resistance: Computer Simulation.

    ERIC Educational Resources Information Center

    Vest, Floyd

    1982-01-01

    Two models are presented. The first assumes that air resistance is proportional to the velocity of the falling body. The second assumes that air resistance is proportional to the square of the velocity. A program written in BASIC that simulates the second model is presented. (MP)

  6. A simulation method for the fruitage body

    NASA Astrophysics Data System (ADS)

    Lu, Ling; Song, Weng-lin; Wang, Lei

    2009-07-01

    An effective visual modeling for creating the fruitage body has been present. According to the geometry shape character of fruitage, we build up its face model base on ellipsoid deformation. The face model is relation with radius. We consider different radius become a face in the fruitage, and uses same method to simulate the shape of fruitage inside. The body model is formed by combine face model and radius direction. Our method can simulate virtual inter and outer structure for fruitage body. The method decreases a lot of data and increases display speed. Another, the texture model of fruitage is defined by sum of different base function. This kind of method is simple and speed. We show the feasibility of our method by creating a winter-jujube and an apricot. They include exocorp, mesocorp and endocarp. It is useful that develop virtual plant.

  7. Optimizing Simulated Trajectories Of Rigid Bodies

    NASA Technical Reports Server (NTRS)

    Brauer, Garry L.; Olson, David W.; Stevenson, Robert

    1989-01-01

    6D POST is general-purpose, six-degree-of-freedom computer program for optimization of simulated trajectories of rigid bodies. Direct extension of three-degree-of-freedom POST program. 6D POST program models trajectory of powered or unpowered vehicle operating at or near rotating planet. Used to solve variety of performance, guidance, and flight-control problems for atmospheric and orbital vehicles. Written in FORTRAN 77 and FORTRAN V.

  8. Cosmological N -body simulations including radiation perturbations

    NASA Astrophysics Data System (ADS)

    Brandbyge, Jacob; Rampf, Cornelius; Tram, Thomas; Leclercq, Florent; Fidler, Christian; Hannestad, Steen

    2017-03-01

    Cosmological N-body simulations are the standard tools to study the emergence of the observed large-scale structure of the Universe. Such simulations usually solve for the gravitational dynamics of matter within the Newtonian approximation, thus discarding general relativistic effects such as the coupling between matter and radiation (≡ photons and neutrinos). In this Letter, we investigate novel hybrid simulations that incorporate interactions between radiation and matter to the leading order in General Relativity, whilst evolving the matter dynamics in full non-linearity according to Newtonian theory. Our hybrid simulations come with a relativistic space-time and make it possible to investigate structure formation in a unified framework. In this work, we focus on simulations initialized at z = 99 and show that the extracted matter power spectrum receives up to 3 per cent corrections on very large scales through radiation. Our numerical findings compare favourably with linear analytical results from Fidler et al., from which we deduce that there cannot be any significant non-linear mode-coupling induced through linear radiation corrections.

  9. N-body simulations of star clusters

    NASA Astrophysics Data System (ADS)

    Engle, Kimberly Anne

    1999-10-01

    We investigate the structure and evolution of underfilling (i.e. non-Roche-lobe-filling) King model globular star clusters using N-body simulations. We model clusters with various underfilling factors and mass distributions to determine their evolutionary tracks and lifetimes. These models include a self-consistent galactic tidal field, mass loss due to stellar evolution, ejection, and evaporation, and binary evolution. We find that a star cluster that initially does not fill its Roche lobe can live many times longer than one that does initially fill its Roche lobe. After a few relaxation times, the cluster expands to fill its Roche lobe. We also find that the choice of initial mass function significantly affects the lifetime of the cluster. These simulations were performed on the GRAPE-4 (GRAvity PipE) special-purpose hardware with the stellar dynamics package ``Starlab.'' The GRAPE-4 system is a massively-parallel computer designed to calculate the force (and its first time derivative) due to N particles. Starlab's integrator ``kira'' employs a 4th- order Hermite scheme with hierarchical (block) time steps to evolve the stellar system. We discuss, in some detail, the design of the GRAPE-4 system and the manner in which the Hermite integration scheme with block time steps is implemented in the hardware.

  10. Recent advances in acellular regenerative tissue scaffolds.

    PubMed

    Protzman, Nicole M; Brigido, Stephen A

    2015-01-01

    The management of chronic wounds is a considerable challenge for foot and ankle surgeons. The well-established tenets of adequate vascular supply, debridement with eradication of infection, and offloading must be employed in the management of all extremity wounds. Regenerative scaffolds are a viable means of reestablishing a favorable wound environment. The matrix facilitates cell migration, chemoattraction, angiogenesis, wound bed granulation, and expedited wound closure. Although studies have demonstrated success with acellular matrices, a multimodal approach should always be employed to improve healing success. Negative pressure wound therapy, compression, offloading, and antibiotics are advocated to improve outcomes. Acellular graft selection requires a multifactorial analysis, taking into consideration the specific patient and wound characteristics as well as the differences between acellular matrices. Patient age, comorbidities, activity level, and ability to comply with protocol as well as wound etiology, duration, depth, surface area, exudate, bacterial burden, location, vascular status, ischemic status, and presentation are all critical components. To effectively choose a matrix, the clinician must have a comprehensive understanding of the products available and the data validating their use. The mechanisms by which the acellular matrix accelerates wound healing and increases the likelihood of wound healing continue to be investigated. However, it is clear that these acellular biologic tissue scaffolds are incorporating into the host tissue, with resultant revascularization and cellular repopulation. Moving forward, additional investigations examining the effectiveness of acellular biologic tissue scaffolds to improve healing in complex, nondiabetic wounds are warranted.

  11. Realistic Simulation for Body Area and Body-To-Body Networks

    PubMed Central

    Alam, Muhammad Mahtab; Ben Hamida, Elyes; Ben Arbia, Dhafer; Maman, Mickael; Mani, Francesco; Denis, Benoit; D’Errico, Raffaele

    2016-01-01

    In this paper, we present an accurate and realistic simulation for body area networks (BAN) and body-to-body networks (BBN) using deterministic and semi-deterministic approaches. First, in the semi-deterministic approach, a real-time measurement campaign is performed, which is further characterized through statistical analysis. It is able to generate link-correlated and time-varying realistic traces (i.e., with consistent mobility patterns) for on-body and body-to-body shadowing and fading, including body orientations and rotations, by means of stochastic channel models. The full deterministic approach is particularly targeted to enhance IEEE 802.15.6 proposed channel models by introducing space and time variations (i.e., dynamic distances) through biomechanical modeling. In addition, it helps to accurately model the radio link by identifying the link types and corresponding path loss factors for line of sight (LOS) and non-line of sight (NLOS). This approach is particularly important for links that vary over time due to mobility. It is also important to add that the communication and protocol stack, including the physical (PHY), medium access control (MAC) and networking models, is developed for BAN and BBN, and the IEEE 802.15.6 compliance standard is provided as a benchmark for future research works of the community. Finally, the two approaches are compared in terms of the successful packet delivery ratio, packet delay and energy efficiency. The results show that the semi-deterministic approach is the best option; however, for the diversity of the mobility patterns and scenarios applicable, biomechanical modeling and the deterministic approach are better choices. PMID:27104537

  12. Realistic Simulation for Body Area and Body-To-Body Networks.

    PubMed

    Alam, Muhammad Mahtab; Ben Hamida, Elyes; Ben Arbia, Dhafer; Maman, Mickael; Mani, Francesco; Denis, Benoit; D'Errico, Raffaele

    2016-04-20

    In this paper, we present an accurate and realistic simulation for body area networks (BAN) and body-to-body networks (BBN) using deterministic and semi-deterministic approaches. First, in the semi-deterministic approach, a real-time measurement campaign is performed, which is further characterized through statistical analysis. It is able to generate link-correlated and time-varying realistic traces (i.e., with consistent mobility patterns) for on-body and body-to-body shadowing and fading, including body orientations and rotations, by means of stochastic channel models. The full deterministic approach is particularly targeted to enhance IEEE 802.15.6 proposed channel models by introducing space and time variations (i.e., dynamic distances) through biomechanical modeling. In addition, it helps to accurately model the radio link by identifying the link types and corresponding path loss factors for line of sight (LOS) and non-line of sight (NLOS). This approach is particularly important for links that vary over time due to mobility. It is also important to add that the communication and protocol stack, including the physical (PHY), medium access control (MAC) and networking models, is developed for BAN and BBN, and the IEEE 802.15.6 compliance standard is provided as a benchmark for future research works of the community. Finally, the two approaches are compared in terms of the successful packet delivery ratio, packet delay and energy efficiency. The results show that the semi-deterministic approach is the best option; however, for the diversity of the mobility patterns and scenarios applicable, biomechanical modeling and the deterministic approach are better choices.

  13. A new material for tissue engineered vagina reconstruction: Acellular porcine vagina matrix.

    PubMed

    Zhang, Jing-Kun; Du, Run-Xuan; Zhang, Lin; Li, Ya-Nan; Zhang, Ming-le; Zhao, Shuo; Huang, Xiang-Hua; Xu, Yan-Fang

    2017-03-10

    Acellular matrix materials have been widely used to repair various tissues and organs. According to the plastic principle, when a part of the body is lost, it should be replaced with a similar material. Therefore, the use of a homologous organ-specific acellular vaginal tissue in vagina reconstruction repair surgery may show good results. However, the acellular vagina matrix (AVM) form large vertebrates is difficult to isolate. In this study, we described a multi-step method to prepare porcine AVM and evaluated the efficacy of acellularization. We also investigated the biomechanical properties, biological activity elements and biocompatibility of the porcine AVM. We then used this material to reconstruct a rat vagina and performed further morphologic and functional analyses. Small intestinal submucosa (SIS), which is a commonly used acellular matrix material, was used in a control group. Histological examination, DNA content analysis and agarose gel electrophoresis revealed that the decellularization procedure was effective. The AVM had acceptable biomechanical properties and sufficient growth factor production (VEGF, FGF, TGF-β1 and PDGF-BB) compared with that of the SIS. Subcutaneous transplantation in rats showed that the AVM had good biocompatibility. The tissue-engineered vagina using the AVM more resembled normal-appearing tissue than did that using SIS following morphologic and functional analyses. The AVM has great potential for application in vaginal reconstructive surgery. This article is protected by copyright. All rights reserved.

  14. Whole body measurement systems. [for weightlessness simulation

    NASA Technical Reports Server (NTRS)

    Ogle, J. S. (Inventor)

    1973-01-01

    A system for measuring the volume and volume variations of a human body under zero gravity conditions is disclosed. An enclosed chamber having a defined volume and arranged for receiving a human body is provided with means for infrasonically varying the volume of the chamber. The changes in volume produce resultant changes in pressure, and under substantially isentropic conditions, an isentropic relationship permits a determination of gas volume which, in turn, when related to total chamber volume permits a determination of the body volume. By comparison techniques, volume changes of a human independent of gravity conditions can be determined.

  15. Comparing ballistic wounds with experiments on body simulator.

    PubMed

    Bresson, F; Franck, O

    2010-05-20

    This paper demonstrates how ballistic experiments on body simulator can bring a key information in the forensic science field. In the investigated case, a hunter was shot by accident in the back. Two hunters were suspected of having inadvertently shot towards the victim. The deadly bullet left the body and cannot be found on the scene neither in the body. The only way to discriminate the two options was to perform ballistic tests in body simulators. Even though the knowledge about body simulators is not enough advanced yet to expect accurate quantitative results, it was supposed to fully discriminate the two investigated cases as its respective impact energy are highly different (respectively 1200J and 2400J). For each investigated possibility, bullet's expansion state and body wounds were simulated. Bullet impact characteristics were determined by measuring the muzzle velocity, compute the impact velocity in the considered range (the position of each hunter is accurately known). Reloading cartridges allowed to reproduce accuretaly the corresponding velocity. The body was simulated by 3 different means in order to explore the accuracy of the simulation process. We demonstrated that the reported case is situated in a velocity/energy range in which body simulators do not need to be particularly accurate to reproduce the bullet expansion/non-expansion state. It furthermore demonstrated that only one case is compatible with the ballistic wounds of the victim. In the other case, the bullet's expansion would lead to a completely different wound shape.

  16. Few-Body Problem: Theory and Computer Simulations

    NASA Astrophysics Data System (ADS)

    Flynn, Chris

    A conference held in honour of the 60th birthday of Professor Mauri Valtonen in Turku, Finland, 4th-9th July 2005. The conference's major themes were the few-body problem in celestial mechanics and its numerical study; the theory of few-body escape; dynamics of multiple stars; computer simulations versus observations; planetary systems and few-body dynamics, and chaos in the few-body problem.

  17. Acellular Endocardium as a Novel Biomaterial for the Intima of Tissue-Engineered Small-Caliber Vascular Grafts.

    PubMed

    Wang, Feng; Guan, Xin; Wu, TianYi; Qiao, JianOu; Han, ZhaoQing; Wu, JinLong; Yu, XiaoWei; You, QingJun

    2016-12-01

    We aimed to investigate whether acellular endocardium can be used as a useful biomaterial for the intima of engineered small-caliber vascular grafts. Fresh endocardium was harvested from the swine left atrium and was decellularized by digestion with the decellularization solution of Triton X-100 and SDS containing DNase I and RNase A. Surface morphological characteristics and Young's modulus were evaluated. To analyze the effect of mechanical characteristics on cell adhesion, the decellularized endocardium was stiffened with 2.5% glutaraldehyde. Small-caliber vascular grafts were constructed using decellularized endocardium treated with or without glutaraldehyde as the intima. CD34+ cells were seeded onto the luminal surface of the vascular grafts and linked to bioreactors that simulate a pulsatile blood stream. Acellular endocardium had distinct surface morphological characteristics, which were quite different from those of other materials. The compliance of acellular endocardium was higher than that of other materials tested by Young's modulus. CD34+ cells formed a monolayer structure and adhered to the inner face of the acellular endocardium. The glutaraldehyde treatment stiffened the acellular endocardium but had little impact on the surface morphological characteristics or static adhesiveness of the cells. Data from the bioreactor study showed that the detachment of the cells from the surface of glutaraldehyde-treated acellular endocardium increased dramatically when the pressure was equal or higher than 40 mm Hg, while the cells on the untreated acellular endocardium remained well and formed confluent monolayers and tight junctions under the same pressure. Acellular endocardium has distinct structures and mechanical characteristics that are beneficial for CD34+ cell adhesion and retention under dynamic fluid perfusion. Thus, it can be used as a useful biomaterial for the construction of the intima of engineered small-caliber vascular grafts.

  18. Body charge modelling for accurate simulation of small-signal behaviour in floating body SOI

    NASA Astrophysics Data System (ADS)

    Benson, James; Redman-White, William; D'Halleweyn, Nele V.; Easson, Craig A.; Uren, Michael J.

    2002-04-01

    We show that careful modelling of body node elements in floating body PD-SOI MOSFET compact models is required in order to obtain accurate small-signal simulation results in the saturation region. The body network modifies the saturation output conductance of the device via the body-source transconductance, resulting in a pole/zero pair being introduced in the conductance-frequency response. We show that neglecting the presence of body charge in the saturation region can often yield inaccurate values for the body capacitances, which in turn can adversely affect the modelling of the output conductance above the pole/zero frequency. We conclude that the underlying cause of this problem is the use of separate models for the intrinsic and extrinsic capacitances. Finally, we present a simple saturation body charge model which can greatly improve small-signal simulation accuracy for floating body devices.

  19. In vitro assessment of biodurability: acellular systems.

    PubMed Central

    de Meringo, A; Morscheidt, C; Thélohan, S; Tiesler, H

    1994-01-01

    The assessment of biodurability of man-made vitreous fibers is essential to the limitation of health hazards associated with human exposure to environments in which respirable fibers are present. In vitro acellular systems provide effective test methods of measuring fiber solubility provided care is taken to select the most suitable solvent and test conditions for the specific fiber type and dimension. PMID:7882955

  20. Human acellular dermal wound matrix: evidence and experience.

    PubMed

    Kirsner, Robert S; Bohn, Greg; Driver, Vickie R; Mills, Joseph L; Nanney, Lillian B; Williams, Marie L; Wu, Stephanie C

    2015-12-01

    A chronic wound fails to complete an orderly and timely reparative process and places patients at increased risk for wound complications that negatively impact quality of life and require greater health care expenditure. The role of extracellular matrix (ECM) is critical in normal and chronic wound repair. Not only is ECM the largest component of the dermal skin layer, but also ECM proteins provide structure and cell signalling that are necessary for successful tissue repair. Chronic wounds are characterised by their inflammatory and proteolytic environment, which degrades the ECM. Human acellular dermal matrices, which provide an ECM scaffold, therefore, are being used to treat chronic wounds. The ideal human acellular dermal wound matrix (HADWM) would support regenerative healing, providing a structure that could be repopulated by the body's cells. Experienced wound care investigators and clinicians discussed the function of ECM, the evidence related to a specific HADWM (Graftjacket(®) regenerative tissue matrix, Wright Medical Technology, Inc., licensed by KCI USA, Inc., San Antonio, TX), and their clinical experience with this scaffold. This article distills these discussions into an evidence-based and practical overview for treating chronic lower extremity wounds with this HADWM.

  1. A General Simulation Method for Multiple Bodies in Proximate Flight

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.

    2003-01-01

    Methods of unsteady aerodynamic simulation for an arbitrary number of independent bodies flying in close proximity are considered. A novel method to efficiently detect collision contact points is described. A method to compute body trajectories in response to aerodynamic loads, applied loads, and inter-body collisions is also given. The physical correctness of the methods are verified by comparison to a set of analytic solutions. The methods, combined with a Navier-Stokes solver, are used to demonstrate the possibility of predicting the unsteady aerodynamics and flight trajectories of moving bodies that involve rigid-body collisions.

  2. Novel simulation model for many-body multipole dispersion interactions

    NASA Astrophysics Data System (ADS)

    van der Hoef Paul, Martin A.; Madden, A.

    We present a novel simulation technique, within the framework of a molecular dynamics simulation, which accounts for both two- and three-body dispersion interactions, up to the triple-quadrupole interaction. This technique involves a unification of molecular dynamics and quantum-mechanical variational methods, in the spirit of the Car-Parrinello method. The advantage of this new method compared to existing techniques for simulating three-body dispersion forces, is that it allows for a consistent treatment of both dispersion damping and periodic boundary conditions at the pair and three-body level. The latter means that it would be possible, for the first time, to include many-body dispersion effects in the simulation of bulk properties of materials, without making use of effective pair potentials.

  3. Ultracold atoms for simulation of many body quantum systems

    NASA Astrophysics Data System (ADS)

    Hutchinson, David A. W.

    2017-01-01

    Feynman famously proposed simulating quantum physics using other, better controlled, quantum systems. This vision is now a reality within the realm of ultracold atomic physics. We discuss how these systems can be used to simulate many body physics, concentrating the Berezinskii-Kosterlitz-Thouless transition in 2D physics and the role of disorder.

  4. Computer simulation of multigrid body dynamics and control

    NASA Technical Reports Server (NTRS)

    Swaminadham, M.; Moon, Young I.; Venkayya, V. B.

    1990-01-01

    The objective is to set up and analyze benchmark problems on multibody dynamics and to verify the predictions of two multibody computer simulation codes. TREETOPS and DISCOS have been used to run three example problems - one degree-of-freedom spring mass dashpot system, an inverted pendulum system, and a triple pendulum. To study the dynamics and control interaction, an inverted planar pendulum with an external body force and a torsional control spring was modeled as a hinge connected two-rigid body system. TREETOPS and DISCOS affected the time history simulation of this problem. System state space variables and their time derivatives from two simulation codes were compared.

  5. Piloted simulator studies of the HL-20 Lifting Body

    NASA Technical Reports Server (NTRS)

    Rivers, Robert A.; Jackson, E. B.; Ragsdale, W. A.

    1991-01-01

    An overview is presented of the concept, design and development of the NASA Langley Lifting Body, and the flight simulator studies that have been performed. Attention is given to the aerodynamic shape of the HL-20, vehicle and simulator/cockpit description, and evolution of the HL-20 aerodynamic model. The flight simulation studies have demonstrated the HL-20 to be a viable design for accomplishing precise, unpowered, horizontal landings.

  6. Piloted simulator studies of the HL-20 Lifting Body

    NASA Astrophysics Data System (ADS)

    Rivers, Robert A.; Jackson, E. B.; Ragsdale, W. A.

    An overview is presented of the concept, design and development of the NASA Langley Lifting Body, and the flight simulator studies that have been performed. Attention is given to the aerodynamic shape of the HL-20, vehicle and simulator/cockpit description, and evolution of the HL-20 aerodynamic model. The flight simulation studies have demonstrated the HL-20 to be a viable design for accomplishing precise, unpowered, horizontal landings.

  7. Data from acellular human heart matrix.

    PubMed

    Sánchez, Pedro L; Fernández-Santos, M Eugenia; Espinosa, M Angeles; González-Nicolas, M Angeles; Acebes, Judith R; Costanza, Salvatore; Moscoso, Isabel; Rodríguez, Hugo; García, Julio; Romero, Jesús; Kren, Stefan M; Bermejo, Javier; Yotti, Raquel; Del Villar, Candelas Pérez; Sanz-Ruiz, Ricardo; Elizaga, Jaime; Taylor, Doris A; Fernández-Avilés, Francisco

    2016-09-01

    Perfusion decellularization of cadaveric hearts removes cells and generates a cell-free extracellular matrix scaffold containing acellular vascular conduits, which are theoretically sufficient to perfuse and support tissue-engineered heart constructs. This article contains additional data of our experience decellularizing and testing structural integrity and composition of a large series of human hearts, "Acellular human heart matrix: a critical step toward whole heat grafts" (Sanchez et al., 2015) [1]. Here we provide the information about the heart decellularization technique, the valve competence evaluation of the decellularized scaffolds, the integrity evaluation of epicardial and myocardial coronary circulation, the pressure volume measurements, the primers used to assess cardiac muscle gene expression and, the characteristics of donors, donor hearts, scaffolds and perfusion decellularization process.

  8. Co-Graft of Acellular Dermal Matrix and Autogenous Microskin in a Child with Extensive Burns

    PubMed Central

    Chen, X.L.; Xia, Z.F.; Fang, L.S.; Wang, Y.J.; Wang, C.H.

    2008-01-01

    Summary A 6-yr-old boy was the victim of a burns accident in a public bathhouse. The burns involved the face, neck, upper and lower extremities, anterior and posterior trunk, and both buttocks, covering 72% of the total body surface area (TBSA). The lesions in the lower extremities and parts of the right upper extremity were deep partial-thickness, comprising 40% TBSA. On day 5 post-burn, the lesions in both lower extremities were excised to the extent of the fascia under general anaesthesia. Meshed J1 Jayya Acellular Dermis®, a kind of acellular allodermal (ADM) matrix, was then placed on the left knee joint. The right knee joint served as control. The wounds in both lower extremities were then overlaid with microskin autografting. At 19 days post-application, the lesions in both lower extremities had almost completely resurfaced. Follow-up at six months revealed well-healed and stable skin of acellular ADM and microskin autografts on the left knee. However, the skin of the right knee was unstable and there was a chronic residual ulcer. Both legs showed some significant hypertrophic scars. The left knee joint (acellular ADM grafted site) showed mild contractures, while the right knee joint developed a significant contracture. The "skin" of the co-graft covered site appeared thicker and more elastic. The movement range of the left knee joint was much larger than that of the right knee joint. These results suggest that co-graft of acellular dermal matrix and autogenous microskin may be an effective way to repair this functional site in children with extensive burns and to improve the functional and cosmetic results. PMID:21991120

  9. Whole-body mathematical model for simulating intracranial pressure dynamics

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Penar, Paul L. (Inventor); Stevens, Scott A. (Inventor); Tranmer, Bruce I. (Inventor)

    2007-01-01

    A whole-body mathematical model (10) for simulating intracranial pressure dynamics. In one embodiment, model (10) includes 17 interacting compartments, of which nine lie entirely outside of intracranial vault (14). Compartments (F) and (T) are defined to distinguish ventricular from extraventricular CSF. The vasculature of the intracranial system within cranial vault (14) is also subdivided into five compartments (A, C, P, V, and S, respectively) representing the intracranial arteries, capillaries, choroid plexus, veins, and venous sinus. The body's extracranial systemic vasculature is divided into six compartments (I, J, O, Z, D, and X, respectively) representing the arteries, capillaries, and veins of the central body and the lower body. Compartments (G) and (B) include tissue and the associated interstitial fluid in the intracranial and lower regions. Compartment (Y) is a composite involving the tissues, organs, and pulmonary circulation of the central body and compartment (M) represents the external environment.

  10. Robotic Simulation of Flexible-Body Spacecraft Dynamics

    NASA Technical Reports Server (NTRS)

    Brannan, Justin C.; Carignan, Craig R.

    2016-01-01

    A robotic testbed has been developed to conduct hardware-in-the-loop simulations of a robotic servicer interacting with a client satellite on-orbit. By creating an analytical model of a satellite with flexible appendages, it is possible to simulate the system response to external force and torque inputs and compare the predicted system motion to a robot mass simulator outfitted with physical appendages. This validation effort includes multiple test cases that encompass the types of interaction forces a satellite might experience during a nominal on-orbit servicing mission and aims to show the simulation's ability to capture the physical system response. After incorporating the flexible-body dynamics into the robotic mass simulator at NASA Goddard Space Flight Center (GSFC), a hardware-in-the-loop simulation can be used to characterize the potential impact of structural flexibility on an end-to-end satellite servicing mission.

  11. Simulation of Celestial-Body Disruption in the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Korobeinikov, V. P.; Gusev, S. B.; Semenov, I. V.

    The disruption of celestial bodies such as meteoroids, cometary fragments, and asteroids is inves tigated. The velocity of the body and its ablation in the upper atmosphere are determined on the basis of the solution of the system of equations of the physical theory of meteors. In flight, the body is affected by aerody namic and inertia forces. The stressstrain state of the body is supposed to be quasi-static and is determined by numerically solving the equations of thermoelasticity. The method of finite elements is used for calculations. Various disruption criteria are used, and the braking-acceleration values corresponding to the disruption heights of the body are also determined. Basic calculations simulate the flight and disruption of an icy (Tun guska) body and a metallic (Sikhote-Alin) meteorite. A simple model of the impact of a body onto the Earth's surface covered by a water layer is also investigated. The celestial body is modeled with a sandstone plate. For small time intervals, the impact parameters of all media are determined. The solution is obtained by a finite-difference method.

  12. Large eddy simulation of a wing-body junction flow

    NASA Astrophysics Data System (ADS)

    Ryu, Sungmin; Emory, Michael; Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2014-11-01

    We present numerical simulations of the wing-body junction flow experimentally investigated by Devenport & Simpson (1990). Wall-junction flows are common in engineering applications but relevant flow physics close to the corner region is not well understood. Moreover, performance of turbulence models for the body-junction case is not well characterized. Motivated by the insufficient investigations, we have numerically investigated the case with Reynolds-averaged Naiver-Stokes equation (RANS) and Large Eddy Simulation (LES) approaches. The Vreman model applied for the LES and SST k- ω model for the RANS simulation are validated focusing on the ability to predict turbulence statistics near the junction region. Moreover, a sensitivity study of the form of the Vreman model will also be presented. This work is funded under NASA Cooperative Agreement NNX11AI41A (Technical Monitor Dr. Stephen Woodruff)

  13. Improving initial conditions for cosmological N-body simulations

    NASA Astrophysics Data System (ADS)

    Garrison, Lehman H.; Eisenstein, Daniel J.; Ferrer, Douglas; Metchnik, Marc V.; Pinto, Philip A.

    2016-10-01

    In cosmological N-body simulations, the representation of dark matter as discrete `macroparticles' suppresses the growth of structure, such that simulations no longer reproduce linear theory on small scales near kNyquist. Marcos et al. demonstrate that this is due to sparse sampling of modes near kNyquist and that the often-assumed continuum growing modes are not proper growing modes of the particle system. We develop initial conditions (ICs) that respect the particle linear theory growing modes and then rescale the mode amplitudes to account for growth suppression. These ICs also allow us to take advantage of our very accurate N-body code ABACUS to implement second-order Lagrangian perturbation theory (2LPT) in configuration space. The combination of 2LPT and rescaling improves the accuracy of the late-time power spectra, halo mass functions, and halo clustering. In particular, we achieve 1 per cent accuracy in the power spectrum down to kNyquist, versus kNyquist/4 without rescaling or kNyquist/13 without 2LPT, relative to an oversampled reference simulation. We anticipate that our 2LPT will be useful for large simulations where fast Fourier transforms are expensive and that rescaling will be useful for suites of medium-resolution simulations used in cosmic emulators and galaxy survey mock catalogues. Code to generate ICs is available at https://github.com/lgarrison/zeldovich-PLT.

  14. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  15. Simulation of Wearable Antennas for Body Centric Wireless Communication

    NASA Astrophysics Data System (ADS)

    Cousin, Richard; Rütschlin, Marc; Wittig, Tilmann; Bhattacharya, Arnab

    2015-11-01

    The performance of a body area network (BAN) is strongly dependent on several parameters which make wireless communication quite challenging. For instance, the performance of the antenna itself could be affected by its geometric deformation when the structure is directly integrated into clothes. Operation of the antenna close to the human body necessitates adjusting its design for the intended applications whereas the maximum SAR value estimated in such conditions has to respect the standards. In this context, simulation tools that can take into account specific biological models offer a range of possibilities for investigating and optimizing the performance of BAN devices. Two different applications are presented here: the case of an RFID tag operating at 870 MHz, and a UWB antenna working in a frequency range between 3 and 6 GHz. The simulation tools developed by CST are used in this context to optimize the implementation of BAN devices shown in this paper.

  16. Computational issues connected with 3D N-body simulations

    NASA Astrophysics Data System (ADS)

    Pfenniger, D.; Friedli, D.

    1993-03-01

    Computational problems related to modeling gravitational systems, and running and analyzing 3D N-body models are discussed. N-body simulations using Particle-Mesh techniques with polar grids are especially well-suited, and physically justified, when studying quiet evolutionary processes in disk galaxies. This technique allows large N, high central resolution, and is still the fastest one. Regardless of the method chosen to compute gravitation, softening is a compromise between HF amplification and resolution. Softened spherical and ellipsoidal kernels with variable resolution are set up. Detailed characteristics of the 3D polar grid, tests, code performances, and vectorization rates are also given. For integrating motion in rotating coordinates, a stable symplectic extension of the leap-frog algorithm is described. The technique used to search for periodic orbits in arbitrary N-body potentials and to determine their stability is explained.

  17. Dynamic simulation of articulated rigid bodies with contact and collision.

    PubMed

    Weinstein, Rachel; Teran, Joseph; Fedkiw, Ron

    2006-01-01

    We propose a novel approach for dynamically simulating articulated rigid bodies undergoing frequent and unpredictable contact and collision. In order to leverage existing algorithms for nonconvex bodies, multiple collisions, large contact groups, stacking, etc., we use maximal rather than generalized coordinates and take an impulse-based approach that allows us to treat articulation, contact, and collision in a unified manner. Traditional constraint handling methods are subject to drift, and we propose a novel prestabilization method that does not require tunable potentially stiff parameters as does Baumgarte stabilization. This differs from poststabilization in that we compute allowable trajectories before moving the rigid bodies to their new positions, instead of correcting them after the fact when it can be difficult to incorporate the effects of contact and collision. A poststabilization technique is used for momentum and angular momentum. Our approach works with any black box method for specifying valid joint constraints and no special considerations are required for arbitrary closed loops or branching. Moreover, our implementation is linear both in the number of bodies and in the number of auxiliary contact and collision constraints, unlike many other methods that are linear in the number of bodies, but not in the number of auxiliary constraints.

  18. Preliminary piloted simulation studies of the HL-20 lifting body

    NASA Astrophysics Data System (ADS)

    Rivers, Robert A.; Jackson, E. Bruce; Ragsdale, W. A.

    1994-05-01

    NASA Langley Research Center is developing a lifting body vehicle, designated the HL-20, as one option of the proposed Personnel Launch System for NASA's future manned access to space requirements. Data derived from wind-tunnel and computational fluid dynamics analyses of the conceptual design led to the derivation of a flight simulator model to investigate the potential flight characteristics of the HL-20. A simulation investigation was initiated to determine if satisfactory unpowered horizontal landings could be accomplished. Control law design and trajectory development were directed toward this end. The study uncovered several deficiencies subsequently corrected through design changes, and it validated the predicted subsonic aerodynamic properties. Expanding the investigation to the Mach 4 to Mach 1 regime revealed flight characteristics necessitating the development of innovative control techniques. This article will present the significant results uncovered to date by flight simulator evaluations of a lifting body class of vehicle, and will demonstrate the effectiveness of flight simulation as an integrated part of the conceptual design phase.

  19. Particle-based sampling of N-body simulations

    NASA Astrophysics Data System (ADS)

    Faber, N. T.; Stibbe, D.; Portegies Zwart, S.; McMillan, S. L. W.; Boily, C. M.

    2010-01-01

    This paper introduces a novel approach for sampling the orbits of an N-body simulation. The gist of the method is to exploit individual phase-space coordinates acquired during integration of the equations of motion. This technique, which we dub `particle-based sampling scheme', is tailor-made for resolving rapid time-variation of coordinates when needed. The PBaSS requires less disk space (by factors of 10 or more) to retrieve orbits at a chosen accuracy than those reconstructed using the classic snapshot approach. Furthermore, the PBaSS also allows a reconstruction of the system at any time-resolution not smaller than the smallest integration time-step in a post-simulation treatment, thus avoiding costly simulation reruns.

  20. Million-body star cluster simulations: comparisons between Monte Carlo and direct N-body

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Morscher, Meagan; Wang, Long; Chatterjee, Sourav; Rasio, Frederic A.; Spurzem, Rainer

    2016-12-01

    We present the first detailed comparison between million-body globular cluster simulations computed with a Hénon-type Monte Carlo code, CMC, and a direct N-body code, NBODY6++GPU. Both simulations start from an identical cluster model with 106 particles, and include all of the relevant physics needed to treat the system in a highly realistic way. With the two codes `frozen' (no fine-tuning of any free parameters or internal algorithms of the codes) we find good agreement in the overall evolution of the two models. Furthermore, we find that in both models, large numbers of stellar-mass black holes (>1000) are retained for 12 Gyr. Thus, the very accurate direct N-body approach confirms recent predictions that black holes can be retained in present-day, old globular clusters. We find only minor disagreements between the two models and attribute these to the small-N dynamics driving the evolution of the cluster core for which the Monte Carlo assumptions are less ideal. Based on the overwhelming general agreement between the two models computed using these vastly different techniques, we conclude that our Monte Carlo approach, which is more approximate, but dramatically faster compared to the direct N-body, is capable of producing an accurate description of the long-term evolution of massive globular clusters even when the clusters contain large populations of stellar-mass black holes.

  1. Human acellular dermal matrix grafts for rhinoplasty.

    PubMed

    Sherris, David A; Oriel, Brad S

    2011-09-01

    Rhinoplasty often relies on graft material for structural support in the form of cartilage, bone grafts, or fascia. In addition, pliable grafts are often helpful for contouring and can function as a barrier. Unfortunately, grafts carry the disadvantage of requiring an additional donor site, with associated complications. Human acellular dermal matrix (ADM) biological implants offer an exciting alternative for structural support and nonstructural implantation in rhinoplasty procedures. To examine the efficacy of ADM placement in rhinoplasty and septoplasty, the authors report the results from a series of 51 patients. In this series, there were no cases of infection, skin discoloration, seroma formation, septal perforation, significant resorption, extrusion, or other complications related to ADM placement. Therefore, the authors believe that ADM offers a safe and effective alternative to traditional grafting methods for functional and aesthetic rhinoplasty.

  2. Quantum simulations and many-body physics with light

    NASA Astrophysics Data System (ADS)

    Noh, Changsuk; Angelakis, Dimitris G.

    2017-01-01

    In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena. We try to summarise some of the relatively recent results predicting exotic phases such as super-solidity and Majorana like modes and then shift our attention to developments involving 1D nonlinear slow light setups. There the simulation of strongly correlated phases characterising Tonks-Girardeau gases, Luttinger liquids, and interacting relativistic fermionic models is described. We review the major theory results and also briefly outline recent developments in ongoing experimental efforts involving different platforms in circuit QED, photonic crystals and nanophotonic fibres interfaced with cold atoms.

  3. Quantum simulations and many-body physics with light.

    PubMed

    Noh, Changsuk; Angelakis, Dimitris G

    2017-01-01

    In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena. We try to summarise some of the relatively recent results predicting exotic phases such as super-solidity and Majorana like modes and then shift our attention to developments involving 1D nonlinear slow light setups. There the simulation of strongly correlated phases characterising Tonks-Girardeau gases, Luttinger liquids, and interacting relativistic fermionic models is described. We review the major theory results and also briefly outline recent developments in ongoing experimental efforts involving different platforms in circuit QED, photonic crystals and nanophotonic fibres interfaced with cold atoms.

  4. CFD Approaches for Simulation of Wing-Body Stage Separation

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Gomez, Reynaldo J.; Scallion, William I.

    2004-01-01

    A collection of computational fluid dynamics tools and techniques are being developed and tested for application to stage separation and abort simulation for next-generation launch vehicles. In this work, an overset grid Navier-Stokes flow solver has been enhanced and demonstrated on a matrix of proximity cases and on a dynamic separation simulation of a belly-to-belly wing-body configuration. Steady cases show excellent agreement between Navier-Stokes results, Cartesian grid Euler solutions, and wind tunnel data at Mach 3. Good agreement has been obtained between Navier-Stokes, Euler, and wind tunnel results at Mach 6. An analysis of a dynamic separation at Mach 3 demonstrates that unsteady aerodynamic effects are not important for this scenario. Results provide an illustration of the relative applicability of Euler and Navier-Stokes methods to these types of problems.

  5. Flow Simulation of N2B Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Liou, Meng-Sing

    2012-01-01

    The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the subsonic fixed wing project. In this study, flow fields around the N2B configuration is simulated using a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by response surfaces of the NPSS thermodynamic engine cycle model. The present flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and nacelle-airframe interference. The N2B configuration can be a good test bed for application of multidisciplinary design optimization technology.

  6. Parallelizing N-Body Simulations on a Heterogeneous Cluster

    NASA Astrophysics Data System (ADS)

    Stenborg, T. N.

    2009-10-01

    This thesis evaluates quantitatively the effectiveness of a new technique for parallelising direct gravitational N-body simulations on a heterogeneous computing cluster. In addition to being an investigation into how a specific computational physics task can be optimally load balanced across the heterogeneity factors of a distributed computing cluster, it is also, more generally, a case study in effective heterogeneous parallelisation of an all-pairs programming task. If high-performance computing clusters are not designed to be heterogeneous initially, they tend to become so over time as new nodes are added, or existing nodes are replaced or upgraded. As a result, effective techniques for application parallelisation on heterogeneous clusters are needed if maximum cluster utilisation is to be achieved and is an active area of research. A custom C/MPI parallel particle-particle N-body simulator was developed, validated and deployed for this evaluation. Simulation communication proceeds over cluster nodes arranged in a logical ring and employs nonblocking message passing to encourage overlap of communication with computation. Redundant calculations arising from force symmetry given by Newton's third law are removed by combining chordal data transfer of accumulated forces with ring passing data transfer. Heterogeneity in node computation speed is addressed by decomposing system data across nodes in proportion to node computation speed, in conjunction with use of evenly sized communication buffers. This scheme is shown experimentally to have some potential in improving simulation performance in comparison with an even decomposition of data across nodes. Techniques for further heterogeneous cluster load balancing are discussed and remain an opportunity for further work.

  7. N-body simulations for coupled scalar-field cosmology

    SciTech Connect

    Li Baojiu; Barrow, John D.

    2011-01-15

    We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the {Lambda}CDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.

  8. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.

    PubMed

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-10-09

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.

  9. N-Body Simulations of Galaxies in the Cluster Environment

    NASA Astrophysics Data System (ADS)

    Humphrey, Nicholas; Berrington, R. C.

    2010-01-01

    We present numerous N-body simulations of galaxy clusters consisting of up to 600,000 total particles and 50 galaxies each to characterize the evolution of galaxies in the cluster environment. These simulations were run on the Ball State University (BSU) College of Science and Humanities (CSH) 64-node Beowulf Cluster. Because the velocity dispersion (σ) is a tracer of a galaxies’ potential well and therefore its mass, we will use it to examine the mass evolution of the galaxies in the simulations by fitting a function to the σ of the galaxies. The strength of this function is its direct comparison to observational data. We further investigate the evolution of the galaxy structure parameters through the use of projected mass radii and line-of-sight (LOS) σ. Additionally, we discuss the use of alternate orbital parameters such as Vesc to investigate the potential wells of the galaxies. Our goal is to isolate the mass and luminosity evolution from the environmental effects on the evolution of elliptical galaxies. This project is a subset of a continuing study whose intent is to combine observational data with numerical techniques to study the effects of a galaxies’ environment on its mass evolution and internal dynamics.

  10. N-body Simulation of Disk Galaxy Parameters -- Revisited

    NASA Astrophysics Data System (ADS)

    Comins, N. F.; Rivers, A. J.; Shorey, P.

    1993-05-01

    Although two dimensional N-body simulations of disk galaxies have been done for over thirty years, we feel that the interactions between various free parameters deserve further study. As a preliminary step in validating a computer code with collisionless particles representing star clusters, colliding particles representing giant molecular clouds, and a gravitating hydrodynamic component representing the intercloud medium, we study the effects of the number of particles (10k-400k), the softening of the gravitational potential (.25-1.0 cell widths), and the grid size (64(2) and 128(2) ) on the changes of Toomre's Q and the bar-mode (m=2) instability for the collisionless N-body component. We use a Cartesian grid with a time-centered leap frog integration scheme and a fast Fourier transform potential calculator. We find that the growth of Q and the bar mode depend sensitively on both N and the softening factor. We also find that as N increases, the amount of softening required to maintain cool systems decreases. Judicious selection of parameters can minimize growth rates of various instabilities, thereby increasing relaxation times.

  11. Second-order variational equations for N-body simulations

    NASA Astrophysics Data System (ADS)

    Rein, Hanno; Tamayo, Daniel

    2016-07-01

    First-order variational equations are widely used in N-body simulations to study how nearby trajectories diverge from one another. These allow for efficient and reliable determinations of chaos indicators such as the Maximal Lyapunov characteristic Exponent (MLE) and the Mean Exponential Growth factor of Nearby Orbits (MEGNO). In this paper we lay out the theoretical framework to extend the idea of variational equations to higher order. We explicitly derive the differential equations that govern the evolution of second-order variations in the N-body problem. Going to second order opens the door to new applications, including optimization algorithms that require the first and second derivatives of the solution, like the classical Newton's method. Typically, these methods have faster convergence rates than derivative-free methods. Derivatives are also required for Riemann manifold Langevin and Hamiltonian Monte Carlo methods which provide significantly shorter correlation times than standard methods. Such improved optimization methods can be applied to anything from radial-velocity/transit-timing-variation fitting to spacecraft trajectory optimization to asteroid deflection. We provide an implementation of first- and second-order variational equations for the publicly available REBOUND integrator package. Our implementation allows the simultaneous integration of any number of first- and second-order variational equations with the high-accuracy IAS15 integrator. We also provide routines to generate consistent and accurate initial conditions without the need for finite differencing.

  12. Acellular dermal graft reinforcement at the hiatus.

    PubMed

    Freedman, Bruce

    2012-11-01

    The ideal technique to repair large hiatal and diaphragmatic defects remains controversial. Due to high recurrence rates with primary repair alone, attempts at crural reinforcement with various products has been investigated. Initial evaluation of synthetic mesh at the hiatus in retrospective studies led to the conclusion that there were too many serious complications with these products. The next step was to see how biologic grafts fared in this location. Beginning with porcine intestine submucosa in a laminated array and progressing through human and porcine acellular dermal matrices, multiple, retrospective studies looked at the efficacy and safety of these products. Unfortunately, most of these studies evaluated a small sample size with a relatively short follow-up period. The one study followed out to 5 years failed to show any benefit using the biologic (porcine intestinal submucosa) compared with the primary repair alone. Additional, prospective, randomized studies with ample numbers carried out for years will be necessary to see which biologic graft is not only safe but also successful in preventing recurrent herniations.

  13. An Alternative Representation of a Simulated Human Body

    DTIC Science & Technology

    2013-11-01

    Distribution List 13 iv List of Figures Figure 1. Graphical representation of the ICEM body model with body parts separated and labeled...representations. (a) The vertices of the ICEM body model. (b) The FragFly body model... ICEM lower leg. (b) Convex hull of the ICEM lower leg. (c) Two convex hulls of a separated ICEM lower leg

  14. New material model for simulating large impacts on rocky bodies

    NASA Astrophysics Data System (ADS)

    Tonge, A.; Barnouin, O.; Ramesh, K.

    2014-07-01

    Large impact craters on an asteroid can provide insights into its internal structure. These craters can expose material from the interior of the body at the impact site [e.g., 1]; additionally, the impact sends stress waves throughout the body, which interrogate the asteroid's interior. Through a complex interplay of processes, such impacts can result in a variety of motions, the consequence of which may appear as lineaments that are exposed over all or portions of the asteroid's surface [e.g., 2,3]. While analytic, scaling, and heuristic arguments can provide some insight into general phenomena on asteroids, interpreting the results of a specific impact event, or series of events, on a specific asteroid geometry generally necessitates the use of computational approaches that can solve for the stress and displacement history resulting from an impact event. These computational approaches require a constitutive model for the material, which relates the deformation history of a small material volume to the average force on the boundary of that material volume. In this work, we present a new material model that is suitable for simulating the failure of rocky materials during impact events. This material model is similar to the model discussed in [4]. The new material model incorporates dynamic sub-scale crack interactions through a micro-mechanics-based damage model, thermodynamic effects through the use of a Mie-Gruneisen equation of state, and granular flow of the fully damaged material. The granular flow model includes dilatation resulting from the mutual interaction of small fragments of material (grains) as they are forced to slide and roll over each other and includes a P-α type porosity model to account for compaction of the granular material in a subsequent impact event. The micro-mechanics-based damage model provides a direct connection between the flaw (crack) distribution in the material and the rate-dependent strength. By connecting the rate

  15. Angiogenic response induced by acellular femoral matrix in vivo

    PubMed Central

    Conconi, Maria Teresa; Nico, Beatrice; Rebuffat, Piera; Crivellato, Enrico; Parnigotto, Pier Paolo; Nussdorfer, Gastone G; Ribatti, Domenico

    2005-01-01

    We investigated the angiogenic response induced by acellular femoral matrices implanted in vivo on to the chick embryo chorioallantoic membrane (CAM), a useful model for such investigation. The results showed that acellular matrices were able to induce a strong angiogenic response, comparable with that of fibroblast growth factor-2 (FGF-2), a well-known angiogenic cytokine. The angiogenic response was further increased when exogenous FGF-2 or transforming growth factor beta-1 (TGF-β1) was added to the matrices and inhibited by the addition of anti-FGF-2 or anti-TGF-β1 antibodies. The response may be considered to be dependent on a direct angiogenic effect exerted by the matrices, and also in part by the presence of FGF-2 and TGF-β1 in the acellular matrices. PMID:16011546

  16. Complications of acellular dermal matrices in breast surgery.

    PubMed

    Israeli, Ron

    2012-11-01

    Acellular dermal matrices have been used in breast surgery for a decade. They are widely used in implant-based breast reconstruction to provide coverage of the inferolateral aspects of the prosthesis. Numerous benefits have been reported with this approach including improved fold control, better support and control of the implant pocket with concomitant reduced risk of malposition, and improved lower pole expansion. Seroma, infection, mastectomy skin necrosis, and expander/implant loss are the most commonly reported complications with this approach, and the incidences vary widely among studies. Patient selection and adherence to established intraoperative technique principles related to acellular dermal matrix use are both critical to minimizing the risk of complications. Acellular dermal matrices are also being used in aesthetic breast surgery, revision breast surgery, and nipple reconstruction, but clinical experience is limited. This article reviews the complications associated with the use of matrices in breast surgery from the published literature.

  17. Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold

    PubMed Central

    Feng, Yuping; Wang, Jiao; Ling, Shixin; Li, Zhuo; Li, Mingsheng; Li, Qiongyi; Ma, Zongren; Yu, Sijiu

    2014-01-01

    The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined specific neuronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuronal-specific proteins, including βIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differentiation medium differentiated into a multilayered neural network-like structure with long nerve fibers that was composed of several parallel microfibers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sectioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve. PMID:25598779

  18. N-body simulations of viscous instability of planetary rings

    NASA Astrophysics Data System (ADS)

    Salo, Heikki; Schmidt, Jürgen

    2010-04-01

    We study viscous instability of planetary rings in terms of N-body simulations. We show that for rings composed of fairly elastic particles (e.g. as in Hatzes et al. [Hatzes, A., Bridges, F.G., Lin, D.N.C., 1988. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc. 231, 1091-1115]) the instability may lead to the spontaneous formation of dense ringlets in a background of lower density. In most parts of Saturn's rings the particle collisions are probably much more dissipative, as suggested by the presence of self-gravity wakes, and classic viscous instability should be suppressed. However, our results demonstrate that the mechanism of viscous instability itself is valid. The dynamical effects of size-dependent elasticity in a system with a size distribution have never been studied before. We show that this may in principle lead to a size-selective viscous instability, small particles concentrating on ringlets against the more uniform background of large particles.

  19. FORMING CIRCUMBINARY PLANETS: N-BODY SIMULATIONS OF KEPLER-34

    SciTech Connect

    Lines, S.; Leinhardt, Z. M.; Paardekooper, S.; Baruteau, C.; Thebault, P.

    2014-02-10

    Observations of circumbinary planets orbiting very close to the central stars have shown that planet formation may occur in a very hostile environment, where the gravitational pull from the binary should be very strong on the primordial protoplanetary disk. Elevated impact velocities and orbit crossings from eccentricity oscillations are the primary contributors to high energy, potentially destructive collisions that inhibit the growth of aspiring planets. In this work, we conduct high-resolution, inter-particle gravity enabled N-body simulations to investigate the feasibility of planetesimal growth in the Kepler-34 system. We improve upon previous work by including planetesimal disk self-gravity and an extensive collision model to accurately handle inter-planetesimal interactions. We find that super-catastrophic erosion events are the dominant mechanism up to and including the orbital radius of Kepler-34(AB)b, making in situ growth unlikely. It is more plausible that Kepler-34(AB)b migrated from a region beyond 1.5 AU. Based on the conclusions that we have made for Kepler-34, it seems likely that all of the currently known circumbinary planets have also migrated significantly from their formation location with the possible exception of Kepler-47(AB)c.

  20. Corrosion and tribocorrosion of hafnium in simulated body fluids.

    PubMed

    Rituerto Sin, J; Neville, A; Emami, N

    2014-08-01

    Hafnium is a passive metal with good biocompatibility and osteogenesis, however, little is known about its resistance to wear and corrosion in biological environments. The corrosion and tribocorrosion behavior of hafnium and commercially pure (CP) titanium in simulated body fluids were investigated using electrochemical techniques. Cyclic polarization scans and open circuit potential measurements were performed in 0.9% NaCl solution and 25% bovine calf serum solution to assess the effect of organic species on the corrosion behavior of the metal. A pin-on-plate configuration tribometer and a three electrode electrochemical cell were integrated to investigate the tribocorrosion performance of the studied materials. The results showed that hafnium has good corrosion resistance. The corrosion density currents measured in its passive state were lower than those measured in the case of CP titanium; however, it showed a higher tendency to suffer from localized corrosion, which was more acute when imperfections were present on the surface. The electrochemical breakdown of the oxide layer was retarded in the presence of proteins. Tribocorrosion tests showed that hafnium has the ability to quickly repassivate after the oxide layer was damaged; however, it showed higher volumetric loss than CP titanium in equivalent wear-corrosion conditions. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1157-1164, 2014.

  1. Classical simulation of quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Huang, Yichen

    Classical simulation of quantum many-body systems is in general a challenging problem for the simple reason that the dimension of the Hilbert space grows exponentially with the system size. In particular, merely encoding a generic quantum many-body state requires an exponential number of bits. However, condensed matter physicists are mostly interested in local Hamiltonians and especially their ground states, which are highly non-generic. Thus, we might hope that at least some physical systems allow efficient classical simulation. Starting with one-dimensional (1D) quantum systems (i.e., the simplest nontrivial case), the first basic question is: Which classes of states have efficient classical representations? It turns out that this question is quantitatively related to the amount of entanglement in the state, for states with "little entanglement'' are well approximated by matrix product states (a data structure that can be manipulated efficiently on a classical computer). At a technical level, the mathematical notion for "little entanglement'' is area law, which has been proved for unique ground states in 1D gapped systems. We establish an area law for constant-fold degenerate ground states in 1D gapped systems and thus explain the effectiveness of matrix-product-state methods in (e.g.) symmetry breaking phases. This result might not be intuitively trivial as degenerate ground states in gapped systems can be long-range correlated. Suppose an efficient classical representation exists. How can one find it efficiently? The density matrix renormalization group is the leading numerical method for computing ground states in 1D quantum systems. However, it is a heuristic algorithm and the possibility that it may fail in some cases cannot be completely ruled out. Recently, a provably efficient variant of the density matrix renormalization group has been developed for frustration-free 1D gapped systems. We generalize this algorithm to all (i.e., possibly frustrated) 1D

  2. Smooth Potential Chaos and N-Body Simulations

    NASA Astrophysics Data System (ADS)

    Kandrup, Henry E.; Sideris, Ioannis V.

    2003-03-01

    Integrations in fixed N-body realizations of smooth density distributions corresponding to a chaotic galactic potential can be used to derive reliable estimates of the largest (finite-time) Lyapunov exponent χS associated with an orbit in the smooth potential generated from the same initial condition, even though the N-body orbit is typically characterized by an N-body exponent χN>>χS. This can be accomplished by either comparing initially nearby orbits in a single N-body system or tracking orbits with the same initial condition evolved in two different N-body realizations of the same smooth density.

  3. Evaluation of lymphangiogenesis in acellular dermal matrix

    PubMed Central

    Cherubino, Mario; Pellegatta, Igor; Tamborini, Federico; Cerati, Michele; Sessa, Fausto; Valdatta, Luigi

    2014-01-01

    Introduction: Much attention has been directed towards understanding the phenomena of angiogenesis and lymphangiogenesis in wound healing. Thanks to the manifold dermal substitute available nowadays, wound treatment has improved greatly. Many studies have been published about angiogenesis and cell invasion in INTEGRA®. On the other hand, the development of the lymphatic network in acellular dermal matrix (ADM) is a more obscure matter. In this article, we aim to characterize the different phases of host cell invasion in ADM. Special attention was given to lymphangiogenic aspects. Materials and Methods: Among 57 rats selected to analyse the role of ADM in lymphangiogenesis, we created four groups. We performed an excision procedure on both thighs of these rats: On the left one we did not perform any action except repairing the borders of the wound; while on the right one we used INTEGRA® implant. The excision biopsy was performed at four different times: First group after 7 days, second after 14 days, third after 21 days and fourth after 28 days. For our microscopic evaluation, we used the classical staining technique of haematoxylin and eosin and a semi-quantitative method in order to evaluate cellularity counts. To assess angiogenesis and lymphangiogenesis development we employed PROX-1 Ab and CD31/PECAM for immunohistochemical analysis. Results: We found remarkable wound contraction in defects that healed by secondary intention while minor wound contraction was observed in defects treated with ADM. At day 7, optical microscopy revealed a more plentiful cellularity in the granulation tissue compared with the dermal regeneration matrix. The immunohistochemical process highlighted vascular and lymphatic cells in both groups. After 14 days a high grade of fibrosis was noticeable in the non-treated group. At day 21, both lymphatic and vascular endothelial cells were better developed in the group with a dermal matrix application. At day 28, lymphatic endothelial

  4. Relationship of immunogenicity to protective potency in acellular pertussis vaccines.

    PubMed

    Xing, Dorothy; Asokanathan, Catpagavalli; Xu, Ying Hua; Bolgiano, Barbara; Douglas-Bardsley, Alex; Zhang, Shumin; Wang, Junzhi; Corbel, Michael

    2014-01-01

    Comparison of the immunogenicity response and resistance to challenge in the modified intracerebral challenge assay induced by various acellular pertussis vaccines showed that these were not closely linked. The immunogenicity assay was effective for confirming the presence of specific antigenic components and was invaluable for detecting minor components present in co-purified vaccines. However, the magnitude of antibody responses was not consistently related to antigen concentration nor did it correlate with protection in the modified intracerebral challenge assay. The immunogenicity assay detected degradation of pertussis toxin and pertactin components but not of filamentous haemagglutinin or fimbriae 2 and 3 in denatured acellular pertussis vaccines. The modified intracerebral challenge assay was effective in detecting antigen degradation in all types of acellular pertussis vaccines including those of European/North American origin but was dominated by the response to pertussis toxin. Aerosol challenge was more sensitive in detecting denaturation of filamentous haemagglutinin or fimbriae. The modified intracerebral challenge assay was the only assay that provided a quantitative indication of protective activity. Both immunogenicity and challenge assays provided useful data on acellular pertussis vaccine properties but were complementary and not alternatives.

  5. Relationship of immunogenicity to protective potency in acellular pertussis vaccines

    PubMed Central

    Xing, Dorothy; Asokanathan, Catpagavalli; Xu, Ying Hua; Bolgiano, Barbara; Douglas-Bardsley, Alex; Zhang, Shumin; Wang, Junzhi; Corbel, Michael

    2014-01-01

    Comparison of the immunogenicity response and resistance to challenge in the modified intracerebral challenge assay induced by various acellular pertussis vaccines showed that these were not closely linked. The immunogenicity assay was effective for confirming the presence of specific antigenic components and was invaluable for detecting minor components present in co-purified vaccines. However, the magnitude of antibody responses was not consistently related to antigen concentration nor did it correlate with protection in the modified intracerebral challenge assay. The immunogenicity assay detected degradation of pertussis toxin and pertactin components but not of filamentous haemagglutinin or fimbriae 2 and 3 in denatured acellular pertussis vaccines. The modified intracerebral challenge assay was effective in detecting antigen degradation in all types of acellular pertussis vaccines including those of European/North American origin but was dominated by the response to pertussis toxin. Aerosol challenge was more sensitive in detecting denaturation of filamentous haemagglutinin or fimbriae. The modified intracerebral challenge assay was the only assay that provided a quantitative indication of protective activity. Both immunogenicity and challenge assays provided useful data on acellular pertussis vaccine properties but were complementary and not alternatives. PMID:25424817

  6. Numerical Simulation of Floating Bodies in Extreme Free Surface Waves

    NASA Astrophysics Data System (ADS)

    Hu, Zheng Zheng; Causon, Derek; Mingham, Clive; Qiang, Ling

    2010-05-01

    and efficient. Firstly, extreme design wave conditions are generated in an empty NWT and compared with physical experiments as a precursor to calculations to investigate the survivability of the Bobber device operating in a challenging wave climate. Secondly, we consider a bench-mark test case involving in a first order regular wave maker acting on a fixed cylinder and Pelamis. Finally, a floating Bobber has been simulated under extreme wave conditions. These results will be reported at the meeting. Causon D.M., Ingram D.M., Mingham C.G., Yang G. Pearson R.V. (2000). Calculation of shallow water flows using a Cartesian cut cell approach. Advances in Water resources, 23: 545-562. Causon D.M., Ingram D.M., Mingham C.G. (2000). A Cartesian cut cell method for shallow water flows with moving boundaries. Advances in Water resources, 24: 899-911. Dalzell J.F. 1999 A note on finite depth second-order wave-wave interactions. Appl. Ocean Res. 21, 105-111. Ning D.Z., Zang J., Liu S.X. Eatock Taylor R. Teng B. & Taylor P.H. 2009 Free surface and wave kinematics for nonlinear focused wave groups. J. Ocean Engineering. Accepted. Hu Z.Z., Causon D.M., Mingham C.M. and Qian L.(2009). Numerical wave tank study of a wave energy converter in heave. Proceedlings 19th ISOPE conference, Osaka, Japan Qian L., Causon D.M. & Mingham C.G., Ingram D.M. 2006 A free-surface capturing method for two fluid flows with moving bodies. Proc. Roy. Soc. London, Vol. A 462 21-42.

  7. Bluff Body Flow Simulation Using a Vortex Element Method

    SciTech Connect

    Anthony Leonard; Phillippe Chatelain; Michael Rebel

    2004-09-30

    Heavy ground vehicles, especially those involved in long-haul freight transportation, consume a significant part of our nation's energy supply. it is therefore of utmost importance to improve their efficiency, both to reduce emissions and to decrease reliance on imported oil. At highway speeds, more than half of the power consumed by a typical semi truck goes into overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to better tools and increased awareness, recent years have seen substantial aerodynamic improvements by the truck industry, such as tractor/trailer height matching, radiator area reduction, and swept fairings. However, there remains substantial room for improvement as understanding of turbulent fluid dynamics grows. The group's research effort focused on vortex particle methods, a novel approach for computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-Stokes equations on a grid which stretches from the truck surface outward, vortex particle methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require a grid. They worked to advance the state of the art in vortex particle methods, improving their ability to handle the complicated, high Reynolds number flow around heavy vehicles. Specific challenges that they have addressed include finding strategies to accurate capture vorticity generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies such as tires, application of the method to the GTS model, computation time reduction through improved integration methods, a closest point transform for particle method in complex geometrics, and work on large eddy simulation (LES) turbulence modeling.

  8. Modal reduction strategies for interconnected flexible bodies simulation

    NASA Technical Reports Server (NTRS)

    Eke, F. O.; Man, G. K.

    1989-01-01

    Multi-body dynamics programs require characterization of each body. The Galileo spacecraft system modes to be retained were determined using available criteria, modal influence coefficients, and bode. The descent to component level was achieved via a two-phase diagonalization process starting with submatrices of truncated augmented system modal matrix.

  9. Rigid Body Motion in Stereo 3D Simulation

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2010-01-01

    This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between…

  10. Body Constraints on Motor Simulation in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Conson, Massimiliano; Hamilton, Antonia; De Bellis, Francesco; Errico, Domenico; Improta, Ilaria; Mazzarella, Elisabetta; Trojano, Luigi; Frolli, Alessandro

    2016-01-01

    Developmental data suggested that mental simulation skills become progressively dissociated from overt motor activity across development. Thus, efficient simulation is rather independent from current sensorimotor information. Here, we tested the impact of bodily (sensorimotor) information on simulation skills of adolescents with Autism Spectrum…

  11. General relativistic corrections to N -body simulations and the Zel'dovich approximation

    NASA Astrophysics Data System (ADS)

    Fidler, Christian; Rampf, Cornelius; Tram, Thomas; Crittenden, Robert; Koyama, Kazuya; Wands, David

    2015-12-01

    The initial conditions for Newtonian N -body simulations are usually generated by applying the Zel'dovich approximation to the initial displacements of the particles using an initial power spectrum of density fluctuations generated by an Einstein-Boltzmann solver. We show that in most gauges the initial displacements generated in this way receive a first-order relativistic correction. We define a new gauge, the N -body gauge, in which this relativistic correction vanishes and show that a conventional Newtonian N -body simulation includes all first-order relativistic contributions (in the absence of radiation) if we identify the coordinates in Newtonian simulations with those in the relativistic N -body gauge.

  12. Extreme Environment Simulation - Current and New Capabilities to Simulate Venus and Other Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Vento, Dan; Lalli, Nick; Palinski, Timothy

    2014-01-01

    Science, technology, and planetary mission communities have a growing interest in components and systems that are capable of working in extreme (high) temperature and pressure conditions. Terrestrial applications range from scientific research, aerospace, defense, automotive systems, energy storage and power distribution, deep mining and others. As the target environments get increasingly extreme, capabilities to develop and test the sensors and systems designed to operate in such environments will be required. An application of particular importance to the planetary science community is the ability for a robotic lander to survive on the Venus surface where pressures are nearly 100 times that of Earth and temperatures approach 500C. The scientific importance and relevance of Venus missions are stated in the current Planetary Decadal Survey. Further, several missions to Venus were proposed in the most recent Discovery call. Despite this interest, the ability to accurately simulate Venus conditions at a scale that can test and validate instruments and spacecraft systems and accurately simulate the Venus atmosphere has been lacking. This paper discusses and compares the capabilities that are known to exist within and outside the United States to simulate the extreme environmental conditions found in terrestrial or planetary surfaces including the Venus atmosphere and surface. The paper then focuses on discussing the recent additional capability found in the NASA Glenn Extreme Environment Rig (GEER). The GEER, located at the NASA Glenn Research Center in Cleveland, Ohio, is designed to simulate not only the temperature and pressure extremes described, but can also accurately reproduce the atmospheric compositions of bodies in the solar system including those with acidic and hazardous elements. GEER capabilities and characteristics are described along with operational considerations relevant to potential users. The paper presents initial operating results and concludes

  13. Message in the "Body": Effects of Simulation in Sentence Production

    ERIC Educational Resources Information Center

    Sato, Manami

    2010-01-01

    This study investigates the role of mental simulation in message formulation and grammatical encoding in two typologically distinct languages, English and Japanese. It examines relationships among physical motion, mental simulation, and sentence production, following the claims of Perceptual Symbol Systems (Barsalou, 1999) that people understand…

  14. The direct numerical simulations of the turbulent wakes of axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Riley, J. J.; Metcalfe, R. W.

    1978-01-01

    Results of direct numerical simulations of turbulence are compared with both laboratory data and self-similarity theory for the case of the turbulent wakes of towed, axisymmetric bodies. In general, the agreement of the simulation results with both the laboratory data and the self-similarity theory is good, although the comparisons are hampered by inadequate procedures for initializing the numerical simulations.

  15. Direct simulation Monte Carlo and Navier-Stokes simulations of blunt body wake flows

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Mitcheltree, Robert A.; Dogra, Virendra K.; Wilmoth, Richard G.

    1994-01-01

    Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simuulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rarefaction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefaction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the after body sting are emphasizes in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.

  16. Intracranial foreign body granuloma simulating brain tumor: a case report

    PubMed Central

    Saeidiborojeni, Hamid Reza; Fakheri, Taravat; Iizadi, Babak

    2011-01-01

    Intracranial foreign body granulomas are rarely reported. Clinical symptoms caused by foreign body granulomas can be noticed from months to many years after surgical procedure. The most common reported etiology is suture material. A 45-year-old woman was presented with grand mal epilepsy. She was operated for brain tumor 19 years ago. In CT scan, a round radio-dense mass resembling a tumor at anterior fossa was seen. She underwent craniotomy and resected a granuloma with cotton fibers surrounded by yellow capsule without residual or recurrent tumor. Granuloma can mimic intracranial meningioma and special attention should be paid not to leave cotton pledgets during operations. PMID:22091258

  17. Computer simulation of plasma and N-body problems

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Miller, J. B.

    1975-01-01

    The following FORTRAN language computer codes are presented: (1) efficient two- and three-dimensional central force potential solvers; (2) a three-dimensional simulator of an isolated galaxy which incorporates the potential solver; (3) a two-dimensional particle-in-cell simulator of the Jeans instability in an infinite self-gravitating compressible gas; and (4) a two-dimensional particle-in-cell simulator of a rotating self-gravitating compressible gaseous system of which rectangular coordinate and superior polar coordinate versions were written.

  18. A generalized framework for interactive dynamic simulation for MultiRigid bodies.

    PubMed

    Son, Wookho; Kim, Kyunghwan; Amato, Nancy M; Trinkle, Jeffrey C

    2004-04-01

    This paper presents a generalized framework for dynamic simulation realized in a prototype simulator called the Interactive Generalized Motion Simulator (I-GMS), which can simulate motions of multirigid-body systems with contact interaction in virtual environments. I-GMS is designed to meet two important goals: generality and interactivity. By generality, we mean a dynamic simulator which can easily support various systems of rigid bodies, ranging from a single free-flying rigid object to complex linkages such as those needed for robotic systems or human body simulation. To provide this generality, we have developed I-GMS in an object-oriented framework. The user interactivity is supported through a haptic interface for articulated bodies, introducing interactive dynamic simulation schemes. This user-interaction is achieved by performing push and pull operations via the PHANToM haptic device, which runs as an integrated part of I-GMS. Also, a hybrid scheme was used for simulating internal contacts (between bodies in the multirigid-body system) in the presence of friction, which could avoid the nonexistent solution problem often faced when solving contact problems with Coulomb friction. In our hybrid scheme, two impulse-based methods are exploited so that different methods are applied adaptively, depending on whether the current contact situation is characterized as "bouncing" or "steady." We demonstrate the user-interaction capability of I-GMS through on-line editing of trajectories of a 6-degree of freedom (dof) articulated structure.

  19. Tetanus–diphtheria–acellular pertussis vaccination for adults: an update

    PubMed Central

    2017-01-01

    Although tetanus and diphtheria have become rare in developed countries, pertussis is still endemic in some developed countries. These are vaccine-preventable diseases and vaccination for adults is important to prevent the outbreak of disease. Strategies for tetanus, diphtheria, and pertussis vaccines vary from country to country. Each country needs to monitor consistently epidemiology of the diseases and changes vaccination policies accordingly. Recent studies showed that tetanus–diphtheria–acellular pertussis vaccine for adults is effective and safe to prevent pertussis disease in infants. However, vaccine coverage still remains low than expected and seroprevalence of protective antibodies levels for tetanus, diphtheria, and pertussis decline with aging. The importance of tetanus–diphtheria–acellular pertussis vaccine administration should be emphasized for the protection of young adult and elderly people also, not limited to children. PMID:28168170

  20. G-Guidance Interface Design for Small Body Mission Simulation

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Carson, John; Phan, Linh

    2008-01-01

    The G-Guidance software implements a guidance and control (G and C) algorithm for small-body, autonomous proximity operations, developed under the Small Body GN and C task at JPL. The software is written in Matlab and interfaces with G-OPT, a JPL-developed optimization package written in C that provides G-Guidance with guaranteed convergence to a solution in a finite computation time with a prescribed accuracy. The resulting program is computationally efficient and is a prototype of an onboard, real-time algorithm for autonomous guidance and control. Two thruster firing schemes are available in G-Guidance, allowing tailoring of the software for specific mission maneuvers. For example, descent, landing, or rendezvous benefit from a thruster firing at the maneuver termination to mitigate velocity errors. Conversely, ascent or separation maneuvers benefit from an immediate firing to avoid potential drift toward a second body. The guidance portion of this software explicitly enforces user-defined control constraints and thruster silence times while minimizing total fuel usage. This program is currently specialized to small-body proximity operations, but the underlying method can be generalized to other applications.

  1. Ectopic bone formation in rapidly fabricated acellular injectable dense collagen-Bioglass hybrid scaffolds via gel aspiration-ejection.

    PubMed

    Miri, Amir K; Muja, Naser; Kamranpour, Neysan O; Lepry, William C; Boccaccini, Aldo R; Clarke, Susan A; Nazhat, Showan N

    2016-04-01

    Gel aspiration-ejection (GAE) has recently been introduced as an effective technique for the rapid production of injectable dense collagen (IDC) gel scaffolds with tunable collagen fibrillar densities (CFDs) and microstructures. Herein, a GAE system was applied for the advanced production and delivery of IDC and IDC-Bioglass(®) (IDC-BG) hybrid gel scaffolds for potential bone tissue engineering applications. The efficacy of GAE in generating mineralizable IDC-BG gels (from an initial 75-25 collagen-BG ratio) produced through needle gauge numbers 8G (3.4 mm diameter and 6 wt% CFD) and 14G (1.6 mm diameter and 14 wt% CFD) was investigated. Second harmonic generation (SHG) imaging of as-made gels revealed an increase in collagen fibril alignment with needle gauge number. In vitro mineralization of IDC-BG gels was confirmed where carbonated hydroxyapatite was detected as early as day 1 in simulated body fluid, which progressively increased up to day 14. In vivo mineralization of, and host response to, acellular IDC and IDC-BG gel scaffolds were further investigated following subcutaneous injection in adult rats. Mineralization, neovascularization and cell infiltration into the scaffolds was enhanced by the addition of BG and at day 21 post injection, there was evidence of remodelling of granulation tissue into woven bone-like tissue in IDC-BG. SHG imaging of explanted scaffolds indicated collagen fibril remodelling through cell infiltration and mineralization over time. In sum, the results suggest that IDC-BG hybrid gels have osteoinductive properties and potentially offer a novel therapeutic approach for procedures requiring the injectable delivery of a malleable and dynamic bone graft that mineralizes under physiological conditions.

  2. The Million-Body Problem: Particle Simulations in Astrophysics

    ScienceCinema

    Rasio, Fred [Northwestern University

    2016-07-12

    Computer simulations using particles play a key role in astrophysics. They are widely used to study problems across the entire range of astrophysical scales, from the dynamics of stars, gaseous nebulae, and galaxies, to the formation of the largest-scale structures in the universe. The 'particles' can be anything from elementary particles to macroscopic fluid elements, entire stars, or even entire galaxies. Using particle simulations as a common thread, this talk will present an overview of computational astrophysics research currently done in our theory group at Northwestern. Topics will include stellar collisions and the gravothermal catastrophe in dense star clusters.

  3. Analytical stability and simulation response study for a coupled two-body system

    NASA Technical Reports Server (NTRS)

    Tao, K. M.; Roberts, J. R.

    1975-01-01

    An analytical stability study and a digital simulation response study of two connected rigid bodies are documented. Relative rotation of the bodies at the connection is allowed, thereby providing a model suitable for studying system stability and response during a soft-dock regime. Provisions are made of a docking port axes alignment torque and a despin torque capability for encountering spinning payloads. Although the stability analysis is based on linearized equations, the digital simulation is based on nonlinear models.

  4. Superlarge-scale structure in N-body simulations

    NASA Astrophysics Data System (ADS)

    Doroshkevich, A. G.; Müller, V.; Retzlaff, J.; Turchaninov, V.

    1999-07-01

    The simulated matter distribution on large scales is studied using core-sampling, cluster analysis, inertia tensor analysis and minimal spanning tree techniques. Seven simulations in large boxes for five cosmological models with COBE-normalized CDM-like power spectra are studied. A wall-like superlarge-scale structure with parameters similar to the observed one is found for the OCDM and ΛCDM models with Οmh = 0.2-0.3. In these simulations, the rich structure elements with a typical value for the largest extension of ~(30 - 50) h-1 Mpc incorporate ~40 per cent of matter with overdensity of about 10 above the mean. These rich elements are formed by the anisotropic non-linear compression of sheets with an original size of ~(15-25) h-1 Mpc. They surround low-density regions with a typical diameter ~(50-70) h-1 Mpc. The statistical characteristics of these structures are found to be approximately consistent with observations and theoretical expectations. The cosmological models with higher matter density Ωm=1 in CDM with Harrison-Zeldovich or tilted power spectra cannot reproduce the characteristics of the observed galaxy distribution because of the very strong disruption of the rich structure elements. Another model with a broken scale-invariant initial power spectrum (BCDM) does not show enough matter concentration in the rich structure elements.

  5. Superlarge-Scale Structure in N-Body Simulations

    NASA Astrophysics Data System (ADS)

    Doroshkevich, A. G.; Muller, V.; Retzlaff, J.; Turchaninov, V.

    The simulated matter distribution on large scales is studied using core-sampling, cluster analysis, inertia tensor analysis, and minimal spanning tree techniques. Seven simulations in large boxes for five cosmological models with COBE normalized CDM-like power spectra are studied. The wall-like Super Large Scale Structure with parameters similar to the observed one is found for the OCDM and LambdaCDM models with Omega_mh = 0.2 -- 0.3. In these simulations, the rich structure elements with typical diameters geq 20h^{-1}Mpc incorporate ~40% of matter at an overdensity of about 10 above the mean. These rich elements are formed due to the nonlinear matter compression within sheet-like structures with a typical thickness ~(15 - 20) h^{-1}Mpc. They surround underdense regions with a typical diameter ~(50 - 70)h^{-1}Mpc. The statistical characteristics of these elements are found to be approximately consistent with observations and theoretical expectations. The cosmological models with higher matter density Omega_m = 1 in CDM and tilted or break power spectra cannot reproduce the characteristics of the observed galaxy distribution due to the very strong disruption of the rich structure elements. School of Physics, University of New South Wales, Sydney 2052, Australia

  6. Energy Conservation for the Simulation of Deformable Bodies.

    PubMed

    Su, Jonathan; Sheth, Rahul; Fedkiw, Ronald

    2013-02-01

    We propose a novel technique that allows one to conserve energy using the time integration scheme of one's choice. Traditionally, the time integration methods that deal with energy conservation, such as symplectic, geometric, and variational integrators, have aimed to include damping in a manner independent of the size of the time step, stating that this gives more control over the look and feel of the simulation. Generally speaking, damping adds to the overall aesthetics and appeal of a numerical simulation, especially since it damps out the high frequency oscillations that occur on the level of the discretization mesh. We propose an alternative technique that allows one to use damping as a material parameter to obtain the desired look and feel of a numerical simulation, while still exactly conserving the total energy-in stark contrast to previous methods in which adding damping effects necessarily removes energy from the mesh. This allows, for example, a deformable bouncing ball with aesthetically pleasing damping (and even undergoing collision) to collide with the ground and return to its original height exactly conserving energy, as shown in Fig. 2. Furthermore, since our method works with any time integration scheme, the user can choose their favorite time integration method with regards to aesthetics and simply apply our method as a postprocess to conserve all or as much of the energy as desired.

  7. Modeling and Simulation of Anchoring Processess for Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.; Mazahar, Hammad; Negrut, Dan

    2012-01-01

    This paper describes recent work done in modeling and simulation of anchoring processes in granular media, with applications to anchoring on a Near Earth Object (NEO), where the forces due to interactions with the regolith are much stronger than the local surface gravity field. This effort is part of a larger systems engineering capability developed at JPL to answer key questions, validate requirements, conduct key system and mission trades,and evaluate performance and risk related to NEO operations for any proposed human or robotic missions to a NEO.

  8. The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies.

    PubMed

    Demarse, Thomas B; Wagenaar, Daniel A; Blau, Axel W; Potter, Steve M

    2001-01-01

    The brain is perhaps the most advanced and robust computation system known. We are creating a method to study how information is processed and encoded in living cultured neuronal networks by interfacing them to a computer-generated animal, the Neurally-Controlled Animat, within a virtual world. Cortical neurons from rats are dissociated and cultured on a surface containing a grid of electrodes (multi-electrode arrays, or MEAs) capable of both recording and stimulating neural activity. Distributed patterns of neural activity are used to control the behavior of the Animat in a simulated environment. The computer acts as its sensory system providing electrical feedback to the network about the Animat's movement within its environment. Changes in the Animat's behavior due to interaction with its surroundings are studied in concert with the biological processes (e.g., neural plasticity) that produced those changes, to understand how information is processed and encoded within a living neural network. Thus, we have created a hybrid real-time processing engine and control system that consists of living, electronic, and simulated components. Eventually this approach may be applied to controlling robotic devices, or lead to better real-time silicon-based information processing and control algorithms that are fault tolerant and can repair themselves.

  9. Simulations of Bluff Body Flow Interaction for Noise Source Modeling

    NASA Technical Reports Server (NTRS)

    Khorrami, Medi R.; Lockard David P.; Choudhari, Meelan M.; Jenkins, Luther N.; Neuhart, Dan H.; McGinley, Catherine B.

    2006-01-01

    The current study is a continuation of our effort to characterize the details of flow interaction between two cylinders in a tandem configuration. This configuration is viewed to possess many of the pertinent flow features of the highly interactive unsteady flow field associated with the main landing gear of large civil transports. The present effort extends our previous two-dimensional, unsteady, Reynolds Averaged Navier-Stokes computations to three dimensions using a quasilaminar, zonal approach, in conjunction with a two-equation turbulence model. Two distinct separation length-to-diameter ratios of L/D = 3.7 and 1.435, representing intermediate and short separation distances between the two cylinders, are simulated. The Mach 0.166 simulations are performed at a Reynolds number of Re = 1.66 105 to match the companion experiments at NASA Langley Research Center. Extensive comparisons with the measured steady and unsteady surface pressure and off-surface particle image velocimetry data show encouraging agreement. Both prominent and some of the more subtle trends in the mean and fluctuating flow fields are correctly predicted. Both computations and the measured data reveal a more robust and energetic shedding process at L/D = 3.7 in comparison with the weaker shedding in the shorter separation case of L/D = 1.435. The vortex shedding frequency based on the computed surface pressure spectra is in reasonable agreement with the measured Strouhal frequency.

  10. A short introduction to numerical methods used in cosmological N-body simulations

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech

    2015-12-01

    We give a short introduction to modern numerical methods commonly used in cosmological N-body simulations. First, we present some simple considerations based on linear perturbation theory which indicate the necessity for N-body simulations. Then, based on a working example of the publicly available gadget-2 code, we describe particle mesh and Barnes-Hut oct-tree methods used in numerical gravity N-body solvers. We also briefly discuss methods used in an elementary hydrodynamic implementation used for baryonic gas. Next, we give a very basic description of time integration of equations of motion commonly used in N-body codes. Finally we describe the Zeldovitch approximation as an example method for generating initial conditions for computer simulations.

  11. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    PubMed Central

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone. PMID:25221592

  12. Numerical simulation of floating bodies in extreme free surface waves

    NASA Astrophysics Data System (ADS)

    Hu, Z. Z.; Causon, D. M.; Mingham, C. G.; Qian, L.

    2011-02-01

    In this paper, we use the in-house Computational Fluid Dynamics (CFD) flow code AMAZON-SC as a numerical wave tank (NWT) to study wave loading on a wave energy converter (WEC) device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water). The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  13. Whooping cough, twenty years from acellular vaccines introduction.

    PubMed

    Greco, D; Esposito, S; Tozzi, A; Pandolfi, E; Icardi, G; Giammanco, A

    2015-01-01

    Clinical pertussis resulting from infection with B. pertussis is a significant medical and public health problem, despite the huge success of vaccination that has greatly reduced its incidence. The whole cell vaccine had an undeniable success over the last 50 years, but its acceptance was strongly inhibited by fear, only partially justified, of severe side effects, but also, in the Western world, by the difficulty to enter in combination with other vaccines: today multi-vaccine formulations are essential to maintain a high vaccination coverage. The advent of acellular vaccines was greeted with enthusiasm by the public health world: in the Nineties, several controlled vaccine trials were carried out: they demonstrated a high safety and good efficacy of new vaccines. In fact, in the Western world, the acellular vaccines completely replaced the whole cells ones. In the last years, ample evidence on the variety of protection of these vaccines linked to the presence of different antigens of Bordetella pertussis was collected. It also became clear that the protection provided, on average around 80%, leaves every year a significant cohort of vaccinated susceptible even in countries with a vaccination coverage of 95%, such as Italy. Finally, it was shown that, as for the pertussis disease, protection decreases over time, to leave a proportion of adolescents and adults unprotected. Waiting for improved pertussis vaccines, the disease control today requires a different strategy that includes a booster at 5 years for infants, but also boosters for teenagers and young adults, re-vaccination of health care personnel, and possibly of pregnant women and of those who are in contact with infants (cocooning). Finally, the quest for better vaccines inevitably tends towards pertussis acellular vaccines with at least three components, which have demonstrated superior effectiveness and have been largely in use in Italy for fifteen years.

  14. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    PubMed

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity.

  15. Simulation and study of stratified flows around finite bodies

    NASA Astrophysics Data System (ADS)

    Gushchin, V. A.; Matyushin, P. V.

    2016-06-01

    The flows past a sphere and a square cylinder of diameter d moving horizontally at the velocity U in a linearly density-stratified viscous incompressible fluid are studied. The flows are described by the Navier-Stokes equations in the Boussinesq approximation. Variations in the spatial vortex structure of the flows are analyzed in detail in a wide range of dimensionless parameters (such as the Reynolds number Re = Ud/ ν and the internal Froude number Fr = U/( Nd), where ν is the kinematic viscosity and N is the buoyancy frequency) by applying mathematical simulation (on supercomputers of Joint Supercomputer Center of the Russian Academy of Sciences) and three-dimensional flow visualization. At 0.005 < Fr < 100, the classification of flow regimes for the sphere (for 1 < Re < 500) and for the cylinder (for 1 < Re < 200) is improved. At Fr = 0 (i.e., at U = 0), the problem of diffusion-induced flow past a sphere leading to the formation of horizontal density layers near the sphere's upper and lower poles is considered. At Fr = 0.1 and Re = 50, the formation of a steady flow past a square cylinder with wavy hanging density layers in the wake is studied in detail.

  16. N-body Simulation of Binary Star Mass Transfer

    NASA Astrophysics Data System (ADS)

    Hutyra, Taylor; Sumpter, William

    2017-01-01

    Over 70% of the stars in our galaxy are multiple star systems, many of which are two stars that orbit around a common center of mass. The masses of the individual stars can be found using Newton’s and Kepler’s Laws. This allows astronomers to use these systems as astrophysical laboratories to study properties and processes of stars and galaxies. Among the many types observed, the dynamics of contact systems are the most interesting because they exhibit mass transfer, which changes the composition and function of both stars. The process by which this mass exchange takes place is not well understood. The lack of extensive mass transfer analysis, inadequate theoretical models, and the large time scale of this process are reasons for our limited understanding. In this work, a model was made to give astronomers a method for gaining a deeper knowledge and visual intuition of how the mass transfer between binary stars takes place. We have built the foundations for a simulation of arbitrary systems, which we plan to elaborate on in the future to include thermodynamics and nuclear processes.

  17. Differentially expressed genes under simulated microgravity in fruiting bodies of the fungus Pleurotus ostreatus.

    PubMed

    Miyazaki, Yasumasa; Sunagawa, Masahide; Higashibata, Akira; Ishioka, Noriaki; Babasaki, Katsuhiko; Yamazaki, Takashi

    2010-06-01

    In response to a change in the direction of gravity, morphogenetic changes of fruiting bodies of fungi are usually observed as gravitropism. Although gravitropism in higher fungi has been studied for over 100 years, there is no convincing evidence regarding the graviperception mechanism in mushrooms. To understand gravitropism in mushrooms, we isolated differentially expressed genes in Pleurotus ostreatus (oyster mushroom) fruiting bodies developed under three-dimensional clinostat-simulated microgravity. Subtractive hybridization, cDNA representational difference analysis was used for gene analysis and resulted in the isolation of 36 individual genes (17 upregulated and 19 downregulated) under clinorotation. The phenotype of fruiting bodies developed under simulated microgravity vividly depicted the gravitropism in mushrooms. Our results suggest that the differentially expressed genes responding to gravitational change are involved in several potential cellular mechanisms during fruiting body formation of P. ostreatus.

  18. Multibody Simulation Software Testbed for Small-Body Exploration and Sampling

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Blackmore, James C.; Mandic, Milan

    2011-01-01

    G-TAG is a software tool for the multibody simulation of a spacecraft with a robotic arm and a sampling mechanism, which performs a touch-and-go (TAG) maneuver for sampling from the surface of a small celestial body. G-TAG utilizes G-DYN, a multi-body simulation engine described in the previous article, and interfaces to controllers, estimators, and environmental forces that affect the spacecraft. G-TAG can easily be adapted for the analysis of the mission stress cases to support the design of a TAG system, as well as for comprehensive Monte Carlo simulations to analyze and evaluate a particular TAG system design. Any future small-body mission will benefit from using G-TAG, which has already been extensively used in Comet Odyssey and Galahad Asteroid New Frontiers proposals.

  19. Biological control of apatite growth in simulated body fluid and human blood serum.

    PubMed

    Juhasz, Judith A; Best, Serena M; Auffret, Antony D; Bonfield, William

    2008-04-01

    The surface transformation reactions of bioactive ceramics were studied in vitro in standard K9-SBF solution and in human blood serum (HBS)-containing simulated body fluid (SBF). The calcium phosphate ceramics used for this study were stoichiometric hydroxyapatite (HA), beta-tricalcium phosphate (beta-TCP) and brushite. Immersion of each calcium phosphate tested in this study, in simulated body fluid, led to immediate surface precipitation of apatite. The use of HBS resulted in a delay in the onset of precipitation and a significant inhibition of the dissolution reaction normally observed for brushite in solution. However, apatite formation still occurred. The use of HBS and SBF in this investigation, which has shown the ability to induce similar crystal growth as that observed in vivo, suggests that there is scope for the use of serum proteins in simulated body fluid in order to create a protein-rich surface coating on biomedical substrates.

  20. 2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation

    DOE PAGES

    Warren, Michael S.

    2014-01-01

    We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (2 18 ) processors. We present error analysis and scientific application results from a series of more than ten 69 billion (4096 3 ) particle cosmological simulations, accounting for 4×10 20 floating point operations. These results include the first simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new standard for accuracymore » and scientific throughput, while meeting or exceeding the computational efficiency of the latest generation of hybrid TreePM N-body methods.« less

  1. Monte Carlo simulation of efficient data acquisition for an entire-body PET scanner

    NASA Astrophysics Data System (ADS)

    Isnaini, Ismet; Obi, Takashi; Yoshida, Eiji; Yamaya, Taiga

    2014-07-01

    Conventional PET scanners can image the whole body using many bed positions. On the other hand, an entire-body PET scanner with an extended axial FOV, which can trace whole-body uptake images at the same time and improve sensitivity dynamically, has been desired. The entire-body PET scanner would have to process a large amount of data effectively. As a result, the entire-body PET scanner has high dead time at a multiplex detector grouping process. Also, the entire-body PET scanner has many oblique line-of-responses. In this work, we study an efficient data acquisition for the entire-body PET scanner using the Monte Carlo simulation. The simulated entire-body PET scanner based on depth-of-interaction detectors has a 2016-mm axial field-of-view (FOV) and an 80-cm ring diameter. Since the entire-body PET scanner has higher single data loss than a conventional PET scanner at grouping circuits, the NECR of the entire-body PET scanner decreases. But, single data loss is mitigated by separating the axially arranged detector into multiple parts. Our choice of 3 groups of axially-arranged detectors has shown to increase the peak NECR by 41%. An appropriate choice of maximum ring difference (MRD) will also maintain the same high performance of sensitivity and high peak NECR while at the same time reduces the data size. The extremely-oblique line of response for large axial FOV does not contribute much to the performance of the scanner. The total sensitivity with full MRD increased only 15% than that with about half MRD. The peak NECR was saturated at about half MRD. The entire-body PET scanner promises to provide a large axial FOV and to have sufficient performance values without using the full data.

  2. Accurate method for the Brownian dynamics simulation of spherical particles with hard-body interactions

    NASA Astrophysics Data System (ADS)

    Barenbrug, Theo M. A. O. M.; Peters, E. A. J. F. (Frank); Schieber, Jay D.

    2002-11-01

    In Brownian Dynamics simulations, the diffusive motion of the particles is simulated by adding random displacements, proportional to the square root of the chosen time step. When computing average quantities, these Brownian contributions usually average out, and the overall simulation error becomes proportional to the time step. A special situation arises if the particles undergo hard-body interactions that instantaneously change their properties, as in absorption or association processes, chemical reactions, etc. The common "naı̈ve simulation method" accounts for these interactions by checking for hard-body overlaps after every time step. Due to the simplification of the diffusive motion, a substantial part of the actual hard-body interactions is not detected by this method, resulting in an overall simulation error proportional to the square root of the time step. In this paper we take the hard-body interactions during the time step interval into account, using the relative positions of the particles at the beginning and at the end of the time step, as provided by the naı̈ve method, and the analytical solution for the diffusion of a point particle around an absorbing sphere. Öttinger used a similar approach for the one-dimensional case [Stochastic Processes in Polymeric Fluids (Springer, Berlin, 1996), p. 270]. We applied the "corrected simulation method" to the case of a simple, second-order chemical reaction. The results agree with recent theoretical predictions [K. Hyojoon and Joe S. Kook, Phys. Rev. E 61, 3426 (2000)]. The obtained simulation error is proportional to the time step, instead of its square root. The new method needs substantially less simulation time to obtain the same accuracy. Finally, we briefly discuss a straightforward way to extend the method for simulations of systems with additional (deterministic) forces.

  3. Simulation of SAR in the Human Body to Determine Effects of RF Heating

    NASA Astrophysics Data System (ADS)

    Michiyama, Tetsuyuki; Nikawa, Yoshio

    The body area network (BAN) has attracted attention because of its potential for high-grade wireless communication technology and its safety and high durability. Also, human area transmission of a BAN propagating at an ultra-wide band (UWB) has been demonstrated recently. When considering the efficiency of electromagnetic (EM) propagation inside the human body for BAN and hyperthermia treatment using RF, it is important to determine the mechanism of EM dissipation in the human body. A body heating system for hyperthermia must deposit EM energy deep inside the body. Also, it is important that the EM field generated by the implant system is sufficiently strong. In this study, the specific absorption rate (SAR) distribution is simulated using an EM simulator to consider the biological transmission mechanism and its effects. To utilize the EM field distribution using an implant system for hyperthermia treatment, the SAR distribution inside the human body is simulated. As a result, the SAR distribution is concentrated on the surface of human tissue, the muscle-bolus interface, the pancreas, the stomach, the spleen and the regions around bones. It can also be concentrated in bone marrow and cartilage. From these results, the appropriate location for the implant system is revealed on the basis of the current distribution and differences in the wave impedance of interfacing tissues. The possibility of accurate data transmission and suitable treatment planning is confirmed.

  4. A generic multi-flex-body dynamics, controls simulation tool for space station

    NASA Technical Reports Server (NTRS)

    London, Ken W.; Lee, John F.; Singh, Ramen P.; Schubele, Buddy

    1991-01-01

    An order (n) multiflex body Space Station simulation tool is introduced. The flex multibody modeling is generic enough to model all phases of Space Station from build up through to Assembly Complete configuration and beyond. Multibody subsystems such as the Mobile Servicing System (MSS) undergoing a prescribed translation and rotation are also allowed. The software includes aerodynamic, gravity gradient, and magnetic field models. User defined controllers can be discrete or continuous. Extensive preprocessing of 'body by body' NASTRAN flex data is built in. A significant aspect, too, is the integrated controls design capability which includes model reduction and analytic linearization.

  5. Wound healing effect of acellular artificial dermis containing extracellular matrix secreted by human skin fibroblasts.

    PubMed

    Seo, Young-Kwon; Song, Kye-Yong; Kim, Young-Jin; Park, Jung-Keug

    2007-07-01

    In this study, an acellular artificial dermis, composed of human collagen and glycosaminoglycan (GAG) secreted by cultured human fibroblasts on a bovine collagen sponge, was developed. Much of the newly secreted extracellular matrix (ECM) remained after the cell removal process. The main theme of this study focused on the matrix, rather than the viable cell components of the skin, as the major dermal deficit in the wound. Both the acellular artificial and bioartificial dermises, containing viable cells with ECM, were significantly less soluble than the collagen sponge, and the relative GAG content in the bioartificial and acellular artificial dermises was approximately 115-120% of the chondroitin-6-sulfate (CS) content found in the collagen sponge. In the group receiving the collagen sponge, the wound area gradually decreased to approximately 10% of its original area, while in the groups receiving the bioartificial and acellular artificial dermises, the wound area also gradually decreased to approximately 60 and 50%, respectively, of the original size over the 5 weeks after grafting. Both the bioartificial and acellular artificial dermises formed thicker, denser collagen fibers; more new blood vessel formation was observed in both cases. The basement membrane of the regenerated epidermal-dermal junction was thicker and more linear in the acellular artificial dermis graft than in the collagen sponge graft. In conclusion, the wound healing effects of acellular artificial dermis are no less than those of the bioartificial dermis, and much better than the collagen sponge graft with respect to wound contraction, angiogenesis, collagen formation, and basement membrane repair.

  6. Robotic simulation of flexible-body spacecraft dynamics in a satellite servicing testbed

    NASA Astrophysics Data System (ADS)

    Brannan, Justin Cory

    Satellite failures that once led to end-of-life may eventually be addressed using robotic servicing platforms. The ability to model and simulate the physical interaction between two free-floating spacecraft is a key aspect of robotic servicing, and understanding how large appendages such as solar panels, antenna arrays and booms affect the combined system dynamics may be critical to mission operations. This research presents a model of the coupled rigid- and flexible-body satellite dynamics that can be implemented on a robotic satellite simulator. The coupled dynamics are validated against a commercially available dynamics software package, and robot hardware-in-the-loop tests are conducted to demonstrate how the dynamics model is able to predict the response of a robot mass simulator outfitted with physical appendages. Through both validation efforts, a flexible-body simulation is developed to observe the resulting dynamics of a given satellite system on-orbit.

  7. CHANGE IN KNEE CONTACT FORCE WITH SIMULATED CHANGE IN BODY WEIGHT

    PubMed Central

    Knarr, Brian A.; Higginson, Jill S.; Zeni, Joseph A.

    2015-01-01

    The relationship between obesity, weight gain and progression of knee osteoarthritis is well supported, suggesting that excessive joint loading may be a mechanism responsible for cartilage deterioration. Examining the influence of weight gain on joint compressive forces is difficult, as both muscles and ground reaction forces can have a significant impact on the forces experienced during gait. While previous studies have examined the relationship between body weight and knee forces, these studies have used models that were not validated using experimental data. Therefore, the objective of this study was to evaluate the relationship between changes in body weight and changes in knee joint contact forces for an individual’s gait pattern using musculoskeletal modeling that is validated against known internal compressive forces. Optimal weighting constants were determined for 3 subjects to generate valid predictions of knee contact forces using in vivo data collection with instrumented total knee arthroplasty. A total of five simulations per walking trial were generated for each subject, from 80–120% body weight in 10% increments, resulting in fifty total simulations. The change in peak knee contact force with respect to body weight was found to be constant and subject-specific, predominantly determined by the peak force during the baseline condition at 100% body weight. This relationship may be further altered by any change in kinematics or body mass distribution that may occur as a result of a change in body weight or exercise program. PMID:25760517

  8. Fast Generation of Ensembles of Cosmological N-Body Simulations via Mode-Resampling

    SciTech Connect

    Schneider, M D; Cole, S; Frenk, C S; Szapudi, I

    2011-02-14

    We present an algorithm for quickly generating multiple realizations of N-body simulations to be used, for example, for cosmological parameter estimation from surveys of large-scale structure. Our algorithm uses a new method to resample the large-scale (Gaussian-distributed) Fourier modes in a periodic N-body simulation box in a manner that properly accounts for the nonlinear mode-coupling between large and small scales. We find that our method for adding new large-scale mode realizations recovers the nonlinear power spectrum to sub-percent accuracy on scales larger than about half the Nyquist frequency of the simulation box. Using 20 N-body simulations, we obtain a power spectrum covariance matrix estimate that matches the estimator from Takahashi et al. (from 5000 simulations) with < 20% errors in all matrix elements. Comparing the rates of convergence, we determine that our algorithm requires {approx}8 times fewer simulations to achieve a given error tolerance in estimates of the power spectrum covariance matrix. The degree of success of our algorithm indicates that we understand the main physical processes that give rise to the correlations in the matter power spectrum. Namely, the large-scale Fourier modes modulate both the degree of structure growth through the variation in the effective local matter density and also the spatial frequency of small-scale perturbations through large-scale displacements. We expect our algorithm to be useful for noise modeling when constraining cosmological parameters from weak lensing (cosmic shear) and galaxy surveys, rescaling summary statistics of N-body simulations for new cosmological parameter values, and any applications where the influence of Fourier modes larger than the simulation size must be accounted for.

  9. The Rufous Hummingbird in hovering flight -- full-body 3D immersed boundary simulation

    NASA Astrophysics Data System (ADS)

    Ferreira de Sousa, Paulo; Luo, Haoxiang; Bocanegra Evans, Humberto

    2009-11-01

    Hummingbirds are an interesting case study for the development of micro-air vehicles since they combine the high flight stability of insects with the low metabolic power per unit of body mass of bats, during hovering flight. In this study, simulations of a full-body hummingbird in hovering flight were performed at a Reynolds number around 3600. The simulations employ a versatile sharp-interface immersed boundary method recently enhanced at our lab that can treat thin membranes and solid bodies alike. Implemented on a Cartesian mesh, the numerical method allows us to capture the vortex dynamics of the wake accurately and efficiently. The whole-body simulation will allow us to clearly identify the three general patterns of flow velocity around the body of the hummingbird referred in Altshuler et al. (Exp Fluids 46 (5), 2009). One focus of the current study is to understand the interaction between the wakes of the two wings at the end of the upstroke, and how the tail actively defects the flow to contribute to pitch stability. Another focus of the study will be to identify the pair of unconnected loops underneath each wing.

  10. Dynamic Simulation and Static Matching for Action Prediction: Evidence from Body Part Priming

    ERIC Educational Resources Information Center

    Springer, Anne; Brandstadter, Simone; Prinz, Wolfgang

    2013-01-01

    Accurately predicting other people's actions may involve two processes: internal real-time simulation (dynamic updating) and matching recently perceived action images (static matching). Using a priming of body parts, this study aimed to differentiate the two processes. Specifically, participants played a motion-controlled video game with…

  11. Advances in Chimera Grid Tools for Multi-Body Dynamics Simulations and Script Creation

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    2004-01-01

    This viewgraph presentation contains information about (1) Framework for multi-body dynamics - Geometry Manipulation Protocol (GMP), (2) Simulation procedure using Chimera Grid Tools (CGT) and OVERFLOW-2 (3) Further recent developments in Chimera Grid Tools OVERGRID, Grid modules, Script library and (4) Future work.

  12. RAY-RAMSES: a code for ray tracing on the fly in N-body simulations

    NASA Astrophysics Data System (ADS)

    Barreira, Alexandre; Llinares, Claudio; Bose, Sownak; Li, Baojiu

    2016-05-01

    We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementation using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conventional methods, which can be important in tests of theory systematics in preparation for upcoming large scale structure surveys.

  13. Monte Carlo Simulations for the Purpose of Efficiency Curve Calibration for the Fastscan Whole Body Counter

    NASA Astrophysics Data System (ADS)

    Graham, Hannah Robyn

    In order to be able to qualify and quantify radiation exposure in terms of dose, a Fastscan whole body counter must be calibrated correctly. Current calibration methods do not take the full range of body types into consideration when creating efficiency curve calibrations. The goal of this work is the creation of a Monte Carlo (MCNP) model, that allows the simulation of efficiency curves for a diverse population of subjects. Models were created for both the Darlington and the Pickering Fastscan WBCs, and the simulations were benchmarked against experimental results with good agreement. The Pickering Fastscan was found to have agreement to within +/-9%, and the Darlington Fastscan had agreement to within +/-11%. Further simulations were conducted to investigate the effects of increased body fat on the detected activity, as well as locating the position of external contamination using front/back ratios of activity. Simulations were also conducted to create efficiency calibrations that had good agreement with the manufacturer's efficiency curves. The work completed in this thesis can be used to create efficiency calibration curves for unique body compositions in the future.

  14. On the inadequacies of current multi-flexible body simulation codes

    NASA Technical Reports Server (NTRS)

    Eke, Fidelis O.; Laskin, Robert A.

    1987-01-01

    DISCOS was used to simulate the spin-up of a uniform flexible beam mounted on a rigid spinning disk. The system operated well for the first few seconds but then there was a drastic rise in deflection as the whole system became unstable. Attention is given to the reason for the breakdown of DISCOS and how this affects the simulation results from DISCOS and other multiflexible-body simulation programs. It is found that a formulation option already available in DISCOS will eliminate the dramatic divergence observed in high spin regimes and give good results in low spin regimes while requiring highly simplified input data.

  15. Simulation and Analyses of Multi-Body Separation in Launch Vehicle Staging Environment

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Hotchko, Nathaniel J.; Samareh, Jamshid; Covell, Peter F.; Tartabini, Paul V.

    2006-01-01

    The development of methodologies, techniques, and tools for analysis and simulation of multi-body separation is critically needed for successful design and operation of next generation launch vehicles. As a part of this activity, ConSep simulation tool is being developed. ConSep is a generic MATLAB-based front-and-back-end to the commercially available ADAMS. solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the 3-body separation capability in ConSep and its application to the separation of the Shuttle Solid Rocket Boosters (SRBs) from the External Tank (ET) and the Orbiter. The results are compared with STS-1 flight data.

  16. Stellar evolution in N-body simulations of disk galaxies. I

    NASA Technical Reports Server (NTRS)

    Comins, N. F.

    1983-01-01

    The Kalnajs (1972, 1976) Omega models of global mass and velocity distributions are employed in the present two-dimensional N-body simulation, which allows for a spectrum of particle masses, stellar explosions, explosion remnant interactions with an interstellar medium, and the creation of new stars from the gas. Two sequences of runs using the Omega values of 0.8 and 0.9 examine the separate and combined effects of particle mass distribution, the gravitational influence of an interstellar gas distribution on the N-body particles, and stellar evolution, allowing for stellar explosions and star formation from the gas. It is found that both Omega values' nonequilibrium results dramatically change when evolution is allowed to occur. These results call for more realistic coupled N-body and evolution simulations in order to improve the understanding of disk galaxy evolution.

  17. Three-body interactions in complex fluids: Virial coefficients from simulation finite-size effects

    SciTech Connect

    Ashton, Douglas J.; Wilding, Nigel B.

    2014-06-28

    A simulation technique is described for quantifying the contribution of three-body interactions to the thermodynamical properties of coarse-grained representations of complex fluids. The method is based on a new approach for determining virial coefficients from the measured volume-dependent asymptote of a certain structural function. By comparing the third virial coefficient B{sub 3} for a complex fluid with that of an approximate coarse-grained model described by a pair potential, three body effects can be quantified. The strategy is applicable to both Molecular Dynamics and Monte Carlo simulation. Its utility is illustrated via measurements of three-body effects in models of star polymers and in highly size-asymmetrical colloid-polymer mixtures.

  18. GLOBAL HIGH-RESOLUTION N-BODY SIMULATION OF PLANET FORMATION. I. PLANETESIMAL-DRIVEN MIGRATION

    SciTech Connect

    Kominami, J. D.; Daisaka, H.; Makino, J.; Fujimoto, M. E-mail: daisaka@phys.science.hit-u.ac.jp E-mail: fujimoto.masaki@jaxa.jp

    2016-03-01

    We investigated whether outward planetesimal-driven migration (PDM) takes place or not in simulations when the self-gravity of planetesimals is included. We performed N-body simulations of planetesimal disks with a large width (0.7–4 au) that ranges over the ice line. The simulations consisted of two stages. The first-stage simulations were carried out to see the runaway growth phase using the planetesimals of initially the same mass. The runaway growth took place both at the inner edge of the disk and at the region just outside the ice line. This result was utilized for the initial setup of the second-stage simulations, in which the runaway bodies just outside the ice line were replaced by the protoplanets with about the isolation mass. In the second-stage simulations, the outward migration of the protoplanet was followed by the stopping of the migration due to the increase of the random velocity of the planetesimals. Owing to this increase of random velocities, one of the PDM criteria derived in Minton and Levison was broken. In the current simulations, the effect of the gas disk is not considered. It is likely that the gas disk plays an important role in PDM, and we plan to study its effect in future papers.

  19. A new paradigm for reproducing and analyzing N-body simulations of planetary systems

    NASA Astrophysics Data System (ADS)

    Rein, Hanno; Tamayo, Daniel

    2017-01-01

    The reproducibility of experiments is one of the main principles of the scientific method. However, numerical N-body experiments, especially those of planetary systems, are currently not reproducible. In the most optimistic scenario, they can only be replicated in an approximate or statistical sense. Even if authors share their full source code and initial conditions, differences in compilers, libraries, operating systems or hardware often lead to qualitatively different results. We provide a new set of easy-to-use, open-source tools that address the above issues, allowing for exact (bit-by-bit) reproducibility of N-body experiments. In addition to generating completely reproducible integrations, we show that our framework also offers novel and innovative ways to analyze these simulations. As an example, we present a high-accuracy integration of the Solar System spanning 10 Gyrs, requiring several weeks to run on a modern CPU. In our framework we can not only easily access simulation data at predefined intervals for which we save snapshots, but at any time during the integration. We achieve this by integrating an on-demand reconstructed simulation forward in time from the nearest snapshot. This allows us to extract arbitrary quantities at any point in the saved simulation exactly (bit-by-bit), and within seconds rather than weeks. We believe that the tools we present in this paper offer a new paradigm for how N-body simulations are run, analyzed, and shared across the community.

  20. On the simulation of indistinguishable fermions in the many-body Wigner formalism

    NASA Astrophysics Data System (ADS)

    Sellier, J. M.; Dimov, I.

    2015-01-01

    The simulation of quantum systems consisting of interacting, indistinguishable fermions is an incredible mathematical problem which poses formidable numerical challenges. Many sophisticated methods addressing this problem are available which are based on the many-body Schrödinger formalism. Recently a Monte Carlo technique for the resolution of the many-body Wigner equation has been introduced and successfully applied to the simulation of distinguishable, spinless particles. This numerical approach presents several advantages over other methods. Indeed, it is based on an intuitive formalism in which quantum systems are described in terms of a quasi-distribution function, and highly scalable due to its Monte Carlo nature. In this work, we extend the many-body Wigner Monte Carlo method to the simulation of indistinguishable fermions. To this end, we first show how fermions are incorporated into the Wigner formalism. Then we demonstrate that the Pauli exclusion principle is intrinsic to the formalism. As a matter of fact, a numerical simulation of two strongly interacting fermions (electrons) is performed which clearly shows the appearance of a Fermi (or exchange-correlation) hole in the phase-space, a clear signature of the presence of the Pauli principle. To conclude, we simulate 4, 8 and 16 non-interacting fermions, isolated in a closed box, and show that, as the number of fermions increases, we gradually recover the Fermi-Dirac statistics, a clear proof of the reliability of our proposed method for the treatment of indistinguishable particles.

  1. Cosmological N-body Simulation of Galaxy and Large-Scale Structure Formation: The Gravity Frontier

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly

    2015-04-01

    One of the first N-body simulations done almost 50 years ago had only 200 self-gravitating particles. Even this first baby step made substantial impact on understanding how astronomical objects should form. Now powerful supercomputers and new algorithms allow astronomers produce N-body simulations that employ up to a trillion dark matter particles and produce vital theoretical predictions regarding formation, evolution, structure and statistics of objects ranging from dwarf galaxies to clusters and superclusters of galaxies. With only gravity involved in these theoretical models, one would naively expect that by now we should know everything we need about N-body dynamics of cosmological fluctuations. Not the case. It appears that the Universe was not cooperative and gave us divergencies in the initial conditions generated during the Inflation epoch and subsequent expansion of the Universe - the infinite phase-space density and divergent density fluctuations. Ever increasing observational demands on statistics and accuracy of theoretical predictions is another driving force for more realistic and larger N-body simulations. Large current and new planned observational projects such as BOSS, eBOSS, Euclid, LSST will bring information on spatial distribution, motion, and properties of millions of galaxies at different redshifts. Direct simulations of evolution of gas and formation of stars for millions of forming galaxies will not be available for years leaving astronomers with the only option - to develop methods to combine large N-body simulations with models of galaxy formation to produce accurate theoretical predictions. I will discuss the current status of the field and directions of its development.

  2. Flow Simulation of N3-X Hybrid Wing-Body Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Liou, Meng-Sing

    2013-01-01

    System studies show that a N3-X hybrid wing-body aircraft with a turboelectric distributed propulsion system using a mail-slot inlet/nozzle nacelle can meet the environmental and performance goals for N+3 generation transports (three generations beyond the current air transport technology level) set by NASA s Subsonic Fixed Wing Project. In this study, a Navier-Stokes flow simulation of N3-X on hybrid unstructured meshes was conducted, including the mail-slot propulsor. The geometry of the mail-slot propulsor was generated by a CAD (Computer-Aided Design)-free shape parameterization. A body force approach was used for a more realistic and efficient simulation of the turning and loss effects of the fan blades and the inlet-fan interactions. Flow simulation results of the N3-X demonstrates the validity of the present approach.

  3. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    SciTech Connect

    Fu, Yao E-mail: jhsong@cec.sc.edu; Song, Jeong-Hoon E-mail: jhsong@cec.sc.edu

    2014-08-07

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.

  4. Treatment of an 8-mm Myxoma Using Acellular Corneal Tissue

    PubMed Central

    Lim, Kyung Sup; Wee, Sung Wook

    2014-01-01

    A myxoma is a benign tumor found in the heart and in various soft tissues; however, a corneal myxoma is rare. A mucinous mass of unknown etiology was observed on the left cornea of a 32-year-old male patient. We performed deep anterior lamellar keratoplasty using acellular corneal tissue and concurrent amniotic membrane transplantation. Hematoxylin and eosin staining revealed vacuolation of the parenchyma and myxoid change in the corneal tissue that occurred in the anterior half of the corneal parenchyma. We identified a myxoid stroma by Alcian blue staining and observed collagen fibers with denatured stroma by Masson trichrome staining. The patient's visual acuity improved from light perception to 20 / 200, and the intraocular pressure remained within the normal range for one year after surgery. The transplanted cornea survived successfully with well-maintained transparency, and recurrence was not observed one year after surgery. PMID:24505204

  5. Computational modelling of string body interaction for the violin family and simulation of wolf notes

    NASA Astrophysics Data System (ADS)

    Inácio, O.; Antunes, J.; Wright, M. C. M.

    2008-02-01

    Most theoretical studies of bowed-string instruments deal with isolated strings, pinned on fixed supports. In others, the instrument body dynamics have been accounted by using extremely simplified models of the string-body interaction through the instrument bridge. Such models have, nevertheless, been instrumental to the understanding of a very common and musically undesirable phenomenon known as the wolf note—a strong beating interplay between string and body vibrations. Cellos, bad and good, are particularly prone to this problem. In previous work, a computational method that allows efficient time-domain modelling of bowed strings based on a modal approach has been introduced. This has been extended to incorporate the complex dynamics of real-life instrument bodies, and their coupling to the string motions, using experimental dynamical body data. The string is modelled using its unconstrained modes, assuming pinned-pinned boundary conditions at the tailpiece and the nut. At the intermediary bridge location, the string-body coupling is enforced using the body impulse-response or modal data, as measured at the instrument bridge. In the present paper, this computational approach is applied to a specific cello, which provided experimental wolf-behaviour data under several bowing conditions, as well as laboratory measurements of the bridge impulse responses on which the numerical simulations were based. Interesting aspects of the string-body dynamical responses are highlighted by numerical simulations and the corresponding sounds and animations produced. Finally, a qualitative (and, when possible, quantitative) comparison of the experimental and numerical results is presented.

  6. An efficient algorithm for fully resolved simulation of freely swimming bodies

    NASA Astrophysics Data System (ADS)

    Shirgaonkar, Anup; Patankar, Neelesh; Maciver, Malcolm

    2007-11-01

    There is a need to better understand the physical principles underlying the extraordinary mobility of swimming and flying animals. To that end, we present a fully resolved simulation scheme for aquatic locomotion that is sufficiently general to potentially function for small flying animals as well. The method combines the rigid particulate scheme of Patankar et al. (IJMF, 2001) with a momentum redistribution scheme to consistently solve for fluid-body forces as well as the swimming velocity. The input to the algorithm is the deforming motion of the fish body or its fins in the frame of reference of the fish. The method is designed to be efficient, parallelizable, and can be easily implemented into existing fluid dynamics codes. We demonstrate that the new method is capable of simulating variety of fish forms including flexible bodies such as an eel, or bodies with flexible fins attached to them such as the blackghost knifefish (Apteronotus albifrons). Insights into the hydrodynamics of aquatic locomotion based on our simulations will be summarized. The proposed technique is also applicable to variety of problems such as designing underwater vehicles, neuromechanical modeling, understanding the role of hydrodynamics on the evolution of fish forms, and animation.

  7. RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber: Preprint

    SciTech Connect

    Yu, Y.; Li, Y.

    2011-03-01

    A preliminary study on a two-body floating wave absorbers is presented in this paper. A Reynolds-Averaged Navier-Stokes computational method is applied for analyzing the hydrodynamic heave response of the absorber in operational wave conditions. The two-body floating wave absorber contains a float section and a submerged reaction section. For validation purposes, our model is first assumed to be locked. The two sections are forced to move together with each other. The locked single body model is used in a heave decay test, where the RANS result is validated with the experimental measurement. For the two-body floating point absorber simulation, the two sections are connected through a mass-spring-damper system, which is applied to simulate the power take-off mechanism under design wave conditions. Overall, the details of the flow around the absorber and its nonlinear interaction with waves are investigated, and the power absorption efficiency of the two-body floating wave absorber in waves with a constant value spring-damper system is examined.

  8. Structure overset grid method and its applications to simulation of multi-body separation

    NASA Astrophysics Data System (ADS)

    Zhang, HaiRui; Fan, JingJing; Yuan, Wu; Zhang, WeiHua

    2015-09-01

    This paper proposes an automatic structure overset grid method, which utilizes the hole-surface optimization with one-step searching, wall-surface grid oversetting, and dynamic overset grid approaches to achieve the high adaptability of overset grids for complex multi-body aircrafts. Specifically, based on the automatic structure overset grids, the method first solves the coupling of Navier-Stokes (N-S) unsteady flow equation and 6DOF motion equation, and establishes the multi-body collision model. Then, the numerical simulation of unsteady flow for complex aircrafts' multi-body separation, the simulation of multi-body separating trajectory and the separation safety analysis are accomplished. Thus, the method can properly handle practical engineering problems including the wing/drop tank separation, aircraft/mount separation, and cluster bomb projection. Experiments show that our numerical results match well with experimental results, which demonstrates the effectiveness of our methods in solving the multi-body separation problem for aircrafts with complex shapes.

  9. A three body dynamic simulation of a seated tractor rocket escape system for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Ondler, R. M.

    1989-01-01

    In the tractor-rocket seated-extraction candidate system for Space Shuttle Orbiter crew escape, the crewmember is pulled from his seat and away from the Orbiter via an elastic pendant, using a system of rails to guide the extraction trajectory through an opening on the window frame for flight deck crew and through the side hatch for the middeck crew. A three-body simulation has been developed to model the flight-mechanics aspects of the concept, where the three bodies are the astronaut (six DOF), the tractor rocket (six DOF), and the Shuttle Orbiter (three DOF); attention is given to crewmembers' clearance of the Orbiter structure and engine plumes.

  10. Direct simulation Monte Carlo and Navier-Stokes simulations of blunt body wake flows

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Mitcheltree, Robert A.; Dogra, Virendra K.; Wilmoth, Richard G.

    1994-01-01

    Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rare faction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefunction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the afterbody sting are emphasized in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.

  11. Towards Interactive Medical Content Delivery Between Simulated Body Sensor Networks and Practical Data Center.

    PubMed

    Shi, Xiaobo; Li, Wei; Song, Jeungeun; Hossain, M Shamim; Mizanur Rahman, Sk Md; Alelaiwi, Abdulhameed

    2016-10-01

    With the development of IoT (Internet of Thing), big data analysis and cloud computing, traditional medical information system integrates with these new technologies. The establishment of cloud-based smart healthcare application gets more and more attention. In this paper, semi-physical simulation technology is applied to cloud-based smart healthcare system. The Body sensor network (BSN) of system transmit has two ways of data collection and transmission. The one is using practical BSN to collect data and transmitting it to the data center. The other is transmitting real medical data to practical data center by simulating BSN. In order to transmit real medical data to practical data center by simulating BSN under semi-physical simulation environment, this paper designs an OPNET packet structure, defines a gateway node model between simulating BSN and practical data center and builds a custom protocol stack. Moreover, this paper conducts a large amount of simulation on the real data transmission through simulation network connecting with practical network. The simulation result can provides a reference for parameter settings of fully practical network and reduces the cost of devices and personnel involved.

  12. Vlasov simulation of the interaction between the solar wind and a dielectric body

    SciTech Connect

    Umeda, Takayuki; Kimura, Tetsuya; Togano, Kentaro; Matsumoto, Yosuke; Ogino, Tatsuki; Fukazawa, Keiichiro; Miyoshi, Takahiro; Terada, Naoki; Nakamura, Takuma K. M.

    2011-01-15

    The global structure of wake field behind an unmagnetized object in the solar wind is studied by means of a 2.5-dimensional full-electromagnetic Vlasov simulation. The interaction of a plasma flow with an unmagnetized object is quite different from that with a magnetized object such as the Earth. Due to the absence of the global magnetic field, the unmagnetized object absorbs plasma particles that reach the surface, generating a plasma cavity called ''wake'' on the antisolar side of the object. For numerical simulations of electromagnetic structures around the wake, it is important to include the charging effect in global-scale simulations. The present study is one of the first attempts to study the formation of wake fields via a full-kinetic Vlasov simulation. It has been confirmed that the spatial structures of wake fields depend on the direction of interplanetary magnetic fields as well as the distance from the body.

  13. Quantum simulation. Coherent imaging spectroscopy of a quantum many-body spin system.

    PubMed

    Senko, C; Smith, J; Richerme, P; Lee, A; Campbell, W C; Monroe, C

    2014-07-25

    Quantum simulators, in which well-controlled quantum systems are used to reproduce the dynamics of less understood ones, have the potential to explore physics inaccessible to modeling with classical computers. However, checking the results of such simulations also becomes classically intractable as system sizes increase. Here, we introduce and implement a coherent imaging spectroscopic technique, akin to magnetic resonance imaging, to validate a quantum simulation. We use this method to determine the energy levels and interaction strengths of a fully connected quantum many-body system. Additionally, we directly measure the critical energy gap near a quantum phase transition. We expect this general technique to become a verification tool for quantum simulators once experiments advance beyond proof-of-principle demonstrations and exceed the resources of conventional computers.

  14. Dynamics of the terrestrial planets from a large number of N-body simulations

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Ciesla, Fred J.

    2014-04-01

    The agglomeration of planetary embryos and planetesimals was the final stage of terrestrial planet formation. This process is modeled using N-body accretion simulations, whose outcomes are tested by comparing to observed physical and chemical Solar System properties. The outcomes of these simulations are stochastic, leading to a wide range of results, which makes it difficult at times to identify the full range of possible outcomes for a given dynamic environment. We ran fifty high-resolution simulations each with Jupiter and Saturn on circular or eccentric orbits, whereas most previous studies ran an order of magnitude fewer. This allows us to better quantify the probabilities of matching various observables, including low probability events such as Mars formation, and to search for correlations between properties. We produce many good Earth analogues, which provide information about the mass evolution and provenance of the building blocks of the Earth. Most observables are weakly correlated or uncorrelated, implying that individual evolutionary stages may reflect how the system evolved even if models do not reproduce all of the Solar System's properties at the end. Thus individual N-body simulations may be used to study the chemistry of planetary accretion as particular accretion pathways may be representative of a given dynamic scenario even if that simulation fails to reproduce many of the other observed traits of the Solar System.

  15. Turbine Powered Simulator Calibration and Testing for Hybrid Wing Body Powered Airframe Integration

    NASA Technical Reports Server (NTRS)

    Shea, Patrick R.; Flamm, Jeffrey D.; Long, Kurtis R.; James, Kevin D.; Tompkins, Daniel M.; Beyar, Michael D.

    2016-01-01

    Propulsion airframe integration testing on a 5.75% scale hybrid wing body model us- ing turbine powered simulators was completed at the National Full-Scale Aerodynamics Complex 40- by 80-foot test section. Four rear control surface con gurations including a no control surface de ection con guration were tested with the turbine powered simulator units to investigate how the jet exhaust in uenced the control surface performance as re- lated to the resultant forces and moments on the model. Compared to ow-through nacelle testing on the same hybrid wing body model, the control surface e ectiveness was found to increase with the turbine powered simulator units operating. This was true for pitching moment, lift, and drag although pitching moment was the parameter of greatest interest for this project. With the turbine powered simulator units operating, the model pitching moment was seen to increase when compared to the ow-through nacelle con guration indicating that the center elevon and vertical tail control authority increased with the jet exhaust from the turbine powered simulator units.

  16. Comparative study of the biodegradability of porous silicon films in simulated body fluid.

    PubMed

    Peckham, J; Andrews, G T

    2015-01-01

    The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.

  17. [Preparation of hydroxyapatite coating in concentrated simulated body fluid by accelerated biomimetic synthesis].

    PubMed

    Li, Yadong; Liu, Jingxiao; Shi, Fei; Tang, Nailing; Yu, Ling

    2007-12-01

    In the present work, NiTi alloy substrates were activated by three different pretreatment processes. 5 X SBF1 and 5 X SBF2 concentrated simulated body fluids were prepared with citric acid buffer reagent, and then calcium phosphate coatings were formed quickly on NiTi alloy surface by accelerated biomimetic synthesis after pretreatment. The microstructure, composition and surface morphology of calcium phosphate coatings were studied. The results indicate that calcium phosphate coatings possess porous and net structure, which are composed of precipitated spherical particles with diameter less than 3 microm. The analysis of XRD shows that the main component of calcium phosphate coatings is hydroxyapatite, whereas the concentrated 5 x SBF simulated body fluid, which is in the absence of Mg2+ and HCO3- crystal growth inhibitors, apparently accelerates the growth rate of hydroxyapatite coatings.

  18. Flight-Simulated Launch-Pad-Abort-to-Landing Maneuvers for a Lifting Body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Rivers, Robert A.

    1998-01-01

    The results of an in-flight investigation of the feasibility of conducting a successful landing following a launch-pad abort of a vertically-launched lifting body are presented. The study attempted to duplicate the abort-to-land-ing trajectory from the point of apogee through final flare and included the steep glide and a required high-speed, low-altitude turn to the runway heading. The steep glide was flown by reference to ground-provided guidance. The low-altitude turn was flown visually with a reduced field- of-view duplicating that of the simulated lifting body. Results from the in-flight experiment are shown to agree with ground-based simulation results; however, these tests should not be regarded as a definitive due to performance and control law dissimilarities between the two vehicles.

  19. A novel body weight support system extension: initial concept and simulation study.

    PubMed

    Pennycott, Andrew; Vallery, Heike; Wyss, Dario; Spindler, Markus; Dewarrat, Antoine; Riener, Robert

    2013-06-01

    Body weight supported treadmill training is an approach to gait rehabilitation following a stroke or spinal cord injury. Although lateral control of balance is an important aspect of walking, many of the currently available body weight support systems have a fixed pulley configuration which can lead to lateral forces being developed in the supporting cables, interfering with the lateral balance task. In this paper, a novel extension for body weight support systems, used for treadmill walking, is presented which features a system of pulleys and trolleys. A model is developed for the device along with a basic feedback controller in order to enable simulation of the concept. The lateral forces induced by the novel system are greatly reduced in comparison to a fixed pulley system. This device has applications in balance training within gait rehabilitation programs.

  20. Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems

    NASA Astrophysics Data System (ADS)

    Werner, A. H.; Jaschke, D.; Silvi, P.; Kliesch, M.; Calarco, T.; Eisert, J.; Montangero, S.

    2016-06-01

    Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies.

  1. Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems.

    PubMed

    Werner, A H; Jaschke, D; Silvi, P; Kliesch, M; Calarco, T; Eisert, J; Montangero, S

    2016-06-10

    Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies.

  2. A Numerical Simulation of a Fishlike Body's Self-propelled C-start

    NASA Astrophysics Data System (ADS)

    Liu, G.; Yu, Y. L.; Tong, B. G.

    2011-09-01

    This paper presents a numerical method to deal with a two-dimensional deformable fishlike body's large deformation self-propelled swimming. Overset grids are employed to discretize the flow domain around the large deforming body which is simulated by a foil. The kinematics, energetics and the flow structures of a typical C-start are predicted by a coupling solution of the two-dimensional incompressible fluid dynamics and the deforming body dynamics. As a typical practice, the foil performs a C-start-like motion in stationary water based on the prescribed deforming mode. It is found that the locomotion of the foil is similar to a real fish's C-start and the hydrodynamic efficiency of this C-start model is about 29% which is close to the value calculated by the previous theoretical estimation. Particularly, a structure of three significant concentrated vortices is discovered in the wake.

  3. Cartesian Off-Body Grid Adaption for Viscous Time- Accurate Flow Simulation

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2011-01-01

    An improved solution adaption capability has been implemented in the OVERFLOW overset grid CFD code. Building on the Cartesian off-body approach inherent in OVERFLOW and the original adaptive refinement method developed by Meakin, the new scheme provides for automated creation of multiple levels of finer Cartesian grids. Refinement can be based on the undivided second-difference of the flow solution variables, or on a specific flow quantity such as vorticity. Coupled with load-balancing and an inmemory solution interpolation procedure, the adaption process provides very good performance for time-accurate simulations on parallel compute platforms. A method of using refined, thin body-fitted grids combined with adaption in the off-body grids is presented, which maximizes the part of the domain subject to adaption. Two- and three-dimensional examples are used to illustrate the effectiveness and performance of the adaption scheme.

  4. Attitude dynamics simulation subroutines for systems of hinge-connected rigid bodies

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.; Likins, P. W.

    1974-01-01

    Several computer subroutines are designed to provide the solution to minimum-dimension sets of discrete-coordinate equations of motion for systems consisting of an arbitrary number of hinge-connected rigid bodies assembled in a tree topology. In particular, these routines may be applied to: (1) the case of completely unrestricted hinge rotations, (2) the totally linearized case (all system rotations are small), and (3) the mixed, or partially linearized, case. The use of the programs in each case is demonstrated using a five-body spacecraft and attitude control system configuration. The ability of the subroutines to accommodate prescribed motions of system bodies is also demonstrated. Complete listings and user instructions are included for these routines (written in FORTRAN V) which are intended as multi- and general-purpose tools in the simulation of spacecraft and other complex electromechanical systems.

  5. Simulation of Quantum Many-Body Systems with Strings of Operators and Monte Carlo Tensor Contractions

    SciTech Connect

    Schuch, Norbert; Wolf, Michael M.; Cirac, J. Ignacio; Verstraete, Frank

    2008-02-01

    We introduce string-bond states, a class of states obtained by placing strings of operators on a lattice, which encompasses the relevant states in quantum information. For string-bond states, expectation values of local observables can be computed efficiently using Monte Carlo sampling, making them suitable for a variational algorithm which extends the density matrix renormalization group to higher dimensional and irregular systems. Numerical results demonstrate the applicability of these states to the simulation of many-body systems.0.

  6. Unsteady aerodynamic simulation of multiple bodies in relative motion: A prototype method

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.

    1989-01-01

    A prototype method for time-accurate simulation of multiple aerodynamic bodies in relative motion is presented. The method is general and features unsteady chimera domain decomposition techniques and an implicit approximately factored finite-difference procedure to solve the time-dependent thin-layer Navier-Stokes equations. The method is applied to a set of two- and three- dimensional test problems to establish spatial and temporal accuracy, quantify computational efficiency, and begin to test overall code robustness.

  7. Three-dimensional finite element simulations of vertebral body thermal treatment (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Patel, Samit J.; Morris, Ronit; Hoopes, P. J.; Bergeron, Jeffrey A.; Mahajan, Roop

    2005-04-01

    Lower back pain affects a large group of people worldwide and when in its early stages, has no viable interventional treatment. In order to avoid the eventuality of an invasive surgical procedure, which is further down the Care Pathway, an interventional treatment that is minimally invasive and arrests the patient's pain would be of tremendous clinical benefit. There is a hypothesis that if the basivertebral nerve in the vertebral body is defunctionalized, lower back pain may be lessened. To further investigate creating a means to provide localized thermal therapy, bench and animal studies were planned, but to help select the applicator configuration and placement, numerical modeling studies were undertaken. A 3D finite element model was utilized to predict the electric field pattern and power deposition pattern of radiofrequency (RF) based electrodes. Three types of tissues were modeled: 1) porcine (ex-vivo), ovine (in-vivo preclinical), and 3) human (ex-vivo, in-vivo). Two types of RF devices were simulated: 1) a pair of converging, hollow electrodes, and 2) an in-line pair of spaced-apart electrodes. Temperature distributions over time were plotted using the electric field results and the bioheat equation. Since the thermal and electrical properties of the vertebral bodies of porcine, ovine, and human tissue were not available, measurements were undertaken to capture these data to input into the model. The measurements of electrical and thermal properties of cancellous and cortical vertebral body were made over a range of temperatures. The simulation temperature results agreed with live animal and human cadaver studies. In addition, the lesion shapes predicted in the simulations matched CT and MRI studies done during the chronic ovine study, as well as histology results. In conclusion, the simulations aided in shaping and sizing the RF electrodes, as well as positioning them in the vertebral body structures to assure that the basivertebral nerve was ablated, but

  8. Modeling, simulation and optimization approaches for design of lightweight car body structures

    NASA Astrophysics Data System (ADS)

    Kiani, Morteza

    Simulation-based design optimization and finite element method are used in this research to investigate weight reduction of car body structures made of metallic and composite materials under different design criteria. Besides crashworthiness in full frontal, offset frontal, and side impact scenarios, vibration frequencies, static stiffness, and joint rigidity are also considered. Energy absorption at the component level is used to study the effectiveness of carbon fiber reinforced polymer (CFRP) composite material with consideration of different failure criteria. A global-local design strategy is introduced and applied to multi-objective optimization of car body structures with CFRP components. Multiple example problems involving the analysis of full-vehicle crash and body-in-white models are used to examine the effect of material substitution and the choice of design criteria on weight reduction. The results of this study show that car body structures that are optimized for crashworthiness alone may not meet the vibration criterion. Moreover, optimized car body structures with CFRP components can be lighter with superior crashworthiness than the baseline and optimized metallic structures.

  9. N-Body Galaxy Dynamics Simulations on a Homogeneous Beowulf Cluster

    NASA Astrophysics Data System (ADS)

    Gipson, B.; McBride, W. R.; Kornreich, D. A.

    2004-12-01

    The galactic distribution of dark matter in disk galaxies remains an important problem in astrophysics. Modern methods in determining this distribution rely heavily on N--Body simulations. To this end we have developed a variable time step Piet Hut N--Body simulator, run using MPICH on a homogeneous 12 processor (x86) Beowulf cluster. The Hut Algorithm allows for the efficient, accurate calculation of forces between millions of points in a reasonable time. Additionally, subdividing the space into octants allows for the efficient creation O(N log (N)) of mutual nearest-neighbor data for all points. Such data are necessary for the inclusion of smoothed particle hydrodynamics (gas clouds, etc) as well as for merging the frequent, tightly bound, rapidly rotating, binary systems that decrease performance in this type of simulation. Initial tests have shown strong agreement with exhaustive O(N2) calculation results. Simulating 10,000 points yielded a total relative error of 0.32% with the exhaustive case, executing in 3.3 seconds on the cluster. General system-level tests have also been performed, including determining collapse times for cold and isothermal spherical distributions; all resulting in good agreement with analytical results. Tests on the Kuz'min galactic distribution have also resulted in expected rotational rates. We discuss the oscillatory behavior of such distributions within several constant potentials with the intention of further eliciting the distribution of dark matter within our own galaxy.

  10. Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX rigid body solver

    NASA Astrophysics Data System (ADS)

    Izhar, Abubakar; Qureshi, Arshad Hussain; Khushnood, Shahab

    2017-03-01

    This article simulates the vortex-induced oscillations of a rigid circular cylinder with elastic support using the new ANSYS CFX rigid body solver. This solver requires no solid mesh to setup FSI (Fluid Structure Interaction) simulation. The two-way case was setup in CFX only. Specific mass of the cylinder and flow conditions were similar to previous experimental data with mass damping parameter equal to 0.04, specific mass of 1 and Reynolds number of 3800. Two dimensional simulations were setup. Both one-degree-of-freedom and two-degree-of-freedom cases were run and results were obtained for both cases with reasonable accuracy as compared with experimental results. Eight-figure XY trajectory and lock-in behavior were clearly captured. The obtained results were satisfactory.

  11. Real-time simulation model of the HL-20 lifting body

    NASA Astrophysics Data System (ADS)

    Jackson, E. Bruce; Cruz, Christopher I.; Ragsdale, W. A.

    1992-07-01

    A proposed manned spacecraft design, designated the HL-20, has been under investigation at Langley Research Center. Included in that investigation are flight control design and flying qualities studies utilizing a man-in-the-loop real-time simulator. This report documents the current real-time simulation model of the HL-20 lifting body vehicle, known as version 2.0, presently in use at NASA Langley Research Center. Included are data on vehicle aerodynamics, inertias, geometries, guidance and control laws, and cockpit displays and controllers. In addition, trim case and dynamic check case data is provided. The intent of this document is to provide the reader with sufficient information to develop and validate an equivalent simulation of the HL-20 for use in real-time or analytical studies.

  12. Real-time simulation model of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Cruz, Christopher I.; Ragsdale, W. A.

    1992-01-01

    A proposed manned spacecraft design, designated the HL-20, has been under investigation at Langley Research Center. Included in that investigation are flight control design and flying qualities studies utilizing a man-in-the-loop real-time simulator. This report documents the current real-time simulation model of the HL-20 lifting body vehicle, known as version 2.0, presently in use at NASA Langley Research Center. Included are data on vehicle aerodynamics, inertias, geometries, guidance and control laws, and cockpit displays and controllers. In addition, trim case and dynamic check case data is provided. The intent of this document is to provide the reader with sufficient information to develop and validate an equivalent simulation of the HL-20 for use in real-time or analytical studies.

  13. Experiment and molecular dynamics simulation of nanoindentation of body centered cubic iron.

    PubMed

    Lu, Cheng; Gao, Yuan; Michal, Guillaume; Deng, Guanyu; Huynh, Nam N; Zhu, Hongtao; Liu, Xianghua; Tieu, Anh Kiet

    2009-12-01

    Experiments and molecular dynamics (MD) simulations have been conducted to investigate the nanoindentation behaviours of iron with body centered cubic (BCC) structure. The experiments show that the indentation hardness decreases with the indentation depth and it changes sharply for a small depth. Two cases with different crystallographic orientations have been simulated. The indentation plane is (010) for Case I and (111) for Case II, respectively. The calculated harness (17.4 GPa for Case I and 22.6 GPa for Case II) are in reasonable agreement with the experimental value (24.2 GPa). The simulation results show that the crystallographic orientation significantly influences the indentation deformation. Case I and Case II exhibit different deformation patterns. The indentation force and the hardness in Case I are smaller than Case II. It is also found that the pileup around the indenter is mainly formed along [110] direction for both cases.

  14. Large-scale N-body simulations of the viscous overstability in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Rein, Hanno; Latter, Henrik N.

    2013-05-01

    We present results from large-scale particle simulations of the viscous overstability in Saturn's rings. The overstability generates a variety of structures on scales covering a few hundred metres to several kilometres, including axisymmetric wavetrains and their larger scale modulations. Such patterns have been observed in Saturn's rings by the Cassini spacecraft. Our simulations model the collisional evolution of ring particles in a corotating patch of the disc. These are the largest N-body simulations of the viscous overstability yet performed. The radial box size is five orders of magnitude larger than a typical particle radius, and so describes a 20-50 km radial portion of the rings. Its evolution is tracked for more than 10 000 orbits. In agreement with hydrodynamics, our N-body simulations reveal that the viscous overstability exhibits a rich set of dynamics characterized by non-linear travelling waves with wavelengths of a few hundred metres. In addition, wave defects, such as sources and shocks, punctuate this bed of waves and break them up into large-scale divisions of radial width ˜5 km. We find that the wavelength of the travelling waves is positively correlated with the mean optical depth. In order to assess the role of the numerical boundary conditions and also background ring structure, we include simulations of broad spreading rings and simulations with a gradient in the background surface density. Overall, our numerical results and approach provide a tool with which to interpret Cassini occultation observations of microstructure in Saturn's rings. We present an example of such a synthetic occultation observation and discuss what features to expect. We make the entire source code freely available.

  15. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators.

    PubMed

    Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli

    2012-03-15

    The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles.

  16. An actuator line model simulation with optimal body force projection length scales

    NASA Astrophysics Data System (ADS)

    Martinez-Tossas, Luis; Churchfield, Matthew J.; Meneveau, Charles

    2016-11-01

    In recent work (Martínez-Tossas et al. "Optimal smoothing length scale for actuator line models of wind turbine blades", preprint), an optimal body force projection length-scale for an actuator line model has been obtained. This optimization is based on 2-D aerodynamics and is done by comparing an analytical solution of inviscid linearized flow over a Gaussian body force to the potential flow solution of flow over a Joukowski airfoil. The optimization provides a non-dimensional optimal scale ɛ / c for different Joukowski airfoils, where ɛ is the width of the Gaussian kernel and c is the chord. A Gaussian kernel with different widths in the chord and thickness directions can further reduce the error. The 2-D theory developed is extended by simulating a full scale rotor using the optimal body force projection length scales. Using these values, the tip losses are captured by the LES and thus, no additional explicit tip-loss correction is needed for the actuator line model. The simulation with the optimal values provides excellent agreement with Blade Element Momentum Theory. This research is supported by the National Science Foundation (Grant OISE-1243482, the WINDINSPIRE project).

  17. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    PubMed

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  18. Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.

    2010-01-01

    Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (<25 m particle diameter), lunar highland simulant NU-LHT-2M, alumina (average diameter of 50 m used per ASTM G76), and silica (50/70 mesh used per ASTM G65). The measured mass loss from each specimen was converted using standard densities to determine total wear volume in cm3. Abrasion was dominated by the alumina and the simulants were only similar to the silica (i.e., sand) on the softer materials of

  19. Initial conditions for accurate N-body simulations of massive neutrino cosmologies

    NASA Astrophysics Data System (ADS)

    Zennaro, M.; Bel, J.; Villaescusa-Navarro, F.; Carbone, C.; Sefusatti, E.; Guzzo, L.

    2017-04-01

    The set-up of the initial conditions in cosmological N-body simulations is usually implemented by rescaling the desired low-redshift linear power spectrum to the required starting redshift consistently with the Newtonian evolution of the simulation. The implementation of this practical solution requires more care in the context of massive neutrino cosmologies, mainly because of the non-trivial scale-dependence of the linear growth that characterizes these models. In this work, we consider a simple two-fluid, Newtonian approximation for cold dark matter and massive neutrinos perturbations that can reproduce the cold matter linear evolution predicted by Boltzmann codes such as CAMB or CLASS with a 0.1 per cent accuracy or below for all redshift relevant to non-linear structure formation. We use this description, in the first place, to quantify the systematic errors induced by several approximations often assumed in numerical simulations, including the typical set-up of the initial conditions for massive neutrino cosmologies adopted in previous works. We then take advantage of the flexibility of this approach to rescale the late-time linear power spectra to the simulation initial redshift, in order to be as consistent as possible with the dynamics of the N-body code and the approximations it assumes. We implement our method in a public code (REPS rescaled power spectra for initial conditions with massive neutrinos https://github.com/matteozennaro/reps) providing the initial displacements and velocities for cold dark matter and neutrino particles that will allow accurate, i.e. 1 per cent level, numerical simulations for this cosmological scenario.

  20. Hierarchical tree algorithm for collisional N-body simulations on GRAPE

    NASA Astrophysics Data System (ADS)

    Fukushige, Toshiyuki; Kawai, Atsushi

    2016-06-01

    We present an implementation of the hierarchical tree algorithm on the individual timestep algorithm (the Hermite scheme) for collisional N-body simulations, running on the GRAPE-9 system, a special-purpose hardware accelerator for gravitational many-body simulations. Such a combination of the tree algorithm and the individual timestep algorithm was not easy on the previous GRAPE system mainly because its memory addressing scheme was limited only to sequential access to a full set of particle data. The present GRAPE-9 system has an indirect memory addressing unit and a particle memory large enough to store all the particle data and also the tree node data. The indirect memory addressing unit stores interaction lists for the tree algorithm, which is constructed on the host computer, and, according to the interaction lists, force pipelines calculate only the interactions necessary. In our implementation, the interaction calculations are significantly reduced compared to direct N2 summation in the original Hermite scheme. For example, we can achieve about a factor 30 of speedup (equivalent to about 17 teraflops) against the Hermite scheme for a simulation of an N = 106 system, using hardware of a peak speed of 0.6 teraflops for the Hermite scheme.

  1. The use of the articulated total body model as a robot dynamics simulation tool

    NASA Technical Reports Server (NTRS)

    Obergfell, Louise A.; Avula, Xavier J. R.; Kalegs, Ints

    1988-01-01

    The Articulated Total Body (ATB) model is a computer sumulation program which was originally developed for the study of aircrew member dynamics during ejection from high-speed aircraft. This model is totally three-dimensional and is based on the rigid body dynamics of coupled systems which use Euler's equations of motion with constraint relations of the type employed in the Lagrange method. In this paper the use of the ATB model as a robot dynamics simulation tool is discussed and various simulations are demonstrated. For this purpose the ATB model has been modified to allow for the application of torques at the joints as functions of state variables of the system. Specifically, the motion of a robotic arm with six revolute articulations with joint torques prescribed as functions of angular displacement and angular velocity are demonstrated. The simulation procedures developed in this work may serve as valuable tools for analyzing robotic mechanisms, dynamic effects, joint load transmissions, feed-back control algorithms employed in the actuator control and end-effector trajectories.

  2. Rahman Prize Talk: Pushing the frontier in the simulation of correlated quantum many body systems

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    Amazing progress in the simulation of correlated quantum many body systems has been achieved in the past two decades by combining significant advances in new algorithms with efficient implementations on ever faster supercomputers. This has enabled the accurate simulation of an increasing number of problems and helped settle many open questions. I will review a selection of results that my collaborators and I have worked on, from quantum phase transitions in quantum magnets, over supersolidity of bosons in lattice models and Helium-4 to recent simulations of correlated fermions and quantum gases. I will then provide an outlook to the future and discuss how in the short term analog quantum simulators can help tackle problems for which no efficient simulation algorithms exist and how in the longer term quantum computers can be used to solve many of the still open questions in the field. I will finally connect to the topic of the remainder of this symposium by touching on how the design of new topological materials will help in the construction of these quantum computers.

  3. N-body simulations of collective effects in spiral and barred galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, X.

    2016-10-01

    We present gravitational N-body simulations of the secular morphological evolution of disk galaxies induced by density wave modes. In particular, we address the demands collective effects place on the choice of simulation parameters, and show that the common practice of the use of a large gravity softening parameter was responsible for the failure of past simulations to correctly model the secular evolution process in galaxies, even for those simulations where the choice of basic state allows an unstable mode to emerge, a prerequisite for obtaining the coordinated radial mass flow pattern needed for secular evolution of galaxies along the Hubble sequence. We also demonstrate that the secular evolution rates measured in our improved simulations agree to an impressive degree with the corresponding rates predicted by the recently-advanced theories of dynamically-driven secular evolution of galaxies. The results of the current work, besides having direct implications on the cosmological evolution of galaxies, also shed light on the general question of how irreversibility emerges from a nominally reversible physical system.

  4. Management of gingival recession with acellular dermal matrix graft: A clinical study

    PubMed Central

    Balaji, V. R.; Ramakrishnan, T.; Manikandan, D.; Lambodharan, R.; Karthikeyan, B.; Niazi, Thanvir Mohammed; Ulaganathan, G.

    2016-01-01

    Aims and Objectives: Obtaining root coverage has become an important part of periodontal therapy. The aims of this studyare to evaluate the clinical efficacy of acellular dermal matrix graft in the coverage of denuded roots and also to examine the change in the width of keratinized gingiva. Materials and Methods: A total of 20 sites with more than or equal to 2 mm of recession depth were taken into the study, for treatment with acellular dermal matrix graft. The clinical parameters such as recession depth, recession width, width of keratinized gingiva, probing pocket depth (PD), and clinical attachment level (CAL) were measured at the baseline, 8th week, and at the end of the study (16th week). The defects were treated with a coronally positioned pedicle graft combined with acellular dermal matrix graft. Results: Out of 20 sites treated with acellular dermal matrix graft, seven sites showed complete root coverage (100%), and the mean root coverage obtained was 73.39%. There was a statistically significant reduction in recession depth, recession width, and probing PD. There was also a statistically significant increase in width of keratinized gingiva and also gain in CAL. The postoperative results were both clinically and statistically significant (P < 0.0001). Conclusion: The results of this study were esthetically acceptable to the patients and clinically acceptable in all cases. From this study, it may be concluded that acellular dermal matrix graft is an excellent substitute for autogenous graft in coverage of denuded roots. PMID:27829749

  5. Effects of obesity on occupant responses in frontal crashes: a simulation analysis using human body models.

    PubMed

    Shi, Xiangnan; Cao, Libo; Reed, Matthew P; Rupp, Jonathan D; Hu, Jingwen

    2015-01-01

    The objective of this study is to investigate the effects of obesity on occupant responses in frontal crashes using whole-body human finite element (FE) models representing occupants with different obesity levels. In this study, the geometry of THUMS 4 midsize male model was varied using mesh morphing techniques with target geometries defined by statistical models of external body contour and exterior ribcage geometry. Models with different body mass indices (BMIs) were calibrated against cadaver test data under high-speed abdomen loading and frontal crash conditions. A parametric analysis was performed to investigate the effects of BMI on occupant injuries in frontal crashes based on the Taguchi method while controlling for several vehicle design parameters. Simulations of obese occupants predicted significantly higher risks of injuries to the thorax and lower extremities in frontal crashes compared with non-obese occupants, which is consistent with previous field data analyses. These higher injury risks are mainly due to the increased body mass and relatively poor belt fit caused by soft tissues for obese occupants. This study demonstrated the feasibility of using a parametric human FE model to investigate the obesity effects on occupant responses in frontal crashes.

  6. An unusual intraparotid foreign body simulating a tumour: shrapnel from the Spanish Civil War.

    PubMed

    Cembranos, J L López-Cedrún; Búa, J Arenaz; Amezaga, J Alvárez; Zuazua, J Santamaría

    2011-08-01

    A foreign body lodged for decades in the parotid gland, entering through the oral cavity or the skin, is extremely rare. Even less common is the clinical presentation of a foreign body lodged in the parotid gland simulating a tumour. The authors report the finding of a fragment of shrapnel lodged in the parotid gland for 63 years. The case is unusual owing to the rare clinical presentation, the length of time between the injury and the occurrence of symptoms and the associated mandibular osteolysis in the panoramic radiograph. Initial diagnoses considered were a tumour emerging in the parotid gland, a large odontogenic cyst or an odontogenic tumour with soft tissue extension. Sometimes neither fine needle aspiration nor radiology is capable of providing an accurate diagnosis before surgery.

  7. Barred Galaxy Photometry: Comparing results from the Cananea sample with N-body simulations

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.; Gadotti, D. A.; Carrasco, L.; Bosma, A.; de Souza, R. E.; Recillas, E.

    2009-11-01

    We compare the results of the photometrical analysis of barred galaxies with those of a similar analysis from N-body simulations. The photometry is for a sample of nine barred galaxies observed in the J and K[s] bands with the CANICA near infrared (NIR) camera at the 2.1 m telescope of the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Sonora, Mexico. The comparison includes radial ellipticity profiles and surface brightness (density for the N-body galaxies) profiles along the bar major and minor axes. We find very good agreement, arguing that the exchange of angular momentum within the galaxy plays a determinant role in the evolution of barred galaxies.

  8. Large eddy simulation of flows around ground vehicles and other bluff bodies.

    PubMed

    Krajnovic, Sinisa

    2009-07-28

    A brief review of large eddy simulation (LES) applications for different bluff-body flows performed by the author and his co-workers is presented. Examples of flows range from simple cube flows characterized by sharp edge separation over a three-dimensional hill where LES relies on good near-wall resolution, to complex flows of a tall, finite cylinder that contains several flow regimes that cause different challenges to LES. The second part of the paper is devoted to flows around ground vehicles at moderate Reynolds numbers. Although the present review proves the applicability of LES for various bluff-body flows, an increase of the Reynolds number towards the operational speeds of ground vehicles requires accurate near-wall modelling for a successful LES.

  9. Simulation of perturbation produced by an absorbing spherical body in collisionless plasma

    NASA Astrophysics Data System (ADS)

    Krasovsky, V. L.; Kiselyov, A. A.; Dolgonosov, M. S.

    2017-01-01

    A steady plasma state reached in the course of charging of an absorbing spherical body is found using computational methods. Numerical simulations provide complete information on this process, thereby allowing one to find the spatiotemporal dependences of the physical quantities and observe the kinetic phenomena accompanying the formation of stable electron and ion distributions in phase space. The distribution function of trapped ions is obtained, and their contribution to the screening of the charged sphere is determined. The sphere charge and the charge of the trapped-ion cloud are determined as functions of the unperturbed plasma parameters.

  10. Corrosion behavior of plasma electrolytically oxidized gamma titanium aluminide alloy in simulated body fluid.

    PubMed

    Lara Rodriguez, L; Sundaram, P A

    2016-09-15

    Plasma electrolytic oxidized (PEO) γTiAl alloy samples were electrochemically characterized by open circuit potential (OCP), cyclic polarization and electrochemical impedance spectroscopy (EIS) to evaluate their corrosion resistance in simulated body fluid (SBF) in order to gauge their potential for biomedical applications. Experimental results through OCP and cyclic polarization studies demonstrated the protective nature and the beneficial effect of the PEO coatings on γTiAl. The PEO surface increased corrosion resistance of these surface modified alloys. EIS data indicated the presence of an underlying compact oxide layer with surface pores represented by two domes in the Nyquist plots. Electrical equivalent circuits to describe the EIS results are proposed.

  11. Molecular dynamics simulation of interparticle spacing and many-body effect in gold supracrystals.

    PubMed

    Liu, X P; Ni, Y; He, L H

    2016-04-01

    Interparticle spacing in supracrystals is a crucial parameter for photoelectric applications as it dominates the transport rates between neighboring nanoparticles (NPs). Based on large-scale molecular dynamics simulations, we calculate interparticle spacing in alkylthiol-stabilized gold supracrystals as a function of the NP size, ligand length and external pressure. The repulsive many-body interactions in the supracrystals are also quantified by comparing the interparticle spacing with that between two individual NPs at equilibrium. Our results are consistent with available experiments, and are expected to help precise control of interparticle spacing in supracrystal devices.

  12. Monte Carlo simulation of sensitivity and NECR of an entire-body PET scanner.

    PubMed

    Isnaini, Ismet; Obi, Takashi; Yoshida, Eiji; Yamaya, Taiga

    2014-07-01

    The current positron emission tomography (PET) design is aimed toward establishing an entire-body PET scanner. An entire-body PET scanner is a scanner whose axial field of view (FOV) covers the whole body of a patient, whereas whole-body PET scanner can be of any axial FOV length, but was designed for a whole-body scan. Despite its high production cost, an entire-body depth-of-interaction PET scanner offers many benefits, such as shorter and dynamic PET time acquisition, as well as higher sensitivity and count rate performance. This PET scanner may be cost-effective for clinical PET scanners with high scan throughput. In this work, we evaluated the sensitivity and count rate performance of a 2-m-long PET scanner with conventional data acquisition (DAQ) architecture, using Monte Carlo simulation, and we evaluated two ring diameters (60 and 80 cm) to reduce the scanner cost. From simulation of scanning with a 2-m axial FOV, the sensitivity for a 2-m-long PET scanner of 60 and 80-cm diameter is around 80 and 68 times higher, respectively, than that of the conventional PET scanner. In addition, for the 2-m-long PET scanner with 60-cm diameter, the peak noise equivalent count rate (NECR) was 843 kcps at 125 MBq, whereas the peak for the 80-cm diameter was 989 kcps at 200 MBq. This shows gains of 15.3 and 17.95, respectively, in comparison with that of the conventional PET scanner. The 2-m-long PET scanner with 60-cm ring diameter could not only reduce the number of detectors by 21 %, but also had a 17 % higher sensitivity compared to that with an 80-cm ring diameter. On the other hand, despite the higher sensitivity, the NECR of the 60-cm ring diameter was smaller than that of the 80-cm ring diameter. This results from the single data loss due to dead time, whereas grouping of axially stacked detectors was used in the conventional DAQ architecture. Parallelization of the DAQ architecture is therefore important for the 2-m-long PET scanner to achieve its optimal

  13. Computer-Simulation Surrogates for Optimization: Application to Trapezoidal Ducts and Axisymmetric Bodies

    NASA Technical Reports Server (NTRS)

    Otto, John C.; Paraschivoiu, Marius; Yesilyurt, Serhat; Patera, Anthony T.

    1995-01-01

    Engineering design and optimization efforts using computational systems rapidly become resource intensive. The goal of the surrogate-based approach is to perform a complete optimization with limited resources. In this paper we present a Bayesian-validated approach that informs the designer as to how well the surrogate performs; in particular, our surrogate framework provides precise (albeit probabilistic) bounds on the errors incurred in the surrogate-for-simulation substitution. The theory and algorithms of our computer{simulation surrogate framework are first described. The utility of the framework is then demonstrated through two illustrative examples: maximization of the flowrate of fully developed ow in trapezoidal ducts; and design of an axisymmetric body that achieves a target Stokes drag.

  14. Effects of 17β-estradiol on emissions of greenhouse gases in simulative natural water body.

    PubMed

    Ruan, Aidong; Zhao, Ying; Liu, Chenxiao; Zong, Fengjiao; Yu, Zhongbo

    2015-05-01

    Environmental estrogens are widely spread across the world and are increasingly thought of as serious contaminators. The present study looks at the influence of different concentrations of 17β-estradiol on greenhouse gas emissions (CO2 , CH4 , and N2 O) in simulated systems to explore the relationship between environmental estrogen-pollution and greenhouse gas emissions in natural water bodies. The present study finds that 17β-estradiol pollution in simulated systems has significant promoting effects on the emissions of CH4 and CO2 , although no significant effects on N2 O emissions. The present study indicates that 17β-estradiol has different effects on the different elements cycles; the mechanism of microbial ecology is under review.

  15. Investigation on pitch system loads by means of an integral multi body simulation approach

    NASA Astrophysics Data System (ADS)

    Berroth, J.; Jacobs, G.; Kroll, T.; Schelenz, R.

    2016-09-01

    In modern horizontal axis wind turbines the rotor blades are adjusted by three individual pitch systems to control power output. The pitch system consists of either a hydraulic or an electrical actuator, the blade bearing, the rotor blade itself and the control. In case of an electrical drive a gearbox is used to transmit the high torques that are required for blade pitch angle adjustment. In this contribution a new integral multi body simulation approach is presented that enables detailed assessment of dynamic pitch system loads. The simulation results presented are compared and evaluated with measurement data of a 2 MW-class reference wind turbine. Major focus of this contribution is on the assessment of non linear tooth contact behaviour incorporating tooth backlash for the single gear stages and the impact on dynamic pitch system loads.

  16. From observation to action simulation: the role of attention, eye-gaze, emotion, and body state.

    PubMed

    Tipper, Steven P

    2010-11-01

    This paper reviews recent aspects of my research. It focuses, first, on the idea that during the perception of objects and people, action-based representations are automatically activated and, second, that such action representations can feed back and influence the perception of people and objects. For example, when one is merely viewing an object such as a coffee cup, the action it affords, such as a reach to grasp, is activated even though there is no intention to act on the object. Similarly, when one is observing a person's behaviour, their actions are automatically simulated, and such action simulation can influence our perception of the person and the object with which they interacted. The experiments to be described investigate the role of attention in such vision-to-action processes, the effects of such processes on emotion, and the role of a perceiver's body state in their interpretation of visual stimuli.

  17. Evaluation of upper body muscle activity during cardiopulmonary resuscitation performance in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Waye, A. B.; Krygiel, R. G.; Susin, T. B.; Baptista, R.; Rehnberg, L.; Heidner, G. S.; de Campos, F.; Falcão, F. P.; Russomano, T.

    2013-09-01

    Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2-4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts-Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40-50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions

  18. Maps of CMB lensing deflection from N-body simulations in Coupled Dark Energy Cosmologies

    SciTech Connect

    Carbone, Carmelita; Baldi, Marco; Baccigalupi, Carlo E-mail: marco.baldi5@unibo.it E-mail: bacci@sissa.it

    2013-09-01

    We produce lensing potential and deflection-angle maps in order to simulate the weak gravitational lensing of the Cosmic Microwave Background (CMB) via ray-tracing through the COupled Dark Energy Cosmological Simulations (CoDECS), the largest suite of N-body simulations to date for interacting Dark Energy cosmologies. The constructed maps faithfully reflect the N-body cosmic structures on a range of scales going from the arcminute to the degree scale, limited only by the resolution and extension of the simulations. We investigate the variation of the lensing pattern due to the underlying Dark Energy (DE) dynamics, characterised by different background and perturbation behaviours as a consequence of the interaction between the DE field and Cold Dark Matter (CDM). In particular, we study in detail the results from three cosmological models differing in the background and perturbations evolution at the epoch in which the lensing cross section is most effective, corresponding to a redshift of ∼ 1, with the purpose to isolate their imprints in the lensing observables, regardless of the compatibility of these models with present constraints. The scenarios investigated here include a reference ΛCDM cosmology, a standard coupled DE (cDE) scenario, and a ''bouncing'' cDE scenario. For the standard cDE scenario, we find that typical differences in the lensing potential result from two effects: the enhanced growth of linear CDM density fluctuations with respect to the ΛCDM case, and the modified nonlinear dynamics of collapsed structures induced by the DE-CDM interaction. As a consequence, CMB lensing highlights the DE impact in the cosmological expansion, even in the degenerate case where the amplitude of the linear matter density perturbations, parametrised through σ{sub 8}, is the same in both the standard cDE and ΛCDM cosmologies. For the ''bouncing'' scenario, we find that the two opposite behaviours of the lens density contrast and of the matter abundance lead to

  19. Pertactin deficient Bordetella pertussis present a better fitness in mice immunized with an acellular pertussis vaccine.

    PubMed

    Hegerle, N; Dore, G; Guiso, N

    2014-11-20

    Bordetella pertussis is the etiologic agent of whooping cough and has been the target of vaccination for over fifty years. The latest strategies include the use of acellular pertussis vaccines that induce specific immunity against few virulence factors amongst which pertactin is included in three and five component acellular pertussis vaccines. Recently, it has been reported that B. pertussis clinical isolates loose the production of this adhesin in regions reaching high vaccine coverage with vaccines targeting this virulence factor. We here demonstrate that isolates not producing pertactin are capable of sustaining longer infection as compared to pertactin producing isolates in an in vivo model of acellular pertussis immunization. Loosing pertactin production might thus provide a selective advantage to these isolates in this background, which could account for the upraise in prevalence of these pertactin deficient isolates in the population.

  20. Acellular comet assay: a tool for assessing variables influencing the alkaline comet assay.

    PubMed

    Kennedy, Erin K; McNamee, James P; Prud'homme Lalonde, Louise; Jones, Trevor; Wilkinson, Diana

    2012-01-01

    In this study, an acellular modification to the alkaline comet assay to further evaluate key variables within the assay that may influence the outcome of genotoxicity studies is described. This acellular comet assay can detect differences of 0.2 Gy of (60)Co gamma-ray radiation between 0 and 1 Gy and differences of 1 Gy between 0 and 8 Gy; thus, this assay is applicable for a wide range of DNA damage levels. It is also shown that DNA damage from different radiation energies was not significantly different from (60)Co gamma-ray. This assay displayed a statistical increase in DNA damage due to uncontrolled exposure to natural light; however, the slope of the dose-response curve for light-exposed samples was similar to that for samples protected from light. A comparison of the alkaline comet assay with the acellular comet assay allowed for the intrinsic repair capacity of the alkaline comet assay to be quantified.

  1. GPU accelerated simulations of bluff body flows using vortex particle methods

    NASA Astrophysics Data System (ADS)

    Rossinelli, Diego; Bergdorf, Michael; Cottet, Georges-Henri; Koumoutsakos, Petros

    2010-05-01

    We present a GPU accelerated solver for simulations of bluff body flows in 2D using a remeshed vortex particle method and the vorticity formulation of the Brinkman penalization technique to enforce boundary conditions. The efficiency of the method relies on fast and accurate particle-grid interpolations on GPUs for the remeshing of the particles and the computation of the field operators. The GPU implementation uses OpenGL so as to perform efficient particle-grid operations and a CUFFT-based solver for the Poisson equation with unbounded boundary conditions. The accuracy and performance of the GPU simulations and their relative advantages/drawbacks over CPU based computations are reported in simulations of flows past an impulsively started circular cylinder from Reynolds numbers between 40 and 9500. The results indicate up to two orders of magnitude speed up of the GPU implementation over the respective CPU implementations. The accuracy of the GPU computations depends on the Re number of the flow. For Re up to 1000 there is little difference between GPU and CPU calculations but this agreement deteriorates (albeit remaining to within 5% in drag calculations) for higher Re numbers as the single precision of the GPU adversely affects the accuracy of the simulations.

  2. Speeding up N-body simulations of modified gravity: Vainshtein screening models

    SciTech Connect

    Barreira, Alexandre; Bose, Sownak; Li, Baojiu E-mail: sownak.bose@durham.ac.uk

    2015-12-01

    We introduce and demonstrate the power of a method to speed up current iterative techniques for N-body modified gravity simulations. Our method is based on the observation that the accuracy of the final result is not compromised if the calculation of the fifth force becomes less accurate, but substantially faster, in high-density regions where it is relatively weak due to screening. We focus on the nDGP model which employs Vainshtein screening, and test our method by running AMR simulations in which the fifth force on the finer levels of the mesh (high density) is not obtained iteratively, but instead interpolated from coarser levels. The calculation of the standard gravity component of the force still employs the full AMR structure. We show that the impact this has on the matter power spectrum is below 1% for k < 5h/Mpc at 0z = , and even smaller at higher redshift. The impact on halo properties is also small (∼< 3% for abundance, profiles, mass; and ∼< 0.05% for positions and velocities). The method can boost the performance of modified gravity simulations by more than a factor of 10. This allows them to run on timescales similar to GR simulations and to push them to resolution levels that were previously hard to achieve.

  3. Algorithm for simulation of quantum many-body dynamics using dynamical coarse-graining

    SciTech Connect

    Khasin, M.; Kosloff, R.

    2010-04-15

    An algorithm for simulation of quantum many-body dynamics having su(2) spectrum-generating algebra is developed. The algorithm is based on the idea of dynamical coarse-graining. The original unitary dynamics of the target observables--the elements of the spectrum-generating algebra--is simulated by a surrogate open-system dynamics, which can be interpreted as weak measurement of the target observables, performed on the evolving system. The open-system state can be represented by a mixture of pure states, localized in the phase space. The localization reduces the scaling of the computational resources with the Hilbert-space dimension n by factor n{sup 3/2}(ln n){sup -1} compared to conventional sparse-matrix methods. The guidelines for the choice of parameters for the simulation are presented and the scaling of the computational resources with the Hilbert-space dimension of the system is estimated. The algorithm is applied to the simulation of the dynamics of systems of 2x10{sup 4} and 2x10{sup 6} cold atoms in a double-well trap, described by the two-site Bose-Hubbard model.

  4. Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration.

    PubMed

    Lai, Po-Hong; Chang, Yen; Chen, Sung-Ching; Wang, Chung-Chi; Liang, Huang-Chien; Chang, Wei-Chun; Sung, Hsing-Wen

    2006-09-01

    It was found in our previous study that acellular tissues derived from bovine pericardia consist primarily of insoluble collagen, elastin, and tightly bound glycosaminoglycans (GAGs). It is speculated that the inherent GAGs in acellular tissues may serve as a reservoir for loading basic fibroblast growth factor (bFGF) and promote angiogenesis and tissue regeneration. This study was therefore designed to investigate effects of the content of GAGs in acellular bovine pericardia on the binding of bFGF and its release profile in vitro while its stimulation in angiogenesis and tissue regeneration in vivo were evaluated subcutaneously in a rat model. To control the content of GAGs, acellular tissues were treated additionally with hyaluronidase for 1 (Hase-D1), 3 (Hase-D3), or 5 days (Hase-D5). The in vitro results indicated that a higher content of GAGs in the acellular tissue resulted in an increase in bFGF binding and in a more gradual and sustained release of the growth factor. The in vivo results obtained at 1 week postoperatively showed that the density and the depth of neo-vessels infiltrated into the acellular tissue loaded with bFGF (acellular/bFGF) were significantly greater than the other test samples. At 1 month postoperatively, vascularized neo-connective tissues were found to fill the pores within each test sample, particularly for the acellular/bFGF tissue. These results suggested that the sustained release of bFGF from the acellular/ bFGF tissue continued to be effective in enhancing angiogenesis and generation of new tissues. In conclusion, the inherent GAGs present in acellular tissues may be used for binding and sustained release of bFGF to enhance angiogenesis and tissue regeneration.

  5. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering.

    PubMed

    Horst, Maya; Milleret, Vincent; Noetzli, Sarah; Gobet, Rita; Sulser, Tullio; Eberli, Daniel

    2017-04-01

    Poly(lactic-co-glycolic acid) (PLGA) based biomaterials for soft tissue engineering have inherent disadvantages, such as a relative rigidity and a limited variability in the mechanical properties and degradation rates. In this study, a novel electrospun biomaterial based on degradable polyesterurethane (PEU) (DegraPol(®) ) was investigated for potential use for bladder engineering in vitro and in vivo. Hybrid microfibrous PEU and PLGA scaffolds were produced by direct electrospinning of the polymer onto a bladder acellular matrix. The scaffold morphology of the scaffold was analyzed, and the biological performance was tested in vitro and in vivo using a rat cystoplasty model. Anatomical and functional outcomes after implantation were analyzed macroscopically, histologically and by cystometry, respectively. Scanning electron microscopy analysis showed that PEU samples had a lower porosity (p < 0.001) and were slightly thinner (p = 0.009) than the PGLA samples. Proliferation and survival of the seeded smooth muscle cells in vitro were comparable on PEU and PLGA scaffolds. After 8 weeks in vivo, the PEU scaffolds exhibited no shrinkage. However, cystometry of the reconstructed bladders exhibited a slightly greater functional bladder capacity in the PLGA group. Morphometric analyses revealed significantly better tissue healing (p < 0.05) and, in particular, better smooth muscle regeneration, as well as a lower rate of inflammatory responses at 8 weeks in the PEU group. Collectively, the results indicated that PEU-hybrid scaffolds promote bladder tissue formation with excellent tissue integration and a low inflammatory reaction in vivo. PEU is a promising biomaterial, particularly with regard to functional tissue engineering of the bladder and other hollow organs. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 658-667, 2017.

  6. Simulated evolution of the vertebral body based on basic multicellular unit activities.

    PubMed

    Wang, Chao; Zhang, Chunqiu; Han, Jingyun; Wu, Han; Fan, Yubo

    2011-07-01

    A numerical model based on the theory of bone remodeling is proposed to predict the evolution of trabecular bone architecture within the vertebral body and to investigate the process of degeneration in vertebral bone. In this study, particular attention is paid on the description of microstructure changes during the aging process. To take into account the effect of basic multicellular units (BMUs), a set of computational algorithms has been developed. It is assumed that BMU activation probability depends on the state of damaged bone tissue (damage accumulation, ω), which is evaluated according to previous research concerning bone fatigue damage. Combining these algorithms with the finite-element method (FEM), the microstructure of vertebral bone has been predicted for up to 8 simulated years. Moreover, biomechanical material properties have been monitored to investigate the changes of vertebral bone with age. This study shows that the simulation based on BMU activities has the potential to define and predict the morphological evolution of the vertebral body. It can be concluded that the novel algorithms incorporating the coupled effects of both adaptive remodeling and microdamage remodeling could be utilized to gain greater insight into the mechanism of bone loss in the elderly population.

  7. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    PubMed

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants.

  8. Evolution of star cluster systems in isolated galaxies: first results from direct N-body simulations

    NASA Astrophysics Data System (ADS)

    Rossi, L. J.; Bekki, K.; Hurley, J. R.

    2016-11-01

    The evolution of star clusters is largely affected by the tidal field generated by the host galaxy. It is thus in principle expected that under the assumption of a `universal' initial cluster mass function the properties of the evolved present-day mass function of star cluster systems should show a dependence on the properties of the galactic environment in which they evolve. To explore this expectation, a sophisticated model of the tidal field is required in order to study the evolution of star cluster systems in realistic galaxies. Along these lines, in this work we first describe a method developed for coupling N-body simulations of galaxies and star clusters. We then generate a data base of galaxy models along the Hubble sequence and calibrate evolutionary equations to the results of direct N-body simulations of star clusters in order to predict the clusters' mass evolution as function of the galactic environment. We finally apply our methods to explore the properties of evolved `universal' initial cluster mass functions and any dependence on the host galaxy morphology and mass distribution. The preliminary results show that an initial power-law distribution of the masses `universally' evolves into a lognormal distribution, with the properties correlated with the stellar mass and stellar mass density of the host galaxy.

  9. Peculiar velocities in redshift space: formalism, N-body simulations and perturbation theory

    SciTech Connect

    Okumura, Teppei; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent E-mail: useljak@berkeley.edu E-mail: Vincent.Desjacques@unige.ch

    2014-05-01

    Direct measurements of peculiar velocities of galaxies and clusters of galaxies can in principle provide explicit information on the three dimensional mass distribution, but this information is modulated by the fact that velocity field is sampled at galaxy positions, and is thus probing galaxy momentum. We derive expressions for the cross power spectrum between the density and momentum field and the auto spectrum of the momentum field in redshift space, by extending the distribution function method to these statistics. The resulting momentum cross and auto power spectra in redshift space are expressed as infinite sums over velocity moment correlators in real space, as is the case for the density power spectrum in redshift space. We compute each correlator using Eulerian perturbation theory (PT) and halo biasing model and compare the resulting redshift-space velocity statistics to those measured from N-body simulations for both dark matter and halos. We find that in redshift space linear theory predictions for the density-momentum cross power spectrum as well as for the momentum auto spectrum fail to predict the N-body results at very large scales. On the other hand, our nonlinear PT prediction for these velocity statistics, together with real-space power spectrum for dark matter from simulations, improves the accuracy for both dark matter and halos. We also present the same analysis in configuration space, computing the redshift-space pairwise mean infall velocities and velocity correlation function and compare to nonlinear PT.

  10. Robust human body model injury prediction in simulated side impact crashes.

    PubMed

    Golman, Adam J; Danelson, Kerry A; Stitzel, Joel D

    2016-01-01

    This study developed a parametric methodology to robustly predict occupant injuries sustained in real-world crashes using a finite element (FE) human body model (HBM). One hundred and twenty near-side impact motor vehicle crashes were simulated over a range of parameters using a Toyota RAV4 (bullet vehicle), Ford Taurus (struck vehicle) FE models and a validated human body model (HBM) Total HUman Model for Safety (THUMS). Three bullet vehicle crash parameters (speed, location and angle) and two occupant parameters (seat position and age) were varied using a Latin hypercube design of Experiments. Four injury metrics (head injury criterion, half deflection, thoracic trauma index and pelvic force) were used to calculate injury risk. Rib fracture prediction and lung strain metrics were also analysed. As hypothesized, bullet speed had the greatest effect on each injury measure. Injury risk was reduced when bullet location was further from the B-pillar or when the bullet angle was more oblique. Age had strong correlation to rib fractures frequency and lung strain severity. The injuries from a real-world crash were predicted using two different methods by (1) subsampling the injury predictors from the 12 best crush profile matching simulations and (2) using regression models. Both injury prediction methods successfully predicted the case occupant's low risk for pelvic injury, high risk for thoracic injury, rib fractures and high lung strains with tight confidence intervals. This parametric methodology was successfully used to explore crash parameter interactions and to robustly predict real-world injuries.

  11. Evaluation of single and stack membraneless enzymatic fuel cells based on ethanol in simulated body fluids.

    PubMed

    Galindo-de-la-Rosa, J; Arjona, N; Moreno-Zuria, A; Ortiz-Ortega, E; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G

    2017-06-15

    The purpose of this work is to evaluate single and double-cell membraneless microfluidic fuel cells (MMFCs) that operate in the presence of simulated body fluids SBF, human serum and blood enriched with ethanol as fuels. The study was performed using the alcohol dehydrogenase enzyme immobilised by covalent binding through an array composed of carbon Toray paper as support and a layer of poly(methylene blue)/tetrabutylammonium bromide/Nafion and glutaraldehyde (3D bioanode electrode). The single MMFC was tested in a hybrid microfluidic fuel cell using Pt/C as the cathode. A cell voltage of 1.035V and power density of 3.154mWcm(-2) were observed, which is the highest performance reported to date. The stability and durability were tested through chronoamperometry and polarisation/performance curves obtained at different days, which demonstrated a slow decrease in the power density on day 10 (14%) and day 20 (26%). Additionally, the cell was tested for ethanol oxidation in simulated body fluid (SBF) with ionic composition similar to human blood plasma. Those tests resulted in 0.93V of cell voltage and a power density close to 1.237mWcm(-2). The double cell MMFC (Stack) was tested using serum and human blood enriched with ethanol. The stack operated with blood in a serial connection showed an excellent cell performance (0.716mWcm(-2)), demonstrating the feasibility of employing human blood as energy source.

  12. The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments.

    PubMed

    Cacaina, D; Ylänen, H; Simon, S; Hupa, M

    2008-03-01

    The study aims at the manufacture and investigation of biodegradable glass microspheres incorporated with yttrium potentially useful for radionuclide therapy of cancer. The glass microspheres in the SiO2-Na2O-P2O5-CaO-K2O-MgO system containing yttrium were prepared by conventional melting and flame spheroidization. The behaviour of the yttrium silicate glass microspheres was investigated under in vitro conditions using simulated body fluid (SBF) and Tris buffer solution (TBS), for different periods of time, according to half-life time of the Y-90. The local structure of the glasses and the effect of yttrium on the biodegradability process were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy and Back Scattered Electron Imaging of Scanning Electron Microscopy (BEI-SEM) equipped with Energy Dispersive X-ray (EDX) analysis. UV-VIS spectrometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used for analyzing the release behaviour of silica and yttrium in the two used solutions. The results indicate that the addition of yttrium to a bioactive glass increases its structural stability which therefore, induced a different behaviour of the glasses in simulated body environments.

  13. When clusters collide - A numerical Hydro/N-body simulation of merging galaxy clusters

    NASA Technical Reports Server (NTRS)

    Roettiger, Kurt; Burns, Jack; Loken, Chris

    1993-01-01

    A 3D numerical simulation of two merging clusters of galaxies, using a hybrid Hydro/N-body code, is presented. The hydrodynamics of the code is solved by an Eulerian finite difference method. Initial results disclose that the X-ray emission of the dominant cluster becomes elongated and broadened; heating occurs at the core of the dominant cluster as a result of multiple shocks, and high velocity gas motions within the intracluster medium. It is predicted that clusters which have undergone recent mergers and do not have cooling flows will have high peculiar gas velocities and that the shocks and turbulence generated during the merger may power cluster-wide radio halos. Prolonged high-velocity gas motions through the dominant cluster core possibly play a major role in the formation and shaping of wide-angle tailed radio sources associated with central dominant galaxies. The N-body component of the simulation reveals the subcluster to be dispersed as it passes through the dominant cluster.

  14. Simulation of drug distribution in the vitreous body after local drug application into intact vitreous body and in progress of posterior vitreous detachment.

    PubMed

    Loch, Christian; Bogdahn, Malte; Stein, Sandra; Nagel, Stefan; Guthoff, Rudolf; Weitschies, Werner; Seidlitz, Anne

    2014-02-01

    Intravitreal injections and drug-loaded implants are current approaches to treat diseases of the posterior eye. To investigate the release of active agents and their distribution in the vitreous body, a new test system was developed that enables a realistic simulation of eye motions. It is called the eye movement system (EyeMoS). In combination with a previously developed model containing a polyacrylamide gel as a substitute for the vitreous body, this new system enables the characterization of the influence of eye motions on drug distribution within the vitreous body. In the presented work, the distribution of fluorescence-tagged model drugs of different molecular weight within the simulated vitreous was examined under movement with the EyeMoS and without movement. By replacing a part of the gel in the simulated vitreous body with buffer, the influence of the progress of posterior vitreous detachment (PVD) on the distribution of these model substances was also studied. The results indicate that convective forces may be of predominate influence on initial drug distribution. The impact of these forces on drug transport increases with simulated progression of PVD. Using the EyeMoS, the investigation of release and distribution from intravitreal drug delivery systems becomes feasible under biorelevant conditions.

  15. Quantum Simulation with Circuit-QED Lattices: from Elementary Building Blocks to Many-Body Theory

    NASA Astrophysics Data System (ADS)

    Zhu, Guanyu

    Recent experimental and theoretical progress in superconducting circuits and circuit QED (quantum electrodynamics) has helped to develop high-precision techniques to control, manipulate, and detect individual mesoscopic quantum systems. A promising direction is hence to scale up from individual building blocks to form larger-scale quantum many-body systems. Although realizing a scalable fault-tolerant quantum computer still faces major barriers of decoherence and quantum error correction, it is feasible to realize scalable quantum simulators with state-of-the-art technology. From the technological point of view, this could serve as an intermediate stage towards the final goal of a large-scale quantum computer, and could help accumulating experience with the control of quantum systems with a large number of degrees of freedom. From the physical point of view, this opens up a new regime where condensed matter systems can be simulated and studied, here in the context of strongly correlated photons and two-level systems. In this thesis, we mainly focus on two aspects of circuit-QED based quantum simulation. First, we discuss the elementary building blocks of the quantum simulator, in particular a fluxonium circuit coupled to a superconducting resonator. We show the interesting properties of the fluxonium circuit as a qubit, including the unusual structure of its charge matrix elements. We also employ perturbation theory to derive the effective Hamiltonian of the coupled system in the dispersive regime, where qubit and the photon frequencies are detuned. The observables predicted with our theory, including dispersive shifts and Kerr nonlinearity, are compared with data from experiments, such as homodyne transmission and two-tone spectroscopy. These studies also relate to the problem of detection in a circuit-QED quantum simulator. Second, we study many-body physics of circuit-QED lattices, serving as quantum simulators. In particular, we focus on two different

  16. The GENGA Code: Gravitational Encounters in N-body simulations with GPU Acceleration.

    NASA Astrophysics Data System (ADS)

    Grimm, Simon; Stadel, Joachim

    2013-07-01

    We present a GPU (Graphics Processing Unit) implementation of a hybrid symplectic N-body integrator based on the Mercury Code (Chambers 1999), which handles close encounters with a very good energy conservation. It uses a combination of a mixed variable integration (Wisdom & Holman 1991) and a direct N-body Bulirsch-Stoer method. GENGA is written in CUDA C and runs on NVidia GPU's. The GENGA code supports three simulation modes: Integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. To achieve the best performance, GENGA runs completely on the GPU, where it can take advantage of the very fast, but limited, memory that exists there. All operations are performed in parallel, including the close encounter detection and grouping independent close encounter pairs. Compared to Mercury, GENGA runs up to 30 times faster. Two applications of GENGA are presented: First, the dynamics of planetesimals and the late stage of rocky planet formation due to planetesimal collisions. Second, a dynamical stability analysis of an exoplanetary system with an additional hypothetical super earth, which shows that in some multiple planetary systems, additional super earths could exist without perturbing the dynamical stability of the other planets (Elser et al. 2013).

  17. SVD-GFD scheme to simulate complex moving body problems in 3D space

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Yu, P.; Yeo, K. S.; Khoo, B. C.

    2010-03-01

    The present paper presents a hybrid meshfree-and-Cartesian grid method for simulating moving body incompressible viscous flow problems in 3D space. The method combines the merits of cost-efficient and accurate conventional finite difference approximations on Cartesian grids with the geometric freedom of generalized finite difference (GFD) approximations on meshfree grids. Error minimization in GFD is carried out by singular value decomposition (SVD). The Arbitrary Lagrangian-Eulerian (ALE) form of the Navier-Stokes equations on convecting nodes is integrated by a fractional-step projection method. The present hybrid grid method employs a relatively simple mode of nodal administration. Nevertheless, it has the geometrical flexibility of unstructured mesh-based finite-volume and finite element methods. Boundary conditions are precisely implemented on boundary nodes without interpolation. The present scheme is validated by a moving patch consistency test as well as against published results for 3D moving body problems. Finally, the method is applied on low-Reynolds number flapping wing applications, where large boundary motions are involved. The present study demonstrates the potential of the present hybrid meshfree-and-Cartesian grid scheme for solving complex moving body problems in 3D.

  18. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies

    PubMed Central

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2010-01-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the

  19. Dynamic modeling and simulation of multi-body systems using the Udwadia-Kalaba theory

    NASA Astrophysics Data System (ADS)

    Zhao, Han; Zhen, Shengchao; Chen, Ye-Hwa

    2013-09-01

    Laboratory experiments were conducted for falling U-chain, but explicit analytic form of the general equations of motion was not presented. Several modeling methods were developed for fish robots, however they just focused on the whole fish’s locomotion which does little favor to understand the detailed swimming behavior of fish. Udwadia-Kalaba theory is used to model these two multi-body systems and obtain explicit analytic equations of motion. For falling U-chain, the mass matrix is non-singular. Second-order constraints are used to get the constraint force and equations of motion and the numerical simulation is conducted. Simulation results show that the chain tip falls faster than the freely falling body. For fish robot, two-joint Carangiform fish robot is focused on. Quasi-steady wing theory is used to approximately calculate fluid lift force acting on the caudal fin. Based on the obtained explicit analytic equations of motion (the mass matrix is singular), propulsive characteristics of each part of the fish robot are obtained. Through these two cases of U chain and fish robot, how to use Udwadia-Kalaba equation to obtain the dynamical model is shown and the modeling methodology for multi-body systems is presented. It is also shown that Udwadia-Kalaba theory is applicable to systems whether or not their mass matrices are singular. In the whole process of applying Udwadia-Kalaba equation, Lagrangian multipliers and quasi-coordinates are not used. Udwadia-Kalaba theory is creatively applied to dynamical modeling of falling U-chain and fish robot problems and explicit analytic equations of motion are obtained.

  20. Subcutaneous Implant-based Breast Reconstruction with Acellular Dermal Matrix/Mesh: A Systematic Review

    PubMed Central

    Salibian, Ara A.; Frey, Jordan D.; Choi, Mihye

    2016-01-01

    Background: The availability of acellular dermal matrix (ADM) and synthetic mesh products has prompted plastic surgeons to revisit subcutaneous implant-based breast reconstruction. The literature is limited, however, with regards to evidence on patient selection, techniques, and outcomes. Methods: A systematic review of the Medline and Cochrane databases was performed for original studies reporting breast reconstruction with ADM or mesh, and subcutaneous implant placement. Studies were analyzed for level of evidence, inclusion/exclusion criteria for subcutaneous reconstruction, reconstruction characteristics, and outcomes. Results: Six studies (186 reconstructions) were identified for review. The majority of studies (66.7%) were level IV evidence case series. Eighty percent of studies had contraindications for subcutaneous reconstruction, most commonly preoperative radiation, high body mass index, and active smoking. Forty percent of studies commenting on patient selection assessed mastectomy flap perfusion for subcutaneous reconstruction. Forty-five percent of reconstructions were direct-to-implant, 33.3% 2-stage, and 21.5% single-stage adjustable implant, with ADM utilized in 60.2% of reconstructions versus mesh. Pooled complication rates included: major infection 1.2%, seroma 2.9%, hematoma 2.3%, full nipple-areola complex necrosis 1.1%, partial nipple-areola complex necrosis 4.5%, major flap necrosis 1.8%, wound healing complication 2.3%, explantation 4.1%, and grade III/IV capsular contracture 1.2%. Conclusions: Pooled short-term complication rates in subcutaneous alloplastic breast reconstruction with ADM or mesh are low in preliminary studies with selective patient populations, though techniques and outcomes are variable across studies. Larger comparative studies and better-defined selection criteria and outcomes reporting are needed to develop appropriate indications for performing subcutaneous implant-based reconstruction. PMID:27975034

  1. Plastic Surgery and Acellular Dermal Matrix: Highlighting Trends from 1999 to 2013

    PubMed Central

    Daar, David A; Gandy, Jessica R; Clark, Emily G; Mowlds, Donald S; Paydar, Keyianoosh Z; Wirth, Garrett A

    2016-01-01

    The last decade has ushered in a rapidly expanding global discussion regarding acellular dermal matrix (ADM) applications, economic analyses, technical considerations, benefits, and risks, with recent emphasis on ADM use in breast surgery. This study aims to evaluate global trends in ADM research using bibliometric analysis. The top nine Plastic Surgery journals were determined by impact factor (IF). Each issue of the nine journals between 1999 and 2013 was accessed to compile a database of articles discussing ADM. Publications were further classified by IF, authors’ geographic location, study design, and level of evidence (LOE, I-V). Productivity index and productivity share were calculated for each region. In total, 256 ADM articles were accessed. The annual global publication volume increased significantly by 4.2 (0.87) articles per year (p<0.001), with a mean productivity index of 36.3 (59.0). The mean impact factor of the nine journals increased significantly from 0.61 (0.11) to 2.47 (0.99) from 1993 to 2013 (p<0.001). Despite this increase in the global ADM literature, the majority of research was of weaker LOE (level I: 2.29% and level II: 9.17%). USA contributed the most research (87%), followed by Asia (4.76%) and Western Europe (4.71%). USA contributed the greatest volume of research. Regarding clinical application of ADM, the majority of publications focused on ADM use in breast surgery, specifically breast reconstruction (154 articles, 60.2%). The majority of research was of lower LOE; thus, efforts should be made to strengthen the body of literature, particularly with regard to cost analysis. PMID:27579264

  2. Complication Rates With Human Acellular Dermal Matrices: Retrospective Review of 211 Consecutive Breast Reconstructions

    PubMed Central

    Carman, Claire M.; Tobin, Chase; Chase, Serena A.; Rossmeier, Kerri A.

    2016-01-01

    Background: Human acellular dermal matrix (HADM) is commonly used to provide coverage and support for breast reconstruction. The primary purpose of this study was to evaluate the complication rates associated with breast reconstruction procedures when performed in conjunction with multiple types of HADM in a consecutive series. Methods: After receiving institutional review board approval, medical records from a single surgeon were retrospectively reviewed for 126 consecutive patients (170 breasts and 211 procedures) who received a breast reconstruction or revision with implantation of HADM between 2012 and 2014. Patient demographics, surgical technique, and the complication profile of 4 major types of HADM were evaluated by procedure. Complication data were primarily evaluated for infection, seroma formation, necrosis, and other complications requiring additional surgery. Results: The total complication rate was 19.4%. The complication rates were not statistically different between all 4 types of HADM: Alloderm (n = 143); Alloderm RTU (n = 19); FlexHD (n = 18); hMatrix (n = 32) (P > 0.05). Smokers and large-breasted women (≥500 g) had a significantly higher complication rate than the rest of the population (P < 0.01 and P < 0.03, respectively). The complication rates associated with all other patient cohorts analyzed (age, body mass index, comorbid conditions, cancer diagnosis, prepectoral technique) showed no influence on complication rates (P > 0.05). Conclusions: In characteristically similar cohorts, there was no statistically significant difference in complication rates based on type of HADM; however, certain risk factors and anatomy should be considered before HADM-assisted breast reconstruction. PMID:27975023

  3. Dynamics of stars around spiral arms in an N-body/SPH simulated barred spiral galaxy

    NASA Astrophysics Data System (ADS)

    Grand, Robert J. J.; Kawata, Daisuke; Cropper, Mark

    2012-10-01

    We run N-body smoothed particle hydrodynamics (SPH) simulations of a Milky Way-sized galaxy. The code takes into account hydrodynamics, self-gravity, star formation, supernova and stellar wind feedback, radiative cooling and metal enrichment. The simulated galaxy is a barred spiral galaxy consisting of a stellar and gas disc, enveloped in a static dark matter halo. Similar to what is found in our pure N-body simulation of a non-barred galaxy in Grand et al., we find that the spiral arms are transient features whose pattern speeds decrease with radius, in such a way that the pattern speed is similar to the rotation of star particles. Compared to the non-barred case, we find that the spiral arm pattern speed is slightly faster than the rotation speed of star particles: the bar appears to boost the pattern speed ahead of the rotational velocity. We trace particle motion around the spiral arms at different radii, and demonstrate that there are star particles that are drawn towards and join the arm from behind (in front of) the arm and migrate towards the outer (inner) regions of the disc until the arm disappears as a result of their transient nature. We see this migration over the entire radial range analysed, which is a consequence of the spiral arm rotating at similar speeds to star particles at all radii, which is inconsistent with the prediction of classical density wave theory. The bar does not prevent this systematic radial migration, which is shown to largely preserve circular orbits. We also demonstrate that there is no significant offset of different star-forming tracers across the spiral arm, which is also inconsistent with the prediction of classical density wave theory.

  4. Simulations and experiments on the ignition probability in turbulent premixed bluff-body flames

    NASA Astrophysics Data System (ADS)

    Sitte, Michael Philip; Bach, Ellen; Kariuki, James; Bauer, Hans-Jörg; Mastorakos, Epaminondas

    2016-05-01

    The ignition characteristics of a premixed bluff-body burner under lean conditions were investigated experimentally and numerically with a physical model focusing on ignition probability. Visualisation of the flame with a 5 kHz OH* chemiluminescence camera confirmed that successful ignitions were those associated with the movement of the kernel upstream, consistent with previous work on non-premixed systems. Performing many separate ignition trials at the same spark position and flow conditions resulted in a quantification of the ignition probability Pign, which was found to decrease with increasing distance downstream of the bluff body and a decrease in equivalence ratio. Flows corresponding to flames close to the blow-off limit could not be ignited, although such flames were stable if reached from a richer already ignited condition. A detailed comparison with the local Karlovitz number and the mean velocity showed that regions of high Pign are associated with low Ka and negative bulk velocity (i.e. towards the bluff body), although a direct correlation was not possible. A modelling effort that takes convection and localised flame quenching into account by tracking stochastic virtual flame particles, previously validated for non-premixed and spray ignition, was used to estimate the ignition probability. The applicability of this approach to premixed flows was first evaluated by investigating the model's flame propagation mechanism in a uniform turbulence field, which showed that the model reproduces the bending behaviour of the ST-versus-u‧ curve. Then ignition simulations of the bluff-body burner were carried out. The ignition probability map was computed and it was found that the model reproduces all main trends found in the experimental study.

  5. Numerical methods for the simulation of complex multi-body flows with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1992-01-01

    The following papers are presented: (1) numerical methods for the simulation of complex multi-body flows with applications for the Integrated Space Shuttle vehicle; (2) a generalized scheme for 3-D hyperbolic grid generation; (3) collar grids for intersecting geometric components within the Chimera overlapped grid scheme; and (4) application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows.

  6. `Grandeur in this view of life': N-body simulation models of the Galactic habitable zone

    NASA Astrophysics Data System (ADS)

    Vukotić, B.; Steinhauser, D.; Martinez-Aviles, G.; Ćirković, M. M.; Micic, M.; Schindler, S.

    2016-07-01

    We present an isolated Milky-Way-like simulation in the GADGET2 N-body smoothed particle hydrodynamics (SPH) code. The Galactic disc star formation rate (SFR) surface densities and a stellar mass indicative of the Solar neighbourhood are used as thresholds to model the distribution of stellar mass in life-friendly environments. SFR and stellar component density are calculated by averaging the GADGET2 particle properties on a 2D grid mapped on the Galactic plane. The peak values for possibly habitable stellar mass surface density move from 10 to 15 kpc cylindrical galactocentric distance in a 10-Gyr simulated time span. At 10 Gyr, the simulation results imply the following. Stellar particles that have spent almost all of their lifetime in habitable-friendly conditions typically reside at ˜16 kpc from the Galactic Centre and are ˜3 Gyr old. Stellar particles that have spent ≥90 per cent of their 4-5 Gyr long lifetime in habitable-friendly conditions are also predominantly found in the outskirts of the Galactic disc. Fewer than 1 per cent of these particles can be found at a typical Solar system galactocentric distance of 8-10 kpc. Our results imply that the evolution of an isolated spiral galaxy is likely to result in galactic civilizations emerging at the outskirts of the galactic disc around stellar hosts younger than the Sun.

  7. Experimental quantum simulations of many-body physics with trapped ions.

    PubMed

    Schneider, Ch; Porras, Diego; Schaetz, Tobias

    2012-02-01

    Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.

  8. Direct Large-Scale N-Body Simulations of Planetesimal Dynamics

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Quinn, Thomas; Stadel, Joachim; Lake, George

    2000-01-01

    We describe a new direct numerical method for simulating planetesimal dynamics in which N˜10 6 or more bodies can be evolved simultaneously in three spatial dimensions over hundreds of dynamical times. This represents several orders of magnitude improvement in resolution over previous studies. The advance is made possible through modification of a stable and tested cosmological code optimized for massively parallel computers. However, owing to the excellent scalability and portability of the code, modest clusters of workstations can treat problems with N˜10 5 particles in a practical fashion. The code features algorithms for detection and resolution of collisions and takes into account the strong central force field and flattened Keplerian disk geometry of planetesimal systems. We demonstrate the range of problems that can be addressed by presenting simulations that illustrate oligarchic growth of protoplanets, planet formation in the presence of giant planet perturbations, the formation of the jovian moons, and orbital migration via planetesimal scattering. We also describe methods under development for increasing the timescale of the simulations by several orders of magnitude.

  9. N-body simulations of terrestrial planet formation under the influence of a hot Jupiter

    SciTech Connect

    Ogihara, Masahiro; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro E-mail: ogihara@nagoya-u.jp

    2014-06-01

    We investigate the formation of multiple-planet systems in the presence of a hot Jupiter (HJ) using extended N-body simulations that are performed simultaneously with semianalytic calculations. Our primary aims are to describe the planet formation process starting from planetesimals using high-resolution simulations, and to examine the dependences of the architecture of planetary systems on input parameters (e.g., disk mass, disk viscosity). We observe that protoplanets that arise from oligarchic growth and undergo type I migration stop migrating when they join a chain of resonant planets outside the orbit of an HJ. The formation of a resonant chain is almost independent of our model parameters, and is thus a robust process. At the end of our simulations, several terrestrial planets remain at around 0.1 AU. The formed planets are not equal mass; the largest planet constitutes more than 50% of the total mass in the close-in region, which is also less dependent on parameters. In the previous work of this paper, we have found a new physical mechanism of induced migration of the HJ, which is called a crowding-out. If the HJ opens up a wide gap in the disk (e.g., owing to low disk viscosity), crowding-out becomes less efficient and the HJ remains. We also discuss angular momentum transfer between the planets and disk.

  10. Large eddy simulation of the flow around bluff body with drag reduction device

    NASA Astrophysics Data System (ADS)

    Al-Anazi, Khalid Qaied

    This thesis focuses on the use of LES to simulate the flow around elliptical bluff body with blunt trailing edge fitted with open base cavity. The main objective of this study is to determine the effects of the cavity on the drag of the body. A secondary but important objective is to demonstrate that LES can provide accurate representation of the flow around this bluff body. Moreover, LES results can complement the available experimental results in order to provide a much better understanding of the flow. The simulations were carried out at a Reynolds number of 2.6×104 based on the height of the body using Spalart-Allmaras RANS model while the LES were performed using Smagorinsky dynamic model. A grid-independence test was conducted using three grids which contain 0.85M, 1.3M and 1.7M cells, respectively. This test shows that the results are grid-independent. The LES results predicted the mean flow field in the near wake with good accuracy as compared to the experimental mean flow field obtained. The base pressure results show that the base pressure coefficient for the base model was around -0.56, which agrees well with the experimental results .By attaching the cavity, the base pressure has increased. The increase in base pressure coefficient was around 44% using 1/3 h cavity and this agrees well with the experimental measurements. The RANS predicted drag coefficient of 0.56 for the base model and 0.471 for the cavity model. This represents a difference of 8% for the base model and 34% for the cavity model when compared with experiment drag coefficients (0.61 for the base model and 0.35 for the cavity model). For the LES, the drag coefficient of the base model was around 0.65 (6.5% difference) and using the cavity, the drag coefficient was reduced to around 0.37 (5.74% difference). Details of the mean velocity components have been compared with experimental data at various locations in the wake region of the flow. Observation on the comparison between LES and

  11. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT.

    PubMed

    Yu, Elaine W; Thomas, Bijoy J; Brown, J Keenan; Finkelstein, Joel S

    2012-01-01

    Major alterations in body composition, such as with obesity and weight loss, have complex effects on the measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA). The effects of altered body fat on quantitative computed tomography (QCT) measurements are unknown. We scanned a spine phantom by DXA and QCT before and after surrounding with sequential fat layers (up to 12 kg). In addition, we measured lumbar spine and proximal femur BMD by DXA and trabecular spine BMD by QCT in 13 adult volunteers before and after a simulated 7.5 kg increase in body fat. With the spine phantom, DXA BMD increased linearly with sequential fat layering at the normal (p < 0.01) and osteopenic (p < 0.01) levels, but QCT BMD did not change significantly. In humans, fat layering significantly reduced DXA spine BMD values (mean ± SD: -2.2 ± 3.7%, p = 0.05) and increased the variability of measurements. In contrast, fat layering increased QCT spine BMD in humans (mean ± SD: 1.5 ± 2.5%, p = 0.05). Fat layering did not change mean DXA BMD of the femoral neck or total hip in humans significantly, but measurements became less precise. Associations between baseline and fat-simulation scans were stronger for QCT of the spine (r(2)= 0.97) than for DXA of the spine (r(2)= 0.87), total hip (r(2) = 0.80), or femoral neck (r(2)= 0.75). Bland-Altman plots revealed that fat-associated errors were greater for DXA spine and hip BMD than for QCT trabecular spine BMD. Fat layering introduces error and decreases the reproducibility of DXA spine and hip BMD measurements in human volunteers. Although overlying fat also affects QCT BMD measurements, the error is smaller and more uniform than with DXA BMD. Caution must be used when interpreting BMD changes in humans whose body composition is changing.

  12. Immunogenicity and safety of a monovalent, multicomponent acellular pertussis vaccine in 15 month-6-year-old German children. Monovalent Acellular Pertussis Vaccine Study Group.

    PubMed

    Stehr, K; Heininger, U; Uhlenbusch, R; Angersbach, P; Hackell, J; Eckhardt, T

    1995-03-01

    Immunization against pertussis has been re-recommended for healthy children in Germany in 1991. In addition the former restriction of immunizing only in the first 2 years of life was abolished. In children born before 1991 immunization rates against pertussis were 15% or less. With the new recommendations physicians are now faced with an increasing demand of parents for catch-up vaccinations in these children. Since they were immunized against diphtheria and tetanus previously monovalent pertussis vaccines are needed for this indication. Therefore a monovalent, multicomponent acellular pertussis vaccine was studied in 249 German children 15 months to 6 years of age. Three doses were administered at 6-10 week intervals. Reactogenicity and antibody responses against the vaccine antigens pertussis toxin (PT), filamentous haemagglutinin (FHA), 69-kd antigen (pertactin) and fimbriae-2 (agglutinogen) were investigated. Local and systemic reactions were minimal in frequency and severity. Antibody responses against all vaccine antigens were pronounced with 93%-100% of vaccinees demonstrating at least four fold titre rises above pre-immunization after the third dose. These findings indicate that this monovalent, multicomponent acellular pertussis vaccine with excellent immunogenicity and low reactogenicity is an appropriate candidate for closing immunization gaps in older children in countries with previously low vaccination rates against pertussis. Based on the results of this study the monovalent acellular pertussis vaccine was licensed in Germany in January 1994.

  13. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    NASA Astrophysics Data System (ADS)

    Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.

    2015-12-01

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.

  14. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    SciTech Connect

    Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.

    2015-12-21

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the S{sub N}2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM

  15. Structure and properties of the precipitates formed from condensed solutions of the revised simulated body fluid.

    PubMed

    Dorozhkina, Elena I; Dorozhkin, Sergey V

    2003-11-01

    Precipitation experiments with aqueous solutions of the Kokubo's revised simulated body fluid (rSBF) equal to 2, 4, 8, and 12 times the ionic concentration of human blood plasma were performed. Instead of Hepes, solution pH was adjusted to the desired value of 7.40 +/- 0.02 by either bubbling of CO2 or addition of HCl. The experiments were performed in tightly closed plastic vessels kept at 37.0 +/- 0.2 degrees C for 72 h under permanent shaking. Afterward, the suspensions were filtrated, and the precipitates were collected and analyzed. The results revealed that increasing the concentration of rSBF resulted in great changes in both the structure and the chemical composition of the precipitates. Phosphate substitution for carbonate (although the amounts of calcium and magnesium remained unchanged) and crystallinity decreasing were the most important modifications found in the precipitates formed from the highly condensed solutions of rSBF.

  16. REBOUNDx: A library for adding additional effects to N-body simulations

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Rein, Hanno; Shi, Pengshuai

    2016-05-01

    Many astrophysical applications involve additional perturbations beyond point-source gravity. We have recently developed REBOUNDx, a library for adding such effects in numerical simulations with the open-source N-body package REBOUND. Various implementations have different numerical properties that in general depend on the underlying integrator employed. In particular, I will discuss adding velocity-dependent/dissipative effects to widely used symplectic integrators, and how one can estimate the introduced numerical errors using the operator-splitting formalism traditionally applied to symplectic integrators. Finally, I will demonstrate how to use the code, and how the Python wrapper we have developed for REBOUND/REBOUNDx makes it easy to interactively leverage powerful analysis, visualization and parallelization libraries.

  17. Deposition of hydroxyapatite on SiC nanotubes in simulated body fluid.

    PubMed

    Taguchi, Tomitsugu; Miyazaki, Toshiki; Iikubo, Satoshi; Yamaguchi, Kenji

    2014-01-01

    SiC nanotubes can become candidate reinforcement materials for dental and orthopedic implants due to their light weight and excellent mechanical properties. However, the development of bioactive SiC materials has not been reported. In this study, hydroxyapatites were found on SiC nanotubes treated with NaOH and subsequently HCl solution after soaking in simulated body fluid. On the other hand, hydroxyapatites did not deposit on as-received SiC nanotubes, the SiC nanotubes with NH4OH solution treatment and SiC bulk materials with NaOH and subsequently HCl solution treatment. Therefore, we succeeded in the development of bioactive SiC nanotubes by downsizing SiC materials to nanometer size and treating with NaOH and subsequently HCl solutions for the first time.

  18. GalCrash: N-body Simulations on the Student Desktop

    NASA Astrophysics Data System (ADS)

    Mihos, C.; Caley, D.; Bothun, G.

    1999-12-01

    Because of advances in computational technology, personal computers can now perform N-body simulations in real-time which contain much of the essential gravitational physics involved. We have developed a web-based java lab which allows students to explore interacting galaxy dynamics, including concepts such as gravitational tides, binding and escape energy, kinematic resonances, and galaxy evolution. Students have complete flexibility to design their own galaxy collision experiments and realistically model actual interacting galaxies. These models are sophisticated enough to also act as preliminary guides for scientific research. This interacting galaxy javalab is publicly available at http://burro.astr.cwru.edu/JavaLab. This work has been sponsered in part through a National Science Foundation Early Career Award.

  19. Behavior of Plasma-Sprayed Hydroxyapatite Coatings onto Carbon/carbon Composites in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Sui, Jin-Ling; Bo, Wu; Hai, Zhou; Cao, Ning; Li, Mu-Sen

    Two types of hydroxyapatite (HA) coatings onto carbon/carbon composite (C/C composites) substrates, deposited by plasma spraying technique, were immersed in a simulated body fluid (SBF) in order to determine their behavior in conditions similar to the human blood plasma. Calcium ion concentration, pH value, microstructure, and phase compositions were analyzed. Results demonstrated that both the crystal Ca-P phases or the amorphous HA do dissolve slightly, and the dissolution of CaO phases in SBF was evident after 1 day of soaking. The calcium-ion concentration was decreased and the pH value of SBF was increased with the increasing of the immersing time. The precipitation was mainly composed of HA, which was verified by X-ray diffraction (XRD) and electron-probe microanalyzer.

  20. CIRCUMBINARY PLANET FORMATION IN THE KEPLER-16 SYSTEM. I. N-BODY SIMULATIONS

    SciTech Connect

    Meschiari, Stefano

    2012-06-10

    The recently discovered circumbinary planets (Kepler-16 b, Kepler 34-b, Kepler 35-b) represent the first direct evidence of the viability of planet formation in circumbinary orbits. We report on the results of N-body simulations investigating planetesimal accretion in the Kepler-16 b system, focusing on the range of impact velocities under the influence of both stars' gravitational perturbation and friction from a putative protoplanetary disk. Our results show that planet formation might be effectively inhibited for a large range in semimajor axis (1.75 {approx}< a{sub P} {approx}< 4 AU), suggesting that the planetary core must have either migrated from outside 4 AU or formed in situ very close to its current location.

  1. Measured force on elongated bodies in a simulated low-Earth orbit environment

    SciTech Connect

    Maldonado, C. A.; Ketsdever, A. D.; Gimelshein, S. F.

    2014-12-09

    An overview of the development of a magnetically filtered atomic oxygen plasma source and the application of the source to study low-Earth orbit drag on elongated bodies is presented. Plasma diagnostics show that the magnetic filter plasma source produces atomic oxygen ions (O{sup +}) with streaming energies equivalent to the relative orbital environment of approximately 5eV and can supply the appropriate density for LEO simulation. Previous research has demonstrated that momentum transfer between ions and metal surfaces is equivalent to the momentum transfer expected for neutral molecules with similar energy, due to charge exchange occurring prior to momentum transfer. Total drag measurements of aluminum cuboid geometries of varying length to diameter ratios immersed in the extracted plasma plume are presented as a function of streaming ion energy.

  2. Calcium and titanium release in simulated body fluid from plasma electrolytically oxidized titanium.

    PubMed

    Zhang, Y; Matykina, E; Skeldon, P; Thompson, G E

    2010-01-01

    The release of titanium and calcium species to a simulated body fluid (SBF) at 37 degrees C has been investigated for titanium treated by dc plasma electrolytic oxidation (PEO) in three different electrolytes, namely phosphate, silicate and calcium- and phosphorus-containing. The average rate of release of titanium over a 30 day period in immersion tests, determined by solution analysis, was in the range approximately 1.5-2.0 pg cm(-2) s(-1). Calcium was released at an average rate of approximately 11 pg cm(-2) s(-1). The passive current densities, determined from potentiodynamic polarization measurements, suggested titanium losses of a similar order to those determined from immersion tests. However, the possibility of film formation does not allow for discrimination between the metal releases due to electrochemical oxidation of titanium and chemical dissolution of the coating.

  3. Digital quantum simulation of many-body non-Markovian dynamics

    NASA Astrophysics Data System (ADS)

    Sweke, R.; Sanz, M.; Sinayskiy, I.; Petruccione, F.; Solano, E.

    2016-08-01

    We present an algorithmic method for the digital quantum simulation of many-body locally indivisible non-Markovian open quantum systems. It consists of two parts: first, a Suzuki-Lie-Trotter decomposition of the global system propagator into the product of subsystem propagators, which may not be quantum channels, and second, an algorithmic procedure for the implementation of the subsystem propagators through unitary operations and measurements on a dilated space. By providing rigorous error bounds for the relevant Suzuki-Lie-Trotter decomposition, we are able to analyze the efficiency of the method, and connect it with an appropriate measure of the local indivisibility of the system. In light of our analysis, the proposed method is expected to be experimentally achievable for a variety of interesting cases.

  4. Simulated Body Fluid Nucleation of Three-Dimensional Printed Elastomeric Scaffolds for Enhanced Osteogenesis.

    PubMed

    Castro, Nathan J; Tan, Wilhelmina Nanrui; Shen, Charlie; Zhang, Lijie Grace

    2016-07-01

    Osseous tissue defects caused by trauma present a common clinical problem. Although traditional clinical procedures have been successfully employed, several limitations persist with regards to insufficient donor tissue, disease transmission, and inadequate host-implant integration. Therefore, this work aims to address current limitations regarding inadequate host tissue integration through the use of a novel elastomeric material for three-dimensional (3D) printing biomimetic and bioactive scaffolds. A novel thermoplastic polyurethane-based elastomeric composite filament (Gel-Lay) was used to manufacture porous scaffolds. In an effort to render the scaffolds more bioactive, the flexible scaffolds were subsequently incubated in simulated body fluid at various time points and evaluated for enhanced mechanical properties along with the effects on cell adhesion, proliferation, and 3-week osteogenesis. This work is the first reported use of a novel class of flexible elastomeric materials for the manufacture of 3D printed bioactive scaffold fabrication allowing efficient and effective nucleation of hydroxyapatite (HA) leading to increased nanoscale surface roughness while retaining the bulk geometry of the predesigned structure. Scaffolds with interconnected microfibrous filaments of ∼260 μm were created and nucleated in simulated body fluid that facilitated cell adhesion and spreading after only 24 h in culture. The porous structure further allowed efficient nucleation, exchange of nutrients, and metabolic waste removal during new tissue formation. Through the incorporation of osteoconductive HA, human fetal osteoblast adhesion and differentiation were greatly enhanced thus setting the tone for further exploration of this novel material for biomedical and tissue regenerative applications.

  5. Sub-discretized surface model with application to contact mechanics in multi-body simulation

    SciTech Connect

    Johnson, S; Williams, J

    2008-02-28

    The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.

  6. Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.

    PubMed

    Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B

    2006-04-15

    Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.

  7. Toward Anatomical Simulation for Breath Training in Mind/Body Medicine

    NASA Astrophysics Data System (ADS)

    Sanders, Benjamin; Dilorenzo, Paul; Zordan, Victor; Bakal, Donald

    The use of breath in healing is poorly understood by patients and professionals alike. Dysfunctional breathing is a characteristic of many unexplained symptoms and mind/body medical professionals seek methods for breath training to alleviate such problems. Our approach is to re-purpose and evolve a recently developed anatomically inspired respiration simulation which was created for synthesizing motion in entertainment for the use of visualization in breath training. In mind/body medicine, problems are often created from patients being advised to breathe according to some standard based on pace or volume. However, a breathing pattern that is comfortable and effortless for one person may not have the same benefits for the next person. The breathing rhythm which is most effortless for each person needs to be dynamically identified. To this end, in this chapter, we employ optimization to modify a generic model of respiration to fit the breath patterns of specific individuals. In practice, the corresponding visualization which is specific to individual patients could be used to train proper breath behavior, both by showing specific (abnormal) practice and recommended modification(s).

  8. A Multirate Variable-timestep Algorithm for N-body Solar System Simulations with Collisions

    NASA Astrophysics Data System (ADS)

    Sharp, P. W.; Newman, W. I.

    2016-03-01

    We present and analyze the performance of a new algorithm for performing accurate simulations of the solar system when collisions between massive bodies and test particles are permitted. The orbital motion of all bodies at all times is integrated using a high-order variable-timestep explicit Runge-Kutta Nyström (ERKN) method. The variation in the timestep ensures that the orbital motion of test particles on eccentric orbits or close to the Sun is calculated accurately. The test particles are divided into groups and each group is integrated using a different sequence of timesteps, giving a multirate algorithm. The ERKN method uses a high-order continuous approximation to the position and velocity when checking for collisions across a step. We give a summary of the extensive testing of our algorithm. In our largest simulation—that of the Sun, the planets Earth to Neptune and 100,000 test particles over 100 million years—the relative error in the energy after 100 million years was of the order of 10-11.

  9. The GENGA code: gravitational encounters in N-body simulations with GPU acceleration

    SciTech Connect

    Grimm, Simon L.; Stadel, Joachim G.

    2014-11-20

    We describe an open source GPU implementation of a hybrid symplectic N-body integrator, GENGA (Gravitational ENcounters with Gpu Acceleration), designed to integrate planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. GENGA uses a hybrid symplectic integrator to handle close encounters with very good energy conservation, which is essential in long-term planetary system integration. We extended the second-order hybrid integration scheme to higher orders. The GENGA code supports three simulation modes: integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. We compare the results of GENGA to Mercury and pkdgrav2 in terms of energy conservation and performance and find that the energy conservation of GENGA is comparable to Mercury and around two orders of magnitude better than pkdgrav2. GENGA runs up to 30 times faster than Mercury and up to 8 times faster than pkdgrav2. GENGA is written in CUDA C and runs on all NVIDIA GPUs with a computing capability of at least 2.0.

  10. Evaluation of microwave landing system approaches in a wide-body transport simulator

    NASA Technical Reports Server (NTRS)

    Summers, L. G.; Feather, J. B.

    1992-01-01

    The objective of this study was to determine the suitability of flying complex curved approaches using the microwave landing system (MLS) with a wide-body transport aircraft. Fifty pilots in crews of two participated in the evaluation using a fixed-base simulator that emulated an MD-11 aircraft. Five approaches, consisting of one straight-in approach and four curved approaches, were flown by the pilots using a flight director. The test variables include the following: (1) manual and autothrottles; (2) wind direction; and (3) type of navigation display. The navigation display was either a map or a horizontal situation indicator (HSI). A complex wind that changed direction and speed with altitude, and included moderate turbulence, was used. Visibility conditions were Cat 1 or better. Subjective test data included pilot responses to questionnaires and pilot comments. Objective performance data included tracking accuracy, position error at decision height, and control activity. Results of the evaluation indicate that flying curved MLS approaches with a wide-body transport aircraft is operationally acceptable, depending upon the length of the final straight segment and the complexity of the approach.

  11. N-Body Numerical Simulations for Orbits of Old Open Clusters

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Noriega-Crespo, A.; Friel, E. D.

    1996-12-01

    Analysis on age distributions of open clusters has shown that the average time it takes for a cluster to be completely disrupted is a few hundred million years. However, the ages of the old open clusters are on the order of one to ten billion years. The purpose of this project was to model the clusters as n-body systems and find relations between orbital kinematics and survivability. This work builds off of an earlier project which modeled the orbits using just a center of mass, or "one-body" model (1). Data were available for the complete orbital parameters of seven old open clusters. These seven, along with too purely theoretical open clusters were placed in the simulations. The clusters consisted of one hundred bodies (each of one solar mass) which were placed in a model galactic potential (2). Internal interactions were taken into account, but a relatively large softening parameter was used so that binary interactions would not dominate. The results show that there is a correlation between radial distance from the galactic center and survivability. For example, the cluster ngc6791 was found to contain approximately 55% of its original mass after one gyr. The closest radial approach for ngc6791 is 4.6 kpcs. However, ngc752, which has a distance of closest radial approach of 8.7 kpcs, retained 80% of its original mass. Model clusters were identical except for center of mass positions and velocities. These results support the observation that almost all old open clusters are found at large radial distances from the center of the galaxy (usually greater than 8kpcs). Currently, data analysis is still being carried out to find trends in mass loss verses time. [1] Finlay, Friel, Noriega-Crespo & Cudworth, 1995. [2] Allen & Santillan 1991, RevMxAA.

  12. Direct N-body simulations of globular clusters - III. Palomar 4 on an eccentric orbit

    NASA Astrophysics Data System (ADS)

    Zonoozi, Akram Hasani; Haghi, Hosein; Kroupa, Pavel; Küpper, Andreas H. W.; Baumgardt, Holger

    2017-01-01

    Palomar 4 is a low-density globular cluster with a current mass ≈30000 M⊙in the outer halo of the Milky Way with a two-body relaxation time of the order of a Hubble time. Yet, it is strongly mass segregated and contains a stellar mass function depleted of low-mass stars. Pal 4 was either born this way or it is a result of extraordinary dynamical evolution. Since two-body relaxation cannot explain these signatures alone, enhanced mass loss through tidal shocking may have had a strong influence on Pal 4. Here, we compute a grid of direct N-body simulations to model Pal 4 on various eccentric orbits within the Milky Way potential to find likely initial conditions that reproduce its observed mass, half-light radius, stellar MF-slope and line-of-sight velocity dispersion. We find that Pal 4 is most likely orbiting on an eccentric orbit with an eccentricity of e ≈ 0.9 and pericentric distance of Rp ≈ 5 kpc. In this scenario, the required 3D half-mass radius at birth is similar to the average sizes of typical GCs (Rh ≈ 4 - 5 pc), while its birth mass is about M0 ≈ 105 M⊙. We also find a high degree of primordial mass segregation among the cluster stars, which seems to be necessary in every scenario we considered. Thus, using the tidal effect to constrain the perigalactic distance of the orbit of Pal 4, we predict that the proper motion of Pal 4 should be in the range -0.52 ≤ μδ ≤ -0.38 mas yr-1 and -0.30 ≤ μαcos δ ≤ -0.15 mas yr-1.

  13. Optimal whole-body PET scanner configurations for different volumes of LSO scintillator: a simulation study

    NASA Astrophysics Data System (ADS)

    Poon, Jonathan K.; Dahlbom, Magnus L.; Moses, William W.; Balakrishnan, Karthik; Wang, Wenli; Cherry, Simon R.; Badawi, Ramsey D.

    2012-07-01

    The axial field of view (AFOV) of the current generation of clinical whole-body PET scanners range from 15-22 cm, which limits sensitivity and renders applications such as whole-body dynamic imaging or imaging of very low activities in whole-body cellular tracking studies, almost impossible. Generally, extending the AFOV significantly increases the sensitivity and count-rate performance. However, extending the AFOV while maintaining detector thickness has significant cost implications. In addition, random coincidences, detector dead time, and object attenuation may reduce scanner performance as the AFOV increases. In this paper, we use Monte Carlo simulations to find the optimal scanner geometry (i.e. AFOV, detector thickness and acceptance angle) based on count-rate performance for a range of scintillator volumes ranging from 10 to 93 l with detector thickness varying from 5 to 20 mm. We compare the results to the performance of a scanner based on the current Siemens Biograph mCT geometry and electronics. Our simulation models were developed based on individual components of the Siemens Biograph mCT and were validated against experimental data using the NEMA NU-2 2007 count-rate protocol. In the study, noise-equivalent count rate (NECR) was computed as a function of maximum ring difference (i.e. acceptance angle) and activity concentration using a 27 cm diameter, 200 cm uniformly filled cylindrical phantom for each scanner configuration. To reduce the effect of random coincidences, we implemented a variable coincidence time window based on the length of the lines of response, which increased NECR performance up to 10% compared to using a static coincidence time window for scanners with a large maximum ring difference values. For a given scintillator volume, the optimal configuration results in modest count-rate performance gains of up to 16% compared to the shortest AFOV scanner with the thickest detectors. However, the longest AFOV of approximately 2 m with 20 mm

  14. Optimal whole-body PET scanner configurations for different volumes of LSO scintillator: a simulation study.

    PubMed

    Poon, Jonathan K; Dahlbom, Magnus L; Moses, William W; Balakrishnan, Karthik; Wang, Wenli; Cherry, Simon R; Badawi, Ramsey D

    2012-07-07

    The axial field of view (AFOV) of the current generation of clinical whole-body PET scanners range from 15-22 cm, which limits sensitivity and renders applications such as whole-body dynamic imaging or imaging of very low activities in whole-body cellular tracking studies, almost impossible. Generally, extending the AFOV significantly increases the sensitivity and count-rate performance. However, extending the AFOV while maintaining detector thickness has significant cost implications. In addition, random coincidences, detector dead time, and object attenuation may reduce scanner performance as the AFOV increases. In this paper, we use Monte Carlo simulations to find the optimal scanner geometry (i.e. AFOV, detector thickness and acceptance angle) based on count-rate performance for a range of scintillator volumes ranging from 10 to 93 l with detector thickness varying from 5 to 20 mm. We compare the results to the performance of a scanner based on the current Siemens Biograph mCT geometry and electronics. Our simulation models were developed based on individual components of the Siemens Biograph mCT and were validated against experimental data using the NEMA NU-2 2007 count-rate protocol. In the study, noise-equivalent count rate (NECR) was computed as a function of maximum ring difference (i.e. acceptance angle) and activity concentration using a 27 cm diameter, 200 cm uniformly filled cylindrical phantom for each scanner configuration. To reduce the effect of random coincidences, we implemented a variable coincidence time window based on the length of the lines of response, which increased NECR performance up to 10% compared to using a static coincidence time window for scanners with a large maximum ring difference values. For a given scintillator volume, the optimal configuration results in modest count-rate performance gains of up to 16% compared to the shortest AFOV scanner with the thickest detectors. However, the longest AFOV of approximately 2 m with

  15. Zonal methods for the parallel execution of range-limited N-body simulations

    SciTech Connect

    Bowers, Kevin J.; Dror, Ron O.; Shaw, David E. . E-mail: david@deshaw.com

    2007-01-20

    Particle simulations in fields ranging from biochemistry to astrophysics require the evaluation of interactions between all pairs of particles separated by less than some fixed interaction radius. The applicability of such simulations is often limited by the time required for calculation, but the use of massive parallelism to accelerate these computations is typically limited by inter-processor communication requirements. Recently, Snir [M. Snir, A note on N-body computations with cutoffs, Theor. Comput. Syst. 37 (2004) 295-318] and Shaw [D.E. Shaw, A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions, J. Comput. Chem. 26 (2005) 1318-1328] independently introduced two distinct methods that offer asymptotic reductions in the amount of data transferred between processors. In the present paper, we show that these schemes represent special cases of a more general class of methods, and introduce several new algorithms in this class that offer practical advantages over all previously described methods for a wide range of problem parameters. We also show that several of these algorithms approach an approximate lower bound on inter-processor data transfer.

  16. Preliminary subsonic aerodynamic model for simulation studies of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Cruz, Christopher I.

    1992-01-01

    A nonlinear, six-degree-of-freedom aerodynamic model for an early version of the HL-20 lifting body is described and compared with wind tunnel data upon which it is based. Polynomial functions describing most of the aerodynamic parameters are given and tables of these functions are presented. Techniques used to arrive at these functions are described. Basic aerodynamic coefficients were modeled as functions of angles of attack and sideslip. Vehicle lateral symmetry was assumed. Compressibility (Mach) effects were ignored. Control-surface effectiveness was assumed to vary linearly with angle of deflection and was assumed to be invariant with the angle of sideslip. Dynamic derivatives were obtained from predictive aerodynamic codes. Landing-gear and ground effects were scaled from Space Shuttle data. The model described is provided to support pilot-in-the-loop simulation studies of the HL-20. By providing the data in tabular format, the model is suitable for the data interpolation architecture of many existing engineering simulation facilities. Because of the preliminary nature of the data, however, this model is not recommended for study of the absolute performance of the HL-20.

  17. Fabrication of DNA/Hydroxyapatite nanocomposites by simulated body fluid for gene delivery

    NASA Astrophysics Data System (ADS)

    Takeshita, Takayuki; Okamoto, Masami

    2015-05-01

    The hydroxyapatite (HA) formation on the surface of DNA molecules in simulated body fluid (SBF) was examined. The osteoconductivity is estimated using SBF having ion concentrations approximately equal to those of human blood plasma. After immersion for 4 weeks in SBF at 36.5 °C, the HA crystallites possessing 1-14 micrometer in diameter grew on the surface of DNA molecules. The leaf flake-like and spherical shapes morphologies were observed through scanning electron microscopy analysis. Original peaks of both of DNA and HA were characterized by fourier transform infrared spectroscopy. The Ca/P ratio (1.1-1.5) in HA was estimated by energy dispersive X-ray analysis. After biomineralization, the calculated weight ratio of DNA/HA was 18/82 by thermogravimetry/differential thermal analysis. The molecular orbital computer simulation has been used to probe the interaction of DNA with two charge-balancing ions, CaOH+ and C a H2P O4+ . The adsorption enthalpy of the two ions on DNA having negative value was the evidence for the interface in mineralization of HA in SBF.

  18. STRUCTURE FORMATION BY FIFTH FORCE: POWER SPECTRUM FROM N-BODY SIMULATIONS

    SciTech Connect

    Zhao Hongsheng; Feix, Martin; Maccio, Andrea V.; Li Baojiu; Hoekstra, Henk

    2010-04-01

    We lay out the framework to numerically study nonlinear structure formation in the context of scalar-field-coupled cold dark matter models ({psi}CDM models) where the scalar field {psi} serves as dynamical dark energy. Adopting parameters for the scalar field that leave negligible effects on the cosmic microwave background (CMB) spectrum, we generate the initial conditions for our N-body simulations. The simulations follow the spatial distributions of dark matter and the scalar field, solving their equations of motion using a multilevel adaptive grid technique. We show that the spatial configuration of the scalar field depends sensitively on the local density field. The {psi}CDM model differs from standard {lambda}CDM at small scales with observable modifications of, e.g., the mass function of halos as well as the matter power spectrum. Nevertheless, the predictions of both models for the Hubble expansion and the CMB spectrum are virtually indistinguishable. Hence, galaxy cluster counts and weak lensing observations, which probe structure formation at small scales, are needed to falsify this class of models.

  19. Flow Simulations of The Dynamics of a Perturbed Solid-Body Rotation Flow

    NASA Astrophysics Data System (ADS)

    Wang, Shixiao; Feng, Chunjuan; Liu, Feng; Rusak, Zvi

    2016-11-01

    DNS is conducted to study the 3-D flow dynamics of a base solid-body rotation flow with a uniform axial velocity in a finite-length pipe. The simulation results describe the neutral stability line in response to either axisymmetric or 3-dimensional perturbations in a diagram of Reynolds number (Re , based on inlet axial velocity and pipe radius) versus the incoming flow swirl ratio (ω). This line is in good agreement with the neutral stability line recently predicted by the linear stability theory of Wang et al. (2016). The Wang & Rusak (1996) axisymmetric instability mechanism and evolution to an axisymmetric breakdown state is recovered in the simulations at certain operational conditions in terms of Re and ω. However, at other operational conditions there exists a dominant, 3-dimensional spiral type of instability mode that agrees with the linear stability theory of Wang et al. (2016). The growth of this mode leads to a spiral type of flow roll-up that subsequently nonlinearly saturates on a rotating spiral type of vortex breakdown. The computed time history of the velocity components at a certain point in the flow is used to describe 3-dimensional phase portraits of the flow global dynamics and its long-term behavior.

  20. An Integrated Simulation of a Wing-Body Combination for a Hovering Drosophila

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet; Dilek, Ezgi; Erzincanli, Belkis

    2015-11-01

    The parallel large-scale unstructured finite volume method based on an Arbitrary Lagrangian-Eulerian (ALE) formulation has been applied in order to investigate the near wake structure of a hovering Drosophila flight. DISTENE MeshGems-Hexa algorithm based on the octree method is used to generate the all hexahedral mesh for the wing-body combination. The mesh deformation algorithm is based on the indirect radial basis function (RBF) method at each time level while avoiding remeshing in order to enhance numerical robustness. The large-scale numerical simulations are carried out for a flapping Drosophila in hover flight. The λ2-criterion proposed by Jeong and Hussain (1995) is used for investigating the time variation of the Eulerian coherent structures in the near wake. In addition, the Lagrangian coherent structures is also investigated using finite-time Lyapunov exponents (FTLE) fields. The present simulations reveal highly detailed near wake topology for a hovering Drosophila. This is very useful in terms of understanding physics in biological flights which can provide a very useful tool for designing bio-inspired MAVs. The authors acknowledge financial support from Turkish National Scientific and Technical Research Council (TUBITAK) through project numbers 111M332 and 214M293.

  1. Confrontation of top-hat spherical collapse against dark halos from cosmological N-body simulations

    NASA Astrophysics Data System (ADS)

    Suto, Daichi; Kitayama, Tetsu; Osato, Ken; Sasaki, Shin; Suto, Yasushi

    2016-02-01

    The top-hat spherical collapse model (TSC) is one of the most fundamental analytical frameworks to describe the non-linear growth of cosmic structure. TSC has motivated, and been widely applied in, various investigations even in the current era of precision cosmology. While numerous studies exist to examine its validity against numerical simulations in a statistical fashion, there are few analyses which compare the TSC dynamics in an individual object-wise basis, which is what we attempt in the present paper. We extract 100 halos at z = 0 from a cosmological N-body simulation according to the conventional TSC criterion for the spherical over-density. Then we trace back their spherical counterparts at earlier epochs. Just prior to the turn-around epoch of the halos, their dynamics are well approximated by TSC, but their turn-around epochs are systematically delayed and the virial radii are larger by ˜20% on average relative to the TSC predictions. We find that this systematic deviation can mainly be ascribed to the non-uniformity/inhomogeneity of dark matter density profiles and the non-zero velocity dispersions, both of which are neglected in TSC. In particular, the inside-out collapse and shell-crossing of dark matter halos play an important role in generating the significant velocity dispersion. The implications of the present result are briefly discussed.

  2. Fabrication of DNA/Hydroxyapatite nanocomposites by simulated body fluid for gene delivery

    SciTech Connect

    Takeshita, Takayuki; Okamoto, Masami

    2015-05-22

    The hydroxyapatite (HA) formation on the surface of DNA molecules in simulated body fluid (SBF) was examined. The osteoconductivity is estimated using SBF having ion concentrations approximately equal to those of human blood plasma. After immersion for 4 weeks in SBF at 36.5 °C, the HA crystallites possessing 1-14 micrometer in diameter grew on the surface of DNA molecules. The leaf flake-like and spherical shapes morphologies were observed through scanning electron microscopy analysis. Original peaks of both of DNA and HA were characterized by fourier transform infrared spectroscopy. The Ca/P ratio (1.1-1.5) in HA was estimated by energy dispersive X-ray analysis. After biomineralization, the calculated weight ratio of DNA/HA was 18/82 by thermogravimetry/differential thermal analysis. The molecular orbital computer simulation has been used to probe the interaction of DNA with two charge-balancing ions, CaOH{sup +} and CaH{sub 2}PO{sub 4}{sup +}. The adsorption enthalpy of the two ions on DNA having negative value was the evidence for the interface in mineralization of HA in SBF.

  3. Comparative Host Response of 2 Human Acellular Dermal Matrices in a Primate Implant Model

    PubMed Central

    Sandor, Maryellen; Singh, Devinder; Silverman, Ronald P.; Xu, Hui; De Deyne, Patrick G.

    2014-01-01

    Objective: We examined the differences in capsule formation between 2 commercially available human acellular dermal matrices in a nonhuman primate model. Methods: Primates were implanted dorsally with a subcutaneously placed tissue expander and randomized into 3 groups, receiving skin coverage only, coverage with non-irradiated freeze-dried human acellular dermal matrix, or coverage with gamma-irradiated human acellular dermal matrix. After 9 weeks, soft tissue around the tissue expander was excised and evaluated qualitatively and quantitatively to assess extent of inflammation (CD68 antibodies and interleukin-6 levels), degradation and fibrosis (matrix metalloproteinase-1 and procollagen-1 staining), and mechanical (tensile) strength. Results: Histological evaluation of tissue around the tissue expander indicated differences in host response, suggesting capsule presence in the gamma-irradiated matrix group but not the freeze-dried matrix group. The extent of local inflammation was much higher in the gamma-irradiated matrix group which demonstrated mean (standard deviation) localized interleukin-6 concentration of 67.3 (53.6) vs 16.3 (6.7) pg/mg protein in the non-irradiated matrix group. There was robust degradation and fibrotic response in the gamma-irradiated matrix group versus the freeze-dried matrix group. Mechanical testing indicated mean (standard deviation) ultimate tensile strength of 12.0 (7.1) N in the gamma-irradiated matrix group versus 99.3 (48.8) N in the freeze-dried matrix group. Conclusions: Enclosure of a tissue expander with human acellular dermal matrix untreated by gamma irradiation led to minimal inflammation and minimal evidence of fibrosis/capsule around the tissue expander compared with robust capsule formation around the tissue expander that was covered by a gamma-irradiated human acellular dermal matrix. PMID:24570768

  4. Development and Characterization of Acellular Porcine Pulmonary Valve Scaffolds for Tissue Engineering

    PubMed Central

    Korossis, Sotirios A.; Wilshaw, Stacy-Paul; Jennings, Louise M; Fisher, John; Ingham, Eileen

    2014-01-01

    Currently available replacement heart valves all have limitations. This study aimed to produce and characterize an acellular, biocompatible porcine pulmonary root conduit for reconstruction of the right ventricular outflow tract e.g., during Ross procedure. A process for the decellularization of porcine pulmonary roots was developed incorporating trypsin treatment of the adventitial surface of the scraped pulmonary artery and sequential treatment with hypotonic Tris buffer (HTB; 10 mM Tris pH 8.0, 0.1% (w/v) EDTA, and 10 KIU aprotinin), 0.1% (w/v) sodium dodecyl sulfate in HTB, two cycles of DNase and RNase, and sterilization with 0.1% (v/v) peracetic acid. Histology confirmed an absence of cells and retention of the gross histoarchitecture. Immunohistochemistry further confirmed cell removal and partial retention of the extracellular matrix, but a loss of collagen type IV. DNA levels were reduced by more than 96% throughout all regions of the acellular tissue and no functional genes were detected using polymerase chain reaction. Total collagen levels were retained but there was a significant loss of glycosaminoglycans following decellularization. The biomechanical, hydrodynamic, and leaflet kinematics properties were minimally affected by the process. Both immunohistochemical labeling and antibody absorption assay confirmed a lack of α-gal epitopes in the acellular porcine pulmonary roots and in vitro biocompatibility studies indicated that acellular leaflets and pulmonary arteries were not cytotoxic. Overall the acellular porcine pulmonary roots have excellent potential for development of a tissue substitute for right ventricular outflow tract reconstruction e.g., during the Ross procedure. PMID:24786313

  5. Effects of the decellularization method on the local stiffness of acellular lungs.

    PubMed

    Melo, Esther; Garreta, Elena; Luque, Tomas; Cortiella, Joaquin; Nichols, Joan; Navajas, Daniel; Farré, Ramon

    2014-05-01

    Lung bioengineering, a novel approach to obtain organs potentially available for transplantation, is based on decellularizing donor lungs and seeding natural scaffolds with stem cells. Various physicochemical protocols have been used to decellularize lungs, and their performance has been evaluated in terms of efficient decellularization and matrix preservation. No data are available, however, on the effect of different decellularization procedures on the local stiffness of the acellular lung. This information is important since stem cells directly sense the rigidity of the local site they are engrafting to during recellularization, and it has been shown that substrate stiffness modulates cell fate into different phenotypes. The aim of this study was to assess the effects of the decellularization procedure on the inhomogeneous local stiffness of the acellular lung on five different sites: alveolar septa, alveolar junctions, pleura, and vessels' tunica intima and tunica adventitia. Local matrix stiffness was measured by computing Young's modulus with atomic force microscopy after decellularizing the lungs of 36 healthy rats (Sprague-Dawley, male, 250-300 g) with four different protocols with/without perfusion through the lung circulatory system and using two different detergents (sodium dodecyl sulfate [SDS] and 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate [CHAPS]). The local stiffness of the acellular lung matrix significantly depended on the site within the matrix (p<0.001), ranging from ∼ 15 kPa at the alveolar septum to ∼ 60 kPa at the tunica intima. Acellular lung stiffness (p=0.003) depended significantly, albeit modestly, on the decellularization process. Whereas perfusion did not induce any significant differences in stiffness, the use of CHAPS resulted in a ∼ 35% reduction compared with SDS, the influence of the detergent being more important in the tunica intima. In conclusion, lung matrix stiffness is considerably inhomogeneous, and

  6. Acellular ostrich corneal stroma used as scaffold for construction of tissue-engineered cornea

    PubMed Central

    Liu, Xian-Ning; Zhu, Xiu-Ping; Wu, Jie; Wu, Zheng-Jie; Yin, Yong; Xiao, Xiang-Hua; Su, Xin; Kong, Bin; Pan, Shi-Yin; Yang, Hua; Cheng, Yan; An, Na; Mi, Sheng-Li

    2016-01-01

    AIM To assess acellular ostrich corneal matrix used as a scaffold to reconstruct a damaged cornea. METHODS A hypertonic saline solution combined with a digestion method was used to decellularize the ostrich cornea. The microstructure of the acellular corneal matrix was observed by transmission electron microscopy (TEM) and hematoxylin and eosin (H&E) staining. The mechanical properties were detected by a rheometer and a tension machine. The acellular corneal matrix was also transplanted into a rabbit cornea and cytokeratin 3 was used to check the immune phenotype. RESULTS The microstructure and mechanical properties of the ostrich cornea were well preserved after the decellularization process. In vitro, the methyl thiazolyl tetrazolium results revealed that extracts of the acellular ostrich corneas (AOCs) had no inhibitory effects on the proliferation of the corneal epithelial or endothelial cells or on the keratocytes. The rabbit lamellar keratoplasty showed that the transplanted AOCs were transparent and completely incorporated into the host cornea while corneal turbidity and graft dissolution occurred in the acellular porcine cornea (APC) transplantation. The phenotype of the reconstructed cornea was similar to a normal rabbit cornea with a high expression of cytokeratin 3 in the superficial epithelial cell layer. CONCLUSION We first used AOCs as scaffolds to reconstruct damaged corneas. Compared with porcine corneas, the anatomical structures of ostrich corneas are closer to those of human corneas. In accordance with the principle that structure determines function, a xenograft lamellar keratoplasty also confirmed that the AOC transplantation generated a superior outcome compared to that of the APC graft. PMID:27158598

  7. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2013-04-01

    Highly porous 17-4 PH stainless steel foam for biomedical applications was produced by space holder technique. Metal release and weight loss from 17-4 PH stainless steel foams was investigated in simulated body fluid and artificial saliva environments by static immersion tests. Inductively coupled plasma-mass spectrometer was employed to measure the concentrations of various metal ions released from the 17-4 PH stainless steel foams into simulated body fluids and artificial saliva. Effect of immersion time and pH value on metal release and weight loss in simulated body fluid and artificial saliva were determined. Pore morphology, pore size and mechanical properties of the 17-4 PH stainless steel foams were close to human cancellous bone.

  8. Molecular dynamics simulations and rigid body (TLS) analysis of aspartate carbamoyltransferase: evidence for an uncoupled R state.

    PubMed Central

    Tanner, J. J.; Smith, P. E.; Krause, K. L.

    1993-01-01

    In the R form of ATCase complexed with the bisubstrate analogue, N-(phosphonacetyl)-L-aspartate, large temperature factors are reported for the allosteric domains of the regulatory chains. We studied the conformational flexibility of the holoenzyme with molecular dynamics simulations and rigid body (TLS) analysis. The results of the molecular dynamics simulations suggest that, although local atomic fluctuations account for the temperature factors of the catalytic and zinc domains, they do not account for the large temperature factors of the allosteric regions. However, the temperature factors of the allosteric domains can be satisfactorily analyzed using a rigid body model. The simulations and rigid body analysis support the idea that the allosteric regions are mechanically uncoupled from the rest of the enzyme in the PALA structure. Implications of this uncoupling for allosteric regulation are discussed. PMID:8318897

  9. The dynamics of charged particles in the near wake of a very negatively charged body - Laboratory experiment and numerical simulation

    NASA Technical Reports Server (NTRS)

    Morgan, M. Alvin; Chan, Chung; Cooke, David L.; Tautz, Maurice F.

    1989-01-01

    A numerical simulation that is cylindrical in configuration space and three-dimensional in velocity space has been initiated to test a model for the near-wake dynamics of a very negatively charged body, with reference to the plasma environment around spacecraft. The simulation parameters were closely matched to those of a laboratory experiment so that the results can be compared directly. The laboratory study showed that the electrons and ions can display different temporal features in the filling-in of the wake; and that they can both be found within one body diameter of an object with a highly negative body potential. It was also found that the temperature of the electrons in the very near wake could be somewhat colder than the ambient value, suggesting the possibility of a filtering mechanism being operative there. The simulation results to date largely corroborate the density findings.

  10. The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations

    SciTech Connect

    Sellier, J.M. Dimov, I.

    2014-09-15

    The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practically unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.

  11. VHP-Female full-body human CAD model for cross-platform FEM simulations: recent development and validations.

    PubMed

    Tankaria, Harshal; Jackson, Xavier J; Borwankar, Raunak; Srichandhru, Goutham N K; Le Tran, Anh; Yanamadala, Janakinadh; Noetscher, Gregory M; Nazarian, Ara; Louie, Sara; Makarov, Sergey N

    2016-08-01

    Simulation of the electromagnetic response of the human body relies heavily upon efficient computational models or phantoms. The first objective of this paper is to present an improved platform-independent full-body electromagnetic computational model (computational phantom), the Visible Human Project® (VHP)-Female v. 3.1 and to describe its distinct features and enhancements compared to VHP-Female v. 2.0. The second objective is to report phantom simulation for electric stimulation studies using the commercial FEM electromagnetic solver ANSYS MAXWELL.

  12. Entry of solar-wind ions into the wake of a small unmagnetized body: A global Vlasov simulation

    NASA Astrophysics Data System (ADS)

    Umeda, T.; Ito, Y.

    2013-12-01

    The interaction between a plasma flow and a small dielectric body with a weak intrinsic global magnetic field is studied by means of a five-dimensional full electromagnetic Vlasov simulation with two configuration and three velocity spaces. In the present study, entry processes of ions into the nightside wake tail are examined. The simulation result shows that solar-wind ions are reflected at the dayside magnetopause and are picked up by the interplanetary magnetic field. Then, a small part of the reflected ions are taken into the deep wake tail near the body by the ExB cycloid motion.

  13. The Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water with the Fragment Molecular Orbital Method

    SciTech Connect

    Pruitt, Spencer R.; Nakata, Hiroya; Nagata, Takeshi; Mayes, Maricris; Alexeev, Yuri; Fletcher, Graham D.; Fedorov, Dmitri G; Kitaura, Kazuo; Gordon, M

    2016-04-12

    The analytic first derivative with respect to nuclear coordinates is formulated and implemented in the framework of the three-body fragment molecular orbital (FMO) method. The gradient has been derived and implemented for restricted Hartree-Fock, second-order Møller-Plesset perturbation, and density functional theories. The importance of the three-body fully analytic gradient is illustrated through the failure of the two-body FMO method during molecular dynamics simulations of a small water cluster. The parallel implementation of the fragment molecular orbital method, its parallel efficiency, and its scalability on the Blue Gene/Q architecture up to 262,144 CPU cores, are also discussed.

  14. Singularity free N-body simulations called 'Dynamic Universe Model' don't require dark matter

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    For finding trajectories of Pioneer satellite (Anomaly), New Horizons satellite going to Pluto, the Calculations of Dynamic Universe model can be successfully applied. No dark matter is assumed within solar system radius. The effect on the masses around SUN shows as though there is extra gravitation pull toward SUN. It solves the Dynamics of Extra-solar planets like Planet X, satellite like Pioneer and NH for 3-Position, 3-velocity 3-accelaration for their masses, considering the complex situation of Multiple planets, Stars, Galaxy parts and Galaxy centre and other Galaxies Using simple Newtonian Physics. It already solved problems Missing mass in Galaxies observed by galaxy circular velocity curves successfully. Singularity free Newtonian N-body simulations Historically, King Oscar II of Sweden an-nounced a prize to a solution of N-body problem with advice given by Güsta Mittag-Leffler in 1887. He announced `Given a system of arbitrarily many mass points that attract each according to Newton's law, under the assumption that no two points ever collide, try to find a representation of the coordinates of each point as a series in a variable that is some known function of time and for all of whose values the series converges uniformly.'[This is taken from Wikipedia]. The announced dead line that time was1st June 1888. And after that dead line, on 21st January 1889, Great mathematician Poincaré claimed that prize. Later he himself sent a telegram to journal Acta Mathematica to stop printing the special issue after finding the error in his solution. Yet for such a man of science reputation is important than money. [ Ref Book `Celestial mechanics: the waltz of the planets' By Alessandra Celletti, Ettore Perozzi, page 27]. He realized that he has been wrong in his general stability result! But till now nobody could solve that problem or claimed that prize. Later all solutions resulted in singularities and collisions of masses, given by many people

  15. Simulations of dusty plasmas using a special-purpose computer system designed for gravitational N-body problems

    SciTech Connect

    Yamamoto, K.; Mizuno, Y.; Hibino, S.; Inuzuka, H.; Cao, Y.; Liu, Y.; Yazawa, K.

    2006-01-15

    Simulations of dusty plasmas were performed using GRAPE-6, a special-purpose computer designed for gravitational N-body problems. The collective behavior of dust particles, which are injected into the plasma, was studied by means of three-dimensional computer simulations. As an example of a dusty plasma simulation, experiments on Coulomb crystals in plasmas are simulated. Formation of a quasi-two-dimensional Coulomb crystal has been observed under typical laboratory conditions. Another example was to simulate movement of dust particles in plasmas under microgravity conditions. Fully three-dimensional spherical structures of dust clouds have been observed. For the simulation of a dusty plasma in microgravity with 3x10{sup 4} particles, GRAPE-6 can perform the whole operation 1000 times faster than by using a Pentium 4 1.6 GHz processor.

  16. Impact disruption of gravity-dominated bodies: New simulation data and scaling

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Nimmo, F.; Korycansky, D. G.; Asphaug, E.; Owen, J. M.

    2016-09-01

    We present results from a suite of 169 hydrocode simulations of collisions between planetary bodies with radii from 100 to 1000 km. The simulation data are used to derive a simple scaling law for the threshold for catastrophic disruption, defined as a collision that leads to half the total colliding mass escaping the system post impact. For a target radius 100 ≤ RT ≤ 1000km and a mass MT and a projectile radius rp ≤ RT and mass mp we find that a head-on impact with velocity magnitude v is catastrophic if the kinetic energy of the system in the center of mass frame, K = 0.5MTmpv2 /(MT +mp) , exceeds a threshold value K* that is a few times U =(3 / 5) GMT2/RT +(3 / 5) Gmp2/rp + GMTmp /(RT +rp) , the gravitational binding energy of the system at the moment of impact; G is the gravitational constant. In all head-on collision runs we find K* =(5.5 ± 2.9) U . Oblique impacts are catastrophic when the fraction of kinetic energy contained in the volume of the projectile intersecting the target during impact exceeds ∼2 K* for 30° impacts and ∼3.5 K* for 45° impacts. We compare predictions made with this scaling to those made with existing scaling laws in the literature extrapolated from numerical studies on smaller targets. We find significant divergence between predictions where in general our results suggest a lower threshold for disruption except for highly oblique impacts with rp ≪ RT. This has implications for the efficiency of collisional grinding in the asteroid belt (Morbidelli et al., [2009] Icarus, 204, 558-573), Kuiper belt (Greenstreet et al., [2015] Icarus, 258, 267-288), and early Solar System accretion (Chambers [2013], Icarus, 224, 43-56).

  17. Large eddy simulation of bluff body stabilized premixed and partially premixed combustion

    NASA Astrophysics Data System (ADS)

    Porumbel, Ionut

    Large Eddy Simulation (LES) of bluff body stabilized premixed and partially premixed combustion close to the flammability limit is carried out in this thesis. The main goal of the thesis is the study of the equivalence ratio effect on flame stability and dynamics in premixed and partially premixed flames. An LES numerical algorithm able to handle the entire range of combustion regimes and equivalence ratios is developed for this purpose. The algorithm has no ad-hoc adjustable model parameters and is able to respond automatically to variations in the inflow conditions, without user intervention. Algorithm validation is achieved by conducting LES of reactive and non-reactive flow. Comparison with experimental data shows good agreement for both mean and unsteady flow properties. In the reactive flow, two scalar closure models, Eddy Break-Up (EBULES) and Linear Eddy Mixing (LEMLES), are used and compared. Over important regions, the flame lies in the Broken Reaction Zone regime. Here, the EBU model assumptions fail. In LEMLES, the reaction-diffusion equation is not filtered, but resolved on a linear domain and the model maintains validity. The flame thickness predicted by LEMLES is smaller and the flame is faster to respond to turbulent fluctuations, resulting in a more significant wrinkling of the flame surface when compared to EBULES. As a result, LEMLES captures better the subtle effects of the flame-turbulence interaction, the flame structure shows higher complexity, and the far field spreading of the wake is closer to the experimental observations. Three premixed (φ = 0.6, 0.65, and 0.75) cases are simulated. As expected, for the leaner case (φ = 0.6) the flame temperature is lower, the heat release is reduced and vorticity is stronger. As a result, the flame in this case is found to be unstable. In the rich case (φ = 0.75), the flame temperature is higher, and the spreading rate of the wake is increased due to the higher amount of heat release. The ignition

  18. Prevalence and clinical significance of acellular mucin in locally advanced rectal cancer patients showing pathologic complete response to preoperative chemoradiotherapy.

    PubMed

    Lim, Seok-Byung; Hong, Seung-Mo; Yu, Chang Sik; Hong, Yong Sang; Kim, Tae Won; Park, Jin-hong; Kim, Jong Hoon; Kim, Jin Cheon

    2013-01-01

    Occasionally, patients with locally advanced rectal adenocarcinoma who receive preoperative chemoradiotherapy (CRT) show acellular mucin in resection specimens that had shown pathologic complete response (pCR), but the clinical and prognostic significance of this finding has been controversial. This study analyzed data from 217 consecutive patients showing pCR to preoperative CRT followed by resection to evaluate the clinicopathologic features and prognostic significance of acellular mucin. Patients were categorized according to the presence of acellular mucin, as identified by pathologic analysis. The clinicopathologic findings and oncologic results were compared. Acellular mucins were identified in 35 (16.1%) of 217 pCR patients. Acellular mucins were found predominantly in male patients (20.8% vs. 9.8%, P=0.039) and in those with mucinous/signet ring cell differentiation (66.7% vs. 15.1%, P=0.008). The presence of acellular mucin was more frequent in patients with a shorter (<42 d) CRT-operation interval (22.6% vs. 10.3%, P=0.017). With a mean follow-up of 41 months (range, 2 to 119 mo), the 3-year overall survival (96.8% with mucin vs. 95.9% without mucin, P=0.314) and the 3-year disease-free survival (97.0% with mucin vs. 93.0% without mucin, P=0.131) did not differ between the groups. The presence of acellular mucin in rectal cancer patients showing pCR to preoperative CRT is associated with male sex and mucinous differentiation and does not have a significant impact on oncologic outcomes. Acellular mucins are also associated with the CRT-operation interval as a phenomenon of time-dependent response to CRT.

  19. Comparison of structural, architectural and mechanical aspects of cellular and acellular bone in two teleost fish.

    PubMed

    Cohen, Liat; Dean, Mason; Shipov, Anna; Atkins, Ayelet; Monsonego-Ornan, Efrat; Shahar, Ron

    2012-06-01

    The histological diversity of the skeletal tissues of fishes is impressive compared with that of other vertebrate groups, yet our understanding of the functional consequences of this diversity is limited. In particular, although it has been known since the mid-1800s that a large number of fish species possess acellular bones, the mechanical advantages and consequences of this structural characteristic - and therefore the nature of the evolution of this feature - remain unclear. Although several studies have examined the material properties of fish bone, these have used a variety of techniques and there have been no direct contrasts of acellular and cellular bone. We report on a comparison of the structural and mechanical properties of the ribs and opercula between two freshwater fish - the common carp Cyprinus carpio (a fish with cellular bone) and the tilapia Oreochromis aureus (a fish with acellular bone). We used light microscopy to show that the bones in both fish species exhibit poor blood supply and possess discrete tissue zones, with visible layering suggesting differences in the underlying collagen architecture. We performed identical micromechanical testing protocols on samples of the two bone types to determine the mechanical properties of the bone material of opercula and ribs. Our data support the consensus of literature values, indicating that Young's moduli of cellular and acellular bones are in the same range, and lower than Young's moduli of the bones of mammals and birds. Despite these similarities in mechanical properties between the bone tissues of the fish species tested here, cellular bone had significantly lower mineral content than acellular bone; furthermore, the percentage ash content and bone mineral density values (derived from micro-CT scans) show that the bone of these fishes is less mineralized than amniote bone. Although we cannot generalize from our data to the numerous remaining teleost species, the results presented here suggest

  20. Corrosion fatigue behavior of a biocompatible ultrafine-grained niobium alloy in simulated body fluid.

    PubMed

    Rubitschek, F; Niendorf, T; Karaman, I; Maier, H J

    2012-01-01

    The present study reports on the corrosion fatigue behavior of ultrafine-grained (UFG) Niobium 2 wt-% Zirconium (NbZr) alloy in simulated body fluid (SBF). The alloy was processed using multipass equal channel angular processing at room temperature, resulting in a favorable combination of high strength and ductility along with superior biocompatibility and excellent corrosion resistance. Electrochemical measurements revealed stable passive behavior in SBF saline solutions, similar to conventional Ti-6Al-4V alloy. High-cycle fatigue tests showed no alteration in the crack initiation behavior due to the SBF environment, and an absence of pitting and corrosion products. More severe test conditions were obtained in the fatigue crack growth experiments in saline environments. Crack growth rates in UFG NbZr were marginally increased in SBF as compared to laboratory air at a constant test frequency of 20 Hz. Upon a 100 fold decrease in the test frequency, slightly higher crack growth rates were observed only in the near-threshold region. Such excellent corrosion and corrosion fatigue properties of UFG NbZr recommend it as an attractive new material for biomedical implants.

  1. Study of Nickel Ion Release in Simulated Body Fluid from C+-IMPLANTED Nickel Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Murtaza, G.; Saadat, Shahzad; Zaheer, Zeeshan; Shahnawaz, Muhammad; Uddin, Muhammad K. H.; Ahmad, Riaz

    2016-05-01

    Nickel ion release from NiTi shape memory alloy is an issue for biomedical applications. This study was planned to study the effect of C+ implantation on nickel ion release and affinity of calcium phosphate precipitation on NiTi alloy. Four annealed samples are chosen for the present study; three samples with oxidation layer and the fourth without oxidation layer. X-ray diffraction (XRD) spectra reveal amorphization with ion implantation. Proton-induced X-ray emission (PIXE) result shows insignificant increase in Ni release in simulated body fluid (SBF) and calcium phosphate precipitation up to 8×1013ions/cm2. Then Nickel contents show a sharp increase for greater ion doses. Corrosion potential decreases by increasing the dose but all the samples passivate after the same interval of time and at the same level of VSCE in ringer lactate solution. Hardness of samples initially increases at greater rate (up to 8×1013ions/cm2) and then increases with lesser rate. It is found that 8×1013ions/cm2 (≈1014) is a safer limit of implantation on NiTi alloy, this limit gives us lesser ion release, better hardness and reasonable hydroxyapatite incubation affinity.

  2. Tribological behavior study on Ti-Nb-Sn/hydroxyapatite composites in simulated body fluid solution.

    PubMed

    Chen, Yuyong; Wang, Xiaopeng; Xu, Lijuan; Liu, Zhiguang; Kee, Do Woo

    2012-06-01

    In this study, Ti-35Nb-2.5Sn/xhydroxyapatite (HA) composites were sintered by pulse current activated sintering (PCAS) from powders milled for different time. These sintered composites were expected to be potential biomaterials. Ca(3)(PO(4))(2) phase which could increase hardness of sintered composites was found in the Ti-35Nb-2.5Sn/15HA composite sintered from 12 h milled powders. The sintered composites had low elastic modulus (18∼26 GPa) and high compression strength. Due to the importance of friction and wear in biomaterials application, the tribological behavior of sintered composites was studied in simulated body fluid (SBF) solution. Results revealed that milling time and HA content of powders could affect wear properties of sintered composites. The major wear mechanism was abrasive wear in the wear test. The wear rate and friction coefficient decreased when milling time and HA content of powders increased. The lowest friction coefficient (0.1223) was obtained in the Ti-35Nb-2.5Sn/15HA composite sintered from 12 h milled powders, and this composite had superior wear resistance.

  3. Characterizations of Bone-Like Apatite Powder Fabricated Using Modified Simulated Body Fluid.

    PubMed

    An, Ji-Hae; Han, Ok-Seong; Kohn, David H; Park, Yeong-Joon; Song, Ho-Jun

    2015-08-01

    The objective of this study is to fabricate bone-like apatite (BLAp) powder using the modified simulated body fluid (SBF). The SBF2X and SBF4X groups were prepared by increasing the concentration of inorganic ions by two and four times, respectively, to that of the standard SBF. The mSBF4X group was prepared by particularly increasing the concentrations of calcium and phosphate ions in SBF. Bovine serum albumin (BSA) was added for SBF2X-BSA, SBF4X-BSA, and mSBF4X-BSA groups. BLAp powders were precipitated in these SBFs while being kept at 60 °C. Micro-morphology of BLAp powders showed tens of micrometers-sized rounded clusters which composed with sheet-like nano crystallites. The radius of BLAp clusters were decreased by increasing the concentration of inorganic ions and by incorporating the BSA. The hydroxyapatite crystalline structure was dominant for all sample groups. Further, octacalcium phosphate structure was detected in the mSBF4X group. However, these peaks were decreased in mSBF4X-BSA. FT-IR spectra demonstrated that BSA was co-precipitated in BLAp crystallites, and the amount of BSA was higher in the mSBF4X-BSA group than in the SBF4X-BSA group.

  4. Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions

    NASA Astrophysics Data System (ADS)

    Arienti, Marco; Pan, Wenxiao; Li, Xiaoyi; Karniadakis, George

    2011-05-01

    The combination of short-range repulsive and long-range attractive forces in many-body dissipative particle dynamics (MDPD) is examined at a vapor/liquid and liquid/solid interface. Based on the radial distribution of the virial pressure in a drop at equilibrium, a systematic study is carried out to characterize the sensitivity of the surface tension coefficient with respect to the inter-particle interaction parameters. For the first time, the approximately cubic dependence of the surface tension coefficient on the bulk density of the fluid is evidenced. In capillary flow, MDPD solutions are shown to satisfy the condition on the wavelength of an axial disturbance leading to the pinch-off of a cylindrical liquid thread; correctly, no pinch-off occurs below the cutoff wavelength. Moreover, in an example that illustrates the cascade of fluid dynamics behaviors from potential to inertial-viscous to stochastic flow, the dynamics of the jet radius is consistent with the power law predictions of asymptotic analysis. To model interaction with a solid wall, MDPD is augmented by a set of bell-shaped weight functions; hydrophilic and hydrophobic behaviors, including the occurrence of slip in the latter, are reproduced using a modification in the weight function that avoids particle clustering. The dynamics of droplets entering an inverted Y-shaped fracture junction is shown to be correctly captured in simulations parametrized by the Bond number, confirming the flexibility of MDPD in modeling interface-dominated flows.

  5. A performance comparison of different graphics processing units running direct N-body simulations

    NASA Astrophysics Data System (ADS)

    Capuzzo-Dolcetta, R.; Spera, M.

    2013-11-01

    Hybrid computational architectures based on the joint power of Central Processing Units (CPUs) and Graphic Processing Units (GPUs) are becoming popular and powerful hardware tools for a wide range of simulations in biology, chemistry, engineering, physics, etc. In this paper we present a performance comparison of various GPUs available on market when applied to the numerical integration of the classic, gravitational, N-body problem. To do this, we developed an OpenCL version of the parallel code HiGPUs used for these tests, because this portable version is the only apt to work on GPUs of different makes. The main general result is that we confirm the reliability, speed and cheapness of GPUs when applied to the examined kind of problems (i.e. when the forces to evaluate are dependent on the mutual distances, as it happens in gravitational physics and molecular dynamics). More specifically, we find that also the cheap GPUs built to be employed just for gaming applications are very performant in terms of computing speed also in scientific applications and, although with some limitations concerning on-board memory, can be a good choice to build a cheap and efficient machine for scientific applications.

  6. Dependence of ion concentration in simulated body fluid on apatite precipitation on titania surface

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Akira; Nakano, Masayuki; Hieda, Junko; Ohtake, Naoto; Akasaka, Hiroki

    2015-08-01

    Titanium and its alloys are used as biomaterials, because of their high biocompatibility. Apatite precipitates on a titania surface in vivo, and living bone and titanium alloy are coupled through the thin apatite layer. The initial precipitation behavior of apatite on titania in simulated body fluid (SBF) solutions was evaluated and the effect of inorganic ions in the SBF was investigated. Measurement using the SPR phenomenon was used to evaluate the initial apatite precipitation. An SBF containing approximately equal ion concentrations to those in blood plasma was added to a titania surface and the SPR profile was obtained, from which the initial apatite precipitation rate was found to be 1.14 nm/h. Furthermore, the relationship between the inorganic concentration and the precipitation rate was determined for SBFs with different Na+ and Ca2+ concentrations. Apatite precipitation did not occur in the SBF with a low Na+ concentration, whereas the initial apatite precipitation rate in the SBF that did not contain Ca2+ was 0.32 nm/h. According to these results, Ca2+ has little effect on the initial apatite precipitation. In the initial reaction of apatite precipitation, sodium titanate is formed by the absorption of Na+. Next, calcium titanate precipitates upon the substitution of Na+ with Ca2+. Finally, Na+, phosphate ions and hydroxyl ions are attracted to the surface and apatite is formed. Thus, the rate-limiting factor in the initial nucleation of apatite is the Na+ concentration.

  7. In vitro differences of hydroxyapatite from different resources in simulated body fluid.

    PubMed

    Hashim, N; Sabudin, S; Ibrahim, S; Zin, N M; Bakar, S H A; Fazan, F

    2004-05-01

    Hydroxyapatite (HA; Ca10(PO4)6(OH)2), is one of the significant implant materials used in Orthopaedics and Dental applications. However, synthetically produced HA may not be stable under ionic environment, which it will unavoidably encounter during its applications. In this paper, the in vitro effects of three HA materials derived from different resources, i.e. commercial HA (HAC), synthesised HA from pure chemicals (HAS) and synthesised HA from kapur sireh; derived traditionally from natural limestone (HAK), were studied. The HA disc samples were prepared and immersed in simulated body fluid (SBF) for 31-day period. The evaluation conducted focuses on the changes of the pH and the Calcium ion (Ca-ion) and Phosphate ion (P-ion) concentrations in the SBF solution, as well as the XRD and SEM data representing the reactions on the HA materials. From the XRD, it was found that HAK has the smallest crystallite sizes, which in turn affect the pH of the SBF during immersion. The Ca and P-ion concentrations generally decrease over time at different rates for different HA. Upon 1-day immersion in SBF, apatite growth was observed onto all three surfaces, which became more pronounced after 3-day immersion. However, the appetites formed were observed to be different in shapes and sizes. The reasons for the difference in the apatite-crystals and their subsequent effects on cells are still being investigated.

  8. Local Convertibility and the Quantum Simulation of Edge States in Many-Body Systems

    NASA Astrophysics Data System (ADS)

    Franchini, Fabio; Cui, Jian; Amico, Luigi; Fan, Heng; Gu, Mile; Korepin, Vladimir; Kwek, Leong Chuan; Vedral, Vlatko

    2014-10-01

    In some many-body systems, certain ground-state entanglement (Rényi) entropies increase even as the correlation length decreases. This entanglement nonmonotonicity is a potential indicator of nonclassicality. In this work, we demonstrate that such a phenomenon, known as lack of local convertibility, is due to the edge-state (de)construction occurring in the system. To this end, we employ the example of the Ising chain, displaying an order-disorder quantum phase transition. Employing both analytical and numerical methods, we compute entanglement entropies for various system bipartitions (A |B ) and consider ground states with and without Majorana edge states. We find that the thermal ground states, enjoying the Hamiltonian symmetries, show lack of local convertibility if either A or B is smaller than, or of the order of, the correlation length. In contrast, the ordered (symmetry-breaking) ground state is always locally convertible. The edge-state behavior explains all these results and could disclose a paradigm to understand local convertibility in other quantum phases of matter. The connection we establish between convertibility and nonlocal, quantum correlations provides a clear criterion of which features a universal quantum simulator should possess to outperform a classical machine.

  9. Study of yttrium containing bioactive glasses behaviour in simulated body fluid.

    PubMed

    Cacaina, D; Ylänen, H; Hupa, M; Simon, S

    2006-08-01

    The influence of yttrium oxide on the bioactivity of glasses in the system SiO(2)-Na(2)O-P(2)O(5)-CaO-B(2)O(3)-K(2)O-MgO was studied in a simulated body fluid (SBF). Two series of glasses with different bioactivity were investigated. The reaction layers formed on the surface of the exposed glasses were evaluated by means of back scattered electron imaging of scanning electron microscopy equipped with energy dispersive X-ray analysis (BEI-SEM/EDXA). The concentration of Y, Ca and P released from the glasses into SBF, during 21 days was determined using inductively coupled plasma-emission spectroscopy ICP-AES and inductively coupled plasma-mass spectroscopy ICP-MS. Introducing yttrium in the selected bioactive glass tended to diminish the bioactivity of the glasses. The thickness of the calcium phosphate layer decreased with increasing yttrium oxide content. The same effect was also observed when yttrium oxide partially replaced only calcium, magnesium and phosphorous oxide in the precursor glass. The data show that we can produce bioactive glasses with yttrium oxide as a component. By suitable tailoring of the rest of the glasses the yttrium effect on the glass behavior in SBF should be possible to control and thus produce yttrium containing glasses with desired bioactivity.

  10. Structure formation by a fifth force: N-body versus linear simulations

    SciTech Connect

    Li Baojiu; Zhao Hongsheng

    2009-08-15

    We lay out the frameworks to numerically study the structure formation in both linear and nonlinear regimes in general dark-matter-coupled scalar field models, and give an explicit example where the scalar field serves as a dynamical dark energy. Adopting parameters of the scalar field which yield a realistic cosmic microwave background (CMB) spectrum, we generate the initial conditions for our N-body simulations, which follow the spatial distributions of the dark matter and the scalar field by solving their equations of motion using the multilevel adaptive grid technique. We show that the spatial configuration of the scalar field tracks well the voids and clusters of dark matter. Indeed, the propagation of scalar degree of freedom effectively acts as a fifth force on dark matter particles, whose range and magnitude are determined by the two model parameters ({mu},{gamma}), local dark matter density as well as the background value for the scalar field. The model behaves like the {lambda}CDM paradigm on scales relevant to the CMB spectrum, which are well beyond the probe of the local fifth force and thus not significantly affected by the matter-scalar coupling. On scales comparable or shorter than the range of the local fifth force, the fifth force is perfectly parallel to gravity and their strengths have a fixed ratio 2{gamma}{sup 2} determined by the matter-scalar coupling, provided that the chameleon effect is weak; if on the other hand there is a strong chameleon effect (i.e., the scalar field almost resides at its effective potential minimum everywhere in the space), the fifth force indeed has suppressed effects in high density regions and shows no obvious correlation with gravity, which means that the dark-matter-scalar-field coupling is not simply equivalent to a rescaling of the gravitational constant or the mass of the dark matter particles. We show these spatial distributions and (lack of) correlations at typical redshifts (z=0,1,5.5) in our multigrid

  11. New Insights on the Composition and the Structure of the Acellular Extrinsic Fiber Cementum by Raman Analysis

    PubMed Central

    Colard, Thomas; Falgayrac, Guillaume; Bertrand, Benoit; Naji, Stephan; Devos, Olivier; Balsack, Clara; Delannoy, Yann; Penel, Guillaume

    2016-01-01

    Acellular extrinsic fiber cementum is a mineralized tissue that covers the cervical half of the tooth root surface. It contains mainly extrinsic or Sharpey’s fibers that run perpendicular to the root surface to anchor the tooth via the periodontal ligament. Acellular cementum is continuously and slowly produced throughout life and exhibits an alternating bright and dark pattern under light microscopy. However, although a better understanding of the structural background of acellular cementum is relevant to many fields, such as cementochronology, periodontology and tissue engineering, acellular cementum remains rarely studied and poorly understood. In this work, we studied the acellular cementum at the incremental line scale of five human mandibular canines using polarized Raman spectroscopy. We provided Raman imaging analysis and polarized acquisitions as a function of the angular orientation of the sample. The results showed that mineral crystals were always parallel to collagen fibrils, and at a larger scale, we proposed an organizational model in which we found radial collagen fibers, “orthogonal” to the cementum surface, and “non-orthogonal” fibers, which consist of branching and bending radial fibers. Concerning the alternating pattern, we observed that the dark lines corresponded to smaller, more mineralized and probably more organized bands, which is consistent with the zoological assumption that incremental lines are produced during a winter rest period of acellular cementum growth. PMID:27936010

  12. Coupling Semi-Analytic Models and N-Body Simulations: A New Way of Making Galaxies and Stellar Halos

    NASA Astrophysics Data System (ADS)

    McCord, Krista M.; Bailin, Jeremy; Croton, Darren; Valluri, Monica

    2015-01-01

    Stellar halos give insight to the initial conditions that existed when a host galaxy first formed and provide details on disrupted satellites by looking at the different stellar populations. An algorithm that is computationally inexpensive compared to hydrodynamic simulations is necessary in order to theoretically study the structure and formation of galactic stellar halos in sufficient detail to probe substructure. Currently being developed is CoSANG (Coupled Semi-Analytic/N-body Galaxies), a new computational method that will couple pure dark matter N-body simulations with a semi-analytic model. At each timestep, results from the N-body simulation will feed into the semi-analytic code, whose results will feed back into the N-body code making the evolution of the dark matter and baryonic matter dependent on one another. CoSANG will require much less computing power than hydrodynamical simulations, and will enable a variety of galaxy formation science, including analysis of stellar populations, halo merging, satellite accretion, supermassive black holes, and indirect and direct dark matter detection.

  13. Detached eddy simulation for turbulent fluid-structure interaction of moving bodies using the constraint-based immersed boundary method

    NASA Astrophysics Data System (ADS)

    Nangia, Nishant; Bhalla, Amneet P. S.; Griffith, Boyce E.; Patankar, Neelesh A.

    2016-11-01

    Flows over bodies of industrial importance often contain both an attached boundary layer region near the structure and a region of massively separated flow near its trailing edge. When simulating these flows with turbulence modeling, the Reynolds-averaged Navier-Stokes (RANS) approach is more efficient in the former, whereas large-eddy simulation (LES) is more accurate in the latter. Detached-eddy simulation (DES), based on the Spalart-Allmaras model, is a hybrid method that switches from RANS mode of solution in attached boundary layers to LES in detached flow regions. Simulations of turbulent flows over moving structures on a body-fitted mesh incur an enormous remeshing cost every time step. The constraint-based immersed boundary (cIB) method eliminates this operation by placing the structure on a Cartesian mesh and enforcing a rigidity constraint as an additional forcing in the Navier-Stokes momentum equation. We outline the formulation and development of a parallel DES-cIB method using adaptive mesh refinement. We show preliminary validation results for flows past stationary bodies with both attached and separated boundary layers along with results for turbulent flows past moving bodies. This work is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1324585.

  14. High cycle fatigue behavior of implant Ti-6Al-4V in air and simulated body fluid.

    PubMed

    Liu, Yong-jie; Cui, Shi-ming; He, Chao; Li, Jiu-kai; Wang, Qing-yuan

    2014-01-01

    Ti-6Al-4V implants that function as artificial joints are usually subjected to long-term cyclic loading. To study long-term fatigue behaviors of implant Ti-6Al-4V in vitro and in vivo conditions exceeding 107 cycles, constant stress amplitude fatigue experiments were carried out at ultrasonic frequency (20 kHz) with two different surface conditions (ground and polished) in ambient air and in a simulated body fluid. The initiation mechanisms of fatigue cracks were investigated with scanning electron microscopy. Improvement of fatigue strength is pronounced for polished specimens below 106 cycles in ambient air since fatigue cracks are initiated from surfaces of specimens. While the cycles exceed 106, surface conditions have no effect on fatigue behaviors because the defects located within the specimens become favorable sites for crack initiation. The endurance limit at 108 cycles of polished Ti-6Al-4V specimens decreases by 7% if it is cycled in simulated body fluid instead of ambient air. Fracture surfaces show that fatigue failure is initiated from surfaces in simulated body fluid. Surface improvement has a beneficial effect on fatigue behaviors of Ti-6Al-4V at high stress amplitudes. The fatigue properties of Ti-6Al-4V deteriorate and the mean endurance limits decrease significantly in simulated body fluid.

  15. Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components

    NASA Astrophysics Data System (ADS)

    Chao, D. F. K.

    1983-11-01

    Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  16. An investigation on the body force modeling in a lattice Boltzmann BGK simulation of generalized Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Farnoush, Somayeh; Manzari, Mehrdad T.

    2014-12-01

    Body force modeling is studied in the Generalized Newtonian (GN) fluid flow simulation using a single relaxation time lattice Boltzmann (LB) method. First, in a shear thickening Poiseuille flow, the necessity for studying body force modeling in the LB method is explained. Then, a parametric unified framework is constructed for the first time which is composed of a parametric LB model and its associated macroscopic dual equations in both steady state and transient simulations. This unified framework is used to compare the macroscopic behavior of different forcing models. Besides, using this unified framework, a new forcing model for steady state simulations is devised. Finally, by solving a number of test cases it is shown that numerical results confirm the theoretical arguments presented in this paper.

  17. [Effect of two different acellular lung matrices on α-SMA expression in A549 cells].

    PubMed

    Chen, C; Wang, Z Y; Weng, J; Wang, Z B; Mei, J; Du, X H; Wang, L

    2017-01-24

    Objective: To explore the effect of acellular normal and fibrotic lung matrices on alpha smooth muscle actin (α-SMA) expression in human lung adenocarcinoma cell line A549. Methods: Twenty adult SD rats were randomly divided into normal group and idiopathic pulmonary fibrosis(IPF)group (n=10 each). The pulmonary fibrosis was induced by Bleomycin. Normal and fibrotic decellularized lungs were made, then sections with 500 μm thick were cut by a standard Vibratome. None scaffold was set as control group. A549 cells were seeded dropwise into different slices (normal and fibrotic scaffolds), and cultured for one week in vitro. The expression of α-SMA was measured by immunofluorescence staining and quantitative real time polymerase chain reaction (qRT-PCR). Results: In control group, the expression of α-SMA protein was positive in A549 cells by immunofluorescence staining. However, it expressed weakly both in normal and fibrotic scaffold group, and the fluorescence intensity in fibrotic scaffold group was significant lower than that in normal group (P<0.05). The relative expression amount of α-SMA mRNA in normal and fibrotic scaffold group were (0.70±0.11) and (0.55±0.12), which were significant lower than that of control group (1.28±0.21) (P<0.05). Moreover, the relative expression of α-SMA mRNA in fibrotic scaffold group was decreased compared to that in normal scaffold group (P<0.05). Conclusions: Acellular normal and fibrotic lung scaffold can downregulate the expression of α-SMA in human lung adenocarcinoma cell line A549. It may inhibit the movement of A549 cells in acellular normal and fibrotic lung matrices, especially in acellular fibrotic lung scaffold.

  18. Advances in Turbulent Combustion Dynamics Simulations in Bluff-Body Stabilized Flames

    NASA Astrophysics Data System (ADS)

    Tovar, Jonathan Michael

    This work examines the three main aspects of bluff-body stabilized flames: stationary combustion, lean blow-out, and thermo-acoustic instabilities. For the cases of stationary combustion and lean blow-out, an improved version of the Linear Eddy Model approach is used, while in the case of thermo-acoustic instabilities, the effect of boundary conditions on the predictions are studied. The improved version couples the Linear Eddy Model with the full-set of resolved scale Large Eddy Simulation equations for continuity, momentum, energy, and species transport. In traditional implementations the species equations are generally solved using a Lagrangian method which has some significant limitations. The novelty in this work is that the Eulerian species concentration equations are solved at the resolved scale and the Linear Eddy Model is strictly used to close the species production term. In this work, the improved Linear Eddy Model approach is applied to predict the flame properties inside the Volvo rig and it is shown to over-predict the flame temperature and normalized velocity when compared to experimental data using a premixed single step global propane reaction with an equivalence ratio of 0.65. The model is also applied to predict lean blow-out and is shown to predict a stable flame at an equivalence ratio of 0.5 when experiments achieve flame extinction at an equivalence ratio of 0.55. The improved Linear Eddy Model is, however, shown to be closer to experimental data than a comparable reactive flow simulation that uses laminar closure of the species source terms. The thermo-acoustic analysis is performed on a combustor rig designed at the Air Force Research Laboratory. The analysis is performed using a premixed single step global methane reaction for laminar reactive flow and shows that imposing a non-physical boundary condition at the rig exhaust will result in the suppression of acoustic content inside the domain and can alter the temperature contours in non

  19. Wind-tunnel investigation of the descent characteristics of bodies of revolution simulating anti-personnel bombs

    NASA Technical Reports Server (NTRS)

    Sher, S. H.

    1951-01-01

    An investigation has been conducted in the Langley 20-foot free spinning tunnel to study the relative behavior in descent of a number of homogeneous balsa bodies of revolution simulating anti-personnel bombs with a small cylindrical exploding device suspended approximately 10 feet below the bomb. The bodies of revolution included hemispherical, near-hemispherical, and near-paraboloid shapes. The ordinates of one near-paraboloid shape were specified by the Office of the Chief of Ordnance, U. S. Army. The behavior of the various bodies without the cylinder was also investigated. The results of the investigation indicated that several of the bodies descended vertically with their longitudinal axis, suspension line, and small cylinder in a vertical attitude,. However, the body, the ordinates of which had been specified by the Office of the Chief of Ordnance, U. S. Army, oscillated considerably from a vertical attitude while descending and therefore appeared unsuitable for its intended use. The behavior of this body became satisfactory when its center of gravity was moved well forward from its original position. In general, the results indicated that the descent characteristics of the bodies of revolution become more favorable as their shapes approached that of a hemisphere.

  20. Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering.

    PubMed

    Du, Liqun; Wu, Xinyi

    2011-07-01

    Our aim was to produce a natural, acellular matrix from porcine cornea for use as a scaffold in developing a tissue-engineered cornea replacement. Full-thickness, intact porcine corneas were decellularized by immersion in 0.5% (wt/vol) sodium dodecyl sulfate. The resulting acellular matrices were then characterized and examined specifically for completeness of the decellularization process. Histological analyses of decellularized corneal stromas showed that complete cell and α-Gal removal was achieved, while the major structural proteins including collagen type I and IV, laminin, and fibronectin were retained. DAPI staining did not detect any residual DNA within the matrix, and the DNA contents, which reflect the presence of cellular materials, were significantly diminished in the decellularized cornea. The collagen content of the decellularized cornea was well maintained compared with native tissues. Uniaxial tensile testing indicated that decellularization did not significantly compromise the ultimate tensile strength of the tissue (P > 0.05). In vitro cytotoxicity assays using rabbit corneal fibroblast cultures excluded the presence of soluble toxins in the biomaterial. In vivo implantation to rabbit interlamellar stromal pockets showed good biocompability. In summary, a full-thickness natural acellular matrix retaining the major structural components and strength of the cornea has been successfully developed. The matrix is biocompatible with cornea-derived cells and has potential for use in corneal transplantation and tissue-engineering applications.

  1. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation.

    PubMed

    Uriarte, Juan J; Nonaka, Paula N; Campillo, Noelia; Palma, Renata K; Melo, Esther; de Oliveira, Luis V F; Navajas, Daniel; Farré, Ramon

    2014-12-01

    Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering.

  2. Generation and characterization of a human acellular meniscus scaffold for tissue engineering.

    PubMed

    Sandmann, G H; Eichhorn, S; Vogt, S; Adamczyk, C; Aryee, S; Hoberg, M; Milz, S; Imhoff, A B; Tischer, T

    2009-11-01

    Meniscus tears are frequent indications for arthroscopic evaluation which can result in partial or total meniscectomy. Allografts or synthetic meniscus scaffolds have been used with varying success to prevent early degenerative joint disease in these cases. Problems related to reduced initial and long-term stability, as well as immunological reactions prevent widespread clinical use so far. Therefore, the aim of this study was to develop a new construct for tissue engineering of the human meniscus based on an acellular meniscus allograft. Human menisci (n = 16) were collected and acellularized using the detergent sodium dodecyl sulfate as the main ingredient or left untreated as control group. These acellularized menisci were characterized biomechanically using a repetitive ball indentation test (Stiffness N/mm, residual force N, relative compression force N) and by histological (hematoxylin-eosin, phase-contrast) as well as immunohistochemical (collagen I, II, VI) investigation. The processed menisci histologically appeared cell-free and had biomechanical properties similar to the intact meniscus samples (p > 0.05). The collagen fiber arrangement was not altered, according to phase-contrast microscopy and immunohistochemical labeling. The removal of the immunogenic cell components combined with the preservation of the mechanically relevant parts of the extracellular matrix could make these scaffolds ideal implants for future tissue engineering of the meniscus.

  3. Preparation and characterization of an acellular bovine pericardium intended for manufacture of valve bioprostheses.

    PubMed

    Goissis, Gilberto; Giglioti, Aparecida de Fátima; Braile, Domingo Marcolino

    2011-05-01

    Major problems with biological heart valves post-implantation are associated with progressive structural deterioration and calcification attributed to glutaraldehyde processing, dead cells, and cell fragments present in the native tissue. In spite of these problems, glutaraldehyde still is the reagent of choice. The results with acellular matrix xenograft usually prepared by detergent treatment in association with enzymes are rather conflicting because while preserving mechanical properties, tissue morphology and collagen structure are process dependent. This work describes a chemical approach for the preparation of an acellular bovine pericardium matrix intended for the manufacture of heart valve bioprostheses. Cell removal was performed by an alkaline extraction in the presence of calcium salts for periods ranging from 6 to 48 h. The results showed that cell removal was achieved after 12 h, with swelling and negative charge increasing with processing time. Nevertheless, collagen fibril structure, ability to form fibrils, and stability to collagenase were progressive after 24-h processing. There was no denaturation of the collagen matrix. A process is described for the preparation of acellular bovine pericardium matrices with preserved fibril structure and morphology for the manufacture of cardiac valve bioprostheses and may be used in other applications for tissue reconstruction.

  4. Supermassive Black Hole Growth and Merger Rates from Cosmological N-body Simulations

    SciTech Connect

    Micic, Miroslav; Holley-Bockelmann, Kelly; Sigurdsson, Steinn; Abel, Tom; /SLAC

    2007-10-29

    Understanding how seed black holes grow into intermediate and supermassive black holes (IMBHs and SMBHs, respectively) has important implications for the duty-cycle of active galactic nuclei (AGN), galaxy evolution, and gravitational wave astronomy. Most studies of the cosmological growth and merger history of black holes have used semianalytic models and have concentrated on SMBH growth in luminous galaxies. Using high resolution cosmological N-body simulations, we track the assembly of black holes over a large range of final masses - from seed black holes to SMBHs - over widely varying dynamical histories. We used the dynamics of dark matter halos to track the evolution of seed black holes in three different gas accretion scenarios. We have found that growth of a Sagittarius A* - size SMBH reaches its maximum mass M{sub SMBH}={approx}10{sup 6}M{sub {circle_dot}} at z{approx}6 through early gaseous accretion episodes, after which it stays at near constant mass. At the same redshift, the duty-cycle of the host AGN ends, hence redshift z=6 marks the transition from an AGN to a starburst galaxy which eventually becomes the Milky Way. By tracking black hole growth as a function of time and mass, we estimate that the IMBH merger rate reaches a maximum of R{sub max}=55 yr{sup -1} at z=11. From IMBH merger rates we calculate N{sub ULX}=7 per Milky Way type galaxy per redshift in redshift range 2 {approx}< z {approx}< 6.

  5. A PARALLEL MONTE CARLO CODE FOR SIMULATING COLLISIONAL N-BODY SYSTEMS

    SciTech Connect

    Pattabiraman, Bharath; Umbreit, Stefan; Liao, Wei-keng; Choudhary, Alok; Kalogera, Vassiliki; Memik, Gokhan; Rasio, Frederic A.

    2013-02-15

    We present a new parallel code for computing the dynamical evolution of collisional N-body systems with up to N {approx} 10{sup 7} particles. Our code is based on the Henon Monte Carlo method for solving the Fokker-Planck equation, and makes assumptions of spherical symmetry and dynamical equilibrium. The principal algorithmic developments involve optimizing data structures and the introduction of a parallel random number generation scheme as well as a parallel sorting algorithm required to find nearest neighbors for interactions and to compute the gravitational potential. The new algorithms we introduce along with our choice of decomposition scheme minimize communication costs and ensure optimal distribution of data and workload among the processing units. Our implementation uses the Message Passing Interface library for communication, which makes it portable to many different supercomputing architectures. We validate the code by calculating the evolution of clusters with initial Plummer distribution functions up to core collapse with the number of stars, N, spanning three orders of magnitude from 10{sup 5} to 10{sup 7}. We find that our results are in good agreement with self-similar core-collapse solutions, and the core-collapse times generally agree with expectations from the literature. Also, we observe good total energy conservation, within {approx}< 0.04% throughout all simulations. We analyze the performance of the code, and demonstrate near-linear scaling of the runtime with the number of processors up to 64 processors for N = 10{sup 5}, 128 for N = 10{sup 6} and 256 for N = 10{sup 7}. The runtime reaches saturation with the addition of processors beyond these limits, which is a characteristic of the parallel sorting algorithm. The resulting maximum speedups we achieve are approximately 60 Multiplication-Sign , 100 Multiplication-Sign , and 220 Multiplication-Sign , respectively.

  6. Metabolic demands of body armor on physical performance in simulated conditions.

    PubMed

    Ricciardi, Richard; Deuster, Patricia A; Talbot, Laura A

    2008-09-01

    The purpose of this study was to examine physical work performance, energy cost, and physiological fatigue in military personnel during simulated operational conditions. Using a within-subject, repeated-measures design, 34 military personnel volunteered to undergo two experimental conditions: with body armor (BA+) and without BA (BA-). Subjects walked on a treadmill for 30 minutes and completed a physical performance battery during each of two sessions, which were separated by > or = 5 days. Subjects with BA+ as compared with BA- had significantly greater increases in: oxygen uptake (VO2) at slow (16.8 +/- 1.5 vs. 18.8 +/- 1.7 mL x kg(-1) x min(-1)) and moderate paces (34.8 +/- 3.9 vs. 40.8 +/- 5.0 mL x kg(-1) x min(-1)); blood lactate at a moderate pace (4.0 +/- 2.4 vs. 6.7 +/- 2.6 mmol/L); heart rate at slow (107 +/- 14 vs. 118 +/- 16 beats per minute) and moderate paces (164 +/- 16 vs. 180 +/- 13 beats per minute); and ratings of perceived physical exertion at slow (8.4 +/- 1.5 vs. 10.4 +/- 1.8) and moderate paces (14.3 +/- 2.3 vs. 16.7 +/- 2.1). Physical tasks were significantly affected by BA: under BA+, men performed 61% fewer pull-ups and women's hang time was reduced by 63%; stair stepping was reduced by 16% for both men and women. BA significantly impacted the physical work capacity of militarily relevant tasks. Specifically, wearing BA significantly increased VO2 when walking at both slow and moderate paces. The potential for physical exhaustion is high and performance of physical tasks is markedly impaired when wearing BA.

  7. Charge optimized many-body (COMB) potential for dynamical simulation of Ni-Al phases

    NASA Astrophysics Data System (ADS)

    Kumar, Aakash; Chernatynskiy, Aleksandr; Liang, Tao; Choudhary, Kamal; Noordhoek, Mark J.; Cheng, Yu-Ting; Phillpot, Simon R.; Sinnott, Susan B.

    2015-08-01

    An interatomic potential for the Ni-Al system is presented within the third-generation charge optimized many-body (COMB3) formalism. The potential has been optimized for Ni3Al, or the γ‧ phase in Ni-based superalloys. The formation energies predicted for other Ni-Al phases are in reasonable agreement with first-principles results. The potential further predicts good mechanical properties for Ni3Al, which includes the values of the complex stacking fault (CSF) and the anti-phase boundary (APB) energies for the (1 1 1) and (1 0 0) planes. It is also used to investigate dislocation propagation across the Ni3Al (1 1 0)-Ni (1 1 0) interface, and the results are consistent with simulation results reported in the literature. The potential is further used in combination with a recent COMB3 potential for Al2O3 to investigate the Ni3Al (1 1 1)-Al2O3 (0 0 01) interface, which has not been modeled previously at the classical atomistic level due to the lack of a reactive potential to describe both Ni3Al and Al2O3 as well as interactions between them. The calculated work of adhesion for this interface is predicted to be 1.85 J m-2, which is in agreement with available experimental data. The predicted interlayer distance is further consistent with the available first-principles results for Ni (1 1 1)-Al2O3 (0 0 0 1).

  8. OASIS: a simulator to prepare and interpret remote imaging of solar system bodies

    NASA Astrophysics Data System (ADS)

    Jorda, L.; Spjuth, S.; Keller, H. U.; Lamy, P.; Llebaria, A.

    2010-01-01

    We present a new tool, called "OASIS" (Optimized Astrophysical Simulator for Imaging Systems), whose aim is to generate synthetic calibrated images of solar system bodies. OASIS has been developed to support the operations and the scientific interpretation of visible images acquired by the OSIRIS visible camera aboard the Rosetta spacecraft, but it can be used to create synthetic images taken by the visible imaging system of any spacecraft. OASIS allows takes as input the shape model of the object, in the form of triangular facets defining its surface, geometric parameters describing the position and orientation of the objects included in the scene and of the observer, and instrumental parameters describing the geometric and radiometric properties of the camera. The rendering of the object is performed in several steps which involve: (i) sorting the triangular facets in planes perpendicular to the direction of the light source and to the direction of the line-of-sight, (ii) tracing rays from a given facet to the light source and to the observer to check if it is illuminated and in view from the observer, (iii) calculating the intersection between the projected coordinates of the facets and the pixels of the image, and finally (iv) radiometrically calibrating the images. The pixels of the final image contain the expected signal from the object in digital numbers (DN). We show in the article examples of synthetic images of the asteroid (2867) Steins created with OASIS, both for the preparation of the flyby and for the scientific interpretation of the acquired images later on.

  9. Reproducibility of a continuous ramp lower body negative pressure protocol for simulating hemorrhage

    PubMed Central

    Kay, Victoria L; Rickards, Caroline A

    2015-01-01

    Central hypovolemia elicited by application of lower body negative pressure (LBNP) has been used extensively to simulate hemorrhage in human subjects. Traditional LBNP protocols incorporate progressive steps in pressure held for specific time intervals. The aim of this study was to assess the reproducibility of applying continuous LBNP at a constant rate until presyncope to replicate actual bleeding. During two trials (≥4 weeks intervening), LBNP was applied at a rate of 3 mmHg/min in 18 healthy human subjects (12M; 6F) until the onset of presyncopal symptoms. Heart rate (HR), mean arterial pressure (MAP), stroke volume (SV), total peripheral resistance (TPR), mean middle and posterior cerebral artery velocities (MCAv, PCAv), and cerebral oxygen saturation (ScO2) were measured continuously. Time to presyncope (TTPS) and hemodynamic responses were compared between the two trials. TTPS (1649 ± 98 sec vs. 1690 ± 88 sec; P = 0.47 [t-test]; r = 0.77) and the subsequent magnitude of central hypovolemia (%Δ SV −54 ± 4% vs. −53 ± 4%; P = 0.55) were similar between trials. There were no statistically distinguishable differences at either baseline (P ≥ 0.17) or presyncope between trials for HR, MAP, TPR, mean MCAv, mean PCAv, or ScO2 (P ≥ 0.19). The rate of change from baseline to presyncope for all hemodynamic responses was also similar between trials (P ≥ 0.12). Continuous LBNP applied at a rate of 3 mmHg/min was reproducible in healthy human subjects, eliciting similar reductions in central blood volume and subsequent reflex hemodynamic responses. PMID:26607173

  10. A Parallel Monte Carlo Code for Simulating Collisional N-body Systems

    NASA Astrophysics Data System (ADS)

    Pattabiraman, Bharath; Umbreit, Stefan; Liao, Wei-keng; Choudhary, Alok; Kalogera, Vassiliki; Memik, Gokhan; Rasio, Frederic A.

    2013-02-01

    We present a new parallel code for computing the dynamical evolution of collisional N-body systems with up to N ~ 107 particles. Our code is based on the Hénon Monte Carlo method for solving the Fokker-Planck equation, and makes assumptions of spherical symmetry and dynamical equilibrium. The principal algorithmic developments involve optimizing data structures and the introduction of a parallel random number generation scheme as well as a parallel sorting algorithm required to find nearest neighbors for interactions and to compute the gravitational potential. The new algorithms we introduce along with our choice of decomposition scheme minimize communication costs and ensure optimal distribution of data and workload among the processing units. Our implementation uses the Message Passing Interface library for communication, which makes it portable to many different supercomputing architectures. We validate the code by calculating the evolution of clusters with initial Plummer distribution functions up to core collapse with the number of stars, N, spanning three orders of magnitude from 105 to 107. We find that our results are in good agreement with self-similar core-collapse solutions, and the core-collapse times generally agree with expectations from the literature. Also, we observe good total energy conservation, within <~ 0.04% throughout all simulations. We analyze the performance of the code, and demonstrate near-linear scaling of the runtime with the number of processors up to 64 processors for N = 105, 128 for N = 106 and 256 for N = 107. The runtime reaches saturation with the addition of processors beyond these limits, which is a characteristic of the parallel sorting algorithm. The resulting maximum speedups we achieve are approximately 60×, 100×, and 220×, respectively.

  11. High fidelity quasi steady-state aerodynamic model effects on race vehicle performance predictions using multi-body simulation

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-07-01

    We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.

  12. Computerized Simulation Of Whole Body Dynamics: Aspects Of Human Movement Modeling

    NASA Astrophysics Data System (ADS)

    Huston, Ronald L.; Zernicke, Ronald F.

    1982-02-01

    Recent developments in the modeling of multi-body system dynamics are incorporated into an integrated, computer-oriented method for analyzing human body motion. The formulation, which represents the human body as a set of 17 finite, rigid-body segments including hands, feet, arms, legs, head, neck, and upper and lower torso, also accounts for the effects of connective tissues and muscles with non-linear springs and dampers at the connections of the linked rigid-bodies. Specific application of this biomathematical modeling of the body segments includes the estimation of musculoskeletal injury potential during aircraft and land vehicular crashes. With the integration of the output dynamics of the model, the injury profiles of the occupants, and human tissue tolerance limits, a more complete analysis and reconstruction of the details of the human occupant trajectory responses and injury incurrence can be made.

  13. Numerical simulation of rotating body movement in medium with various densities

    NASA Astrophysics Data System (ADS)

    Tenenev, Valentin A.; Korolev, Stanislav A.; Rusyak, Ivan G.

    2016-10-01

    The paper proposes an approach to calculate the motion of rotating bodies in resisting medium by solving the Kirchhoff equations of motion in a coordinate system moving with the body and in determination of aerodynamic characteristics of the body with a given geometry by solving the Navier-Stokes equations. We present the phase trajectories of the perturbed motion of a rotating projectile in media with different densities: gas and liquid.

  14. Numerical simulations of impacts involving porous bodies. I. Implementing sub-resolution porosity in a 3D SPH hydrocode

    NASA Astrophysics Data System (ADS)

    Jutzi, Martin; Benz, Willy; Michel, Patrick

    2008-11-01

    In this paper, we extend our Smooth Particle Hydrodynamics (SPH) impact code to include the effect of porosity at a sub-resolution scale by adapting the so-called P-alpha model. Many small bodies in the different populations of asteroids and comets are believed to contain a high degree of porosity and the determination of both their collisional evolution and the outcome of their disruption requires that the effect of porosity is taken into account in the computation of those processes. Here, we present our model and show how porosity interfaces with the elastic-perfectly plastic material description and the brittle fracture model generally used to simulate the fragmentation of non-porous rocky bodies. We investigate various compaction models and discuss their suitability to simulate the compaction of (highly) porous material. Then, we perform simple test cases where we compare results of the simulations to the theoretical solutions. We also present a Deep Impact-like simulation to show the effect of porosity on the outcome of an impact. Detailed validation tests will be presented in a next paper by comparison with high-velocity laboratory experiments on porous materials [Jutzi et al., in preparation]. Once validated at small scales, our new impact code can then be used at larger scales to study impacts and collisions involving brittle solids including porosity, such as the parent bodies of C-type asteroid families or cometary materials, both in the strength- and in the gravity-dominated regime.

  15. Cosmological perturbation theory as a tool for estimating box-scale effects in N-body simulations

    NASA Astrophysics Data System (ADS)

    Orban, Chris

    2014-07-01

    In performing cosmological N-body simulations, it is widely appreciated that the growth of structure on the largest scales within a simulation box will be inhibited by the finite size of the simulation volume. Following ideas set forth by Seto Astrophys. J. 523, 24 (1999), this paper shows that standard (also known as one-loop) cosmological perturbation theory (SPT) [E. T. Vishniac, Mon. Not. R. Astron. Soc. 203, 345 (1983)] can be used to predict, in an approximate way, the deleterious effect of the box scale on the power spectrum of density fluctuations in simulation volumes. Alternatively, this approach can be used to quickly estimate post facto the effect of the box scale on power spectrum results from existing simulations. In this way SPT can help determine whether larger box sizes or other more-sophisticated methods are needed to achieve a particular level of precision for a given application (e.g. simulations to measure the nonlinear evolution of baryon acoustic oscillations). I focus on SPT in this paper and show that its predictions differ only by about a factor of 2 or less from the measured suppression inferred from both power law and ΛCDM N-body simulations. It should be possible to improve the accuracy of these predictions through using more-sophisticated perturbation theory models. An Appendix compares power spectrum measurements from the power law simulations at outputs where box-scale effects are minimal to perturbation theory models and previously published fitting functions. These power spectrum measurements are included with this paper to aid efforts to develop new perturbation theory models.

  16. Attitude dynamics simulation subroutines for systems of hinge-connected rigid bodies with nonrigid appendages

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.; Likins, P. W.

    1975-01-01

    Three computer subroutines designed to solve the vector-dyadic differential equations of rotational motion for systems that may be idealized as a collection of hinge-connected rigid bodies assembled in a tree topology, with an optional flexible appendage attached to each body are reported. Deformations of the appendages are mathematically represented by modal coordinates and are assumed small. Within these constraints, the subroutines provide equation solutions for (1) the most general case of unrestricted hinge rotations, with appendage base bodies nominally rotating at a constant speed, (2) the case of unrestricted hinge rotations between rigid bodies, with the restriction that those rigid bodies carrying appendages are nominally nonspinning, and (3) the case of small hinge rotations and nominally nonrotating appendages. Sample problems and their solutions are presented to illustrate the utility of the computer programs.

  17. Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid

    SciTech Connect

    Liuyun, Jiang; Chengdong, Xiong; Lixin, Jiang; Lijuan, Xu

    2013-10-15

    Graphical abstract: In this manuscript, we initiated a systematic study to investigate the effect of HA on thermal properties, inner structure, reduction of mechanical strength, surface morphology and the surface deposit of n-HA/PLGA composite with respect to the soaking time. The results showed that n-HA played an important role in improving the degradation behavior of n-HA/PLGA composite, which can accelerate the degradation of n-HA/PLGA composite and endow it with bioactivity, after n-HA was detached from PLGA during the degradation, so that n-HA/PLGA composite may have a more promising prospect of the clinical application than pure PLGA as bone fracture internal fixation materials, and the results would be of reference significance to predict the in vivo degradation and biological properties. - Highlights: • Effect of n-HA on degradation behavior of n-HA/PLGA composite was investigated. • Degradation behaviors of n-HA/PLGA and PLGA were carried out in SBF for 6 months. • Viscosity, thermal properties, inner structure and bending strength were tested. • n-HA can accelerate the degradation and endows it with bioactivity. - Abstract: To investigate the effect of hydroxyapatite(HA) on the degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid (HA/PLGA) nanocomposite, the degradation experiment of n-HA/PLGA composite and pure PLGA were carried out by soaking in simulated body fluid(SBF) at 37 °C for 1, 2, 4 and 6 months. The change of intrinsic viscosity, thermal properties, inner structure, bending strength reduction, surface morphology and the surface deposit of n-HA/PLGA composite and pure PLGA with respect to the soaking time were investigated by means of UbbeloHde Viscometer, differential scanning calorimeter (DSC), scanning electron microscope(SEM), electromechanical universal tester, a conventional camera and X-ray diffraction (XRD). The results showed that n-HA played an important role in improving the degradation behavior of n

  18. The effect of simulated cold weather transport on core body temperature and behavior of broilers.

    PubMed

    Strawford, M L; Watts, J M; Crowe, T G; Classen, H L; Shand, P J

    2011-11-01

    During the winter in Western Canada, broilers are routinely transported in ambient temperatures ranging from 0°C to -40°C, yet there is little research in this area. This study examined the physiology and behavior of broilers undergoing simulated transport at typical Western Canadian winter temperatures. Groups of 15 broilers aged 32 to 33 d were exposed to an air stream regulated to -5, -10, or -15°C. Birds were placed into a typical transport drawer. Following baseline observations, the drawer was placed into a test chamber where cold air was drawn past the birds for 3 h. Three replications were conducted at each temperature. The birds adjusted their position within the drawer based upon the temperature distribution within the drawer. In comparison to the baseline period, exposing the birds to a cold air stream caused them to avoid the front plane (P = 0.003) which was the coldest area within the drawer. The birds did not adjust their usage of the middle (P = 0.308) and rear (P = 0.640) planes, because these were the warmer areas within the drawer. The total amount of space the birds occupied within the drawer did not decrease when exposed to the test chamber (P = 0.669). The core body temperature (CBT) did not vary and was within the known normal range during the normal (P = 0.528), pre-chamber (P = 0.060), and post-chamber (P = 0.285) periods. The CBT of the birds significantly decreased during the in-chamber period (P < 0.001) and then increased during the lairage period (P < 0.001). The shrink loss (P = 0.981) and amount of time to resume feed consumption (P = 0.357) were not affected by exposing the birds to temperatures of -5°C and colder. Exposing birds to temperatures of -5°C and colder had a negative effect on the CBT of the birds. However, the birds demonstrated behaviors which mitigated the negative effect that cold exposure could have on their CBT.

  19. Laboratory Simulated Impact Shock on Ices relevant to Planetary icy Bodies

    NASA Astrophysics Data System (ADS)

    Nna Mvondo, D.; Khare, B. N.; McKay, C. P.; Ishihara, T.

    2006-12-01

    Several icy satellites of the outer planets show impact cratering features and it is recognised that this process may have played a crucial role in the formation and evolution of icy bodies. The effect of impact by extraterrestrial objects into the surface is commonly related to physical changes. Most of the research applied to impacts on ices has been developed to study and understand the cratering formation process and their physical, geophysical characteristics. Chemical changes and synthesis occurring on icy planetary surfaces are generally explained by the influence of UV photons and high-energy charged particles on ices. Nonetheless, impact process onto ices could be a source of local or global endogenic process and could be especially advantageous as an efficient energy source for driving interesting chemistry. Impacts can ensure that icy surfaces are eventually exposed, for a limited period of time, to aqueous melt in impact craters and ejecta and one can imagine that impurities included in the ice may undergo hydrolysis and other reactions under such conditions. Upon impact, the kinetic energy of the bolide is transferred to the ground liberating a great deal of stress energy which could initiate in situ a diverse series of chemical reactions in the fracture zone beneath the crater (Borucki et al., 2002; Jones and Lewis, 1987). Here we present a new approach testing in laboratory the chemistry conducted by impacts into planetary ices and we report the first experimental results. We have irradiated with a powerful pulsed laser icy mixtures of pure water ices containing CO2, Na2CO3, CH3OH and CH3OH / (NH4)2SO4 at 77K. GC-MS and FTIR analyses show that hydrogen peroxide, carbon monoxide and methanol are formed in irradiated H2O / CO2 ices. Ice containing sodium carbonate generates under simulated impact CO and CO2 which are also produced in impacted H2O / CH3OH and H2O / CH3OH / (NH4)2SO4 ices. But, in both latter icy mixtures, methane and more complex

  20. Surface structure and biocompatibility of demineralized dentin matrix granules soaked in a simulated body fluid

    NASA Astrophysics Data System (ADS)

    Akazawa, Toshiyuki; Murata, Masaru; Hino, Jun; Nagano, Futami; Shigyo, Tatsuhiro; Nomura, Takafumi; Inano, Hiroyuki; Itabashi, Kohji; Yamagishi, Tohru; Nakamura, Katsuo; Takahashi, Touru; Iida, Shunji; Kashiwazaki, Haruhiko

    2012-12-01

    Demineralized dentin matrix (DDM) granules with excellent biocompatibility were easily prepared using unnecessary human teeth by a new cooling-pulverizing and demineralizing technique. Extracted human teeth were pulverized together with saline ice at 12,000 rpm-rotation number of a ZrO2 blade for 30 s in a ZrO2 vessel. The pulverized granules exhibited the particle size distribution of 0.5-2 mm that was efficient for regeneration of alveolar bone. The (Ca/P) ratios of the granules were 1.60-1.66, which were close to the stoichiometric value of 1.67 for standard hydroxyapatite (HAp). Small amounts of Na+ and Mg2+ ions present at less than 1% were detected. The pulverized granules were dissolved with stirring under 500 rpm for 10-60 min in 2.0%-HNO3 solutions to obtain partial or complete DDM granules. As the dissolution time increased, crystallinity of HAp phase lowered and asperity on surfaces of the granules became outstanding due to elution of mineral components. At the dissolution of 60 min, the pulverizing granules were completely demineralized and the weight decreased to about one-fifth. To improve surface activity of the DDM granules without denaturation of bone growth factors, the DDM granules were soaked at 309.5 K and pH 7.40 in a simulated body fluid (SBF). HAp microcrystals were gradually precipitated on surfaces of the DDM granules with increasing the soaking time. Different morphology of the precipitates was observed, depending on the demineralization situation of the pulverized granules. For the DDM with low dissolution efficiency of 42%, porous bone-like apatites at 24 h after the soaking and fiber-oriented aggregates at 144 h were recognized. The bioactive DDM granules were implanted into the subcutaneous tissues of the back region of rats. At 4 weeks after the implantation, bio-absorption by comparatively small amounts of multi-giant cells was recognized around the surface layers of DDM granules.

  1. A Biodegradation Study of SBA-15 Microparticles in Simulated Body Fluid and in Vivo.

    PubMed

    Choi, Youngjin; Lee, Jung Eun; Lee, Jung Heon; Jeong, Ji Hoon; Kim, Jaeyun

    2015-06-16

    Mesoporous silica has received considerable attention as a drug delivery vehicle because of its large surface area and large pore volume for loading drugs and large biomolecules. Recently, mesoporous silica microparticles have shown potential as a three-dimensional vaccine platform for modulating dendritic cells via spontaneous assembly of microparticles in a specific region after subcutaneous injection. For further in vivo applications, the biodegradation behavior of mesoporous silica microparticles must be studied and known. Until now, most biodegradation studies have focused on mesoporous silica nanoparticles (MSNs); here, we report the biodegradation of hexagonally ordered mesoporous silica, SBA-15, with micrometer-sized lengths (∼32 μm with a high aspect ratio). The degradation of SBA-15 microparticles was investigated in simulated body fluid (SBF) and in mice by analyzing the structural change over time. SBA-15 microparticles were found to degrade in SBF and in vivo. The erosion of SBA-15 under biological conditions led to a loss of the hysteresis loop in the nitrogen adsorption/desorption isotherm and fingerprint peaks in small-angle X-ray scattering, specifically indicating a degradation of ordered mesoporous structure. Via comparison to previous results of degradation of MSNs in SBF, SBA-15 microparticles degraded faster than MCM-41 nanoparticles presumably because SBA-15 microparticles have a pore size (∼8 nm) and a pore volume larger than those of MCM-41 mesoporous silica. The surface functional groups, the residual amounts of organic templates, and the hydrothermal treatment during the synthesis could affect the rate of degradation of SBA-15. In in vivo testing, previous studies focused on the evaluation of toxicity of mesoporous silica particles in various organs. In contrast, we studied the change in the physical properties of SBA-15 microparticles depending on the duration after subcutaneous injection. The pristine SBA-15 microparticles injected

  2. Electrochemical behaviour of Ti-Ni SMA and Co-Cr alloys in dynamic Tyrode's simulated body fluid.

    PubMed

    Liang, Chenghao; Zheng, Runfen; Huang, Naibao; Wu, Bo

    2010-05-01

    The electrochemical behaviour of Ti-Ni shape memory alloy and Co-Cr alloys were investigated in dynamic Tyrode's simulated body fluid on a Model CP6 Potentiostat/Galvanostat. The results indicated that, for all alloys, the anodic dissolution and the pitting sensitivity increased with the flow rate of the Tyrode's solution increasing while the open-circuit potentials and pitting corrosion potentials decreased with the Tyrode's solution increasing. Pitting corrosion of Ti-Ni alloy was easier than Co-Cr alloys. Since the solution's flow enhanced oxygen transform and made it easy to reach the surface of electrodes, the plateau of oxygen diffusion control was diminished. All these indicated that the cathodic reduction and the corrosion reaction, which was controlled by the electrochemical mass transport process, were all accelerated in dynamic Tyrode's simulated body fluid.

  3. Computer Simulation Study of Human Locomotion with a Three-Dimensional Entire-Body Neuro-Musculo-Skeletal Model

    NASA Astrophysics Data System (ADS)

    Hase, Kazunori; Obuchi, Shuichi

    The three-dimensional entire-body neuro-musculo-skeletal model generating normal walking motion was modified to synthesize pathological walking including asymmetricalcompensatorymotions. Inadditiontotheneuronalparameters, musculo-skeletal parameters were employed as search parameters to represent affected musculo-skeletal systems. This model successfully generated pathological walking patterns, such as walking by a person with one lower extremity shorter than the other and walking by a person with an affected gluteus medius muscle. The simulated walking patterns were of the entire body, three-dimensional, continuous and asymmetrical, and demonstrated the characteristics of actual pathological walking. The walking model with an artificial foot also predicted not only the walking pattern adapted to the artificial foot but also the design parameters of the artificial foot adapted to the effective walking pattern simultaneously. Such simulation methods will establish a novel methodology that we call computational rehabilitation engineering.

  4. Study report on combining diagnostic and therapeutic considerations with subsystem and whole-body simulation

    NASA Technical Reports Server (NTRS)

    Furukawa, S.

    1975-01-01

    Current applications of simulation models for clinical research described included tilt model simulation of orthostatic intolerance with hemorrhage, and modeling long term circulatory circulation. Current capabilities include: (1) simulation of analogous pathological states and effects of abnormal environmental stressors by the manipulation of system variables and changing inputs in various sequences; (2) simulation of time courses of responses of controlled variables by the altered inputs and their relationships; (3) simulation of physiological responses of treatment such as isotonic saline transfusion; (4) simulation of the effectiveness of a treatment as well as the effects of complication superimposed on an existing pathological state; and (5) comparison of the effectiveness of various treatments/countermeasures for a given pathological state. The feasibility of applying simulation models to diagnostic and therapeutic research problems is assessed.

  5. Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water Demonstrated with the Fragment Molecular Orbital Method.

    PubMed

    Pruitt, Spencer R; Nakata, Hiroya; Nagata, Takeshi; Mayes, Maricris; Alexeev, Yuri; Fletcher, Graham; Fedorov, Dmitri G; Kitaura, Kazuo; Gordon, Mark S

    2016-04-12

    The analytic first derivative with respect to nuclear coordinates is formulated and implemented in the framework of the three-body fragment molecular orbital (FMO) method. The gradient has been derived and implemented for restricted second-order Møller-Plesset perturbation theory, as well as for both restricted and unrestricted Hartree-Fock and density functional theory. The importance of the three-body fully analytic gradient is illustrated through the failure of the two-body FMO method during molecular dynamics simulations of a small water cluster. The parallel implementation of the fragment molecular orbital method, its parallel efficiency, and its scalability on the Blue Gene/Q architecture up to 262,144 CPU cores are also discussed.

  6. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions.

    PubMed

    López, Danián Alejandro; Durán, Alicia; Ceré, Silvia Marcela

    2008-05-01

    Titanium and cobalt alloys, as well as some stainless steels, are among the most frequently used materials in orthopaedic surgery. In industrialized countries, stainless steel devices are used only for temporary implants due to their lower corrosion resistance in physiologic media when compared to other alloys. However, due to economical reasons, the use of stainless steel alloys for permanent implants is very common in developing countries. The implantation of foreign bodies is sometimes necessary in the modern medical practice. However, the complex interactions between the host and the can implant weaken the local immune system, increasing the risk of infections. Therefore, it is necessary to further study these materials as well as the characteristics of the superficial film formed in physiologic media in infection conditions in order to control their potential toxicity due to the release of metallic ions in the human body. This work presents a study of the superficial composition and the corrosion resistance of AISI 316L stainless steel and the influence of its main alloying elements when they are exposed to an acidic solution that simulates the change of pH that occurs when an infection develops. Aerated simulated body fluid (SBF) was employed as working solution at 37 degrees C. The pH was adjusted to 7.25 and 4 in order to reproduce normal body and disease state respectively. Corrosion resistance was measured by means of electrochemical impedance spectroscopy (EIS) and anodic polarization curves.

  7. Computer simulations of comet- and asteroidlike bodies passing through the Venusian atmosphere: Preliminary results on atmospheric and ground shock effects

    NASA Technical Reports Server (NTRS)

    Roddy, D.; Hatfield, D.; Hassig, P.; Rosenblatt, M.; Soderblom, L.; Dejong, E.

    1992-01-01

    We have completed computer simulations that model shock effects in the venusian atmosphere caused during the passage of two cometlike bodies 100 m and 1000 m in diameter and an asteroidlike body 10 km in diameter. Our objective is to examine hypervelocity-generated shock effects in the venusian atmosphere for bodies of different types and sizes in order to understand the following: (1) their deceleration and depth of penetration through the atmosphere; and (2) the onset of possible ground-surface shock effects such as splotches, craters, and ejecta formations. The three bodies were chosen to include both a range of general conditions applicable to Venus as well as three specific cases of current interest. These calculations use a new multiphase computer code (DICE-MAZ) designed by California Research & Technology for shock-dynamics simulations in complex environments. The code was tested and calibrated in large-scale explosion, cratering, and ejecta research. It treats a wide range of different multiphase conditions, including material types (vapor, melt, solid), particle-size distributions, and shock-induced dynamic changes in velocities, pressures, temperatures (internal energies), densities, and other related parameters, all of which were recorded in our calculations.

  8. Histological differences between invasive ductal carcinoma with a large central acellular zone and matrix-producing carcinoma of the breast.

    PubMed

    Sasaki, Yuka; Tsuda, Hitoshi; Ueda, Shigeto; Asakawa, Hideki; Seki, Kunihiko; Murata, Tetsuya; Kuriki, Ken; Tamai, Seiichi; Matsubara, Osamu

    2009-06-01

    Carcinoma with a large central acellular zone (central acellular carcinoma, CAC) and matrix-producing carcinoma (MPC) have been recently noted as basal-like-type breast cancers, but the two entities are often confused. To clarify their histological differences, the histopathological sections of 15 CAC and seven MPC were examined and the following features were compared by reviewing slides: (i) mode of invasion; (ii) alteration of cancer cell adhesion in the transitional area between cellular and acellular zones; (iii) staining of the stromal matrix; (iv) lymphocyte infiltration; and (v) tumor grade. Complete agreement was required between two observers for the assessments of these features. All CAC had relatively sharp margins but showed infiltrative growth accompanied by eosinophilic intercellular matrix. In CAC there was abrupt transition between peripheral cellular and central acellular zones without alteration of cancer cell adhesion. In contrast, all MPC showed expansive growth with a well circumscribed margin, accompanied by basophilic and myxoid intercellular matrix. In MPC there was gradual transition from cellular to acellular areas with gradual loss of cancer cell adhesion. Histological grade 3 and peripheral lymphocyte infiltration were common features. It is suggested that CAC and MPC are histologically distinct entities, and that the aforementioned features are helpful for differential diagnosis.

  9. Evaluating acellular versus cellular perfusate composition during prolonged ex vivo lung perfusion after initial cold ischaemia for 24 hours.

    PubMed

    Becker, Simon; Steinmeyer, Jasmin; Avsar, Murat; Höffler, Klaus; Salman, Jawad; Haverich, Axel; Warnecke, Gregor; Ochs, Matthias; Schnapper, Anke

    2016-01-01

    Normothermic ex vivo lung perfusion (EVLP) has developed as a powerful technique to evaluate particularly marginal donor lungs prior to transplantation. In this study, acellular and cellular perfusate compositions were compared in an identical experimental setting as no consensus has been reached on a preferred technique yet. Porcine lungs underwent EVLP for 12 h on the basis of an acellular or a cellular perfusate composition after 24 h of cold ischaemia as defined organ stress. During perfusion, haemodynamic and respiratory parameters were monitored. After EVLP, the lung condition was assessed by light and transmission electron microscopy. Aerodynamic parameters did not show significant differences between groups and remained within the in vivo range during EVLP. Mean oxygenation indices were 491 ± 39 in the acellular group and 513 ± 53 in the cellular group. Groups only differed significantly in terms of higher pulmonary artery pressure and vascular resistance in the cellular group. Lung histology and ultrastructure were largely well preserved after prolonged EVLP and showed only minor structural alterations which were similarly present in both groups. Prolonged acellular and cellular EVLP for 12 h are both feasible with lungs prechallenged by ischaemic organ stress. Physiological and ultrastructural analysis showed no superiority of either acellular or cellular perfusate composition.

  10. Electrochemical Investigations of Polycaprolactone-Coated AZ31 Mg Alloy in Earle's Balance Salt Solution and Conventional Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Wilke, Benjamin M.; Zhang, Lei

    2016-06-01

    Polycaprolactone (PCL) coating has been shown to increase the corrosion resistance of magnesium alloys when exposed to a simulated body fluid. A PCL dip coating was applied to AZ31 Mg alloy. Samples were immersed in both Earle's Balance Salt Solution (EBSS) and conventional simulated body fluids (c-SBF) up to 14 days. Microscopic morphology, electrochemical impedance spectroscopy, and potentiodynamic polarization tests were performed to evaluate the corrosion behavior changes of PCL coatings against immersion times in EBSS and c-SBF as compared to the uncoated AZ31 substrate. PCL-coated samples demonstrated improved corrosion resistance compared to bare AZ31 in both EBSS and c-SBF, indicating that the PCL coating exhibited good corrosion protection of AZ31 in simulated body fluid. Samples immersed in EBSS showed significantly higher electrochemical impedance values and slower corrosion progression as compared to the samples in c-SBF, because of the decreased chloride content and CO2 buffering mechanism of the EBSS.

  11. JSPAM: A restricted three-body code for simulating interacting galaxies

    NASA Astrophysics Data System (ADS)

    Wallin, J. F.; Holincheck, A. J.; Harvey, A.

    2016-07-01

    Restricted three-body codes have a proven ability to recreate much of the disturbed morphology of actual interacting galaxies. As more sophisticated n-body models were developed and computer speed increased, restricted three-body codes fell out of favor. However, their supporting role for performing wide searches of parameter space when fitting orbits to real systems demonstrates a continuing need for their use. Here we present the model and algorithm used in the JSPAM code. A precursor of this code was originally described in 1990, and was called SPAM. We have recently updated the software with an alternate potential and a treatment of dynamical friction to more closely mimic the results from n-body tree codes. The code is released publicly for use under the terms of the Academic Free License ("AFL") v. 3.0 and has been added to the Astrophysics Source Code Library.

  12. Evaluation of WIAMan Technology Demonstrator Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-body Blast Events.

    PubMed

    Pietsch, Hollie A; Bosch, Kelly E; Weyland, David R; Spratley, E Meade; Henderson, Kyvory A; Salzar, Robert S; Smith, Terrance A; Sagara, Brandon M; Demetropoulos, Constantine K; Dooley, Christopher J; Merkle, Andrew C

    2016-11-01

    Three laboratory simulated sub-injurious under-body blast (UBB) test conditions were conducted with whole-body Post Mortem Human Surrogates (PMHS) and the Warrior Assessment Injury Manikin (WIAMan) Technology Demonstrator (TD) to establish and assess UBB biofidelity of the WIAMan TD. Test conditions included a rigid floor and rigid seat with independently varied pulses. On the floor, peak velocities of 4 m/s and 6 m/s were applied with a 5 ms time to peak (TTP). The seat peak velocity was 4 m/s with varied TTP of 5 and 10 ms. Tests were conducted with and without personal protective equipment (PPE). PMHS response data was compiled into preliminary biofidelity response corridors (BRCs), which served as evaluation metrics for the WIAMan TD. Each WIAMan TD response was evaluated against the PMHS preliminary BRC for the loading and unloading phase of the signal time history using Correlation Analysis (CORA) software to assign a numerical score between 0 and 1. A weighted average of all responses was calculated to determine body region and whole body biofidelity scores for each test condition. The WIAMan TD received UBB biofidelity scores of 0.62 in Condition A, 0.59 in Condition B, and 0.63 in Condition C, putting it in the fair category (0.44-0.65). Body region responses with scores below a rating of good (0.65-0.84) indicate potential focus areas for the next generation of the WIAMan design.

  13. Comparison between integral equation method and molecular dynamics simulation for three-body forces: Application to supercritical argon

    NASA Astrophysics Data System (ADS)

    Bomont, Jean-Marc; Bretonnet, Jean-Louis; van der Hoef, Martin A.

    2001-04-01

    The prediction of the structural and thermodynamic properties of supercritical argon has been carried out by two independent routes: semianalytical calculations and numerical simulations. The first one is based on the hybridized mean spherical approximation (HMSA) conjugated with an effective pair potential that incorporates multipole dispersion interactions. The second one uses a very recent numerical simulation technique, inspired by the Car-Parrinello method [van der Hoef et al., J. Chem. Phys. 111, 1520 (1999)], which contains an effective quantum-mechanical representation of the underlying electronic structure. The latter approach allows us to treat the contribution of the three-body effects as well, and to validate the use of an effective pair potential for them in the framework of the self-consistent integral equation method. For all the supercritical argon states studied, the results obtained with the semianalytical approach are in good agreement with the predictions of the numerical simulation. Here it is shown that HMSA remains competitive with molecular dynamics simulation when the triple-dipole and the dipole-dipole-quadrupole three-body terms are taken into account.

  14. Flow in complex domains simulated by Dissipative Particle Dynamics driven by geometry-specific body-forces

    NASA Astrophysics Data System (ADS)

    Yazdani, Alireza; Deng, Mingge; Caswell, Bruce; Karniadakis, George Em

    2016-01-01

    We demonstrate how the quality of simulations by Dissipative Particle Dynamics (DPD) of flows in complex geometries is greatly enhanced when driven by body forces suitably tailored to the geometry. In practice, the body force fields are most conveniently chosen to be the pressure gradient of the corresponding Navier-Stokes (N-S) flow. In the first of three examples, the driving-force required to yield a stagnation-point flow is derived from the pressure field of the potential flow for a lattice of counter-rotating line vortices. Such a lattice contains periodic squares bounded by streamlines with four vortices within them. Hence, the DPD simulation can be performed with periodic boundary conditions to demonstrate the value of a non-uniform driving-force without the need to model real boundaries. The second example is an irregular geometry consisting of a 2D rectangular cavity on one side of an otherwise uniform channel. The Navier-Stokes pressure field for the same geometry is obtained numerically, and its interpolated gradient is then employed as the driving-force for the DPD simulation. Finally, we present a third example, where the proposed method is applied to a complex 3D geometry of an asymmetric constriction. It is shown that in each case the DPD simulations closely reproduce the Navier-Stokes solutions. Convergence rates are found to be much superior to alternative methods; in addition, the range of convergence with respect to Reynolds number and Mach number is greatly extended.

  15. N-body simulations for f(R) gravity using a self-adaptive particle-mesh code

    SciTech Connect

    Zhao Gongbo; Koyama, Kazuya; Li Baojiu

    2011-02-15

    We perform high-resolution N-body simulations for f(R) gravity based on a self-adaptive particle-mesh code MLAPM. The chameleon mechanism that recovers general relativity on small scales is fully taken into account by self-consistently solving the nonlinear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function, and density profiles, obtained by Oyaizu et al.[Phys. Rev. D 78, 123524 (2008)] and Schmidt et al.[Phys. Rev. D 79, 083518 (2009)], and extend the resolution up to k{approx}20 h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discuss how the chameleon mechanism affects the clustering of dark matter and halos on full nonlinear scales.

  16. A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation

    NASA Astrophysics Data System (ADS)

    da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille

    2012-03-01

    Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.

  17. Investigation on aerodynamic characteristics of baseline-II E-2 blended wing-body aircraft with canard via computational simulation

    NASA Astrophysics Data System (ADS)

    Nasir, Rizal E. M.; Ali, Zurriati; Kuntjoro, Wahyu; Wisnoe, Wirachman

    2012-06-01

    Previous wind tunnel test has proven the improved aerodynamic charasteristics of Baseline-II E-2 Blended Wing-Body (BWB) aircraft studied in Universiti Teknologi Mara. The E-2 is a version of Baseline-II BWB with modified outer wing and larger canard, solely-designed to gain favourable longitudinal static stability during flight. This paper highlights some results from current investigation on the said aircraft via computational fluid dynamics simulation as a mean to validate the wind tunnel test results. The simulation is conducted based on standard one-equation turbulence, Spalart-Allmaras model with polyhedral mesh. The ambience of the flight simulation is made based on similar ambience of wind tunnel test. The simulation shows lift, drag and moment results to be near the values found in wind tunnel test but only within angles of attack where the lift change is linear. Beyond the linear region, clear differences between computational simulation and wind tunnel test results are observed. It is recommended that different type of mathematical model be used to simulate flight conditions beyond linear lift region.

  18. Distribution function approach to redshift space distortions. Part II: N-body simulations

    SciTech Connect

    Okumura, Teppei; Seljak, Uroš; McDonald, Patrick; Desjacques, Vincent E-mail: useljak@berkeley.edu E-mail: dvince@physik.uzh.ch

    2012-02-01

    Measurement of redshift-space distortions (RSD) offers an attractive method to directly probe the cosmic growth history of density perturbations. A distribution function approach where RSD can be written as a sum over density weighted velocity moment correlators has recently been developed. In this paper we use results of N-body simulations to investigate the individual contributions and convergence of this expansion for dark matter. If the series is expanded as a function of powers of μ, cosine of the angle between the Fourier mode and line of sight, then there are a finite number of terms contributing at each order. We present these terms and investigate their contribution to the total as a function of wavevector k. For μ{sup 2} the correlation between density and momentum dominates on large scales. Higher order corrections, which act as a Finger-of-God (FoG) term, contribute 1% at k ∼ 0.015hMpc{sup −1}, 10% at k ∼ 0.05hMpc{sup −1} at z = 0, while for k > 0.15hMpc{sup −1} they dominate and make the total negative. These higher order terms are dominated by density-energy density correlations which contributes negatively to the power, while the contribution from vorticity part of momentum density auto-correlation adds to the total power, but is an order of magnitude lower. For μ{sup 4} term the dominant term on large scales is the scalar part of momentum density auto-correlation, while higher order terms dominate for k > 0.15hMpc{sup −1}. For μ{sup 6} and μ{sup 8} we find it has very little power for k < 0.15hMpc{sup −1}, shooting up by 2–3 orders of magnitude between k < 0.15hMpc{sup −1} and k < 0.4hMpc{sup −1}. We also compare the expansion to the full 2-d P{sup ss}(k,μ), as well as to the monopole, quadrupole, and hexadecapole integrals of P{sup ss}(k,μ). For these statistics an infinite number of terms contribute and we find that the expansion achieves percent level accuracy for kμ < 0.15hMpc{sup −1} at 6-th order, but breaks down

  19. Linking long-term planetary N-body simulations with periodic orbits: application to white dwarf pollution

    NASA Astrophysics Data System (ADS)

    Antoniadou, Kyriaki I.; Veras, Dimitri

    2016-12-01

    Mounting discoveries of debris discs orbiting newly formed stars and white dwarfs (WDs) showcase the importance of modelling the long-term evolution of small bodies in exosystems. WD debris discs are, in particular, thought to form from very long-term (0.1-5.0 Gyr) instability between planets and asteroids. However, the time-consuming nature of N-body integrators which accurately simulate motion over Gyrs necessitates a judicious choice of initial conditions. The analytical tools known as periodic orbits can circumvent the guesswork. Here, we begin a comprehensive analysis directly linking periodic orbits with N-body integration outcomes with an extensive exploration of the planar circular restricted three-body problem (CRTBP) with an outer planet and inner asteroid near or inside of the 2:1 mean motion resonance. We run nearly 1000 focused simulations for the entire age of the Universe (14 Gyr) with initial conditions mapped to the phase space locations surrounding the unstable and stable periodic orbits for that commensurability. In none of our simulations did the planar CRTBP architecture yield a long-time-scale (≳0.25 per cent of the age of the Universe) asteroid-star collision. The pericentre distance of asteroids which survived beyond this time-scale (≈35 Myr) varied by at most about 60 per cent. These results help affirm that collisions occur too quickly to explain WD pollution in the planar CRTBP 2:1 regime, and highlight the need for further periodic orbit studies with the eccentric and inclined TBP architectures and other significant orbital period commensurabilities.

  20. Speeding up N-body simulations of modified gravity: chameleon screening models

    NASA Astrophysics Data System (ADS)

    Bose, Sownak; Li, Baojiu; Barreira, Alexandre; He, Jian-hua; Hellwing, Wojciech A.; Koyama, Kazuya; Llinares, Claudio; Zhao, Gong-Bo

    2017-02-01

    We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f(R) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f(R) simulations. For example, a test simulation with 5123 particles in a box of size 512 Mpc/h is now 5 times faster than before, while a Millennium-resolution simulation for f(R) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.

  1. Numerical simulation of steady supersonic flow over spinning bodies of revolution

    NASA Technical Reports Server (NTRS)

    Sturek, W. B.; Schiff, L. B.

    1982-01-01

    A recently reported parabolized Navier-Stokes code has been employed to compute the supersonic flowfield about a spinning cone and spinning and nonspinning ogive cylinder and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary-layer velocity profiles, and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to 6 deg. At angles greater than 6 deg discrepancies are noted which are tentatively attributed to turbulence modeling errors. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape for the selected models.

  2. Combining N-body accretion simulations with partitioning experiments in a statistical model of terrestrial planet accretion and core formation

    NASA Astrophysics Data System (ADS)

    Fischer, R. A.; Ciesla, F.; Campbell, A. J.

    2014-12-01

    The terrestrial planets accreted in a series of increasingly large and violent collisions. Simultaneously, metallic cores segregated from their silicate mantles, acquiring their modern compositions through high pressure (P), high temperature (T) partitioning reactions. Here we present a model that couples these aspects of early planetary evolution, building on recent accretion simulations and experimental results. We have run 100 N-body simulations of terrestrial planet accretion, with Jupiter and Saturn on either circular (CJS) or eccentric (EJS) orbits, to gain insight into the statistics of this highly stochastic process (Fischer and Ciesla, 2014). An Earth (Mars) analogue forms in 84-92% (2-10%) of our simulations. We draw on our recent high P-T metal-silicate partitioning experiments of Ni, Co, V, Cr, Si, and O in a diamond anvil cell to 100 GPa and 5500 K. In our model, N-body simulations describe the delivery, masses, and original locations of planetary building blocks. As planets accrete, their core and mantle compositions are modified by high P-T reactions with each collision (Rubie et al., 2011). By utilizing a large number of N-body simulations, we obtain a statistical view and observe a wide range of outcomes. We use this model to predict the core compositions of Earth-like planets. For partial equilibration of the mantle at 50% of the core-mantle boundary (CMB) pressure, we find that their cores contain 6.9 ± 1.8 wt% Si and 4.8 ± 2.3 wt% O (Figure), with this uncertainty due entirely to variations in accretion history in our 100 simulations. This composition is consistent with the seismologically-inferred density of Earth's core, based on comparisons to high P-T equations of state (Fischer et al., 2011, 2014). Earth analogues experience 0.7 ± 0.1 or 0.9 ± 0.2 log units of oxidation during accretion in EJS or CJS simulations respectively, which is due to both the effects of high P-T partitioning and the temporal evolution of the Earth analogue

  3. Adjuvant neurotrophic factors in peripheral nerve repair with chondroitin sulfate proteoglycan-reduced acellular nerve allografts

    PubMed Central

    Boyer, Richard B.; Sexton, Kevin W.; Rodriguez-Feo, Charles L.; Nookala, Ratnam; Pollins, Alonda C.; Cardwell, Nancy L.; Tisdale, Keonna Y.; Nanney, Lillian B.; Shack, R. Bruce; Thayer, Wesley P.

    2014-01-01

    Background Acellular nerve allografts are now standard tools in peripheral nerve repair due to decreased donor site morbidity and operative time savings. Preparation of nerve allografts involves several steps of decellularization and modification of extracellular matrix to remove chondroitin sulfate proteoglycans (CSPGs), which have been shown to inhibit neurite outgrowth through a poorly understood mechanism involving RhoA and ECM-integrin interactions. Chondroitinase ABC (ChABC) is an enzyme that degrades CSPG molecules and has been shown to promote neurite outgrowth following injury of the central and peripheral nervous systems. Variable results following chondroitinase ABC treatment make it difficult to predict the effects of this drug in human nerve allografts, especially in the presence of native extracellular signaling molecules. Several studies have shown cross-talk between neurotrophic factor and CSPG signaling pathways, but their interaction remains poorly understood. In this study, we examined the adjuvant effects of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on neurite outgrowth post-injury in CSPG-reduced substrates and acellular nerve allografts. Materials and Methods E12 chicken DRG explants were cultured in medium containing ChABC, ChABC + NGF, ChABC + GDNF or control media. Explants were imaged at 3 d and neurite outgrowths measured. The rat sciatic nerve injury model involved a 1-cm sciatic nerve gap that was microsurgically repaired with ChABC pre-treated acellular nerve allografts. Prior to implantation, nerve allografts were incubated in NGF, GDNF or sterile water. Nerve histology was evaluated at 5d and 8wk post-injury. Results The addition of GDNF in vitro produced significant increase in sensory neurite length at 3 d compared to ChABC alone (P < 0.01), while NGF was not significantly different from control. In vivo adjuvant NGF produced increases in total myelinated axon count (P < 0.005) and motor axon

  4. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations

    NASA Astrophysics Data System (ADS)

    Fan, Zheyong; Pereira, Luiz Felipe C.; Wang, Hui-Qiong; Zheng, Jin-Cheng; Donadio, Davide; Harju, Ari

    2015-09-01

    We derive expressions of interatomic force and heat current for many-body potentials such as the Tersoff, the Brenner, and the Stillinger-Weber potential used extensively in molecular dynamics simulations of covalently bonded materials. Although these potentials have a many-body nature, a pairwise force expression that follows Newton's third law can be found without referring to any partition of the potential. Based on this force formula, a stress applicable for periodic systems can be unambiguously defined. The force formula can then be used to derive the heat current formulas using a natural potential partitioning. Our heat current formulation is found to be equivalent to most of the seemingly different heat current formulas used in the literature, but to deviate from the stress-based formula derived from two-body potential. We validate our formulation numerically on various systems described by the Tersoff potential, namely three-dimensional silicon and diamond, two-dimensional graphene, and quasi-one-dimensional carbon nanotube. The effects of cell size and production time used in the simulation are examined.

  5. Monte Carlo simulations of the electric field close to the body in realistic environments for application in personal radiofrequency dosimetry.

    PubMed

    Iskra, S; McKenzie, R; Cosic, I

    2011-11-01

    Personal dosemeters can play an important role in epidemiological studies and in radiofrequency safety programmes. In this study, a Monte Carlo approach is used in conjunction with the finite difference time domain method to obtain distributions of the electric field strength close to a human body model in simulated realistic environments. The field is a proxy for the response of an ideal body-worn electric field dosemeter. A set of eight environments were modelled based on the statistics of Rayleigh, Rice and log-normal fading to simulate outdoor and indoor multipath exposures at 450, 900 and 2100 MHz. Results indicate that a dosemeter mounted randomly within 10-50 mm of the adult or child body model (torso region) will on average underestimate the spatially averaged value of the incident electric field strength by a factor of 0.52 to 0.74 over the frequencies of 450, 900 and 2100 MHz. The uncertainty in results, assessed at the 95 % confidence level (between the 2.5th and 97.5th percentiles) was largest at 2100 MHz and smallest at 450 MHz.

  6. Aqueous alteration on the parent bodies of carbonaceous chondrites: Computer simulations of late-stage oxidation

    NASA Technical Reports Server (NTRS)

    Bourcier, W. L.; Zolensky, Michael E.

    1991-01-01

    CI carbonaceous chondrites may be products of hydrous alteration of CV- or anhydrous CM-type materials. The CIs typically contain veins filled with carbonates and sulfates, probably indicating a period of late stage aqueous alteration under oxidizing conditions. To test this idea, computer simulations of aqueous alteration of CV- and CM-type carbonaceous were performed. Simulations were restricted to the oxidation of hydrous mineral assemblages produced in previous simulations in order to determine whether further reaction and oxidation results in the phyllosilicate, carbonate, sulfate and oxide vein assemblages typical of CI carbonaceous chondrites. Our simulations were performed at 1, 25, 100, and 150 C (the appropriate temperature range) for the CV and CM mineral assemblages and using the computer code EQ3/6.

  7. DSMC Simulations of Blunt Body Flows for Mars Entries: Mars Pathfinder and Mars Microprobe Capsules

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Wilmoth, Richard G.; Price, Joseph M.

    1997-01-01

    The hypersonic transitional flow aerodynamics of the Mars Pathfinder and Mars Microprobe capsules are simulated with the direct simulation Monte Carlo method. Calculations of axial, normal, and static pitching coefficients were obtained over an angle of attack range comparable to actual flight requirements. Comparisons are made with modified Newtonian and free-molecular-flow calculations. Aerothermal results were also obtained for zero incidence entry conditions.

  8. Simulation of Viscous Steady Flow Past An Arbitrary Two-Dimensional Body.

    DTIC Science & Technology

    1980-02-01

    34 J. Computational Phys., Vol. 15 (1974) p. 299. 7. J. F. Thompson, F. C. Thames and C. W. Mastin, "TOMCAT - A Code for Numerical Generation of Boundary Fitted Curvilinear Coordinate Systems on Fields Containing Any Number of Arbitrary Two - Dimensional Bodies ," J

  9. Assessing the Potential Value for an Automated Body Condition Scoring System through Stochastic Simulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automated body condition scoring (BCS) through extraction of information from digital images has been demonstrated to be feasible; and commercial technologies are being developed. The primary objective of this research was to identify the factors that influence the potential profitability of investi...

  10. Swarm-NG: A CUDA library for Parallel n-body Integrations with focus on simulations of planetary systems

    NASA Astrophysics Data System (ADS)

    Dindar, Saleh; Ford, Eric B.; Juric, Mario; Yeo, Young In; Gao, Jianwei; Boley, Aaron C.; Nelson, Benjamin; Peters, Jörg

    2013-10-01

    We present Swarm-NG, a C++ library for the efficient direct integration of many n-body systems using a Graphics Processing Unit (GPU), such as NVIDIA's Tesla T10 and M2070 GPUs. While previous studies have demonstrated the benefit of GPUs for n-body simulations with thousands to millions of bodies, Swarm-NG focuses on many few-body systems, e.g., thousands of systems with 3…15 bodies each, as is typical for the study of planetary systems. Swarm-NG parallelizes the simulation, including both the numerical integration of the equations of motion and the evaluation of forces using NVIDIA's "Compute Unified Device Architecture" (CUDA) on the GPU. Swarm-NG includes optimized implementations of 4th order time-symmetrized Hermite integration and mixed variable symplectic integration, as well as several sample codes for other algorithms to illustrate how non-CUDA-savvy users may themselves introduce customized integrators into the Swarm-NG framework. To optimize performance, we analyze the effect of GPU-specific parameters on performance under double precision. For an ensemble of 131072 planetary systems, each containing three bodies, the NVIDIA Tesla M2070 GPU outperforms a 6-core Intel Xeon X5675 CPU by a factor of ˜2.75. Thus, we conclude that modern GPUs offer an attractive alternative to a cluster of CPUs for the integration of an ensemble of many few-body systems. Applications of Swarm-NG include studying the late stages of planet formation, testing the stability of planetary systems and evaluating the goodness-of-fit between many planetary system models and observations of extrasolar planet host stars (e.g., radial velocity, astrometry, transit timing). While Swarm-NG focuses on the parallel integration of many planetary systems, the underlying integrators could be applied to a wide variety of problems that require repeatedly integrating a set of ordinary differential equations many times using different initial conditions and/or parameter values.

  11. Boosted Tidal Disruption by Massive Black Hole Binaries During Galaxy Mergers from the View of N-Body Simulation

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Liu, F. K.; Berczik, Peter; Spurzem, Rainer

    2017-01-01

    Supermassive black hole binaries (SMBHBs) are productions of the hierarchical galaxy formation model. There are many close connections between a central SMBH and its host galaxy because the former plays very important roles on galaxy formation and evolution. For this reason, the evolution of SMBHBs in merging galaxies is a fundamental challenge. Since there are many discussions about SMBHB evolution in a gas-rich environment, we focus on the quiescent galaxy, using tidal disruption (TD) as a diagnostic tool. Our study is based on a series of numerical, large particle number, direct N-body simulations for dry major mergers. According to the simulation results, the evolution can be divided into three phases. In phase I, the TD rate for two well separated SMBHs in a merging system is similar to that for a single SMBH in an isolated galaxy. After two SMBHs approach close enough to form a bound binary in phase II, the disruption rate can be enhanced by ∼2 orders of magnitude within a short time. This “boosted” disruption stage finishes after the SMBHB evolves to a compact binary system in phase III, corresponding to a reduction in disruption rate back to a level of a few times higher than in phase I. We also discuss how to correctly extrapolate our N-body simulation results to reality, and the implications of our results to observations.

  12. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  13. Simulating Non-Specific Influences of Body Posture and Temperature on Thigh-Bioimpedance Spectroscopy during Continuous Monitoring Applications

    NASA Astrophysics Data System (ADS)

    Ismail, A. H.; Leonhardt, S.

    2013-04-01

    Application of bioimpedance spectroscopy (BIS) for continuous monitoring of body fluid volumes is gaining considerable importance in personal health care. Unless laboratory conditions are applied, both whole-body or segmental BIS configurations are subject to nonspecific influences (e.g. temperature and change in body position) reducing the method's accuracy and reproducibility. In this work, a two-compartment mathematical model, which describes the thigh segment, has been adapted to simulate fluid and solute kinetics during change in body position or variation in skin temperature. The model is an improved version of our previous one offering a good tradeoff between accuracy and simplicity. It represents the kinetics of fluid redistribution, sodium-, potassium-, and protein-concentrations based on simple equations to predict the time course of BIS variations. Validity of the model was verified in five subjects (following a sequence of 7 min supine, 20 min standing, and 40 min supine). The output of the model may reduce possible influences on BIS by up to 80%.

  14. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach.

    PubMed

    Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad

    2016-02-01

    Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.

  15. The evaluation of upper body muscle activity during the performance of external chest compressions in simulated hypogravity

    NASA Astrophysics Data System (ADS)

    Krygiel, Rebecca G.; Waye, Abigail B.; Baptista, Rafael Reimann; Heidner, Gustavo Sandri; Rehnberg, Lucas; Russomano, Thais

    2014-04-01

    BACKGROUND: This original study evaluated the electromyograph (EMG) activity of four upper body muscles: triceps brachii, erector spinae, upper rectus abdominis, and pectoralis major, while external chest compressions (ECCs) were performed in simulated Martian hypogravity using a Body Suspension Device, counterweight system, and standard full body cardiopulmonary resuscitation (CPR) mannequin. METHOD: 20 young, healthy male subjects were recruited. One hundred compressions divided into four sets, with roughly six seconds between each set to indicate 'ventilation', were performed within approximately a 1.5 minute protocol. Chest compression rate, depth and number were measured along with the subject's heart rate (HR) and rating of perceived exertion (RPE). RESULTS: All mean values were used in two-tailed t-tests using SPSS to compare +1 Gz values (control) versus simulated hypogravity values. The AHA (2005) compression standards were maintained in hypogravity. RPE and HR increased by 32% (p < 0.001) and 44% (p = 0.002), respectively, when ECCs were performed during Mars simulation, in comparison to +1 Gz. In hypogravity, the triceps brachii showed significantly less activity (p < 0.001) when compared with the other three muscles studied. The comparison of all the other muscles showed no difference at +1 Gz or in hypogravity. CONCLUSIONS: This study was among the first of its kind, however several limitations were faced which hopefully will not exist in future studies. Evaluation of a great number of muscles will allow space crews to focus on specific strengthening exercises within their current training regimes in case of a serious cardiac event in hypogravity.

  16. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].

    PubMed

    Ji, Jingou; Ran, Junguo; Gou, Li; Wang, Fangfu; Sun, Luwei

    2004-08-01

    The formation of bone-like apatite on porous HA/beta-TCP bioceramics in dynamic simulated body fluid (SBF) undergoing a simulated inflammation procedure (pH = 6.5) was investigated in order to study the mechanism of osteoinduction and build a new method to choose biomaterials with better bioactivity. The results showed that the surface of porous HA/beta-TCP bioceramics which underwent a simulated inflammation procedure in dynamic SBF was more smooth. The light acidity in the simulated inflammation procedure would dissolve the fine grains and the parts possessing smaller curvature radius on the surface of porous HA/beta-TCP bioceramics, which would reduce the bioceramics solubility. Followed in normal SBF (pH = 7.4), the amount of bone-like apatite formed on the porous HA/beta-TCP bioceramics was less than that of porous HA/beta-TCP bioceramics incubation in normal SBF all along. The results also showed that the amount of bone-like apatite formed on the porous HA/beta-TCP bioceramics sintered by a microwave plasma was more than that of porous HA/beta-TCP bioceramics sintered by a conventional furnace.

  17. Simulation of turbulent flow around a tear-shaped body with a tapered flare

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Mikhalev, A. N.; Sudakov, A. G.; Usachev, A. E.

    2007-08-01

    The axisymmetric flow around a tear-shaped body with a flare is analyzed by solving the continuity equation, Reynolds equations (closed with the Menter model of shear stress transport), and energy equation. In the solution, a factorized multiblock finite-volume technique embedded in a VP2/3 program package is used. Numerical estimates are compared with aeroballistic tests of a model. Direct-shadow flow patterns are recorded and the trajectory parameters are calculated with the aim of determining the aerodynamic drag at a close-to-zero angle of attack. Interferograms of the axisymmetric flow around the body (M = 4.35) are also taken. The calculated and experimental data for the flow density transverse (radial) distribution are in good agreement. Agreement between the calculation and experiment in the drag coefficient at a close-to-zero angle of attack is also observed.

  18. [Dynamic modeling and simulating of squatting-standing action of human body].

    PubMed

    Wang, Jianhui; Xu, Xiulin; An, Meijun; Hu, Xiufang

    2014-12-01

    It is very difficult for stroke patients to complete the action of squatting-standing because their equilibrium function ability has been seriously declined. It was necessary, therefore, to do a deep research on the action of human squatting-standing and to set up an accurate model and simulation. In our modeling research, the movements of upper limbs and head was neglected, and a seven-segment model was developed to establish the coordinate system of human squatting-standing action. It calculated the knee joint moment and hip joint moment during squatting and standing by utilizing Lagrange method, and then simulated this mathematical model by utilizing Matlab. Geometric model of human squatting-standing was developed and simulated in ADAMS which proved that the established Lagrange model was reasonable. It would also provide significant theoretical references for further study and development of squatting-standing rehabilitation training equipment.

  19. Quantum Simulations of Many-Body Systems with Ultra-Cold Atoms

    DTIC Science & Technology

    2009-02-28

    Conference "Frontiers of Nonlinear Physics" Nizhny Novgorod, Russia, July 2007 22. Invited talk at Institute Henri Poincare , Centre Emile Borel... Henri Poincare , Paris, France. April 23 - July 20, 2007. Non-equilibrium quantum dynamics of many-body systems of cold atoms. 13. Conference...34Recent progress in the studies of quantum gases: theory and experiments", Institut Henri Poincare , Paris, France. June 27 - June 29, 2007

  20. Computer Simulation Study of Human Locomotion with a Three-Dimensional Entire-Body Neuro-Musculo-Skeletal Model

    NASA Astrophysics Data System (ADS)

    Hase, Kazunori; Yokoi, Takashi

    In the present study, the computer simulation technique to autonomously generate running motion from walking was developed using a three-dimensional entire-body neuro-musculo-skeletal model. When maximizing locomotive speed was employed as the evaluative criterion, the initial walking pattern could not transition to a valid running motion. When minimizing the period of foot-ground contact was added to this evaluative criterion, the simulation model autonomously produced appropriate three-dimensional running. Changes in the neuronal system showed the fatigue coefficient of the neural oscillators to reduce as locomotion patterns transitioned from walking to running. Then, when the running speed increased, the amplitude of the non-specific stimulus from the higher center increased. These two changes indicate mean that the improvement in responsiveness of the neuronal system is important for the transition process from walking to running, and that the comprehensive activation level of the neuronal system is essential in the process of increasing running speed.

  1. Coarse Grained Simulations of the Electrolytes at the Water-Air Interface from Many Body Dissipative Particle Dynamics.

    PubMed

    Ghoufi, Aziz; Malfreyt, Patrice

    2012-03-13

    Modeling interfacial properties is a major challenge for mesoscopic simulation methods. Many-body dissipative particle dynamics (MDPD) is then a promising method to model heterogeneous systems at long time and length scales. However no rule exists to obtain a set of MDPD parameters capable to reproduce the thermodynamic properties of a molecular system of a specific chemistry. In this letter, we provide a general multiscale method to obtain a set of parameters from atomistic simulations using Flory-Huggins theory (FH) to be used with dissipative particle dynamics. We demonstrate the high quality and the transferability of the resulting parameters on the salt concentration dependence of surface tension. We also show the specificity of inorganic salt at the water-air interface. Our results indicate that the increase of surface tension with the salt concentration cannot be explained in terms of the charge image concept based on the Wagner, Onsager, and Samaras theory but rather in terms of the ion hydration.

  2. Computer Simulation Study of Human Locomotion with a Three-Dimensional Entire-Body Neuro-Musculo-Skeletal Model

    NASA Astrophysics Data System (ADS)

    Hase, Kazunori; Obinata, Goro

    It is essential for the biomechanical study of human walking motion to consider not only in vivo mechanical load and energy efficiency but also aspects of motor control such as walking stability. In this study, walking stability was investigated using a three-dimensional entire-body neuro-musculo-skeletal model in the computer simulation. In the computational experiments, imaginary constraints, such as no muscular system, were set in the neuro-musculo-skeletal model to investigate their influence on walking stability. The neuronal parameters were adjusted using numerical search techniques in order to adapt walking patterns to constraints on the neuro-musculo-skeletal system. Simulation results revealed that the model of the normal neuro-musculo-skeletal system yielded a higher stability than the imaginary models. Unstable walking by a model with a time delay in the neuronal system suggested significant unknown mechanisms which stabilized walking patterns that have been neglected in previous studies.

  3. Acellular components of Chlamydia pneumoniae stimulate cytokine production in human blood mononuclear cells.

    PubMed

    Netea, M G; Selzman, C H; Kullberg, B J; Galama, J M; Weinberg, A; Stalenhoef, A F; Van der Meer, J W; Dinarello, C A

    2000-02-01

    Accumulating evidence suggest that infection with Chlamydia pneumoniae is associated with atherosclerosis, but the mechanisms involved remain unclear. Inflammation is important in the initial phase of atherogenesis, and cytokines are important in the initiation and progression of inflammation. The aim of this study was to assess the capacity of acellular components of C. pneumoniae to stimulate the production of pro-inflammatory cytokines and chemokines. Peripheral blood mononuclear cells were stimulated in vitro with sonicated C. pneumoniae. Significant amounts of TNF-alpha, IL-1, IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) were produced. Inhibition of endotoxin using polymyxin B revealed that chlamydial endotoxin plays a minor role in the cytokine induction. Neutralization of TNF by TNF-binding protein and blockade of IL-1 receptors by IL-1 receptor antagonist revealed that TNF, IL-1 and IL-6 production was independent from each other, whereas IL-8 synthesis was strongly dependent on endogenous TNF and IL-1. In contrast, synthesis of MCP-1 and MIP-1alpha was dependent on endogenous TNF, but not IL-1. In conclusion, acellular components of C. pneumoniae are a potent stimulus for cytokine production, and this mechanism may have an important role in the inflammatory aspects of atherogenesis.

  4. Cellular Immune Responses of Preterm Infants after Vaccination with Whole-Cell or Acellular Pertussis Vaccines▿

    PubMed Central

    Vermeulen, Françoise; Verscheure, Virginie; Damis, Eliane; Vermeylen, Danièle; Leloux, Gaëlle; Dirix, Violette; Locht, Camille; Mascart, Françoise

    2010-01-01

    Based on studies reporting specific antibody titers, it is recommended to vaccinate preterm infants against Bordetella pertussis according to their chronological age. However, as specific T-cell responses also are involved in the protection against B. pertussis, we have determined whether highly preterm infants (<31 weeks) are able to mount these immune responses during vaccination. Forty-eight premature infants were vaccinated at 2, 3, and 4 months of their chronological age with an acellular (Pa; n = 24) or a whole-cell (Pw; n = 24) tetravalent diphtheria-tetanus-pertussis-polio vaccine, and blood samples were collected at 2, 3, and 6 months of age. Most of the Pa- and Pw-vaccinated infants developed at 3 or 6 months of age a gamma interferon (IFN-γ) response to the B. pertussis antigens, accompanied by an interleukin-5 (IL-5) and IL-13 secretion for the Pa-vaccinated infants. No association was found between a very low infant birth weight, the occurrence of severe infections, and corticosteroid treatment or the administration of gammaglobulins with a low level of antigen-induced IFN-γ secretion. We conclude that like full-term infants, most preterm infants are able to mount a specific cellular immune response to the administration of the first doses of an acellular or a whole-cell pertussis vaccine. PMID:20016042

  5. Creation and implantation of acellular rat renal ECM-based scaffolds

    PubMed Central

    Peloso, Andrea; Ferrario, Jacopo; Maiga, Benedetta; Benzoni, Ilaria; Bianco, Carolina; Citro, Antonio; Currao, Manuela; Malara, Alessandro; Gaspari, Annalisa; Balduini, Alessandra; Abelli, Massimo; Piemonti, Lorenzo; Dionigi, Paolo; Orlando, Giuseppe; Maestri, Marcello

    2015-01-01

    Abstract Kidney transplantation is the only potentially curative treatment for patient facing end-stage renal disease, and it is now routinely used. Its use is mainly limited by the supply of transplantable donor organs, which far exceeds the demand. Regenerative medicine and tissue engineering offer promising means for overcoming this shortage. In the present study, we developed and validated a protocol for producing acellular rat renal scaffolds. Left kidneys were removed from 26 male Lewis rats (weights: 250–350 g) and decellularized by means of aortic anterograde perfusion with ionic and anionic detergents (Triton X-100 1% and SDS 1%, respectively). 19 scaffolds thus obtained (and contralateral native kidneys as controls) were deeply characterized in order to evaluate the decellularization quality, the preservation of extracellular matrix components and resultant micro-angioarchitecture structure. The other 7 were transplanted into 7 recipient rats that had undergone unilateral nephrectomy. Recipients were sacrificed on post-transplantation day 7 and the scaffolds subjected to histologic studies. The dual-detergent protocol showed, with only 5 h of perfusion per organ, to obtain thoroughly decellularized renal scaffolds consisting almost exclusively of extracellular matrix. Finally the macro- and the microarchitecture of the renal parenchyma were well preserved, and the grafts were implanted with ease. Seven days after transplant, the scaffolds were morphologically intact although all vascular structures were obstructed with thrombi. Production and implantation of acellular rat renal scaffolds is a suitable platform for further studies on regenerative medicine and tissue engineering. PMID:26186418

  6. Acellular Urethra Bioscaffold: Decellularization of Whole Urethras for Tissue Engineering Applications.

    PubMed

    Simões, Irina N; Vale, Paulo; Soker, Shay; Atala, Anthony; Keller, Daniel; Noiva, Rute; Carvalho, Sandra; Peleteiro, Conceição; Cabral, Joaquim M S; Eberli, Daniel; da Silva, Cláudia L; Baptista, Pedro M

    2017-02-06

    Patients with stress urinary incontinence mainly suffer from malfunction of the urethra closure mechanism. We established the decellularization of porcine urethras to produce acellular urethra bioscaffolds for future tissue engineering applications, using bioscaffolds or bioscaffold-derived soluble products. Cellular removal was evaluated by H&E, DAPI and DNA quantification. The presence of specific ECM proteins was assessed through immunofluorescence staining and colorimetric assay kits. Human skeletal muscle myoblasts, muscle progenitor cells and adipose-derived stromal vascular fractions were used to evaluate the recellularization of the acellular urethra bioscaffolds. The mechanochemical decellularization system removed ~93% of tissue's DNA, generally preserving ECM's components and microarchitecture. Recellularization was achieved, though methodological advances are required regarding cell seeding strategies and functional assessment. Through microdissection and partial digestion, different urethra ECM-derived coating substrates were formulated (i.e. containing smooth or skeletal muscle ECM) and used to culture MPCs in vitro. The skeletal muscle ECM substrates enhanced fiber formation leading to the expression of the main skeletal muscle-related proteins and genes, as confirmed by immunofluorescence and RT-qPCR. The described methodology produced a urethra bioscaffold that retained vital ECM proteins and was liable to cell repopulation, a crucial first step towards the generation of urethra bioscaffold-based Tissue Engineering products.

  7. Alternatives to HIST for acellular pertussis vaccines: progress and challenges in replacement

    PubMed Central

    Arciniega, J.; Wagner, L.; Prymula, R.; Sebo, P.; Isbrucker, R.; Descampe, B.; Chapsal, J.M.; Costanzo, A.; Hendriksen, C.; Hoonaker, M.; Nelson, S.; Lidster, K.; Casey, W.; Allen, D.

    2016-01-01

    The ‘International Workshop on Alternatives to the Murine Histamine Sensitization Test for Acellular Pertussis Vaccines: Progress and Challenges in the Replacement of HIST’ was held on 24 August 2014, in Prague, Czech Republic, as a satellite meeting to the 9 th World Congress on Alternatives and Animal Use in the Life Sciences. Participants discussed the progress and challenges associated with the development, validation, and implementation of in vitro assays as replacements for the histamine sensitisation test (HIST) for acellular pertussis vaccines. Discussions focused on the consistency approach, the necessary framework for regulatory acceptance of a harmonised method, and recent international efforts towards the development of in vitro assays to replace the HIST. Workshop participants agreed that acceptable alternatives to the HIST should be based on ADP ribosylation-mediated cell intoxication and therefore that the CHO cell clustering assay, which measures cell intoxication, should be further pursued and developed as a possible replacement for the HIST. Participants also agreed to continue ongoing multinational discussions involving national and international standardisation authorities to reach consensus and to organise collaborative studies in this context for assay characterisation and calibration of reference materials. PMID:27506225

  8. Acellular Urethra Bioscaffold: Decellularization of Whole Urethras for Tissue Engineering Applications

    PubMed Central

    Simões, Irina N.; Vale, Paulo; Soker, Shay; Atala, Anthony; Keller, Daniel; Noiva, Rute; Carvalho, Sandra; Peleteiro, Conceição; Cabral, Joaquim M. S.; Eberli, Daniel; da Silva, Cláudia L.; Baptista, Pedro M.

    2017-01-01

    Patients with stress urinary incontinence mainly suffer from malfunction of the urethra closure mechanism. We established the decellularization of porcine urethras to produce acellular urethra bioscaffolds for future tissue engineering applications, using bioscaffolds or bioscaffold-derived soluble products. Cellular removal was evaluated by H&E, DAPI and DNA quantification. The presence of specific ECM proteins was assessed through immunofluorescence staining and colorimetric assay kits. Human skeletal muscle myoblasts, muscle progenitor cells and adipose-derived stromal vascular fractions were used to evaluate the recellularization of the acellular urethra bioscaffolds. The mechanochemical decellularization system removed ~93% of tissue’s DNA, generally preserving ECM’s components and microarchitecture. Recellularization was achieved, though methodological advances are required regarding cell seeding strategies and functional assessment. Through microdissection and partial digestion, different urethra ECM-derived coating substrates were formulated (i.e. containing smooth or skeletal muscle ECM) and used to culture MPCs in vitro. The skeletal muscle ECM substrates enhanced fiber formation leading to the expression of the main skeletal muscle-related proteins and genes, as confirmed by immunofluorescence and RT-qPCR. The described methodology produced a urethra bioscaffold that retained vital ECM proteins and was liable to cell repopulation, a crucial first step towards the generation of urethra bioscaffold-based Tissue Engineering products. PMID:28165009

  9. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study.

    PubMed

    Cheng, Hai-Ling Margaret; Loai, Yasir; Beaumont, Marine; Farhat, Walid A

    2010-08-01

    Bladder acellular matrices (ACMs) derived from natural tissue are gaining increasing attention for their role in tissue engineering and regeneration. Unlike conventional scaffolds based on biodegradable polymers or gels, ACMs possess native biomechanical and many acquired biologic properties. Efforts to optimize ACM-based scaffolds are ongoing and would be greatly assisted by a noninvasive means to characterize scaffold properties and monitor interaction with cells. MRI is well suited to this role, but research with MRI for scaffold characterization has been limited. This study presents initial results from quantitative MRI measurements for bladder ACM characterization and investigates the effects of incorporating hyaluronic acid, a natural biomaterial useful in tissue-engineering and regeneration. Measured MR relaxation times (T(1), T(2)) and diffusion coefficient were consistent with increased water uptake and glycosaminoglycan content observed on biochemistry in hyaluronic acid ACMs. Multicomponent MRI provided greater specificity, with diffusion data showing an acellular environment and T(2) components distinguishing the separate effects of increased glycosaminoglycans and hydration. These results suggest that quantitative MRI may provide useful information on matrix composition and structure, which is valuable in guiding further development using bladder ACMs for organ regeneration and in strategies involving the use of hyaluronic acid.

  10. Deficiency in acellular cementum and periodontal attachment in bsp null mice.

    PubMed

    Foster, B L; Soenjaya, Y; Nociti, F H; Holm, E; Zerfas, P M; Wimer, H F; Holdsworth, D W; Aubin, J E; Hunter, G K; Goldberg, H A; Somerman, M J

    2013-02-01

    Bone sialoprotein (BSP) is an extracellular matrix protein found in mineralized tissues of the skeleton and dentition. BSP is multifunctional, affecting cell attachment and signaling through an RGD integrin-binding region, and acting as a positive regulator for mineral precipitation by nucleating hydroxyapatite crystals. BSP is present in cementum, the hard tissue covering the tooth root that anchors periodontal ligament (PDL) attachment. To test our hypothesis that BSP plays an important role in cementogenesis, we analyzed tooth development in a Bsp null ((-/-)) mouse model. Developmental analysis by histology, histochemistry, and SEM revealed a significant reduction in acellular cementum formation on Bsp (-/-) mouse molar and incisor roots, and the cementum deposited appeared hypomineralized. Structural defects in cementum-PDL interfaces in Bsp (-/-) mice caused PDL detachment, likely contributing to the high incidence of incisor malocclusion. Loss of BSP caused progressively disorganized PDL and significantly increased epithelial down-growth with aging. Bsp (-/-) mice displayed extensive root and alveolar bone resorption, mediated by increased RANKL and the presence of osteoclasts. Results collected here suggest that BSP plays a non-redundant role in acellular cementum formation, likely involved in initiating mineralization on the root surface. Through its importance to cementum integrity, BSP is essential for periodontal function.

  11. Deficiency in Acellular Cementum and Periodontal Attachment in Bsp Null Mice

    PubMed Central

    Foster, B.L.; Soenjaya, Y.; Nociti, F.H.; Holm, E.; Zerfas, P.M.; Wimer, H.F.; Holdsworth, D.W.; Aubin, J.E.; Hunter, G.K.; Goldberg, H.A.; Somerman, M.J.

    2012-01-01

    Bone sialoprotein (BSP) is an extracellular matrix protein found in mineralized tissues of the skeleton and dentition. BSP is multifunctional, affecting cell attachment and signaling through an RGD integrin-binding region, and acting as a positive regulator for mineral precipitation by nucleating hydroxyapatite crystals. BSP is present in cementum, the hard tissue covering the tooth root that anchors periodontal ligament (PDL) attachment. To test our hypothesis that BSP plays an important role in cementogenesis, we analyzed tooth development in a Bsp null (-/-) mouse model. Developmental analysis by histology, histochemistry, and SEM revealed a significant reduction in acellular cementum formation on Bsp-/- mouse molar and incisor roots, and the cementum deposited appeared hypomineralized. Structural defects in cementum-PDL interfaces in Bsp-/- mice caused PDL detachment, likely contributing to the high incidence of incisor malocclusion. Loss of BSP caused progressively disorganized PDL and significantly increased epithelial down-growth with aging. Bsp-/- mice displayed extensive root and alveolar bone resorption, mediated by increased RANKL and the presence of osteoclasts. Results collected here suggest that BSP plays a non-redundant role in acellular cementum formation, likely involved in initiating mineralization on the root surface. Through its importance to cementum integrity, BSP is essential for periodontal function. PMID:23183644

  12. A simulation of a bluff-body stabilized turbulent premixed flame using LES-PDF

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Pope, Stephen

    2013-11-01

    A turbulent premixed flame stabilized by a triangular cylinder as a flame-holder is simulated. The computational condition matches the Volvo experiments (Sjunnesson et al. 1992). Propane is premixed at a fuel lean condition of ϕ = 0 . 65 . For this reactive simulation, LES-PDF formulation is used, similar to Yang et al. (2012). The evolution of Lagrangian particles is simulated by solving stochastic differential equations modeling transport of the composition PDF. Mixing is modeled by the modified IEM model (Viswanathan et al. 2011). Chemical reactions are calculated by ISAT and for the good load balancing, PURAN distribution of ISAT tables is applied (Hiremath et al. 2012). To calculate resolved density, the two-way coupling (Popov & Pope 2013) is applied, solving a transport equation of resolved specific volume to reduce statistical noise. A baseline calculation shows a good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. Chemical reaction does not significantly contribute to the overall computational cost, in contrast to non-premixed flame simulations (Hiremath et al. 2013), presumably due to the restricted manifold of the purely premixed flame in the composition space.

  13. Using integrated multi-body systems for dynamical-optical simulations

    NASA Astrophysics Data System (ADS)

    Störkle, Johannes; Eberhard, Peter

    2016-08-01

    In this work, the in uence of model order reduction methods on optical aberrations is analysed within an dynamical-optical simulation of a high precision optomechanical system. Therefore, an integrated modeling process and new methods have to be introduced for the computation and investigation of the dynamical-optical behaviour. For instance, this optical system can be a telescope optic or a lithographic objective. In order to derive a simplified mechanical model for transient time simulations with low computational cost, the method of elastic multibody systems in combination with model order reduction methods can be used. For this, software-tools and interfaces are utilized. Furthermore, mechanical and optical simulation models are derived and implemented. With these, on the one hand, the mechanical sensitivity can be investigated for arbitrary external excitations and on the other hand, the related optical behaviour can be predicted. In order to clarify these methods, academic examples are chosen and the influences of the model order reduction methods and simulation strategies are analysed. Finally, the systems are investigated with respect to the mechanical-optical frequency responses.

  14. Changes of body fluid and hematology in toad and their rehabilitation following intermittent exposure to simulated high altitude

    NASA Astrophysics Data System (ADS)

    Biswas, H. M.; Boral, M. C.

    1986-06-01

    Three groups of adult male toads were exposed intermittently in a decompression chamber for a daily period of 4 and 8 hours at a time for 6 consecutive days to an “altitude” of 12,000; 18,000 and 24,000 feet (3658; 5486; 7315 m) respectively. Most of the exposed animals were sacrificed immediately after the last exposure, but only a few animals experiencing 8 hours of exposure were sacrificed after a further 16 hours of exposure at normal atmospheric pressure. Eight hours of daily exposure for 6 days causes a decrease of body fluids and an increase of hematological parameters in all the altitude exposed animals compared with to the changes noted in the animals having 4 hours of daily exposure for 6 days at the same altitude levels. The animals that were exposed to pressures equivalent to altitudes of 12,000 and 18,000 feet daily for 8 hours were found to return nearly to their normal body fluids and hematological balance after 16 hours of exposure to normal atmospheric pressure, whereas the animals exposed for a similar period at an equivalent 24,000 feet failed to get back their normal balance of body fluids and hematology after 16 hours of exposure at normal atmospheric pressure. The present experiment shows that the body weight loss and changes of body fluid and hematological parameters in the toad after exposure to simulated high altitude are due not only to dehydration, but suggest that hypoxia may also have a role.

  15. N-BODY SIMULATIONS OF SATELLITE FORMATION AROUND GIANT PLANETS: ORIGIN OF ORBITAL CONFIGURATION OF THE GALILEAN MOONS

    SciTech Connect

    Ogihara, Masahiro; Ida, Shigeru E-mail: ida@geo.titech.ac.jp

    2012-07-01

    As the number of discovered extrasolar planets has been increasing, diversity of planetary systems requires studies of new formation scenarios. It is important to study satellite formation in circumplanetary disks, which is often viewed as analogous to formation of rocky planets in protoplanetary disks. We investigated satellite formation from satellitesimals around giant planets through N-body simulations that include gravitational interactions with a circumplanetary gas disk. Our main aim is to reproduce the observable properties of the Galilean satellites around Jupiter through numerical simulations, as previous N-body simulations have not explained the origin of the resonant configuration. We performed accretion simulations based on the work of Sasaki et al., in which an inner cavity is added to the model of Canup and Ward. We found that several satellites are formed and captured in mutual mean motion resonances outside the disk inner edge and are stable after rapid disk gas dissipation, which explains the characteristics of the Galilean satellites. In addition, owing to the existence of the disk edge, a radial compositional gradient of the Galilean satellites can also be reproduced. An additional objective of this study is to discuss orbital properties of formed satellites for a wide range of conditions by considering large uncertainties in model parameters. Through numerical experiments and semianalytical arguments, we determined that if the inner edge of a disk is introduced, a Galilean-like configuration in which several satellites are captured into a 2:1 resonance outside the disk inner cavity is almost universal. In fact, such a configuration is produced even for a massive disk {approx}> 10{sup 4} g cm{sup -2} and rapid type I migration. This result implies the inevitability of a Galilean satellite formation in addition to providing theoretical predictions for extrasolar satellites. That is, we can predict a substantial number of exomoon systems in the 2

  16. New VHP-Female v. 2.0 full-body computational phantom and its performance metrics using FEM simulator ANSYS HFSS.

    PubMed

    Yanamadala, Janakinadh; Noetscher, Gregory M; Rathi, Vishal K; Maliye, Saili; Win, Htay A; Tran, Anh L; Jackson, Xavier J; Htet, Aung T; Kozlov, Mikhail; Nazarian, Ara; Louie, Sara; Makarov, Sergey N

    2015-01-01

    Simulation of the electromagnetic response of the human body relies heavily upon efficient computational models or phantoms. The first objective of this paper is to present a new platform-independent full-body electromagnetic computational model (computational phantom), the Visible Human Project(®) (VHP)-Female v. 2.0 and to describe its distinct features. The second objective is to report phantom simulation performance metrics using the commercial FEM electromagnetic solver ANSYS HFSS.

  17. Evolution and statistics of non-sphericity of dark matter halos from cosmological N-body simulation

    NASA Astrophysics Data System (ADS)

    Suto, Daichi; Kitayama, Tetsu; Nishimichi, Takahiro; Sasaki, Shin; Suto, Yasushi

    2016-12-01

    We revisit the non-sphericity of cluster-mass-scale halos from cosmological N-body simulation on the basis of triaxial modeling. In order to understand the difference between the simulation results and the conventional ellipsoidal collapse model (EC), we first consider the evolution of individual simulated halos. The major difference between EC and the simulation becomes appreciable after the turnaround epoch. Moreover, it is sensitive to the individual evolution history of each halo. Despite such strong dependence on individual halos, the resulting non-sphericity of halos exhibits weak but robust mass dependence in a statistical fashion; massive halos are more spherical up to the turnaround, but gradually become less spherical by z = 0. This is clearly inconsistent with the EC prediction: massive halos are usually more spherical. In addition, at z = 0, inner regions of the simulated halos are less spherical than outer regions; that is, the density distribution inside the halos is highly inhomogeneous and therefore not self-similar (concentric ellipsoids with the same axis ratio and orientation). This is also inconsistent with the homogeneous density distribution that is commonly assumed in EC. Since most of previous fitting formulae for the probability distribution function (PDF) of the axis ratio of triaxial ellipsoids have been constructed under the self-similarity assumption, they are not accurate. Indeed, we compute the PDF of the projected axis ratio a1/a2 directly from the simulation data without the self-similarity assumption, and find that it is very sensitive to the assumption. The latter needs to be carefully taken into account in direct comparison with observations, and therefore we provide an empirical fitting formula for the PDF of a1/a2. Our preliminary analysis suggests that the derived PDF of a1/a2 roughly agrees with the current weak-lensing observations. More importantly, the present results will be useful for future exploration of the non

  18. A simulated insect diet as a water source for quail: effects on body mass and reproduction.

    PubMed

    Giuliano, W M; Lutz, R S; Patiño, R

    1995-06-01

    Compared with control birds receiving ad libitum free-water, the total water intake of male and female northern bobwhite declined when only mealworms were available as a source of water. Male northern bobwhite sustained tissue mass and reproductive function with mealworms as their only source of water. Female northern bobwhite could not sustain body, ovary, and oviduct mass, and rate of egg production with mealworms as their only source of water. We suggest that, without free-water, breeding females require a diet with a water:dry matter ratio of greater than 1:1.29 (> 44% water).

  19. Parallel, out-of-core methods for N-body simulation

    SciTech Connect

    Salmon, J.; Warren, M.S.

    1997-03-01

    Hierarchical treecodes have, to a large extent, converted the compute-bound N-body problem into a memory-bound problem. The large ratio of DRAM to disk pricing suggests use of out-of-core techniques to overcome memory capacity limitations. The authors describe a parallel, out-of-core treecode library, targeted at machines with independent secondary storage associated with each processor. Borrowing the space-filling curve techniques from the in-core library, and manually paging, resulting in excellent spatial and temporal locality and very good performance.

  20. Flight Measurements of Base Pressure on Bodies of Revolution with and Without Simulated Rocket Chambers

    NASA Technical Reports Server (NTRS)

    Peck, Robert F

    1955-01-01

    Base pressures were measured on fin-stabilized bodies of revolution with and without rocket chambers and with and without a converging afterbody. At Mach numbers between 0.7 and 1.2, the results show that the presence of a "cold" rocket chamber increased the pressure (less suction) over the center portion of the bases. The effects of rocket chambers on pressures near the edge of the bases were not as consistent throughout the Mach number range nor as appreciable at most speeds as were the effects of pressures measured on the center line.

  1. Quantitative analysis of voids in percolating structures in two-dimensional N-body simulations

    NASA Technical Reports Server (NTRS)

    Harrington, Patrick M.; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    We present in this paper a quantitative method for defining void size in large-scale structure based on percolation threshold density. Beginning with two-dimensional gravitational clustering simulations smoothed to the threshold of nonlinearity, we perform percolation analysis to determine the large scale structure. The resulting objective definition of voids has a natural scaling property, is topologically interesting, and can be applied immediately to redshift surveys.

  2. Cross-sectional neck response of a total human body FE model during simulated frontal and side automobile impacts.

    PubMed

    White, Nicholas A; Moreno, Daniel P; Gayzik, F Scott; Stitzel, Joel D

    2015-01-01

    Human body finite element (FE) models are beginning to play a more prevalent role in the advancement of automotive safety. A methodology has been developed to evaluate neck response at multiple levels in a human body FE model during simulated automotive impacts. Three different impact scenarios were simulated: a frontal impact of a belted driver with airbag deployment, a frontal impact of a belted passenger without airbag deployment and an unbelted side impact sled test. Cross sections were created at each vertebral level of the cervical spine to calculate the force and moment contributions of different anatomical components of the neck. Adjacent level axial force ratios varied between 0.74 and 1.11 and adjacent level bending moment ratios between 0.55 and 1.15. The present technique is ideal for comparing neck forces and moments to existing injury threshold values, calculating injury criteria and for better understanding the biomechanical mechanisms of neck injury and load sharing during sub-injurious and injurious loading.

  3. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid part 1. Sedimentation

    NASA Astrophysics Data System (ADS)

    Feng, J.; Hu, H. H.; Joseph, D. D.

    1994-02-01

    This paper reports the result of direct simulations of fluid-particle motions in two dimensions. We solve the initial value problem for the sedimentation of circular and elliptical particles in a vertical channel. The fluid motion is computed from the Navier-Stokes equations for moderate Reynolds numbers in the hundreds. The particles are moved according to the equations of motion of a rigid body under the action of gravity and hydrodynamic forces arising from the motion of the fluid. The solutions are as exact as our finite-element calculations will allow. As the Reynolds number is increased to 600, a circular particle can be said to experience five different regimes of motion: steady motion with and without overshoot and weak, strong and irregular oscillations. An elliptic particle always turn its long axis perpendicular to the fall, and drifts to the centreline of the channel during sedimentation. Steady drift, damped oscillation and periodic oscillation of the particle are observed for different ranges of the Reynolds number. For two particles which interact while settling, a steady staggered structure, a periodic wake-action regime and an active drafting-kissing-tumbling scenario are realized at increasing Reynolds numbers. The nonlinear effects of particle-fluid, particle-wall and interparticle interactions are analyzed, and the mechanisms controlling the simulated flows are shown to be lubrication, turning couples on long bodies, steady and unsteady wakes and wake interactions. The results are compared to experimental and theoretical results previously published.

  4. Synthesis of sol-gel derived glass powder and in vitro bioactivity property tested in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Fadzli, S. A. Syed Nuzul; Roslinda, S.; Zainuddin, Firuz; Ismail, Hamisah

    2016-11-01

    The objective of this study is to determine the apatite forming ability of sol-gel derived glass based on chemical composition 50%(SiO2)-40%(CaO)-10%(PO4) by examine the reacted sample surface after soaking in simulated body fluid (SBF). The glass was synthesized via an acid catalyzed low temperature sol-gel route, dried, crushed and uniaxial pressed into pellets before finally heated at 600°C to maintain the amorphous nature and to obtain stabilized glass pellets. The bioactivity test of the glass was carried out in vitro by soaking the pellets into simulated body fluid (SBF) for various times up to 14 days. It was revealed that apatite-like structures were rapidly formed on the surface of the glass showed by the glass surface was totally covered with these crystallized apatite within the first 24 hours of immersion. The formation of crystallized carbonated apatite (HCA) was proved within the first 24 hours of immersion via XRD, FTIR and FE-SEM analysis method. Increased in immersion time period to 14 days was significantly effects in enlargement of the apatite particle sizes and transformation these apatite into a typical coral-like apatite structures.

  5. Degradation of Ti-6Al-4V alloy under cyclic loading in a simulated body environment with cell culturing.

    PubMed

    Doi, Kotaro; Miyabe, Sayaka; Tsuchiya, Hiroaki; Fujimoto, Shinji

    2016-03-01

    The present study reports the corrosion fatigue of the Ti-6Al-4V alloy using cyclic deformation test in a simulated body fluid under cell culturing for the first time. Cyclic deformation tests were carried out using three types of specimens to reveal the effects of proteins and cells on the corrosion fatigue of the alloy. For the 1-day-immersed and 1-week-immersed specimens, tensile specimens were soaked in a simulated body fluid for 1 day and 1 week, respectively, before cyclic deformation test, whereas for the cell-cultured specimen, MC3T3-E1 osteoblast-like cells were seeded and then cultured on tensile specimens for 1 week. The incubation period for crack initiation was longer for the cell-cultured and 1-week-immersed specimens compared to that for the 1-day-immersed specimen. On the other hand, crack propagation period for the cell-cultured and 1-week-immersed specimens was shorter than that for the 1-day-immersed specimen. These results indicate that proteins and cells adhered on the alloy surface inhibit metal dissolution at newly created surface emerged by cyclic deformation to suppress crack initiation, whereas they accelerate crack propagation because dissolution at crack tip is accelerated in the occluded space formed under proteins and cells.

  6. Drag reduction of boat-tailed bluff bodies through transverse grooves. Part II: large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Salvetti, Maria Vittoria; Mariotti, Alessandro; Buresti, Guido

    2016-11-01

    The present work focuses on strategies for aerodynamic drag reduction of elongated axisymmetric bluff bodies, which can be viewed as simplified models of a road vehicles. We combine boat-tailing, i.e. a gradual reduction of the body cross-section before a sharp-edged base, with properly contoured transverse grooves. The effectiveness of this strategy was assessed through experiments and simulations. Experiments showed that the introduction of a single groove leads to a further delay of boundary-layer separation and to a reduction of drag compared with the boat-tail configuration without grooves. In this talk, we present Large-Eddy Simulations (LES). LES results agree with the experimental findings. The success of the proposed flow control strategy is due to the relaxation of the no-slip condition in the small recirculation region inside the groove, which reduces the momentum losses near the wall and thus delays boundary layer separation. The effects of the introduction of the groove on the mean topology and on the dynamics of the near wake are also highlighted. Finally, a sensitivity analysis of the proposed control strategy efficiency to the groove location and to the boat-tail geometry is shown.

  7. RANS Simulations of Rocket Rig Experiments: Capturing the Effects of the Rayleigh- Taylor Instability Subject to a Changing Body Force

    NASA Astrophysics Data System (ADS)

    Bertsch, Rebecca; Gore, Robert

    2015-11-01

    Modeling turbulent mixing in variable density (VD) fluid flows is a key topic of interest in multi-physics applications due to the complex instability characteristics they exhibit. RANS models continue to be accurate and efficient tools to investigate the evolution of turbulence in these complex flow problems. Many RANS models are well validated for prototypical variable density flows such as Rayleigh-Taylor (RT) and Richtmeyer-Meshkov (RM). However, most lack the ability to accurately capture mix features in VD flows with changing body forces, like those seen in rocket rig experiments that undergo phases of acceleration and deceleration. This talk will present some simulations of an improved RANS model which substitutes the molecular diffusion term in the species equation with a demix term that is dependent on the turbulent mass flux and species micro-densities. Results from these simulations will be compared with previous RANS models, DNS, and experimental data to validate the new model's ability to capture the mixing physics in RT flow subject to a changing body force.

  8. Bio-Templated Growth of Bone Minerals from Modified Simulated Body Fluid on Nanofibrous Decellularized Natural Tissues

    PubMed Central

    Yang, Mingying; Wang, Jie; Zhu, Ye; Mao, Chuanbin

    2016-01-01

    Small intestine submucosal (SIS) membrane used in this study is a decellularized, naturally occurring nanofibrous scaffold derived from a submucosal layer of porcine small intestine. It is predominantly composed of type I collagen fibers. Here we studied the bio-templated growth of hydroxylapatite (HAP) bone minerals on the SIS membrane from a modified simulated body fluid (1.5 SBF) at the body temperature, namely, under a near-physiological condition, in order to evaluate its bone bioactivity, the capability of the membrane in bonding with bone tissue once implanted in vivo. Minute HAP crystals were successfully nucleated on the SIS membranes from 1.5 SBF at the body temperature. The crystals were preferentially nucleated along the collagen fibers constituting the SIS membranes. HAP was the major crystalline mineral phase formed during the whole period of time and a minor crystalline phase of tricalcium phosphate (TCP) appeared after the membranes were incubated for 96 h. We also found that the mineralization for 8 h most significantly promoted the osteogenic differentiation of rat mesenchymal stem cells (MSCs) by evaluating the formation of osteogenic markers in MSCs including alkaline phosphatase (early stage marker) as well as osteocalcin and osteopontin (late stage markers). Hence, SIS membranes show excellent bone bioactivity and once mineralized, can significantly promote the osteogenic differentiation of MSCs. PMID:27301201

  9. Using electron beam radiation to simulate the dose distribution for whole body solar particle event proton exposure

    PubMed Central

    Diffenderfer, Eric S.; Avery, Stephen; Kennedy, Ann R.; McDonough, James

    2013-01-01

    As a part of the near solar system exploration program, astronauts may receive significant total body proton radiation exposures during a solar particle event (SPE). In the Center for Acute Radiation Research (CARR), symptoms of the acute radiation sickness syndrome induced by conventional radiation are being compared to those induced by SPE-like proton radiation, to determine the relative biological effectiveness (RBE) of SPE protons. In an SPE, the astronaut’s whole body will be exposed to radiation consisting mainly of protons with energies below 50 MeV. In addition to providing for a potentially higher RBE than conventional radiation, the energy distribution for an SPE will produce a relatively inhomogeneous total body dose distribution, with a significantly higher dose delivered to the skin and subcutaneous tissues than to the internal organs. These factors make it difficult to use a 60Co standard for RBE comparisons in our experiments. Here, the novel concept of using megavoltage electron beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation is described. In these studies, Monte Carlo simulation was used to determine the dose distribution of electron beam radiation in small mammals such as mice and ferrets as well as large mammals such as pigs. These studies will help to better define the topography of the time-dose-fractionation versus biological response landscape for astronaut exposure to an SPE. PMID:20725839

  10. Using electron beam radiation to simulate the dose distribution for whole body solar particle event proton exposure.

    PubMed

    Cengel, Keith A; Diffenderfer, Eric S; Avery, Stephen; Kennedy, Ann R; McDonough, James

    2010-11-01

    As a part of the near solar system exploration program, astronauts may receive significant total body proton radiation exposures during a solar particle event (SPE). In the Center for Acute Radiation Research (CARR), symptoms of the acute radiation sickness syndrome induced by conventional radiation are being compared to those induced by SPE-like proton radiation, to determine the relative biological effectiveness (RBE) of SPE protons. In an SPE, the astronaut's whole body will be exposed to radiation consisting mainly of protons with energies below 50 MeV. In addition to providing for a potentially higher RBE than conventional radiation, the energy distribution for an SPE will produce a relatively inhomogeneous total body dose distribution, with a significantly higher dose delivered to the skin and subcutaneous tissues than to the internal organs. These factors make it difficult to use a (60)Co standard for RBE comparisons in our experiments. Here, the novel concept of using megavoltage electron beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation is described. In these studies, Monte Carlo simulation was used to determine the dose distribution of electron beam radiation in small mammals such as mice and ferrets as well as large mammals such as pigs. These studies will help to better define the topography of the time-dose-fractionation versus biological response landscape for astronaut exposure to an SPE.

  11. The populations of the trans-Neptunian small bodies from the simulation of the Oort-cloud formation

    NASA Astrophysics Data System (ADS)

    Jakubík, M.; Leto, G.; Neslušan, L.

    2010-10-01

    Considering the model of the initial disc of planetesimals consisting of 14799 test particles, we simulated the formation of the populations of small bodies in the outer region of the solar system for an initial 2-Gyr period. We aimed to provide a common reference model of the formation of all inner and outer parts of the Oort cloud. In this paper, we deal with a picture of the trans-Neptunian-belt populations which can be outlined within our simple model. The dynamical evolution of massless test particles is followed via numerical integration of their orbits. We consider perturbations by four giant planets in their current orbits and with their current masses, as well as perturbations by the Galactic tide and passing stars. Our simulation qualitatively reproduces almost all structural features observed in the trans-Neptunian region. Unfortunately, there are a lot of quantitative discrepancies between our model and observed reality implying the main conclusion that the assumption of a dynamically very cold initial proto-planetary disc (with eccentricity ˜0.01 and inclination ˜0.01 rad), which extends beyond the heliocentric distance of about 34 AU, is inconsistent with the observed structure of trans-Neptunian population of small bodies. A big discrepancy is the survival of an almost untouched initial model population beyond ˜ 34 AU which is not observed. Two following positive observed details of the TN-population structure can, perhaps, be explained with the help of our simple model. Concerning the first, we showed that the outer border of the range of Neptune's perturbation on the dynamically cold orbits is identical with the outer border of 2:1 mean-motion resonance with this planet, where a sharp decrease of the number density of bodies belonging to the classical Edgeworth-Kuiper belt is observed. Most probably, this decrease is related to Neptune's ability to significantly influence the motion of small bodies, if we assume that these bodies formed closer

  12. Coloring linens with excimer lasers to simulate the body image of the Turin Shroud

    NASA Astrophysics Data System (ADS)

    Baldacchini, Giuseppe; di Lazzaro, Paolo; Murra, Daniele; Fanti, Giulio

    2008-03-01

    The body image of the Turin Shroud has not yet been explained by traditional science; so a great interest in a possible mechanism of image formation still exists. We present preliminary results of excimer laser irradiation (wavelength of 308 nm) of a raw linen fabric and of a linen cloth. The permanent coloration of both linens is a threshold effect of the laser beam intensity, and it can be achieved only in a narrow range of irradiation parameters, which are strongly dependent on the pulse width and time sequence of laser shots. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after laser irradiation that at first did not generate a clear image. The results are compared with the characteristics of the Turin Shroud, reflecting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image.

  13. Navier-Stokes simulation of rotor-body flowfield in hover using overset grids

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Ahmad, J. U.

    1993-01-01

    A free-wake Navier-Stokes numerical scheme and multiple Chimera overset grids have been utilized for calculating the quasi-steady hovering flowfield of a Boeing-360 rotor mounted on an axisymmetric whirl-tower. The entire geometry of this rotor-body configuration is gridded-up with eleven different overset grids. The composite grid has 1.3 million grid points for the entire flow domain. The numerical results, obtained using coarse grids and a rigid rotor assumption, show a thrust value that is within 5% of the experimental value at a flow condition of M(sub tip) = 0.63, Theta(sub c) = 8 deg, and Re = 2.5 x 10(exp 6). The numerical method thus demonstrates the feasibility of using a multi-block scheme for calculating the flowfields of complex configurations consisting of rotating and non-rotating components.

  14. Many-body localization in a quantum simulator with programmable random disorder

    NASA Astrophysics Data System (ADS)

    Smith, J.; Lee, A.; Richerme, P.; Neyenhuis, B.; Hess, P. W.; Hauke, P.; Heyl, M.; Huse, D. A.; Monroe, C.

    2016-10-01

    When a system thermalizes it loses all memory of its initial conditions. Even within a closed quantum system, subsystems usually thermalize using the rest of the system as a heat bath. Exceptions to quantum thermalization have been observed, but typically require inherent symmetries or noninteracting particles in the presence of static disorder. However, for strong interactions and high excitation energy there are cases, known as many-body localization (MBL), where disordered quantum systems can fail to thermalize. We experimentally generate MBL states by applying an Ising Hamiltonian with long-range interactions and programmable random disorder to ten spins initialized far from equilibrium. Using experimental and numerical methods we observe the essential signatures of MBL: initial-state memory retention, Poissonian distributed energy level spacings, and evidence of long-time entanglement growth. Our platform can be scaled to more spins, where a detailed modelling of MBL becomes impossible.

  15. Keeping it real: revisiting a real-space approach to running ensembles of cosmological N-body simulations

    NASA Astrophysics Data System (ADS)

    Orban, Chris

    2013-05-01

    In setting up initial conditions for ensembles of cosmological N-body simulations there are, fundamentally, two choices: either maximizing the correspondence of the initial density field to the assumed fourier-space clustering or, instead, matching to real-space statistics and allowing the DC mode (i.e. overdensity) to vary from box to box as it would in the real universe. As a stringent test of both approaches, I perform ensembles of simulations using power law and a ``powerlaw times a bump'' model inspired by baryon acoustic oscillations (BAO), exploiting the self-similarity of these initial conditions to quantify the accuracy of the matter-matter two-point correlation results. The real-space method, which was originally proposed by Pen 1997 [1] and implemented by Sirko 2005 [2], performed well in producing the expected self-similar behavior and corroborated the non-linear evolution of the BAO feature observed in conventional simulations, even in the strongly-clustered regime (σ8gtrsim1). In revisiting the real-space method championed by [2], it was also noticed that this earlier study overlooked an important integral constraint correction to the correlation function in results from the conventional approach that can be important in ΛCDM simulations with Lboxlesssim1 h-1Gpc and on scales rgtrsimLbox/10. Rectifying this issue shows that the fourier space and real space methods are about equally accurate and efficient for modeling the evolution and growth of the correlation function, contrary to previous claims. An appendix provides a useful independent-of-epoch analytic formula for estimating the importance of the integral constraint bias on correlation function measurements in ΛCDM simulations.

  16. Corrosion resistance of porous NiTi biomedical alloy in simulated body fluids

    NASA Astrophysics Data System (ADS)

    Stergioudi, F.; Vogiatzis, C. A.; Pavlidou, E.; Skolianos, S.; Michailidis, N.

    2016-09-01

    The corrosion performance of two porous NiTi in physiological and Hank’s solutions was investigated by potentiodynamic polarization, cyclic polarization and impedance spectroscopy. Electric models simulating the corrosion mechanism at early stages of immersion were proposed, accounting for both microstructural observations and electrochemical results. Results indicate that both porous samples were susceptible to localized corrosion. The porosity increase (from 7% to 18%) resulted in larger and wider pore openings, thus favoring the corrosion resistance of 18% porous NiTi. Strengthening of corrosion resistance was observed in Hank’s solution. The pore morphology and micro-galvanic corrosion phenomena were determining factors affecting the corrosion resistance.

  17. Fast Monte Carlo simulation for total body irradiation using a (60)Co teletherapy unit.

    PubMed

    Liu, Xiaodong; Lack, Danielle; Rakowski, Joseph T; Knill, Cory; Snyder, Michael

    2013-05-06

    Our institution delivers TBI using a modified Theratron 780 60Co unit. Due to limitations of our treatment planning system in calculating dose for this treatment, we have developed a fast Monte Carlo code to calculate dose distributions within the patient. The algorithm is written in C and uses voxel density information from CT images to calculate dose in heterogeneous media. To test the algorithm, film-based dose measurements were made separately in a simple water phantom with a high-density insert and a RANDO phantom and then compared to doses calculated by the Monte Carlo algorithm. In addition, a separate simulation in GEANT4 was run for the RANDO phantom and compared to both film and the in-house simulation. All results were analyzed using RIT113 film analysis software. Simulations in the water phantom accurately predict the depth of maximum dose in the phantom at 0.5 cm. The measured PDD along the central axis of the beam closely matches the PDD generated from the Monte Carlo code, deviating on average by only 3% along the depth of the water phantom. Dose measured at planes inside the high-density insert had a mean difference of 4.9% on cross-profile measurement. In the RANDO phantom, gamma pass rates vary between 91% and 99% at 3 mm, 3%, and were >99% at 5 mm, 5% for the four film planes measured. Profiles taken across the film and both simulations resulted in mean relative differences of < 2% for all profiles in each slice measured. The Monte Carlo algorithm presented here is potentially a viable method for calculating dose distributions delivered in TBI treatments at our center. While not yet refined enough to be the primary method of treatment planning, the algorithm at its current resolution determines the dose distribution for one patient within a few hours, and provides clinically useful information in planning TBI. With appropriate optimization, the Monte Carlo method presented here could potentially be implemented as a first-line treatment planning

  18. Model-Form Uncertainty Quantification in RANS Simulation of Wing-Body Junction Flow

    NASA Astrophysics Data System (ADS)

    Wu, Jinlong; Wang, Jianxun; Xiao, Heng

    2015-11-01

    Junction flow, known as one of the remaining challenges for computational aerodynamics, occurs when a boundary layer encounters an obstacle mounted on the surface. Previous studies have shown that the RANS models are not capable to provide satisfactory prediction. In this work, a novel open-box, physics-informed Bayesian framework is used to quantify the model-form uncertainties in RANS simulation of junction flow. The first objective is to correct the bias in RANS prediction, by utilizing several observation data. The second one is to quantify the model-form uncertainties, which can enable risk-informed decision-making. To begin with a standard RANS simulation, which is performed on a 3:2 elliptic nose and NACA0020 tail cylinder, uncertainties with empirical prior knowledge and physical constraints are directly injected into the Reynolds stresses term, and the unbiased knowledge from observation data is incorporated by an iterative ensemble Kalman method. Current results show that the bias in the quantities of interest (QoIs) of the RANS prediction, e.g., mean velocity, turbulent kinetic energy, etc, can be significantly corrected by this novel Bayesian framework. The probability density distributions of QoIs show that the model-form uncertainty can be quantified as well.

  19. Hovering and targeting flight simulations of a dragonfly-like flapping wing-body model by IB-LBM

    NASA Astrophysics Data System (ADS)

    Inamuro, Takaji; Hirohashi, Kensuke

    2016-11-01

    Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method (IB-LBM). The governing parameters of the problem are the Reynolds number Re , the Froude number Fr , and the non-dimensional mass m. We set the parameters at Re = 200 , Fr = 15 , and m = 51 . First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ, and the horizontal motion of the model depends on the stroke angle β. Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β. The hovering flight can be successfully simulated by a simple proportional controlleres of the phase difference angle and the stroke angle. Finally, we simualte targeting flight by dynamically changing the stroke angle β. The authors acknowledge the HPCI System Research Project (hp140025 and hp150087) and the Grants-in-Aid Scientific Research (No. 26420108) from JSPS.

  20. Theoretical study on the body form and swimming pattern of Anomalocaris based on hydrodynamic simulation.

    PubMed

    Usami, Yoshiyuki

    2006-01-07

    Anomalocarid arthropod is the largest known predatory animal of middle Cambrian. Studies on Anomalocaris have been piled up in the past two decades since the first reasonable reconstruction had achieved in 1980s. Recent finding of legs beneath lobes on Parapeytoia Yunnanensis shows arthropod affinities, however, many researchers believe that it must be a powerful swimmer by the use of developed lobes. In this work, we investigate swimming behaviour of Anomalocaris in water by performing hydrodynamical calculation. As a result of simulation using moving particle method possible swimming motion of Anomalocaris is obtained. In the computer we can change the morphology from known bauplan of Anomalocaris found as fossil record. It makes us possible to discuss on the variants of Anomalocaris at the intermediate state of evolution process. Such new methodology using computer reveals how and from where Anomalocaris evolved.

  1. Modelling the dynamics of a hypothetical Planet X by way of gravitational N-body simulator

    NASA Astrophysics Data System (ADS)

    Cowley, Michael; Hughes, Stephen

    2017-03-01

    This paper describes a novel activity to model the dynamics of a Jupiter-mass, trans-Neptunian planet of a highly eccentric orbit. Despite a history rooted in modern astronomy, ‘Planet X’, a hypothesised hidden planet lurking in our outer Solar System, has often been touted by conspiracy theorists as the cause of past mass extinction events on Earth, as well as other modern-day doomsday scenarios. Frequently dismissed as pseudoscience by astronomers, these stories continue to draw the attention of the public by provoking mass media coverage. Targeted at junior undergraduate levels, this activity allows students to debunk some of the myths surrounding Planet X by using simulation software to demonstrate that such a large-mass planet with extreme eccentricity would be unable to enter our Solar System unnoticed, let alone maintain a stable orbit.

  2. Fabrication of nanotube arrays on commercially pure titanium and their apatite-forming ability in a simulated body fluid

    SciTech Connect

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Chang, Yu-Chen; Ho, Wen-Fu

    2015-02-15

    In this study, we investigated self-organized TiO{sub 2} nanotubes that were grown using anodization of commercially pure titanium at 5 V or 10 V in NH{sub 4}F/NaCl electrolyte. The nanotube arrays were annealed at 450 °C for 3 h to convert the amorphous nanotubes to anatase and then they were immersed in simulated body fluid at 37 °C for 0.5, 1, and 14 days. The purpose of this experiment was to evaluate the apatite-formation abilities of anodized Ti nanotubes with different tube diameters and lengths. The nanotubes that formed on the surfaces of Ti were examined using a field emission scanning electron microscope, X-ray diffraction, and X-ray photoelectron spectroscope. When the anodizing potential was increased from 5 V to 10 V, the pore diameter of the nanotube increased from approximately 24–30 nm to 35–53 nm, and the tube length increased from approximately 590 nm to 730 nm. In vitro testing of the heat-treated nanotube arrays indicated that Ca-P formation occurred after only 1 day of immersion in simulated body fluid. This result was particularly apparent in the samples that were anodized at 10 V. It was also found that the thickness of the Ca-P layer increases as the applied potential for anodized c.p. Ti increases. The average thickness of the Ca-P layer on Ti that was anodized at 5 V and 10 V was approximately 170 nm and 190 nm, respectively, after immersion in simulated body fluid for 14 days. - Highlights: • TiO{sub 2} nanotube on Ti surface was formed by anodic oxidation in a NaCl/NH{sub 4}F solution. • TiO{sub 2} layers show a tube length of 590 nm and 730 nm at 5 V and 10 V, respectively. • After soaking in SBF, Ca-P layer completely covered the entire nanotubular surfaces. • The Ca-P layer was thicker on the Ti surface anodized at 10 V.

  3. Testing lowered isothermal models with direct N-body simulations of globular clusters

    NASA Astrophysics Data System (ADS)

    Zocchi, Alice; Gieles, Mark; Hénault-Brunet, Vincent; Varri, Anna Lisa

    2016-10-01

    Several self-consistent models have been proposed, aiming at describing the phase-space distribution of stars in globular clusters. This study explores the ability of the recently proposed LIMEPY models to reproduce the dynamical properties of direct N-body models of a cluster in a tidal field, during its entire evolution. These dynamical models include prescriptions for the truncation and the degree of radially biased anisotropy contained in the system, allowing us to explore the interplay between the role of anisotropy and tides in various stages of the life of star clusters. We show that the amount of anisotropy in an initially tidally underfilling cluster increases in the pre-collapse phase, and then decreases with time, due to the effect of the external tidal field on its spatial truncation. This is reflected in the correspondent model parameters, and the best-fitting models reproduce the main properties of the cluster at all stages of its evolution, except for the phases immediately preceding and following core collapse. We also notice that the best-fitting LIMEPY models are significantly different from isotropic King models, especially in the first part of the evolution of the cluster. Our results put limits on the amount of radial anisotropy that can be expected for clusters evolving in a tidal field, which is important to understand other factors that could give rise to similar observational signatures, such as the presence of an intermediate-mass black hole.

  4. RANS simulations of variable density flows subject to a changing body forces and shocks

    NASA Astrophysics Data System (ADS)

    Bertsch, Rebecca; Gore, Robert

    2016-11-01

    Modeling turbulent mixing in variable density (VD) fluid flows is a key topic of interest in multi-physics applications due to the complex instability characteristics they exhibit. DNS and LES are ideal for studying these types of flows but are computationally expensive. RANS models have developed into accurate and efficient tools to investigate the evolution of turbulence in these complex flow problems and are well validated for prototypical variable density flows such as Rayleigh-Taylor and Richtmyer-Meshkov. However, most lack the ability to accurately capture mix features in VD flows subject to shocks and changing body forces. This talk will present results from a modified RANS model, which substitutes the molecular diffusion term in the species equation with a counter-gradient transport term that is dependent on the turbulent mass flux and species micro-densities. This modification better captures the mix physics across a range of Atwood numbers. Results from the new model will be presented for RM and RT and compared with DNS and experimental data.

  5. Supine exercise during lower body negative pressure effectively simulates upright exercise in normal gravity

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Watenpaugh, D. E.; Ballard, R. E.; Hargens, A. R.

    1994-01-01

    Exercise within a lower body negative pressure (LBNP) chamber in supine posture was compared with similar exercise against Earth's gravity (without LBNP) in upright posture in nine healthy male volunteers. We measured footward force with a force plate, pressure in soleus and tibialis anterior muscles of the leg with transducer-tipped catheters, calf volume by strain gauge plethysmography, heart rate, and systolic and diastolic blood pressures during two conditions: 1) exercise in supine posture within an LBNP chamber during 100-mmHg LBNP (exercise-LBNP) and 2) exercise in upright posture against Earth's gravity without LBNP (exercise-1 G). Subjects exercised their ankle joints (dorsi- and plantarflexions) for 5 min during exercise-LBNP and for 5 min during exercise-1 G. Mean footward force produced during exercise-LBNP (743 +/- 37 N) was similar to that produced during exercise-1 G (701 +/- 24 N). Peak contraction pressure in the antigravity soleus muscle during exercise-LBNP (115 +/- 10 mmHg) was also similar to that during exercise-1 G (103 +/- 13 mmHg). Calf volume increased significantly by 3.3 +/- 0.5% during exercise-LBNP compared with baseline values. Calf volume did not increase significantly during exercise-1 G. Heart rate was significantly higher during exercise-LBNP (99 +/- 5 beats/min) than during exercise-1 G (81 +/- 3 beats/min). These results indicate that exercise in supine posture within an LBNP chamber can produce similar musculoskeletal stress in the legs and greater systemic cardiovascular stress than exercise in the upright posture against Earth's gravity.

  6. A Modified Parallel Tree Code for N-Body Simulation of the Large-Scale Structure of the Universe

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Antonuccio-Delogu, V.; Gambera, M.

    2000-09-01

    N-body codes for performing simulations of the origin and evolution of the large-scale structure of the universe have improved significantly over the past decade in terms of both the resolution achieved and the reduction of the CPU time. However, state-of-the-art N-body codes hardly allow one to deal with particle numbers larger than a few 107, even on the largest parallel systems. In order to allow simulations with larger resolution, we have first reconsidered the grouping strategy as described in J. Barnes (1990, J. Comput. Phys. 87, 161) (hereafter B90) and applied it with some modifications to our WDSH-PT (Work and Data SHaring-Parallel Tree) code (U. Becciani et al., 1996, Comput. Phys. Comm. 99, 1). In the first part of this paper we will give a short description of the code adopting the algorithm of J. E. Barnes and P. Hut (1986, Nature 324, 446) and in particular the memory and work distribution strategy applied to describe the data distribution on a CC-NUMA machine like the CRAY-T3E system. In very large simulations (typically N>=107), due to network contention and the formation of clusters of galaxies, an uneven load easily verifies. To remedy this, we have devised an automatic work redistribution mechanism which provided a good dynamic load balance without adding significant overhead. In the second part of the paper we describe the modification to the Barnes grouping strategy we have devised to improve the performance of the WDSH-PT code. We will use the property that nearby particles have similar interaction lists. This idea has been checked in B90, where an interaction list is built which applies everywhere within a cell Cgroup containing a small number of particles Ncrit. B90 reuses this interaction list for each particle p∈Cgroup in the cell in turn. We will assume each particle p to have the same interaction list. We consider that the agent force Fp on a particle p can be decomposed into two terms Fp=Ffar+Fnear. The first term Ffar is the same for

  7. Gravity related behavior of the acellular slime mold Physarum polycephalum (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Block, I.

    1992-01-01

    The objective of the experiment is to investigate the effect of near weightlessness on a single cell. The test object is the acellular slime mold Physarum polycephalum. This cell is composed of a network of protoplastic strands which perform rhythmic contractions in the minute range. These contractions of the strands' ectoplastic walls generate the force to drive the vigorous shuttle streaming of fluid protoplasm inside the strands (hydrostatic pressure flow). A net transport of protoplasm in one direction determines the direction of the cell's locomotion itself. In this way, gravity modifies the contraction rhythm of the strands, the streaming velocity of protoplasm in the strands, and the direction of locomotion of the whole slime mold (geotaxis). The other parts of this experiment will address the major question of how this cell, which does not possess any specialized gravireceptors, gets the information about the direction of the gravity vector. Details of the experimental setup are given.

  8. Corrosion of anodic TiO coatings on Ti-6Al-4V in simulated body fluid.

    PubMed

    Narayanan, R; Seshadri, S K; Kwon, Tae-Yub; Kim, Kyo-Han

    2008-08-01

    Anodic TiO coatings were produced on Ti-6Al-4V substrates using aqueous electrolytes containing dissolved calcium and phosphorus. Two baths containing Ca and P compounds, in the molar ratios 5 and 15 were used. Different coatings were produced by electrolysis for 3 and 10 h at a constant current density of 10 mA/cm(2). X-ray diffraction and X-ray fluorescence were used to identify the phases and chemical composition respectively. Thickness of the coatings was measured using ellipsometry. Electrochemical polarization and AC impedance studies were performed on the coatings by exposing them to simulated body fluid (SBF) for a period of 1 week. The coating produced by 10-h electrolysis from bath of Ca/P ratio 15 showed low corrosion current and high impedance to the week-long attack of SBF.

  9. Evaluation of an Anthropometric Human Body Model for Simulated EVA Task Assessment

    NASA Technical Reports Server (NTRS)

    Etter, Brad

    1996-01-01

    One of the more mission-critical tasks performed in space is extravehicular activity (EVA) which requires the astronaut to be external to the station or spacecraft, and subsequently at risk from the many threats posed by space. These threats include, but are not limited to: no significant atmosphere, harmful electromagnetic radiation, micrometeoroids, and space debris. To protect the astronaut from this environment, a special EVA suit is worn which is designed to maintain a sustainable atmosphere (at 1/3 atmosphere) and provide protection against the hazards of space. While the EVA suit serves these functions well, it does impose limitations on the astronaut as a consequence of the safety it provides. Since the astronaut is in a virtual vacuum, any atmospheric pressure inside the suit serves to pressurize the suit and restricts mobility of flexible joints (such as fabric). Although some of the EVA suit joints are fixed, rotary-style joints, most of the mobility is achieved by the simple flexibility of the fabric. There are multiple layers of fabric, each of which serves a special purpose in the safety of the astronaut. These multiple layers add to the restriction of motion the astronaut experiences in the space environment. Ground-based testing is implemented to evaluate the capability of EVA-suited astronauts to perform the various tasks in space. In addition to the restriction of motion imposed by the EVA suit, most EVA activity is performed in a micro-gravity (weight less) environment. To simulate weightlessness EVA-suited testing is performed in a neutral buoyancy simulator (NBS). The NBS is composed of a large container of water (pool) in which a weightless environment can be simulated. A subject is normally buoyant in the pressurized suit; however he/she can be made neutrally buoyant with the addition of weights. In addition, most objects the astronaut must interface with in the NBS sink in water and flotation must be added to render them "weightless". The

  10. Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions.

    PubMed

    Lusvardi, G; Malavasi, G; Menabue, L; Aina, V; Morterra, C

    2009-11-01

    The issue of the contribution of the addition of F to glass bioactivity is not well resolved. This work reports on the surface reactivity in different solutions (DMEM and Tris) for some potentially bioactive glasses based on the composition of 45S5 glass, in which CaF(2) is substituted alternately for (part of) CaO and Na(2)O. The reactivity of F-containing glasses has been compared with that of the reference 45S5 system. The aim of this study is to explain in detail the mechanism of formation of an apatitic crystalline phase at the interface between the inorganic material and simulated biological media. A multi-technique investigation approach proposes a set of reactions involving Ca-carbonate formation, which are somewhat different from that formerly proposed by Hench for 45S5 bioactive glass, and which occur when a F-containing glass surface is in contact with a SBF. The usefulness of IR spectroscopy in recognizing the starting step of apatite (and/or FA) formation with respect to XRD technique is well established here.

  11. DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions

    NASA Technical Reports Server (NTRS)

    Moss, James N.

    2000-01-01

    This paper describes the results of a numerical study of interacting hypersonic flows at conditions that can be produced in ground-based test facilities. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 10 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The flow conditions are those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel. The range of flow conditions, model configurations, and model sizes provides a significant range of shock/shock and shock/boundary layer interactions at low Reynolds number conditions. Results presented will highlight the sensitivity of the calculations to grid resolution, contrast the differences in flow structure for hypersonic cold flows and those of more energetic but still low enthalpy flows, and compare the present results with experimental measurements for surface heating, pressure, and extent of separation.

  12. Is Sterile Better Than Aseptic? Comparing the Microbiology of Acellular Dermal Matrices

    PubMed Central

    Klein, Gabriel M.; Nasser, Ahmed E.; Phillips, Brett T.; Gersch, Robert P.; Fourman, Mitchell S.; Lilo, Sarit E.; Fritz, Jason R.; Khan, Sami U.; Dagum, Alexander B.

    2016-01-01

    Introduction: Postoperative infections are a major complication associated with tissue-expander-based breast reconstruction. The use of acellular dermal matrix (ADM) in this surgery has been identified as a potential reservoir of infection, prompting the development of sterile ADM. Although aseptic and sterile ADMs have been investigated, no study has focused on the occurrence and clinical outcome of bacterial colonization before implantation. Methods: Samples of aseptic AlloDerm, sterile Ready-To-Use AlloDerm, and AlloMax were taken before implantation. These samples were incubated in Tryptic soy broth overnight before being streaked on Trypticase soy agar, MacConkey agar, and 5% blood agar plates for culture and incubated for 48 hours. Culture results were cross-referenced with patient outcomes for 1 year postoperatively. Results: A total of 92 samples of ADM were collected from 63 patients. There were 15 cases of postoperative surgical site infection (16.3%). Only 1 sample of ADM (AlloMax) showed growth of Escherichia coli, which was likely a result of contamination. That patient did not develop any infectious sequelae. Patient outcomes showed no difference in the incidence of seroma or infection between sterile and aseptic ADMs. Conclusions: This study evaluates the microbiology of acellular dermal matrices before use in breast reconstruction. No difference was found in the preoperative bacterial load of either aseptic or sterile ADM. No significant difference was noted in infection or seroma formation. Given these results, we believe aseptic processing used on ADMs is equivalent to sterile processing in our patient cohort in terms of clinical infection and seroma occurrence postoperatively. PMID:27482500

  13. Adaptive bone formation in acellular vertebrae of sea bass (Dicentrarchus labrax L.).

    PubMed

    Kranenbarg, Sander; van Cleynenbreugel, Tim; Schipper, Henk; van Leeuwen, Johan

    2005-09-01

    Mammalian bone is an active tissue in which osteoblasts and osteoclasts balance bone mass. This process of adaptive modelling and remodelling is probably regulated by strain-sensing osteocytes. Bone of advanced teleosts is acellular yet, despite the lack of osteocytes, it is capable of an adaptive response to physical stimuli. Strenuous exercise is known to induce lordosis. Lordosis is a ventrad curvature of the vertebral column, and the affected vertebrae show an increase in bone formation. The effects of lordosis on the strain distribution in sea bass (Dicentrarchus labrax L.) vertebrae are assessed using finite element modelling. The response of the local tissue is analyzed spatially and ontogenetically in terms of bone volume. Lordotic vertebrae show a significantly increased strain energy due to the increased load compared with normal vertebrae when loaded in compression. High strain regions are found in the vertebral centrum and parasagittal ridges. The increase in strain energy is attenuated by a change in architecture due to the increased bone formation. The increased bone formation is seen mainly at the articular surfaces of the vertebrae, although some extra bone is formed in the vertebral centrum. Regions in which the highest strains are found do not spatially correlate with regions in which the most extensive bone apposition occurs in lordotic vertebrae of sea bass. Mammalian-like strain-regulated bone modelling is probably not the guiding mechanism in adaptive bone modelling of acellular sea bass vertebrae. Chondroidal ossification is found at the articular surfaces where it mediates a rapid adaptive response, potentially attenuating high stresses on the dorsal zygapophyses.

  14. A high-order adaptive Cartesian cut-cell method for simulation of compressible viscous flow over immersed bodies

    NASA Astrophysics Data System (ADS)

    Muralidharan, Balaji; Menon, Suresh

    2016-09-01

    A new adaptive finite volume conservative cut-cell method that is third-order accurate for simulation of compressible viscous flows is presented. A high-order reconstruction approach using cell centered piecewise polynomial approximation of flow quantities, developed in the past for body-fitted grids, is now extended to the Cartesian based cut-cell method. It is shown that the presence of cut-cells of very low volume results in numerical oscillations in the flow solution near the embedded boundaries when standard small cell treatment techniques are employed. A novel cell clustering approach for polynomial reconstruction in the vicinity of the small cells is proposed and is shown to achieve smooth representation of flow field quantities and their derivatives on immersed interfaces. It is further shown through numerical examples that the proposed clustering method achieves the design order of accuracy and is fairly insensitive to the cluster size. Results are presented for canonical flow past a single cylinder and a sphere at different flow Reynolds numbers to verify the accuracy of the scheme. Investigations are then performed for flow over two staggered cylinders and the results are compared with prior data for the same configuration. All the simulations are carried out with both quadratic and cubic reconstruction, and the results indicate a clear improvement with the cubic reconstruction. The new cut-cell approach with cell clustering is able to predict accurate results even at relatively low resolutions. The ability of the high-order cut-cell method in handling sharp geometrical corners and narrow gaps is also demonstrated using various examples. Finally, three-dimensional flow interactions between a pair of spheres in cross flow is investigated using the proposed cut-cell scheme. The results are shown to be in excellent agreement with past studies, which employed body-fitted grids for studying this complex case.

  15. Satellite alignment. I. Distribution of substructures and their dependence on assembly history from n-body simulations

    SciTech Connect

    Wang, Yang Ocean; Lin, W. P.; Yu, Yu; Kang, X.; Dutton, Aaron; Macciò, Andrea V. E-mail: linwp@shao.ac.cn

    2014-05-01

    Observations have shown that the spatial distribution of satellite galaxies is not random, but aligned with the major axes of central galaxies. This alignment is dependent on galaxy properties, such that red satellites are more strongly aligned than blue satellites. Theoretical work conducted to interpret this phenomenon has found that it is due to the non-spherical nature of dark matter halos. However, most studies overpredict the alignment signal under the assumption that the central galaxy shape follows the shape of the host halo. It is also not clear whether the color dependence of alignment is due to an assembly bias or an evolution effect. In this paper we study these problems using a cosmological N-body simulation. Subhalos are used to trace the positions of satellite galaxies. It is found that the shapes of dark matter halos are mis-aligned at different radii. If the central galaxy shares the same shape as the inner host halo, then the alignment effect is weaker and agrees with observational data. However, it predicts almost no dependence of alignment on the color of satellite galaxies, though the late accreted subhalos show stronger alignment with the outer layer of the host halo than their early accreted counterparts. We find that this is due to the limitation of pure N-body simulations where satellite galaxies without associated subhalos ('orphan galaxies') are not resolved. These orphan (mostly red) satellites often reside in the inner region of host halos and should follow the shape of the host halo in the inner region.

  16. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Johnson, Ian; Akari, Khalid; Liu, Huinan

    2013-09-01

    Biodegradable magnesium (Mg) and its alloys have many attractive properties (e.g. comparable mechanical properties to cortical bone) for orthopedic implant applications, but they degrade too rapidly in the human body to meet clinical requirements. Nanostructured hydroxyapatite (nHA)/poly(lactic-co-glycolic acid) (PLGA) composite coatings provide synergistic properties for controlling degradation of Mg-based substrates and improving bone-implant integration. In this study, nHA/PLGA composites were spin coated onto Mg-based substrates and the results showed that the nHA/PLGA coatings retained nano-scale features with nHA dispersed in PLGA matrix. In comparison with non-coated Mg, the nHA/PLGA composite coated Mg increased the corrosion potential and decreased the corrosion current in revised simulated body fluid (rSBF). After 24 h of immersion in rSBF, increased calcium phosphate (CaP) deposition and formation of Mg-substituted CaP rosettes were observed on the surface of the nHA/PLGA coated Mg, indicating greater bioactivity. In contrast, no significant CaP was deposited on the PLGA coated Mg. Since both PLGA coating and nHA/PLGA coating showed some degree of delamination from Mg-based substrates during extended immersion in rSBF, the coating processing and properties should be further optimized in order to take full advantage of biodegradable Mg and nHA/PLGA nanocomposites for orthopedic applications.

  17. Crystallization processes at the surface of polylactic acid-bioactive glass composites during immersion in simulated body fluid.

    PubMed

    Ginsac, Nathalie; Chenal, Jean-Marc; Meille, Sylvain; Pacard, Elodie; Zenati, Rachid; Hartmann, Daniel J; Chevalier, Jérôme

    2011-11-01

    We report on the crystallization processes occurring at the surface of PDLLA-Bioglass® composites immersed in simulated body fluid. Composites manufactured by injection molding and containing different amounts (0, 20, 30, and 50 wt %) of 45S5 Bioglass® particles were tested for durations up to 56 days and compared with Bioglass® particles alone. Crystallization processes were followed by visual inspection, X-ray diffraction (with Rietveld analysis) and scanning electron microscopy. Both calcite and hydroxyapatite were formed at the surface of all materials, but their relative ratio was dependent on the Bioglass® content and immersion time. Hydroxyapatite was always the major phase after sufficient immersion time, insuring bioactivity of such composites especially for Bioglass® content higher than 30 wt %. A scenario of crystallization is proposed. Rapid degradation of the composites with 50 wt % was also observed during immersion. Therefore, composites with 30 wt % of Bioglass® particles seem to exhibit the best balance between bioactivity and stability at least during the first weeks of immersion in contact with body fluids.

  18. Computer Simulation Study of Human Locomotion with a Three-Dimensional Entire-Body Neuro-Musculo-Skeletal Model

    NASA Astrophysics Data System (ADS)

    Hase, Kazunori; Yamazaki, Nobutoshi

    A model having a three-dimensional entire-body structure and consisting of both the neuronal system and the musculo-skeletal system was proposed to precisely simulate human walking motion. The dynamics of the human body was represented by a 14-rigid-link system and 60 muscular models. The neuronal system was represented by three sub-systems: the rhythm generator system consisting of 32 neural oscillators, the sensory feedback system, and the peripheral system expressed by static optimization. Unknown neuronal parameters were adjusted by a numerical search method using the evaluative criterion for locomotion that was defined by a hybrid between the locomotive energy efficiency and the smoothness of the muscular tensions. The model could successfully generate continuous and three-dimensional walking patterns and stabilized walking against mechanical perturbation. The walking pattern was more stable than that of the model based on dynamic optimization, and more precise than that of the previous model based on a similar neuronal system.

  19. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid.

    PubMed

    Johnson, Ian; Akari, Khalid; Liu, Huinan

    2013-09-20

    Biodegradable magnesium (Mg) and its alloys have many attractive properties (e.g. comparable mechanical properties to cortical bone) for orthopedic implant applications, but they degrade too rapidly in the human body to meet clinical requirements. Nanostructured hydroxyapatite (nHA)/poly(lactic-co-glycolic acid) (PLGA) composite coatings provide synergistic properties for controlling degradation of Mg-based substrates and improving bone-implant integration. In this study, nHA/PLGA composites were spin coated onto Mg-based substrates and the results showed that the nHA/PLGA coatings retained nano-scale features with nHA dispersed in PLGA matrix. In comparison with non-coated Mg, the nHA/PLGA composite coated Mg increased the corrosion potential and decreased the corrosion current in revised simulated body fluid (rSBF). After 24 h of immersion in rSBF, increased calcium phosphate (CaP) deposition and formation of Mg-substituted CaP rosettes were observed on the surface of the nHA/PLGA coated Mg, indicating greater bioactivity. In contrast, no significant CaP was deposited on the PLGA coated Mg. Since both PLGA coating and nHA/PLGA coating showed some degree of delamination from Mg-based substrates during extended immersion in rSBF, the coating processing and properties should be further optimized in order to take full advantage of biodegradable Mg and nHA/PLGA nanocomposites for orthopedic applications.

  20. Effect of schedule on reactogenicity and antibody persistence of acellular and whole-cell pertussis vaccines: value of laboratory tests as predictors of clinical performance.

    PubMed

    Miller, E; Ashworth, L A; Redhead, K; Thornton, C; Waight, P A; Coleman, T

    1997-01-01

    The performance of four acellular pertussis vaccines containing between two and five pertussis antigens combined with diphtheria and tetanus toxoids was compared with that of British whole-cell diphtheria/tetanus/pertussis (DTP) vaccine both in laboratory assays for potency, toxicity and immunogenicity, and for reactogenicity and immunogenicity in infants. Clinical responses were evaluated in double blind randomized Phase II trials using 3/5/9 month and 2/3/4 month schedules. The acellular DTPs had much lower toxicity than whole-cell DTP in laboratory tests and were significantly less pyrogenic than whole-cell DTP under both schedules. Local reactions were not consistently lower in acellular than whole-cell vaccinees and varied with the source of the diphtheria and tetanus antigens used. Differences in endotoxin level and content of active pertussis toxin (PT) between acellular DTP vaccines were not clinically significant. The reactogenicity advantage of the acellular vaccines was substantially reduced under the 2/3/4 month schedule due to the reduced reactogenicity of the whole-cell DTP vaccine when given at a younger age. There was no relationship between antigen content measured in micrograms per dose and ELISA antibody responses to filamentous haemagglutinin (FHA) and PT in infants, nor was murine immunogenicity predictive of immunogenicity in humans. Antibody response to PT was attenuated in the whole-cell group under the 2/3/4 month schedule but was unaffected in the group receiving acellular vaccines with individually purified components; antibody response to pertactin (69 kDa antigen) was similar in recipients of the whole-cell and component acellular vaccines under the 2/3/4 month schedule. PT antibody persistence until 4-5 years of age was significantly better in recipients of the component acellular than either the whole-cell vaccine or the co-purified acellular vaccine under the 3/5/9 month schedule. However, diphtheria antitoxin levels were reduced in

  1. Pectus excavatum postsurgical outcome based on preoperative soft body dynamics simulation

    NASA Astrophysics Data System (ADS)

    Moreira, Antonio H. J.; Rodrigues, Pedro L.; Fonseca, Jaime; Pinho, A. C. M.; Rodrigues, Nuno F.; Correia-Pinto, Jorge; Vilaça, João L.

    2012-02-01

    Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which an abnormal formation of the rib cage gives the chest a caved-in or sunken appearance. Today, the surgical correction of this deformity is carried out in children and adults through Nuss technic, which consists in the placement of a prosthetic bar under the sternum and over the ribs. Although this technique has been shown to be safe and reliable, not all patients have achieved adequate cosmetic outcome. This often leads to psychological problems and social stress, before and after the surgical correction. This paper targets this particular problem by presenting a method to predict the patient surgical outcome based on pre-surgical imagiologic information and chest skin dynamic modulation. The proposed approach uses the patient pre-surgical thoracic CT scan and anatomical-surgical references to perform a 3D segmentation of the left ribs, right ribs, sternum and skin. The technique encompasses three steps: a) approximation of the cartilages, between the ribs and the sternum, trough b-spline interpolation; b) a volumetric mass spring model that connects two layers - inner skin layer based on the outer pleura contour and the outer surface skin; and c) displacement of the sternum according to the prosthetic bar position. A dynamic model of the skin around the chest wall region was generated, capable of simulating the effect of the movement of the prosthetic bar along the sternum. The results were compared and validated with patient postsurgical skin surface acquired with Polhemus FastSCAN system.

  2. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  3. Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution.

    PubMed

    Farnoush, Hamidreza; Abdi Bastami, Ashkan; Sadeghi, Ali; Aghazadeh Mohandesi, Jamshid; Moztarzadeh, Fathollah

    2013-04-01

    In the present study, friction stir processing was utilized to incorporate nano-hydroxyapatite particles into Ti-6Al-4V substrates to fabricate Ti-CaP nanocomposite surface layer. Microstructures of the stir zone and the fabricated Ti-CaP nanocomposite layer were analyzed using optical and scanning electron microscopy, respectively. Microhardness profile and AFM analysis of substrates were then studied. The microhardness of Ti-CaP nanocomposite layer was reached about 386 HV due to the grain refinement and the distribution of nano-hydroxyapatite particles. Potentiodynamic polarization studies showed that the Ti-CaP nanocomposite layer protected effectively the Ti-6Al-4V substrates from corroding in simulated body fluid solution. The tribological properties of the samples were studied in both dry and simulated biological conditions. The wear rate and friction coefficient decreased by friction stir processing on Ti-6Al-4V substrates. From the analysis of plotted graphs of weight loss versus sliding distance, a correlation between wear coefficient and microhardness through thickness was established. The wear mechanisms were also investigated through scanning electron microscopy. It was shown that the major mechanism was abrasive wear.

  4. Corrosion performance of MAO coatings on AZ31 Mg alloy in simulated body fluid vs. Earle's Balance Salt Solution

    NASA Astrophysics Data System (ADS)

    Wilke, Benjamin M.; Zhang, Lei; Li, Weiping; Ning, Chengyun; Chen, Cheng-fu; Gu, Yanhong

    2016-02-01

    Earle's Balance Salt Solution (EBSS) provides an alternative to the conventional simulated body fluids (c-SBF) and has been shown to better simulate the corrosion conditions in vivo. In this work, a series of tests were conducted to explore the corrosion performance of MAO-coated AZ31 samples in EBSS vs. c-SBF. Samples were produced by varying MAO process parameters and then immersed up to 21 days in both EBSS and c-SBF. The corrosion rates were evaluated by the electrochemical impedance spectroscopy and potentiodynamic scanning. Scanning electron microscope (SEM) was used to compare the progression of microcracks across the surface of the coatings. The evaluation of cross-sectional thickness showed an increase in MAO coating thickness with the process voltage. MAO samples with a thicker coating generally have higher impedance and lower current density at the initial immersion time point of 0.5 h. Samples in EBSS showed higher initial impedance and lower current density values as compared to c-SBF counterparts for all process groups. Samples in EBSS demonstrated a much slower corrosion rate than c-SBF samples because of the decreased chloride content and CO2 buffering mechanism of the EBSS.

  5. Relevant In Vitro Predictors of Human Acellular Dermal Matrix-Associated Inflammation and Capsule Formation in a Nonhuman Primate Subcutaneous Tissue Expander Model.

    PubMed

    Sandor, Maryellen; Leamy, Patrick; Assan, Pearl; Hoonjan, Amardeep; Huang, Li-Ting; Edwards, Marianne; Zuo, Wenqi; Li, Hui; Xu, Hui

    2017-01-01

    Objective: Benchtop methods were evaluated for preclinical inflammation/capsule formation correlation following implantation of human acellular dermal matrices. Methods: Dermal matrices were compared with native dermis for structure (histology, scanning electron microscopy), collagen solubility (hydroxyproline), enzymatic susceptibility (collagenase), and thermal stability (differential scanning calorimetry). Results were compared with implantation outcomes in a primate tissue expander model. Results: Native dermis, electron beam-sterilized, and freeze-dried human acellular dermal matrices had equivalent morphology, acid-soluble collagen (60.5% ± 6.3%, 65.3% ± 3.2%, and 63.3% ± 2.4%, respectively), and collagenase resistance. Implant results showed minimal inflammation/matrix degradation, lack of capsule formation, insignificant elastic modulus change (57.65 ± 20.24 MPa out-of-package/44.84 ± 23.87 MPa in vivo), and low antibody induction (2- to 8-fold increase) for electron beam-sterilized matrix. Similar results for freeze-dried dermal matrix were previously observed. γ-Irradiated, γ-irradiated/freeze-dried, and ethanol-stored dermal matrices were statistically different from native dermis for acid-soluble collagen (82.4% ± 5.8%, 72.2% ± 6.2%, and 76.8% ± 5.0%, respectively) and collagenase digestion rate, indicating matrix damage. γ-Irradiated matrix-implanted animals demonstrated elevated inflammatory response, foreign body giant cells, capsule formation at the tissue expander junction, and robust matrix metalloproteinase-1 staining with significant elastic modulus decrease (37.43 ± 7.52 MPa out-of-package/19.58 ± 1.16 MPa in vivo). Antibody increase (32- to 128-fold) was observed 6 to 10 weeks following γ-irradiated matrix implantation. Ethanol-stored dermal matrix elicited an acute antibody response (4- to 128-fold increase, 2-4 weeks) and macrophage-concentrated synovial-like hyperplasia at the tissue expander junction, moderate matrix

  6. Relevant In Vitro Predictors of Human Acellular Dermal Matrix-Associated Inflammation and Capsule Formation in a Nonhuman Primate Subcutaneous Tissue Expander Model

    PubMed Central

    Leamy, Patrick; Assan, Pearl; Hoonjan, Amardeep; Huang, Li-Ting; Edwards, Marianne; Zuo, Wenqi; Li, Hui; Xu, Hui

    2017-01-01

    Objective: Benchtop methods were evaluated for preclinical inflammation/capsule formation correlation following implantation of human acellular dermal matrices. Methods: Dermal matrices were compared with native dermis for structure (histology, scanning electron microscopy), collagen solubility (hydroxyproline), enzymatic susceptibility (collagenase), and thermal stability (differential scanning calorimetry). Results were compared with implantation outcomes in a primate tissue expander model. Results: Native dermis, electron beam–sterilized, and freeze-dried human acellular dermal matrices had equivalent morphology, acid-soluble collagen (60.5% ± 6.3%, 65.3% ± 3.2%, and 63.3% ± 2.4%, respectively), and collagenase resistance. Implant results showed minimal inflammation/matrix degradation, lack of capsule formation, insignificant elastic modulus change (57.65 ± 20.24 MPa out-of-package/44.84 ± 23.87 MPa in vivo), and low antibody induction (2- to 8-fold increase) for electron beam–sterilized matrix. Similar results for freeze-dried dermal matrix were previously observed. γ-Irradiated, γ-irradiated/freeze-dried, and ethanol-stored dermal matrices were statistically different from native dermis for acid-soluble collagen (82.4% ± 5.8%, 72.2% ± 6.2%, and 76.8% ± 5.0%, respectively) and collagenase digestion rate, indicating matrix damage. γ-Irradiated matrix-implanted animals demonstrated elevated inflammatory response, foreign body giant cells, capsule formation at the tissue expander junction, and robust matrix metalloproteinase-1 staining with significant elastic modulus decrease (37.43 ± 7.52 MPa out-of-package/19.58 ± 1.16 MPa in vivo). Antibody increase (32- to 128-fold) was observed 6 to 10 weeks following γ-irradiated matrix implantation. Ethanol-stored dermal matrix elicited an acute antibody response (4- to 128-fold increase, 2-4 weeks) and macrophage-concentrated synovial-like hyperplasia at the tissue expander junction, moderate matrix

  7. Transients from initial conditions based on Lagrangian perturbation theory in N-body simulations II: the effect of the transverse mode

    SciTech Connect

    Tatekawa, Takayuki

    2014-04-01

    We study the initial conditions for cosmological N-body simulations for precision cosmology. In general, Zel'dovich approximation has been applied for the initial conditions of N-body simulations for a long time. These initial conditions provide incorrect higher-order growth. These error caused by setting up the initial conditions by perturbation theory is called transients. We investigated the impact of transient on non-Gaussianity of density field by performing cosmological N-body simulations with initial conditions based on first-, second-, and third-order Lagrangian perturbation theory in previous paper. In this paper, we evaluates the effect of the transverse mode in the third-order Lagrangian perturbation theory for several statistical quantities such as power spectrum and non-Gaussianty. Then we clarified that the effect of the transverse mode in the third-order Lagrangian perturbation theory is quite small.

  8. A comparison of theory and experiment for coupled rotor-body stability of a hingeless rotor model in hover under simulated vacuum conditions

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    1988-01-01

    Two cases were selected for correlation from an experiment that examined the aeromechanical stability of a small-scale model rotor that used tantalum rods instead of blades to simulate vacuum conditions. The first case involved body roll freedom only while the second case included body pitch and roll degrees of freedom together. Analyses from Hughes Helicopters and the U.S. Army Aeromechanics Laboratory were compared with the data and the correlations ranged from poor to good.

  9. Simulation of gait and gait initiation associated with body oscillating behavior in the gravity environment on the moon, mars and Phobos.

    PubMed

    Brenière, Y

    2001-04-01

    A double-inverted pendulum model of body oscillations in the frontal plane during stepping [Brenière and Ribreau (1998) Biol Cybern 79: 337-345] proposed an equivalent model for studying the body oscillating behavior induced by step frequency in the form of: (1) a kinetic body parameter, the natural body frequency (NBF), which contains gravity and which is invariable for humans, (2) a parametric function of frequency, whose parameter is the NBF, which explicates the amplitude ratio of center of mass to center of foot pressure oscillation, and (3) a function of frequency which simulates the equivalent torque necessary for the control of the head-arms-trunk segment oscillations. Here, this equivalent model is used to simulate the duration of gait initiation, i.e., the duration necessary to initiate and execute the first step of gait in subgravity, as well as to calculate the step frequencies that would impose the same minimum and maximum amplitudes of the oscillating responses of the body center of mass, whatever the gravity value. In particular, this simulation is tested under the subgravity conditions of the Moon, Mars, and Phobos, where gravity is 1/6, 3/8, and 1/1600 times that on the Earth, respectively. More generally, the simulation allows us to establish and discuss the conditions for gait adaptability that result from the biomechanical constraints particular to each gravity system.

  10. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration

    PubMed Central

    Wagner, Darcy E.; Bonenfant, Nicholas R.; Sokocevic, Dino; DeSarno, Michael; Borg, Zachary; Parsons, Charles; Brooks, Elice M.; Platz, Joseph; Khalpey, Zain; Hoganson, David M.; Deng, Bin; Lam, Ying Wai; Oldinski, Rachael A.; Ashikaga, Takamaru; Weiss, Daniel J.

    2014-01-01

    Acellular scaffolds from complex whole organs such as lung are being increasingly studied for ex vivo organ generation and for in vitro studies of cell-extracellular matrix interactions. We have established effective methods for efficient de- and recellularization of large animal and human lungs including techniques which allow multiple small segments (∼1–3cm3) to be excised that retain 3-dimensional lung structure. Coupled with the use of a synthetic pleural coating, cells can be selectively physiologically inoculated via preserved vascular and airway conduits. Inoculated segments can be further sliced for high throughput studies. Further, we demonstrate thermography as a powerful noninvasive technique for monitoring perfusion decellularization and for evaluating preservation of vascular and airway networks following human and porcine lung decellularization. Collectively, these techniques are a significant step forward as they allow high throughput in vitro studies from a single lung or lobe in a more biologically relevant, three-dimensional acellular scaffold. PMID:24411675

  11. ArcNLET: A GIS-based software to simulate groundwater nitrate load from septic systems to surface water bodies

    NASA Astrophysics Data System (ADS)

    Rios, J. Fernando; Ye, Ming; Wang, Liying; Lee, Paul Z.; Davis, Hal; Hicks, Rick

    2013-03-01

    Onsite wastewater treatment systems (OWTS), or septic systems, can be a significant source of nitrates in groundwater and surface water. The adverse effects that nitrates have on human and environmental health have given rise to the need to estimate the actual or potential level of nitrate contamination. With the goal of reducing data collection and preparation costs, and decreasing the time required to produce an estimate compared to complex nitrate modeling tools, we developed the ArcGIS-based Nitrate Load Estimation Toolkit (ArcNLET) software. Leveraging the power of geographic information systems (GIS), ArcNLET is an easy-to-use software capable of simulating nitrate transport in groundwater and estimating long-term nitrate loads from groundwater to surface water bodies. Data requirements are reduced by using simplified models of groundwater flow and nitrate transport which consider nitrate attenuation mechanisms (subsurface dispersion and denitrification) as well as spatial variability in the hydraulic parameters and septic tank distribution. ArcNLET provides a spatial distribution of nitrate plumes from multiple septic systems and a load estimate to water bodies. ArcNLET's conceptual model is divided into three sub-models: a groundwater flow model, a nitrate transport and fate model, and a load estimation model which are implemented as an extension to ArcGIS. The groundwater flow model uses a map of topography in order to generate a steady-state approximation of the water table. In a validation study, this approximation was found to correlate well with a water table produced by a calibrated numerical model although it was found that the degree to which the water table resembles the topography can vary greatly across the modeling domain. The transport model uses a semi-analytical solution to estimate the distribution of nitrate within groundwater, which is then used to estimate a nitrate load using a mass balance argument. The estimates given by ArcNLET are

  12. An international collaborative study of the effect of active pertussis toxin on the modified Kendrick test for acellular pertussis vaccines.

    PubMed

    Xing, Dorothy; Gaines Das, Rose; Douglas-Bardsley, Alex; Asokanathan, Catpagavalli; Corbel, Michael

    2014-03-01

    Speculation that the Japanese modified intra-cerebral challenge assay, which is used in several countries for control of acellular pertussis vaccines, depends on the presence of small amounts of active pertussis toxin led to an assumption that it may not be appropriate for highly toxoided or genetically detoxified vaccines. Consequently, at the recommendation of a World Health Organisation AD Hoc Working Group on mouse protection models for testing and control of acellular pertussis vaccine, the effect of pertussis toxin on the modified intra-cerebral challenge assay (modified Kendrick, MICA) was evaluated in an international collaborative study. Results of this study showed that for genetically detoxified vaccines both with and without active pertussis toxin the MICA clearly distinguished mice vaccinated with acellular vaccines from unvaccinated mice and gave a significant dose-response relationship. However, vaccine samples containing active pertussis toxin (5 or 50 ng/single human dose) appeared to be more potent than the equivalent sample without active pertussis toxin. Similar results were also given by two respiratory infection models (intranasal and aerosol) included in the study. The results also indicated that the effect of pertussis toxin may vary depending on mouse strain.

  13. Mesenchymal stem cells seeded on cross-linked and noncross-linked acellular porcine dermal scaffolds for long-term full-thickness hernia repair in a small animal model.

    PubMed

    Mestak, Ondrej; Matouskova, Eva; Spurkova, Zuzana; Benkova, Kamila; Vesely, Pavel; Mestak, Jan; Molitor, Martin; Pombinho, Antonio; Sukop, Andrej

    2014-07-01

    Biological meshes are biomaterials consisting of extracellular matrix that are used in surgery particularly for hernia treatment, thoracic wall reconstruction, or silicone implant-based breast reconstruction. We hypothesized that combination of extracellular matrices with autologous mesenchymal stem cells used for hernia repair would result in increased vascularization and increased strength of incorporation. We cultured autologous adipose-derived stem cells harvested from the inguinal region of Wistar rats on cross-linked and noncross-linked porcine extracellular matrices. In 24 Wistar rats, a standardized 2×4 cm fascial defect was created and repaired with either cross-linked or noncross-linked grafts enriched with stem cells. Non-MSC-enriched grafts were used as controls. The rats were sacrificed at 3 months of age. The specimens were examined for the strength of incorporation, vascularization, cell invasion, foreign body reaction, and capsule formation. Both materials showed cellular ingrowth and neovascularization. Comparison of both tested groups with the controls showed no significant differences in the capsule thickness, foreign body reaction, cellularization, or vascularization. The strength of incorporation of the stem cell-enriched cross-linked extracellular matrix specimens was higher than in acellular specimens, but this result was statistically nonsignificant. In the noncross-linked extracellular matrix, the strength of incorporation was significantly higher in the stem cell group than in the acellular group. Seeding of biological meshes with stem cells does not significantly contribute to their increased vascularization. In cross-linked materials, it does not ensure increased strength of incorporation, in contrast to noncross-linked materials. Owing to the fact that isolation and seeding of stem cells is a very complex procedure, we do not see sufficient benefits for its use in the clinical setting.

  14. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems

    NASA Astrophysics Data System (ADS)

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm-3 and 1.1 g cm-3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  15. [Hormonal regulation of metabolism in the human body in microgravity and during simulation of its physiological effects].

    PubMed

    Larina, I M

    2003-01-01

    The paper presents results of investigations into the effects of space flight and simulation experiments of various length on the hormonal regulation of metabolism in the human body. Microgravity was shown to instigate shifts on different levels of the hormonal regulation and consequent adjustment of metabolism to this new environment. For instance, adaptation occurs on the level of basal secretory activity resulting in altered metabolism and formation of a pool of hormones. Metabolism readaptation to the Earth's gravity is dependent on polymorphic processes in the system of hormonal regulation developing in the course of time. Trends in the hormonal regulation of water-electrolyte metabolism during early adaptation point to inequality of contributions of the antidiuretic hormone, natriuretic peptide, and the renin-angiotensin-aldosterone system. In the ground-based simulations responses of the hormonal regulation of water-electrolyte metabolism differ in intensity and types of hormones involved. Temperature variation can modify reactions of the comosis and volume regulating hormones at the beginning of adaptation. Physical-chemical regulation of calcium homeostasis in microgravity reveals itself by a rapid decline of the calcium-binding ability of blood buffers and, later on, degradation of the relative ability of extraplasmic structures to bind calcium. Qualitative and quantitative changes in the diurnal rhythm of the suprarenal steroidogenesis are indicative of modification of intensity of reactions of the main biosynthetic sequences. Countermeasures used by test-subjects in these investigations loosened significantly the aldosterone-secreting biosynthetic sequences but were favorable to the synthesis of testosterone and hydrocortisone. Some of the highly variable processes of hormonal regulation were mute to the diurnal rhythms in the pre-flight and preexperimental periods.

  16. The Scale-dependent Energy Transfer Rate as a Tracer for Star Formation in Cosmological N-Body Simulations

    NASA Astrophysics Data System (ADS)

    Hoeft, M.; Mücket, J. P.; Heide, P.

    2002-05-01

    We investigate the energy release due to large-scale structure formation and the subsequent transfer of energy from larger to smaller scales. We calculate the power spectra for the large-scale velocity field and show that the coupling of modes results in a transfer of power predominately from larger to smaller scales. We use the concept of cumulative energy to calculate the amount of energy deposited into small scales during the cosmological structure evolution. To estimate the contribution due to the gravitational interaction only, we perform our investigations by means of dark matter simulations. The global mean of the energy transfer increases with redshift ~(z+1)3 this can be traced back to the similar evolution of the merging rates of dark matter halos. The global mean energy transfer can be decomposed into its local contributions, which allows us to determine the energy injection per unit mass into a local volume. The obtained energy injection rates are at least comparable to other energy sources driving interstellar turbulence, e.g., supernova kinetic feedback. On that basis, we make the crude assumption that processes causing this energy transfer from large to small scales, e.g., the merging of halos, may contribute substantially to the driving of interstellar medium turbulence, which may eventually result in star formation on much smaller scales. We propose that the ratio of the local energy injection rate to the energy already stored within small-scale motions is a rough measure for the probability of local star formation, applicable within cosmological large-scale N-body simulations.

  17. Collaborative study on a Guinea pig serological method for the assay of acellular pertussis vaccines.

    PubMed

    Winsnes, R; Sesardic, D; Daas, A; Terao, E; Behr-Gross, M-E

    2009-10-01

    An international collaborative study (coded BSP083) was performed under the aegis of the Biological Standardisation Programme supported by the Council of Europe and the European Commission, with the aim of replacing the in vivo challenge assays for potency determination of combined acellular pertussis (aP) vaccines by a refined procedure also allowing reduction of animal use. This study investigates whether the immunogenicity of aP vaccine components could be assayed in a guinea pig (gp) serology model, using the same vaccine immunising doses as for D and T components potency testing, instead of using separate animals as is currently done. The BSP83 project is a follow up of 3 former collaborative studies (coded BSP019, BSP034 and BSP035) on serological methods for the potency testing of tetanus (T) and diphtheria (D) vaccines for human use. The use of gp instead of mice serology has the advantage of providing a larger volume of good quality antiserum for the assay of several vaccine components in the same sample, hence providing the opportunity for animal sparing. The results of Phase I of the study demonstrated that gp serology may be a useful method for the immunogenicity assay of acellular pertussis vaccines. This was confirmed in Phase II of the study, using 7 different combined aP vaccines in an international collaborative study involving 17 laboratories from both public and private sectors. Clear dose-response relationships were observed for different vaccines by ELISA, for antibodies against aP antigens, i.e. pertussis toxin (PT), filamentous haemagglutinin (FHA), fimbrial agglutinogens-2/3 (Fim 2/3) and pertactin (PRN). Intra- and inter-laboratory variations of aP ELISA results were found to be within an acceptable range. For some combined vaccines, however, the range of vaccine dilutions for immunisation confirmed to be optimal for D and T potency testing may not provide optimal dose-response for all aP components. Method adjustments may thus be required

  18. The real and apparent convergence of N-body simulations of the dark matter structures: Is the Navarro-Frenk-White profile real?

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.

    2015-03-01

    While N-body simulations suggest a cuspy profile in the centra of the dark matter halos of galaxies, the majority of astronomical observations favor a relatively soft cored density distribution of these regions. The routine method of testing the convergence of N-body simulations (in particular, the negligibility of two-body scattering effect) is to find the conditions under which formed structures is insensitive to numerical parameters. The results obtained with this approach suggest a surprisingly minor role of the particle collisions: the central density profile remains untouched and close to the Navarro-Frenk-White shape, even if the simulation time significantly exceeds the collisional relaxation time τr . In order to check the influence of the unphysical test body collisions we use the Fokker-Planck equation. It turns out that a profile ρ ∝r-β where β ≃ 1 is an attractor: the Fokker-Planck diffusion transforms any reasonable initial distribution into it in a time shorter than τr , and then the cuspy profile should survive much longer than τr , since the Fokker-Planck diffusion is self-compensated if β ≃ 1 . Thus the purely numerical effect of test body scattering may create a stable NFW-like pseudosolution. Moreover, its stability may be mistaken for the simulation convergence. We present analytical estimations for this potential bias effect and call for numerical tests. For that purpose, we suggest a simple test that can be performed as the simulation progresses and would indicate the magnitude of the collisional influence and the veracity of the simulation results.

  19. Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body

    NASA Astrophysics Data System (ADS)

    Psikuta, Agnes; Kuklane, Kalev; Bogdan, Anna; Havenith, George; Annaheim, Simon; Rossi, René M.

    2016-03-01

    Combining the strengths of an advanced mathematical model of human physiology and a thermal manikin is a new paradigm for simulating thermal behaviour of humans. However, the forerunners of such adaptive manikins showed some substantial limitations. This project aimed to determine the opportunities and constraints of the existing thermal manikins when dynamically controlled by a mathematical model of human thermal physiology. Four thermal manikins were selected and evaluated for their heat flux measurement uncertainty including lateral heat flows between manikin body parts and the response of each sector to the frequent change of the set-point temperature typical when using a physiological model for control. In general, all evaluated manikins are suitable for coupling with a physiological model with some recommendations for further improvement of manikin dynamic performance. The proposed methodology is useful to improve the performance of the adaptive manikins and help to provide a reliable and versatile tool for the broad research and development domain of clothing, automotive and building engineering.

  20. Corrosion behavior of TiO 2 films on Mg-Zn alloy in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Chen, Shuai; Guan, Shaokang; Chen, Bin; Li, Wen; Wang, Jun; Wang, Liguo; Zhu, Shijie; Hu, Junhua

    2011-02-01

    Magnesium alloys have been widely investigated in the field of biomaterials due to their moderate mechanical properties close to human bone and gradual degradation in human physiological environment without second surgeries. But results from clinical studies showed that magnesium implants suffered from too rapid degradation in human physiological environment. To reduce the degradation rate of magnesium alloys, surface modification is essential and effective besides element alloying. In this study, TiO2 films were deposited on Mg-Zn alloy by direct current reactive magnetron sputtering. The morphology and structure of the films were characterized by atomic force microscopy (AFM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance in simulated body fluid (SBF) at 37 °C was evaluated by potentiodynamic polarization and hydrogen evolution tests. The corrosion behavior of the samples was investigated by SEM with energy dispersive spectroscopy (EDS) after immersion for different periods. The results showed that the compact films were composed of particles with the size of about 100 nm and could effectively improve the corrosion resistance in SBF. After immersion for 10 days, the corrosion rates of the substrates and samples with TiO2 films were 4.13 mm/y and 1.95 mm/y, respectively. During the immersion, the TiO2 films could induce the growth of hydroxyapatite (HAp) to improve the bioactivity of the samples.

  1. Carbonated hydroxyapatite starting from calcite and different orthophosphates under moderate hydrothermal conditions: Synthesis and surface reactivity in simulated body fluid

    SciTech Connect

    Pham Minh, Doan Nzihou, Ange; Sharrock, Patrick

    2014-12-15

    Highlights: • Carbonated apatite (CAP) could be easily obtained from CaCO{sub 3} and orthophosphates. • Highest CaCO{sub 3} dissolution and apatitic carbonate content were obtained with H{sub 3}PO{sub 4}. • A-B-type CAP was formed. • The synthesized CAP was thermally stable up to 1000 °C. • This CAP showed high biomineralization activity before and after thermal treatment. - Abstract: The one-step synthesis of carbonated hydroxyapatite (CAP) using calcite and different orthophosphates was investigated in a closed batch reactor. Only orthophosphoric acid could lead to the complete decomposition of calcite particles, when the reaction temperature was set at 80 °C. On the other hand, the reaction time and the dilution of the initial calcite suspension had no significant influence on the formation of the solid products. CAP was formed as the main crystalline calcium phosphate with the carbonate content in the range of 4.2–4.6 wt.%. The thermal decarbonation of the synthesized CAP started at 750 °C but it was only significant at 1000 °C under air atmosphere. This thermal decarbonation was total at 1200 °C or above. All CAP samples and products following thermal treatments were found bioactive in the test using simulated body fluid (SBF) solution.

  2. Cyclic delamination behavior of plasma-sprayed hydroxyapatite coating on Ti-6Al-4V substrates in simulated body fluid.

    PubMed

    Otsuka, Yuichi; Kawaguchi, Hayato; Mutoh, Yoshiharu

    2016-10-01

    This study aimed to clarify the effect of a simulated body fluid (SBF) on the cyclic delamination behavior of a plasma-sprayed hydroxapatite (HAp) coating. A HAp coating is deposited on the surfaces of surgical metallic materials in order to enhance the bond between human bone and such surfaces. However, the HAp coating is susceptible to delamination by cyclic loading from the patient's gait. Although hip joints are subjected to both positive and negative moments, only the effects of tensile bending stresses on vertical crack propagation behavior have been investigated. Thus, the cyclic delamination behavior of a HAp coating was observed at the stress ratio R=-1 in order to determine the effects of tensile/compressive loading on the delamination behavior. The delamination growth rate increased with SBF immersion, which decreased the delamination life. Raman spectroscopy analysis revealed that the selective phase dissolution in the HAp coating was promoted at interfaces. Finite element analysis revealed that the energy release rate Gmax showed a positive value even in cases with compressive loading, which is a driving force for the delamination of a HAp coating. A prediction model for the delamination growth life was developed that combines a fracture mechanics parameter with the assumed stress-dependent dissolution rate. The predicted delamination life matched the experimental data well in cases of lower stress amplitudes with SBF.

  3. Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body.

    PubMed

    Psikuta, Agnes; Kuklane, Kalev; Bogdan, Anna; Havenith, George; Annaheim, Simon; Rossi, René M

    2016-03-01

    Combining the strengths of an advanced mathematical model of human physiology and a thermal manikin is a new paradigm for simulating thermal behaviour of humans. However, the forerunners of such adaptive manikins showed some substantial limitations. This project aimed to determine the opportunities and constraints of the existing thermal manikins when dynamically controlled by a mathematical model of human thermal physiology. Four thermal manikins were selected and evaluated for their heat flux measurement uncertainty including lateral heat flows between manikin body parts and the response of each sector to the frequent change of the set-point temperature typical when using a physiological model for control. In general, all evaluated manikins are suitable for coupling with a physiological model with some recommendations for further improvement of manikin dynamic performance. The proposed methodology is useful to improve the performance of the adaptive manikins and help to provide a reliable and versatile tool for the broad research and development domain of clothing, automotive and building engineering.

  4. Mechanism of calcium disilicide-induced calcification of crystalline silicon surfaces in simulated body fluid under zero bias.

    PubMed

    Seregin, Vladimir V; Coffer, Jeffery L

    2008-10-01

    A dry-etch spark ablation method was used to produce calcium disilicide (CaSi2/Si) layers on silicon surfaces, and their biomineralization under zero bias was followed by means of scanning electron microscopy, X-ray energy dispersive analysis, and Raman spectroscopy. CaSi2/Si wafers are bioinert at 25 degrees C and bioactive at 37 degrees C. Mechanistic insights regarding biomineralization were derived from an analysis of film growth morphology and chemical composition after various soaking periods in standard simulated body fluid (SBF). Changes in CaSi2/Si calcification behavior as a function of reaction temperature and pH, SBF concentration, and various surface modification processes were also employed for this purpose. During CaSi2/Si calcification under zero bias, calcium phosphate (CaP) growth is strongly dependent on the structural degradation of CaSi2/Si grains. Surface silanol groups, initially present on the as-prepared material, cannot induce CaP nucleation, which begins only upon delamination of CaSi2/Si layers. The calcium phosphate phases, which are present during various growth stages, possibly include a combination of Mg-substituted whitlockite, monetite, and tricalcium phosphate.

  5. Electrodeposition of HAp coatings on Ti6Al4V alloy and its electrochemical behavior in simulated body fluid solution

    NASA Astrophysics Data System (ADS)

    Thanh Dinh, Thi Mai; Thom Nguyen, Thi; Pham, Thi Nam; Phuong Nguyen, Thu; Thu Trang Nguyen, Thi; Hoang, Thai; Grossin, David; Bertrand, Ghislaine; Drouet, Christophe

    2016-06-01

    Hydroxyapatite (HAp) coatings were prepared on Ti6Al4V substrate by electrodeposition method from electrolyte solution containing Ca(NO3)2, NH4H2PO4 and NaNO3. The results show that the HAp coatings were single phase crystals of HAp. Scanning electron microscope (SEM) images present that HAp/Ti6Al4V have flake shapes which arrange to form like-coral agglomerates. In vitro test of the Ti6Al4V and HAp/Ti6Al4V in simulated body fluid (SBF) solution was investigated with different immersion times. pH of SBF solution decreased and the mass of materials increased. SEM images prove the formation of apatite on the surface of Ti6Al4V and HAp/Ti6Al4V. The corrosion current density during immersion time of substrate is always higher than the one of HAp/Ti6Al4V because the deposited HAp can protect well for the substrate.

  6. Baryon acoustic oscillations in 2D. II. Redshift-space halo clustering in N-body simulations

    NASA Astrophysics Data System (ADS)

    Nishimichi, Takahiro; Taruya, Atsushi

    2011-08-01

    We measure the halo power spectrum in redshift space from cosmological N-body simulations, and test the analytical models of redshift distortions particularly focusing on the scales of baryon acoustic oscillations. Remarkably, the measured halo power spectrum in redshift space exhibits a large-scale enhancement in amplitude relative to the real-space clustering, and the effect becomes significant for the massive or highly biased halo samples. These findings cannot be simply explained by the so-called streaming model frequently used in the literature. By contrast, a physically motivated perturbation theory model developed in the previous paper reproduces the halo power spectrum very well, and the model combining a simple linear scale-dependent bias can accurately characterize the clustering anisotropies of halos in two dimensions, i.e., line-of-sight and its perpendicular directions. The results highlight the significance of nonlinear coupling between density and velocity fields associated with two competing effects of redshift distortions, i.e., Kaiser and Finger-of-God effects, and a proper account of this effect would be important in accurately characterizing the baryon acoustic oscillations in two dimensions.

  7. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

    NASA Astrophysics Data System (ADS)

    Pallozzi Lavorante, Luca; Dirk Ebert, Hans

    2008-07-01

    Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

  8. Homogeneous hydride formation path in α-Zr: Molecular dynamics simulations with the charge-optimized many-body potential

    DOE PAGES

    Zhang, Yongfeng; Bai, Xian-Ming; Yu, Jianguo; ...

    2016-06-01

    A formation path for homogeneous γ hydride formation in hcp α-Zr, from solid solution to the ζ and then the γ hydride, was demonstrated using molecular static calculations and molecular dynamic simulations with the charge-optimized many-body (COMB) potential. Hydrogen has limited solubility in α-Zr. Once the solubility limit is exceeded, the stability of solid solution gives way to that of coherent hydride phases such as the ζ hydride by planar precipitation of hydrogen. At finite temperatures, the ζ hydride goes through a partial hcp-fcc transformation via 1/3 <1¯100> slip on the basal plane, and transforms into a mixture of γmore » hydride and α-Zr. In the ζ hydride, slip on the basal plane is favored thermodynamically with negligible barrier, and is therefore feasible at finite temperatures without mechanical loading. The transformation process involves slips of three equivalent shear partials, in contrast to that proposed in the literature where only a single shear partial was involved. The adoption of multiple slip partials minimizes the macroscopic shape change of embedded hydride clusters and the shear strain accumulation in the matrix, and thus reduces the overall barrier needed for homogeneous γ hydride formation. In conclusion, this formation path requires finite temperatures for hydrogen diffusion without mechanical loading. Therefore, it should be effective at the cladding operating conditions.« less

  9. Homogeneous hydride formation path in α-Zr: Molecular dynamics simulations with the charge-optimized many-body potential

    SciTech Connect

    Zhang, Yongfeng; Bai, Xian-Ming; Yu, Jianguo; Tonks, Michael R.; Noordhoek, Mark J.; Phillpot, Simon R.

    2016-06-01

    A formation path for homogeneous γ hydride formation in hcp α-Zr, from solid solution to the ζ and then the γ hydride, was demonstrated using molecular static calculations and molecular dynamic simulations with the charge-optimized many-body (COMB) potential. Hydrogen has limited solubility in α-Zr. Once the solubility limit is exceeded, the stability of solid solution gives way to that of coherent hydride phases such as the ζ hydride by planar precipitation of hydrogen. At finite temperatures, the ζ hydride goes through a partial hcp-fcc transformation via 1/3 <1¯100> slip on the basal plane, and transforms into a mixture of γ hydride and α-Zr. In the ζ hydride, slip on the basal plane is favored thermodynamically with negligible barrier, and is therefore feasible at finite temperatures without mechanical loading. The transformation process involves slips of three equivalent shear partials, in contrast to that proposed in the literature where only a single shear partial was involved. The adoption of multiple slip partials minimizes the macroscopic shape change of embedded hydride clusters and the shear strain accumulation in the matrix, and thus reduces the overall barrier needed for homogeneous γ hydride formation. In conclusion, this formation path requires finite temperatures for hydrogen diffusion without mechanical loading. Therefore, it should be effective at the cladding operating conditions.

  10. Hydrothermal calcium modification of 316L stainless steel and its apatite forming ability in simulated body fluid.

    PubMed

    Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki

    2011-01-01

    To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.

  11. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.

    PubMed

    Kannan, M Bobby; Raman, R K Singh

    2008-05-01

    The successful applications of magnesium-based alloys as degradable orthopaedic implants are mainly inhibited due to their high degradation rates in physiological environment and consequent loss in the mechanical integrity. This study examines the degradation behaviour and the mechanical integrity of calcium-containing magnesium alloys using electrochemical techniques and slow strain rate test (SSRT) method, respectively, in modified-simulated body fluid (m-SBF). Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) results showed that calcium addition enhances the general and pitting corrosion resistances of magnesium alloys significantly. The corrosion current was significantly lower in AZ91Ca alloy than that in AZ91 alloy. Furthermore, AZ91Ca alloy exhibited a five-fold increase in the surface film resistance than AZ91 alloy. The SSRT results showed that the ultimate tensile strength and elongation to fracture of AZ91Ca alloy in m-SBF decreased only marginally (approximately 15% and 20%, respectively) in comparison with these properties in air. The fracture morphologies of the failed samples are discussed in the paper. The in vitro study suggests that calcium-containing magnesium alloys to be a promising candidate for their applications in degradable orthopaedic implants, and it is worthwhile to further investigate the in vivo corrosion behaviour of these alloys.

  12. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid.

    PubMed

    Gu, X N; Zhou, W R; Zheng, Y F; Cheng, Y; Wei, S C; Zhong, S P; Xi, T F; Chen, L J

    2010-12-01

    Magnesium alloys have been recently developed as biodegradable implant materials, yet there has been no study concerning their corrosion fatigue properties under cyclic loading. In this study the die-cast AZ91D (A for aluminum 9%, Z for zinc 1% and D for a fourth phase) and extruded WE43 (W for yttrium 4%, E for rare earth mischmetal 3%) alloys were chosen to evaluate their fatigue and corrosion fatigue behaviors in simulated body fluid (SBF). The die-cast AZ91D alloy indicated a fatigue limit of 50MPa at 10⁷ cycles in air compared to 20MPa at 10⁶ cycles tested in SBF at 37°C. A fatigue limit of 110MPa at 10⁷ cycles in air was observed for extruded WE43 alloy compared to 40MPa at 10⁷ cycles tested in SBF at 37°C. The fatigue cracks initiated from the micropores when tested in air and from corrosion pits when tested in SBF, respectively. The overload zone of the extruded WE43 alloy exhibited a ductile fracture mode with deep dimples, in comparison to a brittle fracture mode for the die-cast AZ91D. The corrosion rate of the two experimental alloys increased under cyclic loading compared to that in the static immersion test.

  13. On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid.

    PubMed

    Hänzi, Anja C; Gunde, Petra; Schinhammer, Michael; Uggowitzer, Peter J

    2009-01-01

    This study documents the influence of different surface conditions produced by various heat treatments on the in vitro degradation performance of an Mg-Y-RE alloy (WE43) investigated by immersion in simulated body fluid. WE43 samples were, respectively (i) annealed at 525 degrees C (plus artificial aging at 250 degrees C in one case) and afterwards polished; and (ii) polished, annealed at 500 degrees C in air and subsequently investigated in the oxidized state. Thermogravimetric analysis (TGA) indicates a mass gain during oxidation in air, following a square-root law over time. X-ray diffraction spectra imply a growing Y(2)O(3) layer upon oxidation, and Auger electron spectroscopy depth profiles show an increased oxide layer thickness which develops according to the behavior observed by TGA. Macroscopically, the degradation performance of the differently heat-treated samples can be divided into two groups. Annealed and polished samples show a fast and homogeneous degradation which slows with time. Their degradation behavior is approximated by a parabolic law. Oxidized samples exhibit a slow initial degradation rate which increases when the protection of the oxide layer is reduced. Overall, they reveal a sigmoidal degradation behavior. Here the differing degradation performances of the annealed-polished and the oxidized samples are related to the different surface conditions and explained on the basis of a depletion hypothesis.

  14. Underestimating the safety benefits of a new vaccine: the impact of acellular pertussis vaccine versus whole-cell pertussis vaccine on health services utilization.

    PubMed

    Hawken, Steven; Manuel, Douglas G; Deeks, Shelley L; Kwong, Jeffrey C; Crowcroft, Natasha S; Wilson, Kumanan

    2012-12-01

    The population-level safety benefits of the acellular pertussis vaccine may have been underestimated because only specific adverse events were considered, not overall impact on health services utilization. Using the Vaccine and Immunization Surveillance in Ontario (VISION) system, the authors analyzed data on 567,378 children born between April 1994 and March 1996 (before introduction of acellular pertussis vaccine) and between April 1998 and March 2000 (after introduction of acellular pertussis vaccine) in Ontario, Canada. Using the self-controlled case series study design, they examined emergency room visits and hospital admissions occurring after routine pediatric vaccinations. The authors determined the relative incidence of events taking place before introduction of the acellular vaccine versus after introduction by calculating relative incidence ratios (RIRs). The observed RIRs demonstrated a highly statistically significant reduction in relative incidence after introduction of the acellular vaccine. RIRs for vaccine administered at ages 2, 4, 6, and 18 months were 1.82 (95% confidence interval (CI): 1.64, 2.01), 1.91 (95% CI: 1.71, 2.13), 1.54 (95% CI: 1.38, 1.72), and 1.51 (95% CI: 1.34, 1.69), respectively, comparing event rates before the introduction of acellular vaccine with those after introduction. The authors estimated that approximately 90 emergency room visits and 9 admissions per month were avoided by switching to the acellular vaccine, which is a 38-fold higher impact than when they considered only admissions for febrile and afebrile convulsions. Future analyses comparing vaccines for safety should examine specific endpoints and general health services utilization.

  15. Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Chao, D. F. K.

    1983-01-01

    Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  16. Comparison of cardiovascular and biomechanical parameters of supine lower body negative pressure and upright lower body positive pressure to simulate activity in 1/6 G and 3/8 G.

    PubMed

    Schlabs, Thomas; Rosales-Velderrain, Armando; Ruckstuhl, Heidi; Stahn, Alexander C; Hargens, Alan R

    2013-07-15

    For future space exploration missions, it is important to determine the best method of simulating on Earth cardiovascular and biomechanical conditions for lunar and Martian gravities. For this purpose, we compared exercise performed within a lower body negative pressure (LBNP) and a lower body positive pressure (LBPP) chamber. Twelve subjects underwent a protocol of resting and walking (0.25 Froude) within supine LBNP and upright LBPP simulation. Each protocol was performed in simulated 1/6 G and 3/8 G. We assessed heart rate (HR), mean arterial blood pressure, oxygen consumption (Vo2), normalized stride length, normalized vertical peak ground reaction force, duty factor, cadence, perceived exertion (Borg), and comfort of the subject. A mixed linear model was employed to determine effects of the simulation on the respective parameters. Furthermore, parameters were compared with predicted values for lunar and Martian gravities to determine the method that showed the best agreement. During walking, all cardiovascular and biomechanical parameters were unaffected by the simulation used for lunar and Martian gravities. During rest, HR and Vo2 were lower in supine LBNP compared with upright LBPP. HR, Vo2, and normalized vertical peak ground reaction force obtained with supine LBNP and upright LBPP showed good agreement with predicted values. Since supine LBNP and upright LBPP are lacking significant differences, we conclude that both simulations are suited to simulate the cardiovascular and biomechanical conditions during activity in lunar and Martian gravities. Operational characteristics and the intended application should be considered when choosing either supine LBNP or upright LBPP to simulate partial gravities on Earth.

  17. Head and neck response of a finite element anthropomorphic test device and human body model during a simulated rotary-wing aircraft impact.

    PubMed

    White, Nicholas A; Danelson, Kerry A; Gayzik, F Scott; Stitzel, Joel D

    2014-11-01

    A finite element (FE) simulation environment has been developed to investigate aviator head and neck response during a simulated rotary-wing aircraft impact using both an FE anthropomorphic test device (ATD) and an FE human body model. The head and neck response of the ATD simulation was successfully validated against an experimental sled test. The majority of the head and neck transducer time histories received a CORrelation and analysis (CORA) rating of 0.7 or higher, indicating good overall correlation. The human body model simulation produced a more biofidelic head and neck response than the ATD experimental test and simulation, including change in neck curvature. While only the upper and lower neck loading can be measured in the ATD, the shear force, axial force, and bending moment were reported for each level of the cervical spine in the human body model using a novel technique involving cross sections. This loading distribution provides further insight into the biomechanical response of the neck during a rotary-wing aircraft impact.

  18. SPH/N-body simulations of small (D = 10 km) monolithic asteroidal breakups and improved parametric relations for Monte-Carlo collisional models

    NASA Astrophysics Data System (ADS)

    Ševecek, Pavel; Broz, Miroslav; Nesvorny, David; Durda, Daniel D.; Asphaug, Erik; Walsh, Kevin J.; Richardson, Derek C.

    2016-10-01

    Detailed models of asteroid collisions can yield important constrains for the evolution of the Main Asteroid Belt, but the respective parameter space is large and often unexplored. We thus performed a new set of simulations of asteroidal breakups, i.e. fragmentations of intact targets, subsequent gravitational reaccumulation and formation of small asteroid families, focusing on parent bodies with diameters D = 10 km.Simulations were performed with a smoothed-particle hydrodynamics (SPH) code (Benz & Asphaug 1994), combined with an efficient N-body integrator (Richardson et al. 2000). We assumed a number of projectile sizes, impact velocities and impact angles. The rheology used in the physical model does not include friction nor crushing; this allows for a direct comparison to results of Durda et al. (2007). Resulting size-frequency distributions are significantly different from scaled-down simulations with D = 100 km monolithic targets, although they may be even more different for pre-shattered targets.We derive new parametric relations describing fragment distributions, suitable for Monte-Carlo collisional models. We also characterize velocity fields and angular distributions of fragments, which can be used as initial conditions in N-body simulations of small asteroid families. Finally, we discuss various uncertainties related to SPH simulations.

  19. Does Acellular Dermal Matrix Thickness Affect Complication Rate in Tissue Expander Based Breast Reconstruction?

    PubMed Central

    2016-01-01

    Background. While the benefits of using acellular dermal matrices (ADMs) in breast reconstruction are well described, their use has been associated with additional complications. The purpose of this study was to determine if ADM thickness affects complications in breast reconstruction. Methods. A retrospective chart review was performed including all tissue expander based breast reconstructions with AlloDerm (LifeCell, Branchburg, NJ) over 4 years. We evaluated preoperative characteristics and assessed postoperative complications including seroma, hematoma, infection, skin necrosis, and need for reintervention. We reviewed ADM thickness and time to Jackson-Pratt (JP) drain removal. Results. Fifty-five patients underwent 77 ADM-associated tissue expander based breast reconstructions, with average age of 48.1 years and average BMI of 25.9. Average ADM thickness was 1.21 mm. We found higher complication rates in the thick ADM group. Significant associations were found between smokers and skin necrosis (p < 0.0001) and seroma and prolonged JP drainage (p = 0.0004); radiated reconstructed breasts were more likely to suffer infections (p = 0.0085), and elevated BMI is a significant predictor for increased infection rate (p = 0.0037). Conclusion. We found a trend toward increased complication rates with thicker ADMs. In the future, larger prospective studies evaluating thickness may provide more information. PMID:27190645

  20. Acellular dermal matrix slings in tissue expander breast reconstruction: are there substantial benefits?

    PubMed

    Collis, George N; TerKonda, Sarvam P; Waldorf, James C; Perdikis, Galen

    2012-05-01

    Acellular dermal matrix (ADM) slings in breast reconstruction are increasingly used but are not yet validated. This study compares immediate, expander-based breast reconstruction with and without the use of inferolateral ADM slings. There were 63 patients (106 breasts) in the ADM group and 42 patients (68 breasts) in the control group. Initial intraoperative fill volumes were significantly greater in the ADM group, median 69% full (250 mL) versus 50% full (180 mL; P < 0.001). However, the number of days to complete expansion between the 2 groups was similar. One less office visit was required to complete the fills in the ADM group (P < 0.01). Drains were removed 3 days later in the ADM group (P < 0.01). Overall complication rate was greater in the ADM group (18.9% vs. 7.4%, P < 0.05), with a slightly higher percentage of expanders requiring removal due to infection in the ADM group (5.7% vs. 4.4%, P = NS). This study suggests inferolateral ADM slings in expander-based breast reconstruction allow for significantly increased initial fill volumes and may offer an aesthetic advantage; however, its use is costly and increases complications.

  1. Human keratinocyte growth and differentiation on acellular porcine dermal matrix in relation to wound healing potential.

    PubMed

    Zajicek, Robert; Mandys, Vaclav; Mestak, Ondrej; Sevcik, Jan; Königova, Radana; Matouskova, Eva

    2012-01-01

    A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7-10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs), CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing.

  2. Three-dimensional Reconstruction of the Microstructure of Human Acellular Nerve Allograft

    PubMed Central

    Zhu, Shuang; Zhu, Qingtang; Liu, Xiaolin; Yang, Weihong; Jian, Yutao; Zhou, Xiang; He, Bo; Gu, Liqiang; Yan, Liwei; Lin, Tao; Xiang, Jianping; Qi, Jian

    2016-01-01

    The exact inner 3D microstructure of the human peripheral nerve has been a mystery for decades. Therefore, it has been difficult to solve several problems regarding peripheral nerve injury and repair. We used high-resolution X-ray computed microtomography (microCT) to scan a freeze-dried human acellular nerve allograft (hANA). The microCT images were then used to reconstruct a 3D digital model, which was used to print a 3D resin model of the nerve graft. The 3D digital model of the hANA allowed visualization of all planes. The magnified 3D resin model clearly showed the nerve bundles and basement membrane tubes of the hANA. Scanning electron microscopy (SEM) was used to analyse the microstructure of the hANA. Compared to the SEM images, the microCT image clearly demonstrated the microstructure of the hANA cross section at a resolution of up to 1.2 μm. The 3D digital model of the hANA facilitates a clear and easy understanding of peripheral nerve microstructure. Furthermore, the enlarged 3D resin model duplicates the unique inner structure of each individual hANA. This is a crucial step towards achieving 3D printing of a hANA or nerve that can be used as a nerve graft. PMID:27476584

  3. Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study

    PubMed Central

    Ferrando, Pietro Maria; Balmativola, Davide; Cambieri, Irene; Scalzo, Maria Stella; Bergallo, Massimiliano; Annaratone, Laura; Casarin, Stefania; Fumagalli, Mara; Stella, Maurizio; Sapino, Anna; Castagnoli, Carlotta

    2016-01-01

    Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco’s Modified Eagle’s Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties. PMID:26918526

  4. Biopolymer gel matrix as acellular scaffold for enhanced dermal tissue regeneration.

    PubMed

    Judith, Rangasamy; Nithya, Mariappan; Rose, Chellan; Mandal, Asit Baran

    2012-07-01

    Biological grafts have drawbacks such as donor scarcity, disease transmission, tissue infection, while the scaffolds of either collagen or chitosan fabrics fail to become part of the tissue at the wound site, though they favor the formation of connective tissue matrix. This study developed a novel composite consisting of the combination of atelocollagen and chitosan in order to provide a biodegradable molecular matrix in gel form as a biomimetic surface for cell attachment, to promote the wound healing in excision wounds. We found that the topical application of biopolymer composite on the wound promoted cell proliferation, migration and collagen deposition overtime. The enhanced cellular activity in the collagen-chitosan treated wound tissue was also assed by increased levels of Platelet derived growth factor (PDGF) and Nerve growth factor (NGF) associated with elevated levels of antioxidants and decreased level of lipid peroxidation. The acellular matrix-like topical application material is designed to guide the eventual re-establishment of an anatomically normal skin. The results of this study demonstrate the feasibility of multi-cell regeneration on a molecular system that mimics tissue engineering in vivo.

  5. Characterization of acellular dermal matrices (ADMs) prepared by two different methods.

    PubMed

    Walter, R J; Matsuda, T; Reyes, H M; Walter, J M; Hanumadass, M

    1998-03-01

    The efficacy of acellular dermal matrix (ADM) in the treatment of full-thickness skin injuries as a dermal substitute depends on its low antigenicity, capacity for rapid vascularization, and stability as a dermal template. These properties will be determined largely by the final composition of the ADM. We have treated human skin with either Dispase followed by Triton X-100 detergent or NaCl followed by SDS detergent, cryosectioned the resulting ADMs, and then characterized them immunohistochemically. Staining for cell-associated antigens (HLA-ABC, HLA-DR, vimentin, desmin, talin), extracellular matrix components (chondroitin sulfate, fibronectin, laminin, vitronectin, hyaluronic acid), elastin, and collagen type VII was dramatically reduced or absent from ADMs prepared by both methods. However, significant amounts of elastin, keratan sulfate, laminin, and collagen types III and IV were still observed in both ADMs. Both methods of ADM preparation resulted in extensive extraction of both cellular and extracellular components of the skin but retention of the basic dermal architecture. In general, ADM prepared by the NaCl-SDS method retained larger amounts of each antigen than did that prepared by the Dispase-Triton method. This was most evident for laminin and type VII collagen but larger amounts of type IV collagen, fibronectin, desmin, elastin, and HLA-DR were also evident in the NaCl-SDS ADM.

  6. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix.

    PubMed

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua

    2016-07-01

    The objective of this study was to extract and characterize an advanced collagen aggregate (Ag-col) from porcine acellular dermal matrix (pADM). Based on histological examination, scanning electron microscopy (SEM) and atomic force microscope (AFM), Ag-col was composed of the D-periodic cross-striated collagen fibrils and thick collagen fiber bundles with uneven diameters and non-orientated arrangement. Fourier transform infrared (FTIR) spectra of pADM, Ag-col and Col were similar and revealed the presence of the triple helix. Circular dichroism (CD) analysis exhibited a slightly higher content of α-helix but inappreciably less amount of random coil structure in Ag-col compared to Col. Moreover, imino acid contents of pADM, Ag-col and Col were 222.43, 218.30 and 190.01 residues/1000 residues, respectively. From zeta potential analysis, a net charge of zero was found at pH 6.45 and 6.11 for Ag-col and Col, respectively. Differential scanning calorimetry (DSC) study suggested that the Td of Ag-col was 20°C higher than that of Col as expected, and dynamic mechanical analysis (DMA) indicated that Ag-col possessed a higher storage modulus but similar loss factor compared to Col. Therefore, the collagen aggregate from pADM could serve as a better alternative source of collagens for further applications in food and biological industries.

  7. Does tetanus-diphtheria-acellular pertussis vaccination interfere with serodiagnosis of pertussis infection?

    PubMed

    Pawloski, Lucia C; Kirkland, Kathryn B; Baughman, Andrew L; Martin, Monte D; Talbot, Elizabeth A; Messonnier, Nancy E; Tondella, Maria Lucia

    2012-06-01

    An anti-pertussis toxin (PT) IgG enzyme-linked immunosorbent assay (ELISA) was analytically validated for the diagnosis of pertussis at a cutoff of 94 ELISA units (EU)/ml. Little was known about the performance of this ELISA in the diagnosis of adults recently vaccinated with tetanus-diphtheria-acellular pertussis (Tdap) vaccine, which contains PT. The goal of this study was to determine when the assay can be used following Tdap vaccination. A cohort of 102 asymptomatic health care personnel (HCP) vaccinated with Tdap (Adacel; Sanofi Pasteur) were aged 19 to 79 years (median, 47 years) at vaccination. For each HCP, specimens were available for evaluation at 2 to 10 time points (prevaccination to 24 months postvaccination), and geometric mean concentrations (GMC) for the cohort were calculated at each time point. Among 97 HCP who responded to vaccination, a mixed-model analysis with prediction and tolerance intervals was performed to estimate the time at which serodiagnosis can be used following vaccination. The GMCs were 8, 21, and 9 EU/ml at prevaccination and 4 and 12 months postvaccination, respectively. Eight (8%) of the 102 HCP reached antibody titers of ≥94 EU/ml during their peak response, but none had these titers by 6 months postvaccination. The calculated prediction and tolerance intervals were <94 EU/ml by 45 and 75 days postvaccination, respectively. Tdap vaccination 6 months prior to testing did not confound result interpretation. This seroassay remains a valuable diagnostic tool for adult pertussis.

  8. Speed-accuracy trade-offs during foraging decisions in the acellular slime mould Physarum polycephalum.

    PubMed

    Latty, Tanya; Beekman, Madeleine

    2011-02-22

    Speed-accuracy trade-offs (SATs) are thought to be a fundamental feature of biological information processing, yet most evidence of SATs comes from animals. Here, we examine SATs in the foraging decisions of an acellular, amoeboid organism: the slime mould Physarum polycephalum. Slime moulds were given a simple discrimination task: selecting the highest-quality food item from a set of three options. We investigated the effect of two stressors, light exposure and hunger, on the speed and accuracy of decision-making. We also examined the effect of task difficulty. When given a difficult discrimination task, stressed individuals tend to make faster decisions than non-stressed individuals. This effect was reversed in plasmodia given easy discrimination tasks, where stressed individuals made slower decisions than non-stressed individuals. We found evidence of SATs, such that individuals who made fast decisions were more likely to make costly errors by selecting the worst possible food option. Our results suggest that SATs occur in a wider range of taxa than previously considered.

  9. Tetanus, diphtheria, and acellular pertussis vaccination among women of childbearing age-United States, 2013.

    PubMed

    O'Halloran, Alissa C; Lu, Peng-Jun; Williams, Walter W; Ding, Helen; Meyer, Sarah A

    2016-07-01

    The incidence of pertussis in the United States has increased since the 1990s. Tetanus, diphtheria, and acellular pertussis (Tdap) vaccination of pregnant women provides passive protection to infants. Tdap vaccination is currently recommended for pregnant women during each pregnancy, but coverage among pregnant women and women of childbearing age has been suboptimal. Data from the 2013 Behavioral Risk Factor Surveillance System (BRFSS) and 2013 National Health Interview Survey (NHIS) were used to determine national and state-specific Tdap vaccination coverage among women of childbearing age by self-reported pregnancy status at the time of the survey. Although this study could not assess coverage of Tdap vaccination received during pregnancy because questions on whether Tdap vaccination was received during pregnancy were not asked in BRFSS and NHIS, demographic and access-to-care factors associated with Tdap vaccination coverage in this population were assessed. Tdap vaccination coverage among all women 18-44 years old was 38.4% based on the BRFSS and 23.3% based on the NHIS. Overall, coverage did not differ by pregnancy status at the time of the survey. Coverage among all women 18-44 years old varied widely by state. Age, race and ethnicity, education, number of children in the household, and access-to-care characteristics were independently associated with Tdap vaccination in both surveys. We identified associations of demographic and access-to-care characteristics with Tdap vaccination that can guide strategies to improve vaccination rates in women during pregnancy.

  10. Acellular Dermal Matrix in Reconstructive Breast Surgery: Survey of Current Practice among Plastic Surgeons

    PubMed Central

    Ibrahim, Ahmed M. S.; Koolen, Pieter G. L.; Ashraf, Azra A.; Kim, Kuylhee; Mureau, Marc A. M.; Lee, Bernard T.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) in plastic surgery have become increasingly popular particularly for breast reconstruction. Despite their advantages, questions exist regarding their association with a possible increased incidence of complications. We describe a collective experience of plastic surgeons’ use of ADMs in reconstructive breast surgery using an internet-based survey. Methods: Members of the American Society of Plastic Surgeons were recruited through voluntary, anonymous participation in an online survey. The web-based survey garnered information about participant demographics and their experience with ADM use in breast reconstruction procedures. After responses were collected, all data were anonymously processed. Results: Data were ascertained through 365 physician responses of which 99% (n = 361) completed the survey. The majority of participants were men (84.5%) between 51 and 60 years (37.4%); 84.2% used ADM in breast reconstruction, including radiated patients (79.7%). ADM use was not favored for nipple reconstruction (81.5%); 94.6% of participants used drains, and 87.8% administered antibiotics postoperatively. The most common complications were seroma (70.9%) and infection (16%), although 57.4% claimed anecdotally that overall complication rate was unchanged after incorporating ADM into their practice. High cost was a deterrent for ADM use (37.5%). Conclusions: Plastic surgeons currently use ADM in breast reconstruction for both immediate and staged procedures. Of those responding, a majority of plastic surgeons will incorporate drains and use postoperative antibiotics for more than 48 hours. PMID:25973359

  11. Using genipin-crosslinked acellular porcine corneal stroma for cosmetic corneal lens implants.

    PubMed

    Liu, Zhao; Zhou, Qiang; Zhu, Jixiang; Xiao, Jianhui; Wan, Pengxia; Zhou, Chenjing; Huang, Zheqian; Qiang, Na; Zhang, Wei; Wu, Zheng; Quan, Daping; Wang, Zhichong

    2012-10-01

    Acellular porcine corneal stroma (APCS) has been proven to maintain the matrix microenvironment and is therefore an ideal biomaterial for the repair and reconstruction of corneal stroma. This study aims to develop a method to prepare cosmetic corneal lens implants for leukoma using genipin-crosslinked APCS (Gc-APCS). The Gc-APCS was prepared from APCS immersed in 1.0% genipin aqueous solution (pH 5.5) for 4 h at 37 °C, followed by lyophilization at -10 °C. The color of the Gc-APCS gradually deepened to dark-blue. The degree of crosslinking was 45.7 ± 4.6%, measured by the decrease of basic and hydroxy amino acids. The porous structure and ultrastructure of collagenous lamellae were maintained, and the porosity and BET SSA were 72.7 ± 4.6% and 23.01 ± 3.45 m(2)/g, respectively. The Gc-APCS rehydrated to the physiological water content within 5 min and was highly resistant to collagenase digestion. There were no significant differences in the areal modulus and curvature variation between Gc-APCS and nature porcine cornea. The dark-blue pigments were stable to pH, light and implantation in vivo. Gc-APCS extracts had no inhibitory effects on the proliferation of keratocytes. Corneal neovascularization, graft degradation and corneal rejection were not observed within 6 months.

  12. The histocompatibility research of hair follicle stem cells with bladder acellular matrix

    PubMed Central

    Li, Jia; Wang, Wenguang; Li, Jiuzhi; Rexiati, Mulati; An, Henqing; Wang, Feng; Wang, Yujie

    2016-01-01

    Abstract Background: Hair follicle stem cells (HFSCs) were reported to have multidirectional differentiation ability and could be differentiated into melanocytes, keratin cells, smooth muscle cells, and neurons. However, the functionality of HFSCs in bladder tissue regeneration is unknown. Methods: This study was conducted to build HFSCs vs bladder acellular matrix (BAM) complexes (HFSCs–BAM complexes) in vitro and evaluated whether HFSCs have well biocompatibility with BAM. HFSCs were separated from SD rats. BAM scaffold was prepared from the submucosa of rabbit bladder tissue. Afterwards, HFSCs were inoculated on BAM. Results: HFSCs–BAM complexes grew rapidly through inverted microscope observation. Cell growth curve showed the proliferation was in stagnate phase at 7th and 8th day. Cytotoxicity assay showed the toxicity grading of BAM was 0 or 1. Scanning electron microscopy, HE staining, and masson staining showed that cells have germinated on the surface of scaffold. Conclusion: The results provide evidence that HFSCs–BAM complexes have well biocompatibility and accumulate important experimental basis for clinical applying of tissue engineering bladder. PMID:27828841

  13. Development and characterization of an acellular porcine medial meniscus for use in tissue engineering.

    PubMed

    Stapleton, Thomas W; Ingram, Joanne; Katta, Jaynath; Knight, Richard; Korossis, Sotirios; Fisher, John; Ingham, Eileen

    2008-04-01

    The objectives of this study were to characterize fresh porcine menisci and develop a decellularization protocol with a view to the generation of a biocompatible and biomechanically functional scaffold for use in tissue engineering/regeneration of the meniscus. Menisci were decellularized by exposing the tissue to freeze-thaw cycles, incubation in hypotonic tris buffer, 0.1% (w/v) sodium dodecyl sulfate in hypotonic buffer plus protease inhibitors, nucleases, hypertonic buffer followed by disinfection using 0.1% (v/v) peracetic acid and final washing in phosphate-buffered saline. Histological, immunohistochemical, and biochemical analyses of the decellularized tissue confirmed the retention of the major structural proteins. There was, however, a 59.4% loss of glycosaminoglycans. The histoarchitecture was unchanged, and there was no evidence of the expression of the major xenogeneic epitope, galactose-alpha-1,3-galactose. Biocompatibility of the acellular scaffold was determined by using contact cytotoxicity and extract cytotoxicity tests. Decellularized tissue and extracts were not cytotoxic to cells. Biomechanical properties were determined by indentation and tensile tests, which confirmed the retention of biomechanical properties following decellularization. In conclusion, this study has generated data on the production of a biocompatible, biomechanically functional scaffold for use in meniscal repair.

  14. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    PubMed Central

    Di Liddo, Rosa; Aguiari, Paola; Barbon, Silvia; Bertalot, Thomas; Mandoli, Amit; Tasso, Alessia; Schrenk, Sandra; Iop, Laura; Gandaglia, Alessandro; Parnigotto, Pier Paolo; Conconi, Maria Teresa; Gerosa, Gino

    2016-01-01

    Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary evaluation of heart valve prosthetic functionality. PMID:27789941

  15. Changing from whole-cell to acellular pertussis vaccines would trade superior tolerability for inferior protection.

    PubMed

    Herzog, Christian

    2015-01-01

    Notifications of infant deaths, assumed to be related to the introduction of new pentavalent DTwP-Hib-HBV childhood vaccines, caused, during 2008-2010 in few Asian countries, temporary interruptions of the respective vaccination programs. The sudden appearance of fatal cases was due to increased awareness/publicity and improved safety monitoring/reporting in countries with relatively high background infant mortalities. WHO investigations could not establish any causal relationships and vaccinations were again resumed. Recently, questions were raised in one concerned country as to why not to change to less reactogenic acellular pertussis (aP)-containing vaccines that are available in private practice and are generally perceived as 'better'. For resource-poor countries, the financial impacts render such a switch impossible and would also not be supported by external funding. Furthermore, it would be a disservice to the children, as in recent years evidence of inferior long-term efficacy of aP vaccines has accumulated. This report summarizes current knowledge on comparative whole-cell pertussis (wP) and aP vaccine performance, outlines the new July 2014 WHO guidance on the choice of pertussis vaccines and presents recent data on outbreak protection, antibody waning, long-term protection, wP-priming, pathogen adaptation, transmission and herd immunity.

  16. GalevNB: a conversion from N-BODY simulations to observations—its application on the study of UV-excess in star clusters

    NASA Astrophysics Data System (ADS)

    Pang, Xiaoying; Olczak, Christoph; Guo, Difeng; Spurzem, Rainer

    2015-08-01

    We present GalevNB (Galev for N-body simulations), an utility that converts fundamental stellar properties of N-body simulations into observational properties using the GALEV (GAlaxy EVolutionary synthesis models) package, and thus allowing direct comparisons between observations and N-body simulations. It works by converting fundamental stellar properties, such as stellar mass, temperature, luminosity and metallicity into observational magnitudes for a variety of filters of mainstream instruments/telescopes, such as HST, ESO, SDSS, 2MASS, etc., and into spectra that spans from far-UV (90 Å) to near-IR (160 μm). As an application, we use GalevNB to investigate the secular evolution of spectral energy distribution (SED) and color-magnitude diagram (CMD) of a simulated star cluster over a few hundred million years. The model cluster in this work is evolved using the most recent version of NBODY6++ utilizing many GPU cores in parallel to accelerate multi-node multi-core simulations (Wang et al. 2015), which is the MPI parallel version based on the state-of-the-art direct N-body integrator NBODY6GPU. With the results given by GalevNB, we discover an UV-excess in the integrated SED of the cluster over the whole simulation time. We also identify four candidates that contribute to the FUV peak, core helium burning stars, thermal pulsing asymptotic giant branch (TPAGB) stars, white dwarfs and naked helium stars. Among them, TAGB is a favorable candidate from theoretical point of view (O’connell 1999). On the contrary, white dwarf’s candidate position is controversial (Magris & Bruzual 1993, Landsman et al. 1998) because of low luminosity. The life time of massive star descendants: core helium burning stars and naked helium stars, is very short. Though both of they are very bright at the UV at the early age, their short-term emission makes them become insignificant candidates.

  17. Probing the Truncation of Galaxy Dark Matter Halos in High-Density Environments from Hydrodynamical N-Body Simulations

    NASA Astrophysics Data System (ADS)

    Limousin, Marceau; Sommer-Larsen, Jesper; Natarajan, Priyamvada; Milvang-Jensen, Bo

    2009-05-01

    We analyze high-resolution, N-body hydrodynamical simulations of fiducial galaxy clusters to probe tidal stripping of the dark matter subhalos. These simulations include a prescription for star formation allowing us to track the fate of the stellar component as well. We investigate the effect of tidal stripping on cluster galaxies hosted in these dark matter subhalos as a function of projected cluster-centric radius. To quantify the extent of the dark matter halos of cluster galaxies, we introduce the half-mass radius r 1/2 as a diagnostic, and study its evolution with projected cluster-centric distance R as a function of redshift. We find a well-defined trend for (r 1/2, R): the closer the galaxies are to the center of the cluster, the smaller the half-mass radius. Interestingly, this trend is inferred in all redshift frames examined in this work ranging from z = 0 to z = 0.7. At z = 0, galaxy halos in the central regions of clusters are found to be highly truncated, with the most compact half-mass radius of 10 kpc. We also find that r 1/2 depends on luminosity and we present scaling relations of r 1/2 with galaxy luminosity. The corresponding total mass of the cluster galaxies is also found to increase with projected cluster-centric distance and luminosity, but with more scatter than the (r 1/2, R) trend. Comparing the distribution of stellar mass to total mass for cluster galaxies, we find that the dark matter component is preferentially stripped, whereas the stellar component is much less affected by tidal forces. We compare these results with galaxy-galaxy lensing probes of r 1/2 and find qualitative agreement. Future surveys with space-based telescopes such as DUNE and SNAP, that combine wide-field and high-resolution imaging, will be able to probe the predicted (r 1/2, R) relation observationally.

  18. Comparative study of apatite formation on CaSiO3 ceramics in simulated body fluids with different carbonate concentrations.

    PubMed

    Iimori, Yusuke; Kameshima, Yoshikazu; Okada, Kiyoshi; Hayashi, Shigeo

    2005-01-01

    Apatite formation on CaSiO3 ceramics was investigated using two different simulated body fluids (SBF) proposed by Kokubo (1990) and Tas (2000) and three sample/SBF (S/S) ratios (1.0, 2.5 and 8.3 mg/ml) at 36.5 degrees C for 1-25 days. The CaSiO3 ceramic was prepared by firing coprecipitated gel with Ca/Si = 0.91 at 1400 degrees C. The bulk density was 2.14 g/cm3 and the relative density about 76%. The two SBF solutions contain different concentrations of HCO3- and Cl- ions, the concentrations of which are closer to human blood plasma in the Tas SBF formulation than in the Kokubo formulation. The pH values in the former solution are also more realistic. The CaSiO3 ceramics show apatite formation in SBF (Kokubo) after soaking for only 1 day at all S/S ratios whereas different phases were formed at each S/S ratio in SBF (Tas). The crystalline phases formed were mainly apatite at S/S = 1.0 mg/ml, carbonate-type apatite at 2.5 mg/ml and calcite at 8.3 mg/ml. At higher S/S ratios the increase in the Ca concentration became higher while the P concentration became lower in the reacted SBF. These changes in SBF concentrations and increasing pH occurred at higher S/S ratios, producing more favorable conditions in the SBF for the formation of carbonate bearing phases, finally leading to the formation of calcite instead of apatite in the higher HCO3- ion concentration SBF (Tas). Apatite is, however, formed in the lower HCO3- ion concentration SBF (Kokubo) even though the Ca and P concentrations change in a similar manner to SBF (Tas).

  19. COUNTS-IN-CYLINDERS IN THE SLOAN DIGITAL SKY SURVEY WITH COMPARISONS TO N-BODY SIMULATIONS

    SciTech Connect

    Berrier, Heather D.; Barton, Elizabeth J.; Bullock, James S.; Berrier, Joel C.; Zentner, Andrew R.; Wechsler, Risa H.

    2011-01-01

    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments, and a vital test of models of galaxy formation within the prevailing hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey Data Release 4 (SDSS DR4). We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations and data from SDSS DR4, to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent empirical models of galaxy clustering, that match observed two- and three-point clustering statistics well, fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3, and 6 h{sup -1} Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6 h{sup -1} Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h{sup -1} Mpc cylinder than the galaxies in any of the models we use. Simple phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.

  20. Corrosion Behaviour of Nitrogen-Implantation Ti-Ta-Nb Alloy in Physiological Solutions Simulating Real Conditions from Human Body

    NASA Astrophysics Data System (ADS)

    Drob, Silviu Iulian; Vasilescu, Cora; Drob, Paula; Vasilescu, Ecaterina; Gordin, Doina Margareta; Gloriant, Thierry

    2015-04-01

    We applied a new nitrogen-implantation technique (trademark Hardion+) using a source of nitrogen ions, electron cyclotron resonance that assures higher energy and deeper implantation than the conventional techniques. The N-implantation surface of the new Ti-25Ta-25Nb alloy was analyzed as follows: for the phase identification by x-ray diffraction (XRD) in a glancing geometry (1°); for the hardness by the nano-indentation method; for the corrosion behaviour in Ringer solutions of different pH values (simulating the real conditions from the human body) by cyclic and linear polarization, electrochemical impedance spectroscopy and the monitoring of the open circuit potentials and corresponding potential gradients. XRD pattern was indexed with face-centred cubic TiN compound partially substituted with TaN and NbN. The hardness increased about 2 times for the N-implantation alloy. The implantation layer had a protection effect, increasing the corrosion and passivation potentials and decreasing the tendency to passivation and passive current density, due to its compactness, reinforcement action. The corrosion current density and rate decreased by about 10 times and the polarization resistance increased by about 2 times, indicative of a more resistant nitride layer. The porosity was much reduced and the protection efficiency had values closed to 90%, namely the implantation treatment led to the formation of a dense, resistant layer. Impedance spectra showed that the capacitive behaviour of the N-implantation alloy was more insulating and protective. An electric equivalent circuit with two times constants was modelled.

  1. Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of nonprecessing, spinning, equal-mass black holes

    SciTech Connect

    Pan Yi; Buonanno, Alessandra; Buchman, Luisa T.; Chu, Tony; Scheel, Mark A.; Kidder, Lawrence E.; Pfeiffer, Harald P.

    2010-04-15

    We present the first attempt at calibrating the effective-one-body (EOB) model to accurate numerical relativity simulations of spinning, nonprecessing black-hole binaries. Aligning the EOB and numerical waveforms at low frequency over a time interval of 1000M, we first estimate the phase and amplitude errors in the numerical waveforms and then minimize the difference between numerical and EOB waveforms by calibrating a handful of EOB-adjustable parameters. In the equal-mass, spin aligned case, we find that phase and fractional amplitude differences between the numerical and EOB (2,2) mode can be reduced to 0.01 radian and 1%, respectively, over the entire inspiral waveforms. In the equal-mass, spin antialigned case, these differences can be reduced to 0.13 radian and 1% during inspiral and plunge, and to 0.4 radian and 10% during merger and ringdown. The waveform agreement is within numerical errors in the spin aligned case while slightly over numerical errors in the spin antialigned case. Using Enhanced LIGO and Advanced LIGO noise curves, we find that the overlap between the EOB and the numerical (2,2) mode, maximized over the initial phase and time of arrival, is larger than 0.999 for binaries with total mass 30M{sub {center_dot}-}200M{sub {center_dot}}. In addition to the leading (2,2) mode, we compare four subleading modes. We find good amplitude and frequency agreements between the EOB and numerical modes for both spin configurations considered, except for the (3,2) mode in the spin antialigned case. We believe that the larger difference in the (3,2) mode is due to the lack of knowledge of post-Newtonian spin effects in the higher modes.

  2. Corrosion and bioactivity performance of graphene oxide coating on TiNb shape memory alloys in simulated body fluid.

    PubMed

    Saud, Safaa N; Hosseinian S, Raheleh; Bakhsheshi-Rad, H R; Yaghoubidoust, F; Iqbal, N; Hamzah, E; Ooi, C H Raymond

    2016-11-01

    In the present work, the microstructure, corrosion, and bioactivity of graphene oxide (GO) coating on the laser-modified and -unmodified surfaces of TiNb shape memory alloys (SMAs) were investigated. The surface morphology and chemical composition was examined using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The surface modification was carried out via a femtosecond laser with the aim to increase the surface roughness, and thus increase the adhesion property. FE-SEM analysis of the laser-treated Ti-30at.% Nb revealed the increase in surface roughness and oxygen/nitrogen containing groups on the Ti-30at.% Nb surface after being surface modified via a femtosecond laser. Furthermore, the thickness of GO was increased from 35μm to 45μm after the surface was modified. Potentiodynamic polarisation and electrochemical impedance spectroscopy studies revealed that both the GO and laser/GO-coated samples exhibited higher corrosion resistance than that of the uncoated TiNb SMA sample. However, the laser/GO-coated sample presented the highest corrosion resistance in SBF at 37°C. In addition, during soaking in the simulated body fluid (SBF), both the GO and laser/GO coating improved the formation of apatite layer. Based on the bioactivity results, the GO coating exhibited a remarkable antibacterial activity against gram-negative bacteria compared with the uncoated. In conclusion, the present results indicate that Ti-30at.% Nb SMAs may be promising alternatives to NiTi for certain biomedical applications.

  3. Optimization of a Biomimetic Apatite Nanoparticle Delivery System for Non-viral Gene Transfection---a Simulated Body Fluid Approach

    NASA Astrophysics Data System (ADS)

    Das, Debobrato

    Current methods for gene delivery utilize nanocarriers such as liposomes and viral vectors that may produce in vivo toxicity, immunogenicity, or mutagenesis. Moreover, these common high-cost systems have a low efficacy of gene-vehicle transport across the cell plasma membrane followed by inadequate release and weak intracellular stability of the genetic sequence. Thus, this study aims to maximize gene transfection while minimizing cytotoxicity by utilizing supersaturated blood-plasma ions derived from simulated body fluids (SBF). With favorable electrostatic interactions to create biocompatible calcium-phosphate nanoparticles (NPs) derived from biomimetic apatite (BA), results suggest that the SBF system, though naturally sensitive to reaction conditions, after optimization can serve as a tunable and versatile platform for the delivery of various types of nucleic acids. From a systematic exploration of the effects of nucleation pH, incubation temperature, and time on transfection efficiency, the study proposes distinct characteristic trends in SBF BA-NP morphology, cellular uptake, cell viability, and gene modulation. Specifically, with aggressive nucleation and growth of BA-NPs in solution (observed via scanning electron microscopy), the ensuing microenvironment imposes a more toxic cellular interaction (indicated by alamarBlue and BCA assays), limiting particle uptake (fluorescence experiments) and subsequent gene knockdown (quantitative loss of function assays). Controlled precipitation of BA-NPs function to increase particle accessibility by surrounding cells, and subsequently enhance uptake and transfection efficiency. By closely examining such trends, an optimal fabrication condition of pH 6.5-37C can be observed where particle growth is more tamed and less chaotic, providing improved, favorable cellular interactions that increase cell uptake and consequently maximize gene transfection, without compromising cellular viability.

  4. Impact of extraneous proteins on the gastrointestinal fate of sunflower seed (Helianthus annuus) oil bodies: a simulated gastrointestinal tract study.

    PubMed

    Makkhun, Sakunkhun; Khosla, Amit; Foster, Tim; McClements, David Julian; Grundy, Myriam M L; Gray, David A

    2015-01-01

    In this study, we examined the physicochemical nature of sunflower seed oil bodies (in the absence and presence of added protein) exposed to gastrointestinal conditions in vitro: crude oil bodies (COB); washed oil bodies (WOB); whey protein isolate-enriched oil bodies (WOB-WPI); and, sodium caseinate enriched-oil bodies (WOB-SC). All oil body emulsions were passed through an in vitro digestion model that mimicked the stomach and duodenal environments, and their physicochemical properties were measured before, during, and after digestion. Oil bodies had a positive charge under gastric conditions because the pH was below the isoelectric point of the adsorbed protein layer, but they had a negative charge under duodenal conditions which was attributed to changes in interfacial composition resulting from adsorption of bile salts. Oil bodies were highly susceptible to flocculation and coalescence in both gastric and duodenal conditions. SDS-PAGE analysis indicated degradation of oleosin proteins (ca. 18-21 kDa) to a greater or lesser extent (dependent on the emulsion) during the gastric phase in all emulsions tested; there is evidence that some oleosin remained intact in the crude oil body preparation during this phase of the digestion process. Measurements of protein displacement from the surface of COBs during direct exposure to bile salts, without inclusion of a gastric phase, indicated the removal of intact oleosin from native oil bodies.

  5. Body temperature changes during simulated bacterial infection in a songbird: fever at night and hypothermia during the day.

    PubMed

    Sköld-Chiriac, Sandra; Nord, Andreas; Tobler, Michael; Nilsson, Jan-Åke; Hasselquist, Dennis

    2015-09-01

    Although fever (a closely regulated increase in body temperature in response to infection) typically is beneficial, it is energetically costly and may induce detrimentally high body temperatures. This can increase the susceptibility to energetic bottlenecks and risks of overheating in some organisms. Accordingly, it could be particularly interesting to study fever in small birds, which have comparatively high metabolic rates and high, variable body temperatures. We therefore investigated two aspects of fever and other sickness behaviours (circadian variation, dose dependence) in a small songbird, the zebra finch. We injected lipopolysaccharide (LPS) at the beginning of either the day or the night, and subsequently monitored body temperature, body mass change and food intake for the duration of the response. We found pronounced circadian variation in the body temperature response to LPS injection, manifested by (dose-dependent) hypothermia during the day but fever at night. This resulted in body temperature during the peak response being relatively similar during the day and night. Day-to-night differences might be explained in the context of circadian variation in body temperature: songbirds have a high daytime body temperature that is augmented by substantial heat production peaks during activity. This might require a trade-off between the benefit of fever and the risk of overheating. In contrast, at night, when body temperature is typically lower and less variable, fever can be used to mitigate infection. We suggest that the change in body temperature during infection in small songbirds is context dependent and regulated to promote survival according to individual demands at the time of infection.

  6. Co-simulation for performance prediction of integrated building and HVAC systems - An analysis of solution characteristics using a two-body system

    SciTech Connect

    Trcka, Marija; L.M. Hensena, Jan; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings and heating, ventilation and airconditioning (HVAC) systems can help reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers suffcient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation to integrate different BPS tools. Co-simulation approach represents a particular case of simulation scenario where at least two simulators solve coupled differential-algebraic systems of equations and exchange data that couples these equations during the time integration. This article analyzes how co-simulation influences consistency, stability and accuracy of the numerical approximation to the solution. Consistency and zero-stability are studied for a general class of the problem, while a detailed consistency and absolute stability analysis is given for a simple two-body problem. Since the accuracy of the numerical approximation to the solution is reduced in co-simulation, the article concludes by discussing ways for how to improve accuracy.

  7. Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects: biomechanics and validation of mathematical models

    PubMed Central

    Li, Ya-jun; Zhao, Bao-lin; Lv, Hao-ze; Qin, Zhi-gang; Luo, Min

    2016-01-01

    We hypothesized that a chemically extracted acellular allogeneic nerve graft used in combination with bone marrow mesenchymal stem cell transplantation would be an effective treatment for long-segment sciatic nerve defects. To test this, we established rabbit models of 30 mm sciatic nerve defects, and treated them using either an autograft or a chemically decellularized allogeneic nerve graft with or without simultaneous transplantation of bone marrow mesenchymal stem cells. We compared the tensile properties, electrophysiological function and morphology of the damaged nerve in each group. Sciatic nerves repaired by the allogeneic nerve graft combined with stem cell transplantation showed better recovery than those repaired by the acellular allogeneic nerve graft alone, and produced similar results to those observed with the autograft. These findings confirm that a chemically extracted acellular allogeneic nerve graft combined with transplantation of bone marrow mesenchymal stem cells is an effective method of repairing long-segment sciatic nerve defects. PMID:27651781

  8. Utilization of simulation tools in the HL-20 conceptual design process. [passenger-carrying lifting body portion of Personnel Launch System

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Powell, Richard W.; Ragsdale, W. A.

    1991-01-01

    The role of simulations in the design of the HL-20, the crew-carrying unpowered lifting-body component of the NASA Personnel Launch System, is reviewed and illustrated with drawings and diagrams. Detailed consideration is given to the overall implementation of a real-time simulation of the HL-20 approach and landing phase, the baseline and experimental control laws used in the flight-control system, autoland guidance and control laws (vertical and lateral steering), the control-surface mixer and actuator model, and simulation results. The simulations allowed identification and correction of design problems with respect to the position of the landing gear and the original maximum L/D ratio of 3.2.

  9. Acellular Dermal Matrix as a Core Strut for Projection in Nipple Reconstruction: Approaches for Three Different Methods of Breast Reconstruction

    PubMed Central

    Park, Gui-Yong; Cho, Hee-Eun; Lee, Byung-Il; Park, Seung-Ha

    2016-01-01

    Background The objective of this paper was to describe a novel technique for improving the maintenance of nipple projection in primary nipple reconstruction by using acellular dermal matrix as a strut in one of three different configurations, according to the method of prior breast reconstruction. The struts were designed to best fill the different types of dead spaces in nipple reconstruction depending on the breast reconstruction method. Methods A total of 50 primary nipple reconstructions were performed between May 2012 and May 2015. The prior breast reconstruction methods were latissimus dorsi (LD) flap (28 cases), transverse rectus abdominis myocutaneous (TRAM) flap (10 cases), or tissue expander/implant (12 cases). The nipple reconstruction technique involved the use of local flaps, including the C-V flap or star flap. A 1×2-cm acellular dermal matrix was placed into the core with O-, I-, and L-shaped struts for prior LD, TRAM, and expander/implant methods, respectively. The projection of the reconstructed nipple was measured at the time of surgery and at 3, 6, and 9 months postoperatively. Results The nine-month average maintenance of nipple projection was 73.0%±9.67% for the LD flap group using an O-strut, 72.0%±11.53% for the TRAM flap group using an I-strut, and 69.0%±10.82% for the tissue expander/implant group using an L-strut. There were no cases of infection, wound dehiscence, or flap necrosis. Conclusions The application of an acellular dermal matrix with a different kind of strut for each of 3 breast reconstruction methods is an effective addition to current techniques for improving the maintenance of long-term projection in primary nipple reconstruction. PMID:27689049

  10. Structural and redox behavior of OxyVita, a zero-linked polymeric hemoglobin: comparison with natural acellular polymeric hemoglobins.

    PubMed

    Harrington, John P; Orlik, Kseniya; Orlig, Kseniya; Zito, Samantha L; Wollocko, Jacek; Wollocko, Hanna

    2010-04-01

    A zero-linked polymeric hemoglobin (OxyVita Hb) has been developed for application as an acellular therapeutic hemoglobin-based-oxygen-carrier (HBOC). For effective and safe oxygen binding, transport and delivery, an HBOC must meet essential molecular requirements related to its structural integrity and redox stability. OxyVita is a super polymer possessing an average M.wt. of 17 x 10(6) Da. Structural integrity was determined by unfolding studies of OxyVita in the presence of increasing concentrations of urea. The unfolding midpoints (D(1/2)) of different preparations of OxyVita (solution and powder forms) were compared to Lumbricus Hb (LtHb) and Arenicola Hb (ArHb), natural acellular polymeric hemoglobins, which are serving as models for an effective and safe acellular HBOC. Reduction studies of OxyVita Hb using endogenous reducing agents were also investigated. Results from these studies indicate that: 1) OxyVita Hb exhibits greater resistance to conformational change than either LtHb or ArHb in the reduced (oxyHb) state; and 2) the reduction of met OxyVita Hb to oxyHb occurs slowly in the presence of either ascorbic acid (70% reduction in 560 min.) or beta-NADH (40% reduction in 90 min.). These studies provide consistent evidence that OxyVita Hb possesses physiochemical properties that exhibit structural integrity and redox behavior necessary for functioning as an effective and safe HBOC within clinical applications. These results are in agreement with observations made by other investigators as to the reduction in heme-loss of OxyVita Hb, essential for the reversible binding/release of molecular oxygen within the circulatory system.

  11. Alternatives to Acellular Dermal Matrix: Utilization of a Gore DualMesh Sling as a Cost-Conscious Adjunct for Breast Reconstruction

    PubMed Central

    Butterworth, James; Petty, Paul

    2017-01-01

    Objective: This study seeks an alternative to acellular dermal matrix in 2-staged breast reconstruction while minimizing cost. It was hypothesized that use of a Gore DualMesh would allow for similar intraoperative tissue expander fill volumes, time to second-stage reconstruction, and number of postoperative fills compared with acellular dermal matrix at only a fraction of the expense. Methods: Retrospective analysis comparing Gore DualMesh (59 breasts, 34 patients), acellular dermal matrix (13 breasts, 8 patients), and total muscle coverage (25 breasts, 14 patients) for postmastectomy breast reconstruction was performed. Time to second-stage reconstruction, number of expansions, and relative initial fill volumes were compared between the 3 groups. Secondarily, complication rates were also considered, including seroma, infection, expander/implant explantation, removal of mesh, and capsular contracture. Statistical analysis was performed utilizing the Fisher exact test and the χ2 test for categorical variables and the Mann-Whitney U test for continuous variables. Results: Relative initial fill volumes, number of expansions, and time to second-stage reconstruction showed no statistical difference between the acellular dermal matrix and Gore DualMesh groups (P = .494, P = .146, and P = .539, respectively). Furthermore, the Gore DualMesh group underwent significantly fewer fills (P < .001) and had a higher relative initial fill volume (P < .001) than the total muscle coverage group. The additional cost per breast as a result of including DualMesh was on average $385 versus $4287 for acellular dermal matrix. Complication rates were similar between all 3 groups without statistically significant differences. Conclusions: Gore DualMesh represents a safe alternative to acellular dermal matrix for breast reconstruction with similar aesthetic results in certain patients at a fraction of the cost. PMID:28261372

  12. Delayed primary closure of contaminated abdominal wall defects with non-crosslinked porcine acellular dermal matrix compared with conventional staged repair: a retrospective study

    PubMed Central

    2014-01-01

    Introduction Synthetic mesh has been used traditionally to repair abdominal wall defects, but its use is limited in the case of bacterial contamination. New biological materials are now being used successfully for delayed primary closure of contaminated abdominal wall defects. The costs of biological materials may prevent surgeons from using them. We compared the conventional staged repair of contaminated abdominal wall defects with a single-stage procedure using a non-crosslinked porcine acellular dermal matrix. Methods A total of 14 cases with Grade 3 contaminated abdominal wall defects underwent delayed primary closure of the abdomen using a non-crosslinked porcine acellular dermal matrix (Strattice™ Reconstructive Tissue Matrix, LifeCell Corp., Branchburg, NJ, USA). The results were compared with a group of 14 patients who had received conventional treatment for the repair of contaminated abdominal wall defects comprising a staged repair during two separate hospital admissions employing synthetic mesh. Treatment modalities, outcomes, and costs were compared. Results In all cases treated with delayed primary closure employing non-crosslinked porcine acellular dermal matrix, there were no complications related to its use. Two patients died due to unrelated events. Although treatment costs were estimated to be similar in the two groups, the patients treated with porcine acellular dermal matrix spent less time as an inpatient than those receiving conventional two-stage repair. Conclusions Delayed primary closure of contaminated abdominal wall defects using a non-crosslinked porcine acellular dermal matrix may be a suitable alternative to conventional staged repair. In our patients, it resulted in early restoration of abdominal wall function and shorter hospitalization. The costs for treating contaminated abdominal wall defects using porcine acellular dermal matrix during a single hospital admission were not higher than costs for conventional two-stage repair

  13. A New Approach to Minimize Acellular Dermal Matrix Use in Prosthesis-based Breast Reconstruction

    PubMed Central

    Hadad, Ivan; Liu, Allen S.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) are often used to improve lower-pole contour, as well as allow for single-stage reconstruction, but numerous studies have shown an increased complication rate using ADM. As such, our group has developed a minimal-ADM-use technique to lower complications while effectively recreating lower-pole contour. Methods: A total of 380 postmastectomy prosthesis-based breast reconstructions were performed in 265 patients by a single surgeon. One hundred eight reconstructions were performed using the traditional ADM technique, with a large piece of ADM along the entire inferior and lateral borders. Two hundred twenty-five reconstructions were performed with the minimal-use technique, patching only the lateral area of the reconstruction. Thirty-five reconstructions were performed without the use of any ADM for high-risk reconstructions, most often in morbidly obese patients. Results: Comparing the traditional technique with the minimal-use technique, the seroma rate dropped from 3% to 0%. The rate of infection and reconstruction loss fell from 9% to 1%. Upon greatly reducing or eliminating the use of ADM use in obese patients, the seroma rate decreased from 15.4% to 5.7%, and the reconstruction loss rate decreased from 38% to 9%. Conclusions: This article describes a new surgical approach to minimize the amount of ADM necessary to create an aesthetically pleasing breast reconstruction. We believe that this approach helps avoid the complications of seroma, infection, and loss of the reconstruction. In certain obese patients, total avoidance of ADM may be the better choice. PMID:26301161

  14. Histologic, Molecular, and Clinical Evaluation of Explanted Breast Prostheses, Capsules, and Acellular Dermal Matrices for Bacteria

    PubMed Central

    Poppler, Louis; Cohen, Justin; Dolen, Utku Can; Schriefer, Andrew E.; Tenenbaum, Marissa M.; Deeken, Corey; Chole, Richard A.; Myckatyn, Terence M.

    2015-01-01

    Background Subclinical infections, manifest as biofilms, are considered an important cause of capsular contracture. Acellular dermal matrices (ADMs) are frequently used in revision surgery to prevent recurrent capsular contractures. Objective We sought to identify an association between capsular contracture and biofilm formation on breast prostheses, capsules, and ADMs in a tissue expander/implant (TE/I) exchange clinical paradigm. Methods Biopsies of the prosthesis, capsule, and ADM from patients (N = 26) undergoing TE/I exchange for permanent breast implant were evaluated for subclinical infection. Capsular contracture was quantified with Baker Grade and intramammary pressure. Biofilm formation was evaluated with specialized cultures, rtPCR, bacterial taxonomy, live:dead staining, and scanning electron microscopy (SEM). Collagen distribution, capsular histology, and ADM remodeling were quantified following fluorescent and light microscopy. Results Prosthetic devices were implanted from 91 to 1115 days. Intramammary pressure increased with Baker Grade. Of 26 patients evaluated, one patient had a positive culture and one patient demonstrated convincing evidence of biofilm morphology on SEM. Following PCR amplification 5 samples randomly selected for 16S rRNA gene sequencing demonstrated an abundance of suborder Micrococcineae, consistent with contamination. Conclusions Our data suggest that bacterial biofilms likely contribute to a proportion, but not all diagnosed capsular contractures. Biofilm formation does not appear to differ significantly between ADMs or capsules. While capsular contracture remains an incompletely understood but common problem in breast implant surgery, advances in imaging, diagnostic, and molecular techniques can now provide more sophisticated insights into the pathophysiology of capsular contracture. Level of Evidence PMID:26229126

  15. Direct Hospital Cost of Outcome Pathways in Implant-Based Reconstruction with Acellular Dermal Matrices

    PubMed Central

    Qureshi, Ali A.; Broderick, Kristen; Funk, Susan; Reaven, Nancy; Tenenbaum, Marissa M.

    2016-01-01

    Background: Current cost data on tissue expansion followed by exchange for permanent implant (TE/I) reconstruction lack a necessary assessment of the experience of a heterogenous breast cancer patient population and their multiple outcome pathways. We extend our previous analysis to that of direct hospital cost as bundling of payments is likely to follow the changing centralization of cancer care at the hospital level. Methods: We performed a retrospective analysis (2003–2009) of TE/I reconstructions with or without an acellular dermal matrix (ADM), namely Alloderm RTM. Postreconstructive events were analyzed and organized into outcome pathways as previously described. Aggregated and normalized inpatient and outpatient hospital direct costs and physician reimbursement were generated for each outcome pathway with or without ADM. Results: Three hundred sixty-seven patients were analyzed. The average 2-year hospital direct cost per TE/I breast reconstruction patient was $11,862 in the +ADM and $12,319 in the −ADM groups (P > 0.05). Initial reconstructions were costlier in the +ADM ($6,868) than in the −ADM ($5,615) group, but the average cost of subsequent postreconstructive events within 2 years was significantly lower in +ADM ($5,176) than −ADM ($6,704) patients (P < 0.05). When a complication occurred, but reconstruction was still completed within 2 years, greater costs were incurred in the −ADM than in the +ADM group for most scenarios, leading to a net equalization of cost between study groups. Conclusion: Although direct hospital cost is an important factor for resource and fund allocation, it should not remain the sole factor when deciding to use ADM in TE/I reconstruction. PMID:27622099

  16. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix

    PubMed Central

    Ye, Ken; Traianedes, Kathy; Choong, Peter F. M.; Myers, Damian E.

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell–matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair. PMID:26858950

  17. Micro-topography and reactivity of implant surfaces: an in vitro study in simulated body fluid (SBF).

    PubMed

    Gandolfi, M G; Taddei, P; Siboni, F; Perrotti, V; Iezzi, G; Piattelli, A; Prati, C

    2015-02-01

    The creation of micro-textured dental implant surfaces possessing a stimulating activity represents a challenge in implant dentistry; particularly, the formation of a thin, biologically active, calcium-phosphate layer on their surface could help to strengthen the bond to the surrounding bone. The aim of the present study was to characterize in terms of macrostructure, micro-topography and reactivity in simulated body fluid (SBF), the surface of titanium (Ti) implants blasted with TiO2 particles, acid etched with hydrofluoric acid, and activated with Ca and Mg-containing nanoparticles. Sandblasted and acid-etched implants were analyzed by ESEM-EDX (environmental scanning electron microscope with energy dispersive X-ray system) to study the micromorphology of the surface and to perform elemental X-ray microanalysis (microchemical analyses) and element mapping. ESEM-EDX analyses were performed at time 0 and after a 28-day soaking period in SBF Hank's balanced salt solution (HBSS) following ISO 23317 (implants for surgery—in vitro evaluation for apatite-forming ability of implant materials). Microchemical analyses (weight % and atomic %) and element mapping were carried out to evaluate the relative element content, element distribution, and calcium/phosphorus (Ca/P) atomic ratio. Raman spectroscopy was used to assess the possible presence of impurities due to manufacturing and to investigate the phases formed upon HBSS soaking. Micro-morphological analyses showed a micro-textured, highly rough surface with microgrooves. Microchemical analyses showed compositional differences among the apical, middle, and distal thirds. The micro-Raman analyses of the as-received implant showed the presence of amorphous Ti oxide and traces of anatase, calcite, and a carbonaceous material derived from the decomposition of an organic component of lipidic nature (presumably used as lubricant). A uniform layer of Ca-poor calcium phosphates (CaPs) (Ca/P ratio <1.47) was observed after

  18. Application of bladder acellular matrix in urinary bladder regeneration: the state of the art and future directions.

    PubMed

    Pokrywczynska, Marta; Gubanska, Iga; Drewa, Gerard; Drewa, Tomasz

    2015-01-01

    Construction of the urinary bladder de novo using tissue engineering technologies is the "holy grail" of reconstructive urology. The search for the ideal biomaterial for urinary bladder reconstruction has been ongoing for decades. One of the most promising biomaterials for this purpose seems to be bladder acellular matrix (BAM). In this review we determine the most important factors, which may affect biological and physical properties of BAM and its regeneration potential in tissue engineered urinary bladder. We also point out the directions in modification of BAM, which include incorporation of exogenous growth factors into the BAM structure. Finally, we discuss the results of the urinary bladder regeneration with cell seeded BAM.

  19. Real-time monitoring of the mechanism of poorly crystalline apatite cement conversion in the presence of chitosan, simulated body fluid and human blood.

    PubMed

    Rau, Julietta V; Generosi, Amanda; Komlev, Vladimir S; Fosca, Marco; Barinov, Sergey M; Albertini, Valerio Rossi

    2010-12-21

    In this study, the real-time monitoring of structural changes, occurring upon poorly crystalline apatite bone cement hardening in the presence of chitosan, simulated body fluid and human blood, was performed. Strong experimental evidence of octacalcium phosphate intermediate phase is provided. The energy dispersive X-ray diffraction was applied in situ to monitor the structural changes upon the transformation process, while the Fourier transform infrared spectroscopy and the scanning electron microscopy supplied information on the vibrational and morphological properties of the system. The cooperative action of chitosan and simulated body fluid induces the formation of a preferentially oriented hydroxyapatite phase, this process being similar to the oriented self-assembling process in collagen-apatite matrix in human plasma, occurring upon in vivo biomineralization. Conversely, the presence of blood does not induce any significant change in hardening kinetics and the final structure of the investigated cement.

  20. Analogue Materials Measured Under Simulated Lunar and Asteroid Environments: Application to Thermal Infrared Measurements of Airless Bodies

    NASA Astrophysics Data System (ADS)

    Donaldson Hanna, K. L.; Pieters, C. M.; Patterson, W., III; Moriarty, D.

    2012-12-01

    Remote sensing observations provide key insights into the composition and evolution of planetary surfaces. A fundamentally important component to any remote sensing study of planetary surfaces is laboratory measurements of well-characterized samples measured under the appropriate environmental conditions. The near-surface vacuum environment of airless bodies like the Moon and asteroids creates a thermal gradient in the upper hundred microns of regolith. Lab studies of particulate rocks and minerals as well as selected lunar soils under vacuum and lunar-like conditions have identified significant effects of this thermal gradient on thermal infrared (TIR) spectral measurements [e.g. Logan et al. 1973, Salisbury and Walter 1989, Thomas et al. 2010, Donaldson Hanna et al. 2012]. Compared to ambient conditions, these effects include: (1) the Christiansen feature (CF), an emissivity maximum diagnostic of mineralogy and average composition, shifts to higher wavenumbers and (2) an increase in spectral contrast of the CF relative to the Reststrahlen bands (RB), the fundamental molecular vibration bands due to Si-O stretching and bending. Such lab studies demonstrate the high sensitivity of TIR emissivity spectra to environmental conditions under which they are measured. The Asteroid and Lunar Environment Chamber (ALEC) is the newest addition to the RELAB at Brown University. The vacuum chamber simulates the space environment experienced by the near-surface soils of the Moon and asteroids. The internal rotation stage allows for six samples and two blackbodies to be measured without breaking vacuum (<10-4 mbar). Liquid nitrogen is used to cool the interior of the chamber, creating a cold, low emission environment (mimicking the space environment) for heated samples to radiate into. Sample cups can be heated in one of three configurations: (1) from below using heaters embedded in the base of the sample cup, (2) from above using a solar-like radiant heat source, and (3) from