Science.gov

Sample records for acellular slime mold

  1. Extended Eden model reproduces growth of an acellular slime mold

    NASA Astrophysics Data System (ADS)

    Wagner, Geri; Halvorsrud, Ragnhild; Meakin, Paul

    1999-11-01

    A stochastic growth model was used to simulate the growth of the acellular slime mold Physarum polycephalum on substrates where the nutrients were confined in separate drops. Growth of Physarum on such substrates was previously studied experimentally and found to produce a range of different growth patterns [Phys. Rev. E 57, 941 (1998)]. The model represented the aging of cluster sites and differed from the original Eden model in that the occupation probability of perimeter sites depended on the time of occupation of adjacent cluster sites. This feature led to a bias in the selection of growth directions. A moderate degree of persistence was found to be crucial to reproduce the biological growth patterns under various conditions. Persistence in growth combined quick propagation in heterogeneous environments with a high probability of locating sources of nutrients.

  2. Gravity related behavior of the acellular slime mold Physarum polycephalum (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Block, I.

    1992-01-01

    The objective of the experiment is to investigate the effect of near weightlessness on a single cell. The test object is the acellular slime mold Physarum polycephalum. This cell is composed of a network of protoplastic strands which perform rhythmic contractions in the minute range. These contractions of the strands' ectoplastic walls generate the force to drive the vigorous shuttle streaming of fluid protoplasm inside the strands (hydrostatic pressure flow). A net transport of protoplasm in one direction determines the direction of the cell's locomotion itself. In this way, gravity modifies the contraction rhythm of the strands, the streaming velocity of protoplasm in the strands, and the direction of locomotion of the whole slime mold (geotaxis). The other parts of this experiment will address the major question of how this cell, which does not possess any specialized gravireceptors, gets the information about the direction of the gravity vector. Details of the experimental setup are given.

  3. Potential sites for the perception of gravity in the acellular slime mold Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Block, I.; Briegleb, W.

    Recently a gravisensitivity of the acellular slime mold Physarum polycephalum, which possesses no specialized gravireceptor, could be established by conducting experiments under simulated and under real near weightlessness. In these experiments macroplasmodia showed a modulation of their contraction rhythm followed by regulation phenomena. Until now the perception mechanism for the gravistimulus is unknown, but several findings indicate the involvement of mitochondria: A) During the impediment of respiration the Og-reaction is inhibited and the regulation is reduced. B) The response to a light stimulus and the following regulation phenomena strongly resemble the behavior during exposure to Og, the only difference is that the two reactions are directed into opposite directions. In the blue-light reaction a flavin of the mitochondrial matrix seems to be involved in the light perception. C) The contraction rhythm as well as its modulations are coupled to rhythmic changes in the levels of ATP and calcium ions, involving the mitochondria as sites of energy production and of Ca++-storage. - So the mitochondria could be the site of the regulation and they possibly are the receptor sites for the light and gravity stimuli. - Also the observation of a morphologic polarity of the slime mold's plasmodial strands has to be considered: Cross-sections reveal that the ectoplasmic wall surrounding the streaming endoplasm is much thinner on the physically lower side than on the upper side of the strand - this applies to strands lying on or hanging on a horizontal surface. So, in addition to the mitochondria, also the morphologic polarity may be involved in the perception mechanism of the observed gravisensitivity and of the recently established geotaxis. - The potential role of the nuclei and of the contractile elements in the perception of gravity is also discussed.

  4. Slimeware: engineering devices with slime mold.

    PubMed

    Adamatzky, Andrew

    2013-01-01

    The plasmodium of the acellular slime mold Physarum polycephalum is a gigantic single cell visible to the unaided eye. The cell shows a rich spectrum of behavioral patterns in response to environmental conditions. In a series of simple experiments we demonstrate how to make computing, sensing, and actuating devices from the slime mold. We show how to program living slime mold machines by configurations of repelling and attracting gradients and demonstrate the workability of the living machines on tasks of computational geometry, logic, and arithmetic. PMID:23834592

  5. Gravitational response of the slime mold Physarum

    NASA Astrophysics Data System (ADS)

    Block, I.; Wolke, A.; Briegleb, W.

    1994-08-01

    The acellular slime mold Physarum polycephalum is used as a model system to investigate the graviresponse of single cells which possess no receptors specialized for the perception of gravity. To obtain insights into the gravity-signal transduciton mechanism the light response of the cell is used: Macroplsmodia of the slime mold show clear geo- and phototaxes. Gravity increases and white light decreases transiently the concentration frequency of plasmodial strands whereby both responses follow the same time pattern. Since mitochodria play major role in changing the contraction rhythm in response to light and gravity stimuli, the simultaneous and subsequent inductions of the opposing light and gravity responses and their mutual influences on one another were investigated. The experiments were performed in weightlessness (0 g) - simulated on the fast-rotating clinostat as well as in actual weightlessness during the IML-1 Space-Shuttle mission. The results indicate that mitochondria (chondriome) are part of the acceleration-stimulus reaction chain in Physarum. Two models for a direct gravireceptor mechanism are discussed.

  6. Streaming instability of aggregating slime mold amoebae

    NASA Astrophysics Data System (ADS)

    Levine, Herbert; Reynolds, William

    1991-05-01

    We propose a new model of aggregation in the cellular slime mold D. Discoideum. Our approach couples the excitable signaling system to amoeba chemotaxis; the resultant system of equations is tractable to analytical and numerical approaches. Using our model, we derive the existence of a streaming instability for the concentric target aggregation pattern.

  7. Chemotaxis in the Plasmodial Slime Mold, Physarum polycephalum.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.; Martin, Denise A.

    1998-01-01

    Describes a biology unit designed so that students pose their own questions and perform experiments to answer these questions. Plasmodial slime mold is employed as the focus of the study with background information about the mold provided. (DDR)

  8. Universal signals control slime mold stalk formation.

    PubMed

    van Es, S; Nieuwenhuijsen, B W; Lenouvel, F; van Deursen, E M; Schaap, P

    1994-08-16

    The primitive slime mold Dictyostelium minutum does not display oscillations during aggregation, cannot form migrating slugs, and does not form a prestalk/prespore pattern, all of which are characteristic for development of its advanced relative Dictyostelium discoideum. We used D. minutum to investigate whether slime molds share common mechanisms controlling development. In D. discoideum, the morphogen differentiation inducing factor (DIF) can induce stalk-cell differentiation in vitro. However, stalk formation in vivo is supposedly triggered by local depletion of DIF antagonists such as ammonia or cAMP. A homologue of the D. discoideum stalk gene ecmB was cloned in D. minutum that encodes a 3.4-kb mRNA, and its deduced amino acid sequence shows repeats of 24 amino acids that are characteristic for the D. discoideum ecmB gene. Remarkably, DIF effectively induces expression of the D. minutum ecmB gene and ammonia inhibits its expression. D. discoideum cells were transformed with a construct of the D. minutum ecmB promoter fused to the lacZ reporter gene and showed expression in the stalk, but not in the upper and lower cup of the fruiting body, which also express the D. discoideum ecmB gene. In D. discoideum, the D. minutum ecmB and the ecmB promoter are similarly activated by DIF and repressed by both cAMP and ammonia, suggesting that additional signaling is required for ecmB expression in upper and lower cup cells. Our data indicate that the extracellular signals controlling stalk formation and their intracellular signaling cascades including gene regulatory proteins remained highly conserved during slime mold evolution. PMID:8058783

  9. Using Cellular Slime Molds in the High School Laboratory

    ERIC Educational Resources Information Center

    Haskins, P. B.

    1977-01-01

    Described is the life cycle of the cellular slime molds Acrasiales. Experiments that can be used to explore the aggregation, migration, and culmination activities of the organism are suggested. Laboratory procedures for culturing these slime molds and listings of biological supply houses and literature references are also given. (MA)

  10. Star Mapping with Slime Mold Physarum Polycephalum

    NASA Astrophysics Data System (ADS)

    Mihklepp, M.; Domnitch, E.; Gelfand, D.; Foing, B. H.; van der Heide, E.

    2014-04-01

    Human curiosity and exploration towards outer space has led to many fantastic inventions and given way to alternative scenarios about the origins of life. In the Space Science in the Arts course together with ESTEC with support from ILEWG. I got interested about unicellular slime mold Physarum polycephalum. There has been and still is a lot of research on Physarum polycephalum. This brainless eucaryotic microbe has its smartness and external memory strategies. Physarum can navigate through a maze made of agar using the shortest route possible when two pieces of food are placed at two separate exits of the maze. It can build efficient networks - Physarum created network similar to the existing Tokyo train system. It is being used to control a robot, in USB-sensor and in sound synthesis. Right now there is a lot of research about using Physarum in bio-computing.

  11. Proteases in cellular slime mold development: evidence for their involvement.

    PubMed Central

    Fong, D; Bonner, J T

    1979-01-01

    Protein degradation appears to be essential for normal differentiation in the cellular slime mold Dictyostelium discoideum. Several protease inhibitors block normal differentiation, and in most cases this inhibition can be reversed by addition of amino acids. For example, chloroquine, which inhibits slime mold cathepsin B activity, interferred with development by blocking sorocarp formation, and this inhibition was reversed by the addition of amino acids. Tosyllysyl chloromethyl ketone also blocked development, and this inhibition was reversed by simultaneous additions of amino acids and glutathione. Moreover, the addition of antipain and leupeptin delayed sorocarp formation. These results, together with the finding reported earlier that cathepsin B activity is differentially localized in the prestalk-prespore zones of the migrating slugs, suggest that proteolysis might play a regulatory role in cellular slime mold differentiation. Images PMID:293735

  12. Route 20, Autobahn 7, and Slime Mold: Approximating the Longest Roads in USA and Germany With Slime Mold on 3-D Terrains.

    PubMed

    Adamatzky, Andrew I

    2014-01-01

    A cellular slime mould Physarum polycephalum is a monstrously large single cell visible by an unaided eye. The slime mold explores space in parallel, is guided by gradients of chemoattractants, and propagates toward sources of nutrients along nearly shortest paths. The slime mold is a living prototype of amorphous biological computers and robotic devices capable of solving a range of tasks of graph optimization and computational geometry. When presented with a distribution of nutrients, the slime mold spans the sources of nutrients with a network of protoplasmic tubes. This protoplasmic network matches a network of major transport routes of a country when configuration of major urban areas is represented by nutrients. A transport route connecting two cities should ideally be a shortest path, and this is usually the case in computer simulations and laboratory experiments with flat substrates. What searching strategies does the slime mold adopt when exploring 3-D terrains? How are optimal and transport routes approximated by protoplasmic tubes? Do the routes built by the slime mold on 3-D terrain match real-world transport routes? To answer these questions, we conducted pioneer laboratory experiments with Nylon terrains of USA and Germany. We used the slime mold to approximate route 20, the longest road in USA, and autobahn 7, the longest national motorway in Europe. We found that slime mold builds longer transport routes on 3-D terrains, compared to flat substrates yet sufficiently approximates man-made transport routes studied. We demonstrate that nutrients placed in destination sites affect performance of slime mold, and show how the mold navigates around elevations. In cellular automaton models of the slime mold, we have shown variability of the protoplasmic routes might depends on physiological states of the slime mold. Results presented will contribute toward development of novel algorithms for sensorial fusion, information processing, and decision making, and

  13. How cellular slime molds evade nematodes.

    PubMed Central

    Kessin, R H; Gundersen, G G; Zaydfudim, V; Grimson, M

    1996-01-01

    We have found a predator-prey association between the social amoeba Dictyostelium discoideum and the free soil living nematode Caenorhabditis elegans. C. elegans feeds on the amoebae and multiplies indefinitely when amoebae are the sole food source. In an environment created from soil, D. discoideum grows and develops, but not in the presence of C. elegans. During development, C. elegans feeds on amoebae until they aggregate and synthesize an extracellular matrix called the slime sheath. After the sheath forms, the aggregate and slug are protected. Adult nematodes ingest Dictyostelium spores, which pass through the gut of the worm without loss of structure and remain viable. Nematodes kill the amoebae but disperse the spores. The sheath that is constructed when the social amoebae aggregate and the spore coats of the individual cells may protect against this predator. Individual amoebae may also protect themselves by secreting compounds that repel nematodes. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8643493

  14. Brainless but Multi-Headed: Decision Making by the Acellular Slime Mould Physarum polycephalum.

    PubMed

    Beekman, Madeleine; Latty, Tanya

    2015-11-20

    Because of its peculiar biology and the ease with which it can be cultured, the acellular slime mould Physarum polycephalum has long been a model organism in a range of disciplines. Due to its macroscopic, syncytial nature, it is no surprise that it has been a favourite amongst cell biologists. Its inclusion in the experimental tool kit of behavioural ecologists is much more recent. These recent studies have certainly paid off. They have shown that, for an organism that lacks a brain or central nervous system, P. polycephalum shows rather complex behaviour. For example, it is capable of finding the shortest path through a maze, it can construct networks as efficient as those designed by humans, it can solve computationally difficult puzzles, it makes multi-objective foraging decisions, it balances its nutrient intake and it even behaves irrationally. Are the slime mould's achievements simply "cute", worthy of mentioning in passing but nothing to take too seriously? Or do they hint at the fundamental processes underlying all decision making? We will address this question after reviewing the decision-making abilities of the slime mould. PMID:26189159

  15. Feeding Behaviors in Cellular Slime Molds: A Microbial System To Study Competition.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1997-01-01

    Describes a laboratory project for first-year biology students that examines competition among various cellular slime molds. After a brief introduction to the topic of competition and basic life history information about cellular slime molds, students choose a question and design original experiments to seek an answer. (Author/AIM)

  16. Material Implementation of Hyperincursive Field on Slime Mold Computer

    NASA Astrophysics Data System (ADS)

    Aono, Masashi; Gunji, Yukio-Pegio

    2004-08-01

    "Elementary Conflictable Cellular Automaton (ECCA)" was introduced by Aono and Gunji as a problematic computational syntax embracing the non-deterministic/non-algorithmic property due to its hyperincursivity and nonlocality. Although ECCA's hyperincursive evolution equation indicates the occurrence of the deadlock/infinite-loop, we do not consider that this problem declares the fundamental impossibility of implementing ECCA materially. Dubois proposed to call a computing system where uncertainty/contradiction occurs "the hyperincursive field". In this paper we introduce a material implementation of the hyperincursive field by using plasmodia of the true slime mold Physarum polycephalum. The amoeboid organism is adopted as a computing media of ECCA slime mold computer (ECCA-SMC) mainly because; it is a parallel non-distributed system whose locally branched tips (components) can act in parallel with asynchronism and nonlocal correlation. A notable characteristic of ECCA-SMC is that a cell representing a spatio-temporal segment of computation is occupied (overlapped) redundantly by multiple spatially adjacent computing operations and by temporally successive computing events. The overlapped time representation may contribute to the progression of discussions on unconventional notions of the time.

  17. A would-be nervous system made from a slime mold.

    PubMed

    Adamatzky, Andrew

    2015-01-01

    The slime mold Physarum polycephalum is a huge single cell that has proved to be a fruitful material for designing novel computing architectures. The slime mold is capable of sensing tactile, chemical, and optical stimuli and converting them to characteristic patterns of its electrical potential oscillations. The electrical responses to stimuli may propagate along protoplasmic tubes for distances exceeding tens of centimeters, as impulses in neural pathways do. A slime mold makes decisions about its propagation direction based on information fusion from thousands of spatially extended protoplasmic loci, similarly to a neuron collecting information from its dendritic tree. The analogy is distant yet inspiring. We speculate on whether alternative-would-be-nervous systems can be developed and practically implemented from the slime mold. We uncover analogies between the slime mold and neurons, and demonstrate that the slime mold can play the roles of primitive mechanoreceptors, photoreceptors, and chemoreceptors; we also show how the Physarum neural pathways develop. The results constituted the first step towards experimental laboratory studies of nervous system implementation in slime molds. PMID:25514435

  18. Novel chlorinated dibenzofurans isolated from the cellular slime mold, Polysphondylium filamentosum, and their biological activities.

    PubMed

    Kikuchi, Haruhisa; Kubohara, Yuzuru; Nguyen, Van Hai; Katou, Yasuhiro; Oshima, Yoshiteru

    2013-08-01

    Cellular slime molds are expected to have the huge potential for producing secondary metabolites including polyketides, and we have studied the diversity of secondary metabolites of cellular slime molds for their potential utilization as new biological resources for natural product chemistry. From the methanol extract of fruiting bodies of Polysphondylium filamentosum, we obtained new chlorinated benzofurans Pf-1 (4) and Pf-2 (5) which display multiple biological activities; these include stalk cell differentiation-inducing activity in the well-studied cellular slime mold, Dictyostelium discoideum, and inhibitory activities on cell proliferation in mammalian cells and gene expression in Drosophila melanogaster. PMID:23746784

  19. Myosins and cell dynamics in cellular slime molds.

    PubMed

    Yumura, Shigehiko; Uyeda, Taro Q P

    2003-01-01

    Myosin is a mechanochemical transducer and serves as a motor for various motile activities such as cell migration, cytokinesis, maintenance of cell shape, phagocytosis, and morphogenesis. Nonmuscle myosin in vivo does not either stay static at specific subcellular regions or construct highly organized structures, such as sarcomere in skeletal muscle cells. The cellular slime mold Dictyostelium discoideum is an ideal "model organism" for the investigation of cell movement and cytokinesis. The advantages of this organism prompted researchers to carry out pioneering cell biological, biochemical, and molecular genetic studies on myosin II, which resulted in elucidation of many fundamental features of function and regulation of this most abundant molecular motor. Furthermore, recent molecular biological research has revealed that many unconventional myosins play various functions in vivo. In this article, how myosins are organized and regulated in a dynamic manner in Dictyostelium cells is reviewed and discussed. PMID:12722951

  20. On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum

    PubMed Central

    Mayne, Richard; Adamatzky, Andrew; Jones, Jeff

    2015-01-01

    The plasmodium of slime mold Physarum polycephalum behaves as an amorphous reaction-diffusion computing substrate and is capable of apparently ‘intelligent’ behavior. But how does intelligence emerge in an acellular organism? Through a range of laboratory experiments, we visualize the plasmodial cytoskeleton—a ubiquitous cellular protein scaffold whose functions are manifold and essential to life—and discuss its putative role as a network for transducing, transmitting and structuring data streams within the plasmodium. Through a range of computer modeling techniques, we demonstrate how emergent behavior, and hence computational intelligence, may occur in cytoskeletal communications networks. Specifically, we model the topology of both the actin and tubulin cytoskeletal networks and discuss how computation may occur therein. Furthermore, we present bespoke cellular automata and particle swarm models for the computational process within the cytoskeleton and observe the incidence of emergent patterns in both. Our work grants unique insight into the origins of natural intelligence; the results presented here are therefore readily transferable to the fields of natural computation, cell biology and biomedical science. We conclude by discussing how our results may alter our biological, computational and philosophical understanding of intelligence and consciousness. PMID:26478782

  1. On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum.

    PubMed

    Mayne, Richard; Adamatzky, Andrew; Jones, Jeff

    2015-01-01

    The plasmodium of slime mold Physarum polycephalum behaves as an amorphous reaction-diffusion computing substrate and is capable of apparently 'intelligent' behavior. But how does intelligence emerge in an acellular organism? Through a range of laboratory experiments, we visualize the plasmodial cytoskeleton-a ubiquitous cellular protein scaffold whose functions are manifold and essential to life-and discuss its putative role as a network for transducing, transmitting and structuring data streams within the plasmodium. Through a range of computer modeling techniques, we demonstrate how emergent behavior, and hence computational intelligence, may occur in cytoskeletal communications networks. Specifically, we model the topology of both the actin and tubulin cytoskeletal networks and discuss how computation may occur therein. Furthermore, we present bespoke cellular automata and particle swarm models for the computational process within the cytoskeleton and observe the incidence of emergent patterns in both. Our work grants unique insight into the origins of natural intelligence; the results presented here are therefore readily transferable to the fields of natural computation, cell biology and biomedical science. We conclude by discussing how our results may alter our biological, computational and philosophical understanding of intelligence and consciousness. PMID:26478782

  2. Breakdown of self/nonself recognition in cannibalistic strains of the predatory slime mold, Dictyostelium caveatum

    PubMed Central

    1986-01-01

    Dictyostelium caveatum amebas feed upon both bacteria and the amebas of other cellular slime molds. The capacity to feed extensively upon other cellular slime molds is unique to D. caveatum amebas. They are able to phagocytose amebas larger than themselves by nibbling pieces of the cells until they are small enough to ingest. Here we report the isolation from previously cloned stock cultures of stable, cannibalistic strains of D. caveatum in which self/nonself recognition has broken down. Because of the extensive cannibalism, amebas of these strains do not complete multicellular development, and instead wander about for long periods while feeding upon each other. Although the cannibalistic behavior resembles that exhibited by the presumably diploid giant cells in the sexual cycle of other cellular slime molds, these strains are haploid and do not form macrocysts. PMID:3001102

  3. Slime mold uses an externalized spatial "memory" to navigate in complex environments.

    PubMed

    Reid, Chris R; Latty, Tanya; Dussutour, Audrey; Beekman, Madeleine

    2012-10-23

    Spatial memory enhances an organism's navigational ability. Memory typically resides within the brain, but what if an organism has no brain? We show that the brainless slime mold Physarum polycephalum constructs a form of spatial memory by avoiding areas it has previously explored. This mechanism allows the slime mold to solve the U-shaped trap problem--a classic test of autonomous navigational ability commonly used in robotics--requiring the slime mold to reach a chemoattractive goal behind a U-shaped barrier. Drawn into the trap, the organism must rely on other methods than gradient-following to escape and reach the goal. Our data show that spatial memory enhances the organism's ability to navigate in complex environments. We provide a unique demonstration of a spatial memory system in a nonneuronal organism, supporting the theory that an externalized spatial memory may be the functional precursor to the internal memory of higher organisms. PMID:23045640

  4. Beyond input-output computings: error-driven emergence with parallel non-distributed slime mold computer.

    PubMed

    Aono, Masashi; Gunji, Yukio-Pegio

    2003-10-01

    The emergence derived from errors is the key importance for both novel computing and novel usage of the computer. In this paper, we propose an implementable experimental plan for the biological computing so as to elicit the emergent property of complex systems. An individual plasmodium of the true slime mold Physarum polycephalum acts in the slime mold computer. Modifying the Elementary Cellular Automaton as it entails the global synchronization problem upon the parallel computing provides the NP-complete problem solved by the slime mold computer. The possibility to solve the problem by giving neither all possible results nor explicit prescription of solution-seeking is discussed. In slime mold computing, the distributivity in the local computing logic can change dynamically, and its parallel non-distributed computing cannot be reduced into the spatial addition of multiple serial computings. The computing system based on exhaustive absence of the super-system may produce, something more than filling the vacancy. PMID:14563567

  5. Spatiotemporal Symmetry in Rings of Coupled Biological Oscillators of Physarum Plasmodial Slime Mold

    SciTech Connect

    Takamatsu, Atsuko; Tanaka, Reiko; Yamada, Hiroyasu; Nakagaki, Toshiyuki; Fujii, Teruo; Endo, Isao

    2001-08-13

    Spatiotemporal patterns in rings of coupled biological oscillators of the plasmodial slime mold, Physarum polycephalum, were investigated by comparing with results analyzed by the symmetric Hopf bifurcation theory based on group theory. In three-, four-, and five-oscillator systems, all types of oscillation modes predicted by the theory were observed including a novel oscillation mode, a half period oscillation, which has not been reported anywhere in practical systems. Our results support the effectiveness of the symmetric Hopf bifurcation theory in practical systems.

  6. Spatiotemporal Symmetry in Rings of Coupled Biological Oscillators of Physarum Plasmodial Slime Mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Tanaka, Reiko; Yamada, Hiroyasu; Nakagaki, Toshiyuki; Fujii, Teruo; Endo, Isao

    2001-08-01

    Spatiotemporal patterns in rings of coupled biological oscillators of the plasmodial slime mold, Physarum polycephalum, were investigated by comparing with results analyzed by the symmetric Hopf bifurcation theory based on group theory. In three-, four-, and five-oscillator systems, all types of oscillation modes predicted by the theory were observed including a novel oscillation mode, a half period oscillation, which has not been reported anywhere in practical systems. Our results support the effectiveness of the symmetric Hopf bifurcation theory in practical systems.

  7. Cytochemical study of the nucleolus of the slime mold Dictyostelium discoideum

    SciTech Connect

    Benichou, J.C.; Quiviger, B.; Ryter, A.

    1983-07-01

    The nucleus of the slime mold Dictyostelium discoideum is characterized by the presence of several large dense masses which are all in tight contact with the nuclear membrane. These dense masses, considered as nucleoli, present a rather homogeneous texture, in which dense chromatin, fibrillar, and granular material are not easily detected. The autoradiographic study of (/sup 3/H)uridine pulse-labeled cells showed that the majority of the silver grains were located inside these masses. The use of EDTA regressive-staining, acetylation and enzymatic digestion indicated that they are mostly composed of RNP and are totally devoid of dense chromatin as the rest of the nucleus is. After treatment with actinomycin D, fibrillar and granular material segregated but no chromatin could be found. All these observations confirmed that the dense masses correspond to nucleoli despite their peculiar ultrastructure. It can also be concluded that this type of nucleoli cannot be considered as a taxonomic character of the slime molds because it does not exist in all slime molds and was observed in some dinoflagellates, and ascomycetes.

  8. Streaming instability of slime mold amoebae: An analytical model

    NASA Astrophysics Data System (ADS)

    Höfer, Thomas; Maini, Philip K.

    1997-08-01

    During the aggregation of amoebae of the cellular slime mould Dictyostelium, the interaction of chemical waves of the signaling molecule cAMP with cAMP-directed cell movement causes the breakup of a uniform cell layer into branching patterns of cell streams. Recent numerical and experimental investigations emphasize the pivotal role of the cell-density dependence of the chemical wave speed for the occurrence of the streaming instability. A simple, analytically tractable, model of Dictyostelium aggregation is developed to test this idea. The interaction of cAMP waves with cAMP-directed cell movement is studied in the form of coupled dynamics of wave front geometries and cell density. Comparing the resulting explicit instability criterion and dispersion relation for cell streaming with the previous findings of model simulations and numerical stability analyses, a unifying interpretation of the streaming instability as a cAMP wave-driven chemotactic instability is proposed.

  9. Ground Testing of the EMCS Seed Cassette for Biocompatibility with the Cellular Slime Mold, Dictyostelium Discoideum

    NASA Technical Reports Server (NTRS)

    Hanely, Julia C.; Reinsch, Sigrid; Myers, Zachary A.; Freeman, John; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David G.

    2014-01-01

    The European Modular Cultivation System, EMCS, was developed by ESA for plant experiments. To expand the use of flight verified hardware for various model organisms, we performed ground experiments to determine whether ARC EMCS Seed Cassettes could be adapted for use with cellular slime mold for future space flight experiments. Dictyostelium is a cellular slime mold that can exist both as a single-celled independent organism and as a part of a multicellular colony which functions as a unit (pseudoplasmodium). Under certain stress conditions, individual amoebae will aggregate to form multicellular structures. Developmental pathways are very similar to those found in Eukaryotic organisms, making this a uniquely interesting organism for use in genetic studies. Dictyostelium has been used as a genetic model organism for prior space flight experiments. Due to the formation of spores that are resistant to unfavorable conditions such as desiccation, Dictyostelium is also a good candidate for use in the EMCS Seed Cassettes. The growth substratum in the cassettes is a gridded polyether sulfone (PES) membrane. A blotter beneath the PES membranes contains dried growth medium. The goals of this study were to (1) verify that Dictyostelium are capable of normal growth and development on PES membranes, (2) develop a method for dehydration of Dictyostelium spores with successful recovery and development after rehydration, and (3) successful mock rehydration experiments in cassettes. Our results show normal developmental progression in two strains of Dictyostelium discoideum on PES membranes with a bacterial food source. We have successfully performed a mock rehydration of spores with developmental progression from aggregation to slug formation, and production of morphologically normal spores within 9 days of rehydration. Our results indicate that experiments on the ISS using the slime mold, Dictyostelium discoideum could potentially be performed in the flight verified hardware of

  10. Fully decentralized control of a soft-bodied robot inspired by true slime mold.

    PubMed

    Umedachi, Takuya; Takeda, Koichi; Nakagaki, Toshiyuki; Kobayashi, Ryo; Ishiguro, Akio

    2010-03-01

    Animals exhibit astoundingly adaptive and supple locomotion under real world constraints. In order to endow robots with similar capabilities, we must implement many degrees of freedom, equivalent to animals, into the robots' bodies. For taming many degrees of freedom, the concept of autonomous decentralized control plays a pivotal role. However a systematic way of designing such autonomous decentralized control system is still missing. Aiming at understanding the principles that underlie animals' locomotion, we have focused on a true slime mold, a primitive living organism, and extracted a design scheme for autonomous decentralized control system. In order to validate this design scheme, this article presents a soft-bodied amoeboid robot inspired by the true slime mold. Significant features of this robot are twofold: (1) the robot has a truly soft and deformable body stemming from real-time tunable springs and protoplasm, the former is used for an outer skin of the body and the latter is to satisfy the law of conservation of mass; and (2) fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the long-distance physical interaction between the body parts stemming from the law of conservation of protoplasmic mass. Simulation results show that this robot exhibits highly supple and adaptive locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design methodology for autonomous decentralized control system. PMID:20204398

  11. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum.

    PubMed

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere. PMID:26236301

  12. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum

    PubMed Central

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G.

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere. PMID:26236301

  13. A coupled-oscillator model with a conservation law for the rhythmic amoeboid movements of plasmodial slime molds

    NASA Astrophysics Data System (ADS)

    Tero, A.; Kobayashi, R.; Nakagaki, T.

    2005-06-01

    Experiments on the fusion and partial separation of plasmodia of the true slime mold Physarum polycephalum are described, concentrating on the spatio-temporal phase patterns of rhythmic amoeboid movement. On the basis of these experimental results we introduce a new model of coupled oscillators with one conserved quantity. Simulations using the model equations reproduce the experimental results well.

  14. Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds

    PubMed Central

    Hoppe, Thomas; Kutschera, Ulrich

    2015-01-01

    On decaying wood or litter in forests, plasmodial slime molds (myxomycetes) represent a large fraction of eukaryotic protists that feed on bacteria. In his seminal book Experimental Physiology of Plants (1865), Julius Sachs referred to the multinucleate plasmodium of myxomycetes, which were considered at that time as primitive plants (or fungi). Today it is well established that myxomycetes are members of the Amoebozoa (Protista). In this study we compare the mobility of myxamoebae of 3 European species, Lycogala epidendrum (order Liceales), Tubulifera arachnoidea, and Trichia decipiens (order Trichiales). Using agar plates, on which 3 separate bacterial species were cultivated as prey organisms (Methylobacterium mesophilicum, Escherichia coli, Agrobacterium tumefaciens), we document large differences in cell motility between the myxomycetes investigated. In addition, we show that the 3 species of myxamoebae can be distinguished based on their average cell size. These data shed light on the mode of co-occurrence via differential substrate utilization in these members of the Amoebozoa. PMID:26357877

  15. Experimental Verification of Fully Decentralized Control Inspired by Plasmodium of True Slime Mold

    NASA Astrophysics Data System (ADS)

    Umedachi, Takuya; Takeda, Koichi; Nakagaki, Toshiyuki; Kobayashi, Ryo; Ishiguro, Akio

    This paper presents a fully decentralized control inspired by plasmodium of true slime mold and its validity using a soft-bodied amoeboid robot. The notable features of this paper are twofold: (1) the robot has truly soft and deformable body stemming from real-time tunable springs and a balloon, the former is utilized as an outer skin of the body and the latter serves as protoplasm; and (2) a fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the long-distance physical interaction between the body parts induced by the law of conservation of protoplasmic mass. Experimental results show that this robot exhibits truly supple locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design scheme for autonomous decentralized control system.

  16. Risk management in spatio-temporally varying field by true slime mold

    NASA Astrophysics Data System (ADS)

    Ito, Kentaro; Sumpter, David; Nakagaki, Toshiyuki

    Revealing how lower organisms solve complicated problems is a challenging research area, which could reveal the evolutionary origin of biological information processing. Here we report on the ability of a single-celled organism, true slime mold, to find a smart solution of risk management under spatio-temporally varying conditions. We designed test conditions under which there were three food-locations at vertices of equilateral triangle and a toxic light illuminated the organism on alternating halves of the triangle. We found that the organism behavior depended on the period of the repeated illumination, even though the total exposure time was kept the same . A simple mathematical model for the experimental results is proposed from a dynamical system point of view. We discuss our results in the context of a strategy of risk management by Physarum.

  17. Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds.

    PubMed

    Hoppe, Thomas; Kutschera, Ulrich

    2015-01-01

    On decaying wood or litter in forests, plasmodial slime molds (myxomycetes) represent a large fraction of eukaryotic protists that feed on bacteria. In his seminal book Experimental Physiology of Plants (1865), Julius Sachs referred to the multinucleate plasmodium of myxomycetes, which were considered at that time as primitive plants (or fungi). Today it is well established that myxomycetes are members of the Amoebozoa (Protista). In this study we compare the mobility of myxamoebae of 3 European species, Lycogala epidendrum (order Liceales), Tubulifera arachnoidea, and Trichia decipiens (order Trichiales). Using agar plates, on which 3 separate bacterial species were cultivated as prey organisms (Methylobacterium mesophilicum, Escherichia coli, Agrobacterium tumefaciens), we document large differences in cell motility between the myxomycetes investigated. In addition, we show that the 3 species of myxamoebae can be distinguished based on their average cell size. These data shed light on the mode of co-occurrence via differential substrate utilization in these members of the Amoebozoa. PMID:26357877

  18. Identification of Delta5-fatty acid desaturase from the cellular slime mold dictyostelium discoideum.

    PubMed

    Saito, T; Ochiai, H

    1999-10-01

    cDNA fragments putatively encoding amino acid sequences characteristic of the fatty acid desaturase were obtained using expressed sequence tag (EST) information of the Dictyostelium cDNA project. Using this sequence, we have determined the cDNA sequence and genomic sequence of a desaturase. The cloned cDNA is 1489 nucleotides long and the deduced amino acid sequence comprised 464 amino acid residues containing an N-terminal cytochrome b5 domain. The whole sequence was 38.6% identical to the initially identified Delta5-desaturase of Mortierella alpina. We have confirmed its function as Delta5-desaturase by over expression mutation in D. discoideum and also the gain of function mutation in the yeast Saccharomyces cerevisiae. Analysis of the lipids from transformed D. discoideum and yeast demonstrated the accumulation of Delta5-desaturated products. This is the first report concering fatty acid desaturase in cellular slime molds. PMID:10504413

  19. Genetic heterogeneity in wild isolates of cellular slime mold social groups.

    PubMed

    Sathe, Santosh; Kaushik, Sonia; Lalremruata, Albert; Aggarwal, Ramesh K; Cavender, James C; Nanjundiah, Vidyanand

    2010-07-01

    This study addresses the issues of spatial distribution, dispersal, and genetic heterogeneity in social groups of the cellular slime molds (CSMs). The CSMs are soil amoebae with an unusual life cycle that consists of alternating solitary and social phases. Because the social phase involves division of labor with what appears to be an extreme form of "altruism", the CSMs raise interesting evolutionary questions regarding the origin and maintenance of sociality. Knowledge of the genetic structure of social groups in the wild is necessary for answering these questions. We confirm that CSMs are widespread in undisturbed forest soil from South India. They are dispersed over long distances via the dung of a variety of large mammals. Consistent with this mode of dispersal, most social groups in the two species examined for detailed study, Dictyostelium giganteum and Dictyostelium purpureum, are multi-clonal. PMID:20179919

  20. Magnetic field effects on mitochondrion-activity-related optical properties in slime mold and bone forming cells.

    PubMed

    Mizukawa, Yuri; Iwasaka, Masakazu

    2013-01-01

    In the present study, a cellular level response of Cyto-aa3 oxidation was investigated in real time under both time-varying and strong static magnetic fields of 5 T. Two kinds of cells, a slime mold, Physarum polycephalum, and bone forming cells, MC-3T3-E1, were used for the experiments. The oxidation level of the Cyto-aa3 was calculated by optical absorptions at 690 nm, 780 nm and 830 nm. The sample, fiber-optics and an additional optical fiber for light stimulation were set in a solenoidal coil or the bore of a 5-T superconducting magnet. The solenoidal coil for time-varying magnetic fields produced sinusoidal magnetic fields of 6 mT. The slime mold showed a periodic change in Cyto-aa3 oxidation, and the oxidation-reduction cycle of Cyto-aa3 was apparently changed when visible-light irradiated the slime mold. Similarly to the case with light, time-varying magnetic stimulations changed the oxidation-reduction cycle during and after the stimulation for 10 minutes. The same phenomena were observed in the MC-3T3-E1 cell assembly, although their cycle rhythm was comparatively random. Finally, magnetic field exposure of up to 5 T exhibited a distinct suppression of Cyto-aa3 oscillation in the bone forming cells. Exposure up to 5 T was repeated five times, and the change in Cyto-aa3 oxidation reproducibly occurred. PMID:24109969

  1. Weight Loss by Ppc-1, a Novel Small Molecule Mitochondrial Uncoupler Derived from Slime Mold

    PubMed Central

    Suzuki, Toshiyuki; Kikuchi, Haruhisa; Ogura, Masato; Homma, Miwako K.; Oshima, Yoshiteru; Homma, Yoshimi

    2015-01-01

    Mitochondria play a key role in diverse processes including ATP synthesis and apoptosis. Mitochondrial function can be studied using inhibitors of respiration, and new agents are valuable for discovering novel mechanisms involved in mitochondrial regulation. Here, we screened small molecules derived from slime molds and other microorganisms for their effects on mitochondrial oxygen consumption. We identified Ppc-1 as a novel molecule which stimulates oxygen consumption without adverse effects on ATP production. The kinetic behavior of Ppc-1 suggests its function as a mitochondrial uncoupler. Serial administration of Ppc-1 into mice suppressed weight gain with no abnormal effects on liver or kidney tissues, and no evidence of tumor formation. Serum fatty acid levels were significantly elevated in mice treated with Ppc-1, while body fat content remained low. After a single administration, Ppc-1 distributes into various tissues of individual animals at low levels. Ppc-1 stimulates adipocytes in culture to release fatty acids, which might explain the elevated serum fatty acids in Ppc-1-treated mice. The results suggest that Ppc-1 is a unique mitochondrial regulator which will be a valuable tool for mitochondrial research as well as the development of new drugs to treat obesity. PMID:25668511

  2. Weight loss by Ppc-1, a novel small molecule mitochondrial uncoupler derived from slime mold.

    PubMed

    Suzuki, Toshiyuki; Kikuchi, Haruhisa; Ogura, Masato; Homma, Miwako K; Oshima, Yoshiteru; Homma, Yoshimi

    2015-01-01

    Mitochondria play a key role in diverse processes including ATP synthesis and apoptosis. Mitochondrial function can be studied using inhibitors of respiration, and new agents are valuable for discovering novel mechanisms involved in mitochondrial regulation. Here, we screened small molecules derived from slime molds and other microorganisms for their effects on mitochondrial oxygen consumption. We identified Ppc-1 as a novel molecule which stimulates oxygen consumption without adverse effects on ATP production. The kinetic behavior of Ppc-1 suggests its function as a mitochondrial uncoupler. Serial administration of Ppc-1 into mice suppressed weight gain with no abnormal effects on liver or kidney tissues, and no evidence of tumor formation. Serum fatty acid levels were significantly elevated in mice treated with Ppc-1, while body fat content remained low. After a single administration, Ppc-1 distributes into various tissues of individual animals at low levels. Ppc-1 stimulates adipocytes in culture to release fatty acids, which might explain the elevated serum fatty acids in Ppc-1-treated mice. The results suggest that Ppc-1 is a unique mitochondrial regulator which will be a valuable tool for mitochondrial research as well as the development of new drugs to treat obesity. PMID:25668511

  3. Characterization of Adaptation by Morphology in a Planar Biological Network of Plasmodial Slime Mold

    NASA Astrophysics Data System (ADS)

    Ito, Masateru; Okamoto, Riki; Takamatsu, Atsuko

    2011-07-01

    Growth processes of a planar biological network of plasmodium of a true slime mold, Physarum polycephalum, were analyzed quantitatively. The plasmodium forms a transportation network through which protoplasm conveys nutrients, oxygen, and cellular organelles similarly to blood in a mammalian vascular network. To analyze the network structure, vertices were defined at tube bifurcation points. Then edges were defined for the tubes connecting both end vertices. Morphological analysis was attempted along with conventional topological analysis, revealing that the growth process of the plasmodial network structure depends on environmental conditions. In an attractive condition, the network is a polygonal lattice with more than six edges per vertex at the early stage and the hexagonal lattice at a later stage. Through all growing stages, the tube structure was not highly developed but an unstructured protoplasmic thin sheet was dominantly formed. The network size is small. In contrast, in the repulsive condition, the network is a mixture of polygonal lattice and tree-graph. More specifically, the polygonal lattice has more than six edges per vertex in the early stage, then a tree-graph structure is added to the lattice network at a later stage. The thick tube structure was highly developed. The network size, in the meaning of Euclidean distance but not topological one, grows considerably. Finally, the biological meaning of the environment-dependent network structure in the plasmodium is discussed.

  4. Resolution of Infinite-Loop in Hyperincursive and Nonlocal Cellular Automata: Introduction to Slime Mold Computing

    NASA Astrophysics Data System (ADS)

    Aono, Masashi; Gunji, Yukio-Pegio

    2004-08-01

    How can non-algorithmic/non-deterministic computational syntax be computed? "The hyperincursive system" introduced by Dubois is an anticipatory system embracing the contradiction/uncertainty. Although it may provide a novel viewpoint for the understanding of complex systems, conventional digital computers cannot run faithfully as the hyperincursive computational syntax specifies, in a strict sense. Then is it an imaginary story? In this paper we try to argue that it is not. We show that a model of complex systems "Elementary Conflictable Cellular Automata (ECCA)" proposed by Aono and Gunji is embracing the hyperincursivity and the nonlocality. ECCA is based on locality-only type settings basically as well as other CA models, and/but at the same time, each cell is required to refer to globality-dominant regularity. Due to this contradictory locality-globality loop, the time evolution equation specifies that the system reaches the deadlock/infinite-loop. However, we show that there is a possibility of the resolution of these problems if the computing system has parallel and/but non-distributed property like an amoeboid organism. This paper is an introduction to "the slime mold computing" that is an attempt to cultivate an unconventional notion of computation.

  5. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    PubMed

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps. PMID:24297565

  6. Promoter analysis of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum.

    PubMed

    Takaoka, N; Fukuzawa, M; Saito, T; Sakaitani, T; Ochiai, H

    1999-10-28

    We cloned a genomic fragment of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum by inverse PCR. Primer extension analysis identified a major transcription start site 65 bp upstream of the translation start codon. The promoter region of the gp64 gene contains sequences homologous to a TATA box at position -47 to -37 and to an initiator (Inr, PyPyCAPyPyPyPy) at position -3 to +5 from the transcription start site. Successively truncated segments of the promoter were tested for their ability to drive expression of the beta-galactosidase reporter gene in transformed cells; also the difference in activity between growth conditions was compared. The results indicated that there are two positive vegetative regulatory elements extending between -187 and -62 bp from the transcription start site of the gp64 promoter; also their activity was two to three times higher in the cells grown with bacteria in shaken suspension than in the cells grown in an axenic medium. PMID:10542319

  7. Gene trapping with GFP: the isolation of developmental mutants in the slime mold Polysphondylium.

    PubMed

    Fey, P; Cox, E C

    1997-11-01

    In order to study how a cell mass undergoes a transition from one symmetry to another in the slime mold Polysphondylium, we developed a genetic screen in which mutant phenotype and gene expression can easily be visualized in the living organism. The screen combines restriction enzyme-mediated integration (REMI) [1,2] and green fluorescent protein (GFP) [3] expression. In REMI, a restriction enzyme is electroporated along with linearized vector into cells, thus determining the site of plasmid insertion and often increasing the integration frequency. A set of transforming plasmids carrying the GFP coding sequence in three reading frames was used for transformation. The plasmids were constructed so that GFP could be expressed only under control of a host promoter. Living transformants expressing GFP spatially and temporally could be rapidly identified in a very large background of non-expressing cells and fruiting bodies. The phenotypes of representative mutants range from cells that cannot aggregate and initiate cell-cell interactions, through mutant fruiting bodies, to apparently wild-type fruiting bodies expressing GFP in all or a subpopulation of cells. The ability to screen mutant living cells and tissues for GFP expression is rapid and effective and likely to have application in many transformable systems where screening by gene and promoter trapping is essential for understanding temporal and spatial gene regulation. PMID:9382807

  8. ELF (Extremely Low Frequency) communications system ecological monitoring program: Slime mold studies

    NASA Astrophysics Data System (ADS)

    Goodman, Eugene; Greenebaum, Ben

    1990-01-01

    It was previously shown that continuous exposure of the slime mold Physarum polycephalum to extremely low frequency (ELF) electromagnetic fields (EMF) simulating those generated by the Navy's ELF communication system (then Project Sanguine) could depress the rate of respiration, and lengthen the mitotic cell cycle. In a series of experiments beginning in 1981 and ending in 1987, it was determined that whether exposing Physarum to the field environment around the Wisconsin Transmitting Facility (WTF) could induce an altered physiological state. A laboratory component was also included to help verify methodology and to supplement studies performed at the WTF. Initially, the experimental effort was directed to devising methods to maintain axenic Physarum cultures under ambient environmental conditions. This involved using growth chambers that admit the electric field or current density from the surrounding environment; the cultures were returned to the laboratory for analysis. The successful methods placed the organism on an agar bed inside double containment and introduced the samples to be assayed into shaken liquid culture medium upon arrival at the laboratory. Both WTF-generated electromagnetic fields and background strengths were measured with the help of IITRI at study locations near the antenna, at the west ground of the WTF antenna, as well as at control sites.

  9. Parasexual Genetic Analysis of the Cellular Slime Mold DICTYOSTELIUM DISCOIDEUM A3

    PubMed Central

    Rothman, Frank G.; Alexander, Ellen T.

    1975-01-01

    Haploid strain A3 of the cellular slime mold Dictyostelium discoideum is valuable for biochemical studies because it is capable of axenic growth. Mutants of A3 temperature-sensitive for growth and resistant to the drugs cycloheximide, acriflavin, or methanol were isolated.—Heterozygous diploid recombinants, formed at low frequency by cell and nuclear fusion, were isolated by selecting temperature-resistant progeny of mixed cultures of two nonallelic temperature-sensitive haploids (Loomis 1969). Each drug-resistant mutation was found to be recessive. Two independently isolated methanol-resistant mutants were in one complementation group.—Diploids of A3 heterozygous for drug resistance formed drug-resistant segregants with a frequency of approximately 10-4. Segregants selected for resistance to a single drug were either haploid or diploid; the fraction which was haploid varied from 0.11 to 0.86, depending on the selected marker. Segregants selected for resistance to two or three drugs were almost all haploid.—Using this parasexual cycle of diploid formation and haploidization, linkage of these temperature-sensitive and drug-resistance mutations to each other and to mutations studied by Katz and Sussman (1972) and by Williams, Kessin and Newell (1974b) was analyzed. The methanol-resistant mutants were found to be partially resistant to acriflavin, and unlinked to the mutant selected for acriflavin resistance, which was methanol-sensitive. Of the expected seven linkage groups in D. discoideum, five, and a possible sixth, have been marked.—Linkage analysis of a mutant abnormal in morphogenesis showed that its phenotype results from two unlinked chromosomal mutations. PMID:1238305

  10. Fitness tradeoffs between spores and nonaggregating cells can explain the coexistence of diverse genotypes in cellular slime molds

    PubMed Central

    Tarnita, Corina E.; Washburne, Alex; Martinez-Garcia, Ricardo; Sgro, Allyson E.; Levin, Simon A.

    2015-01-01

    Cellular slime molds, including the well-studied Dictyostelium discoideum, are amoebae whose life cycle includes both a single-cellular and a multicellular stage. To achieve the multicellular stage, individual amoebae aggregate upon starvation to form a fruiting body made of dead stalk cells and reproductive spores, a process that has been described in terms of cooperation and altruism. When amoebae aggregate they do not perfectly discriminate against nonkin, leading to chimeric fruiting bodies. Within chimeras, complex interactions among genotypes have been documented, which should theoretically reduce genetic diversity. This is however inconsistent with the great diversity of genotypes found in nature. Recent work has shown that a little-studied component of D. discoideum fitness—the loner cells that do not participate in the aggregation—can be selected for depending on environmental conditions and that, together with the spores, they could represent a bet-hedging strategy. We suggest that in all cellular slime molds the existence of loners could resolve the apparent diversity paradox in two ways. First, if loners are accounted for, then apparent genotypic skew in the spores of chimeras could simply be the result of different investments into spores versus loners. Second, in an ecosystem with multiple local environments differing in their food recovery characteristics and connected globally via weak-to-moderate dispersal, coexistence of multiple genotypes can occur. Finally, we argue that the loners make it impossible to define altruistic behavior, winners or losers, without a clear description of the ecology. PMID:25605926

  11. Fitness tradeoffs between spores and nonaggregating cells can explain the coexistence of diverse genotypes in cellular slime molds.

    PubMed

    Tarnita, Corina E; Washburne, Alex; Martinez-Garcia, Ricardo; Sgro, Allyson E; Levin, Simon A

    2015-03-01

    Cellular slime molds, including the well-studied Dictyostelium discoideum, are amoebae whose life cycle includes both a single-cellular and a multicellular stage. To achieve the multicellular stage, individual amoebae aggregate upon starvation to form a fruiting body made of dead stalk cells and reproductive spores, a process that has been described in terms of cooperation and altruism. When amoebae aggregate they do not perfectly discriminate against nonkin, leading to chimeric fruiting bodies. Within chimeras, complex interactions among genotypes have been documented, which should theoretically reduce genetic diversity. This is however inconsistent with the great diversity of genotypes found in nature. Recent work has shown that a little-studied component of D. discoideum fitness--the loner cells that do not participate in the aggregation--can be selected for depending on environmental conditions and that, together with the spores, they could represent a bet-hedging strategy. We suggest that in all cellular slime molds the existence of loners could resolve the apparent diversity paradox in two ways. First, if loners are accounted for, then apparent genotypic skew in the spores of chimeras could simply be the result of different investments into spores versus loners. Second, in an ecosystem with multiple local environments differing in their food recovery characteristics and connected globally via weak-to-moderate dispersal, coexistence of multiple genotypes can occur. Finally, we argue that the loners make it impossible to define altruistic behavior, winners or losers, without a clear description of the ecology. PMID:25605926

  12. Evolution of hierarchical cytoplasmic inheritance in the plasmodial slime mold Physarum polycephalum.

    PubMed

    Iwanaga, Akiko; Sasaki, Akira

    2004-04-01

    A striking linear dominance relationship for uniparental mitochondrial transmission is known between many mating types of plasmodial slime mold Physarum polycephalum. We herein examine how such hierarchical cytoplasmic inheritance evolves in isogamous organisms with many self-incompatible mating types. We assume that a nuclear locus determines the mating type of gametes and that another nuclear locus controls the digestion of mitochondria DNAs (mtDNAs) of the recipient gamete after fusion. We then examine the coupled genetic dynamics for the evolution of self-incompatible mating types and biased mitochondrial transmission between them. In Physarum, a multiallelic nuclear locus matA controls both the mating type of the gametes and the selective elimination of the mtDNA in the zygotes. We theoretically examine two potential mechanisms that might be responsible for the preferential digestion of mitochondria in the zygote. In the first model, the preferential digestion of mitochondria is assumed to be the outcome of differential expression levels of a suppressor gene carried by each gamete (suppression-power model). In the second model (site-specific nuclease model), the digestion of mtDNAs is assumed to be due to their cleavage by a site-specific nuclease that cuts the mtDNA at unmethylated recognition sites. Also assumed is that the mtDNAs are methylated at the same recognition site prior to the fusion, thereby being protected against the nuclease of the same gamete, and that the suppressor alleles convey information for the recognition sequences of nuclease and methylase. In both models, we found that a linear dominance hierarchy evolves as a consequence of the buildup of a strong linkage disequilibrium between the mating-type locus and the suppressor locus, though it fails to evolve if the recombination rate between the two loci is larger than a threshold. This threshold recombination rate depends on the number of mating types and the degree of fitness reduction in

  13. Elf (extremely low frequency) communications system ecological monitoring program. The effects of exposing the slime mold Physarum polycephalum to electromagnetic fields

    SciTech Connect

    Goodman, E.M.; Marron, M.T.; Greenebaum, B.

    1982-11-01

    Laboratory exposure of the slime mold Physarum polycephalum to weak electromagnetic fields results in a lengthened mitotic cycle and depressed oxygen consumption. This research program has been designed to ascertain if the same physiological effects are obtained when Physarum polycephalum is exposed to electromagnetic fields in the vicinity of the Wisconsin Test Facility at Clam Lake, Wisconsin.

  14. In the shadow of Darwin: Anton de Bary's origin of myxomycetology and a molecular phylogeny of the plasmodial slime molds.

    PubMed

    Hoppe, T; Kutschera, U

    2010-06-01

    In his Origin of Species (John Murray, London, 1859), Charles Darwin described the theory of descent with modification by means of natural selection and postulated that all life may have evolved from one or a few simple kinds of organisms. However, Darwin's concept of evolutionary change is entirely based on observations of populations of animals and plants. He briefly mentioned 'lower algae', but ignored amoebae, bacteria and other micro-organisms. In 1859, Anton de Bary, the founder of mycology and plant pathology, published a seminal paper on the biology and taxonomy of the plasmodial slime molds (myxomycetes). These heterotrophic protists are known primarily as a large composite mass, the plasmodium, in which single nuclei are suspended in a common 'naked' cytoplasm that is surrounded by a plasma membrane. Here we summarize the contents of de Bary's 1859 publication and highlight the significance of this scientific classic with respect to the establishment of the kingdom Protoctista (protists such as amoebae), the development of the protoplasmic theory of the cell, the introduction of the concept of symbiosis and the rejection of the dogma of spontaneous generation. We describe the life cycle of the myxomycetes, present new observations on the myxamoebae and propose a higher-order phylogeny based on elongation factor-1 alpha gene sequences. Our results document the congruence between the morphology-based taxonomy of the myxomycetes and molecular data. In addition, we show that free-living amoebae, common protists in the soil, are among the closest living relatives of the myxomycetes and conclude that de Bary's 'Amoeba-hypothesis' on the evolutionary origin of the plasmodial slime molds may have been correct. PMID:19997788

  15. The TOM Complex of Amoebozoans: the Cases of the Amoeba Acanthamoeba castellanii and the Slime Mold Dictyostelium discoideum.

    PubMed

    Wojtkowska, Małgorzata; Buczek, Dorota; Stobienia, Olgierd; Karachitos, Andonis; Antoniewicz, Monika; Slocinska, Małgorzata; Makałowski, Wojciech; Kmita, Hanna

    2015-07-01

    Protein import into mitochondria requires a wide variety of proteins, forming complexes in both mitochondrial membranes. The TOM complex (translocase of the outer membrane) is responsible for decoding of targeting signals, translocation of imported proteins across or into the outer membrane, and their subsequent sorting. Thus the TOM complex is regarded as the main gate into mitochondria for imported proteins. Available data indicate that mitochondria of representative organisms from across the major phylogenetic lineages of eukaryotes differ in subunit organization of the TOM complex. The subunit organization of the TOM complex in the Amoebozoa is still elusive, so we decided to investigate its organization in the soil amoeba Acanthamoeba castellanii and the slime mold Dictyostelium discoideum. They represent two major subclades of the Amoebozoa: the Lobosa and Conosa, respectively. Our results confirm the presence of Tom70, Tom40 and Tom7 in the A. castellanii and D. discoideum TOM complex, while the presence of Tom22 and Tom20 is less supported. Interestingly, the Tom proteins display the highest similarity to Opisthokonta cognate proteins, with the exception of Tom40. Thus representatives of two major subclades of the Amoebozoa appear to be similar in organization of the TOM complex, despite differences in their lifestyle. PMID:26074248

  16. Antibacterial and Anti-inflammatory Activities of Ppc-1, Active Principle of the Cellular Slime Mold Polysphondylium pseudo-candidum.

    PubMed

    Azelmat, Jabrane; Fiorito, Serena; Genovese, Salvatore; Epifano, Francesco; Grenier, Daniel

    2015-01-01

    The diisopentenyloxy quinolobactin derivative 3-methylbut-2-enyl-4-methoxy-8-[(3-methylbut-2-enyl)oxy] quinoline-2-carboxylate, also named as Ppc-1, has been initially isolated from the fruiting bodies of the cellular slime mold Polysphondylium pseudo-candidum. Given that few data are available in the literature concerning the biological properties of this compound, this study was undertaken to evaluate its antibacterial and anti-inflammatory properties. Ppc-1 exerted antibacterial activity on the Gram negative periodontopathogen Porphyromonas gingivalis, while it had no such effect on the other bacterial species tested. The antibacterial activity of Ppc-1 appeared to result from its ability to permeate the cell membrane. Using the U937-3xκB-LUC human monocytic cell line, Ppc-1 was found to dose-dependently inhibit the lipopolysaccharide-induced NF-κB activation, a signaling pathway that has been associated with inflammatory mediator secretion. In conclusion, Ppc-1, by exhibiting a dual mode of action including antibacterial and anti-inflammatory activities, may represent a promising targeted therapeutic agent for periodontal diseases. PMID:25925558

  17. Slime Factory.

    ERIC Educational Resources Information Center

    Fowler, Marilyn L.

    1992-01-01

    Describes a classroom activity using slime, a colloid: it behaves like both a solid and liquid. Explains how slime can be produced from guar gum. An activity where students work in teams and become a slime factory is presented. (PR)

  18. Molds

    MedlinePlus

    ... touching mold or mold spores may cause allergic reactions or asthma attacks in sensitive people. Molds can cause fungal infections. In addition, mold exposure may irritate your eyes, skin, nose, ...

  19. Molds

    MedlinePlus

    Molds are fungi that can be found both outdoors and indoors. They grow best in warm, damp and humid conditions. If ... spots in your house, you will probably get mold. Molds can cause health problems. Inhaling or touching ...

  20. Toxicity assessment of diesel- and metal-contaminated soils through elutriate and solid phase assays with the slime mold Dictyostelium discoideum.

    PubMed

    Rodríguez-Ruiz, Amaia; Dondero, Francesco; Viarengo, Aldo; Marigómez, Ionan

    2016-06-01

    A suite of organisms from different taxonomical and ecological positions is needed to assess environmentally relevant soil toxicity. A new bioassay based on Dictyostelium is presented that is aimed at integrating slime molds into such a testing framework. Toxicity tests on elutriates and the solid phase developmental cycle assay were successfully applied to a soil spiked with a mixture of Zn, Cd, and diesel fuel freshly prepared (recently contaminated) and after 2 yr of aging. The elutriates of both soils provoked toxic effects, but toxicity was markedly lower in the aged soil. In the D. discoideum developmental cycle assay, both soils affected amoeba viability and aggregation, with fewer multicellular units, smaller fruiting bodies and, overall, inhibition of fruiting body formation. This assay is quick and requires small amounts of test soil, which might facilitate its incorporation into a multispecies multiple-endpoint toxicity bioassay battery suitable for environmental risk assessment in soils. Environ Toxicol Chem 2016;35:1413-1421. © 2015 SETAC. PMID:26450765

  1. A fluid-filled soft robot that exhibits spontaneous switching among versatile spatiotemporal oscillatory patterns inspired by the true slime mold.

    PubMed

    Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio

    2013-01-01

    Behavioral diversity is an essential feature of living systems, enabling them to exhibit adaptive behavior in hostile and dynamically changing environments. However, traditional engineering approaches strive to avoid, or suppress, the behavioral diversity in artificial systems to achieve high performance in specific environments for given tasks. The goals of this research include understanding how living systems exhibit behavioral diversity and using these findings to build lifelike robots that exhibit truly adaptive behaviors. To this end, we have focused on one of the most primitive forms of intelligence concerning behavioral diversity, namely, a plasmodium of true slime mold. The plasmodium is a large amoeba-like unicellular organism that does not possess any nervous system or specialized organs. However, it exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously between these. Inspired by the plasmodium, we built a mathematical model that exhibits versatile oscillatory patterns and spontaneously transitions between these patterns. This model demonstrates that, in contrast to coupled nonlinear oscillators with a well-designed complex diffusion network, physically interacting mechanosensory oscillators are capable of generating versatile oscillatory patterns without changing any parameters. Thus, the results are expected to shed new light on the design scheme for lifelike robots that exhibit amazingly versatile and adaptive behaviors. PMID:23186349

  2. Functional expression of Ca²⁺ dependent mammalian transmembrane gap junction protein Cx43 in slime mold Dictyostelium discoideum.

    PubMed

    Kaufmann, Stefan; Weiss, Ingrid M; Eckstein, Volker; Tanaka, Motomu

    2012-03-01

    In this paper, we expressed murine gap junction protein Cx43 in Dictyostelium discoideum by introducing the specific vector pDXA. In the first step, the successful expression of Cx43 and Cx43-eGFP was verified by (a) Western blot (anti-Cx43, anti-GFP), (b) fluorescence microscopy (eGFP-Cx43 co-expression, Cx43 immunostaining), and (c) flow cytometry analysis (eGFP-Cx43 co-expression). Although the fluorescence signals from cells expressing Cx43-eGFP detected by fluorescence microscopy seem relatively low, analysis by flow cytometry demonstrated that more than 60% of cells expressed Cx43-eGFP. In order to evaluate the function of expressed Cx43 in D. discoideum, we examined the hemi-channel function of Cx43. In this series of experiments, the passive uptake of carboxyfluorescein was monitored using flow cytometric analysis. A significant number of the transfected cells showed a prominent dye uptake in the absence of Ca(2+). The dye uptake by transfected cells in the presence of Ca(2+) was even lower than the non-specific dye uptake by non-transformed Ax3 orf+ cells, confirming that Cx43 expressed in D. discoideum retains its Ca(2+)-dependent, specific gating function. The expression of gap junction proteins expressed in slime molds opens a possibility to the biological significance of intercellular communications in development and maintenance of multicellular organisms. PMID:22330805

  3. Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko

    2006-11-01

    Three-oscillator systems with plasmodia of true slime mold, Physarum polycephalum, which is an oscillatory amoeba-like unicellular organism, were experimentally constructed and their spatio-temporal patterns were investigated. Three typical spatio-temporal patterns were found: rotation ( R), partial in-phase ( PI), and partial anti-phase with double frequency ( PA). In pattern R, phase differences between adjacent oscillators were almost 120 ∘. In pattern PI, two oscillators were in-phase and the third oscillator showed anti-phase against the two oscillators. In pattern PA, two oscillators showed anti-phase and the third oscillator showed frequency doubling oscillation with small amplitude. Actually each pattern is not perfectly stable but quasi-stable. Interestingly, the system shows spontaneous switching among the multiple quasi-stable patterns. Statistical analyses revealed a characteristic in the residence time of each pattern: the histograms seem to have Gamma-like distribution form but with a sharp peak and a tail on the side of long period. That suggests the attractor of this system has complex structure composed of at least three types of sub-attractors: a “Gamma attractor”-involved with several Poisson processes, a “deterministic attractor”-the residence time is deterministic, and a “stable attractor”-each pattern is stable. When the coupling strength was small, only the Gamma attractor was observed and switching behavior among patterns R, PI, and PA almost always via an asynchronous pattern named O. A conjecture is as follows: Internal/external noise exposes each pattern of R, PI, and PA coexisting around bifurcation points: That is observed as the Gamma attractor. As coupling strength increases, the deterministic attractor appears then followed by the stable attractor, always accompanied with the Gamma attractor. Switching behavior could be caused by regular existence of the Gamma attractor.

  4. Slime mould processors, logic gates and sensors.

    PubMed

    Adamatzky, A

    2015-07-28

    A heterotic, or hybrid, computation implies that two or more substrates of different physical nature are merged into a single device with indistinguishable parts. These hybrid devices then undertake coherent acts on programmable and sensible processing of information. We study the potential of heterotic computers using slime mould acting under the guidance of chemical, mechanical and optical stimuli. Plasmodium of acellular slime mould Physarum polycephalum is a gigantic single cell visible to the unaided eye. The cell shows a rich spectrum of behavioural morphological patterns in response to changing environmental conditions. Given data represented by chemical or physical stimuli, we can employ and modify the behaviour of the slime mould to make it solve a range of computing and sensing tasks. We overview results of laboratory experimental studies on prototyping of the slime mould morphological processors for approximation of Voronoi diagrams, planar shapes and solving mazes, and discuss logic gates implemented via collision of active growing zones and tactile responses of P. polycephalum. We also overview a range of electronic components--memristor, chemical, tactile and colour sensors-made of the slime mould. PMID:26078344

  5. Lessons: Science. Slime!

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2000-01-01

    Describes a science activity in which students make a non-Newtonian fluid (slime), which has both solid and liquid properties. After reviewing the shape and volume of solids and volume of liquids, students make the slime using glue, liquid starch, and food coloring. They can experiment by rolling and dropping slime balls and by pulling the slime…

  6. Slime mould biotechnology

    NASA Astrophysics Data System (ADS)

    Mayne, Richard

    2015-03-01

    Slime mould computing is an inherently multi-disciplinary subfield of unconventional computing that draws upon aspects of not only theoretical computer science and electronics, but also the natural sciences. This chapter focuses on the biology of slime moulds and expounds the viewpoint that a deep, intuitive understanding of slime mould life processes is a fundamental requirement for understanding -- and, hence, harnessing -- the incredible behaviour patterns we may characterise as "computation"...

  7. On creativity of slime mould

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew; Armstrong, Rachel; Jones, Jeff; Gunji, Yukio-Pegio

    2013-07-01

    Slime mould Physarum polycephalum is large single cell with intriguingly smart behaviour. The slime mould shows outstanding abilities to adapt its protoplasmic network to varying environmental conditions. The slime mould can solve tasks of computational geometry, image processing, logics and arithmetics when data are represented by configurations of attractants and repellents. We attempt to map behavioural patterns of slime onto the cognitive control vs. schizotypy spectrum phase space and thus interpret slime mould's activity in terms of creativity.

  8. Mold Allergy

    MedlinePlus

    ... navigation Home ▸ Conditions & Treatments ▸ Allergies ▸ Mold Allergy Share | Mold Allergy Overview Symptoms & Diagnosis Treatment & Management Mold Allergy Overview Molds are tiny fungi whose spores ...

  9. Cellular Motility--Experiments on Contractile and Motile Mechanisms in the Slime Mould, Physarum Polycephalum

    ERIC Educational Resources Information Center

    Holmes, R. P.; Stewart, P. R.

    1977-01-01

    Actin and myosin have now been demonstrated to be important constituents of many eukaryotic cells. Their role is primarily that of a contractile system underlying all aspects of cellular motility. Described here is a simple experimental system to demonstrate quantitatively aspects of motility and its regulation in a slime mold. (Author/MA)

  10. Mold Allergy

    MedlinePlus

    ... the Allergist Health Professionals Partners Media Donate Allergies Mold Allergy What Is a Mold Allergy? If you have an allergy that occurs ... or basement. What Are the Symptoms of a Mold Allergy? The symptoms of mold allergy are very ...

  11. Stanley Corrsin Award Talk: Fluid Mechanics of Fungi and Slime

    NASA Astrophysics Data System (ADS)

    Brenner, Michael

    2013-11-01

    There are interesting fluid mechanics problems everywhere, even in the most lowly and hidden corners of forest floors. Here I discuss some questions we have been working on in recent years involving fungi and slime. A critical issue for the ecology of fungi and slime is nutrient availability: nutrient sources are highly heterogeneous, and strategies are necessary to find food when it runs out. In the fungal phylum Ascomycota, spore dispersal is the primary mechanism for finding new food sources. The defining feature of this phylum is the ascus, a fluid filled sac from which spores are ejected, through a build up in osmotic pressure. We outline the (largely fluid mechanical) design constraints on this ejection strategy, and demonstrate how it provides strong constraints for the diverse morphologies of spores and asci found in nature. The core of the argument revisits a classical problem in elastohydrodynamic lubrication from a different perspective. A completely different strategy for finding new nutrient is found by slime molds and fungi that stretch out - as a single organism- over enormous areas (up to hectares) over forest floors. As a model problem we study the slime mold Physarum polycephalum, which forages with a large network of connected tubes on the forest floors. Localized regions in the network find nutrient sources and then pump the nutrients throughout the entire organism. We discuss fluid mechanical mechanisms for coordinating this transport, which generalize peristalsis to pumping in a heterogeneous network. We give a preliminary discussion to how physarum can detect a nutrient source and pump the nutrient throughout the organism.

  12. Dramatization of Polymeric Bonding Using Slime.

    ERIC Educational Resources Information Center

    Sarquis, A. M.

    1986-01-01

    Describes a typical presentation in which slime is prepared for young, concrete operational students. Includes the procedures used and a summary written by a fourth-grade teacher after completing the slime experiment with her class. (JN)

  13. Slime mould fluids and networks from an artist's point of view

    NASA Astrophysics Data System (ADS)

    Schubert, Theresa

    2015-03-01

    Slime mould is a fascinating creature. It is the largest acellular organism known on this planet and a primordial being that had no need to undergo evolution. In nature, this proves it to be a very successful creature. As a biological curiosity, the species P. polycephalum serves as a model for network optimisation and cell motility in scientific experiments. It can be interpreted as an "agent" which distributively solves geometrical problems. The starting points for the experiments displayed here are sophisticated setups or growing environments that allow the organism to propagate and grow, yet under conditions that the artist has predefined, sometimes with interaction between human organisms...

  14. MOLDING APPARATUS

    DOEpatents

    Fleming, P.G.

    1963-10-01

    Molding apparatus capable of coating multiple elements each molding cycle is described. The apparatus comprises a centrally disposed reservoir penetrated by a plurality of circumferentially arranged and radially extending passageways. These passageways, in turn, communicate with passages in a separable annular member that retains selectively configured molds and mold seating arrangements. Each mold, which is readily removable from its respective seat, is adapted to retain an element therein in spaced relation to the interior of the mold by utilizing element positioning means within the mold seat and the mold so that coating material may flow about the entire outer surface of the element. (AEC)

  15. Evolving Transport Networks With Cellular Automata Models Inspired by Slime Mould.

    PubMed

    Tsompanas, Michail-Antisthenis I; Sirakoulis, Georgios Ch; Adamatzky, Andrew I

    2015-09-01

    Man-made transport networks and their design are closely related to the shortest path problem and considered amongst the most debated problems of computational intelligence. Apart from using conventional or bio-inspired computer algorithms, many researchers tried to solve this kind of problem using biological computing substrates, gas-discharge solvers, prototypes of a mobile droplet, and hot ice computers. In this aspect, another example of biological computer is the plasmodium of acellular slime mould Physarum polycephalum (P. polycephalum), which is a large single cell visible by an unaided eye and has been proven as a reliable living substrate for implementing biological computing devices for computational geometry, graph-theoretical problems, and optimization and imitation of transport networks. Although P. polycephalum is easy to experiment with, computing devices built with the living slime mould are extremely slow; it takes slime mould days to execute a computation. Consequently, mapping key computing mechanisms of the slime mould onto silicon would allow us to produce efficient bio-inspired computing devices to tackle with hard to solve computational intelligence problems like the aforementioned. Toward this direction, a cellular automaton (CA)-based, Physarum-inspired, network designing model is proposed. This novel CA-based model is inspired by the propagating strategy, the formation of tubular networks, and the computing abilities of the plasmodium of P. polycephalum. The results delivered by the CA model demonstrate a good match with several previously published results of experimental laboratory studies on imitation of man-made transport networks with P. polycephalum. Consequently, the proposed CA model can be used as a virtual, easy-to-access, and biomimicking laboratory emulator that will economize large time periods needed for biological experiments while producing networks almost identical to the tubular networks of the real-slime mould. PMID

  16. On chirality of slime mould.

    PubMed

    Dimonte, Alice; Adamatzky, Andrew; Erokhin, Victor; Levin, Michael

    2016-02-01

    Left-right patterning and lateralised behaviour is an ubiquitous aspect of plants and animals. The mechanisms linking cellular chirality to the large-scale asymmetry of multicellular structures are incompletely understood, and it has been suggested that the chirality of living cells is hardwired in their cytoskeleton. We examined the question of biased asymmetry in a unique organism: the slime mould Physarum polycephalum, which is unicellular yet possesses macroscopic, complex structure and behaviour. In laboratory experiment using a T-shape, we found that Physarum turns right in more than 74% of trials. The results are in agreement with previously published studies on asymmetric movement of muscle cells, neutrophils, liver cells and growing neural filaments, and for the first time reveal the presence of consistently-biased laterality in the fungi kingdom. Exact mechanisms of the slime mould's direction preference remain unknown. PMID:26747637

  17. Stalk cell differentiation without polyketides in the cellular slime mold.

    PubMed

    Sato, Yukie G; Suarez, Teresa; Saito, Tamao

    2016-07-01

    Polyketides induce prestalk cell differentiation in Dictyostelium. In the double-knockout mutant of the SteelyA and B polyketide synthases, most of the pstA cells-the major part of the prestalk cells-are lost, and we show by whole mount in situ hybridization that expression of prestalk genes is also reduced. Treatment of the double-knockout mutant with the PKS inhibitor cerulenin gave a further reduction, but some pstA cells still remained in the tip region, suggesting the existence of a polyketide-independent subtype of pstA cells. The double-knockout mutant and cerulenin-treated parental Ax2 cells form fruiting bodies with fragile, single-cell layered stalks after cerulenin treatment. Our results indicate that most pstA cells are induced by polyketides, but the pstA cells at the very tip of the slug are induced in some other way. In addition, a fruiting body with a single-cell layered, vacuolated stalk can form without polyketides. PMID:27305283

  18. Hydrogel Beads: The New Slime Lab?

    ERIC Educational Resources Information Center

    Brockway, Debra; Libera, Matthew; Welner, Heidi

    2011-01-01

    Creating slime fascinates students. Unfortunately, though intrigue is at its peak, the educational aspect of this activity is often minimal. This article describes a chemistry lab that closely relates to the slime lab and allows high school students to explore the concepts of chemical bonding, properties, and replacement reactions. It involves the…

  19. Inquiry, Slime, and the National Standards

    ERIC Educational Resources Information Center

    Krantz, Patrick D.

    2004-01-01

    This elementary activity follows the 5-E Learning Cycle as described by Bybee et al. (1989) and integrates literature from Dr. Seuss. Students observe and identify characteristics of several slime substances and must make comparisons to determine which one most closely resembles the slime substance described by Dr. Seuss. To maximize this…

  20. Diversity of slime mould circuits

    NASA Astrophysics Data System (ADS)

    Grube, Martin

    2015-03-01

    Once fused from single amoebae to form an initial plasmodium, P. polycephalum and related species in the order Physarales continue growth via synchronous cell division and extension of the megacells by a contractile plasmodial vein network. These display the phenomenon of shuttle streaming, a rhythmic back-and-forth flow of the protoplasm within a tubular system at a period of approximately 1 to 2 min, with the frequency depending on the nutritional benefits. With time, this develops as a microfluidic circuitry that adapts patterns of contraction to size to optimise the transport throughout an organism. This control of fluid also creates dynamic changes in network architecture seen over time in an individual. Food quality is of considerable importance for slime mould growth dynamics...

  1. MOLD POLLUTION

    EPA Science Inventory

    Mold pollution is the growth of molds in a building resulting in a negative impact on the use of that structure. The negative impacts generally fall into two categories: destruction of the structure itself and adverse health impacts on the building's occupants. It is estimated...

  2. Mold Charlatans.

    ERIC Educational Resources Information Center

    Woody, Daniel

    2002-01-01

    Offers a primer on toxic mold and its removal, warning against ignorant or unethical mold remediation companies and offering five considerations (checking references, considering the big picture, sampling more than the air, considering release, and considering the source) when hiring such services. (EV)

  3. In vitro assessment of biodurability: acellular systems.

    PubMed Central

    de Meringo, A; Morscheidt, C; Thélohan, S; Tiesler, H

    1994-01-01

    The assessment of biodurability of man-made vitreous fibers is essential to the limitation of health hazards associated with human exposure to environments in which respirable fibers are present. In vitro acellular systems provide effective test methods of measuring fiber solubility provided care is taken to select the most suitable solvent and test conditions for the specific fiber type and dimension. PMID:7882955

  4. Allergies, asthma, and molds

    MedlinePlus

    Allergic rhinitis - mold ... make allergies or asthma worse are called triggers. Mold is a common trigger. When your asthma or allergies become worse due to mold, you are said to have a mold allergy. ...

  5. INGOT MOLD

    DOEpatents

    Mangold, A.J. Jr.; MaHaffey, J.W.; Reese, S.L.

    1958-04-29

    An improved ingot-mold assembly is described, consisting of a body having a cavity and a recess extending through to the bottom of the body from the cavity, and the bottom of the cavity having an internal shoulder extending downward and a plug having an external shoulder. The plug extends above the shoulders and below the bottom of the body.

  6. Slime mould gates, roads and sensors

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    2015-03-01

    The photographs present a wide range of problems solved by the slime mould P. polycephalum: imitation of human-made transport pathways, realisation of Boolean logical gates, fabrication of self-repairing routable biowires, implementation of delay elements in computing circuits, computational geometry, sensors and a would-be nervous system...

  7. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    PubMed Central

    Cui, Wei-ling; Qiu, Long-hai; Lian, Jia-yan; Li, Jia-chun; Hu, Jun; Liu, Xiao-lin

    2016-01-01

    Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group) alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group). As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves. PMID:27127495

  8. Data from acellular human heart matrix.

    PubMed

    Sánchez, Pedro L; Fernández-Santos, M Eugenia; Espinosa, M Angeles; González-Nicolas, M Angeles; Acebes, Judith R; Costanza, Salvatore; Moscoso, Isabel; Rodríguez, Hugo; García, Julio; Romero, Jesús; Kren, Stefan M; Bermejo, Javier; Yotti, Raquel; Del Villar, Candelas Pérez; Sanz-Ruiz, Ricardo; Elizaga, Jaime; Taylor, Doris A; Fernández-Avilés, Francisco

    2016-09-01

    Perfusion decellularization of cadaveric hearts removes cells and generates a cell-free extracellular matrix scaffold containing acellular vascular conduits, which are theoretically sufficient to perfuse and support tissue-engineered heart constructs. This article contains additional data of our experience decellularizing and testing structural integrity and composition of a large series of human hearts, "Acellular human heart matrix: a critical step toward whole heat grafts" (Sanchez et al., 2015) [1]. Here we provide the information about the heart decellularization technique, the valve competence evaluation of the decellularized scaffolds, the integrity evaluation of epicardial and myocardial coronary circulation, the pressure volume measurements, the primers used to assess cardiac muscle gene expression and, the characteristics of donors, donor hearts, scaffolds and perfusion decellularization process. PMID:27331090

  9. Nucleotide sequences of 5S ribosomal RNA from four oomycete and chytrid water molds.

    PubMed

    Walker, W F; Doolittle, W F

    1982-09-25

    The nucleotide sequences of the 5S rRNAs of the oomycete water molds Saprolegnia ferax and Pythium hydnosporum and of the chytrid water molds Blastocladiella simplex and Phlyctochytrium irregulare were determined by chemical and enzymatic partial degradation of 3' and 5' end-labelled molecules, followed by gel sequence analysis. The two oomycete sequences differed in 24 positions and the two chytrid sequences differed in 27 positions. These pairs differed in a mean of 44 positions. The chytrid sequences clearly most resemble the sequence from the zygomycete Phycomyces, while the oomycete sequences appear to be allied with those from protozoa and slime molds. PMID:6890670

  10. Improved compression molding process

    NASA Technical Reports Server (NTRS)

    Heier, W. C.

    1967-01-01

    Modified compression molding process produces plastic molding compounds that are strong, homogeneous, free of residual stresses, and have improved ablative characteristics. The conventional method is modified by applying a vacuum to the mold during the molding cycle, using a volatile sink, and exercising precise control of the mold closure limits.

  11. Recovering selenium from copper refinery slimes

    NASA Astrophysics Data System (ADS)

    Hyvärinen, Olli; Lindroos, Leo; Yllö, Erkki

    1989-07-01

    The selenium contained within copper refinery slimes may be recovered advantageously by roasting at about 600°C. While roasting in air is inefficient, roasting in a sulfating atmosphere enables practically complete selenium recovery. Based on laboratory tests, a new selenium recovery process was adopted at Outokumpu Copper Refinery. In this process, sulfation is achieved by feeding sulfur dioxide and oxygen into the roasting furnace.

  12. The coal slime slurry combustion technology

    SciTech Connect

    Li, Y.; Xu, Z.

    1997-12-31

    This paper presents the coal slime slurry combustion technology in circulating fluidized bed (CFB) boilers. The technique is that the slurry-based flow from the concentrator in the coal washery plant directly feeds into the fluidized bed by pump for combustion after a simple filtration and enrichment to an approximate concentration of 50% of coal. The coal slime slurry can burn in a CFB boiler alone or jointly with coal refuse. The technique has been used in a 35 t/h (6MWe) CFB for power generation. The result shows that the combustion efficiency is over 96% and boiler thermal efficiency is over 77%. As compared with burning coal refuse alone, the thermal efficiency was improved by 3--4 percent. This technology is simple, easy to operate and reliable. It is an effective way to utilize coal slime slurry. It has a practical significance for saving coal resources and reducing environmental pollution near coal mine areas. As a clean coal technology, it will result in great social, environmental and economic benefits.

  13. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  14. Acellular Biomaterials: An Evolving Alternative to Cell-Based Therapies

    PubMed Central

    Burdick, Jason A.; Mauck, Robert L.; Gorman, Joseph H.; Gorman, Robert C.

    2014-01-01

    Acellular biomaterials can stimulate the local environment to repair tissues without the regulatory and scientific challenges of cell-based therapies. A greater understanding of the mechanisms of such endogenous tissue repair is furthering the design and application of these biomaterials. We discuss recent progress in acellular materials for tissue repair, using cartilage and cardiac tissues as examples of applications with substantial intrinsic hurdles, but where human translation is now occurring. PMID:23486777

  15. Slime thickness evaluation of bored piles by electrical resistivity probe

    NASA Astrophysics Data System (ADS)

    Chun, Ok-Hyun; Yoon, Hyung-Koo; Park, Min-Chul; Lee, Jong-Sub

    2014-09-01

    The bottoms of bored piles are generally stacked with soil particles, both while boreholes are being drilled, and afterward. The stacked soils are called slime, and when loads are applied on the pile, increase the pile settlement. Thus to guarantee the end bearing capacity of bored piles, the slime thickness should be precisely detected. The objective of this study is to suggest a new method for evaluating the slime thickness, using temperature compensated electrical resistivity. Laboratory studies are performed in advance, to estimate and compare the resolution of the electrical resistivity probe (ERP) and time domain reflectometry (TDR). The electrical properties of the ERP and TDR are measured using coaxial type electrodes and parallel type two-wire electrodes, respectively. Penetration tests, conducted in the fully saturated sand-clay mixtures, demonstrate that the ERP produces a better resolution of layer detection than TDR. Thus, field application tests using the ERP with a diameter of 35.7 mm are conducted for the investigation of slime thickness in large diameter bored piles. Field tests show that the slime layers are clearly identified by the ERP: the electrical resistivity dramatically increases at the interface between the slurry and slime layer. The electrical resistivity in the slurry layer inversely correlates with the amount of circulated water. This study suggests that the new electrical resistivity method may be a useful method for the investigation of the slime thickness in bored piles.

  16. Thermoset matched die molding

    NASA Astrophysics Data System (ADS)

    Young, P. R.

    Reinforced molding compounds, mat molding, preform molding, cold press molding, and various other molding processes are discussed. Particular attention is given to the bulk molding compound (BMC) and the sheet molding compound (SMC) (both of which are reinforced molding compounds) as there is an increasing use of these compounds. SMC can employ a wider range of fiber lengths and fiber content than BMC, while preserving strength. The dimensional stability of BMC and SMC is unexcelled, and their corrosion resistance is generally excellent. Both compounds are composed of resins (10-2500 poises), reinforcements (BMC-glass, asbestos, sisal; SMC-soluble binder chopped strand mat), and fillers from four chemical groups (silica and silicates, carbonates, sulfates, and oxides). Molding press designs are included.

  17. Hybrid slime mould-based system for unconventional computing

    NASA Astrophysics Data System (ADS)

    Berzina, T.; Dimonte, A.; Cifarelli, A.; Erokhin, V.

    2015-04-01

    Physarum polycephalum is considered to be promising for the realization of unconventional computational systems. In this work, we present results of three slime mould-based systems. We have demonstrated the possibility of transporting biocompatible microparticles using attractors, repellents and a DEFLECTOR. The latter is an external tool that enables to conduct Physarum motion. We also present interactions between slime mould and conducting polymers, resulting in a variation of their colour and conductivity. Finally, incorporation of the Physarum into the organic memristive device resulted in a variation of its electrical characteristics due to the slime mould internal activity.

  18. Slime mould foraging behaviour as optically coupled logical operations

    NASA Astrophysics Data System (ADS)

    Mayne, R.; Adamatzky, A.

    2015-04-01

    Physarum polycephalum is a macroscopic plasmodial slime mould whose apparently 'intelligent' behaviour patterns may be interpreted as computation. We employ plasmodial phototactic responses to construct laboratory prototypes of NOT and NAND logical gates with electrical inputs/outputs and optical coupling in which the slime mould plays dual roles of computing device and electrical conductor. Slime mould logical gates are fault tolerant and resettable. The results presented here demonstrate the malleability and resilience of biological systems and highlight how the innate behaviour patterns of living substrates may be used to implement useful computation.

  19. Molds in the Environment

    MedlinePlus

    ... Program in Brief Related Issues Resources Quick Links Air Pollution & Respiratory Health Air Quality Asthma Mold What's New ... ng Việt [PDF - 273 KB] Quick Links Air Pollution & Respiratory Health Air Quality Asthma Mold What's New ...

  20. Pyrotechnic filled molding powder

    DOEpatents

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  1. QUANTIFYING INDOOR MOLDS

    EPA Science Inventory

    There is growing awareness that indoor molds/fungi may be connected to such conditions as asthma, allergies, hemorrhaging, chronic rhinosinusitis, memory loss, and a symptom complex called sick-building-syndrome. In addition, molds cause frequently fatal nosocomical infections. ...

  2. Slime Mould Analogue Models of Space Exploration and Planet Colonisation

    NASA Astrophysics Data System (ADS)

    Adamatzky, A.; Armstrong, R.; De Lacy Costello, B.; Deng, Y.; Jones, J.; Mayne, R.; Schubert, T.; Sirakoulis, G. Ch.; Zhang, X.

    Slime mould Physarum polycephalum is a single cell that is visible by the unaided eye. When spanning sources of nutrients the slime mould builds a network of protoplasmic tubes which is sometimes considered to be optimal in terms of the minimization of metabolite transportation time and distance away from repellents. Previously we have shown that the slime mould is efficient in imitating the formation of man-made road networks in major countries, where major urban areas are sources of nutrients. We used a similar approach to grow slime mould on a three-dimensional template of the Moon to speculate on potential colonisation scenarios. The slime mould imitated the propagation of colonisation in an exploratory mode, i.e. without any definite targets. Additional transportation hubs/targets were added after the initial network was formed, to imitate the development of colonies in parallel with slime mould growth. We provide analyses of proximity graphs representing colonisation networks and support the findings with Physarum-inspired algorithms to inform supply chain design. We speculate on how living Physarum, or its incorporation into a polymer hybrid material, can be used as a wearable smart wetware based on laboratory experiments interacting with chemical components.

  3. Acellular Dermal Matrix in Rotator Cuff Surgery.

    PubMed

    Cooper, Joseph; Mirzayan, Raffy

    2016-01-01

    The success of rotator cuff repair (RCR) surgery can be measured clinically (validated outcome scores, range of motion) as well as structurally (re-tear rates using imaging studies). Regardless of repair type or technique, most studies have shown that patients do well clinically. However, multiple studies have also shown that structurally, the failure rate can be very high. A variety of factors, including poor tendon quality, age over 63 years, smoking, advanced fatty infiltration into the muscle, and the inability of the tendon to heal to bone, have been implicated as the cause of the high re-tear rate in RCRs. The suture-tendon interface is felt to be the weakest link in the RCR construct, and suture pullout through the tendon is believed to be the most common method of failure. This review of the published literature seeks to determine if there is support for augmentation of RCR with acellular dermal matrices to strengthen the suture-tendon interface and reduce the re-tear rate. PMID:27552454

  4. Allergies, asthma, and molds

    MedlinePlus

    ... in damp places. Outdoors, mold lives in the soil, on compost, and on plants that are damp. Keeping your house and yard drier will help control mold growth. Central heating and air-conditioning systems can help control mold. Change furnace and ...

  5. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  6. Molds for cable dielectrics

    DOEpatents

    Roose, Lars D.

    1996-01-01

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made.

  7. Mold and Children's Health.

    ERIC Educational Resources Information Center

    Tuscano, Antoinette

    1998-01-01

    Mold can seriously affect the health of children with asthma or allergies. Indoor air problems related to mold can be difficult to identify, but when several students who spend time in the same classroom area show allergic symptoms, it is important to consider mold and air quality. Failure to respond promptly can have serious consequences. (SM)

  8. Mold-Resistant Construction.

    ERIC Educational Resources Information Center

    Huckabee, Christopher

    2003-01-01

    Asserts that one of the surest ways to prevent indoor air quality and mold issues is to use preventive construction materials, discussing typical resistance to dealing with mold problems (usually budget-related) and describing mold-resistant construction, which uses concrete masonry, brick, and stone and is intended to withstand inevitable…

  9. Bleach Neutralizes Mold Allergens

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Researchers at National Jewish Medical and Research Center have demonstrated that dilute bleach not only kills common household mold, but may also neutralize the mold allergens that cause most mold-related health complaints. The study, published in the Journal of Allergy and Clinical Immunology, is the first to test the effect on allergic…

  10. Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration.

    PubMed

    Corona, Benjamin T; Greising, Sarah M

    2016-10-01

    Volumetric muscle loss (VML) injuries present a complex and heterogeneous clinical problem that results in a chronic loss of muscle tissue and strength. The primary limitation to muscle tissue regeneration after VML injury is the frank loss of all native muscle constituents in the defect, especially satellite cells and the basal lamina. Recent advancements in regenerative medicine have set forth encouraging and emerging translational and therapeutic options for these devastating injuries including the surgical implantation of acellular biological scaffolds. While these biomaterials can modulate the wound environment, the existing data do not support their capacity to promote appreciable muscle fiber regeneration that can contribute to skeletal muscle tissue functional improvements. An apparent restriction of endogenous satellite cell (i.e., pax7(+)) migration to acellular biological scaffolds likely underlies this deficiency. This work critically evaluates the role of an acellular biological scaffold in orchestrating skeletal muscle tissue regeneration, specifically when used as a regenerative medicine approach for VML injury. PMID:27472161

  11. 53. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL MOLDS IN THE MORAVIAN POTTERY AND TILE WORKS COLLECTION, AND ARE USED TO PRESS TILES. THE FACTORY KEEPS TEN PRODUCTION MOLDS FOR EACH IMAGE. THE ORIGINAL MOLDS ARE NOT USED IN PRODUCTION. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  12. Comparative sampling molds evaluation

    SciTech Connect

    Pierrard, L.; Jarry, P.; Charbonnier, J.; Rigaut, C.

    1996-10-01

    The metallurgical industry needs to cast alloys with narrow tolerances in their chemical composition in order to reduce variability of their use properties. Therefore appropriate sampling practices and analytical methods are required. Both accuracy and precision of the analytical results are limited by the non-homogeneity of as-cast disk or cylinder samples, which results from macrosegregation phenomenon. This paper presents a comparison between six commonly used molds: four molds recommended by ASTM standards (center-pour molds type B and vacuum mold), mushroom shaped and cylinder molds. Two complementary approaches are exhibited for the different molds designs: (1) solidification modeling in order to predict macrosegregation localization using the Simulor software; (2) experimental characterization. Radial and axial segregation profiles are determined by Analytical Scanning Electron Microscopy in addition to analytical precision evaluation by spark optical emission and X-Ray fluorescence spectrometries for a given machining depth.

  13. Molded Magnetic Article

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Namkung, Min (Inventor); Wincheski, Russell A. (Inventor); Fulton, James P. (Inventor); Fox, Robert L. (Inventor)

    2000-01-01

    A molded magnetic article and fabrication method are provided. Particles of ferromagnetic material embedded in a polymer binder are molded under heat and pressure into a geometric shape. Each particle is an oblate spheroid having a radius-to-thickness aspect ratio approximately in the range of 15-30. Each oblate spheroid has flattened poles that are substantially in perpendicular alignment to a direction of the molding pressure throughout the geometric shape.

  14. Guide to Molds at School.

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., Albany, NY.

    Asserting that molds growing in schools can be harmful to children's health and learning, this guide offers information about the issue. It provides an overview of the basics, then addresses testing, types of molds, molds and health, monitoring schools for mold, mold prevention and clean-up tips for schools, and what parents should do if they…

  15. On hybrid circuits exploiting thermistive properties of slime mould

    PubMed Central

    Walter, Xavier Alexis; Horsfield, Ian; Mayne, Richard; Ieropoulos, Ioannis A.; Adamatzky, Andrew

    2016-01-01

    Slime mould Physarum polycephalum is a single cell visible by the unaided eye. Let the slime mould span two electrodes with a single protoplasmic tube: if the tube is heated to approximately ≈40 °C, the electrical resistance of the protoplasmic tube increases from ≈3 MΩ to ≈10,000 MΩ. The organism’s resistance is not proportional nor correlated to the temperature of its environment. Slime mould can therefore not be considered as a thermistor but rather as a thermic switch. We employ the P. polycephalum thermic switch to prototype hybrid electrical analog summator, NAND gates, and cascade the gates into Flip-Flop latch. Computing operations performed on this bio-hybrid computing circuitry feature high repeatability, reproducibility and comparably low propagation delays. PMID:27048713

  16. On hybrid circuits exploiting thermistive properties of slime mould

    NASA Astrophysics Data System (ADS)

    Walter, Xavier Alexis; Horsfield, Ian; Mayne, Richard; Ieropoulos, Ioannis A.; Adamatzky, Andrew

    2016-04-01

    Slime mould Physarum polycephalum is a single cell visible by the unaided eye. Let the slime mould span two electrodes with a single protoplasmic tube: if the tube is heated to approximately ≈40 °C, the electrical resistance of the protoplasmic tube increases from ≈3 MΩ to ≈10,000 MΩ. The organism’s resistance is not proportional nor correlated to the temperature of its environment. Slime mould can therefore not be considered as a thermistor but rather as a thermic switch. We employ the P. polycephalum thermic switch to prototype hybrid electrical analog summator, NAND gates, and cascade the gates into Flip-Flop latch. Computing operations performed on this bio-hybrid computing circuitry feature high repeatability, reproducibility and comparably low propagation delays.

  17. On hybrid circuits exploiting thermistive properties of slime mould.

    PubMed

    Walter, Xavier Alexis; Horsfield, Ian; Mayne, Richard; Ieropoulos, Ioannis A; Adamatzky, Andrew

    2016-01-01

    Slime mould Physarum polycephalum is a single cell visible by the unaided eye. Let the slime mould span two electrodes with a single protoplasmic tube: if the tube is heated to approximately ≈40 °C, the electrical resistance of the protoplasmic tube increases from ≈3 MΩ to ≈10,000 MΩ. The organism's resistance is not proportional nor correlated to the temperature of its environment. Slime mould can therefore not be considered as a thermistor but rather as a thermic switch. We employ the P. polycephalum thermic switch to prototype hybrid electrical analog summator, NAND gates, and cascade the gates into Flip-Flop latch. Computing operations performed on this bio-hybrid computing circuitry feature high repeatability, reproducibility and comparably low propagation delays. PMID:27048713

  18. BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE MAKES BOTH MOLD HALVES INDIVIDUALLY WHICH ARE LATER ROTATED, ASSEMBLED, AND LOWERED TO POURING CONVEYORS BY ASSISTING MACHINES. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  19. Guiding Student Inquiry into Eukaryotic Organismal Biology Using the Plasmodial Slime Mold "Physarum Polycephalum"

    ERIC Educational Resources Information Center

    Weeks, Andrea; Bachman, Beverly; Josway, Sarah; Laemmerzahl, Arndt F.; North, Brittany

    2014-01-01

    In order to challenge our undergraduate students' enduring misconception that plants, animals, and fungi must be "advanced" and that other eukaryotes traditionally called protists must be "primitive," we have developed a 24-hour take-home guided inquiry and investigation of live Physarum cultures. The experiment replicates…

  20. EDTA treatment alters protein glycosylation in the cellular slime mold Dictyostelium discoideum

    SciTech Connect

    West, C.M.; Brownstein, S.A. )

    1988-03-01

    The authors have found that treatment of cells with EDTA resulted in the accumulation of lower molecular weight forms of two cell-type-specific glycoproteins. These new glycoproteins lacked a developmentally regulated glycoantigen defined by monoclonal antibody 54.2. Since EDTA dissociated the cells, the possible involvement of cell separation was tested by immobilizing cells in soft agarose. Glycoantigen expression on these proteins was found to be dependent on cAMP and high oxygen tension but not on cell contact, and was reversibly sensitive to EDTA regardless of the state of cell association. The EDTA effect was mimicked by other soluble, but not particulate, membrane impermeable chelators, could be completed by Zn{sup 2+} better than Mg{sup 2+}, and appeared to involve an intracellular mechanism. Studies with ({sup 14}C)EDTA showed that EDTA equilibrated with a cellular compartment in a temperature-dependent, Zn{sup 2+}-insensitive fashion with half-time kinetics of loading and unloading of 30-40 min. The data suggest that this step in glycosylation, which was found to be delayed 1 or more hours subsequent to protein synthesis, involves an intracellular, transition metal-ion-dependent process which can be modulated by chelators entering the cell through the endocytic pathway.

  1. Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs

    NASA Astrophysics Data System (ADS)

    Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J. B.

    2010-10-01

    The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.

  2. Modelling the aggregation process of cellular slime mold by the chemical attraction.

    PubMed

    Atangana, Abdon; Vermeulen, P D

    2014-01-01

    We put into exercise a comparatively innovative analytical modus operandi, the homotopy decomposition method (HDM), for solving a system of nonlinear partial differential equations arising in an attractor one-dimensional Keller-Segel dynamics system. Numerical solutions are given and some properties show evidence of biologically practical reliance on the parameter values. The reliability of HDM and the reduction in computations give HDM a wider applicability. PMID:25114922

  3. Analysis of Rheb in the cellular slime mold Dictyostelium discoideum: cellular localization, spatial expression and overexpression.

    PubMed

    Swer, Pynskhem Bok; Bhadoriya, Pooja; Saran, Shweta

    2014-03-01

    Dictyostelium discoideum encodes a single Rheb protein showing sequence similarity to human homologues of Rheb. The DdRheb protein shares 52 percent identity and 100 percent similarity with the human Rheb1 protein. Fluorescence of Rheb yellow fluorescent protein fusion was detected in the D. discoideum cytoplasm. Reverse transcription-polymerase chain reaction and whole-mount in situ hybridization analyses showed that rheb is expressed at all stages of development and in prestalk cells in the multicellular structures developed. When the expression of rheb as a fusion with lacZ was driven under its own promoter, the beta-galactosidase activity was seen in the prestalk cells. D. discoideum overexpressing Rheb shows an increase in the size of the cell. Treatment of the overexpressing Rheb cells with rapamycin confirms its involvement in the TOR signalling pathway. PMID:24499792

  4. Growth patterns of the slime mold Physarum on a nonuniform substrate

    NASA Astrophysics Data System (ADS)

    Halvorsrud, Ragnhild; Wagner, Geri

    1998-01-01

    The Myxomycete Physarum polycephalum has been grown on nonuniform substrates, where the nutrients were confined in separated drops of agar medium. Spatial and temporal aspects of the resulting growth structures were studied by time-lapse video techniques and analyzed using image processing software. The growth process on a linear substrate of drops can be described in terms of a searching phase alternating with a feeding phase. On a linear array of drops, the Physarum advanced uniformly after an initial lag phase. On a two-dimensional drop substrate two different growth regimes could be distinguished: branched growth was observed on substrates with small drop diameters and compact growth, similar to growth on uniform substrates, was observed on substrates with larger drop diameters. The drop size is a crucial parameter that mediates characteristic plasmodial morphologies. A crossover from branched to compact growth was observed in some of the experiments. A spatial correlation function was used that could quantitatively distinguish between the different growth regimes.

  5. Mutations affecting sensitivity of the cellular slime mold Dictyostelium discoideum to DNA-damaging agents.

    PubMed

    Bronner, C E; Welker, D L; Deering, R A

    1992-09-01

    We describe 22 new mutants of D. discoideum that are sensitive to DNA damage. These mutants were isolated on the basis of sensitivity to either temperature, gamma-rays, or 4-nitroquinolone-1-oxide (4NQO). The doses of gamma-rays, ultraviolet light (UV), and 4NQO required to reduce the survival of colony-forming ability of these mutants to 10% (D10) range from 2% to 100% of the D10s for the nonmutant, parent strains. For most of the mutants, those which are very sensitive to one agent are very sensitive to all agents tested and those which are moderately sensitive to one agent, are moderately sensitive to all agents tested. One mutant is sensitive only to 4NQO. Linkage relationships have been examined for 13 of these mutants. This linkage information was used to design complementation tests to determine allelism with previously characterized complementation groups affecting sensitivity to radiation. 4 of the new mutants fall within previously identified complementation groups and 3 new complementation groups have been identified (radJ, radK and radL). Other new loci probably also exist among these new mutants. This brings the number of characterized mutants of D. discoideum which are sensitive to DNA-damaging agents to 33 and the number of assigned complementation groups to 11. PMID:1380652

  6. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  7. Rapid mold replication

    SciTech Connect

    Heestand, G.M.; Beeler, R.G. Jr.; Brown, D.L.

    1995-06-01

    The desire to reduce tooling costs have driven manufacturers to investigate new manufacturing methods and materials. In the plastics injection molding industry replicating molds to meet production needs is time consuming (up to 6 months) and costly in terms of lost business. We have recently completed a feasibility study demonstrating the capability of high rate Electron Beam Physical Vapor Deposition (EBPVD) in producing mold inserts in days, not months. In the current practice a graphite mandrel, in the shape of the insert`s negative image, was exposed to a jet of metal vapor atoms emanating from an electron beam heated source of an aluminum-bronze alloy. The condensation rate of the metal atoms on the mandrel was sufficient to allow the deposit to grow at over 30 {mu}m/min or 1.2 mils per minute. The vaporization process continued for approximately 14 hours after which the mandrel and deposit were removed from the EBPVD vacuum chamber. The mandrel and condensate were easily separated resulting in a fully dense aluminum-bronze mold insert about 2.5 cm or one inch thick. This mold was subsequently cleaned and drilled for water cooling passages and mounted on a fixture for operation in an actual injection molding machine. Results of the mold`s operation were extremely successful showing great promise for this technique. This paper describes the EBPVD feasibility demonstration in more detail and discusses future development work needed to bring this technique into practice.

  8. A comparative study of acellular nerve xenografts and allografts in repairing rat facial nerve defects.

    PubMed

    Huang, Haitao; Xiao, Hongxi; Liu, Huawei; Niu, Yu; Yan, Rongzeng; Hu, Min

    2015-10-01

    Acellular nerves are composed of a basal lamina tube, which retains sufficient bioactivity to promote axon regeneration, thereby repairing peripheral nerve gaps. However, the clinical application of acellular allografts has been restricted due to its limited availability. To investigate whether xenografts, a substitute to allograft acellular nerves in abundant supply, could efficiently promote nerve regeneration, rabbit and rat acellular nerve grafts were used to reconstruct 1 cm defects in Wistar rat facial nerves. Autologous peroneal nerve grafts served as a positive control group. A total of 12 weeks following the surgical procedure, the axon number, myelinated axon number, myelin sheath thickness, and nerve conduction velocity of the rabbit and rat‑derived acellular nerve grafts were similar, whereas the fiber diameter of the rabbit‑derived acellular xenografts decreased, as compared with those of rat‑derived acellular allografts. Autografts exerted superior effects on nerve regeneration; however, no significant difference was observed between the axon number in the autograft group, as compared with the two acellular groups. These results suggested that autografts perform better than acellular nerve grafts, and chemically extracted acellular allografts and xenografts have similar effects on the regeneration of short facial nerve defects. PMID:26239906

  9. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M.

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  10. Silicone plesiotherapy molds

    SciTech Connect

    Karolis, C.; Reay-Young, P.S.; Walsh, W.; Velautham, G.

    1983-04-01

    Plesiotherapy, the treatment of superficial lesions by radioactive molds has largely been replaced by teletherapy techniques involving high energy photon and electron beams. There are, however, situations for which a short distance type treatment, in one form or another, is superior to any other presently available. Traditionally, molds have taken the form of rigid devices incorporating clamps to attach them to the patient. This ensures a reproducible geometry about a localized region since the molds are applied on a daily basis. To make such devices requires considerable skill and patience. This article describes an alternative method that eliminates the use of cumbersome devices in many situations. Silicone molds made from a plaster cast model have been found suitable for the treatment of surface lesions and especially for lesions in the oral and nasal cavities. With the use of radioactive gold seeds the molds may be left in place for a few days without fear of them moving.

  11. CHARACTERIZATION AND DISPOSAL OF KAOLINITIC SLIMES FROM MINING OPERATIONS

    EPA Science Inventory

    The waste of sand-and-gravel mines in piedmont North Carolina was characterized as to quantity, constituents, variability, and dewatering nature. Current disposal is by deep storage in ponds. The clay slimes, principally kaolinite, remain fluid indefinitely when stored deeper tha...

  12. Glass molding process with mold lubrication

    DOEpatents

    Davey, Richard G.

    1978-06-27

    Improvements are provided in glass forming processes of the type wherein hot metal blank molds are employed by using the complementary action of a solid film lubricant layer, of graphite dispersed in a cured thermoset organopolysiloxane, along with an overspray of a lubricating oil.

  13. Resin film infusion mold tooling and molding method

    NASA Technical Reports Server (NTRS)

    Burgess, Roger (Inventor); Grossheim, Brian (Inventor); Mouradian, Karbis (Inventor); Thrash, Patrick J. (Inventor)

    1999-01-01

    A mold apparatus and method for resin film infusion molding including an outer mold tool having a facing sheet adapted to support a resin film and preform assembly. The facing sheet includes attachment features extending therefrom. An inner mold tool is positioned on the facing sheet to enclose the resin film and preform assembly for resin film infusion molding. The inner mold tool includes a plurality of mandrels positioned for engagement with the resin film and preform assembly. Each mandrel includes a slot formed therein. A plurality of locating bars cooperate with the slots and with the attachment features for locating the mandrels longitudinally on the outer mold tool.

  14. 92. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL MOLDS IN THE MORAVIAN POTTERY AND TILE WORKS COLLECTION, AND ARE USED TO PRESS TILES. THE FACTORY KEEPS TEN PRODUCTION MOLDS FOR EACH IMAGE. THE ORIGINAL MOLDS ARE NOT USED IN PRODUCTION. SAME VIEW AS PA-107-53. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  15. Hagfish slime and mucin flow properties and their implications for defense

    PubMed Central

    Böni, Lukas; Fischer, Peter; Böcker, Lukas; Kuster, Simon; Rühs, Patrick A.

    2016-01-01

    When hagfish (Myxinidae) are attacked by predators, they form a dilute, elastic, and cohesive defensive slime made of mucins and protein threads. In this study we propose a link between flow behavior and defense mechanism of hagfish slime. Oscillatory rheological measurements reveal that hagfish slime forms viscoelastic networks at low concentrations. Mucins alone did not contribute viscoelasticity, however in shear flow, viscosity was observed. The unidirectional flow, experienced by hagfish slime during suction feeding by predators, was mimicked with extensional rheology. Elongational stresses were found to increase mucin viscosity. The resulting higher resistance to flow could support clogging of the attacker’s gills. Shear flow in contrast decreases the slime viscosity by mucin aggregation and leads to a collapse of the slime network. Hagfish may benefit from this collapse when trapped in their own slime and facing suffocation by tying a sliding knot with their body to shear off the slime. This removal could be facilitated by the apparent shear thinning behavior of the slime. Therefore hagfish slime, thickening in elongation and thinning in shear, presents a sophisticated natural high water content gel with flow properties that may be beneficial for both, defense and escape. PMID:27460842

  16. Hagfish slime and mucin flow properties and their implications for defense

    NASA Astrophysics Data System (ADS)

    Böni, Lukas; Fischer, Peter; Böcker, Lukas; Kuster, Simon; Rühs, Patrick A.

    2016-07-01

    When hagfish (Myxinidae) are attacked by predators, they form a dilute, elastic, and cohesive defensive slime made of mucins and protein threads. In this study we propose a link between flow behavior and defense mechanism of hagfish slime. Oscillatory rheological measurements reveal that hagfish slime forms viscoelastic networks at low concentrations. Mucins alone did not contribute viscoelasticity, however in shear flow, viscosity was observed. The unidirectional flow, experienced by hagfish slime during suction feeding by predators, was mimicked with extensional rheology. Elongational stresses were found to increase mucin viscosity. The resulting higher resistance to flow could support clogging of the attacker’s gills. Shear flow in contrast decreases the slime viscosity by mucin aggregation and leads to a collapse of the slime network. Hagfish may benefit from this collapse when trapped in their own slime and facing suffocation by tying a sliding knot with their body to shear off the slime. This removal could be facilitated by the apparent shear thinning behavior of the slime. Therefore hagfish slime, thickening in elongation and thinning in shear, presents a sophisticated natural high water content gel with flow properties that may be beneficial for both, defense and escape.

  17. Hagfish slime and mucin flow properties and their implications for defense.

    PubMed

    Böni, Lukas; Fischer, Peter; Böcker, Lukas; Kuster, Simon; Rühs, Patrick A

    2016-01-01

    When hagfish (Myxinidae) are attacked by predators, they form a dilute, elastic, and cohesive defensive slime made of mucins and protein threads. In this study we propose a link between flow behavior and defense mechanism of hagfish slime. Oscillatory rheological measurements reveal that hagfish slime forms viscoelastic networks at low concentrations. Mucins alone did not contribute viscoelasticity, however in shear flow, viscosity was observed. The unidirectional flow, experienced by hagfish slime during suction feeding by predators, was mimicked with extensional rheology. Elongational stresses were found to increase mucin viscosity. The resulting higher resistance to flow could support clogging of the attacker's gills. Shear flow in contrast decreases the slime viscosity by mucin aggregation and leads to a collapse of the slime network. Hagfish may benefit from this collapse when trapped in their own slime and facing suffocation by tying a sliding knot with their body to shear off the slime. This removal could be facilitated by the apparent shear thinning behavior of the slime. Therefore hagfish slime, thickening in elongation and thinning in shear, presents a sophisticated natural high water content gel with flow properties that may be beneficial for both, defense and escape. PMID:27460842

  18. Infection in the Nasal Tip Caused by Acellular Dermal Matrix.

    PubMed

    Lee, Kun Hee

    2015-12-01

    A 19-year-old female patient visited our clinic for rhinoplasty. She complained about her low take-off point, which was apparent in profile view, and wanted slight tip projection. She refused additional cartilage harvesting from ears or ribs but consented to the use of homologous tissue, including acellular dermal matrix, for her dorsum and tip. Septoturbinoplasty was performed, and only a very small amount of septal cartilage could be harvested. It was used as both the columellar strut and the alar rim graft. Nasal dorsum and tip were augmented with acellular dermal matrix. Three months postoperatively, she experienced a few episodes of edema and redness on her nasal tip, followed by pus exudation from the nasal skin. Six months postoperatively, she underwent revision rhinoplasty for removal of inflamed grafts, and onlay tip graft with homologous rib cartilage was performed. Nasal dorsum or tip grafts are an integral part of Asian rhinoplasty. Autogenous tissue is the gold standard for grafting materials. However, the limited availability of autogenous tissue and the preference of patients and surgeons for artificial surgical implants make Asian rhinoplasty challenging. Unavailability of autogenous cartilage and patient refusal of artificial implants led to the use of acellular dermal matrix (ADM) in the nasal dorsum and tip for this case. This is the first report of postoperative complication because of infection rather than absorption after ADM use. PMID:26894006

  19. Comparison of toxicities of acellular pertussis vaccine with whole cell pertussis vaccine in experimental animals.

    PubMed

    Sato, Y; Sato, H

    1991-01-01

    There is no suitable animal model for pertussis encephalopathy in humans. In this study, we have compared the toxicity of acellular pertussis vaccine with whole cell pertussis vaccine in mice or guinea pigs. Two lots of acellular and two lots of whole cell vaccine produced in different countries were assayed in the test. 1. There was no statistical difference in mouse protective potency between these acellular or whole cell pertussis vaccines. 2. There were no differences in chemical ingredients between acellular and whole cell pertussis vaccines except for protein nitrogen content. The protein nitrogen content of whole cell vaccine was at least three times higher than that of the acellular product. 3. Anti-PT antibody productivity of the acellular vaccine was higher than that of the whole cell vaccine. 4. Anti-agglutinogen antibody productivity of the whole cell vaccine was higher than that of the acellular vaccine. 5. There was no pyrogenic activity with the acellular vaccine, but high pyrogenicity was seen with whole cell vaccine. 6. There was high body-weight decreasing toxicity in mice and guinea pigs by the whole cell vaccine. 7. The mice died when they received whole cell pertussis vaccine iv, but no deaths occurred in the mice which received acellular pertussis vaccine. PMID:1778317

  20. Mold After a Disaster

    MedlinePlus

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... Disaster Mold Removal After a Disaster Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ...

  1. Breaking the Mold.

    ERIC Educational Resources Information Center

    Huckabee, Christopher

    2003-01-01

    Using the example of a Texas elementary school, describes how to eliminate mold and mildew from school facilities, including discovering the problem, responding quickly, reconstructing the area, and crisis planning and prevention. (EV)

  2. Newborn head molding

    MedlinePlus

    ... molding. In: Graham JM, Sanchez-Lara PA, eds. Smiths' Recognizable Patterns of Human Deformation . 4th ed. Philadelphia, PA: Elsevier; 2016:chap 35. Smith J. Initial evaluation. In: Gleason CA, Devaskar SU, ...

  3. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  4. Porcine acellular lung matrix for wound healing and abdominal wall reconstruction: A pilot study

    PubMed Central

    Fernandez-Moure, Joseph S; Van Eps, Jeffrey L; Rhudy, Jessica R; Cabrera, Fernando J; Acharya, Ghanashyam S; Tasciotti, Ennio; Sakamoto, Jason; Nichols, Joan E

    2016-01-01

    Surgical wound healing applications require bioprosthetics that promote cellular infiltration and vessel formation, metrics associated with increased mechanical strength and resistance to infection. Porcine acellular lung matrix is a novel tissue scaffold known to promote cell adherence while minimizing inflammatory reactions. In this study, we evaluate the capacity of porcine acellular lung matrix to sustain cellularization and neovascularization in a rat model of subcutaneous implantation and chronic hernia repair. We hypothesize that, compared to human acellular dermal matrix, porcine acellular lung matrix would promote greater cell infiltration and vessel formation. Following pneumonectomy, porcine lungs were processed and characterized histologically and by scanning electron microscopy to demonstrate efficacy of the decellularization. Using a rat model of subcutaneou implantation, porcine acellular lung matrices (n = 8) and human acellular dermal matrices (n = 8) were incubated in vivo for 6 weeks. To evaluate performance under mechanically stressed conditions, porcine acellular lung matrices (n = 7) and human acellular dermal matrices (n = 7) were implanted in a rat model of chronic ventral incisional hernia repair for 6 weeks. After 6 weeks, tissues were evaluated using hematoxylin and eosin and Masson’s trichrome staining to quantify cell infiltration and vessel formation. Porcine acellular lung matrices were shown to be successfully decellularized. Following subcutaneous implantation, macroscopic vessel formation was evident. Porcine acellular lung matrices demonstrated sufficient incorporation and showed no evidence of mechanical failure after ventral hernia repair. Porcine acellular lung matrices demonstrated significantly greater cellular density and vessel formation when compared to human acellular dermal matrix. Vessel sizes were similar across all groups. Cell infiltration and vessel formation are well-characterized metrics of incorporation

  5. Porcine acellular lung matrix for wound healing and abdominal wall reconstruction: A pilot study.

    PubMed

    Fernandez-Moure, Joseph S; Van Eps, Jeffrey L; Rhudy, Jessica R; Cabrera, Fernando J; Acharya, Ghanashyam S; Tasciotti, Ennio; Sakamoto, Jason; Nichols, Joan E

    2016-01-01

    Surgical wound healing applications require bioprosthetics that promote cellular infiltration and vessel formation, metrics associated with increased mechanical strength and resistance to infection. Porcine acellular lung matrix is a novel tissue scaffold known to promote cell adherence while minimizing inflammatory reactions. In this study, we evaluate the capacity of porcine acellular lung matrix to sustain cellularization and neovascularization in a rat model of subcutaneous implantation and chronic hernia repair. We hypothesize that, compared to human acellular dermal matrix, porcine acellular lung matrix would promote greater cell infiltration and vessel formation. Following pneumonectomy, porcine lungs were processed and characterized histologically and by scanning electron microscopy to demonstrate efficacy of the decellularization. Using a rat model of subcutaneou implantation, porcine acellular lung matrices (n = 8) and human acellular dermal matrices (n = 8) were incubated in vivo for 6 weeks. To evaluate performance under mechanically stressed conditions, porcine acellular lung matrices (n = 7) and human acellular dermal matrices (n = 7) were implanted in a rat model of chronic ventral incisional hernia repair for 6 weeks. After 6 weeks, tissues were evaluated using hematoxylin and eosin and Masson's trichrome staining to quantify cell infiltration and vessel formation. Porcine acellular lung matrices were shown to be successfully decellularized. Following subcutaneous implantation, macroscopic vessel formation was evident. Porcine acellular lung matrices demonstrated sufficient incorporation and showed no evidence of mechanical failure after ventral hernia repair. Porcine acellular lung matrices demonstrated significantly greater cellular density and vessel formation when compared to human acellular dermal matrix. Vessel sizes were similar across all groups. Cell infiltration and vessel formation are well-characterized metrics of incorporation

  6. Vacuum Evaporation Technology for Treating Antimony-Rich Anode Slime

    NASA Astrophysics Data System (ADS)

    Qiu, Keqiang; Lin, Deqiang; Yang, Xuelin

    2012-11-01

    A vacuum evaporation technology for treating antimony-rich anode slime was developed in this work. Experiments were carried out at temperatures from 873 K to 1073 K and residual gas pressures from 50 Pa to 600 Pa. During vacuum evaporation, silver from the antimony-rich anode slime was left behind in the distilland in a silver alloy containing antimony and lead, and antimony trioxide was evaporated. The experimental results showed that 92% by weight of antimony can be removed, and the silver content in the alloy was up to 12.84%. The antimony trioxide content in the distillate was more than 99.7%, and the distillate can be used directly as zero-grade antimony trioxide (China standard).

  7. Comparative anatomy of slime glands in onychophora (velvet worms).

    PubMed

    Baer, Alexander; Mayer, Georg

    2012-10-01

    Onychophorans use a unique hunting and defense strategy, which involves the ejection of an adhesive slime secretion produced by a pair of specialized glands. So far, a comparative study on the anatomy of these glands has not been carried out among different species. In this article, we compare anatomical features of slime glands in representatives of two major onychophoran subgroups, the Peripatopsidae and the Peripatidae, from different parts of the world. Our data show that the musculature of the reservoir is conserved whereas the composition of the secretory duct displays taxon-specific variation. Major differences concern the arrangement of glandular endpieces, which are distributed along the duct in Peripatopsidae but condensed in numerous repeated rosettes in Peripatidae. In addition, there are differences in the attachment pattern of slime glands to the inner surface of the body wall and to the outer surface of the gut between the two major onychophoran subgroups. A tube-like structure with a putative valve-like function is found at the transition of the secretory duct and the reservoir in the five Peripatopsidae species studied whereas it is absent in the two representatives of Peripatidae. Our findings suggest that the arrangement of musculature in the reservoir of the slime gland has remained unchanged since the divergence of Peripatidae and Peripatopsidae, while the composition of the secretory duct has been altered in one of these groups. However, the direction of evolutionary changes in duct composition cannot be determined unambiguously due to current uncertainty regarding the phylogenetic relationships of Onychophora. PMID:22707384

  8. New technology and equipment for coal slime recovery in China

    SciTech Connect

    Liu, J.

    1998-12-31

    Yearly output of the medium and small coal mines in China has reached 7.7 hundred million tons. Most coal slime from these coal preparation plants are abandoned, and thence the environment is seriously polluted. Recently, a new technology and equipment for coal slime recovery has been developed. The key equipment of the technology is the cyclone-column flotator. To recover the coal slime, a system consisting of cyclone-column flotator and plate frame filter is used. The cyclone-column flotator is a short body flotator specially designed for flotation of coal with difficult floatability. It consists of a flotation segment on the top and a cyclone segment at the bottom, the later being a supplement of flotation processing. As a result, the separation and recovery are enhanced. Compared with traditional flotation machine--vacuum filter system, this technology has the following advantages: (1) suitable for most types of coal; (2) higher selectivity (the ash content in clean coal dropped by 1--2%); and (3) the system is simple and reliable with lower operation cost. The investment dropped by 40--50%, and power consumption, by 30--40% under the same processing capacity. This technology system, featuring convenience, easy operability, high efficiency and high quality is specially suitable for medium and small coal preparation plants. There are over ten coal preparation plants employing this technology system with success.

  9. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    PubMed Central

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone. PMID:25221592

  10. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair.

    PubMed

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-07-15

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone. PMID:25221592

  11. TENDING THE MOLD, DURING THE TRANSFER FROM TUNDISH TO MOLD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TENDING THE MOLD, DURING THE TRANSFER FROM TUNDISH TO MOLD TO CONTAINMENT CHAMBER IS CONTINUOUS CASTING OPERATOR, CALVIN ANDERS. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  12. Pressure molding of powdered materials improved by rubber mold insert

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Pressure molding tungsten microspheres is accomplished by applying hydraulic pressure to a silicone rubber mold insert with several barrel shaped chambers which is placed in a steel die cavity. This technique eliminates castings containing shear fractures.

  13. FILLING MOLDS MADE ON THE BRITISH MOLDING MACHINE, AUTOMATIC COPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FILLING MOLDS MADE ON THE BRITISH MOLDING MACHINE, AUTOMATIC COPE AND DRAG (BMM) FROM MOBILE LADLE. EMPTY BULL LADLE IN FOREGROUND. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  14. Phase II trial of whole-cell pertussis vaccine vs an acellular vaccine containing agglutinogens.

    PubMed

    Miller, E; Ashworth, L A; Robinson, A; Waight, P A; Irons, L I

    1991-01-12

    An acellular pertussis vaccine containing agglutinogens 2 and 3, pertussis toxin, and filamentous haemagglutinin was developed by the Centre for Applied Microbiology and Research in the UK. 188 infants were entered into a randomised blind trial and received either the acellular or a whole-cell vaccine, combined with diphtheria and tetanus toxoids, in a 3, 5, and 8-10 month schedule. Local reactions were similar in the two groups but significantly fewer infants had systemic symptoms after the acellular vaccine. Mean log-antibody titres to the agglutinogen and toxin components were higher with the acellular than with the whole-cell vaccine. Persistence of antibodies one year after the third dose was also better in the acellular group. PMID:1670725

  15. Use of an Acellular Regenerative Tissue Matrix Over Chronic Wounds

    PubMed Central

    Stacey, D. Heath

    2013-01-01

    Objectives: Bioengineered skin grafts, including acellular dermal matrices, may be effective in treating lower extremity and trunk wounds that are not responsive to traditional wound management. Acellular dermal wound matrix is derived from human acellular dermal wound matrix (HADWM) tissue and provides a scaffold that supports cellular repopulation and revascularization. The major structural components of the dermis are retained during processing, and a single application has been shown to help achieve wound closure. Methods: This patient case series examined the use of HADWM on lower extremity and trunk wounds in 11 patients (6 male and 5 female) with a mean age of 55 years (range: 31–83 years). Wounds were debrided 1 to 2 times, followed by placement of HADWM (range: 4–330 cm2) on wounds that varied from the dorsal surface of the foot, lower abdomen, and lower extremity to the Achilles flap. A nonadherent layer in conjunction with bacitracin was placed over HADWM. Negative pressure wound therapy (NPWT) was placed over the HADWM and initiated continuously at −125 mm Hg for 1 to 2 weeks. After the application of NPWT, HADWM was covered with various gauze dressings using mineral oil. Results: All patients completed their treatment successfully, and follow-up ranged from 1 week to 6 months. One patient experienced an infection, which resulted in partial graft loss that required replacement with HADWM and NPWT. No additional complications occurred in the other patients. Conclusions: This patient case series demonstrated successful use of HADWM and NPWT, which further supports published studies documenting HADWM success in chronic wounds. PMID:24324850

  16. Whooping cough, twenty years from acellular vaccines introduction.

    PubMed

    Greco, D; Esposito, S; Tozzi, A; Pandolfi, E; Icardi, G; Giammanco, A

    2015-01-01

    Clinical pertussis resulting from infection with B. pertussis is a significant medical and public health problem, despite the huge success of vaccination that has greatly reduced its incidence. The whole cell vaccine had an undeniable success over the last 50 years, but its acceptance was strongly inhibited by fear, only partially justified, of severe side effects, but also, in the Western world, by the difficulty to enter in combination with other vaccines: today multi-vaccine formulations are essential to maintain a high vaccination coverage. The advent of acellular vaccines was greeted with enthusiasm by the public health world: in the Nineties, several controlled vaccine trials were carried out: they demonstrated a high safety and good efficacy of new vaccines. In fact, in the Western world, the acellular vaccines completely replaced the whole cells ones. In the last years, ample evidence on the variety of protection of these vaccines linked to the presence of different antigens of Bordetella pertussis was collected. It also became clear that the protection provided, on average around 80%, leaves every year a significant cohort of vaccinated susceptible even in countries with a vaccination coverage of 95%, such as Italy. Finally, it was shown that, as for the pertussis disease, protection decreases over time, to leave a proportion of adolescents and adults unprotected. Waiting for improved pertussis vaccines, the disease control today requires a different strategy that includes a booster at 5 years for infants, but also boosters for teenagers and young adults, re-vaccination of health care personnel, and possibly of pregnant women and of those who are in contact with infants (cocooning). Finally, the quest for better vaccines inevitably tends towards pertussis acellular vaccines with at least three components, which have demonstrated superior effectiveness and have been largely in use in Italy for fifteen years. PMID:26051141

  17. Bag molding processes

    NASA Astrophysics Data System (ADS)

    Slobodzinsky, A.

    Features, materials, and techniques of vacuum, pressure, and autoclave FRP bag molding processes are described. The bags are used in sealed environments, inflated to flexibly force a curing FRP laminate to conform to a stiff mold form which defines the shape of the finished product. Densification is achieved as the bag presses out the voids and excess resin from the laminate, and consolidation occurs as the plies and adherends are bonded by the bag pressure. Curing techniques nominally involved room temperature or high temperature, and investigations of alternative techniques, such as induction, dielectric, microwave, xenon flash, UV, electron beam, and gamma radiation heating are proceeding. Polysulfone is the most common thermoplastic. Details are given of mold preparations, peel plies or release films and fabrics, bagging techniques, and reusable venting blankets and silicone rubber bags.

  18. End moldings for cable dielectrics

    DOEpatents

    Roose, Lars D.

    2000-01-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed is a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.

  19. Molding process for imidazopyrrolone polymers

    NASA Technical Reports Server (NTRS)

    Johnson, C. L. (Inventor)

    1973-01-01

    A process is described for producing shaped articles of imidazopyrrolone polymers comprising molding imidazopyrrolone polymer molding power under pressure and at a temperature greater than 475 C. Moderate pressures may be employed. Preferably, prior to molding, a preform is prepared by isostatic compression. The preform may be molded at a relatively low initial pressure and temperature; as the temperature is increased to a value greater than 475 C., the pressure is also increased.

  20. REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-06-24

    Refractory coating for graphite molds used in the casting of uranium is described. The coating is an alumino-silicate refractory composition which may be used as a mold surface in solid form or as a coating applied to the graphite mold. The composition consists of a mixture of ball clay, kaolin, alumina cement, alumina, water, sodium silicate, and sodium carbonate.

  1. MOLDED SEALING ELEMENT

    DOEpatents

    Bradford, B.W.; Skinner, W.J.

    1959-03-24

    Molded sealing elements suitable for use under conditions involving exposure to uranium hexafluoride vapor are described. Such sealing elements are made by subjecting graphitic carbons to a preliminary treatment with uranium hexafluoride vapor, and then incorporating polytetrafluorethylene in them. The resulting composition has good wear resistant and frictional properties and is resistant to disintegration by uranium hexafluoride over long periods of exposure.

  2. White Mold of Chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White mold of chickpea can occur at either seedling stage or at flowering and pod filling stages. At seedling stage, the disease occurs at the base of the stem causing symptoms like collar rot. Often white mycelial growth around the stem on soil surface is visible. Affected plants wilt and die. ...

  3. Acellular dermal matrices in breast reconstructions - a literature review.

    PubMed

    Skovsted Yde, Simon; Brunbjerg, Mette Eline; Damsgaard, Tine Engberg

    2016-08-01

    During the last two decades, acellular dermal matrices (ADM) have been more widely used in reconstructive procedures i.e. breast reconstructions. Several, both synthetic and biologic products derived from human, porcine and bovine tissue, have been introduced. Until this point postoperative complications for the acellular dermal matrices, as a group, have been the main focus. The purpose of this literature review is to summarize the current knowledge on the each biologic product used in breast reconstructions, including product specific complication frequencies. A systematic search of the literature was performed in the PubMed and EMBASE databases, identifying 55 relevant articles, mainly evidence level III. AlloDerm seems to be associated with severe complicating matters in the reconstructive process compared to other products. This could be due to the higher number of investigating studies relative to the others. The surgical area faces certain challenges comparing results, due to surgical variance, the data collection and follow-up. More well-defined guidelines and more high-evidence randomized studies could increase the overall level of evidence in this area. PMID:26881927

  4. Human acellular dermal wound matrix: evidence and experience.

    PubMed

    Kirsner, Robert S; Bohn, Greg; Driver, Vickie R; Mills, Joseph L; Nanney, Lillian B; Williams, Marie L; Wu, Stephanie C

    2015-12-01

    A chronic wound fails to complete an orderly and timely reparative process and places patients at increased risk for wound complications that negatively impact quality of life and require greater health care expenditure. The role of extracellular matrix (ECM) is critical in normal and chronic wound repair. Not only is ECM the largest component of the dermal skin layer, but also ECM proteins provide structure and cell signalling that are necessary for successful tissue repair. Chronic wounds are characterised by their inflammatory and proteolytic environment, which degrades the ECM. Human acellular dermal matrices, which provide an ECM scaffold, therefore, are being used to treat chronic wounds. The ideal human acellular dermal wound matrix (HADWM) would support regenerative healing, providing a structure that could be repopulated by the body's cells. Experienced wound care investigators and clinicians discussed the function of ECM, the evidence related to a specific HADWM (Graftjacket(®) regenerative tissue matrix, Wright Medical Technology, Inc., licensed by KCI USA, Inc., San Antonio, TX), and their clinical experience with this scaffold. This article distills these discussions into an evidence-based and practical overview for treating chronic lower extremity wounds with this HADWM. PMID:24283346

  5. Demonstration of the Coagulation and Diffusion of Homemade Slime Prepared under Acidic Conditions without Borate

    ERIC Educational Resources Information Center

    Isokawa, Naho; Fueda, Kazuki; Miyagawa, Korin; Kanno, Kenichi

    2015-01-01

    Poly(vinyl alcohol) (PVA) precipitates in many kinds of aqueous salt solutions. While sodium sulfate, a coagulant for PVA fiber, precipitates PVA to yield a white rigid gel, coagulation of PVA with aluminum sulfate, a coagulant for water treatment, yields a slime-like viscoelastic fluid. One type of homemade slime is prepared under basic…

  6. Multi-agent model of slime mould for computing and robotics

    NASA Astrophysics Data System (ADS)

    Jones, Jeff

    2015-03-01

    This chapter features results from a multi-agent model of slime mould. Slime mould is a remarkable organism because it possesses no nervous system, no skeleton, no organised musculature and no special senses. Despite these limitations, slime mould is capable of remarkable biological and computational feats by dynamically adapting its body plan in response to environmental stimuli. Because slime mould consists of simple component parts, its behaviour requires no specialised or critical components and the mechanisms which govern its behaviour are distributed throughout -- and embedded within -- the organism itself. This multi-agent approach to modelling slime mould is a bottom-up model and attempts to specifically use the same -- apparently limiting -- properties found in the organism itself: simple component parts, local interactions and self-organised collective emergent behaviour. The aim of the model is to show how the complexity of slime mould can emerge from these very simple local interactions. The model has successfully been applied to reproducing the biological behaviour of slime mould (growth patterns, network adaptation, oscillatory phenomena) and also the computational and robotic behaviour of slime mould. The images in this chapter give a flavour of the model with topics relating to the complex pattern formation phenomena, amoeboid movement and collective transport phenomena, and its utilisation as a spatially represented unconventional computing substrate...

  7. Process and mold for molding foamed plastic articles

    SciTech Connect

    Baumrucker, E.J.

    1984-10-30

    A method for forming foamed plastic articles which includes the steps of closing a mold; prepressurizing the mold cavity with gas to prevent premature diffusion of blowing gas from the material injected into the cavity; injecting a short shot of molten synthetic resin material containing a blowing agent into the cavity; venting a portion of the prepressurization gas during the injection step; and venting the remaining prepressurization gas from the mold cavity to a vacuum chamber means to allow expansion of the injected foamable resin material within the mold cavity, the vacuum drawing the resin material throughout the mold cavity. In addition, the vacuum chamber is coupled to the mold cavity through plural spaced passageways so that the vacuum is drawn at various locations throughout the cavity to thereby enhance the complete filling of the cavity with the injected material as it expands. The mold is vented following the injection step automatically at the expiration of a predetermined time following the closing of a nozzle of the injection apparatus. A mold for carrying out the process includes improved gas flow means for delivering gas to and venting gas from the mold cavity. The mold also includes improved sealing means for sealing the mold to maintain it in a pressurized state as desired.

  8. Nonpost mold cure compound

    NASA Astrophysics Data System (ADS)

    Hirata, Akihiro

    1997-08-01

    The recent low price trend of electronic products has made IC manufacturing efficiency a top priority in the semiconductor industry. Post mold cure (PMC) process, which generally involves heating the packages in the oven at 175 C for 4 to 8 hours, takes up much longer time than most other assembly processes. If this PMC process can be reduced or eliminated, semiconductor makers will be rewarded with a much higher cost merit. We define the purpose of Non-PMC as 'to get high reliability with suitable physical and electrical properties without PMC'. We compared carious properties of molding compound before and after PMC. We found that curing reaction has almost complete through DSC and C-NMR measurement, but several properties have not stabilized yet, and that not all properties after PMC were better than before PMC. We developed new grade of molding compound considering these facts. And we found that main factors to accomplish non-PMC compound are curability and flowability, and more, increasing of fundamental properties. To accomplish non-PMC, at first, molding compound need to have very high curability. Generally speaking, too high curability causes low flowability, and causes incomplete filing, wire sweep, pad shift, and weak adhesion to inner parts of IC packages. To prevent these failures, various compound properties were studied, and we achieved in adding good flowability to very high curable molding compound. Finally, anti-popcorn property was improved by adding low moisture, high adhesion, high Tg, and high flexural strengths at high temperature. Through this study, we developed new compound grade for various package, especially large QFP using standard ECN resin.

  9. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    SciTech Connect

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  10. Habituation in non-neural organisms: evidence from slime moulds.

    PubMed

    Boisseau, Romain P; Vogel, David; Dussutour, Audrey

    2016-04-27

    Learning, defined as a change in behaviour evoked by experience, has hitherto been investigated almost exclusively in multicellular neural organisms. Evidence for learning in non-neural multicellular organisms is scant, and only a few unequivocal reports of learning have been described in single-celled organisms. Here we demonstrate habituation, an unmistakable form of learning, in the non-neural organism Physarum polycephalum In our experiment, using chemotaxis as the behavioural output and quinine or caffeine as the stimulus, we showed that P. polycephalum learnt to ignore quinine or caffeine when the stimuli were repeated, but responded again when the stimulus was withheld for a certain time. Our results meet the principle criteria that have been used to demonstrate habituation: responsiveness decline and spontaneous recovery. To distinguish habituation from sensory adaptation or motor fatigue, we also show stimulus specificity. Our results point to the diversity of organisms lacking neurons, which likely display a hitherto unrecognized capacity for learning, and suggest that slime moulds may be an ideal model system in which to investigate fundamental mechanisms underlying learning processes. Besides, documenting learning in non-neural organisms such as slime moulds is centrally important to a comprehensive, phylogenetic understanding of when and where in the tree of life the earliest manifestations of learning evolved. PMID:27122563

  11. Application of acellular dermis and autograft on burns and scars.

    PubMed

    Ramos Duron, L E; Martínez Pardo, M E; Olivera Zavaleta, V; Silva Diaz, T; Reyes Frías, M L; Luna Zaragoza, D

    1999-01-01

    The cases of two patients with burns treated with dermis allograft and of one patient for lip reconstructive aesthetic filling treated with less than one mm3 of radiosterilised acellular dermis are presented. This paper emphasizes the treatment with radiosterilised dermal grafts with a permanent character so far. Hospitals, therefore, can satisfy the demand for this kind of tissue in the case of disaster and patients with serious injuries. In the cases cited, histocompatibility analysis was not required, thus having the advantage of long-time storage of the radiosterilised dermis used on these patients. Neither inflammatory reaction nor acute phase re-absorption were observed. Moreover, shrink (contract) healing was diminished. After two years, the results are still satisfactory. PMID:10853787

  12. Protection against pertussis by acellular pertussis vaccines (Takeda, Japan): household contact studies in Kawasaki City, Japan.

    PubMed

    Kato, T; Goshima, T; Nakajima, N; Kaku, H; Arimoto, Y; Hayashi, F

    1989-12-01

    To evaluate the vaccine efficacy of an acellular pertussis vaccine which has been in clinical use in Japan since 1981, a retrospective study was performed by a questionnaire survey of secondary pertussis attacks through family contact in 146 children with pertussis diagnosed in the period from January 1981 through May 1988. In this study, acellular vaccine made by Takeda Pharmaceutical Company, which contains a high level of FHA (filamentous hemagglutinin), a low level of PT (pertussis toxin) and a small amount of agglutinogen, was evaluated. Secondary pertussis attacks through family contact were found in 17 of 29 siblings (58.6%) not immunized with pertussis vaccine. On the other hand, 27 siblings immunized with Takeda's acellular vaccine were exposed to pertussis through family contact and a secondary attack was seen in only one of them (3.7%). The present study revealed an efficacy rate of 93.7% for Takeda's acellular pertussis vaccine. PMID:2516396

  13. [Protection against pertussis by Japanese T type acellular pertussis vaccine: household contact study in Kawasaki City].

    PubMed

    Kato, T; Matsuyoshi, S; Goshima, T; Nakajima, N; Yamamoto, H; Arimoto, Y; Kaku, H; Hayashi, F

    1989-09-01

    To evaluate the vaccine efficacy of acellular pertussis vaccine which has been in clinical use in Japan since 1981, a retrospective study was made by a questionnaire from secondary pertussis attack through family contact in 149 children with pertussis diagnosed in the period from January 1981 through May 1988. In this study, Takeda's acellular vaccine which contains a high level of FHA, low level of PT and a small amount of agglutinogen, was evaluated. Secondary pertussis attacks through family contact were found in 17 of 29 siblings (58.6%) not immunized with pertussis vaccine. On the other hand of the siblings immunized with Takeda's acellular vaccine 27 were exposed to pertussis through family contact and a secondary attack was seen in only one of them (3.4%). The present study revealed an efficacy rate of 94.2% for the Takeda's acellular pertussis vaccine. PMID:2509597

  14. Protection against pertussis by Takeda's acellular pertussis vaccine: household contact studies in Kawasaki City, Japan.

    PubMed

    Kato, T; Kaku, H; Arimoto, Y

    1988-01-01

    To evaluate the vaccine efficacy of an acellular pertussis vaccine which has been in clinical use in Japan since 1981, a retrospective study was performed by a questionnaire survey of secondary pertussis attacks through family contact in 146 children with pertussis diagnosed in the period from January 1981 through May 1988. In this study, Takeda's acellular vaccine which contains a high level of FHA, low level of PT and a small amount of agglutinogen, was evaluated. Secondary pertussis attacks through family contact were found in 17 of 27 siblings (62.9%) not immunized with pertussis vaccine. On the other hand, 26 siblings immunized with Takeda's acellular vaccine were exposed to pertussis through family contact and a secondary attack was seen in only one of them (3.8%). The present study revealed an efficacy rate of 93.9% for Takeda's acellular pertussis vaccine. PMID:3078808

  15. Genotypic variation and slime production among blood and catheter isolates of Candida parapsilosis.

    PubMed

    Branchini, M L; Pfaller, M A; Rhine-Chalberg, J; Frempong, T; Isenberg, H D

    1994-02-01

    Candida parapsilosis is an important nosocomial pathogen that can proliferate in high concentrations of glucose and form biofilms on prosthetic materials. We investigated the genotypic diversity and slime production among 31 isolates of C. parapsilosis from individual patients with bloodstream or catheter infections. DNA subtyping was performed by using electrophoretic karyotyping plus restriction endonuclease analysis with BssHII followed by pulsed-field gel electrophoresis. Slime production was evaluated by growing organisms in Sabouraud broth with 8% glucose and examining the walls of the tubes for the presence of an adherent slime layer. Overall there were 14 DNA subtypes among the 31 isolates. Eighty percent of the isolates produced slime; 67% of the isolates were moderately to strongly positive, 13% were weakly positive, and 20% were not slime producers. The ability of isolates of a given DNA type to produce slime under these conditions was variable. The results of these studies indicate moderate genotypic variation among clinical isolates of C. parapsilosis. The propensity of these isolates to form slime in glucose-containing solutions suggests that this phenotypic characteristic may contribute to the ability of C. parapsilosis to adhere to plastic catheters and cause infections. PMID:8150956

  16. Fabrication of Molded Magnetic Article

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Namkung, Min (Inventor); Wincheski, Russell A. (Inventor); Fox, Robert L. (Inventor)

    2001-01-01

    A molded magnetic article and fabrication method are provided. Particles of ferromagnetic material embedded in a polymer binder are molded under heat and pressure into a geometric shape. Each particle is an oblate spheroid having a radius-to-thickness aspect ratio approximately in the range of 15-30. Each oblate spheroid has flattened poles that are substantially in perpendicular alignment to a direction of the molding pressure throughout the geometric shape.

  17. Low-pressure injection molding

    SciTech Connect

    Mangels, J.A. )

    1994-05-01

    Ceramic injection molding experienced a revival in the 1970s and 1980s with the application of ceramics for gas turbine components. Concurrently, techniques were being developed for the injection molding of powdered metal compositions into complex shaped articles. The impetus for the development of injection molding as a ceramic fabrication process lay in the potential to produce complex-shaped components to near-net shape. In the ceramic injection molding process, ceramic powders are processed to obtain the desired particle size, distribution and morphology and blended to obtain a homogeneous distribution. These powders are then mixed with the organic binders, generally in a heated, highshear mixer at temperatures above the melting point of the organic binders. The injection molding mix is pelletized, cooled and fed into an injection molding machine. The molding mix is reheated to a fluid state and injected under high pressure (7--70 MPa) into a die cavity. The molded part is removed from the tooling after the molding mix has solidified in the die. The organic binders are then removed from the component at temperatures up to 400 C, generally by some combination of wicking and thermal decomposition. Finally, the component is sintered to obtain its final ceramic properties, using conventional ceramic processes.

  18. Method for molding ceramic powders

    DOEpatents

    Janney, M.A.

    1990-01-16

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

  19. Method for molding ceramic powders

    DOEpatents

    Janney, Mark A.

    1990-01-01

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  20. Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells.

    PubMed Central

    Gimsa, J; Marszalek, P; Loewe, U; Tsong, T Y

    1991-01-01

    Dielectrophoresis and electrorotation are commonly used to measure dielectric properties and membrane electrical parameters of biological cells. We have derived quantitative relationships for several critical points, defined in Fig. A 1, which characterize the dielectrophoretic spectrum and the electrorotational spectrum of a cell, based on the single-shell model (Pauly, H., and H.P. Schwan, 1959. Z. Naturforsch. 14b:125-131; Sauer, F.A. 1985. Interactions between Electromagnetic Field and Cells. A. Chiabrera, C. Nicolini, and H.P. Schwan, editors. Plenum Publishing Corp., New York. 181-202). To test these equations and to obtain membrane electrical parameters, a technique which allowed simultaneous measurements of the dielectrophoresis and the electrorotation of single cells in the same chamber, was developed and applied to the study of Neurospora slime and the Myeloma Tib9 cell line. Membrane electrical parameters were determined by the dependence of the first critical frequency of dielectrophoresis (fct1) and the first characteristic frequency of electrorotation (fc1) on the conductivity of the suspending medium. Membrane conductances of Neurospora slime and Myeloma also were found to be 500 and 380 S m-2, respectively. Several observations indicate that these cells are more complex than that described by the single-shell model. First, the membrane capacities from fct1 (0.81 x 10(-2) and 1.55 x 10(-2) F m-2 for neurospora slime and Myeloma, respectively) were at least twice those derived from fc1. Second, the electrorotation spectrum of Myeloma cells deviated from the single-shell like behavior. These discrepancies could be eliminated by adapting a three-shell model (Furhr, G., J. Gimsa, and R. Glaser. 1985. Stud. Biophys. 108:149-164). Apparently, there was more than one membrane relaxation process which could influence the lower frequency region of the beta-dispersion. fct1 of Myeloma in a medium of given external conductivity were found to be similar for most

  1. 8. VIEW OF A MOLD FOR PRECISION CASTING. THE MOLD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF A MOLD FOR PRECISION CASTING. THE MOLD WAS USED IN FOUNDRY OPERATIONS THAT CAST PLUTONIUM EITHER AS INGOTS SUITABLE FOR ROLLING AND FURTHER WROUGHT PROCESSING OR INTO SHAPES AMENABLE TO DIRECT MACHINING OPERATIONS. (5/6/59) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  2. MOLD SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Today I will talk about the use of quantitative or Real time PCR for the standardized identification and quantification of molds. There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to human...

  3. Mold Materials For Permanent Molding of Aluminum Alloys

    SciTech Connect

    John F Wallace; David Schwam; Wen Hong dxs11@po.cwru.edu

    2001-09-14

    A test that involves immersion of the potential mod materials for permanent molds has been developed that provides a thermal cycle that is similar to the experienced during casting of aluminum in permanent molds. This test has been employed to determine the relative thermal fatigue resistance of several different types of mold materials. Four commercial mold coatings have been evaluated for their insulating ability, wear resistance and roughness. The results indicate that composition and structure of the mold materials have considerable effect on their thermal fatigue cracking behavior. Irons with a gray iron structure are the most prone to thermal fatigue cracking followed by compacted graphite irons with the least thermal fatigue cracking of the cast irons experienced by ductile iron. The composition of these various irons affects their behavior.

  4. You say "lean finely textured beef," I say "pink slime".

    PubMed

    Reid, Rita-Marie Cain

    2014-01-01

    In 2012, American Broadcasting Companies, Inc. (ABC) broadcast a segment on its evening news show regarding the manufacture of "lean finely textured beef" by Beef Products, Inc. (BPI). The broadcast, as well as follow-up reports and social media communications, repeatedly referred to the product as "pink slime," a term originated by a United States Department of Agriculture (USDA) employee for the processed meat. The market backlash against the product was immediate and intense. Ultimately, BPI closed three processing plants, cut hundreds of jobs, and filed for bankruptcy. BPI sued ABC and others for food libel, defamation, and tortious interference. This research analyzes those claims and defenses and discusses the future of such cases. PMID:25654945

  5. Processing studies in sheet molding compound compression molding

    NASA Astrophysics Data System (ADS)

    Abrams, Lisa Marie

    Due to its high strength to weight ratio, corrosion resistance, and low cost. Sheet Molding Compound (SMC) production offers great potential for growth in the automotive and trucking industry. Much attention is now being given to improving the economy of SMC compression molding by reducing the cycle time required to produce acceptable parts in steady production. One of the fastest growing applications of Sheet Molding Compound (SMC) compression molding panels is the manufacture of truck body panels. Due to their large size, the molding forces developed are substantial and have a major influence in the molding cycle. The relevant process models for SMC flow are reviewed and a procedure is developed that can be used to obtain the closing force and calculate the needed material parameters. Experiments were done using commercially made SMC varying quantities of glass, filler, and thickener to verify the validity of this model and the compression force was predicted for commercially made automotive hoods. It was found that glass and filler had a significant impact on the material parameters. When the amount of glass was increased, both material parameters m/deltan and eta increased. Similar trends were seen when increasing the amount of filler. For the thickener used in this research (magnesium oxide), it was found that it had minimal effect on the material parameters. Molding conditions and initial SMC charge configurations were also varied to see their effects on molding force and material parameters. Initial charge dimensions and volume as well as mold closing speed showed no effect on material parameters, while molding temperature showed a minimal effect. Material parameters were calculated for each SMC composition. These parameters were used to predict the compression force for the Corvette hood and Fiero hood. These predictions were compared with actual Corvette and Fiero hoods manufactured in industry. They predicted the commercially made parts quite well.

  6. Robotized system for removal of slime from the bottom of steam generators

    NASA Astrophysics Data System (ADS)

    Kucherenko, O. V.; Shvarov, V. A.

    2014-02-01

    Reliability of steam generators depends not only on the main technical characteristics and correctness of the operational mode but also on the cleanliness of the heat-exchange surface and the presence of slime precipitated on the bottom. To provide the cleanliness, chemical methods of cleaning the heatexchange surfaces are used. In this article, we consider the process of removal of sediments that are formed precisely on the bottom of the steam generator from its volume. Possible mechanical methods for removal of sediments are presented. The consideration of variants of cleaning approved for acting steam generators showed the efficiency and applicability of the developed installation for the slime removal from steam generators. The main principles of construction of the system for slime removal from the steam generator bottom and constructive features of the installation, which make it possible to implement the stated tasks on the slime removal from the steam generator bottom, are given.

  7. Cellular automaton model of crowd evacuation inspired by slime mould

    NASA Astrophysics Data System (ADS)

    Kalogeiton, V. S.; Papadopoulos, D. P.; Georgilas, I. P.; Sirakoulis, G. Ch.; Adamatzky, A. I.

    2015-04-01

    In all the living organisms, the self-preservation behaviour is almost universal. Even the most simple of living organisms, like slime mould, is typically under intense selective pressure to evolve a response to ensure their evolution and safety in the best possible way. On the other hand, evacuation of a place can be easily characterized as one of the most stressful situations for the individuals taking part on it. Taking inspiration from the slime mould behaviour, we are introducing a computational bio-inspired model crowd evacuation model. Cellular Automata (CA) were selected as a fully parallel advanced computation tool able to mimic the Physarum's behaviour. In particular, the proposed CA model takes into account while mimicking the Physarum foraging process, the food diffusion, the organism's growth, the creation of tubes for each organism, the selection of optimum tube for each human in correspondence to the crowd evacuation under study and finally, the movement of all humans at each time step towards near exit. To test the model's efficiency and robustness, several simulation scenarios were proposed both in virtual and real-life indoor environments (namely, the first floor of office building B of the Department of Electrical and Computer Engineering of Democritus University of Thrace). The proposed model is further evaluated in a purely quantitative way by comparing the simulation results with the corresponding ones from the bibliography taken by real data. The examined fundamental diagrams of velocity-density and flow-density are found in full agreement with many of the already published corresponding results proving the adequacy, the fitness and the resulting dynamics of the model. Finally, several real Physarum experiments were conducted in an archetype of the aforementioned real-life environment proving at last that the proposed model succeeded in reproducing sufficiently the Physarum's recorded behaviour derived from observation of the aforementioned

  8. Twistable mold for helicopter blades

    NASA Technical Reports Server (NTRS)

    Carter, E. S.; Kiely, E. F.

    1972-01-01

    Design is described of mold for fabrication of blades composed of sets of aerodynamic shells having same airfoil section characteristics but different distributions. Mold consists of opposing stacks of thin templates held together by long bolts. When bolts are loosened, templates can be set at different positions with respect to each other and then locked in place.

  9. Thermophilic molds: Biology and applications.

    PubMed

    Singh, Bijender; Poças-Fonseca, Marcio J; Johri, B N; Satyanarayana, Tulasi

    2016-11-01

    Thermophilic molds thrive in a variety of natural habitats including soils, composts, wood chip piles, nesting materials of birds and other animals, municipal refuse and others, and ubiquitous in their distribution. These molds grow in simple media containing carbon and nitrogen sources and mineral salts. Polyamines are synthesized in these molds and the composition of lipids varies considerably, predominantly containing palmitic, oleic and linoleic acids with low levels of lauric, palmiotoleic and stearic acids. Thermophilic molds are capable of efficiently degrading organic materials by secreting thermostable enzymes, which are useful in the bioremediation of industrial wastes and effluents that are rich in oil, heavy metals, anti-nutritional factors such as phytic acid and polysaccharides. Thermophilic molds synthesize several antimicrobial substances and biotechnologically useful miscellaneous enzymes. The analysis of genomes of thermophilic molds reveals high G:C contents, shorter introns and intergenic regions with lesser repetitive sequences, and further confirms their ability to degrade agro-residues efficiently. Genetic engineering has aided in ameliorating the characteristics of the enzymes of thermophilic molds. This review is aimed at focusing on the biology of thermophilic molds with emphasis on recent developments in the analysis of genomes, genetic engineering and potential applications. PMID:26777293

  10. STANDARDIZED MOLD IDENTIFICATION AND ENUMERATION

    EPA Science Inventory

    There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to humans and animals and others don't. We need to know what molds are present indoors and their concentrations. The older methods of cult...

  11. INDOOR MOLDS AND ALLERGIC POTENTIAL

    EPA Science Inventory

    Rationale: Damp/moldy environments have been associated with asthma exacerbation, but mold¿s role in allergic asthma induction is less clear. Recently, 5 molds were statistically associated with water-damaged asthmatic homes in the Cleveland area. The asthma exacerbation...

  12. Investigation of the Regenerative Capacity of an Acellular Porcine Medial Meniscus for Tissue Engineering Applications

    PubMed Central

    Ingram, Joanne; Fisher, John; Ingham, Eileen

    2011-01-01

    Previously, we have described the development of an acellular porcine meniscal scaffold. The aims of this study were to determine the immunocompatibility of the scaffold and capacity for cellular attachment and infiltration to gain insight into its potential for meniscal repair and replacement. Porcine menisci were decellularized by exposing the tissue to freeze–thaw cycles, incubation in hypotonic tris buffer, 0.1% (w/v) sodium dodecyl sulfate in hypotonic buffer plus protease inhibitors, nucleases, hypertonic buffer followed by disinfection using 0.1% (v/v) peracetic, and final washing in phosphate-buffered saline. In vivo immunocompatibility was assessed after implantation of the acellular meniscal scaffold subcutaneously into galactosyltransferase knockout mice for 3 months in comparison to fresh and acellular tissue treated with α-galactosidase (negative control). The cellular infiltrates in the explants were assessed by histology and characterized using monoclonal antibodies against: CD3, CD4, CD34, F4/80, and C3c. Static culture was used to assess the potential of acellular porcine meniscal scaffold to support the attachment and infiltration of primary human dermal fibroblasts and primary porcine meniscal cells in vitro. The explants were surrounded by capsules that were more pronounced for the fresh meniscal tissue compared to the acellular tissues. Cellular infiltrates compromised mononuclear phagocytes, CD34-positive cells, and nonlabeled fibroblastic cells. T-lymphocytes were sparse in all explanted tissue types and there was no evidence of C3c deposition. The analysis revealed an absence of a specific immune response to all of the implanted tissues. Acellular porcine meniscus was shown to be capable of supporting the attachment and infiltration of primary human fibroblasts and primary porcine meniscal cells. In conclusion, acellular porcine meniscal tissue exhibits excellent immunocompatibility and potential for cellular regeneration in the longer

  13. Composition of the bacterial biota in slime developed in two machines at a Canadian paper mill.

    PubMed

    Disnard, Julie; Beaulieu, Carole; Villemur, Richard

    2011-02-01

    During the process of papermaking by pulp and paper plants, a thick and viscous deposits, termed slime, is quickly formed around the paper machines, which can affect the papermaking process. In this study, we explored the composition of the bacterial biota in slime that developed on shower pipes from 2 machines at a Canadian paper mill. Firstly, the composition was assessed for 12 months by DNA profiling with polymerase chain reaction coupled with denaturing gradient gel electrophoresis. Except for short periods (2-3 months), clustered analyses showed that the bacterial composition of the slime varied substantially over the year, with less than 50% similarity between the denaturing gradient gel electrophoresis profiles. Secondly, the screening of 16S rRNA gene libraries derived from 2 slime samples showed that the most abundant bacteria were related to 6 lineages, including Chloroflexi, candidate division OP10, Clostridiales, Bacillales, Burkholderiales, and the genus Deinococcus. Finally, the proportion of 8 bacterial lineages, such as Deinococcus sp., Meiothermus sp., and Chloroflexi, was determined by the Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization in 2 slime samples. The results showed a high proportion of Chloroflexi, Tepidimonas spp., and Schlegelella spp. in the slime samples. PMID:21326351

  14. Variations in DNA subtype, antifungal susceptibility, and slime production among clinical isolates of Candida parapsilosis.

    PubMed

    Pfaller, M A; Messer, S A; Hollis, R J

    1995-01-01

    Candida parapsilosis is an important nosocomial pathogen that can proliferate in high concentrations of glucose and form biofilms on prosthetic materials. We investigated the genotypic diversity, slime production, and antifungal susceptibility among 60 isolates of C. parapsilosis from 44 patients and 10 patient care providers from five different medical centers. Molecular typing was performed using macrorestriction digest profiles with BssHII followed by pulsed-field gel electrophoresis (REAG) and by electrophoretic karyotyping (EK). Slime production was evaluated by growing the organisms in Sabouraud broth with 8% glucose and examining the walls of the tubes for the presence of an adherent slime layer. Antifungal susceptibility to amphotericin B, 5-fluorocytosine, fluconazole, and itraconazole was determined using National Committee for Clinical Laboratory Standards proposed standard methods. Overall 28 different DNA types were identified by REAG and EK methods. MIC90 values ranged from 0.12 microgram/ml for itraconazole to 1.0 microgram/ml for fluconazole and amphotericin B. Sixty-five percent of the isolates produced slime: 37% were moderately to strongly positive, 28% were weakly positive, and 35% were negative. Overall, 83% of blood and catheter isolates were slime positive versus 53% of isolates from all other sites (P < 0.05). These data underscore the genetic diversity and susceptibility of C. parapsilosis to antifungal agents. Slime production may be important in enabling C. parapsilosis to cause catheter-related bloodstream infections. PMID:7789100

  15. Removal of arsenic and antimony from anode slime by vacuum dynamic flash reduction.

    PubMed

    Lin, Deqiang; Qiu, Keqiang

    2011-04-15

    Anode slime is an important material of recycling precious metals. Up to now, treating the arsenic- and antimony-rich anode slime by conventional processes has the following problems: its economic and environmental effect is less than satisfactory, and the removal effect of arsenic and antimony from anode slime in present processes is not all that could be desired. Therefore, vacuum dynamic flash reduction, a new process for treating arsenic- and antimony-rich anode slime, was investigated in this work. During vacuum dynamic flash reduction, silver from the arsenic- and antimony-rich anode slime was left behind in the distilland as the silver alloy, and trivalent oxides of arsenic and antimony were evaporated in the distillate. The experimental results showed that the evaporation percent of the arsenic- and antimony-rich anode slime was 65.6%. Namely, 98.92% by weight of arsenic and 93.67% by weight of antimony can be removed under the following experimental conditions: temperature of 1083 K, vacuum evaporation time of 60 min, and air flow rate of 400 mL/min corresponding to the residual gas pressure of 250 Pa. Moreover, vacuum treatment eliminates much of the air pollution and material losses associated with other conventional treatment methods. PMID:21446728

  16. Comparative biological activities of acellular pertussis vaccines produced by Kitasato.

    PubMed

    Watanabe, M; Izumiya, K; Sato, T; Yoshino, K; Nakagawa, N; Ohoishi, M; Hoshino, M

    1991-04-01

    The quality of 14 lots of acellular pertussis-diphtheria-tetanus (AC-PDT) vaccines manufactured by the Kitasato Institute during the period 1987-1990 were investigated. The geometric means of HSU, LPU, and BWDU were 0.078, 0.257, and 7.33 per ml respectively. The potency was higher than 14 IU per ml. These results indicated the consistency of the Kitasato AC-PDT vaccines. The antibody response to the AC-PDT vaccines was measured in primary and secondary vaccinated mice by ELISA. IgG antibody response to FHA and PT was obtained in all immunized mice (P less than 0.001) after the primary injection. In contrast, IgG antibody response to fimbriae 2 showed a significant titer rise (P less than 0.001) after the booster injection. The results indicated that the Kitasato AC-P vaccines consisted of protein, PT and FHA as the major antigens, and a little agglutinogen as the minor antigen. PMID:1798236

  17. [Experimental, clinical and immunologic assessment of acellular staphylococcal vaccine "Staphylovac"].

    PubMed

    Egorova, N B; Efremova, V N; Kurbatova, E A; Gruber, I M

    2008-01-01

    Results of experimental, clinical and immunological effects of acellular dry staphylococcal vaccine "Staphylovac" developed in Mechnikov Research Institute of Vaccines and Sera are presented. Original mildly virulent strains of Staphylococcus aureus having high immunogenicity, and intra- and interspecies protective activity against different representatives of opportunistic microflora were used for construction of the preparation. Low-toxicity and weak anapylactogenicity of the vaccine were established. In experiments on mice, guinea pigs and rabbits significant protective, antigenic and immunomodulate activity of the preparation was revealed with low sensitization of animals. Clinical trials performed in different centers showed that inclusion of vaccinotherapy in complex treatment of chronic staphylococcal infections (chronic pyodermia, lung abscess etc.) resulted in prolonged pathologic locus, decrease of number and severity of exacerbations, prolongation of remission, and complete recovery in significant number of patients. Activation of innate and adaptive immunity was revealed in the same patients. It was shown on the large group of athletes that administration of the vaccine by aerosol route prevents disruption of immunologic adaptation occurring due to excess physical activity and stress situations during competitions. PMID:19186558

  18. Spherical indentation of free-standing acellular extracellular matrix membranes.

    PubMed

    Cloonan, Aidan J; O'Donnell, Michael R; Lee, William T; Walsh, Michael T; De Barra, Eamonn; McGloughlin, Tim M

    2012-01-01

    Numerous scaffold materials have been developed for tissue engineering and regenerative medicine applications to replace or repair damaged tissues and organs. Naturally occurring scaffold materials derived from acellular xenogeneic and autologous extracellular matrix (ECM) are currently in clinical use. These biological scaffold materials possess inherent variations in mechanical properties. Spherical indentation or ball burst testing has commonly been used to evaluate ECM and harvested tissue due to its ease of use and simulation of physiological biaxial loading, but has been limited by complex material deformation profiles. An analytical methodology has been developed and applied to experimental load-deflection data of a model hyperelastic material and lyophilized ECM scaffolds. An optimum rehydration protocol was developed based on water absorption, hydration relaxation and dynamic mechanical analysis. The analytical methodology was compared with finite element simulations of the tests and excellent correlation was seen between the computed biaxial stress resultants and geometry deformations. A minimum rehydration period of 5 min at 37°C was sufficient for the evaluated multilaminated ECM materials. The proposed approach may be implemented for convenient comparative analysis of ECM materials and source tissues, process optimization or during lot release testing. PMID:21864728

  19. INJECTION-MOLDING APPARATUS

    DOEpatents

    Lobell, G.M.

    1958-02-11

    This patent is drawn to an injection molding apparatus for producing a tube closed at one end wherein the normally unsupported end of the core located in the cavity during the injection of the molten material to fill the space between the core and cavity wall, which supporting means is automatically removed from operation during the forming of the closed end of the tube. This support means is a plug extending through the end of the core into a recess in the bottom of the cavity where the closed end of the tube is to be formed. The plug is spring pressed into said recess and is forced out of the recess by a slidable bushing at the top of the cavity which is moved against the force of the spring by the molten material when it fills the uppormost open end portion of the cavity, thereby permitting the closed end of the tube to be formed.

  20. Current status of mold immunotherapy.

    PubMed

    Dhillon, M

    1991-05-01

    There is evidence to suggest that molds can cause IgE-mediated upper respiratory tract disorders and immunotherapy is efficacious in a select group. The environmental sampling studies show a remarkably small numbers of molds accounting for a majority of the mold load in various diverse locations. These are Cladosporium, Basidiospores, Aspergillus, and Alternaria-Penicillin families. Basidiospores have been underreported in the older studies because of difficulties in their identification. Whether the absolute mold level is the most important factor leading to IgE formation and induction of upper respiratory tract symptoms is uncertain. Certainly, the majority of the studies are based on the assumption that the absolute level of mold in the environment is the most important factor leading to the development of symptoms, but this is not based on strong evidence. A major problem in the majority of the studies is a lack of standardization of extracts which may lead to false negatives on skin testing and thus produce variable data in population evaluations comparing the prevalence of mold to its ability to induce IgE production and symptoms. The best current trials to document the efficacy of mold immunotherapy have been with the standardized Cladosporium extract. Unfortunately, these results cannot be extrapolated to the commercially available mold extracts available in the United States either for immunotherapy or for skin testing. These extracts are highly variable in their potency, prone to high false negative rates, and at best serve as poor skin testing reagents and possibly even worse immunotherapy reagents. Adequately standardized mold reagents are urgently needed to determine whether the Cladosporium data can be extrapolated to them in any meaningful way. PMID:2035901

  1. Ceramic injection molding material analysis, modeling and injection molding simulation

    NASA Astrophysics Data System (ADS)

    Drummer, D.; Messingschlager, S.

    2014-05-01

    In comparison to unfilled polymers, a ceramic feedstocks has a very high viscosity, a very high heat conductivity and a different pvT-behavior. So far standard simulation tools for plastic injection molding are capable of simulating unfilled or fiber filled compounds with their typical low viscosity and heat conductivity etc. but not for very high ceramic powder filled polymers. This article shows an approach of preparing and adding ceramic feedstocks to standard injection molding tools. Two different feedstocks are used.

  2. Transfer molding of PMR-15 polyimide resin

    NASA Technical Reports Server (NTRS)

    Reardon, J. P.; Moyer, D. W.; Nowak, B. E.

    1985-01-01

    Transfer molding is an economically viable method of producing small shapes of PMR-15 polyimide. It is shown that with regard to flexural, compressive, and tribological properties transfer-molded PMR-15 polyimide is essentially equivalent to PMR-15 polyimide produced by the more common method of compression molding. Minor variations in anisotropy are predictable effects of molding design and secondary finishing operations.

  3. ILLUSTRATED HANDBOOK OF SOME COMMON MOLDS.

    ERIC Educational Resources Information Center

    CHANDLER, MARION N.

    THIS DOCUMENT IS A PICTURE GUIDE FOR THE IDENTIFICATION OF TEN COMMON MOLDS. IT IS DESIGNED FOR USE WITH THE ELEMENTARY SCIENCE STUDY UNIT "MICROGARDENING" AND IS SUGGESTED FOR UPPER ELEMENTARY GRADES. INCLUDED FOR EACH MOLD ARE COLOR PHOTOGRAPHS AND PHOTOMICROGRAPHS OF THE INTACT MOLD MASS AND OF THE MOLD'S SPORE PRODUCING STRUCTURES. ALSO…

  4. Rapid control of mold temperature during injection molding process

    NASA Astrophysics Data System (ADS)

    Liparoti, Sara; Hunag, Tsang Min; Sorrentino, Andrea; Titomanlio, Giuseppe; Cakmak, Mukerrem

    2015-05-01

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  5. Rapid control of mold temperature during injection molding process

    SciTech Connect

    Liparoti, Sara; Titomanlio, Giuseppe; Hunag, Tsang Min; Cakmak, Mukerrem; Sorrentino, Andrea

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  6. Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Takagi, Seiji; Ueda, Tetsuo

    2008-03-01

    The emergence and transitions of various spatiotemporal patterns of thickness oscillation were studied in the freshly isolated protoplasm of the Physarum plasmodium. New patterns, such as standing waves, and chaotic and rotating spirals, developed successively before the well-documented synchronous pattern appeared. There was also a spontaneous opposite transition from synchrony to chaotic and rotating spirals. Rotating spiral waves were observed in the large migrating plasmodium, where the vein structures were being destroyed. Thus, the Physarum plasmodium exhibits versatile patterns, which are generally expected in coupled oscillator systems. This paper discusses the physiological roles of spatiotemporal patterns, comparing them with other biological systems.

  7. The mitochondrial plasmid of the true slime mold Physarum polycephalum bypasses uniparental inheritance by promoting mitochondrial fusion.

    PubMed

    Sakurai, Rakusa; Nomura, Hideo; Moriyam, Yohsuke; Kawano, Shigeyuki

    2004-08-01

    Mitochondrial DNA (mtDNA) is inherited maternally in most eukaryotes. Linear mitochondrial plasmids in higher plants and fungi are also transmitted from the maternal parent to the progeny. However, mF, which is a mitochondrial linear plasmid of Physarum polycephalum, evades uniparental mitochondrial inheritance. We examined 36 myxamoebal strains of Physarum and isolated three novel mF+ strains (JE8, TU111, NG111) that harbored free mF plasmids. These strains were mated with the mF- strain KM88. Of the three mF- x mF+ crosses, only KM88 x JE8 displayed complete uniparental inheritance. However, in KM88 x TU111 and KM88 x NG111, the mtDNA of KM88 and mF of TU111 and NG111 were inherited by the plasmodia and showed recombination. For example, although the mtDNA of TU111 was eliminated, the mF of TU111 persisted and became inserted into the mtDNA of KM88, such that recombinant mtDNA represented 80% of the total mtDNA. The parental mitochondria fused to yield giant mitochondria with two or more mitochondrial nucleoids. The mF appears to exchange mitochondria from the recipient (paternal) to the donor (maternal) by promoting mitochondrial fusion. PMID:15179521

  8. White mold of Jerusalem artichoke

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jerusalem artichoke (Helianthus tuberosus) is a Native American food plant closely related to the common sunflower (Helianthus annuus). Tubers of Jerusalem artichoke are increasingly available in retail grocery outlets. White mold (Sclerotinia stem rot), caused by the fungus, Sclerotinia sclerotioru...

  9. Molded polymer solar water heater

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  10. [Pertussis vaccines: acellular versus whole cell. Perhaps a return to the past?].

    PubMed

    Cofré, José

    2015-10-01

    The resurgence of pertussis in the world and in our country has questioned the effectiveness of cellular and acellular vaccines. The reason why pertussis has not been controlled or eliminated after 70 years of implementation of the vaccination is probably multifactorial. This article, on the basis of questions and answers, describes the benefits and limitations of both cellular and acellular vaccines and suggests new strategies of vaccination in childhood. It is a fact that the currently applied vaccination does not eliminate the circulation of Bordetella pertussis in the community. Perhaps the introduction of vaccines with live B. pertussis, inhalation, will be able to eliminate the disease around the world. PMID:26633113

  11. Vacuum Carbothermal Reduction for Treating Tin Anode Slime

    NASA Astrophysics Data System (ADS)

    Li, Wei; Guo, Weizhong; Qiu, Keqiang

    2013-11-01

    In this work, a process of vacuum carbothermal reduction was proposed for treating tin anode slime containing antimony and lead. During vacuum carbothermal reduction, the antimony and lead were selectively removed simultaneously by reducing and decomposing the less volatile mixed oxide of lead and antimony into the more volatile Sb2O3 and PbO. Then the tin was enriched in the distilland and primarily present as SnO2. Crude tin was obtained via vacuum reduction of the residual SnO2. The results showed that 92.85% by weight of antimony and 99.58% by weight of lead could be removed at 850°C for 60 min with 4 wt.% of reductant and air flow rate at 400 mL/min corresponding to the residual gas pressure of 40 Pa-150 Pa. Under these conditions, an evaporation ratio of 52.7% was achieved. Crude tin with a tin content of 94.22 wt.% was obtained at temperature of 900°C, reduction time of 60 min, reductant dosage of 12.5 wt.%, and a residual gas pressure of 40 Pa-400 Pa. Correspondingly, the direct recovery of tin was 94.35%.

  12. Hagfish slime threads as a biomimetic model for high performance protein fibres.

    PubMed

    Fudge, Douglas S; Hillis, Sonja; Levy, Nimrod; Gosline, John M

    2010-09-01

    Textile manufacturing is one of the largest industries in the world, and synthetic fibres represent two-thirds of the global textile market. Synthetic fibres are manufactured from petroleum-based feedstocks, which are becoming increasingly expensive as demand for finite petroleum reserves continues to rise. For the last three decades, spider silks have been held up as a model that could inspire the production of protein fibres exhibiting high performance and ecological sustainability, but unfortunately, artificial spider silks have yet to fulfil this promise. Previous work on the biomechanics of protein fibres from the slime of hagfishes suggests that these fibres might be a superior biomimetic model to spider silks. Based on the fact that the proteins within these 'slime threads' adopt conformations that are similar to those in spider silks when they are stretched, we hypothesized that draw processing of slime threads should yield fibres that are comparable to spider dragline silk in their mechanical performance. Here we show that draw-processed slime threads are indeed exceptionally strong and tough. We also show that post-drawing steps such as annealing, dehydration and covalent cross-linking can dramatically improve the long-term dimensional stability of the threads. The data presented here suggest that hagfish slime threads are a model that should be pursued in the quest to produce fibres that are ecologically sustainable and economically viable. PMID:20729569

  13. Characterization of Raw and Decopperized Anode Slimes from a Chilean Refinery

    NASA Astrophysics Data System (ADS)

    Melo Aguilera, Evelyn; Hernández Vera, María Cecilia; Viñals, Joan; Graber Seguel, Teófilo

    2016-04-01

    This work characterizes raw and decopperized slimes, with the objective of identifying the phases in these two sub-products. The main phases in copper anodes are metallic copper, including CuO, which are present in free form or associated with the presence of copper selenide or tellurides (Cu2(Se,Te)) and several Cu-Pb-Sb-As-Bi oxides. During electrorefining, the impurities in the anode release and are not deposited in the cathode, part of them dissolving and concentrated in the electrolyte, and others form a raw anode slime that contains Au, Ag, Cu, As, Se, Te and PGM, depending on the composition of the anode. There are several recovery processes, most of which involve acid leaching in the first step to dissolve copper, whose product is decopperized anode slime. SEM analysis revealed that the mineralogical species present in the raw anode slime under study were mainly eucarite (CuAgSe), naumannite (Ag2Se), antimony arsenate (SbAsO4), and lead sulfate (PbSO4). In the case of decopperized slime, the particles were mainly composed of SbAsO4 (crystalline appearance), non-stoichiometric silver selenide (Ag(2- x)Se), and chlorargyrite (AgCl).

  14. Immunogenicity and safety of a monovalent, multicomponent acellular pertussis vaccine in 15 month-6-year-old German children. Monovalent Acellular Pertussis Vaccine Study Group.

    PubMed

    Stehr, K; Heininger, U; Uhlenbusch, R; Angersbach, P; Hackell, J; Eckhardt, T

    1995-03-01

    Immunization against pertussis has been re-recommended for healthy children in Germany in 1991. In addition the former restriction of immunizing only in the first 2 years of life was abolished. In children born before 1991 immunization rates against pertussis were 15% or less. With the new recommendations physicians are now faced with an increasing demand of parents for catch-up vaccinations in these children. Since they were immunized against diphtheria and tetanus previously monovalent pertussis vaccines are needed for this indication. Therefore a monovalent, multicomponent acellular pertussis vaccine was studied in 249 German children 15 months to 6 years of age. Three doses were administered at 6-10 week intervals. Reactogenicity and antibody responses against the vaccine antigens pertussis toxin (PT), filamentous haemagglutinin (FHA), 69-kd antigen (pertactin) and fimbriae-2 (agglutinogen) were investigated. Local and systemic reactions were minimal in frequency and severity. Antibody responses against all vaccine antigens were pronounced with 93%-100% of vaccinees demonstrating at least four fold titre rises above pre-immunization after the third dose. These findings indicate that this monovalent, multicomponent acellular pertussis vaccine with excellent immunogenicity and low reactogenicity is an appropriate candidate for closing immunization gaps in older children in countries with previously low vaccination rates against pertussis. Based on the results of this study the monovalent acellular pertussis vaccine was licensed in Germany in January 1994. PMID:7758519

  15. Evaluation of Slime-Producing Bacteria in Oil Field Core Flood Experiments

    PubMed Central

    Geesey, G. G.; Mittelman, M. W.; Lieu, V. T.

    1987-01-01

    Epifluorescence microscopy and carbohydrate determinations indicated that the decrease in permeability of oil reservoir sand to reclaimed sewage water was partially the result of biological plugging. Filtration and biocide addition studies demonstrated that the increase in bacterial densities and slime concentrations in flooded oil field cores appeared to be due to both deposition from the reclaimed water and in situ microbial growth and slime production. Although these biological components increased throughout the cores during flooding, the region where the water entered the core exhibited the highest cell densities and slime concentrations. The approach described in this report should be useful in predicting the potential of a water source to induce biological plugging of oil reservoir sand. PMID:16347276

  16. Bacterial gliding fluid dynamics on a layer of non-Newtonian slime: Perturbation and numerical study.

    PubMed

    Ali, N; Asghar, Z; Anwar Bég, O; Sajid, M

    2016-05-21

    Gliding bacteria are an assorted group of rod-shaped prokaryotes that adhere to and glide on certain layers of ooze slime attached to a substratum. Due to the absence of organelles of motility, such as flagella, the gliding motion is caused by the waves moving down the outer surface of these rod-shaped cells. In the present study we employ an undulating surface model to investigate the motility of bacteria on a layer of non-Newtonian slime. The rheological behavior of the slime is characterized by an appropriate constitutive equation, namely the Carreau model. Employing the balances of mass and momentum conservation, the hydrodynamic undulating surface model is transformed into a fourth-order nonlinear differential equation in terms of a stream function under the long wavelength assumption. A perturbation approach is adopted to obtain closed form expressions for stream function, pressure rise per wavelength, forces generated by the organism and power required for propulsion. A numerical technique based on an implicit finite difference scheme is also employed to investigate various features of the model for large values of the rheological parameters of the slime. Verification of the numerical solutions is achieved with a variational finite element method (FEM). The computations demonstrate that the speed of the glider decreases as the rheology of the slime changes from shear-thinning (pseudo-plastic) to shear-thickening (dilatant). Moreover, the viscoelastic nature of the slime tends to increase the swimming speed for the shear-thinning case. The fluid flow in the pumping (generated where the organism is not free to move but instead generates a net fluid flow beneath it) is also investigated in detail. The study is relevant to marine anti-bacterial fouling and medical hygiene biophysics. PMID:26903204

  17. Design and Synthesis of an Artificial Pulmonary Pleura for High Throughput Studies in Acellular Human Lungs

    PubMed Central

    Wagner, Darcy E.; Fenn, Spencer L.; Bonenfant, Nicholas R.; Marks, Elliot R.; Borg, Zachary; Saunders, Patrick; Oldinski, Rachael A.; Weiss, Daniel J.

    2015-01-01

    Whole organ decellularization of complex organs, such as lungs, presents a unique opportunity for use of acellular scaffolds for ex vivo tissue engineering or for studying cell-extracellular matrix interactions ex vivo. A growing body of literature investigating decellularizing and recellularizing rodent lungs has provided important proof of concept models and rodent lungs are readily available for high throughput studies. In contrast, comparable progress in large animal and human lungs has been impeded owing to more limited availability and difficulties in handling larger tissue. While the use of smaller segments of acellular large animal or human lungs would maximize usage from a single lung, excision of small acellular segments compromises the integrity of the pleural layer, leaving the terminal ends of blood vessels and airways exposed. We have developed a novel pleural coating using non-toxic ionically crosslinked alginate or photocrosslinked methacrylated alginate which can be applied to excised acellular lung segments, permits inflation of small segments, and significantly enhances retention of cells inoculated through cannulated airways or blood vessels. Further, photocrosslinking methacrylated alginate, using eosin Y and triethanolamine (TEOA) at 530nm wavelength, results in a mechanically stable pleural coating that permits effective cyclic 3-dimensional stretch, i.e. mechanical ventilation, of individual segments. PMID:25750684

  18. Corneal Stroma Regeneration with Acellular Corneal Stroma Sheets and Keratocytes in a Rabbit Model

    PubMed Central

    Ma, Xiao Yun; Zhang, Yun; Zhu, Dan; Lu, Yang; Zhou, Guangdong; Liu, Wei; Cao, Yilin; Zhang, Wen Jie

    2015-01-01

    Acellular corneal stroma matrix has been used for corneal stroma engineering. However, because of its compact tissue structure, regrowth of keratocytes into the scaffold is difficult. Previously, we developed a sandwich model for cartilage engineering using acellular cartilage sheets. In the present study, we tested this model for corneal stroma regeneration using acellular porcine corneal stroma (APCS) sheets and keratocytes. Porcine corneas were decellularized by NaCl treatment, and the APCS was cut into 20-μm-thick sheets. A rabbit corneal stroma defect model was created by lamellar keratoplasty and repaired by transplantation of five pieces of APCS sheets with keratocytes. Six months after transplantation, transparent corneas were present in the experimental group, which were confirmed by anterior segment optical coherence tomography examination and transmittance examination. The biomechanical properties in the experimental group were similar to those of normal cornea. Histological analyses showed an even distribution of keratocytes and well-oriented matrix in the stroma layer in the experimental group. Together, these results demonstrated that the sandwich model using acellular corneal stroma sheets and keratocytes could be potentially useful for corneal stroma regeneration. PMID:26167895

  19. Repair of a Gingival Fenestration Using an Acellular Dermal Matrix Allograft.

    PubMed

    Breault, Lawrence G; Brentson, Raquel C; Fowler, Edward B; Bisch, Frederick C

    2016-01-01

    A case report illustrating the successful treatment of a gingival fenestration with an acellular dermal matrix (ADM) allograft. After 2½ months of healing, the ADM was completely integrated into the soft tissues of the mandibular anterior gingiva with complete resolution of the gingival fenestration, resulting in excellent gingival esthetics. PMID:26874103

  20. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

  1. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

  2. Experimental study of glass molding process and transcription characteristics of mold surface in molding of aspheric glass lenses

    NASA Astrophysics Data System (ADS)

    Cha, Du Hwan; Park, Heung Su; Hwang, Yeon; Kim, Jeong-Ho; Kim, Hye-Jeong

    2011-03-01

    The effects of the process parameters in the molding of aspheric glass lenses for camera phone modules have been investigated experimentally and the surface topographies of the mold and the molded lens were compared to ascertain the transcription characteristics. The molding conditions were optimized with respect to the form error (PV) (the response variable) of the molded lens. The experimental conditions were obtained by employing a factorial design method. From the analysis of variance (ANOVA) and P-value (significance level), the slow cooling rate was found to affect the response variable most significantly. For the form topography, the lens molded under the optimum molding condition showed a transcription ratio of 93.4% against the mold.

  3. Flow behavior in liquid molding

    NASA Technical Reports Server (NTRS)

    Hunston, D.; Phelan, F.; Parnas, R.

    1992-01-01

    The liquid molding (LM) process for manufacturing polymer composites with structural properties has the potential to significantly lower fabrication costs and increase production rates. LM includes both resin transfer molding and structural reaction injection molding. To achieve this potential, however, the underlying science base must be improved to facilitate effective process optimization and implementation of on-line process control. The National Institute of Standards and Technology (NIST) has a major program in LM that includes materials characterization, process simulation models, on-line process monitoring and control, and the fabrication of test specimens. The results of this program are applied to real parts through cooperative projects with industry. The key feature in the effort is a comprehensive and integrated approach to the processing science aspects of LM. This paper briefly outlines the NIST program and uses several examples to illustrate the work.

  4. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  5. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  6. Acellular ostrich corneal stroma used as scaffold for construction of tissue-engineered cornea

    PubMed Central

    Liu, Xian-Ning; Zhu, Xiu-Ping; Wu, Jie; Wu, Zheng-Jie; Yin, Yong; Xiao, Xiang-Hua; Su, Xin; Kong, Bin; Pan, Shi-Yin; Yang, Hua; Cheng, Yan; An, Na; Mi, Sheng-Li

    2016-01-01

    AIM To assess acellular ostrich corneal matrix used as a scaffold to reconstruct a damaged cornea. METHODS A hypertonic saline solution combined with a digestion method was used to decellularize the ostrich cornea. The microstructure of the acellular corneal matrix was observed by transmission electron microscopy (TEM) and hematoxylin and eosin (H&E) staining. The mechanical properties were detected by a rheometer and a tension machine. The acellular corneal matrix was also transplanted into a rabbit cornea and cytokeratin 3 was used to check the immune phenotype. RESULTS The microstructure and mechanical properties of the ostrich cornea were well preserved after the decellularization process. In vitro, the methyl thiazolyl tetrazolium results revealed that extracts of the acellular ostrich corneas (AOCs) had no inhibitory effects on the proliferation of the corneal epithelial or endothelial cells or on the keratocytes. The rabbit lamellar keratoplasty showed that the transplanted AOCs were transparent and completely incorporated into the host cornea while corneal turbidity and graft dissolution occurred in the acellular porcine cornea (APC) transplantation. The phenotype of the reconstructed cornea was similar to a normal rabbit cornea with a high expression of cytokeratin 3 in the superficial epithelial cell layer. CONCLUSION We first used AOCs as scaffolds to reconstruct damaged corneas. Compared with porcine corneas, the anatomical structures of ostrich corneas are closer to those of human corneas. In accordance with the principle that structure determines function, a xenograft lamellar keratoplasty also confirmed that the AOC transplantation generated a superior outcome compared to that of the APC graft. PMID:27158598

  7. Effects of the decellularization method on the local stiffness of acellular lungs.

    PubMed

    Melo, Esther; Garreta, Elena; Luque, Tomas; Cortiella, Joaquin; Nichols, Joan; Navajas, Daniel; Farré, Ramon

    2014-05-01

    Lung bioengineering, a novel approach to obtain organs potentially available for transplantation, is based on decellularizing donor lungs and seeding natural scaffolds with stem cells. Various physicochemical protocols have been used to decellularize lungs, and their performance has been evaluated in terms of efficient decellularization and matrix preservation. No data are available, however, on the effect of different decellularization procedures on the local stiffness of the acellular lung. This information is important since stem cells directly sense the rigidity of the local site they are engrafting to during recellularization, and it has been shown that substrate stiffness modulates cell fate into different phenotypes. The aim of this study was to assess the effects of the decellularization procedure on the inhomogeneous local stiffness of the acellular lung on five different sites: alveolar septa, alveolar junctions, pleura, and vessels' tunica intima and tunica adventitia. Local matrix stiffness was measured by computing Young's modulus with atomic force microscopy after decellularizing the lungs of 36 healthy rats (Sprague-Dawley, male, 250-300 g) with four different protocols with/without perfusion through the lung circulatory system and using two different detergents (sodium dodecyl sulfate [SDS] and 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate [CHAPS]). The local stiffness of the acellular lung matrix significantly depended on the site within the matrix (p<0.001), ranging from ∼ 15 kPa at the alveolar septum to ∼ 60 kPa at the tunica intima. Acellular lung stiffness (p=0.003) depended significantly, albeit modestly, on the decellularization process. Whereas perfusion did not induce any significant differences in stiffness, the use of CHAPS resulted in a ∼ 35% reduction compared with SDS, the influence of the detergent being more important in the tunica intima. In conclusion, lung matrix stiffness is considerably inhomogeneous, and

  8. Development and Characterization of Acellular Porcine Pulmonary Valve Scaffolds for Tissue Engineering

    PubMed Central

    Korossis, Sotirios A.; Wilshaw, Stacy-Paul; Jennings, Louise M; Fisher, John; Ingham, Eileen

    2014-01-01

    Currently available replacement heart valves all have limitations. This study aimed to produce and characterize an acellular, biocompatible porcine pulmonary root conduit for reconstruction of the right ventricular outflow tract e.g., during Ross procedure. A process for the decellularization of porcine pulmonary roots was developed incorporating trypsin treatment of the adventitial surface of the scraped pulmonary artery and sequential treatment with hypotonic Tris buffer (HTB; 10 mM Tris pH 8.0, 0.1% (w/v) EDTA, and 10 KIU aprotinin), 0.1% (w/v) sodium dodecyl sulfate in HTB, two cycles of DNase and RNase, and sterilization with 0.1% (v/v) peracetic acid. Histology confirmed an absence of cells and retention of the gross histoarchitecture. Immunohistochemistry further confirmed cell removal and partial retention of the extracellular matrix, but a loss of collagen type IV. DNA levels were reduced by more than 96% throughout all regions of the acellular tissue and no functional genes were detected using polymerase chain reaction. Total collagen levels were retained but there was a significant loss of glycosaminoglycans following decellularization. The biomechanical, hydrodynamic, and leaflet kinematics properties were minimally affected by the process. Both immunohistochemical labeling and antibody absorption assay confirmed a lack of α-gal epitopes in the acellular porcine pulmonary roots and in vitro biocompatibility studies indicated that acellular leaflets and pulmonary arteries were not cytotoxic. Overall the acellular porcine pulmonary roots have excellent potential for development of a tissue substitute for right ventricular outflow tract reconstruction e.g., during the Ross procedure. PMID:24786313

  9. Facts about Stachybotrys chartarum and Other Molds

    MedlinePlus

    ... Program in Brief Related Issues Resources Quick Links Air Pollution & Respiratory Health Air Quality Asthma Mold What's New ... be removed. Â Top of Page Quick Links Air Pollution & Respiratory Health Air Quality Asthma Mold What's New ...

  10. Contamination Barrier For Contour-Molding Material

    NASA Technical Reports Server (NTRS)

    Adams, James F.

    1988-01-01

    Release agent prevents molding compound from adhering to or contaminating surface. Cleaning agent, Turco 4215 NCLT, forms barrier preventing silicone molding compound from sticking to surface and leaving contaminating residue. Also see MFS-29243.

  11. MOLD-SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Molds can cause health problems like infections and allergies, destroy crops, and contaminate our food or pharmaceuticals. We can't avoid molds. Molds are essential players in the biological processes on earth, but we can now identify and quantify the molds that will be most pr...

  12. Blow molding of melt processible rubber

    SciTech Connect

    Abell, W.R.; Stuart, R.E.; Myrick, R.E.

    1991-07-01

    This article discusses the advantages of making hollow rubber parts by blow molding thermoplastic elastomers (TPEs) versus conventional rubber processing. It describes the various types of blow molding processes and it provides some insight into the rheological properties of melt processible rubber (MPR) and how MPR should be molded by each of these processes. A number of blow molded applications for MPR are also discussed.

  13. Making Internal Molds Of Long, Curved Tubes

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1989-01-01

    Mold material carried to internal weld joint and removed after impression taken. Remotely operated device makes impression mold of interior surface of tube at weld joint. Mold provides indication of extent of mismatch between members at joint. Maneuvered to weld inspected through curved tube 3 in. in diameter by 50 in. long. Readily adapted to making molds to measure depth of corrosion in boiler tubes or other pipes.

  14. The Mold that Almost Ate the Principal

    ERIC Educational Resources Information Center

    Barry, Wayne; Bishop, Chuck; Byars, Jennifer

    2006-01-01

    New-building mold was a bane for many home construction companies and new homeowners during the 1990s. It was not unusual to read or watch the news and see the tragedy played out in one's local community. Untold, however, is the story of the toll new-building mold can take on school systems and their principals, especially as these mold problems…

  15. Planning an Injection Mold Design Training Program.

    ERIC Educational Resources Information Center

    Allyn, Edward P.

    With the increased use of plastics worldwide the shortage of trained personnel in moldmaking and design for plastic injection molds is becoming critical. Local schools and community colleges should provide courses in mold design and mold making, since most workers presently learn while working under experienced designers on the job. Following this…

  16. Injection Molding of Plastics from Agricultural Materials

    SciTech Connect

    Bhattacharya, M.; Ruan, R.

    2001-02-22

    The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

  17. Attack of the Killer Mold Spores.

    ERIC Educational Resources Information Center

    Moore, Mary

    1999-01-01

    Describes experiences at the Arkansas State University at Jonesboro library when mold was discovered in a large portion of the monograph collection. Discusses causes of mold formation, equipment needed, news media coverage, staff involvement in the cleanup, and possible health hazards from mold. (LRW)

  18. Gray Mold or Botrytis Blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gray mold, caused by Botrytis cinerea can cause an intermittent decay of leaves or seed production organs of beet. The disease is not usually economically important on sugar beet, but can be severe enough to need control on swiss chard. This chapter describes the disease and pathogen and mentions ...

  19. ALLERGIC POTENTIAL OF INDOOR MOLDS

    EPA Science Inventory

    Many fungi have been associated with allergic lung disease, but few are well studied and even fewer allergens of fungal origin are well characterized. Exposure to damp moldy environments has been associated with the exacerbation of asthma, but the role of molds in the induction o...

  20. ANIMAL MODELS OF MOLD ALLERGY

    EPA Science Inventory

    The concept of molds as causative agents for allergy/asthma is not new. In fact many fungal genera have been associated with allergic lung disease, but only a few fungi are well studied and even fewer fungal allergens well characterized. The complexity and variety of fungal pro...

  1. Molded Concrete Center Mine Wall

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  2. Is Mold the New Asbestos?

    ERIC Educational Resources Information Center

    Colgan, Craig

    2003-01-01

    Mold and indoor air quality (IAQ) are matters of major concern to architects and their educational clients. The Environmental Protection Agency's Indoor Air Quality Tools for Schools program offers help to districts seeking to tackle IAQ issues. Strengthening community relations is one way to be ready in case of a bad environmental or IAQ report.…

  3. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater...

  4. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater...

  5. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Slimes and sludges, aluminum and iron... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4;...

  6. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Slimes and sludges, aluminum and iron... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4;...

  7. Injection molding ceramics to high green densities

    NASA Technical Reports Server (NTRS)

    Mangels, J. A.; Williams, R. M.

    1983-01-01

    The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.

  8. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  9. Advanced manufacturing methods for chalcogenide molded optics

    NASA Astrophysics Data System (ADS)

    Cogburn, Gabriel

    2011-06-01

    As Chalcogenide glass and Precision Molded Optics (PMO) have developed and matured to a point of being accepted as replacements for Germanium Single Point Diamond Turned (SPDT) optics; technological research is being dedicated to developing infrared PMO that can be used in a broader application base. These include laser arrays, large aperture molded chalcogenide optics, and molded in mount infrared optics. This paper presents applications for infrared laser arrays and the corresponding optics that must be closely mechanically mounted to avoid clipping the beams. Different molding and mounting techniques will be discussed to solve this issue which include; dicing chalcogenide optic lenses, molded in mount chalcogenide optics and stepped optic shape molding for mounting purposes. Accompanying the research and discussion of these techniques will be experiments and molded chalcogenide glass lenses showing the results and application for each lens type.

  10. Prosthetic Breast Reconstruction With Acellular Dermal Matrices: Achieving Predictability and Reproducibility.

    PubMed

    Nahabedian, Maurice Y

    2016-05-01

    The use of acellular dermal matrices in the setting of prosthetic breast reconstruction has captured the attention of many plastic surgeons. The regenerative capacity of these materials has provided additional tissue support to the mastectomy skin flaps with the ultimate result of improving surgical and aesthetic outcomes. Despite the benefits, there remains a significant diversity with regard to outcomes with some surgeons reporting increased morbidity. The reasons for this are varied but ultimately related to differences in patient selection and surgical techniques. The purpose of this article is to provide strategies for using acellular dermal matrix to achieve success in a manner that is usually associated with outcomes that are predictable and reproducible. PMID:27579223

  11. Pioneering technique using Acellular Dermal Matrix in the rescue of a radiation ulcer

    PubMed Central

    NASEEM, S.; PATEL, A.D.; DEVALIA, H.

    2016-01-01

    Background Radiotherapy as an adjuvant to mastectomy is integral to the treatment of breast cancer, but can result in skin ulceration. Skin ulceration following radiotherapy is traditionally managed by removing the implant and allowing the skin to heal by secondary intention. Case report A 42-year-old woman underwent radiotherapy following a breast reconstruction. She developed a 2 x 3cm radiation ulcer. The ulcer was managed by removing the implant and performing capsulectomy. A Beckers 50 expander was placed and reinforced with acellular dermal matrix inferolaterally. At follow-up the patient had a good cosmetic outcome. Conclusion Post-radiation skin ulcers present a challenge to treat with no current standardised management. The use of acellular dermal matrix may present a new technique to promote healing in these testing cases. PMID:27142826

  12. Prosthetic Breast Reconstruction With Acellular Dermal Matrices: Achieving Predictability and Reproducibility

    PubMed Central

    2016-01-01

    Summary: The use of acellular dermal matrices in the setting of prosthetic breast reconstruction has captured the attention of many plastic surgeons. The regenerative capacity of these materials has provided additional tissue support to the mastectomy skin flaps with the ultimate result of improving surgical and aesthetic outcomes. Despite the benefits, there remains a significant diversity with regard to outcomes with some surgeons reporting increased morbidity. The reasons for this are varied but ultimately related to differences in patient selection and surgical techniques. The purpose of this article is to provide strategies for using acellular dermal matrix to achieve success in a manner that is usually associated with outcomes that are predictable and reproducible. PMID:27579223

  13. DermACELL: Human Acellular Dermal Matrix Allograft A Case Report.

    PubMed

    Cole, Windy E

    2016-03-01

    Diabetes often causes ulcers on the feet of diabetic patients. A 56-year-old, insulin-dependent, diabetic woman presented to the wound care center with a Wagner grade 3 ulcer of the right heel. She reported a 3-week history of ulceration with moderate drainage and odor and had a history of ulceration and osteomyelitis in the contralateral limb. Rigorous wound care, including hospitalization; surgical incision and drainage; intravenous antibiotic drug therapy; vacuum-assisted therapy; and a new room temperature, sterile, human acellular dermal matrix graft were used to heal the wound, save her limb, and restore her activities of daily living. This case presentation involves alternative treatment of a diabetic foot ulcer with this new acellular dermal matrix, DermACELL. PMID:27031550

  14. Influence of mold length and mold heat transfer on horizontal continuous casting of nonferrous alloy rods

    NASA Astrophysics Data System (ADS)

    Verwijs, J. P.; Weckman, D. C.

    1988-04-01

    The influence of mold length and mold heat transfer on the conventional hot-top D.C. continuous casting process was studied through numerical simulations and experiments with horizontally cast 20 mm diameter lead and zinc rods. The minimum casting speed was found to be a nonlinear function of the mold length. For short molds, an inverse relationship between mold length and minimum casting speed was observed. However, the minimum casting speed for zinc cast from molds longer than 12 mm was constant at 2.5 mm/s. For lead cast in molds longer than 12 mm, the minimum observed casting speed was constant at 4.0 mm/s. The observed nonlinear relationship between minimum casting speed and mold length was predicted using a numerical model of the process. For this, an analytical expression for the mold boundary conditions was derived which included the influence of gas gap formation between the rod and the mold due to thermoelastic deformations of both the rod and the mold. Correlation between observed and predicted behavior was demonstrated for both the lead and zinc rods. Maximum casting speed was observed to increase with increased mold length; however, this speed was found to be critically dependent on process attributes such as mold and pinch wheel alignment and mold lubrication.

  15. Outcomes of allogenic acellular matrix therapy in treatment of diabetic foot wounds: an initial experience.

    PubMed

    Martin, Billy R; Sangalang, Melinda; Wu, Stephanie; Armstrong, David G

    2005-06-01

    The purpose of this study was to evaluate outcomes of persons with UT grade 2A neuropathic diabetic foot wounds treated with an acellular matrix. Data were abstracted for 17 consecutive patients with diabetes--76.5% males, aged 61.5 +/- 8.5 years with a mean glycated haemoglobin of 9.2 +/- 2.2% presenting for care at a large, multidisciplinary wound care centre. All patients received surgical debridement for their diabetic foot wounds and were placed on therapy consisting of a single application of an acellular matrix graft (GraftJacket; Wright Medical Technologies, Arlington, TN, USA) with dressing changes taking place weekly. Outcomes evaluated included time to complete wound closure and proportion of patients achieving wound closure in 20 weeks. Acellular matrix therapy was used as initial therapy and was sutured or stapled in place under a silicone-based non adherent dressing. Therapy was then followed by a moisture-retentive dressing until complete epithelialisation. In total, 82.4% of wounds measuring a mean 4.6 +/- 3.2 cm(2) healed in the 20-week evaluation period. For those that healed in this period, healing took place in a mean 8.9 +/- 2.7 weeks. We conclude that a regimen consisting of moist wound healing using an acellular matrix dressing may be a useful adjunct to appropriate diabetic foot ulcer care for deep, non-infected, non-ischaemic wounds. We await the completion of further trials in this area to confirm or refute this initial assessment. PMID:16722865

  16. Hertwig's epithelial root sheath cell behavior during initial acellular cementogenesis in rat molars.

    PubMed

    Yamamoto, Tsuneyuki; Yamamoto, Tomomaya; Yamada, Tamaki; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio

    2014-11-01

    This study was designed to examine developing acellular cementum in rat molars by immunohistochemistry, to elucidate (1) how Hertwig's epithelial root sheath disintegrates and (2) whether epithelial sheath cells transform into cementoblasts through epithelial-mesenchymal transition (EMT). Initial acellular cementogenesis was divided into three developmental stages, which can be seen in three different portions of the root: portion 1, where the epithelial sheath is intact; portion 2, where the epithelial sheath becomes fragmented; and portion 3, where acellular cementogenesis begins. Antibodies against three kinds of matrix proteinases, which degrade epithelial sheath-maintaining factors, including basement membrane and desmosomes, were used to investigate proteolytic activity of the epithelial sheath. Tissue non-specific alkaline phosphatase (TNALP) and keratin were used to investigate EMT. Epithelial sheath cells showed immunoreactivity for all three enzymes at fragmentation, which suggests that epithelial sheath disintegration is enzymatically mediated. Dental follicle cells and cementoblasts showed intense immunoreactivity for TNALP, and from portion 1 through to 3, the reaction extended from the alveolar bone-related zone to the root-related zone. Cells possessing keratin/TNALP double immunoreactivity were virtually absent. Keratin-positive epithelial sheath cells showed negligible immunoreactivity for TNALP, and epithelial cells did not appear to migrate to the dental follicle. Together, these findings suggest that a transition phenotype between epithelial cells and cementoblasts does not exist in the developing dental follicle and hence that epithelial sheath cells do not undergo EMT during initial acellular cementogenesis. In brief, this study supports the notion that cementoblasts derive from the dental follicle. PMID:24859538

  17. Precision compression molding of chalcogenide glass optical elements

    NASA Astrophysics Data System (ADS)

    Qi, Chaowei; Ma, Tao; Chen, Fan

    2013-12-01

    Precision glass molding process (GMP) is a promising process to manufacture small precision optical elements in large volume. In this paper, we report on the fabrication of a molded chalcogenide glass lens as an optical element. A set of mold was designed and manufactured with silicon carbide material for the molding test. The structure of the mold set was semi-closed and detachable which can make the molded lens easy releasing with non-invasion. The surfaces of the mold cores are coated with thin protecting DLC film to relieve adhesion problem and increase the working life. Experiments were also performed using a precision glass molding machine Toshiba GMP-311V to determine the molding parameters i.e. molding temperature, pressure and cooling rate. The glass lens breakage during precision molding process was analyzed according to the glass property and the molding parameters. By modifying the mold design and optimization the processing parameters, ultimately achieve the desired molded lens.

  18. The Gelation of Polyvinyl Alcohol with Borax: A Novel Class Participation Experiment Involving the Preparation and Properties of a "Slime."

    ERIC Educational Resources Information Center

    Casassa, E. Z.; And Others

    1986-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which students prepare and study the characteristics of a "slime." A list of general, inorganic, and polymer chemistry concepts fostered in the experiment is included. (JN)

  19. Slime production by clinical isolates of Blastoschizomyces capitatus from patients with hematological malignancies and catheter-related fungemia.

    PubMed

    D'Antonio, D; Parruti, G; Pontieri, E; Di Bonaventura, G; Manzoli, L; Sferra, R; Vetuschi, A; Piccolomini, R; Romano, F; Staniscia, T

    2004-10-01

    In order to expand the present knowledge of the pathogenic potential of Blastoschizomyces capitatus in central venous catheter (CVC)-related bloodstream infections, six strains of the organism recovered from three leukemic patients with CVC-related fungemia in different years were investigated. Isolates and control strains were tested for their genetic relatedness and for their ability to produce slime in glucose-containing solutions. DNA restriction enzyme analysis revealed that all strains of B. capitatus were identical, whereas slime production assays and examination of ex vivo material showed that they were able to produce large amounts of slime. Slime production may therefore play a relevant pathogenic role in cases of CVC-related fungemia caused by B. capitatus. PMID:15368097

  20. Biomechanical evaluation of acellular collagen matrix augmented Achilles tendon repair in sheep.

    PubMed

    Song, Lin; Olsen, Raymond E; Spalazzi, Jeffrey P; Davisson, Twana

    2010-01-01

    The rate of rerupture of repaired Achilles tendon in young and athletic populations remains high despite improvement in surgical techniques, suture design, and postsurgical management. Acellular biological matrices can be used to enhance the immediate strength of repaired tendons and to serve as scaffolds for cell in-growth and constructive tissue remodeling. A number of commercially available matrices have been used clinically, albeit with varying degrees of success and failure. The disparity is likely attributable to the different physical and biochemical properties of individual matrices. In this study, we investigated the biomechanical characteristics of 2 different acellular collagen matrices, namely TissueMend and GraftJacket, using a sheep Achilles tendon repair model. Static and cyclic creep, cyclic and linear construct stiffness, maximum load to failure, and displacement at maximum load were determined at time zero. We found that the maximum load to failure, displacement, and ultimate failure mode were similar between tendons augmented with either acellular collagen matrix; however, TissueMend augmentation yielded lower creep and smaller construct elongation than did GraftJacket. The results indicated that the strength of TissueMend-augmented tendons and GraftJacket-augmented tendons was not statistically significantly different, although tendons augmented with TissueMend displayed greater stiffness, which may be clinically advantageous in the restoration of ruptured tendons. PMID:20797586

  1. Immunolocation of proteoglycans and bone-related noncollagenous glycoproteins in developing acellular cementum of rat molars.

    PubMed

    Yamamoto, T; Domon, T; Takahashi, S; Arambawatta, A K S; Wakita, M

    2004-09-01

    To elucidate the roles of proteoglycans of (PGs), bone sialoprotein (BSP), and osteopontin (OPN) in cementogenesis, their distribution was investigated in developing and established acellular cementum of rat molars by an immunoperoxidase method. To characterize PGs, antibodies against five species of glycosaminoglycans (GAGS), chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S), unsulfated chondroitin (C0S), dermatan sulfate (DS), and keratan sulfate (KS) were used. Routine histological staining was also applied. With onset of dentin mineralization, the initial cementum appeared on the dentin surface as a hematoxylin-stained fibril-poor layer. Subsequently, primitive principal fibers attached to the initial cementum. As the acellular cementum containing extrinsic fibers covered the initial cementum, the intal cementum formed the cemento-dentinal junction. Following immunohistochemistry at the earliest time of cementogenesis, the initial cementum was intensely immunoreactive for C4S, C6S, C0S, BSP, and OPN. After the initial cementum was embedded, neither the cemento-dentinal junction nor the cementum was immunoreactive for any GAG species. However, the cementum was immunoreactive for any GAG species. However, the cementum and cemento-dentinal were consistently immunoreactive for BSP. Although the cemento-dentinal junction was consistently immunoreactive for OPN, the remaining cementum showed no significant immunoreactivity. Thus, initial acellular cementogenesis requires a dense accumulation of PGs, BSP, and OPN, which may be associated with the mineralization process independently of collagen fibrils and initial principal fiber attachment. PMID:15278434

  2. Preparation and characterization of an acellular bovine pericardium intended for manufacture of valve bioprostheses.

    PubMed

    Goissis, Gilberto; Giglioti, Aparecida de Fátima; Braile, Domingo Marcolino

    2011-05-01

    Major problems with biological heart valves post-implantation are associated with progressive structural deterioration and calcification attributed to glutaraldehyde processing, dead cells, and cell fragments present in the native tissue. In spite of these problems, glutaraldehyde still is the reagent of choice. The results with acellular matrix xenograft usually prepared by detergent treatment in association with enzymes are rather conflicting because while preserving mechanical properties, tissue morphology and collagen structure are process dependent. This work describes a chemical approach for the preparation of an acellular bovine pericardium matrix intended for the manufacture of heart valve bioprostheses. Cell removal was performed by an alkaline extraction in the presence of calcium salts for periods ranging from 6 to 48 h. The results showed that cell removal was achieved after 12 h, with swelling and negative charge increasing with processing time. Nevertheless, collagen fibril structure, ability to form fibrils, and stability to collagenase were progressive after 24-h processing. There was no denaturation of the collagen matrix. A process is described for the preparation of acellular bovine pericardium matrices with preserved fibril structure and morphology for the manufacture of cardiac valve bioprostheses and may be used in other applications for tissue reconstruction. PMID:21595716

  3. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  4. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, R.W.; Hrubesh, L.W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

  5. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, Richard W.; Hrubesh, Lawrence W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

  6. Evaluation of Different Phenotypic Techniques for the Detection of Slime Produced by Bacteria Isolated from Clinical Specimens

    PubMed Central

    HRV, Rajkumar; Devaki, Ramakrishna

    2016-01-01

    Introduction  Microorganisms use various strategies for their survival in both the environment and in humans. Slime production by bacteria is one such mechanism by which microbes colonize on the indwelling prosthetic devices and form biofilms. Infections caused by such microorganisms are difficult to treat as the biofilm acts as a shield and protects microbes against antimicrobial agents. There are several methods for the detection of slime produced by bacteria, and they include both phenotypic and molecular methods. The present study evaluated the Congo red agar/broth method, Christensen’s method, dye elution technique, and the latex agglutination method for the demonstration of slime production by different bacterial clinical isolates. Materials & Methods We collected 151 bacterial clinical isolates (both gram-positive and gram-negative bacteria) from various specimens and tested them for the production of slime both by qualitative and quantitative tests. Congo red agar/broth method, Christensen's method, dye elution technique, and latex agglutination methods were used for detecting the slime or slime-like substance. Results  We found that 103 (68.2%) strains were positive for slime production by Congo red agar/broth method. It was found that 18 (94.7%) strains of Klebsiella pneumoniae, 21 (84.0%) strains of S aureus and 25 (65.7%) strains of coagulase-negative Staphylococci were positive for slime or slime-like substances by Congo red agar/broth method. A total of 41.0% of the strains positive by Christensen's method and 15.2% of the strains by dye elution technique were found to be more adherent organisms and that have the potential to form biofilms. Only the gram-positive organisms showed nonspecific agglutination with latex suspension. Conclusion  Among the various phenotypic methods compared in this study the Congo red agar/broth method is a simple, economical, sensitive, and specific method that can be used by clinical microbiology laboratories

  7. Onychomycosis due to opportunistic molds*

    PubMed Central

    Martínez-Herrera, Erick Obed; Arroyo-Camarena, Stefanie; Tejada-García, Diana Luz; Porras-López, Carlos Francisco; Arenas, Roberto

    2015-01-01

    BACKGROUND: Onychomycosis are caused by dermatophytes and Candida, but rarely by non- dermatophyte molds. These opportunistic agents are filamentous fungi found as soil and plant pathogens. OBJECTIVES: To determine the frequency of opportunistic molds in onychomycosis. METHODS: A retrospective analysis of 4,220 cases with onychomycosis, diagnosed in a 39-month period at the Institute of Dermatology and Skin surgery "Prof. Dr. Fernando A. Cordero C." in Guatemala City, and confirmed with a positive KOH test and culture. RESULTS: 32 cases (0.76%) of onychomycosis caused by opportunistic molds were confirmed. The most affected age group ranged from 41 to 65 years (15 patients, 46.9%) and females were more commonly affected (21 cases, 65.6%) than males. Lateral and distal subungual onychomycosis (OSD-L) was detected in 20 cases (62.5%). The microscopic examination with KOH showed filaments in 19 cases (59.4%), dermatophytoma in 9 cases (28.1%), spores in 2 cases (6.25%), and filaments and spores in 2 cases (6.25%). Etiologic agents: Aspergillus sp., 11 cases (34.4%); Scopulariopsis brevicaulis, 8 cases (25.0%); Cladosporium sp., 3 cases (9.4%); Acremonium sp., 2 cases (6.25%); Paecilomyces sp., 2 cases (6.25%); Tritirachium oryzae, 2 cases (6.25%); Fusarium sp., Phialophora sp., Rhizopus sp. and Alternaria alternate, 1 case (3.1%) each. CONCLUSIONS: We found onychomycosis by opportunistic molds in 0.76% of the cases and DLSO was present in 62.5%. The most frequent isolated etiological agents were: Aspergillus sp. and Scopulariopsis brevicaulis. PMID:26131862

  8. Comparison of slime-producing coagulase-negative Staphylococcus colonization rates on vinyl and ceramic tile flooring materials.

    PubMed

    Yazgi, H; Uyanik, M H; Ayyildiz, A

    2009-01-01

    This study investigated the colonization of slime-producing coagulase-negative Staphylococcus (CoNS) in 80 patient wards in Turkey (40 vinyl and 40 ceramic tile floors). A total of 480 samples that included 557 CoNS isolates were obtained. Slime production was investigated with the Christensen method and methicillin-susceptibility was tested by the disk-diffusion method. There was a significant difference in the percentage of slime-producing CoNS isolates on vinyl (12.4%) versus ceramic tile flooring (4.4%). From vinyl flooring, the percentage of slime producing methicillin-resistant CoNS (MRCoNS) (8.9%) was significantly higher than for methicillin-sensitive CoNS (MSCoNS) (3.6%), whereas there was no difference from ceramic tile flooring (2.5% MRCoNS versus 1.8% MSCoNS). The most commonly isolated slime-producing CoNS species was S. epidermidis on both types of flooring. It is concluded that vinyl flooring seems to be a more suitable colonization surface for slime-producing CoNS than ceramic tile floors. Further studies are needed to investigate bacterial strains colonized on flooring materials, which are potential pathogens for nosocomial infections. PMID:19589249

  9. Success in chess mediated by mental molds.

    PubMed

    Hernández Hernández, Pedro; Rodríguez Mateo, Heriberto

    2006-11-01

    Research has revealed the impact of cognitive-affective strategies (Molds of the Mind) on subjective well-being, interpersonal relationships, or school achievement. However, it seems odd that such strategies could influence the success of chess players, because this game is usually considered to be influenced mainly by technical and cognitive skills. To examine the influence of cognitive-affective molds, 53 chess players, ages from 9 to 16 years old, enrolled in sport competitions, were assigned to two groups, high and low success. They responded to the MOLDES, designed to evaluate individuals' molds. The results show that the "Mental Molds" of the most successful players are more realistic, positive and regulators of the emotions, while the molds of the less successful players are more evasive, magical, defensive and inoperative. PMID:17296106

  10. Gating of Permanent Molds for ALuminum Casting

    SciTech Connect

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  11. Amorphous materials molded IR lens progress report

    NASA Astrophysics Data System (ADS)

    Hilton, A. R., Sr.; McCord, James; Timm, Ronald; Le Blanc, R. A.

    2008-04-01

    Amorphous Materials began in 2000 a joint program with Lockheed Martin in Orlando to develop molding technology required to produce infrared lenses from chalcogenide glasses. Preliminary results were reported at this SPIE meeting by Amy Graham1 in 2003. The program ended in 2004. Since that time, AMI has concentrated on improving results from two low softening glasses, Amtir 4&5. Both glasses have been fully characterized and antireflection coatings have been developed for each. Lenses have been molded from both glasses, from Amtir 6 and from C1 Core glass. A Zygo unit is used to evaluate the results of each molded lens as a guide to improving the molding process. Expansion into a larger building has provided room for five production molding units. Molded lens sizes have ranged from 8 mm to 136 mm in diameter. Recent results will be presented

  12. [Antimicrobial sensivity and ability to slime production of koagulaze-negative staphylococci].

    PubMed

    Szczuka, Ewa; Prawda-Zołotar, Jolanta; Nowakiewicz, Maryla; Kaznowski, Adam

    2011-01-01

    The aim of this study was to assess the ability of slime production ofcoagulase-negative staphylococci (CONS) and evaluate the susceptibility of bacteria to antibiotics. Strains were isolated from clinical specimens obtained from hospitalized patients. The most frequently isolated species were S. epidermidis (51%), S. hominis (18%), S. haemolyticus (13%). The result of this study shows that 61% of S.epidermidis produce slime on CRA (Congo red agar), whereas none of the tested S. haemolyticus strains has this ability. All examined strains were susceptible to vancomycin, linezolid and quinupristin/ dalfopristin. The majority of strains were susceptible to minocycline, fusid acid, nitrofurantoin and rifampicin. Sixty six percent of isolates were determined as methicillin-resistant coagulase-negative staphylococci. PMID:22184892

  13. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    NASA Astrophysics Data System (ADS)

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan; Pranov, Henrik J.; Larsen, Niels B.

    2015-03-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes.

  14. Mold For Casting Radius-Inspection Specimens

    NASA Technical Reports Server (NTRS)

    Ball, Robert N.

    1988-01-01

    Thin replicas viewed on comparator without sectioning. New mold machined from piece of transparent poly(methyl methacrylate). Fits around base of post. Two slots machined into inner surface form channels for casting inspection sections. Bottom of mold fits flush against surface around bottom of post. When surface slanted, mold automatically aligns in proper orientation. Time required to inspect elliptical radii located at bottoms of series of small posts reduced from 18 hours to 3 hours.

  15. Mold in My School: What Do I Do?

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, Washington, DC.

    This publication provides information on the most important indoor mold-related health concerns and discusses how school districts can keep school facilities mold-free and avoid these problems. The document addresses when to be concerned, how molds cause health problems, symptoms caused by mold allergies, indoor molds that form toxins, who is most…

  16. GTP cyclohydrolase I mRNA: novel splice variants in the slime mould Physarum polycephalum and in human monocytes (THP-1) indicate conservation of mRNA processing.

    PubMed Central

    Golderer, G; Werner, E R; Heufler, C; Strohmaier, W; Gröbner, P; Werner-Felmayer, G

    2001-01-01

    GTP cyclohydrolase I (EC 3.5.4.16) is the first enzyme in the biosynthesis of tetrahydrobiopterin [(6R)-5,6,7,8-tetrahydro-L-biopterin, H(4)-biopterin] in mammals and of folic acid in bacteria. Here we have characterized the GTP cyclohydrolase I gene structure and two mRNA species from Physarum polycephalum, an acellular slime mould that synthesizes H(4)-biopterin and metabolites of the folic acid biosynthetic pathway. Its GTP cyclohydrolase I gene consists of seven exons, and the two GTP cyclohydrolase I cDNA species isolated from Physarum encode for proteins with 228 (25.7 kDa) and 195 (22.1 kDa) amino acids. Furthermore, we identified two previously undescribed mRNA species in interferon-gamma-treated human myelomonocytoma cells (THP-1) in addition to the cDNA coding for the fully functional 250-residue (27.9 kDa) protein, which is identical with that in human phaeochromocytoma cells. One of the new splice variants codes for a 233-residue (25.7 kDa) protein, whereas the other codes for the full-length protein but is alternatively spliced within the 3'-untranslated region. In heterologous expression, the shorter proteins of Physarum as well as of THP-1 cells identified here are degraded by proteolysis. Accordingly, only the 27.9 kDa protein was detectable in Western blots from THP-1 cell extracts. Quantification of GTP cyclohydrolase I mRNA species in different human cell types with and without cytokine treatment showed that in addition to the correct mRNA the two splice variants isolated here, as well as the two splice variants known from human liver, are strongly induced by cytokines in cell types with inducible GTP cyclohydrolase I (THP-1, dermal fibroblasts), but not in cell types with constitutive GTP cyclohydrolase I expression (SK-N-SH, Hep-G2). As in human liver, splicing of the new mRNA variant found in THP-1 cells occurs at the boundary of exons 5 and 6. Strikingly, the 195-residue protein from Physarum is alternatively spliced at a homologous position

  17. Killing effect of peppermint vapor against pink-slime forming microorganisms.

    PubMed

    Ihara, Nozomi; Sakamoto, Jin; Yoshida, Munehiro; Tsuchido, Tetsuaki

    2015-01-01

    The killing effect of peppermint vapor (PMV) against pink-slime forming microorganisms, Methylobacterium mesophilicum as a bacterium and Rhodotorula mucilaginosa as a yeast, was investigated by the agar vapor assay. In this method, microbial cells were spread over the agar surface exposed to PMV in a petri dish, and then transferred into a recovery liquid. When 60μl of the peppermint liquid was added to a paper disc, a marked killing effect of PMV was observed after 48h against M. mesophilicum and after 168h against R. mucilaginosa. M. mesophilicum and R. mucilaginosa were found to be more resistant to PMV than Escherichia coli and Candida albicans, used as reference microorganisms, respectively. With the addition of 0.03% sodium pyruvate as a hydrogen peroxide scavenger in agar, the killing effect of PMV against E. coli and C. albicans was decreased, whereas it was little changed against M. mesophilicum and R. mucilaginosa. In fact, the properties of the killing effect of hydrogen peroxide solution at 0.2-1.0mM was in accord with those of PMV. M. mesophilicum and R. mucilaginosa were more resistant to the oxidant than E. coli and C. albicans, respectively. Results obtained suggested that reactive oxygen species (ROS) may be involved in the killing action of PMV and therefore pink-slime formers are more resistant to PMV than non-pink-slime formers because of the presence of carotenoids as an antioxidant in cells. We also suggest that the use of PMV appeared to be a potential tool for the control of pink-slime forming microorganisms occurring in wet areas of houses such as the bathroom and washing room. PMID:26133506

  18. Mold Cavity Roughness vs. Flow of Polymer

    NASA Astrophysics Data System (ADS)

    Stanek, Michal; Manas, Miroslav; Manas, David

    2009-07-01

    Injection molding represents such a way of polymer processing that requires injection of polymer melt into the mold cavity with very high injection rate. The fluidity of polymers is affected by many parameters (mold design, melt temperature, injection rate and pressure). The main objective of this paper is the study of influence of surface roughness of mold cavity of the polymer melts flow. Evaluation of set of data obtained by experiments where the testing conditions were widely changed shows that quality of cavity surface affects on the length of flow.

  19. Porous media heat transfer for injection molding

    DOEpatents

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  20. Mold Infections of the Central Nervous System

    PubMed Central

    McCarthy, Matthew; Rosengart, Axel; Schuetz, Audrey N.; Kontoyiannis, Dimitrios P.; Walsh, Thomas J.

    2016-01-01

    The recent outbreak of exserohilum rostratum meningitis linked to epidural injections of methylprednisolone acetate has brought renewed attention to mold infections of the central nervous system (CNS).1 Although uncommon, these infections are often devastating and difficult to treat. This focused review of the epidemiologic aspects, clinical characteristics, and treatment of mold infections of the CNS covers a group of common pathogens: aspergillus, fusarium, and scedosporium species, molds in the order Mucorales, and dematiaceous molds. Infections caused by these pathogen groups have distinctive epidemiologic profiles, clinical manifestations, microbiologic characteristics, and therapeutic implications, all of which clinicians should understand. PMID:25006721

  1. Evaluating acellular versus cellular perfusate composition during prolonged ex vivo lung perfusion after initial cold ischaemia for 24 hours.

    PubMed

    Becker, Simon; Steinmeyer, Jasmin; Avsar, Murat; Höffler, Klaus; Salman, Jawad; Haverich, Axel; Warnecke, Gregor; Ochs, Matthias; Schnapper, Anke

    2016-01-01

    Normothermic ex vivo lung perfusion (EVLP) has developed as a powerful technique to evaluate particularly marginal donor lungs prior to transplantation. In this study, acellular and cellular perfusate compositions were compared in an identical experimental setting as no consensus has been reached on a preferred technique yet. Porcine lungs underwent EVLP for 12 h on the basis of an acellular or a cellular perfusate composition after 24 h of cold ischaemia as defined organ stress. During perfusion, haemodynamic and respiratory parameters were monitored. After EVLP, the lung condition was assessed by light and transmission electron microscopy. Aerodynamic parameters did not show significant differences between groups and remained within the in vivo range during EVLP. Mean oxygenation indices were 491 ± 39 in the acellular group and 513 ± 53 in the cellular group. Groups only differed significantly in terms of higher pulmonary artery pressure and vascular resistance in the cellular group. Lung histology and ultrastructure were largely well preserved after prolonged EVLP and showed only minor structural alterations which were similarly present in both groups. Prolonged acellular and cellular EVLP for 12 h are both feasible with lungs prechallenged by ischaemic organ stress. Physiological and ultrastructural analysis showed no superiority of either acellular or cellular perfusate composition. PMID:26264867

  2. Growth and reproduction of laboratory-reared neanurid Collembola using a novel slime mould diet

    NASA Astrophysics Data System (ADS)

    Hoskins, Jessica L.; Janion-Scheepers, Charlene; Chown, Steven L.; Duffy, Grant A.

    2015-07-01

    Although significant progress has been made using insect taxa as model organisms, non-tracheated terrestrial arthropods, such as Collembola, are underrepresented as model species. This underrepresentation reflects the difficulty in maintaining populations of specialist Collembola species in the laboratory. Until now, no species from the family Neanuridae have been successfully reared. Here we use controlled growth experiments to provide explicit evidence that the species Neanura muscorum can be raised under laboratory conditions when its diet is supplemented with slime mould. Significant gains in growth were observed in Collembola given slime mould rather than a standard diet of algae-covered bark. These benefits are further highlighted by the reproductive success of the experimental group and persistence of laboratory breeding stocks of this species and others in the family. The necessity for slime mould in the diet is attributed to the ‘suctorial’ mouthpart morphology characteristic of the Neanuridae. Maintaining laboratory populations of neanurid Collembola species will facilitate their use as model organisms, paving the way for studies that will broaden the current understanding of the environmental physiology of arthropods.

  3. Growth and reproduction of laboratory-reared neanurid Collembola using a novel slime mould diet.

    PubMed

    Hoskins, Jessica L; Janion-Scheepers, Charlene; Chown, Steven L; Duffy, Grant A

    2015-01-01

    Although significant progress has been made using insect taxa as model organisms, non-tracheated terrestrial arthropods, such as Collembola, are underrepresented as model species. This underrepresentation reflects the difficulty in maintaining populations of specialist Collembola species in the laboratory. Until now, no species from the family Neanuridae have been successfully reared. Here we use controlled growth experiments to provide explicit evidence that the species Neanura muscorum can be raised under laboratory conditions when its diet is supplemented with slime mould. Significant gains in growth were observed in Collembola given slime mould rather than a standard diet of algae-covered bark. These benefits are further highlighted by the reproductive success of the experimental group and persistence of laboratory breeding stocks of this species and others in the family. The necessity for slime mould in the diet is attributed to the 'suctorial' mouthpart morphology characteristic of the Neanuridae. Maintaining laboratory populations of neanurid Collembola species will facilitate their use as model organisms, paving the way for studies that will broaden the current understanding of the environmental physiology of arthropods. PMID:26153104

  4. Growth and reproduction of laboratory-reared neanurid Collembola using a novel slime mould diet

    PubMed Central

    Hoskins, Jessica L.; Janion-Scheepers, Charlene; Chown, Steven L.; Duffy, Grant A.

    2015-01-01

    Although significant progress has been made using insect taxa as model organisms, non-tracheated terrestrial arthropods, such as Collembola, are underrepresented as model species. This underrepresentation reflects the difficulty in maintaining populations of specialist Collembola species in the laboratory. Until now, no species from the family Neanuridae have been successfully reared. Here we use controlled growth experiments to provide explicit evidence that the species Neanura muscorum can be raised under laboratory conditions when its diet is supplemented with slime mould. Significant gains in growth were observed in Collembola given slime mould rather than a standard diet of algae-covered bark. These benefits are further highlighted by the reproductive success of the experimental group and persistence of laboratory breeding stocks of this species and others in the family. The necessity for slime mould in the diet is attributed to the ‘suctorial’ mouthpart morphology characteristic of the Neanuridae. Maintaining laboratory populations of neanurid Collembola species will facilitate their use as model organisms, paving the way for studies that will broaden the current understanding of the environmental physiology of arthropods. PMID:26153104

  5. Indoor mold and Children's health

    PubMed

    Etzel; Rylander

    1999-06-01

    Reactive airways disease in children is increasing in many countries around the world. The clinical diagnosis of asthma or reactive airways disease includes a variable airflow and an increased sensitivity in the airways. This condition can develop after an augmented reaction to a specific agent (allergen) and may cause a life-threatening situation within a very short period of exposure. It can also develop after a long-term exposure to irritating agents that cause an inflammation in the airways in the absence of an allergen. (paragraph) Several environmental agents have been shown to be associated with the increased incidence of childhood asthma. They include allergens, cat dander, outdoor as well as indoor air pollution, cooking fumes, and infections. There is, however, increasing evidence that mold growth indoors in damp buildings is an important risk factor. About 30 investigations from various countries around the world have demonstrated a close relationship between living in damp homes or homes with mold growth, and the extent of adverse respiratory symptoms in children. Some studies show a relation between dampness/mold and objective measures of lung function. Apart from airways symptoms, some studies demonstrate the presence of general symptoms that include fatigue and headache and symptoms from the central nervous system. At excessive exposures, an increased risk for hemorraghic pneumonia and death among infants has been reported. (paragraph) The described effects may have important consequences for children in the early years of life. A child's immune system is developing from birth to adolescence and requires a natural, physiologic stimulation with antigens as well as inflammatory agents. Any disturbances of this normal maturing process will increase the risk for abnormal reactions to inhaled antigens and inflammagenic agents in the environment. (paragraph) The knowledge about health risks due to mold exposure is not widespread and health authorities in

  6. Use of acrylic sheet molds for elastomeric products

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Koerner, A. E.; Messineo, S. M.

    1970-01-01

    Molds constructed of acrylic sheet are more easily machined than metal, are transparent to ensure complete filling during injection, and have smooth surfaces free of contamination. Technique eliminates flashing on molded parts and mold release agents.

  7. Plastic molds reduce cost of encapsulating electric cable connectors

    NASA Technical Reports Server (NTRS)

    Knott, D.

    1964-01-01

    Resin casting of the aluminum master pattern forms a plastic mold for encapsulating a cable connector. An elastomer is injected into the mold and cured. The mold is disassembled leaving an elastomeric encapsulation around the connector.

  8. Molding procedure for casting a variety of alloys

    NASA Technical Reports Server (NTRS)

    Fontes, M. J.; Kourtides, D.; Leibfritz, E. R.

    1970-01-01

    General procedure and molding sand composition for preparing molds usable for casting variety of alloys are developed. Molds are prepared from mixture of sand, sodium silicate binder, and organic liquid ester. Castings of radiographic quality are produced from various alloys.

  9. 1. INTERIOR VIEW OF MOLDING ROOM, NO. 2 WORKS, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. INTERIOR VIEW OF MOLDING ROOM, NO. 2 WORKS, SHOWING BUCKET LINE FEEDING MOLDING MACHINES - Harbison-Walker Refractories Company, Molding Room, West end of Shirley Street, Mount Union, Huntingdon County, PA

  10. Commercial and Residential Water Damage: The Mold Connection.

    ERIC Educational Resources Information Center

    Williams, Del

    2002-01-01

    Describes the problem of toxic mold in residential and commercial property resulting from excess moisture. Includes common sources of unwanted moisture, design and construction flaws, determining the presence of mold, and advice for identifying and hiring reputable mold remediators. (PKP)

  11. Mold

    MedlinePlus

    ... Clin Immunol 130(1):267–270. 12 Chulada PC, Kennedy S, Mvula MM, Jaffee K, Wildfire J, Thornton ... 120(11): 1592–1599. 13 Grimsley LF, Chulada PC, Kennedy S, White L, Wildfire J, Cohn RD, Mitchell ...

  12. Florid pustular dermatitis of breast: A case report on a unusual complication from acellular dermal matrix use

    PubMed Central

    James, Justin; Jackson, Lee; Saunders, Christobel

    2016-01-01

    Introduction Idiopathic erythematous reaction of the breast (Red breast syndrome) is a known complication following breast reconstruction with acellular dermal matrix. However pustular dermatitis like presentation is not previously known. Presentation of case We present a 42-year-old lady who developed bilateral pustular dermatitis like appearance following breast reconstruction with acellular dermal matrix slings. Though surgical washout was done, both expanders and flex HD could be preserved. Discussion Acellular dermal matrix use is the only possible explanation for such a presentation and this can be considered a variant of red breast syndrome. Conclusion Pustular dermatitis like presentation can be associated with acelluar dermal matrix use and should be considered in similar clinical presentations, since this can avoid unnecessary surgical procedures. PMID:27058152

  13. Process for Making Ceramic Mold

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    2001-01-01

    An improved process for slip casting molds that can be more economically automated and that also exhibits greater dimensional stability is disclosed. The process involves subjecting an investment pattern, preferably made from wax, to successive cycles of wet-dipping in a slurry of colloidal, silica-based binder and dry powder-coating, or stuccoing with plaster of Paris or calcium sulfate mixtures to produce a multi-layer shell over the pattern. The invention as claimed entails applying a primary and a secondary coating to the investment pattern. At least two wet-dipping on in a primary slurry and dry-stuccoing cycles provide the primary coating, and an additional two wet-dippings and dry-stuccoing cycles provide the secondary, or back-up, coating. The primary and secondary coatings produce a multi-layered shell pattern. The multi-layered shell pattern is placed in a furnace first to cure and harden, and then to vaporize the investment pattern, leaving a detailed, high precision shell mold.

  14. Constructing Human Skin Equivalents on Porcine Acellular Peritoneum Extracellular Matrix for In Vitro Irritation Testing.

    PubMed

    Tsai, Pei-Chin; Zhang, Zheng; Florek, Charles; Michniak-Kohn, Bozena B

    2016-01-01

    The irritancy of topical products has to be investigated to ensure the safety and compliance. Although several reconstructed human epidermal models have been adopted by the Organization for Economic Cooperation and Development (OECD) to replace in vivo animal irritation testing, these models are based on a single cell type and lack dermal components, which may be insufficient to reflect all of the components of irritation. In our study, we investigated the use of acellular porcine peritoneum extracellular matrix as a substrate to construct full-thickness human skin equivalents (HSEs) for use as irritation screening tool. The acellular peritoneum matrix (APM) exhibited excellent skin cell attachment (>80%) and proliferation for human dermal fibroblasts (HDF) and immortalized human keratinocytes (HaCaT). APM-HSEs based on coculture of HDF and HaCaT were prepared. Increased HDF seeding density up to 5 × 10(4)/cm(2) resulted in APM-HSEs with a thicker and more organized epidermis. The epidermis of APM-HSEs expressed keratin 15, a keratinocyte proliferation marker, and involucrin, a differentiation marker, respectively. To assess the use of APM-HSEs for irritation testing, six proficiency chemicals, including three nonirritants (phosphate-buffered saline, polyethylene glycol 400, and isopropanol) and three irritants (1-bromohexane, heptanol, and sodium dodecyl sulfate) were applied. The APM-HSEs were able to discriminate nonirritants from irritants based on the viability. Levels of cytokines (interleukin [IL]-1α, IL-1ra, IL-6, IL-8, and granulocyte macrophage colony-stimulating factor [GM-CSF]) in these treatment groups further assisted the irritancy ranking. In conclusion, we have developed partially differentiated full-thickness APM-HSEs based on acellular porcine peritoneum matrix, and these APM-HSEs demonstrated utility as an in vitro irritation screening tool. PMID:26415037

  15. The Human Umbilical Vein with Wharton's Jelly as an Allogeneic, Acellular Construct for Vocal Fold Restoration

    PubMed Central

    Rodriguez, Maritza L.; McFetridge, Peter S.

    2009-01-01

    This study investigated the potential of the decellularized human umbilical vein (HUV) as an allogeneic, acellular extracellular matrix (ECM) scaffold for engineering the vocal fold lamina propria in vitro. HUV specimens with Wharton's jelly on the abluminal surface were uniformly dissected from native umbilical cords using an automated procedure and subjected to a novel saline-based decellularization treatment for removal of potentially antigenic epitopes. Human vocal fold fibroblasts from primary culture were seeded onto the resulting acellular constructs and cultured for 21 days. The structures of decellularized and fibroblast-repopulated HUV constructs and the attachment, proliferation, and infiltration of fibroblasts were examined with light microscopy and scanning electron microscopy. Changes in the relative densities of collagen in the constructs associated with decellularization and recellularization were quantified using digital image analysis. In addition, fibroblasts infiltrating the scaffolds were released by cell recovery and quantified by counting. Viscoelastic properties of the scaffolds were measured using a linear, simple-shear rheometer at phonatory frequencies. Results showed that an acellular ECM construct with an intact three-dimensional structure of Wharton's jelly was fabricated. Vocal fold fibroblasts readily attached on the abluminal surface of the construct with high viability, with significant cellular infiltration up to approximately 600 μm deep into the construct. A significant increase in collagen expression was observed with recellularization. The elastic modulus and dynamic viscosity of the fibroblast-repopulated scaffolds were comparable to those of the human vocal fold lamina propria. These findings supported the potential of the construct as a possible surgical allograft for vocal fold restoration and reconstruction. PMID:19456236

  16. Mold Remediation in Schools and Commercial Buildings.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This document describes how to investigate and evaluate moisture and mold problems in educational facilities, and presents the key steps for implementing a remediation plan. A checklist is provided for conducting mold remediation efforts along with a resource list of helpful organizations and governmental agencies. Appendices contain a glossary,…

  17. Particle Image Velocimetry During Injection Molding

    NASA Astrophysics Data System (ADS)

    Bress, Thomas; Dowling, David

    2012-11-01

    Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.

  18. EXPOSURE OF CHILDREN TO INDOOR MOLDS

    EPA Science Inventory

    Children now spend more than 90% of their time indoors. Thus, any exposure to indoor pollutants may be critical to their health. Molds are one of the most important pollutants children are exposed to indoors. Molds produce hundreds of allergens and toxins. These products ha...

  19. Dynamic Feed Control For Injection Molding

    DOEpatents

    Kazmer, David O.

    1996-09-17

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  20. 21ST CENTURY MOLD ANALYSIS IN FOOD

    EPA Science Inventory

    Traditionally, the indoor air community has relied on mold analysis performed by either microscopic observations or the culturing of molds on various media to assess indoor air quality. These techniques were developed in the 19th century and are very laborious and time consumin...

  1. Current opinions on indications and algorithms for acellular dermal matrix use in primary prosthetic breast reconstruction.

    PubMed

    Vu, Michael M; Kim, John Y S

    2015-06-01

    Acellular dermal matrix (ADM) is widely used in primary prosthetic breast reconstruction. Many indications and contraindications to use ADM have been reported in the literature, and their use varies by institution and surgeon. Developing rational, tested algorithms to determine when ADM is appropriate can significantly improve surgical outcomes and reduce costs associated with ADM use. We review the important indications and contraindications, and discuss the algorithms that have been put forth so far. Further research into algorithmic decision-making for ADM use will allow optimized balancing of cost with risk and benefit. PMID:26161304

  2. Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration.

    PubMed

    Badylak, Stephen F; Dziki, Jenna L; Sicari, Brian M; Ambrosio, Fabrisia; Boninger, Michael L

    2016-10-01

    Acellular biologic scaffolds derived from extracellular matrix have been investigated in preclinical and clinical studies as a regenerative medicine approach for volumetric muscle loss treatment. The present manuscript provides a review of previous studies supporting the use of extracellular matrix derived biologic scaffolds for the promotion of functional skeletal muscle tissue formation that is contractile and innervated. The manuscript also identifies key mechanisms that have been associated with ECM-mediated skeletal muscle repair, and provides hypotheses as to why there have been variable outcomes, ranging from successful to unsatisfactory, associated with ECM bioscaffold implantation in the skeletal muscle injury microenvironment. PMID:27376561

  3. Strong, easy-to-mold, spiral buttress thread

    NASA Technical Reports Server (NTRS)

    Heier, W. C.

    1971-01-01

    Buttress thread with steep taper connects two molded plastic cylinders without changing wall thickness or sacrificing longitudinal strength at the juncture. Technique lends itself to conventional molding methods.

  4. IC chip stress during plastic package molding

    SciTech Connect

    Palmer, D.W.; Benson, D.A.; Peterson, D.W.; Sweet, J.N.

    1998-02-01

    Approximately 95% of the world`s integrated chips are packaged using a hot, high pressure transfer molding process. The stress created by the flow of silica powder loaded epoxy can displace the fine bonding wires and can even distort the metalization patterns under the protective chip passivation layer. In this study the authors developed a technique to measure the mechanical stress over the surface of an integrated circuit during the molding process. A CMOS test chip with 25 diffused resistor stress sensors was applied to a commercial lead frame. Both compression and shear stresses were measured at all 25 locations on the surface of the chip every 50 milliseconds during molding. These measurements have a fine time and stress resolution which should allow comparison with computer simulation of the molding process, thus allowing optimization of both the manufacturing process and mold geometry.

  5. Castable plastic mold with electroplatable base

    DOEpatents

    Domeier, Linda A.; Morales, Alfredo M.; Gonzales, Marcela G.; Keifer, Patrick M.

    2004-01-20

    A sacrificial plastic mold having an electroplatable backing is provided as are methods of making such a mold via the infusion of a castable liquid formulation through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale master mold. Upon casting and demolding, the porous metal substrate is embedded within the cast formulation and projects a plastic structure with features determined by the mold tool. The plastic structure provides a sacrificial plastic mold mechanically bonded to the porous metal substrate, which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved, leaving the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  6. Mold Simulator Study of the Initial Solidification of Molten Steel in Continuous Casting Mold: Part II. Effects of Mold Oscillation and Mold Level Fluctuation

    NASA Astrophysics Data System (ADS)

    Zhang, Haihui; Wang, Wanlin

    2016-04-01

    The surface quality of the continuous casting strands is closely related to the initial solidification of liquid steel in the vicinity of the mold meniscus, and thus the clear understanding of the behavior of molten steel initial solidification would be of great importance for the control of the quality of final slab. With the development of the mold simulator techniques, the complex interrelationship between the solidified shell surface profile, heat flux, shell thickness, mold level fluctuation, and the infiltrated slag film was well illustrated in our previous study. As the second part, this article investigated the effect of the mold oscillation frequency, stroke, and mold level fluctuation on the initial solidification of the molten steel through the conduction of five different experiments. Results suggested that in the case of the stable mold level, the oscillation marks (OMs) exhibit equally spaced horizon depressions on the shell surface, where the heat flux at the meniscus area raises rapidly during negative strip time (NST) period and the presence of each OMs on the shell surface is corresponding to a peak value of the heat flux variation rate. Otherwise, the shell surface is poorly defined by the existence of wave-type defects, such as ripples or deep depressions, and the heat flux variation is irregular during NST period. The rising of the mold level leads to the longer-pitch and deeper OMs formation; conversely, the falling of mold level introduces shorter-pitch and shallower OMs. With the increase of the mold oscillation frequency, the average value of the low-frequency heat flux at the meniscus increases; however, it decreases when the mold oscillation stroke increases. Additionally, the variation amplitude of the high-frequency temperature and the high-frequency heat flux decreases with the increase of the oscillation frequency and the reduction of the oscillation stroke.

  7. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mold is vented during spinning and cureb. resin application with the mold closed, and the mold is not vented during spinning and cure c. resin application with the mold open, and the mold is vented during spinning and cure d. resin application with the mold open, and the mold is not vented during spinning...

  8. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... closed, and the mold is vented during spinning and cureb. resin application with the mold closed, and the mold is not vented during spinning and cure c. resin application with the mold open, and the mold is vented during spinning and cure d. resin application with the mold open, and the mold is not...

  9. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... closed, and the mold is vented during spinning and cureb. resin application with the mold closed, and the mold is not vented during spinning and cure c. resin application with the mold open, and the mold is vented during spinning and cure d. resin application with the mold open, and the mold is not...

  10. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mold is vented during spinning and cureb. resin application with the mold closed, and the mold is not vented during spinning and cure c. resin application with the mold open, and the mold is vented during spinning and cure d. resin application with the mold open, and the mold is not vented during spinning...

  11. Characterization of fiberglass-filled diallyl phthalate plastic molding resins and molded parts

    SciTech Connect

    Whitaker, R.B.; Glaub, J.E.; Bonekowski, N.R.; Gillham, P.D.

    1980-12-01

    Characterization of diallyl phthalate (DAP) molding resins was undertaken by differential scanning calorimetry (DSC) and by combined size exclusion chromatography (SEC)/low angle laser light scattering (LALLS) in order to better predict moldability and storage life limits. Completeness of cure of molded parts, before and after any post-curing, was also determined by thermal analysis. Molecular weights and molecular weight distributions of the DAP molding resins by SEC/LALLS indicated that the better molding resins have lower M/sub w//M/sub n/ ratios. Association effects were observed, which could not be overcome by solvent modification alone. Determination of DAP molding resin heats of reaction by DSC indicated a linear relation between ..delta..H/sub R/ and weight percent filler for the good molding resins. DSC analyses of molded DAP parts showed that 95% cure was achieved in some as-molded parts, with a post-cure temperature of 165/sup 0/C being required to complete the cure to 100%. Thickness of the parts was a factor, with the thicker parts being 100% cured as molded. The glass transition temperature (T/sub g/) of the molded parts increased as cure was completed, to approx. 160 to 165/sup 0/C maximum. These results are consistent with a model of thermoset resin curing behavior which states that 100% cure can be achieved only if a post-curing operation is conducted above the T/sub g infinity/ (T/sub g/ at complete cure) of the polymer.

  12. The use of acellular dermal matrix as a scaffold for periosteum replacement.

    PubMed

    Beniker, Dan; McQuillan, David; Livesey, Stephen; Urban, Robert M; Turner, Thomas M; Blum, Barbara; Hughes, Kim; Haggard, Warren O

    2003-05-01

    Three preclinical models were used to evaluate GraftJacket Acellular Periosteum Replacement Scaffold (Wright Medical Technology, Inc, Arlington, Tenn). The studies assessed the ability of the acellular dermal matrix to repopulate with cells, revascularize, provide a protected environment for bone defect restoration, and minimize fibrous tissue infiltration. An athymic nude rat muscle implantation study demonstrated a steady increase in cellular repopulation through days 2-21. The formation of blood vessels occurred between days 7-14 in this study. Results from a porcine femoral drill hole study indicated that the scaffold material was intact and adherent to surrounding bone and allowed cellular repopulation and vascular infiltration at a 5-week time period. A preliminary porcine segmental bone defect model at a 6-week time period demonstrated the ability of the scaffold material to protect the bone defect site as revealed by new bone formation within the margins of the defect and adjacent to the scaffold. The segmental model also indicated minimal to no soft tissue invasion into the defect site. The combined studies provided preliminary evidence that the dermal membrane material may be used as a scaffold for periosteum regeneration by allowing for cellular repopulation, revascularization, and bone defect restoration. PMID:12755232

  13. A preliminary study on the effects of acellular tissue graft augmentation in acute Achilles tendon ruptures.

    PubMed

    Lee, Daniel K

    2008-01-01

    Acute Achilles tendon rupture injuries present surgical challenges because of the mechanical forces placed on this tendon. The purpose of this study was to evaluate the effectiveness of an acellular human dermal tissue matrix, GraftJacket Matrix (Wright Medical Technology, Inc., Arlington, TN), as an augmentation material in acute Achilles tendon repair. Eleven consecutive patients with acute tendon ruptures were evaluated and followed up (20-31 months). Primary repair was followed by augmentation with the graft sutured circumferentially around the tendon. Patients were placed in an early functional rehabilitation program with postoperative evaluation at 3, 6, and 12 months. Outcome scores were calculated based on the American Orthopaedic Foot and Ankle Society ankle-hindfoot scoring system. At 20-month postoperative follow-up, there have been no cases of rerupture or recurrent pain. The average return-to-activity time was 11.8 +/- 0.75 weeks. These retrospective clinical results suggest that with an acellular human dermal tissue matrix to augment acute Achilles tendon, primary repair offers a desirable return-to-activity time without any rerupture or complications. ACFAS Level of Clinical Evidence: 2c. PMID:18156058

  14. Achilles tendon repair with acellular tissue graft augmentation in neglected ruptures.

    PubMed

    Lee, Daniel K

    2007-01-01

    Neglected Achilles tendon rupture injuries present surgical challenges because of the quality and quantity of tendon tissue during repair combined with the magnitude of mechanical forces placed on this tendon. The purpose of this study was to evaluate the effects of an acellular human dermal tissue matrix, GRAFTJACKET, as an augmentation material in neglected Achilles tendon repair. Nine patients with neglected Achilles tendon ruptures were evaluated and followed up for a minimum of 20 months. Primary repair was followed by augmentation with the graft and suturing circumferentially around the tendon. Patients were placed in an early, functional rehabilitation program with postoperative evaluation at 3, 6, and 12 months. Outcome scores were calculated based on the American Orthopaedic Foot and Ankle Society ankle-hindfoot scoring system. At 20 to 30 months postoperative follow-up range, there has been no incidence of re-rupture or recurrent pain. The average return-to-activity time was 15.2 +/- 1.7 weeks. The results from this retrospective clinical series suggest that using an acellular human dermal tissue matrix to augment neglected Achilles tendon rupture primary repair offers desirable return-to-activity time points and viable surgical alternative over previously reported surgical options. PMID:17980842

  15. Aseptic versus Sterile Acellular Dermal Matrices in Breast Reconstruction: An Updated Review

    PubMed Central

    Mendenhall, Shaun D.; Neumeister, Michael W.; Cederna, Paul S.; Momoh, Adeyiza O.

    2016-01-01

    Background: As the use of acellular dermal matrices in breast reconstruction has become more commonplace and efforts are made to improve on postoperative outcomes, the method of acellular dermal matrix (ADM) processing (aseptic versus sterile) has become a subject of interest. This article provides an updated overview of the critical aspects of ADM processing in addition to application of ADMs in single- and two-stage breast reconstruction, a review of the morbidity associated with ADM use, and alternatives. Methods: A literature review was performed in PubMed identifying recent systematic reviews, meta-analyses, and head-to-head comparisons on aseptically processed ADM and sterile-processed ADM in implant-based breast reconstruction. Results: Recent meta-analyses have shown a 2- to 3-fold increase in infections and tissue expander/implant explantation rates and a 3- to 4-fold increase in seroma formation compared with non-ADM reconstruction techniques. Comparisons of aseptic and sterile ADMs in multiple studies have shown no significant difference in infection rates and equivocal findings for other specific complications such as seroma formation. Conclusions: Current evidence on the impact of processing techniques that improve ADM sterility on postoperative morbidity in implant breast reconstruction is unclear. Deficiencies of the available data highlight the need for well-designed, multicenter, randomized controlled studies that will aid in optimizing outcomes in implant-based breast reconstruction. PMID:27536502

  16. Screening for Oxidative Stress Elicited by Engineered Nanomaterials: Evaluation of Acellular DCFH Assay

    PubMed Central

    Pal, Anoop K.; Bello, Dhimiter; Budhlall, Bridgette; Rogers, Eugene; Milton, Donald K.

    2012-01-01

    The DCFH assay is commonly used for measuring free radicals generated by engineered nanomaterials (ENM), a well-established mechanism of ENM toxicity. Concerns exist over susceptibility of the DCFH assay to: assay conditions, adsorption of DCFH onto ENM, fluorescence quenching and light scattering. These effects vary in magnitude depending on ENM physiochemical properties and concentration. A rigorous evaluation of this method is still lacking. The objective was to evaluate performance of the DCFH assay for measuring ENM-induced free radicals. A series of diverse and well-characterized ENM were tested in the acellular DCFH assay. We investigated the effect of sonication conditions, dispersion media, ENM concentration, and the use of horseradish peroxidase (HRP) on the DCFH results. The acellular DCFH assay suffers from high background signals resulting from dye auto-oxidation and lacks sensitivity and robustness. DCFH oxidation is further enhanced by HRP. The number of positive ENM in the assay and their relative ranking changed as a function of experimental conditions. An inverse dose relationship was observed for several Carbon-based ENM. Overall, these findings indicate the importance of having standardized assays for evaluating ENM toxicity and highlights limitations of the DCFH assay for measuring ENM-induced free radicals. PMID:22942866

  17. Deficiency in acellular cementum and periodontal attachment in bsp null mice.

    PubMed

    Foster, B L; Soenjaya, Y; Nociti, F H; Holm, E; Zerfas, P M; Wimer, H F; Holdsworth, D W; Aubin, J E; Hunter, G K; Goldberg, H A; Somerman, M J

    2013-02-01

    Bone sialoprotein (BSP) is an extracellular matrix protein found in mineralized tissues of the skeleton and dentition. BSP is multifunctional, affecting cell attachment and signaling through an RGD integrin-binding region, and acting as a positive regulator for mineral precipitation by nucleating hydroxyapatite crystals. BSP is present in cementum, the hard tissue covering the tooth root that anchors periodontal ligament (PDL) attachment. To test our hypothesis that BSP plays an important role in cementogenesis, we analyzed tooth development in a Bsp null ((-/-)) mouse model. Developmental analysis by histology, histochemistry, and SEM revealed a significant reduction in acellular cementum formation on Bsp (-/-) mouse molar and incisor roots, and the cementum deposited appeared hypomineralized. Structural defects in cementum-PDL interfaces in Bsp (-/-) mice caused PDL detachment, likely contributing to the high incidence of incisor malocclusion. Loss of BSP caused progressively disorganized PDL and significantly increased epithelial down-growth with aging. Bsp (-/-) mice displayed extensive root and alveolar bone resorption, mediated by increased RANKL and the presence of osteoclasts. Results collected here suggest that BSP plays a non-redundant role in acellular cementum formation, likely involved in initiating mineralization on the root surface. Through its importance to cementum integrity, BSP is essential for periodontal function. PMID:23183644

  18. Sterile acellular dermal collagen as a treatment for rippling deformity of breast.

    PubMed

    Busse, Brittany; Orbay, Hakan; Sahar, David E

    2014-01-01

    Prosthetic implants are frequently used for breast augmentation and breast reconstruction following mastectomy. Unfortunately, long-term aesthetic results of prosthetic breast restoration may be hindered by complications such as rippling, capsular contracture, and implant malposition. The advent of use of acellular dermal matrices has greatly improved the outcomes of prosthetic breast reconstruction. We describe a case of rippling deformity of breast that was treated using an acellular dermal matrix product, AlloMax. The patient presented with visible rippling of bilateral prosthetic breast implants as well as significant asymmetry of the breasts after multiple excisional biopsies for right breast ductal carcinoma in situ. A 6 × 10 cm piece of AlloMax was placed on the medial aspect of each breast between the implant and the skin flap. Follow-up was performed at 1 week, 3 months, and 1 year following the procedure. The patient recovered well from the surgery and there were no complications. At her first postoperative follow-up the patient was extremely satisfied with the result. At her 3-month and 1-year follow-up she had no recurrence of her previous deformity and no new deformity. PMID:25610697

  19. Repair of lacerated anterior tibial tendon with acellular tissue graft augmentation.

    PubMed

    DiDomenico, Lawrence A; Blasko, Gregory A; Cane, Laurence; Cross, Davina J

    2012-01-01

    In the present case report, we describe the surgical repair of a complete laceration of the anterior tibial tendon using acellular human dermal tissue matrix. A 17-year-old, elite league hockey player was injured in the locker room when a teammate still clad in ice skates stepped on his bare left foot. After evaluation at a local emergency department, the patient presented to our office the next day for additional evaluation. It was determined that surgery would be performed using acellular tissue graft augmentation, followed by physical therapy. Within 7 weeks of the injury, the athlete returned to his original level of activity. At 3 years of follow-up, he was playing Division 1 hockey at the university level. We believe that augmentation of the tendon repair with the grafting material enhanced the tendon tensile strength and promoted ingrowth through vascular channels. This, combined with the patient's dedication to physical therapy, led to excellent recovery in less time than anticipated. PMID:22762944

  20. Creation and implantation of acellular rat renal ECM-based scaffolds

    PubMed Central

    Peloso, Andrea; Ferrario, Jacopo; Maiga, Benedetta; Benzoni, Ilaria; Bianco, Carolina; Citro, Antonio; Currao, Manuela; Malara, Alessandro; Gaspari, Annalisa; Balduini, Alessandra; Abelli, Massimo; Piemonti, Lorenzo; Dionigi, Paolo; Orlando, Giuseppe; Maestri, Marcello

    2015-01-01

    Abstract Kidney transplantation is the only potentially curative treatment for patient facing end-stage renal disease, and it is now routinely used. Its use is mainly limited by the supply of transplantable donor organs, which far exceeds the demand. Regenerative medicine and tissue engineering offer promising means for overcoming this shortage. In the present study, we developed and validated a protocol for producing acellular rat renal scaffolds. Left kidneys were removed from 26 male Lewis rats (weights: 250–350 g) and decellularized by means of aortic anterograde perfusion with ionic and anionic detergents (Triton X-100 1% and SDS 1%, respectively). 19 scaffolds thus obtained (and contralateral native kidneys as controls) were deeply characterized in order to evaluate the decellularization quality, the preservation of extracellular matrix components and resultant micro-angioarchitecture structure. The other 7 were transplanted into 7 recipient rats that had undergone unilateral nephrectomy. Recipients were sacrificed on post-transplantation day 7 and the scaffolds subjected to histologic studies. The dual-detergent protocol showed, with only 5 h of perfusion per organ, to obtain thoroughly decellularized renal scaffolds consisting almost exclusively of extracellular matrix. Finally the macro- and the microarchitecture of the renal parenchyma were well preserved, and the grafts were implanted with ease. Seven days after transplant, the scaffolds were morphologically intact although all vascular structures were obstructed with thrombi. Production and implantation of acellular rat renal scaffolds is a suitable platform for further studies on regenerative medicine and tissue engineering. PMID:26186418

  1. Alternatives to HIST for acellular pertussis vaccines: progress and challenges in replacement

    PubMed Central

    Arciniega, J.; Wagner, L.; Prymula, R.; Sebo, P.; Isbrucker, R.; Descampe, B.; Chapsal, J.M.; Costanzo, A.; Hendriksen, C.; Hoonaker, M.; Nelson, S.; Lidster, K.; Casey, W.; Allen, D.

    2016-01-01

    The ‘International Workshop on Alternatives to the Murine Histamine Sensitization Test for Acellular Pertussis Vaccines: Progress and Challenges in the Replacement of HIST’ was held on 24 August 2014, in Prague, Czech Republic, as a satellite meeting to the 9 th World Congress on Alternatives and Animal Use in the Life Sciences. Participants discussed the progress and challenges associated with the development, validation, and implementation of in vitro assays as replacements for the histamine sensitisation test (HIST) for acellular pertussis vaccines. Discussions focused on the consistency approach, the necessary framework for regulatory acceptance of a harmonised method, and recent international efforts towards the development of in vitro assays to replace the HIST. Workshop participants agreed that acceptable alternatives to the HIST should be based on ADP ribosylation-mediated cell intoxication and therefore that the CHO cell clustering assay, which measures cell intoxication, should be further pursued and developed as a possible replacement for the HIST. Participants also agreed to continue ongoing multinational discussions involving national and international standardisation authorities to reach consensus and to organise collaborative studies in this context for assay characterisation and calibration of reference materials. PMID:27506225

  2. Multiplex immunoassay for in vitro characterization of acellular pertussis antigens in combination vaccines.

    PubMed

    Agnolon, Valentina; Bruno, Cristina; Galletti, Bruno; Mori, Elena; Ugozzoli, Mildred; Pergola, Carlo; O'Hagan, Derek T; Baudner, Barbara C

    2016-02-17

    Vaccines characterization is required to ensure physical, chemical, and biological integrity of antigens and adjuvants. Current analytical methods mostly require complete antigen desorption from aluminum-based adjuvants and are not always suitable to distinguish individual antigens in multivalent formulations. Here, Luminex technology is proposed to improve the analytics of vaccine characterization. As proof of concept, TdaP (tetanus, diphtheria and acellular pertussis) combination, adjuvanted with aluminum hydroxide, was chosen as model formulation to quantify and determine the level of adsorption of acellular pertussis (aP) antigens onto adjuvant surface at the same time. The assay used specific antibodies bound to magnetic microspheres presenting unique digital signatures for each pertussis antigen, allowing the simultaneous recognition of respective antigens in the whole vaccine, avoiding laborious procedures for adjuvant separation. Accurate and reproducible quantification of aP antigens in TdaP vaccine has been achieved in the range 0.78-50 ng/mL, providing simultaneously information on antigen identity, quantity, and degree of adsorption to aluminum hydroxide. The current study could further be considered as a model to set up in vitro potency assays thus supporting the replacement of animal tests accordingly to the 3Rs concept. PMID:26784684

  3. Study on heat flux from resin to mold in injection molding process

    SciTech Connect

    Nishiwaki, Nobuhiko; Hori, Sankei

    1999-07-01

    Recently, an injection molding of thermoplastic is widely used in many industries, because this manufacturing method is very suitable for mass production. For injection molding processes, a number of software packages for simulating an injection molding process have been developed. It is assumed in these software packages that the heat transfer coefficient between the resin and the mold surface is constant at the filling or cooling stages. In general, when melted resin flows into the mold, heat is generated in the flowing resin because of the high viscosity at the filling stage. Moreover at the cooling stage, a separation of the molded part from the mold surface generally occurs because of shrinkage of the molded material. Therefore, the heat transfer coefficient has not been accurately obtained yet at these stages. In this paper, the temperature near the surface of the mold cavity has been experimentally measured, so the heat flux that flows from the resin to the mold has been able to be analytically estimated by an inverse conduction method. On the other hand, the separating behavior of the resin from the mold surface has been measured using an ultrasonic transducer attached to the outer surface of the stationary mold. The heat flux that flows from the resin to the mold has been analytically estimated. The apparent heat transfer coefficient can be obtained from the heat flux and the representative temperature difference, which is measured by an ultrasonic technique. It was discovered that the heat flux and the apparent heat transfer coefficient are hardly influenced by the separation.

  4. Interposition Porcine Acellular Dermal Matrix Xenograft Successful Alternative in Treatment for Massive Rotator Cuff

    PubMed Central

    Neumann, Julie; Zgonis, Miltiadis H.; Reay, Kathleen Dolores; Mayer, Stephanie W.; Boggess, Blake; Toth, Alison P.

    2016-01-01

    Objectives: Despite advances in the surgical techniques of rotator cuff repair (RCR), the management of massive rotator cuff tears in shoulders without glenohumeral arthritis poses a difficult problem for surgeons. Failure of massive rotator cuff repairs range from 20-90% at one to two years postoperatively using arthrography, ultrasound, or magnetic resonance imaging. Additionally, there are inconsistent outcomes reported with debridement alone of massive rotator cuff tears as well as limitations seen with other current methods of operative intervention including arthroplasty and tendon transfers. The purpose of this prospective, comparative study was to determine if the repair of massive rotator cuff tears using an interposition porcine acellular dermal matrix xenograft improves subjective function, pain, range of motion, and strength at greater than two years follow-up. To our knowledge, this is the largest prospective series reporting outcomes of using porcine acellular dermal matrix xenograft as an interposition graft. Methods: Thirty-seven patients (37 shoulders) with an average age of 66 years (range 51-80 years) were prospectively followed for 33 months (range 23-48) following massive RCR using porcine acellular dermal matrix interposition xenograft. Subjective outcomes were measured using the Visual Analog Scale (VAS) pain score (0-10, 0 = no pain), Modified American Shoulder and Elbow Score (M-ASES), and Short-Form12 (SF-12) scores. Preoperative and postoperative objective outcome measures included active range of motion and supraspinatus and infraspinatus manual muscle strength. Postoperative outcome measures included quantitative muscle strength using a dynamometer and static and dynamic ultrasonography to assess the integrity of the repair. Results: Average VAS pain score decreased from 4.5 to 1.1 (P<0.001). Average postoperative M-ASES was 89.23. Average postoperative SF-12 was 52.6. Mean forward flexion, external and internal rotation significantly

  5. Phenotypic variation of Staphylococcus epidermidis slime production in vitro and in vivo.

    PubMed

    Christensen, G D; Baddour, L M; Simpson, W A

    1987-12-01

    Clinical studies performed by us and others have found an association between slime production and strains of coagulase-negative staphylococci that infect indwelling medical devices. By serial low-speed centrifugation of broth cultures we have isolated a stable, weakly adherent strain (RP62A-NA) from a strongly adherent, slime-producing, pathogenic strain of Staphylococcus epidermidis sensu stricto (RP62A, ATCC 35984). We obtained a second strain from RP62A-NA (RP62A-NAR) by serial subculture of glass-adherent cells of RP62A-NA. All three strains had the same pattern of biochemical reactions, antimicrobial susceptibilities, and plasmid analysis. Transmission electron micrograph sections stained with the mucopolysaccharide-specific stain alcian blue demonstrated that the adherent strains RP62A and RP62A-NAR were covered with an extracellular coat of polysaccharide-rich material. In contrast, the nonadherent RP62A-NA strain lacked this external coat. All three strains were used in a mouse model of foreign body infection and a rat model of catheter-induced infective endocarditis. The adherence characteristics of isolates of RP62A and RP62A-NA recovered from experimental animals were relatively stable, although we noted a slight but a significant increase in the adherence of RP62A-NA isolates recovered from the foreign body model. The adherence characteristics of RP62A-NAR isolates recovered from infected animals were variable; in general these isolates were less adherent than the laboratory strain of RP62A-NAR. In both models the 50% infective dose (calculated by the Reed and Muench method) was three times greater for the RP62A-NA strain than for the RP62A strain. The phenotypic expression of slime production is subject to both in vitro and in vivo variation and could play a role in the pathogenesis of foreign body infection. PMID:3679536

  6. Sex Pheromone Response, Clumping, and Slime Production in Enterococcal Strains Isolated from Occluded Biliary Stents

    PubMed Central

    Donelli, Gianfranco; Paoletti, Claudia; Baldassarri, Lucilla; Guaglianone, Emilio; Di Rosa, Roberta; Magi, Gloria; Spinaci, Cinzia; Facinelli, Bruna

    2004-01-01

    Bile-resistant bacteria, particularly gram-positive Enterococcus faecalis and Enterococcus faecium, play an important role in biliary stent occlusion, because their sessile mode of growth protects them against host defenses and antimicrobial agents. Twelve E. faecalis and seven E. faecium strains isolated from occluded biliary stents have been investigated for slime production, presence of aggregation substance genes, and ability to adhere to Caco-2 cells. Ten isolates were strong producers of slime, and seven isolates produced clumps when exposed to pheromones of E. faecalis JH2-2 and/or OG1RF. The small E. faecium clumps differed from the large clumps of E. faecalis and were similar to those of E. faecium LS10(pBRG1) carrying a pheromone response plasmid. After induction with pheromones, the adhesion to Caco-2 cells of clumping-positive strains was found to increase from two- to fourfold. Amplicons of the expected size were detected in three clumping-positive and three clumping-negative E. faecalis isolates by using primers (agg) internal to a highly conserved region of the E. faecalis pheromone response plasmids pAD1, pPD1, and pCF10 and primers internal to prgB of the E. faecalis plasmid pCF10. The agg/prgB-positive E. faecalis strains were also positive in Southern hybridization experiments with a prgB-specific probe. No PCR products were obtained with the same primers from four clumping-positive isolates (one E. faecalis and three E. faecium strains), which were also Southern hybridization negative. Our results demonstrate that slime production and pheromone response are both present in isolated enterococci, suggesting that clinical strains with these features might have a selective advantage in colonizing biliary stents. PMID:15297477

  7. Residual stresses in injection molded products

    NASA Astrophysics Data System (ADS)

    Jansen, K. M. B.

    2015-12-01

    During the molding process residual stresses are formed due to thermal contraction during cooling as well as the local pressure history during solidification. In this paper a simple analytical model is reviewed which relates residual stresses, product shrinkage as well as warpage to the temperature and pressure histories during molding. Precise excimer laser layer removal measurements were performed to verify the predicted residual stress distributions. In addition, detailed shrinkage and warpage measurements on a large series of polymers and for different molding conditions were performed and are shown to compare well with the model predictions.

  8. Mucormycosis, Pseudallescheriasis, and Other Uncommon Mold Infections

    PubMed Central

    Quan, Clifford; Spellberg, Brad

    2010-01-01

    Serious infections due to non-Aspergillus molds are being encountered with increasing frequency. Factors likely responsible for the rise of these infections include aging populations in countries with advanced medical technologies, the resultant increase in incidence of many cancers, increasingly intensive myeloablative therapies for these cancers, increasingly intensive care for critically ill patients, and increases in the frequency of solid organ and hematopoietic stem cell transplantation. Although diagnostic and therapeutic modalities have improved, mortality rates for invasive mold infections remain high. In this review, we summarize current knowledge about non-Aspergillus mold infections of the chest, with a focus on risk factors, clinical features, diagnosis, and treatment. PMID:20463250

  9. RUN OUTS OCCUR WHEN IRON HAS UNSEATED MOLDING SAND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RUN OUTS OCCUR WHEN IRON HAS UNSEATED MOLDING SAND AND RUN OUT OF THE MOLD UNDER POURING JACKETS AND SPILLS ONTO THE MOLDING PLATFORM. WORKERS GENERALLY WAIT SEVERAL MINUTES FOR THE IRON TO SOLIDIFY AND, WHILE IT IS STILL RED-HOT, REMOVE IT FROM THE PLATFORM AND SCRAP THE MOLD. - Southern Ductile Casting Company, Centerville Foundry, 101 Airport Road, Centreville, Bibb County, AL

  10. INTERIOR VIEW, GRAY IRON MOLDING MACHINE WITH MOLDER, R. L. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, GRAY IRON MOLDING MACHINE WITH MOLDER, R. L. BRANDY MOLDING A RAIL CASTING (LAWLER NO. 1337, A 16' x 35' MOLD WITH A 5' COPE AND A 4' DRAG). DRAG IS FILLED WITH SAND. - Lawler Machine & Foundry Company, Molding Area, 760 North Forty-fourth Street, Birmingham, Jefferson County, AL

  11. Sacrificial Plastic Mold With Electroplatable Base

    DOEpatents

    Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.

    2005-08-16

    A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  12. Sacrificial plastic mold with electroplatable base

    DOEpatents

    Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.

    2002-01-01

    A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  13. Custom molded thermal MRg-FUS phantom

    NASA Astrophysics Data System (ADS)

    Eames, Matthew D. C.; Snell, John W.; Hananel, Arik; Kassell, Neal F.

    2012-11-01

    This article describes a method for creating custom-molded thermal phantoms for use with MR-guided focused ultrasound systems. The method is defined here for intracranial applications, though it may be modified for other anatomical targets.

  14. Antimicrobial Treatments of Indoor Mold and Bacteria

    EPA Science Inventory

    Biological contaminants especially mold in buildings are known to act as sources of indoor air pollution, discomfort, asthma and pulmonary disease to building occupants. Sick buildings are evidence of extremely problematic indoor air quality (IAQ), often resulting from unacceptab...

  15. Organic materials for ceramic molding processes

    NASA Technical Reports Server (NTRS)

    Saito, K.

    1984-01-01

    Ceramic molding processes are examined. Binders, wetting agents, lubricants, plasticizers, surface active agents, dispersants, etc., for pressing, rubber pressing, sip casting, injection casting, taping, extrusion, etc., are described, together with forming machines.

  16. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model**

    EPA Science Inventory

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases. Damp/moldy environments have been associated with asthma exacerbation, but mold's role in allergic asthma induction is less clear. The molds selected for these studies are commonl...

  17. Traditional Mold Analysis Compared to a DNA-based Method of Mold Analysis with Applications in Asthmatics' Homes

    EPA Science Inventory

    Traditional environmental mold analysis is based-on microscopic observations and counting of mold structures collected from the air on a sticky surface or culturing of molds on growth media for identification and quantification. A DNA-based method of mold analysis called mol...

  18. Mold contamination and air handling units.

    PubMed

    Wilson, Stephen C; Palmatier, Robert N; Andriychuk, Larysa A; Martin, Jared M; Jumper, Cynthia A; Holder, Homer W; Straus, David C

    2007-07-01

    An investigation was conducted on selected locations in air handling units (AHUs) to (a) identify common mold species found on these locations, (b) determine whether some locations (and subsets) featured mold growth sites more frequently than others, (c) ascertain whether the operating condition of AHUs is related to mold contamination, and (d) provide a basis for a microbial sampling protocol for AHUs. A total of 566 tape lifts and 570 swab samples were collected from the blower wheel fan blades, insulation, cooling coil fins, and ductwork from 25 AHUs. All AHU conditions were numerically rated using a heating, ventilation and air-conditioning (HVAC) survey. Results showed that Cladosporium sp. fungi were commonly recovered in terms of growth sites and deposited spores, and they were found mainly in the blower wheel fan blades, the ductwork, and the cooling coil fins. Subsections of the fan blades, insulation, and cooling coil fins showed no preferred area for mold growth sites. Other organisms such as Penicillium sp., Aspergillus sp., and Paecilomyces sp. were recovered from the cooling coil fins and insulation. Because of the widespread prevalence of Cladosporium sp., there was no relationship between mold growth and operating condition. However, the presence of different species of molds in locations other than the blower wheel blades may indicate that the AHU condition is not optimal. A suggested microbial sampling protocol including interpretations of sample results is presented. PMID:17487721

  19. Integrated mold/surface-micromachining process

    SciTech Connect

    Barron, C.C.; Fleming, J.G.; Montague, S.; Sniegowski, J.J.; Hetherington, D.L.

    1996-03-01

    We detail a new monolithically integrated silicon mold/surface-micromachining process which makes possible the fabrication of stiff, high-aspect-ratio micromachined structures integrated with finely detailed, compliant structures. An important example, which we use here as our process demonstration vehicle, is that of an accelerometer with a large proof mass and compliant suspension. The proof mass is formed by etching a mold into the silicon substrate, lining the mold with oxide, filling it with mechanical polysilicon, and then planarizing back to the level of the substrate. The resulting molded structure is recessed into the substrate, forming a planar surface ideal for subsequent processing. We then add surface-micromachined springs and sense contacts. The principal advantage of this new monolithically integrated mold/surface-micromachining process is that it decouples the design of the different sections of the device: In the case of a sensitive accelerometer, it allows us to optimize independently the proof mass, which needs to be as large, stiff, and heavy as possible, and the suspension, which needs to be as delicate and compliant as possible. The fact that the high-aspect-ratio section of the device is embedded in the substrate enables the monolithic integration of high-aspect-ratio parts with surface-micromachined mechanical parts, and, in the future, also electronics. We anticipate that such an integrated mold/surface micromachining/electronics process will offer versatile high-aspect-ratio micromachined structures that can be batch-fabricated and monolithically integrated into complex microelectromechanical systems.

  20. Catalytic pyrolysis of peat with additions of oil-slime and polymeric waste

    NASA Astrophysics Data System (ADS)

    Sulman, E.; Kosivtsov, Yu.; Sulman, M.; Alfyorov, V.; Lugovoy, Yu.; Chalov, K.; Misnikov, O.; Afanasjev, A.; Kumar, N.; Murzin, D.

    2012-09-01

    In this work the influence of natural and synthetic aluminosilicates, metal chlorides of iron subgroup on the peat low-temperature pyrolysis and co-pyrolysis of peat with oil-slime and polymeric waste was studied in variety of conditions (t = 350-650δC, catalyst loading: from 1 up to 30 % (wt.)). The use of bentonite clay (30 % (wt.)) at 460δC as a catalyst in peat pyrolysis resulted in increase of weight of gaseous and liquid products from 23 up to 30 % (wt.) and from 32 up to 45 % (wt.), respectively. Co-pyrolysis of peat and oil-slime in the presence of bentonite clay resulted in increase of gaseous product weight from 18 up to 26 % (wt.) and liquid fraction yield - from 45 up to 55 % (wt.) in comparison with precalculated value. The use of metal chlorides of iron subgroup (2 % (wt.) concentration) at 500 δC in the co-pyrolysis of peat and polymeric waste led to optimal conversion of substrate in desired products, 15 % increase of total weight of gaseous and liquid products formed during the pyrolysis process and simultaneous decrease of char formation.

  1. A morphological adaptation approach to path planning inspired by slime mould

    NASA Astrophysics Data System (ADS)

    Jones, Jeff

    2015-04-01

    Path planning is a classic problem in computer science and robotics which has recently been implemented in unconventional computing substrates such as chemical reaction-diffusion computers. These novel computing schemes utilise the parallel spatial propagation of information and often use a two-stage method involving diffusive propagation to discover all paths and a second stage to highlight or visualise the path between two particular points in the arena. The true slime mould Physarum polycephalum is known to construct efficient transport networks between nutrients in its environment. These networks are continuously remodelled as the organism adapts its body plan to changing spatial stimuli. It can be guided towards attractant stimuli (nutrients, warm regions) and it avoids locations containing hazardous stimuli (light irradiation, repellents, or regions occupied by predatory threats). Using a particle model of slime mould we demonstrate scoping experiments which explore how path planning may be performed by morphological adaptation. We initially demonstrate simple path planning by a shrinking blob of virtual plasmodium between two attractant sources within a polygonal arena. We examine the case where multiple paths are required and the subsequent selection of a single path from multiple options. Collision-free paths are implemented via repulsion from the borders of the arena. Finally, obstacle avoidance is implemented by repulsion from obstacles as they are uncovered by the shrinking blob. These examples show proof-of-concept results of path planning by morphological adaptation which complement existing research on path planning in novel computing substrates.

  2. Effective management of major lower extremity wounds using an acellular regenerative tissue matrix: a pilot study.

    PubMed

    Brigido, Stephen A; Boc, Steven F; Lopez, Ramon C

    2004-01-01

    Wound healing is a significant problem in orthopedics. Graftjacket tissue matrix (Wright Medical Technology, Inc, Arlington, Tenn), a novel acellular regenerative tissue matrix, has been designed to aid wound closure. A prospective, randomized study was initiated to determine the efficacy of this tissue product in wound repair compared with conventional treatment. Lower extremity wounds are refractile to healing in patients with diabetes mellitus. Therefore, researchers used diabetic foot ulcers to evaluate the efficacy of GraftJacket tissue matrix in wound repair. Only a single administration of the tissue matrix was required. After 1 month of treatment, preliminary results demonstrate that this novel tissue matrix promotes faster healing at a statistically significant rate over conventional treatment. Because wounds in this series of patients are deep and circulation around the wound is poor, the preliminary results suggest that this tissue matrix will be applicable to other types of orthopedic wounds. PMID:14763548

  3. Confocal Laser Scanning Microscopy Evaluation of an Acellular Dermis Tissue Transplant (Epiflex®)

    PubMed Central

    Hohenberger, Peter

    2012-01-01

    The structure of a biological scaffold is a major determinant of its biological characteristics and its interaction with cells. An acellular dermis tissue transplant must undergo a series of processing steps, to remove cells and genetic material and provide the sterility required for surgical use. During manufacturing and sterilization the structure and composition of tissue transplants may change. The composition of the human cell-free dermis transplant Epiflex® was investigated with specific attention paid to its structure, matrix composition, cellular content and biomechanics. We demonstrated that after processing, the structure of Epiflex remains almost unchanged with an intact collagen network and extracellular matrix (ECM) protein composition providing natural cell interactions. Although the ready to use transplant does contain some cellular and DNA debris, the processing procedure results in a total destruction of cells and active DNA which is a requirement for an immunologically inert and biologically safe substrate. Its biomechanical parameters do not change significantly during the processing. PMID:23056225

  4. Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity.

    PubMed

    Mahara, Atsushi; Somekawa, Shota; Kobayashi, Naoki; Hirano, Yoshiaki; Kimura, Yoshiharu; Fujisato, Toshiya; Yamaoka, Tetsuji

    2015-07-01

    Researchers have attempted to develop efficient antithrombogenic surfaces, and yet small-caliber artificial vascular grafts are still unavailable. Here, we demonstrate the excellent patency of tissue-engineered small-caliber long-bypass grafts measuring 20-30 cm in length and having a 2-mm inner diameter. The inner surface of an acellular ostrich carotid artery was modified with a novel heterobifunctional peptide composed of a collagen-binding region and the integrin α4β1 ligand, REDV. Six grafts were transplanted in the femoral-femoral artery crossover bypass method. Animals were observed for 20 days and received no anticoagulant medication. No thrombogenesis was observed on the luminal surface and five cases were patent. In contrast, all unmodified grafts became occluded, and severe thrombosis was observed. The vascular grafts reported here are the first successful demonstrations of short-term patency at clinically applicable sizes. PMID:25941782

  5. Ligament reconstruction with tendon interposition using an acellular dermal allograft for thumb carpometacarpal arthritis.

    PubMed

    Kokkalis, Zinon T; Zanaros, George; Sotereanos, Dean G

    2009-03-01

    Ligament reconstruction tendon interposition arthroplasty is currently the preferred technique for carpometacarpal joint arthritis of the thumb by most surgeons. Despite its efficacy, morbidity has been associated with the harvest of the flexor carpi radialis tendon. Using an allograft as material for arthroplasty, donor site morbidity is avoided. In this report, we present our surgical technique to perform ligament reconstruction tendon interposition arthroplasty using an acellular dermal matrix allograft (GraftJacket) in patients with Eaton stages II, III, and IV symptomatic first carpometacarpal arthritis.One hundred thumbs with trapeziometacarpal osteoarthritis underwent surgical treatment using GraftJacket allograft instead of the flexor carpi radialis tendon autograft. Each patient was followed for a minimum of 12 months. The surgical procedure included trapezial excision and identification of the flexor carpi radialis. The allograft was cut to create a 15-cm strip. The ligament reconstruction was performed by passing the strip around the flexor carpi radialis tendon and suturing it to the base of the thumb metacarpal base through an intramedullary drill hole. The remaining portion of the allograft was fashioned as an interposition mass (anchovy) and interposed between the scaphoid and the base of the first metacarpal.All but 1 patient experienced significant improvement in his or her pain scale rating and grip and pinch strengths. Outcomes from this study compare very favorably with those of other series. No patients experienced a foreign body reaction or infection in this series. We believe that the use of an acellular dermal allograft for both ligament reconstruction and tendon interposition provides a safe and an effective alternative technique for the treatment of advanced first carpometacarpal arthritis. PMID:19276927

  6. Physiological distal drift in rat molars contributes to acellular cementum formation.

    PubMed

    Tsuchiya, Shinobu; Tsuchiya, Masahiro; Nishioka, Takashi; Suzuki, Osamu; Sasano, Yasuyuki; Igarashi, Kaoru

    2013-08-01

    Occlusal forces may induce the physiological teeth migration in humans, but there is little direct evidence. Rat molars are known to migrate distally during aging, possibly caused by occlusal forces. The purpose of this study was to determine if a reduction in occlusion would decrease teeth migration and affect associated periodontal structures such as cementum. To reduce occlusal forces, the right upper first molar (M1) in juvenile rats was extracted. The transition of the position of upper second molar (M2) and formation of M2 cementum was followed during aging. From the cephalometric analyses, upper M2 was located more anterior compared with the original position with aging after M1 extraction. Associated with this "slowing-down" of the physiological drift, cementum thickness on distal surface, but not on mesial surface, of M2 root was significantly increased. The accumulation of alizarin red as vital stain indicative of calcification, was observed in the distal cementum of M2 root only on the side of M1 extraction. Extraction of M1 that results in less functional loading, distinctly attenuates the physiological drift only in the upper dentition. The decreased physiological drift appears to activate acellular cementum formation only on distal surface of M2 root, perhaps due to reduced mechanical stress associated with the attenuated distal drift. In conclusion, the physiological distal drift in rat molars appears to be largely driven by the occlusal force and also affects the formation of acellular cementum. These findings provide additional direct evidence for an important role of occlusal forces in tooth migration. PMID:23775928

  7. Is Sterile Better Than Aseptic? Comparing the Microbiology of Acellular Dermal Matrices

    PubMed Central

    Klein, Gabriel M.; Nasser, Ahmed E.; Phillips, Brett T.; Gersch, Robert P.; Fourman, Mitchell S.; Lilo, Sarit E.; Fritz, Jason R.; Khan, Sami U.; Dagum, Alexander B.

    2016-01-01

    Introduction: Postoperative infections are a major complication associated with tissue-expander-based breast reconstruction. The use of acellular dermal matrix (ADM) in this surgery has been identified as a potential reservoir of infection, prompting the development of sterile ADM. Although aseptic and sterile ADMs have been investigated, no study has focused on the occurrence and clinical outcome of bacterial colonization before implantation. Methods: Samples of aseptic AlloDerm, sterile Ready-To-Use AlloDerm, and AlloMax were taken before implantation. These samples were incubated in Tryptic soy broth overnight before being streaked on Trypticase soy agar, MacConkey agar, and 5% blood agar plates for culture and incubated for 48 hours. Culture results were cross-referenced with patient outcomes for 1 year postoperatively. Results: A total of 92 samples of ADM were collected from 63 patients. There were 15 cases of postoperative surgical site infection (16.3%). Only 1 sample of ADM (AlloMax) showed growth of Escherichia coli, which was likely a result of contamination. That patient did not develop any infectious sequelae. Patient outcomes showed no difference in the incidence of seroma or infection between sterile and aseptic ADMs. Conclusions: This study evaluates the microbiology of acellular dermal matrices before use in breast reconstruction. No difference was found in the preoperative bacterial load of either aseptic or sterile ADM. No significant difference was noted in infection or seroma formation. Given these results, we believe aseptic processing used on ADMs is equivalent to sterile processing in our patient cohort in terms of clinical infection and seroma occurrence postoperatively. PMID:27482500

  8. Gating of Permanent Molds for Aluminum Casting

    SciTech Connect

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-01-01

    This report summarizes a two-year project, DE-FC07-011D13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was to determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings. Equipment and procedure for real time X-Ray radiography of molten aluminum flow into permanent molds have been developed. Other studies have been conducted using water flow and behavior of liquid aluminum in sand mold using real time photography. This investigation utilizes graphite molds transparent to X-Rays making it possible to observe the flow pattern through a number of vertically oriented grating systems. These have included systems that are choked at the base of a rounded vertical sprue and vertical gating systems with a variety of different ingates into the bottom of a mold cavity. These systems have also been changed to include gating systems with vertical and horizontal gate configurations. Several conclusions can be derived from this study. A sprue-well, as designed in these experiments, does not eliminate the vena contracta. Because of the swirling at the sprue-base, the circulating metal begins to push the entering metal stream toward the open runner mitigating the intended effect of the sprue-well. Improved designs of

  9. Rapid control of mold temperature during injection molding process: Effect of packing pressure

    NASA Astrophysics Data System (ADS)

    Liparoti, Sara; Sorrentino, Andrea; Titomanlio, Giuseppe

    2015-12-01

    A thorough analysis of the effect of operative conditions of injection molding process on the morphology distribution inside the obtained molded is performed, with particular reference to semi- crystalline polymers. In particular, fully characterized injection molding tests are presented using an isotactic polypropylene, previously carefully characterized as far as most of properties of interest. The effects of mold temperature and packing conditions are analyzed. The mold temperature was controlled by a thin heating device, composed by polyimide as insulating layer and polyimide loaded carbon black as electrical conductive layer, that is able to increase temperature on mold surface in few seconds (70°C/s) by joule effect and cool down soon after. The shear layer thickness in the molded is reduced in the samples produced at high mold temperatures, that means high electrical power and long heating time, and this reduction is more significant at lower packing pressures, indeed, at 360bar as packing pressure and 20s as heating time the shear layer disappear. The resulting morphology was analyzed by optical microscope.

  10. Development of sheet molding compound solar collectors with molded-in silvered glass reflective surfaces

    SciTech Connect

    Champion, R. L.; Allred, R. E.

    1980-12-01

    The reflecting concentrator of a parabolic trough solar collector system comprises approximately 40% of initial system cost. The parabolic concentrator structure is also the most influential component in determining overall system efficiency. Parabolic test moldings have been fabricated from a general purpose sheet molding compound with flat chemically strengthened glass, flat annealed glass, and thermally formed glass. The test panel configuration was a 1.22 m x 0.61 m, 45/sup 0/ rim angle (0.762 m focal length) parabola. Attempts to mold with annealed sheet glass (1 mm thick) and thermally formed glass (1.25 mm thick) were unsuccessful; only the chemically strengthened glass (1.25 mm thick) was strong enough to survive molding pressures. Because of the mismatch in thermal expansion between glass and sheet molding compound, the as-molded panels contained a sizeable residual stress. The results are given of dimensional changes taking place in the panels under accelerated thermal cycling and outdoor aging conditions; these results are compared to an analytical model of the laminate. In addition, the sheet molding compound has been examined for thermomechanical properties and flow behavior in the rib sections. Results indicated that lowering the thermal expansion coefficient of the sheet molding compound through material modifications would produce a more stable structure.

  11. Mathematical modeling of the process of filling a mold during injection molding of ceramic products

    NASA Astrophysics Data System (ADS)

    Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.

    2015-10-01

    Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.

  12. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    SciTech Connect

    Ahmad, Faiz Aslam, Muhammad Altaf, Khurram Shirazi, Irfan

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  13. Development of sheet molding compound solar collectors with molded-in silvered glass reflective surfaces

    SciTech Connect

    Champion, R. L.; Allred, R. E.

    1980-01-01

    An approach to the fabrication of a line-focusng parabolic trough reflector structure which offers the potential of high performance while utilizing mass production type technology with potential for low cost is discussed. The concept is one of a molded structure of fiber reinforced plastic with an integrally molded silvered glass reflective surface. Sheet molding compound (SMC), a mixture of glass fibers and inorganic fillers in polyester resin, has been selected for evaluation as representative of reinforced plastic molding materials. The purpose of the work was to establish the feasibility of molding glass mirrors into SMC structural trough panels. If the effort proved successful, the next stage of development would be demonstration of the structure in a trough collector which incorporates individual SMC reflector panels. The trough has a 2 x 6 m aperture with six individual SMC panels mounted on a torque tube as the main support structure. Results are described. (WHK)

  14. Creating mold-free buildings: a key to avoiding health effects of indoor molds.

    PubMed

    Small, Bruce M

    2003-08-01

    In view of the high costs of building diagnostics and repair subsequent to water damage--as well as the large medical diagnostic and healthcare costs associated with mold growth in buildings--commitment to a philosophy of proactive preventive maintenance for home, apartment, school, and commercial buildings could result in considerable cost savings and avoidance of major health problems among building occupants. The author identifies common causes of mold growth in buildings and summarizes key building design and construction principles essential for preventing mold contamination indoors. Physicians and healthcare workers must be made aware of conditions within buildings that can give rise to mold growth, and of resulting health problems. Timely advice provided to patients already sensitized by exposure to molds could save these individuals, and their families, from further exposures as a result of inadequate building maintenance or an inappropriate choice of replacement housing. PMID:15259432

  15. Acellularization-Induced Changes in Tensile Properties Are Organ Specific - An In-Vitro Mechanical and Structural Analysis of Porcine Soft Tissues

    PubMed Central

    Aust, Gabriela; Boldt, Andreas; Fritsch, Sebastian; Keil, Isabel; Koch, Holger; Möbius, Robert; Scheidt, Holger A.; Wagner, Martin F. X.; Hammer, Niels

    2016-01-01

    Introduction Though xenogeneic acellular scaffolds are frequently used for surgical reconstruction, knowledge of their mechanical properties is lacking. This study compared the mechanical, histological and ultrastructural properties of various native and acellular specimens. Materials and Methods Porcine esophagi, ureters and skin were tested mechanically in a native or acellular condition, focusing on the elastic modulus, ultimate tensile stress and maximum strain. The testing protocol for soft tissues was standardized, including the adaption of the tissue’s water content and partial plastination to minimize material slippage as well as templates for normed sample dimensions and precise cross-section measurements. The native and acellular tissues were compared at the microscopic and ultrastructural level with a focus on type I collagens. Results Increased elastic modulus and ultimate tensile stress values were quantified in acellular esophagi and ureters compared to the native condition. In contrast, these values were strongly decreased in the skin after acellularization. Acellularization-related decreases in maximum strain were found in all tissues. Type I collagens were well-preserved in these samples; however, clotting and a loss of cross-linking type I collagens was observed ultrastructurally. Elastins and fibronectins were preserved in the esophagi and ureters. A loss of the epidermal layer and decreased fibronectin content was present in the skin. Discussion Acellularization induces changes in the tensile properties of soft tissues. Some of these changes appear to be organ specific. Loss of cross-linking type I collagen may indicate increased mechanical strength due to decreasing transverse forces acting upon the scaffolds, whereas fibronectin loss may be related to decreased load-bearing capacity. Potentially, the alterations in tissue mechanics are linked to organ function and to the interplay of cells and the extracellular matrix, which is different in

  16. Injection molding simulation with variothermal mold temperature control of highly filled polyphenylene sulfide

    NASA Astrophysics Data System (ADS)

    Birkholz, A.; Tschiersky, M.; Wortberg, J.

    2015-05-01

    For the installation of a fuel cell stack to convert chemical energy into electricity it is common to apply bipolar plates to separate and distribute reaction gases and cooling agents. For reducing manufacturing costs of bipolar plates a fully automated injection molding process is examined. The high performance thermoplastic matrix material, polyphenylene sulfide (PPS), defies against the chemical setting and the operation temperature up to 200 °C. To adjust also high electrical and thermal conductivity, PPS is highly filled with various carbon fillers up to an amount of 65 percentage by volume. In the first step two different structural plates (one-sided) with three different gate heights and molds are designed according to the characteristics of a bipolar plate. To cope with the approach that this plate should be producible on standard injection molding machines with variothermal mold temperature control, injection molding simulation is used. Additionally, the simulation should allow to formulate a quality prediction model, which is transferrable to bipolar plates. Obviously, the basis for a precise simulation output is an accurate description of the material properties and behavior of the highly filled compound. This, the design of the structural plate and mold and the optimization via simulation is presented, as well. The influence of the injection molding process parameters, e.g. injection time, cycle times, packing pressure, mold temperature, and melt temperature on the form filling have been simulated to determine optimal process conditions. With the aid of the simulation and the variothermal mold temperature control it was possible to reduce the required melt temperature below the decomposition temperature of PPS. Thereby, hazardous decomposition products as hydrogen sulfide are obviated. Thus, the health of the processor, the longevity of the injection molding machine as well as the material and product properties can be protected.

  17. Powder Injection Molding of Titanium Components

    SciTech Connect

    Simmons, Kevin L.; Nyberg, Eric A.; Weil, K. Scott; Miller, Megan R.

    2005-01-01

    Powder injection molding (PIM) is a well-established, cost-effective method of fabricating small-to-moderate size metal components. Derived from plastic injection molding and employing a mixture of metal powder and plastic binder, the process has been used with great success in manufacturing a wide variety of metal products, including those made from stainless steel, nickel-based superalloys, and copper alloys. Less progress has been achieved with titanium and other refractory metal alloys because of problems with alloy impurities that are directly attributable to the injection molding process. Specifically, carbon, oxygen, and nitrogen are left behind during binder removal and become incorporated into the chemistry and microstructure of the material during densification. Even at low concentration, these impurities can cause severe degradation in the mechanical properties of titanium and its alloys. We have developed a unique blend of PIM constituents where only a small volume fraction of binder (~5 – 10 vol%) is required for injection molding; the remainder of the mixture consists of the metal powder and binder solvent. Because of the nature of decomposition in the binder system and the relatively small amount used, the binder is eliminated almost completely from the pre-sintered component during the initial stage of a two-step heat treatment process. Results will be presented on the first phase of this research, in which the binder, injection molding, de-binding and sintering schedule were developed. Additional data on the mechanical and physical properties of the material produced will be discussed.

  18. Nanostructuring steel for injection molding tools

    NASA Astrophysics Data System (ADS)

    Al-Azawi, A.; Smistrup, K.; Kristensen, A.

    2014-05-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro- and nanostructuring the surface of the steel molds. We investigate the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are produced.

  19. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration

    PubMed Central

    Wagner, Darcy E.; Bonenfant, Nicholas R.; Sokocevic, Dino; DeSarno, Michael; Borg, Zachary; Parsons, Charles; Brooks, Elice M.; Platz, Joseph; Khalpey, Zain; Hoganson, David M.; Deng, Bin; Lam, Ying Wai; Oldinski, Rachael A.; Ashikaga, Takamaru; Weiss, Daniel J.

    2014-01-01

    Acellular scaffolds from complex whole organs such as lung are being increasingly studied for ex vivo organ generation and for in vitro studies of cell-extracellular matrix interactions. We have established effective methods for efficient de- and recellularization of large animal and human lungs including techniques which allow multiple small segments (∼1–3cm3) to be excised that retain 3-dimensional lung structure. Coupled with the use of a synthetic pleural coating, cells can be selectively physiologically inoculated via preserved vascular and airway conduits. Inoculated segments can be further sliced for high throughput studies. Further, we demonstrate thermography as a powerful noninvasive technique for monitoring perfusion decellularization and for evaluating preservation of vascular and airway networks following human and porcine lung decellularization. Collectively, these techniques are a significant step forward as they allow high throughput in vitro studies from a single lung or lobe in a more biologically relevant, three-dimensional acellular scaffold. PMID:24411675

  20. High rate fabrication of compression molded components

    DOEpatents

    Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.; Smith, Glen L.; Miller, Robert J.

    2016-04-19

    A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; and applying molding pressure to the pre-form to form the composite component.

  1. The research of UV curing injection molding

    NASA Astrophysics Data System (ADS)

    Xie, Pengcheng; Chang, Le; Song, Le; Cai, Tianze; Ding, Yumei; Yang, Weimin

    2015-05-01

    The micro-injection molding technology and the UV (ultraviolet) curing technique are combined to bring about a new plastic forming method, UV curing injection molding. The mean weight of micro-product is an important process characteristic for UV curing injection molding as well as the surface quality of micro-features is another important process characteristic for this new plastic forming method. This research investigates three effects of processing factors on the mass-change rate of micro-product and the surface quality of micro-features. In every particular, the following two factors are considered: UV material system temperature and the packing pressure. The study revealed that as usual, the micro-products gain weight with the imported increasing UV material system temperature and the improved packing pressure. Meanwhile, the increasing packing pressure also improves the surface quality, yet, warming the UV system temperature up has no effect on the quality of the product.

  2. Alterations of nuclear DNA synthesis after irradiation of the cellular slime mold Dictyostelium discoideum: studies performed in a mutant strain displaying enhanced thymidine uptake

    SciTech Connect

    Hurley, D.L.

    1986-01-01

    The auxotrophic Dictyostelium discoideum strain HPS 401 was studied. Thymidine at 8 ..mu..g/ml or thymidylate at 50 ..mu..g/ml supported growth to maximal cell densities. Thin layer chromatography of cell extracts showed rapid intracellular accumulation of thymidine in HPS 401 vs slightly detectable accumulation in wild-type cells. Measurements showed that methionine and thymidylate were taken into all strains at a low rate, but HPS 401 had enhanced uptake of thymidine and uridine compared to wild-type. The HPS 401 phenotype is due to the efficient utilization of thymidine as a result of increased nucleoside uptake. Rapid nuclear purification removed mitochondrial DNA without decreasing the single-strand molecular weight of the nuclear DNA. The nuclear DNA peaks on alkaline sucrose gradients were identified using filter hybridization to cloned probes. As measured by pulse-chase labelling, production of full-sized main band DNA required 45-50 minutes. Pulse labelling of the cells immediately after ultraviolet irradiation caused the single-strand molecular weight of the DNA synthesized to decrease from 8 x 10/sup 6/ daltons at O J/m/sup 2/ to 3.9 x 10/sup 6/ daltons at 50 J/m/sup 2/ to 2.6 x 10/sup 6/ daltons at 200 J/m/sup 2/. The time required for maturation into full-sized DNA increased from 1 hour at O J/m/sup 2/ to 4 hours at 20 J/m/sup 2/ and to 21 hours at 200 J/m/sup 2/. Measured amounts of DNA synthesis at times after ultraviolet irradiation showed a period of reduced incorporation, followed by the resumption of control levels. The lag period ended at the same time as the production of full-sized DNA resumed.

  3. Antisense RNA inactivation of gene expression of a cell-cell adhesion protein (gp64) in the cellular slime mold Polysphondylium pallidum.

    PubMed

    Funamoto, S; Ochiai, H

    1996-05-01

    The gp64 protein of Polysphondylium pallidum has been shown to mediate EDTA-stable cell-cell adhesion. To explore the functional role of gp64, we made an antisense RNA expression construct designed to prevent the gene expression of gp64; the construct was introduced into P. pallidum cells and the transformants were characterised. The antisense RNA-expressing clone L3mc2 which had just been harvested at the growth phase tended to re-form in aggregates smaller in size than did the parental cells in either the presence or absence of 10 mM EDTA. In contrast, 6.5-hour starved L3mc2 cells remained considerably dissociated from each other after 5 minutes gyrating, although aggregation gradually increased by 50% during a further 55 minutes gyrating in the presence of 10 mM EDTA. Correspondingly, L3mc2 lacked specifically the cell-cell adhesion protein, gp64. We therefore conclude that the gp64 protein is involved in forming the EDTA-resistant cell-cell contact. In spite of the absence of gp64, L3mc2 exhibited normal developmental processes, a fact which demonstrates that another cell-cell adhesion system exists in the development of Polysphondylium. This is the first report in which an antisense RNA technique was successfully applied to Polysphondylium. PMID:8743948

  4. Method for encapsulating hazardous wastes using a staged mold

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1989-01-01

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  5. Oscillation of the velvet worm slime jet by passive hydrodynamic instability

    PubMed Central

    Concha, Andrés; Mellado, Paula; Morera-Brenes, Bernal; Sampaio Costa, Cristiano; Mahadevan, L; Monge-Nájera, Julián

    2015-01-01

    The rapid squirt of a proteinaceous slime jet endows velvet worms (Onychophora) with a unique mechanism for defence from predators and for capturing prey by entangling them in a disordered web that immobilizes their target. However, to date, neither qualitative nor quantitative descriptions have been provided for this unique adaptation. Here we investigate the fast oscillatory motion of the oral papillae and the exiting liquid jet that oscillates with frequencies f~30–60 Hz. Using anatomical images, high-speed videography, theoretical analysis and a physical simulacrum, we show that this fast oscillatory motion is the result of an elastohydrodynamic instability driven by the interplay between the elasticity of oral papillae and the fast unsteady flow during squirting. Our results demonstrate how passive strategies can be cleverly harnessed by organisms, while suggesting future oscillating microfluidic devices, as well as novel ways for micro and nanofibre production using bioinspired strategies. PMID:25780995

  6. Oscillation of the velvet worm slime jet by passive hydrodynamic instability

    NASA Astrophysics Data System (ADS)

    Concha, Andrés; Mellado, Paula; Morera-Brenes, Bernal; Sampaio Costa, Cristiano; Mahadevan, L.; Monge-Nájera, Julián

    2015-03-01

    The rapid squirt of a proteinaceous slime jet endows velvet worms (Onychophora) with a unique mechanism for defence from predators and for capturing prey by entangling them in a disordered web that immobilizes their target. However, to date, neither qualitative nor quantitative descriptions have been provided for this unique adaptation. Here we investigate the fast oscillatory motion of the oral papillae and the exiting liquid jet that oscillates with frequencies f~30-60 Hz. Using anatomical images, high-speed videography, theoretical analysis and a physical simulacrum, we show that this fast oscillatory motion is the result of an elastohydrodynamic instability driven by the interplay between the elasticity of oral papillae and the fast unsteady flow during squirting. Our results demonstrate how passive strategies can be cleverly harnessed by organisms, while suggesting future oscillating microfluidic devices, as well as novel ways for micro and nanofibre production using bioinspired strategies.

  7. Oscillation of the velvet worm slime jet by passive hydrodynamic instability.

    PubMed

    Concha, Andrés; Mellado, Paula; Morera-Brenes, Bernal; Sampaio Costa, Cristiano; Mahadevan, L; Monge-Nájera, Julián

    2015-01-01

    The rapid squirt of a proteinaceous slime jet endows velvet worms (Onychophora) with a unique mechanism for defence from predators and for capturing prey by entangling them in a disordered web that immobilizes their target. However, to date, neither qualitative nor quantitative descriptions have been provided for this unique adaptation. Here we investigate the fast oscillatory motion of the oral papillae and the exiting liquid jet that oscillates with frequencies f~30-60 Hz. Using anatomical images, high-speed videography, theoretical analysis and a physical simulacrum, we show that this fast oscillatory motion is the result of an elastohydrodynamic instability driven by the interplay between the elasticity of oral papillae and the fast unsteady flow during squirting. Our results demonstrate how passive strategies can be cleverly harnessed by organisms, while suggesting future oscillating microfluidic devices, as well as novel ways for micro and nanofibre production using bioinspired strategies. PMID:25780995

  8. Microbial Variants from Iron Ore Slimes: Mineral Specificity and pH Tolerance.

    PubMed

    Abhilash; Ghosh, A; Pandey, B D; Sarkar, S

    2015-12-01

    This paper describes the isolation of the native bacterial strains from the iron ore mines slime pond and its extremophilic characteristics. The two microbial isolates designated as CNIOS-1 and CNIOS-2 were grown in selective silicate broth at pH 7.0 and the organisms were tested for their selective adhesion on silicate and alumina minerals. The silicate bacteria with their exopolymers are very potent to grow over aluminosilicates. It was established that CNIOS-1 grew preferentially in the presence of silicate mineral compared to CNIOS-2 which grew in the presence of alumina. The organisms were tested for growth at various pH and trials were carried to define their efficacy for eventual applications to remove gangue minerals of silica and alumina from the raw material. PMID:26543269

  9. Role of cell bending and slime navigation in swarms of M. xanthus

    NASA Astrophysics Data System (ADS)

    Harvey, Cameron; Kaiser, Dale; Alber, Mark

    2012-02-01

    Many bacteria use motility described as swarming to colonize surfaces that allows them to optimize their access to nutrients. The swarming of the bacterium M. xanthus on surfaces is a remarkable interplay between motility mechanisms, cell flexibility, cell-cell adhesive interactions and directional reversals. The properties of individual cells from different mutant strains and density regimes will be demonstrated in this talk. Then, a computational model based on subcellular elements for cell representation and implemented on graphical processing units (GPUs) will be presented. High-quality high magnification movies of bacterial motility together with biologically justified computational simulations will be used for investigation of collective motion and order in swarming populations of bacteria. Collective motion will be shown to include the dynamical formation of cell clusters as well as streams of cells moving over networks of cell-generated slime tracks.

  10. Coiling and maturation of a high-performance fibre in hagfish slime gland thread cells

    NASA Astrophysics Data System (ADS)

    Winegard, Timothy; Herr, Julia; Mena, Carlos; Lee, Betty; Dinov, Ivo; Bird, Deborah; Bernards, Mark; Hobel, Sam; van Valkenburgh, Blaire; Toga, Arthur; Fudge, Douglas

    2014-04-01

    The defensive slime of hagfishes contains thousands of intermediate filament protein threads that are manufactured within specialized gland thread cells. The material properties of these threads rival those of spider dragline silks, which makes them an ideal model for biomimetic efforts to produce sustainable protein materials, yet how the thread is produced and organized within the cell is not well understood. Here we show how changes in nuclear morphology, size and position can explain the three-dimensional pattern of thread coiling in gland thread cells, and how the ultrastructure of the thread changes as very young thread cells develop into large cells with fully mature coiled threads. Our model provides an explanation for the complex process of thread assembly and organization that has fascinated and perplexed biologists for over a century, and provides valuable insights for the quest to manufacture high-performance biomimetic protein materials.

  11. Numerical recipes for mold filling simulation

    SciTech Connect

    Kothe, D.; Juric, D.; Lam, K.; Lally, B.

    1998-07-01

    Has the ability to simulate the filling of a mold progressed to a point where an appropriate numerical recipe achieves the desired results? If results are defined to be topological robustness, computational efficiency, quantitative accuracy, and predictability, all within a computational domain that faithfully represents complex three-dimensional foundry molds, then the answer unfortunately remains no. Significant interfacial flow algorithm developments have occurred over the last decade, however, that could bring this answer closer to maybe. These developments have been both evolutionary and revolutionary, will continue to transpire for the near future. Might they become useful numerical recipes for mold filling simulations? Quite possibly. Recent progress in algorithms for interface kinematics and dynamics, linear solution methods, computer science issues such as parallelization and object-oriented programming, high resolution Navier-Stokes (NS) solution methods, and unstructured mesh techniques, must all be pursued as possible paths toward higher fidelity mold filling simulations. A detailed exposition of these algorithmic developments is beyond the scope of this paper, hence the authors choose to focus here exclusively on algorithms for interface kinematics. These interface tracking algorithms are designed to model the movement of interfaces relative to a reference frame such as a fixed mesh. Current interface tracking algorithm choices are numerous, so is any one best suited for mold filling simulation? Although a clear winner is not (yet) apparent, pros and cons are given in the following brief, critical review. Highlighted are those outstanding interface tracking algorithm issues the authors feel can hamper the reliable modeling of today`s foundry mold filling processes.

  12. Human acellular dermal matrix for repair of abdominal wall defects: review of clinical experience and experimental data.

    PubMed

    Holton, Luther H; Kim, Daniel; Silverman, Ronald P; Rodriguez, Eduardo D; Singh, Navin; Goldberg, Nelson H

    2005-01-01

    The use of prosthetic mesh for the tension-free repair of incisional hernias has been shown to be more effective than primary suture repair. Unfortunately, prosthetic materials can be a suboptimal choice in a variety of clinical scenarios. In general, prosthetic materials should not be implanted into sites with known contamination or infection because they lack an endogenous vascular network and are thus incapable of clearing bacteria. This is of particular relevance to the repair of recurrent hernias, which are often refractory to repair because of indolent bacterial colonization that weakens the site and retards appropriate healing. Although fascia lata grafts and muscle flaps can be employed for tension-free hernia repairs, they carry the potential for significant donor site morbidity. Recently, a growing number of clinicians have used human acellular dermal matrix as a graft material for the tension-free repair of ventral hernias. This material has been shown to become revascularized in both animal and human subjects. Once repopulated with a vascular network, this graft material is theoretically capable of clearing bacteria, a property not found in prosthetic graft materials. Unlike autologous materials such as fascial grafts and muscle flaps, acellular dermal matrix can be used without subjecting the patient to additional morbidity in the form of donor site complications. This article presents a thorough review of the current literature, describing the properties of human acellular dermal matrix and discussing both animal and human studies of its clinical performance. In addition to the review of previously published clinical experiences, we discuss our own preliminary results with the use of acellular dermal matrix for ventral hernia repair in 46 patients. PMID:16218902

  13. Possible role of dentin matrix in region-specific deposition of cellular and acellular extrinsic fibre cementum.

    PubMed

    Takano, Yoshiro; Sakai, Hideo; Watanabe, Eiko; Ideguchi-Ohma, Noriko; Jayawardena, Chantha K; Arai, Kazumi; Asawa, Yukiyo; Nakano, Yukiko; Shuda, Yoko; Sakamoto, Yujiro; Terashima, Tatsuo

    2003-01-01

    The mechanism whereby a region-specific deposition of the two types of cementum (cellular cementum and acellular extrinsic fibre cementum) is regulated on the growing root surface was tested using bisphosphonate-affected teeth of young rats and guinea pigs. The animals were injected subcutaneously with 8 or 10 mg P x kg body weight(-1) x day(-1) of 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) for 1 or 2 weeks. In rat molars, HEBP prevented mineralization of newly formed root dentin matrix and totally inhibited de novo deposition of acellular extrinsic fibre cementum. Instead, thick cellular cementum was induced on the non-mineralized root dentin surface, irrespective of the position of the root. In both animals, cellular cementum was also induced on the non-mineralized surface of root analogue dentin in HEBP-affected incisors, where only acellular extrinsic fibre cementum is deposited under normal conditions. In normal rat molars, dentin sialoprotein (DSP) was concentrated along the dentin-cellular cementum border, but not that of dentin and acellular extrinsic fibre cementum. In HEBP-affected rat incisors, DSP was shown to penetrate through the non-mineralized dentin into the surrounding tissues, but not through the mineralized portions. These data suggest that, at the site of cellular cementum formation, putative inducing factors for cellular cementum might diffuse into the periodontal space through the newly deposited mantle dentin matrix before it is mineralized. At earlier stages of root formation, mantle dentin might mineralize more promptly not to allow such diffusion. The timing of mineralization of mantle dentin matrix might be the key determinant of the types of the cementum deposited on the growing root surface. PMID:14756246

  14. Deep Anterior Lamellar Keratoplasty Using Irradiated Acellular Cornea with Amniotic Membrane Transplantation for Intractable Ocular Surface Diseases

    PubMed Central

    Wee, Sung Wook; Choi, Sang Uk

    2015-01-01

    Purpose To report the clinical outcomes of deep anterior lamellar keratoplasty (DALK) when sterile gamma-irradiated acellular corneal tissues (VisionGraft) are used in combination with amniotic membrane transplantation (AMT) for intractable ocular surface diseases. Methods The medical records of fifteen patients who had DALK with AMT were retrospectively reviewed. Indications for surgery included ocular burn, bacterial keratitis, herpes simplex virus keratitis, corneal opacity with Stevens-Johnson syndrome, Mooren's ulcer, idiopathic myxoid degeneration of corneal stroma, and recurrent band keratopathy. DALK was performed using partial-thickness acellular corneal tissue and a temporary amniotic membrane patch was added at the end of the operation. Results All cases that underwent DALK with AMT became epithelialized within 2 postoperative weeks. Twelve patients showed favorable outcomes without graft rejection, corneal opacification, or neovascularization. The other three grafts developed corneal opacification and neovascularization, and required additional penetrating keratoplasty (PK). Unlike the results of previous PKs, there were no graft rejections and the graft clarity was well-maintained in these three cases for at least 8 months after PK. Conclusions DALK using sterile acellular corneal tissues in combination with AMT may be a good therapeutic strategy for treating intractable ocular surface diseases because of lowered immune rejection, fibroblast activation, and facilitation of epithelialization. Furthermore, DALK can help stabilize the ocular surface, prolong graft survival, and may allow better outcomes when combined with subsequent PK. PMID:25829823

  15. Management of failed and infected first metatarsophalangeal joint implant arthroplasty by reconstruction with an acellular dermal matrix: a case report.

    PubMed

    Khoury, Wissam E; Fahim, Ramy; Sciulli, Jessica M; Ehredt, Duane J

    2012-01-01

    Management of failed first metatarsophalangeal joint implant arthroplasty, especially in the face of infection, is an area of debate without a clear consensus. The purpose of the present report was to explore a new option of reconstructing the joint with an acellular dermal matrix substance in a single case study during a 12-month follow-up period. A staged approach that began with removal of the failed 2-component great toe implant, Koenig(®), excisional debridement of the wound with resection of the necrotic bone (proximal phalanx and distal portion of the first metatarsal bones), and culture-specific antibiosis therapy. The final stage included incorporating the acellular dermal matrix, Graftjacket(®) into the joint in an accordion-type fashion, and reconstruction of the joint capsule. Postoperative radiographs revealed a more rectus joint with some improvement in length. At 6 months postoperatively, magnetic resonance imaging revealed incorporation of the graft material into the joint. Finally, at the 1-year mark, the patient was pain free with satisfactory function at the first metatarsophalangeal joint during gait. This is the first reported case of salvaging failed and infected first metatarsophalangeal joint implant arthroplasty with incorporation of the acellular dermal matrix and provides a new option to consider in the future. PMID:22704789

  16. Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering

    PubMed Central

    Chen, Ying-Chen; Chen, Ray-Neng; Jhan, Hua-Jing; Liu, Der-Zen; Ho, Hsiu-O; Mao, Yong; Kohn, Joachim

    2015-01-01

    Given the growing number of arthritis patients and the limitations of current treatments, there is great urgency to explore cartilage substitutes by tissue engineering. In this study, we developed a novel decellularization method for menisci to prepare acellular extracellular matrix (ECM) scaffolds with minimal adverse effects on the ECM. Among all the acid treatments, formic acid treatment removed most of the cellular contents and preserved the highest ECM contents in the decellularized porcine menisci. Compared with fresh porcine menisci, the content of DNA decreased to 4.10%±0.03%, and there was no significant damage to glycosaminoglycan (GAG) or collagen. Histological staining also confirmed the presence of ECM and the absence of cellularity. In addition, a highly hydrophilic scaffold with three-dimensional interconnected porous structure was fabricated from decellularized menisci tissue. Human chondrocytes showed enhanced cell proliferation and synthesis of chondrocyte ECM including type II collagen and GAG when cultured in this acellular scaffold. Moreover, the scaffold effectively supported chondrogenesis of human bone marrow-derived mesenchymal stem cells. Finally, in vivo implantation was conducted in rats to assess the biocompatibility of the scaffolds. No significant inflammatory response was observed. The acellular ECM scaffold provided a native environment for cells with diverse physiological functions to promote cell proliferation and new tissue formation. This study reported a novel way to prepare decellularized meniscus tissue and demonstrated the potential as scaffolds to support cartilage repair. PMID:25919905

  17. Evaluation of respiratory model employing conventional NIH mice to access the immunity induced by cellular and acellular pertussis vaccines.

    PubMed

    Dias, Alexandre Alves de Souza de Oliveira; Boller, Maria Aparecida Affonso; Werneck, Lúcia Maria Correa; Hirata Junior, Raphael; Mattos-Guaraldi, Ana Luíza

    2006-11-01

    The increasing number of pertussis cases reported on the last twenty years and the existence of new acellular vaccines reinforce the need of research for experimental models to assure the quality of available pertussis vaccines. In this study, allotments of whole-cell and acellular pertussis vaccines were tested through the Intranasal Challenge Model (INM) using conventional NIH mice. The results have been compared to those achieved by the "Gold standard" Intracerebral Challenge Model (ICM). In contrast to ICM, INM results did not show intralaboratorial variations. Statistical analysis by Anova and Ancova tests revealed that the INM presented reproducibility and allowed identification and separation of different products, including three-component and four-component accellular pertussis vaccines. INM revealed differences between pertussis vaccines. INM provides lower distress to the mice allowing the reduction of mice number including the possibility of using conventional mice (less expensive) under non-aseptic environment. Thus, INM may be used as an alternative method of verifying the consistence of allotment production, including acellular pertussis vaccines. PMID:17160282

  18. Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering.

    PubMed

    Chen, Ying-Chen; Chen, Ray-Neng; Jhan, Hua-Jing; Liu, Der-Zen; Ho, Hsiu-O; Mao, Yong; Kohn, Joachim; Sheu, Ming-Thau

    2015-09-01

    Given the growing number of arthritis patients and the limitations of current treatments, there is great urgency to explore cartilage substitutes by tissue engineering. In this study, we developed a novel decellularization method for menisci to prepare acellular extracellular matrix (ECM) scaffolds with minimal adverse effects on the ECM. Among all the acid treatments, formic acid treatment removed most of the cellular contents and preserved the highest ECM contents in the decellularized porcine menisci. Compared with fresh porcine menisci, the content of DNA decreased to 4.10%±0.03%, and there was no significant damage to glycosaminoglycan (GAG) or collagen. Histological staining also confirmed the presence of ECM and the absence of cellularity. In addition, a highly hydrophilic scaffold with three-dimensional interconnected porous structure was fabricated from decellularized menisci tissue. Human chondrocytes showed enhanced cell proliferation and synthesis of chondrocyte ECM including type II collagen and GAG when cultured in this acellular scaffold. Moreover, the scaffold effectively supported chondrogenesis of human bone marrow-derived mesenchymal stem cells. Finally, in vivo implantation was conducted in rats to assess the biocompatibility of the scaffolds. No significant inflammatory response was observed. The acellular ECM scaffold provided a native environment for cells with diverse physiological functions to promote cell proliferation and new tissue formation. This study reported a novel way to prepare decellularized meniscus tissue and demonstrated the potential as scaffolds to support cartilage repair. PMID:25919905

  19. Relationship Between Casting Distortion, Mold Filling, and Interfacial Heat Transfer in Sand Molds

    SciTech Connect

    J. K. Parker; K. A. Woodbury; T. S. Piwonka; Y. Owusu

    1999-09-30

    This project sought to determine the relationship between casting dimensions and interfacial heat transfer in aluminum alloy sand castings. The program had four parts; measurement of interfacial heat transfer coefficients in resin bonded and green sand molds, the measurement of gap formation in these molds, the analysis of castings made in varying gatings, orientations and thicknesses, and the measurement of residual stresses in castings in the as-cast and gate removed condition. New values for interfacial heat transfer coefficients were measured, a novel method for gap formation was developed, and the variation of casting dimensions with casting method, gating, and casting orientation in the mold was documented.

  20. MOLD MACHINE, BRASS FOUNDRY, USED TO COMPRESS CONDITIONED SAND IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MOLD MACHINE, BRASS FOUNDRY, USED TO COMPRESS CONDITIONED SAND IN FLASKS OVER PATTERNS TO CREATE MOLD CAVITIES WHICH ARE LATER FILLED WITH MOLTEN BRONZE. - Stockham Pipe & Fittings Company, Brass Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  1. HUNTER 20 MATCHPLATE MOLDING MACHINE 'SQUEEZING' BOTH HALVES OF A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HUNTER 20 MATCHPLATE MOLDING MACHINE 'SQUEEZING' BOTH HALVES OF A MOLD SURROUNDING A MATCHPLATE PATTERN, DENNIS GRAY OPERATOR. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  2. Looking east inside of the ingot mold stripeer building at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east inside of the ingot mold stripeer building at a mold being stripped from an ingot. - U.S. Steel Edgar Thomson Works, 44" Slab Mill, Along Monongahela River, Braddock, Allegheny County, PA

  3. INTERIOR VIEW WITH CORE SET IN MOLD HALF IN BOX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CORE SET IN MOLD HALF IN BOX FLOOR AREA. AWAITING OTHER MOLD HALF TO BE PLACED ON TOP. - Stockham Pipe & Fittings Company, Ductile Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  4. 19. INTERIOR VIEW WITH IRON POURERS FILLING COMPLETED MOLDS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR VIEW WITH IRON POURERS FILLING COMPLETED MOLDS ON GREY IRON UNIT NO. 1 MOLD CONVEYOR. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  5. 20. INTERIOR VIEW WITH IRON POURERS FILLING COMPLETED MOLDS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. INTERIOR VIEW WITH IRON POURERS FILLING COMPLETED MOLDS ON GREY IRON UNIT NO. 1 MOLD CONVEYOR. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  6. MOLD SPECIFIC QUANTITATIVE PCR FOR RAPID IDENTIFICATION AND ENUMERATION

    EPA Science Inventory

    There is growing awareness that indoor molds/fungi may be connected to such conditions as asthma, allergies, hemorrhaging, chronic rhinosinusitis, memory loss, and a symptom complex called sick-building-syndrome. In addition, molds cause frequently fatal nosocomical infections. ...

  7. Neuraminidase produces a decrease of adherence of slime-forming Staphylococcus aureus to gelatin-impregnated polyester fiber graft fabric: an experimental study.

    PubMed

    Sacar, Mustafa; Onem, Gokhan; Baltalarli, Ahmet; Sacar, Suzan; Turgut, Huseyin; Goksin, Ibrahim; Ozcan, Vefa; Sakarya, Serhan

    2007-01-01

    Because slime-forming microorganisms are the major causative agents of graft infections, we aimed to investigate bacterial adherence in slime-forming and nonslime-forming Staphylococcus aureus and to determine the role of neuraminidase (NANase) on adherence to gelatin-impregnated polyester fiber graft fabric. An in vitro model was developed to quantitatively measure bacterial adherence to the surface of the graft. The grafts were divided into two groups - those colonized with slime-forming S. aureus and those colonized with nonslime-forming S. aureus. The grafts were put into sterile tubes and human plasma was instilled and incubated at 37 degrees C to perform fibrin deposition on the grafts. After 48 h of incubation, grafts were drained and inoculated with slime-forming or nonslime-forming S. aureus in triptic soy broth in the presence or absence of NANase. Following 36 h of incubation at 36 degrees C, grafts were vortexed and cultured to perform a colony count. Bacterial counts were expressed as total colony-forming units per square centimeter of graft. Slime-forming S. aureus had greater affinity with the graft compared with nonslime-forming S. aureus (P < 0.05). The adherence of slime-forming S. aureus was impaired by NANase treatment (P < 0.001) but NANase treatment of nonslime-forming S. aureus did not change the adherence to the graft (P > 0.05). These results show that slime plays an important role in the pathogenesis of vascular graft infection. Adherence of slime-forming S. aureus can be decreased by NANase treatment. This may have implications for the development of neuraminidase-embedded vascular grafts to diminish biomaterial-related infections. PMID:17846717

  8. A method for producing large, accurate, economical female molds

    SciTech Connect

    Guenter, A.; Guenter, B.

    1996-11-01

    A process in which lightweight, highly accurate, economical molds can be produced for prototype and low production runs of large parts for use in composites molding has been developed. This has been achieved by developing existing milling technology, using new materials and innovative material applications to CNC mill large female molds directly. Any step that can be eliminated in the mold building process translates into savings in tooling costs through reduced labor and material requirements.

  9. 56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS APPROXIMATELY 6,000 PLASTER MOLDS OF VARIOUS TYPES, INCLUDING THE DEEP CAVITY MOLDS IN THE CENTER OF THE PHOTOGRAPH. THESE MOLDS PRODUCED ALLEGORICAL FIGURES TO BE INSTALLED AROUND THE CORNICES OF PUBLIC SCHOOLS. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  10. TRUFLO GONDOLA, USED WITH THE HUNTER 10 MOLDING MACHINE, OPERATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRUFLO GONDOLA, USED WITH THE HUNTER 10 MOLDING MACHINE, OPERATES THE SAME AS THE TWO LARGER TRUFLOS USED IN CONJUNCTION WITH THE TWO HUNTER 20S. EACH GONDOLA IS CONNECTED TO THE NEXT AND RIDES ON A SINGLE TRACK RAIL FROM MOLDING MACHINES THROUGH POURING AREAS CARRYING A MOLD AROUND TWICE BEFORE THE MOLD IS PUSHED OFF ONTO A VIBRATING SHAKEOUT CONVEYOR. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  11. Healing rates for challenging rotator cuff tears utilizing an acellular human dermal reinforcement graft

    PubMed Central

    Agrawal, Vivek

    2012-01-01

    Purpose: This study presents a retrospective case series of the clinical and structural outcomes (1.5 T MRI) of arthroscopic rotator cuff repair with acellular human dermal graft reinforcement performed by a single surgeon in patients with large, massive, and previously repaired rotator cuff tears. Materials and Methods: Fourteen patients with mean anterior to posterior tear size 3.87 ± 0.99 cm (median 4 cm, range 2.5–6 cm) were enrolled in the study and were evaluated for structural integrity using a high-field (1.5 T) MRI at an average of 16.8 months after surgery. The Constant-Murley scores, the Flexilevel Scale of Shoulder Function (Flex SF), scapular plane abduction, and strength were analyzed. Results: MRI results showed that the rotator cuff repair was intact in 85.7% (12/14) of the patients studied. Two patients had a Sugaya Type IV recurrent tear (2 of 14; 14.3%), which were both less than 1 cm. The Constant score increased from a preoperative mean of 49.72 (range 13–74) to a postoperative mean of 81.07 (range 45–92) (P value = 0.009). Flexilevel Scale of Shoulder Function (Flex SF) Score normalized to a 100-point scale improved from a preoperative mean of 53.69 to a postoperative mean of 79.71 (P value = 0.003). The Pain Score improved from a preoperative mean of 7.73 to a postoperative mean of 13.57 (P value = 0.008). Scapular plane abduction improved from a preoperative mean of 113.64° to a postoperative mean of 166.43° (P value = 0.010). The strength subset score improved from a preoperative mean of 1.73 kg to a postoperative mean of 7.52 kg (P value = 0.006). Conclusions: This study presents a safe and effective technique that may help improve the healing rates of large, massive, and revision rotator cuff tears with the use of an acellular human dermal allograft. This technique demonstrated favorable structural healing rates and statistically improved functional outcomes in the near term. Level of Evidence: 4. Retrospective case series. PMID

  12. 21 CFR 874.3430 - Middle ear mold.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Middle ear mold. 874.3430 Section 874.3430 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3430 Middle ear mold. (a) Identification. A middle ear mold is a preformed device that is intended to be implanted to reconstruct the middle...

  13. 21 CFR 874.3430 - Middle ear mold.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Middle ear mold. 874.3430 Section 874.3430 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3430 Middle ear mold. (a) Identification. A middle ear mold is a preformed device that is intended to be implanted to reconstruct the middle...

  14. 21 CFR 874.3430 - Middle ear mold.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Middle ear mold. 874.3430 Section 874.3430 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3430 Middle ear mold. (a) Identification. A middle ear mold is a preformed device that is intended to be implanted to reconstruct the middle...

  15. 21 CFR 874.3430 - Middle ear mold.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Middle ear mold. 874.3430 Section 874.3430 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3430 Middle ear mold. (a) Identification. A middle ear mold is a preformed device that is intended to be implanted to reconstruct the middle...

  16. 21 CFR 874.3430 - Middle ear mold.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Middle ear mold. 874.3430 Section 874.3430 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3430 Middle ear mold. (a) Identification. A middle ear mold is a preformed device that is intended to be implanted to reconstruct the middle...

  17. 1928 MALLEABLE FOUNDRY MOLD CONVEYOR #1 SHOWING CONVEYOR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1928 MALLEABLE FOUNDRY MOLD CONVEYOR #1 SHOWING CONVEYOR AND TRACK ARRANGEMENTS WITH OVERHEAD POURING WEIGHTS THAT REST ON A MOLD'S TOP SURFACE TO ENSURE THAT IRON DOES NOT FLOW OUT OF THE MOLD WHEN IT IS BEING POURED THROUGH THE OPENING IN THE WEIGHT. - Stockham Pipe & Fittings Company, Malleable Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  18. HUNTER 20 MATCHPLATE MOLDING MACHINE, OPERATING THE SAME AS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HUNTER 20 MATCHPLATE MOLDING MACHINE, OPERATING THE SAME AS THE HUNTER 10 AND OTHER HUNTER 20 COMPRESSES BOTH MOLD HALVES OVER A DOUBLE-SIDED MATCH PLATE PATTERN. DENNIS GRAY TESTS A MOLD'S HARDNESS TO ENSURE SAND MIXTURE AND MACHINE COMPRESSIBILITY ARE CORRECT. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  19. Improved mold release for filled-silicone compounds

    NASA Technical Reports Server (NTRS)

    Accountius, O. E.

    1973-01-01

    Ceramic and filled-plastic materials used for fabrication of tiles are relatively brittle and easily break as they are being removed from molds. Dusting mold surfaces with commercially available glass microspheres provides mold release superior to existing spray releases. Glass-microsphere dusting also permits removal of uncured tile which has very little strength.

  20. 17. INTERIOR VIEW WITH GREY UNIT NO. 1 MOLD CONVEYOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTERIOR VIEW WITH GREY UNIT NO. 1 MOLD CONVEYOR SHOWING CHAIN HELD WEIGHTS THAT TRAVEL AT THE SAME SPEED AS THE CONVEYOR AND REST ON COMPLETED MOLDS TO HOLD THE SAND SEAMS TOGETHER AS MOLTED IRON IS POURED INTO THE MOLD CAVITY. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  1. 14. INTERIOR VIEW WITH JOHNNY TAYLOR REMOVING A MOLD HALF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR VIEW WITH JOHNNY TAYLOR REMOVING A MOLD HALF FROM THE PATTERN ON THE MOLDING MACHINE, REVEALING THE CAVITY THAT WILL BE FILLED WITH MOLTEN IRON AFTER IT IS ASSEMBLED WITH THE OTHER MOLD HALF INSIDE GREY IRON UNIT NO. 1. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  2. Bell X-5 Model and Molds

    NASA Technical Reports Server (NTRS)

    1953-01-01

    A Langley model maker examines the molds used to form a model of the Bell X-5, a variable sweep craft that first flew in June of 1951. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 64), by James Schultz.

  3. Flexible Interior-Impression-Molding Tray

    NASA Technical Reports Server (NTRS)

    Anders, Jeffrey E.

    1991-01-01

    Device used inside combustion chamber of complicated shape for nondestructive evaluation of qualities of welds, including such features as offset, warping, misalignment of parts, and dropthrough. Includes flexible polypropylene tray trimmed to fit desired interior surface contour. Two neodymium boron magnets and inflatable bladder attached to tray. Tray and putty inserted in cavity to make mold of interior surface.

  4. [Cutaneous mold fungus granuloma from Ulocladium chartarum].

    PubMed

    Altmeyer, P; Schon, K

    1981-01-01

    Cutaneous granulomas due to the mold fungus Ulocladium chartarum (Preuss) are described in a 58 year old woman. This fungus is usually harmless for mammalian. It is thought that a consisting immunosuppression (Brill-Symmer's disease, therapy with corticosteroids) was a priming condition for the infection. The route of infection in this patient described is unknown. PMID:7194869

  5. Mold Die Making. 439-322/324.

    ERIC Educational Resources Information Center

    Yunke, P.; And Others

    Each unit in this curriculum guide on mold die making contains an introduction, objectives, materials required, lessons, space for notes, figures, and diagrams. There are 10 units in this guide: (1) introduction to Electrical Discharge Machining (EDM); (2) EDM principles; (3) the single pulse; (4) EDM safety; (5) electrode material; (6) electrode…

  6. Molding Compound For Inspection Of Internal Contours

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Ricklefs, Steve

    1988-01-01

    Material clean, sets rapidly, and easy to use. Silicone elastomer, Citrocon or equivalent, commonly used in dentistry, in combination with mold-release agent (Also see MFS-29240), speeds and facilitates making of impressions of interior surfaces so surface contours examined. Elastomer easily moved around in cavity until required location found.

  7. Contamination of PDMS microchannels by lithographic molds.

    PubMed

    Bubendorfer, Andrea J; Ingham, Bridget; Kennedy, John V; Arnold, W Mike

    2013-11-21

    By use of synchrotron X-ray fluorescence and Rutherford backscattering spectrometry, we show the SU-8 soft lithographic process contaminates PDMS. Residues of the antimony containing photoinitiator are transferred from the master mold to the surface of PDMS, uncontrollably intensifying the surface potential, leading to electroosmotic flow variability in PDMS microfluidic devices. PMID:24080639

  8. Cultural Molding: A Modular Approach. Cultural Anthropology.

    ERIC Educational Resources Information Center

    Kassebaum, Peter

    Designed for use as supplementary instructional material in a cultural anthropology course, this learning module introduces the student to cultural molding, the idea that most human behavior can be traced to enculturation and exposure rather than to a socio-biological explanation of human behavior. Following a brief description of socialization,…

  9. A REVOLUTION IN MOLD IDENTIFICATION AND ENUMERATION

    EPA Science Inventory

    More than 100 assay were developed to identify and quantify indoor molds using quantitiative PCR (QPCR) assays. This technology incorporates fluorigenic 5' nuclease (TaqMan�) chemistry directed at the nuclear ribosomal RNA operon internal transcribed spacer regions (ITS1 or ITS2...

  10. Illinois Occupational Skill Standards: Plastics Molding Cluster.

    ERIC Educational Resources Information Center

    Illinois Occupational Skill Standards and Credentialing Council, Carbondale.

    This document, which is intended to serve as a guide for work force preparation program providers, details the Illinois occupational skill standards for programs preparing students for employment in jobs in the plastics molding industry. Agency partners involved in this project include: the Illinois State Board of Education, Illinois Community…

  11. Experimental Determination of Heat Transfer Within the Metal/Mold Gap in a DC Casting Mold: Part II. Effect of Casting Metal, Mold Material, and Other Casting Parameters

    NASA Astrophysics Data System (ADS)

    Prasad, Arvind; Bainbridge, Ian F.

    2013-07-01

    Extensive experimental studies were conducted to quantify the effect of different parameters that can affect the heat transfer from the metal to the mold during the steady-state phase of DC casting. In the first part previously published, the experimental technique was established and results were reported for the effect of gas type (atmosphere within the mold) and the gap between the metal and the mold. The results showed the significant effect of gas thermal conductivity and the metal-mold gap on the mold wall heat transfer coefficient. In this second publication on heat transfer in the mold wall region of a DC casting mold, the results from the effect of casting temperature, gas flow rate, casting alloy, mold material, and the mold insert material on the mold wall heat transfer coefficient are described. The experiments reported in the current paper show that these additional factors tested do not affect the heat flux through the mold wall to the same extent as the gap size or the gas type. The heat transfer coefficient changes by less than 5 pct when casting temperature is changed by ±25 K, less than 15 pct when the gas flow rate within the metal-mold gap flows at up to 3 LPM, and approximately 30 pct when the mold material is changed from stainless steel to AA601 to copper. Similar results were obtained when different insert materials were used. These results are explained with the help of an electrical analogy of heat transfer and are consistent with the heat transfer theory.

  12. Multilevel micro-structuring of glassy carbon molds for precision glass molding

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Plöger, Sven; Hermerschmidt, Andreas

    2015-09-01

    Replication techniques for diffractive optical elements (DOEs) in soft materials such as plastic injection molding are state of the art. For precision glass molding in glasses with high transition temperatures, molds with extreme thermal resistivity, low chemical reactivity and high mechanical strength are needed. Glassy Carbon can be operated up to 2000°C making it possible to mold almost all glasses including Fused Silica with a transition temperatures above 1060°C. For the structuring of Glassy Carbon wafers photolithography and a RIE process is used. We have developed a process using Si as a hard mask material. If the flow rates of the etching gases O2 and SF6 are chosen properly, high selectivity of GC to Si 19:1 can be achieved, which provides excellent conditions to realize high resolution elements with feature size down to 1 micron and fulfills requirements for optical applications. We fabricated several multilevel GC molds with 8 levels of structuring. Two different optical functionalities were implemented: 6x6 array beamsplitter and 1x4 linear beamsplitter. The molds were applied for precision glass molding of a low Tg glass L-BAL 42 (from Ohara) with a transition temperature of 565°C. Their optical performance was measured. A more detailed analysis of the impact of mold fabrication defects on optical performance is done. Rigorous coupled wave analysis simulations are performed, where we included fabrication constrains such as duty cycle, edge depth errors, wall verticality and misalignment errors. We will compare the results with the design specifications and discuss the influence of fabrication errors introduced during the different process steps.

  13. Matched metal die compression molded structural random fiber sheet molding compound flywheel

    DOEpatents

    Kulkarni, Satish V.; Christensen, Richard M.; Toland, Richard H.

    1985-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  14. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOEpatents

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  15. The Gelation of Poly(Vinyl Alcohol) with Na2B4O7 10H2O: Killing Slime

    NASA Astrophysics Data System (ADS)

    McLaughlin, K. W.; Wyffels, N. K.; Jentz, A. B.; Keenan, M. V.

    1997-01-01

    The gelation of poly(vinyl alcohol), PVA, with sodium tetraborate decahydrate (borax) to produce "slime" is a popular chemistry demonstration (1). Since the borate serves to cross-link the PVA, the degree of cross-linking can be varied by changing the borate concentration (2). One way of changing the concentration of borate available to hold the PVA chains together is to "disable" the borate by protonation with a strong acid (3, 4). The titration of slime with sulfuric acid (eq 1) allows students to examine the relationship between cross-linking, viscosity, and the onset of gelation. This modification to a popular chemistry demonstration produces an interesting chemistry laboratory experiment designed to introduce students to the relationship between molecular structure and the bulk properties of macromolecules.

  16. Molecular design of the alpha-keratin composite: insights from a matrix-free model, hagfish slime threads.

    PubMed Central

    Fudge, Douglas S.; Gosline, John M.

    2004-01-01

    We performed mechanical tests on a matrix-free keratin model-hagfish slime threads-to test the hypothesis that intermediate filaments (IFs) in hydrated hard alpha-keratins are maintained in a partly dehydrated state. This hypothesis predicts that dry IFs should possess mechanical properties similar to the properties of hydrated hard alpha-keratins, and should swell more than hard alpha-keratins in water. Mechanical and swelling measurements of hagfish threads were consistent with both of these predictions, suggesting that an elastomeric keratin matrix resists IF swelling and keeps IF stiffness and yield stress high. The elastomeric nature of the matrix is indirectly supported by the inability of matrix-free IFs (i.e. slime threads) to recover from post-yield deformation. We propose a general conceptual model of the structural mechanics of IF-based materials that predicts the effects of hydration and cross-linking on stiffness, yield stress and extensibility. PMID:15058441

  17. Ultra fast microwave-assisted leaching for the recovery of copper and tellurium from copper anode slime

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-yuan; Yang, Hong-ying; Huang, Song-tao; Lü, Yang; Xiong, Liu

    2015-06-01

    The decomposition of copper anode slime heated by microwave energy in a sulfuric acid medium was investigated. Leaching experiments were carried out in a multi-mode cavity with microwave assistance. The leaching process parameters were optimized using response surface methodology (RSM). Under the optimized conditions, the leaching efficiencies of copper and tellurium were 99.56% ± 0.16% and 98.68% ± 0.12%, respectively. Meanwhile, a conventional leaching experiment was performed in order to evaluate the influence of microwave radiation. The mechanism of microwave-assisted leaching of copper anode slime was also investigated. In the results, the microwave technology is demonstrated to have a great potential to improve the leaching efficiency and reduce the leaching time. The enhanced recoveries of copper and tellurium are believed to result from the presence of a temperature gradient due to the shallow microwave penetration depth and the superheating at the solid-liquid interface.

  18. Influence of pH and Metal Cations on Aggregative Growth of Non-Slime-forming Strains of Zoogloea ramigera

    PubMed Central

    Angelbeck, Donald I.; Kirsch, Edwin J.

    1969-01-01

    Aggregative growth of non-slime-forming strains of Zoogloea ramigera was induced by growing the organisms at a depressed pH. Calcium and magnesium ion was found to reverse aggregative growth of the organisms. Conversely, aggregation was stimulated when the available inorganic cation concentration of the growth medium was lowered by the use of a chelating agent. The aggregative effects of pH depression or cation depletion and the dispersal effects of cation supplementation were observed only during cellular growth. The data suggest that aggregate formation of non-slime-forming strains of Z. ramigera may be related to the calcium or magnesium metabolism of the organisms, or both. Images PMID:4976326

  19. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model

    EPA Science Inventory

    Introduction/Study Goal Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports and WHO gUidelines concluded that the role of molds in asthma induction is not clear bu...

  20. Overview of currently available Japanese acellular pertussis vaccines and future problems.

    PubMed

    Kamiya, H; Nii, R

    1988-01-01

    Acellular pertussis diphtheria, tetanus vaccine (APDT) was licensed in 1981 in Japan. This vaccine contains pertussis toxin (PT), filamentous hemagglutinin (FHA) and agglutinogen (AGG) as the main protective antigens. The new APDT vaccine produced by each company differs slightly in composition. There are two representative types of vaccine. One vaccine (B type) contains PT and FHA in a ratio of 1 to 1 and the other one (T type) contains PT and FHA in a ratio of 4 to 1 or 9 to 1 and also contains different amounts of AGG. We have been comparing the effectiveness of these two types of vaccine. The adverse reactions of APDT were local reactions such as redness and swelling, with a few febrile cases. No central nervous system adverse reactions were observed. The antibody protective level of this vaccine is also being investigated. After we changed from conventional vaccine to APDT, the frequency of serious adverse reactions was reduced and the number of pertussis infections also gradually decreased. This vaccine should be used for the children world-wide. PMID:3273618

  1. Human keratinocyte growth and differentiation on acellular porcine dermal matrix in relation to wound healing potential.

    PubMed

    Zajicek, Robert; Mandys, Vaclav; Mestak, Ondrej; Sevcik, Jan; Königova, Radana; Matouskova, Eva

    2012-01-01

    A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7-10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs), CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing. PMID:22629190

  2. Cellular Response to a Novel Fetal Acellular Collagen Matrix: Implications for Tissue Regeneration

    PubMed Central

    Rennert, Robert C.; Garg, Ravi K.; Gurtner, Geoffrey C.

    2013-01-01

    Introduction. PriMatrix (TEI Biosciences Inc., Boston, MA, USA) is a novel acellular collagen matrix derived from fetal bovine dermis that is designed for use in partial- and full-thickness wounds. This study analyzes the cellular response to PriMatrix in vivo, as well as the ability of this matrix to facilitate normal tissue regeneration. Methods. Five by five mm squares of rehydrated PriMatrix were implanted in a subcutaneous fashion on the dorsum of wild-type mice. Implant site tissue was harvested for histology, immunohistochemistry (IHC), and flow cytometric analyses at multiple time points until day 28. Results. PriMatrix implants were found to go through a biological progression initiated by a transient infiltrate of inflammatory cells, followed by mesenchymal cell recruitment and vascular development. IHC analysis revealed that the majority of the implanted fetal dermal collagen fibers persisted through day 28 but underwent remodeling and cellular repopulation to form tissue with a density and morphology consistent with healthy dermis. Conclusions. PriMatrix implants undergo progressive in vivo remodeling, facilitating the regeneration of histologically normal tissue through a mild inflammatory and progenitor cell response. Regeneration of normal tissue is especially important in a wound environment, and these findings warrant further investigation of PriMatrix in this setting. PMID:23970899

  3. Treatment of severe burn with DermACELL®, an acellular dermal matrix

    PubMed Central

    Chen, Shyi-Gen; Tzeng, Yuan-Sheng; Wang, Chih-Hsin

    2012-01-01

    For treatment of skin burn injuries, there exist several methods of treatment related to tissue regeneration, including the use of autograft skin and cryopreserved skin. However, each method has drawbacks. An alternative method for tissue regeneration is allograft acellular dermal matrix, with potential as a biocompatible scaffold for new tissue growth. One recently produced material of this type is DermACELL®, which was used in this case presentation for treating a scar resulting from second- and third-degree burns in a 33-year-old female patient. The patient presented with significant hypertrophic scarring from the elbow to the hand and with limited wrist and elbow motion. The scarring was removed, and the patient was treated with a 1:3 mesh of DermACELL. The wound was resurfaced with a split thickness skin graft, and postoperative care included application of pressure garment and silicone sheet, as well as range of motion exercise and massage. At 30 days after DermACELL application, the wound appeared well-healed with little scar formation. At 180 days post-application, the wound continued to appear healed well without significant scar formation. Additionally, the wound was supple, and the patient experienced significant improvement in range of motion. In the case presented, DermACELL appears to have been a successful method of treatment for scarring due to severe burns by preventing further scar formation and improving range of motion. PMID:23071908

  4. Effect of dynamic seeding methods on the distribution of fibroblasts within human acellular dermis.

    PubMed

    Vitacolonna, Mario; Belharazem, Djeda; Hohenberger, Peter; Roessner, Eric D

    2015-12-01

    The purpose of this investigation was to compare different dynamic cell seeding methods regarding their seeding efficiency, homogeneity, infiltration depth and proliferation within a human acellular dermis. In addition, the growth behaviour was observed during a 12-day static in vitro culture. The dynamic methods included orbital-shaker seeding and the use of a plate centrifuge with different rotational speeds, combinations of low-pressure for matrix degassing and centrifugal seeding. Scaffolds were incubated for up to 12 days statically. Cell distribution and infiltration depth were analysed histologically at days 0, 4, 8 and 12. Seeding efficiency and cell proliferation were quantified with the MTT-assay at the same time points. Centrifugal seeding with 300g for 5 × 1 min combined with matrix degassing significantly increased the seeding efficiency and homogeneity compared to the other methods. However, following static culture, no cells were detectable after 4 days in the inner matrix zones. Furthermore, none of the degassing+centrifugation groups reached a significantly higher proliferation at day 8 compared to the reference. The use of a single dynamic method resulted in an inefficient cell seeding. We archived the highest seeding efficiency, homogeneity and infiltration depth using a combination of degassing+centrifugation at 300g for 5 × 1 min. PMID:25795264

  5. Calcification resistance for photooxidatively crosslinked acellular bovine jugular vein conduits in right-side heart implantation.

    PubMed

    Lü, Wei-Dong; Wang, An-Ping; Wu, Zhong-Shi; Zhang, Ming; Hu, Tie-Hui; Lei, Guang-Yan; Hu, Ye-Rong

    2012-10-01

    This study aimed to investigate the effect of decellularization plus photooxidative crosslinking and ethanol pretreatment on bioprosthetic tissue calcification. Photooxidatively crosslinked acellular (PCA) bovine jugular vein conduits (BJVCs) and their photooxidized controls (n = 5 each) were sterilized in a graded concentration of ethanol solutions for 4 h, and used to reconstruct dog right ventricular outflow tracts. At 1-year implantation, echocardiography showed similar hemodynamic performance, but obvious calcification for the photooxidized BJVC walls. Further histological examination showed intense calcium deposition colocalized with slightly degraded elastic fibers in the photooxidized BJVC walls, with sparsely distributed punctate calcification in the valves and other areas of walls. But PCA BJVCs had apparent degradation of elastic fibers in the walls, with only sparsely distributed punctate calcification in the walls and valves. Content assay demonstrated comparable calcium content for the two groups at preimplantation, whereas less calcium for the PCA group in the walls and similar calcium in the valvular leaflets compared with the photooxidized group at 1-year retrieval. Elastin content assay presented the conduit walls of PCA group had less elastin content at preimplantation, but similar content at 1-year retrieval compared with the photooxidized group. Phospholipid analysis showed phospholipid extraction by ethanol for the PCA group was more efficacious than the photooxidized group. These results indicate that PCA BJVCs resist calcification in right-side heart implantation owing to decellularization, further photooxidative crosslinking, and subsequent phospholipid extraction by ethanol at preimplantation. PMID:22615255

  6. Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study.

    PubMed

    Ferrando, Pietro Maria; Balmativola, Davide; Cambieri, Irene; Scalzo, Maria Stella; Bergallo, Massimiliano; Annaratone, Laura; Casarin, Stefania; Fumagalli, Mara; Stella, Maurizio; Sapino, Anna; Castagnoli, Carlotta

    2016-01-01

    Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco's Modified Eagle's Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties. PMID:26918526

  7. Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study

    PubMed Central

    Ferrando, Pietro Maria; Balmativola, Davide; Cambieri, Irene; Scalzo, Maria Stella; Bergallo, Massimiliano; Annaratone, Laura; Casarin, Stefania; Fumagalli, Mara; Stella, Maurizio; Sapino, Anna; Castagnoli, Carlotta

    2016-01-01

    Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco’s Modified Eagle’s Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties. PMID:26918526

  8. Does Acellular Dermal Matrix Thickness Affect Complication Rate in Tissue Expander Based Breast Reconstruction?

    PubMed Central

    2016-01-01

    Background. While the benefits of using acellular dermal matrices (ADMs) in breast reconstruction are well described, their use has been associated with additional complications. The purpose of this study was to determine if ADM thickness affects complications in breast reconstruction. Methods. A retrospective chart review was performed including all tissue expander based breast reconstructions with AlloDerm (LifeCell, Branchburg, NJ) over 4 years. We evaluated preoperative characteristics and assessed postoperative complications including seroma, hematoma, infection, skin necrosis, and need for reintervention. We reviewed ADM thickness and time to Jackson-Pratt (JP) drain removal. Results. Fifty-five patients underwent 77 ADM-associated tissue expander based breast reconstructions, with average age of 48.1 years and average BMI of 25.9. Average ADM thickness was 1.21 mm. We found higher complication rates in the thick ADM group. Significant associations were found between smokers and skin necrosis (p < 0.0001) and seroma and prolonged JP drainage (p = 0.0004); radiated reconstructed breasts were more likely to suffer infections (p = 0.0085), and elevated BMI is a significant predictor for increased infection rate (p = 0.0037). Conclusion. We found a trend toward increased complication rates with thicker ADMs. In the future, larger prospective studies evaluating thickness may provide more information.

  9. Does Acellular Dermal Matrix Thickness Affect Complication Rate in Tissue Expander Based Breast Reconstruction?

    PubMed

    Rose, Jessica F; Zafar, Sarosh N; Ellsworth Iv, Warren A

    2016-01-01

    Background. While the benefits of using acellular dermal matrices (ADMs) in breast reconstruction are well described, their use has been associated with additional complications. The purpose of this study was to determine if ADM thickness affects complications in breast reconstruction. Methods. A retrospective chart review was performed including all tissue expander based breast reconstructions with AlloDerm (LifeCell, Branchburg, NJ) over 4 years. We evaluated preoperative characteristics and assessed postoperative complications including seroma, hematoma, infection, skin necrosis, and need for reintervention. We reviewed ADM thickness and time to Jackson-Pratt (JP) drain removal. Results. Fifty-five patients underwent 77 ADM-associated tissue expander based breast reconstructions, with average age of 48.1 years and average BMI of 25.9. Average ADM thickness was 1.21 mm. We found higher complication rates in the thick ADM group. Significant associations were found between smokers and skin necrosis (p < 0.0001) and seroma and prolonged JP drainage (p = 0.0004); radiated reconstructed breasts were more likely to suffer infections (p = 0.0085), and elevated BMI is a significant predictor for increased infection rate (p = 0.0037). Conclusion. We found a trend toward increased complication rates with thicker ADMs. In the future, larger prospective studies evaluating thickness may provide more information. PMID:27190645

  10. Acellular Dermal Matrix in Reconstructive Breast Surgery: Survey of Current Practice among Plastic Surgeons

    PubMed Central

    Ibrahim, Ahmed M. S.; Koolen, Pieter G. L.; Ashraf, Azra A.; Kim, Kuylhee; Mureau, Marc A. M.; Lee, Bernard T.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) in plastic surgery have become increasingly popular particularly for breast reconstruction. Despite their advantages, questions exist regarding their association with a possible increased incidence of complications. We describe a collective experience of plastic surgeons’ use of ADMs in reconstructive breast surgery using an internet-based survey. Methods: Members of the American Society of Plastic Surgeons were recruited through voluntary, anonymous participation in an online survey. The web-based survey garnered information about participant demographics and their experience with ADM use in breast reconstruction procedures. After responses were collected, all data were anonymously processed. Results: Data were ascertained through 365 physician responses of which 99% (n = 361) completed the survey. The majority of participants were men (84.5%) between 51 and 60 years (37.4%); 84.2% used ADM in breast reconstruction, including radiated patients (79.7%). ADM use was not favored for nipple reconstruction (81.5%); 94.6% of participants used drains, and 87.8% administered antibiotics postoperatively. The most common complications were seroma (70.9%) and infection (16%), although 57.4% claimed anecdotally that overall complication rate was unchanged after incorporating ADM into their practice. High cost was a deterrent for ADM use (37.5%). Conclusions: Plastic surgeons currently use ADM in breast reconstruction for both immediate and staged procedures. Of those responding, a majority of plastic surgeons will incorporate drains and use postoperative antibiotics for more than 48 hours. PMID:25973359

  11. Three-dimensional Reconstruction of the Microstructure of Human Acellular Nerve Allograft.

    PubMed

    Zhu, Shuang; Zhu, Qingtang; Liu, Xiaolin; Yang, Weihong; Jian, Yutao; Zhou, Xiang; He, Bo; Gu, Liqiang; Yan, Liwei; Lin, Tao; Xiang, Jianping; Qi, Jian

    2016-01-01

    The exact inner 3D microstructure of the human peripheral nerve has been a mystery for decades. Therefore, it has been difficult to solve several problems regarding peripheral nerve injury and repair. We used high-resolution X-ray computed microtomography (microCT) to scan a freeze-dried human acellular nerve allograft (hANA). The microCT images were then used to reconstruct a 3D digital model, which was used to print a 3D resin model of the nerve graft. The 3D digital model of the hANA allowed visualization of all planes. The magnified 3D resin model clearly showed the nerve bundles and basement membrane tubes of the hANA. Scanning electron microscopy (SEM) was used to analyse the microstructure of the hANA. Compared to the SEM images, the microCT image clearly demonstrated the microstructure of the hANA cross section at a resolution of up to 1.2 μm. The 3D digital model of the hANA facilitates a clear and easy understanding of peripheral nerve microstructure. Furthermore, the enlarged 3D resin model duplicates the unique inner structure of each individual hANA. This is a crucial step towards achieving 3D printing of a hANA or nerve that can be used as a nerve graft. PMID:27476584

  12. Three-dimensional Reconstruction of the Microstructure of Human Acellular Nerve Allograft

    PubMed Central

    Zhu, Shuang; Zhu, Qingtang; Liu, Xiaolin; Yang, Weihong; Jian, Yutao; Zhou, Xiang; He, Bo; Gu, Liqiang; Yan, Liwei; Lin, Tao; Xiang, Jianping; Qi, Jian

    2016-01-01

    The exact inner 3D microstructure of the human peripheral nerve has been a mystery for decades. Therefore, it has been difficult to solve several problems regarding peripheral nerve injury and repair. We used high-resolution X-ray computed microtomography (microCT) to scan a freeze-dried human acellular nerve allograft (hANA). The microCT images were then used to reconstruct a 3D digital model, which was used to print a 3D resin model of the nerve graft. The 3D digital model of the hANA allowed visualization of all planes. The magnified 3D resin model clearly showed the nerve bundles and basement membrane tubes of the hANA. Scanning electron microscopy (SEM) was used to analyse the microstructure of the hANA. Compared to the SEM images, the microCT image clearly demonstrated the microstructure of the hANA cross section at a resolution of up to 1.2 μm. The 3D digital model of the hANA facilitates a clear and easy understanding of peripheral nerve microstructure. Furthermore, the enlarged 3D resin model duplicates the unique inner structure of each individual hANA. This is a crucial step towards achieving 3D printing of a hANA or nerve that can be used as a nerve graft. PMID:27476584

  13. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix.

    PubMed

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua

    2016-07-01

    The objective of this study was to extract and characterize an advanced collagen aggregate (Ag-col) from porcine acellular dermal matrix (pADM). Based on histological examination, scanning electron microscopy (SEM) and atomic force microscope (AFM), Ag-col was composed of the D-periodic cross-striated collagen fibrils and thick collagen fiber bundles with uneven diameters and non-orientated arrangement. Fourier transform infrared (FTIR) spectra of pADM, Ag-col and Col were similar and revealed the presence of the triple helix. Circular dichroism (CD) analysis exhibited a slightly higher content of α-helix but inappreciably less amount of random coil structure in Ag-col compared to Col. Moreover, imino acid contents of pADM, Ag-col and Col were 222.43, 218.30 and 190.01 residues/1000 residues, respectively. From zeta potential analysis, a net charge of zero was found at pH 6.45 and 6.11 for Ag-col and Col, respectively. Differential scanning calorimetry (DSC) study suggested that the Td of Ag-col was 20°C higher than that of Col as expected, and dynamic mechanical analysis (DMA) indicated that Ag-col possessed a higher storage modulus but similar loss factor compared to Col. Therefore, the collagen aggregate from pADM could serve as a better alternative source of collagens for further applications in food and biological industries. PMID:27039117

  14. Purification design and practice for pertactin, the third component of acellular pertussis vaccine, from Bordetella pertussis.

    PubMed

    Li, Zenglan; Zhang, Yan; Wang, Qi; Li, Zhengjun; Liu, Yongdong; Zhang, Songping; Zhang, Guifeng; Ma, Guanghui; Luo, Jian; Su, Zhiguo

    2016-07-25

    Development of acellular pertussis vaccine (aPV) requires purification of several components from Bordetella pertussis. While the components pertussis toxin (PT) and filamentous hemagglutinin (FHA) have been successfully purified, the third component, pertactin, proves to be a difficult target due to its very low concentration. In order to solve its purification problem, we performed the surface potential analysis with GRASP2 program. The results demonstrated that there are two major charge patches, one negative and one positive, which are located separately on this linear protein. For this special feature, we designed a dual ion exchange chromatography strategy including an anionic exchange and a cationic exchange process for separation of pertactin from the heat extract of B. pertussis. The initial anionic exchange chromatography concentrated the product from 1.7% to 14.6%, with recovery of 80%. The second cationic exchange chromatography increased the purity to 33%, with recovery of 83%. The final purification was accomplished by hydrophobic interaction chromatography, yielding a purity of 96%. The total recovery of the three columns was 61%. Characterization of the purified antigen was performed with CD, intrinsic fluorescence, HP-SEC and western-blot, showing that the purified protein kept its natural conformation and immune-reactivity. The rationally designed process proved to be feasible, and it is suitable for large-scale preparation of the third aPV component pertactin. PMID:27302339

  15. Complex ventral hernia repair with a human acellular dermal matrix and component separation: A case series

    PubMed Central

    Garcia, Alvaro; Baldoni, Anthony

    2015-01-01

    We present a case series of 19 patients requiring complex abdominal hernia repairs. Patients presented with challenging clinical histories with 95% having multiple significant comorbidities including overweight or obesity (84%), hypertension (53%), diabetes (42%), cancer (26%), and pulmonary disease (16%). The majority of patients (68%) had prior abdominal infections and 53% had at least one failed prior hernia repair. Upon examination, fascial defects averaged 282 cm2. Anterior and posterior component separation was performed with placement of a human acellular dermal mesh. Midline abdominal closure under minimal tension was achieved primarily in all cases. Post-operative complications included 2 adverse events (11%) – one pulmonary embolism and one post-operative hemorrhage requiring transfusion; 6 wound-related complications (32%), 1 seroma (5%) and 1 patient with post-operative ileus (5%). Operative intervention was not required in any of the cases and most patients made an uneventful recovery. Increased patient age and longer OR time were independently predictive of early post-operative complications. At a median 2-year follow-up, three patients had a documented hernia recurrence (16%) and one patient was deceased due to unrelated causes. Conclusion Patients at high risk for post-operative events due to comorbidities, prior abdominal infection and failed mesh repairs do well following component separation reinforced with a human bioprosthetic mesh. Anticipated post-operative complications were managed conservatively and at a median 2-year follow-up, a low rate of hernia recurrence was observed with this approach. PMID:26288732

  16. Tetanus, diphtheria, and acellular pertussis vaccination among women of childbearing age-United States, 2013.

    PubMed

    O'Halloran, Alissa C; Lu, Peng-Jun; Williams, Walter W; Ding, Helen; Meyer, Sarah A

    2016-07-01

    The incidence of pertussis in the United States has increased since the 1990s. Tetanus, diphtheria, and acellular pertussis (Tdap) vaccination of pregnant women provides passive protection to infants. Tdap vaccination is currently recommended for pregnant women during each pregnancy, but coverage among pregnant women and women of childbearing age has been suboptimal. Data from the 2013 Behavioral Risk Factor Surveillance System (BRFSS) and 2013 National Health Interview Survey (NHIS) were used to determine national and state-specific Tdap vaccination coverage among women of childbearing age by self-reported pregnancy status at the time of the survey. Although this study could not assess coverage of Tdap vaccination received during pregnancy because questions on whether Tdap vaccination was received during pregnancy were not asked in BRFSS and NHIS, demographic and access-to-care factors associated with Tdap vaccination coverage in this population were assessed. Tdap vaccination coverage among all women 18-44 years old was 38.4% based on the BRFSS and 23.3% based on the NHIS. Overall, coverage did not differ by pregnancy status at the time of the survey. Coverage among all women 18-44 years old varied widely by state. Age, race and ethnicity, education, number of children in the household, and access-to-care characteristics were independently associated with Tdap vaccination in both surveys. We identified associations of demographic and access-to-care characteristics with Tdap vaccination that can guide strategies to improve vaccination rates in women during pregnancy. PMID:27372388

  17. Pressurized Shell Molds For Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday K.; Lusignea, Richard N.; Cornie, James

    1993-01-01

    Balanced-pressure molds used to make parts in complex shapes from fiber-reinforced metal-matrix composite materials. In single step, molding process makes parts in nearly final shapes; only minor finishing needed. Because molding pressure same on inside and outside, mold does not have to be especially strong and can be made of cheap, nonstructural material like glass or graphite. Fibers do not have to be cut to conform to molds. Method produces parts with high content of continuous fibers. Parts stiff but light in weight, and coefficients of thermal expansion adjusted. Parts resistant to mechanical and thermal fatigue superior to similar parts made by prior fabrication methods.

  18. Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism

    PubMed Central

    Tetu, Sasha G; Breakwell, Katy; Elbourne, Liam D H; Holmes, Andrew J; Gillings, Michael R; Paulsen, Ian T

    2013-01-01

    Beneath Australia's large, dry Nullarbor Plain lies an extensive underwater cave system, where dense microbial communities known as ‘slime curtains' are found. These communities exist in isolation from photosynthetically derived carbon and are presumed to be chemoautotrophic. Earlier work found high levels of nitrite and nitrate in the cave waters and a high relative abundance of Nitrospirae in bacterial 16S rRNA clone libraries. This suggested that these communities may be supported by nitrite oxidation, however, details of the inorganic nitrogen cycling in these communities remained unclear. Here we report analysis of 16S rRNA amplicon and metagenomic sequence data from the Weebubbie cave slime curtain community. The microbial community is comprised of a diverse assortment of bacterial and archaeal genera, including an abundant population of Thaumarchaeota. Sufficient thaumarchaeotal sequence was recovered to enable a partial genome sequence to be assembled, which showed considerable synteny with the corresponding regions in the genome of the autotrophic ammonia oxidiser Nitrosopumilus maritimus SCM1. This partial genome sequence, contained regions with high sequence identity to the ammonia mono-oxygenase operon and carbon fixing 3-hydroxypropionate/4-hydroxybutyrate cycle genes of N. maritimus SCM1. Additionally, the community, as a whole, included genes encoding key enzymes for inorganic nitrogen transformations, including nitrification and denitrification. We propose that the Weebubbie slime curtain community represents a distinctive microbial ecosystem, in which primary productivity is due to the combined activity of archaeal ammonia-oxidisers and bacterial nitrite oxidisers. PMID:23426011

  19. Production of slime by coagulase-negative staphylococci (CNS) isolated from clinical and subclinical mastitis in cows.

    PubMed

    Bochniarz, M; Wawron, W; Szczubiał, M

    2014-01-01

    The aim of the study was to evaluate the slime-producing ability of coagulase-negative staphylococci (CNS) isolated from clinical and subclinical mastitis in cows. The study was carried out on 100 isolates of CNS obtained from milk of 86 cows from farms located in the Lublin region (Poland). Slime-producing ability was observed in over half of coagulase-negative staphylococci (54.0% of isolated CNS), including 19 isolates of methicillin-resistant staphylococci (95.5% of all MRCNS). Of 22 isolates of CNS responsible for the clinical form of mastitis, 20 isolates (90.9%) produced slime: S. xylosus (7 isolates), S. haemolyticus (6 isolates), S. chromogenes (4 isolates), and S. sciuri (3 isolates), including 9 isolates of MRCNS (45.0%). The remaining 34 isolates of CNS (43.6%) with the ability to produce this exopolysaccharide were isolated from the milk of cows with subclinical form of mastitis: S. xylosus (12 isolates), S. sciuri (9 isolates), S. chromogenes (6 isolates), S. haemolyticus (3 isolates), S. warneri (3 isolates) and S. saprophyticus (1 isolate), including 10 isolates of MRCNS (12.8%). PMID:25286652

  20. Distinctive expression of extracellular matrix molecules at mRNA and protein levels during formation of cellular and acellular cementum in the rat.

    PubMed

    Sasano, Y; Maruya, Y; Sato, H; Zhu, J X; Takahashi, I; Mizoguchi, I; Kagayama, M

    2001-02-01

    Little is known about differential expression of extracellular matrices secreted by cementoblasts between cellular and acellular cementum. We hypothesize that cementoblasts lining acellular cementum express extracellular matrix genes differently from those lining cellular cementum, thereby forming two distinct types of extracellular matrices. To test this hypothesis, we investigated spatial and temporal gene expression of selected extracellular matrix molecules, that is type I collagen, bone sialoprotein, osteocalcin and osteopontin, during formation of both cellular and acellular cementum using in situ hybridization. In addition, their extracellularly deposited and accumulated proteins were examined immunohistochemically. The mRNA transcripts of pro-alpha1 (I) collagen were primarily localized in cementoblasts of cellular cementum and cementocytes, while those of bone sialoprotein were predominantly seen in cementoblasts lining acellular cementum. In contrast, osteocalcin was expressed by both types of cementoblasts and cementocytes and so was osteopontin but only transiently. Our immunohistochemical examination revealed that translated proteins were localized extracellularly where the genes had been expressed intracellularly. The present study demonstrated the distinctive expression of genes and proteins of the extracellular matrix molecules between cellular and acellular cementum. PMID:11432645

  1. Mold exposure and health effects following hurricanes Katrina and Rita.

    PubMed

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact. PMID:20070193

  2. Presence of icaA and icaD Genes and Slime Production in a Collection of Staphylococcal Strains from Catheter-Associated Infections

    PubMed Central

    Arciola, Carla Renata; Baldassarri, Lucilla; Montanaro, Lucio

    2001-01-01

    Both Staphylococcus epidermidis and Staphylococcus aureus are important causes of infections associated with catheters and other medical devices. It has recently been shown that not only S. epidermidis but also S. aureus can produce slime and carries the ica operon responsible for slime production. In the operon, coexpression of icaA and icaD is required for full slime synthesis. In this study, the presence of icaA and icaD was determined in a collection of 91 staphylococcal (68 S. epidermidis and 23 S. aureus) strains from intravenous catheter-associated infections, in 10 strains from the skin and mucosa of healthy volunteers, and in two reference strains by a PCR method. Slime-forming ability was tested on Congo red agar plates; 49% of S. epidermidis strains from catheters and, surprisingly, 61% of S. aureus strains were icaA and icaD positive and slime forming. All the saprophytic strains turned out to be negative for both icaA and icaD and also non-slime forming. Two S. aureus and one S. epidermidis strain from catheters, detected as icaA and icaD positive by PCR analysis and as slime forming (black colonies) at 24 h on Congo red agar, at 48 h exhibited tiny red spikes at the center of black colonies. The onset of these variants could not be ascribed to a mutagenic potential of Congo red, which, in the Ames test, was devoid of mutagenicity. PCR analysis showed that these red variants were negative for both icaA and icaD and even lacking the entire icaADBC operon. The data reported indicate an important role of ica genes as a virulence marker in staphylococcal infections from intravenous catheters. PMID:11376050

  3. Molds on Food: Are They Dangerous?

    MedlinePlus

    ... Administrative Forms Standard Forms Skip Navigation Z7_0Q0619C0JGR010IFST1G5B10H1 Web Content Viewer (JSR 286) Actions ${title} Loading... / Topics / ... Molds on Food: Are they dangerous? Z7_0Q0619C0JGR010IFST1G5B10H3 Web Content Viewer (JSR 286) Actions ${title} Loading... Z7_ ...

  4. Chemorheology of in-mold coating for compression molded SMC applications

    NASA Astrophysics Data System (ADS)

    Ko, Seunghyun; Straus, Elliott J.; Castro, Jose M.

    2015-05-01

    In-mold coating (IMC) is applied to compression molded sheet molding compound (SMC) exterior automotive or truck body panels as an environmentally friendly alternative to make the surface conductive for subsequent electrostatic painting operations. The coating is a thermosetting liquid that when injected onto the surface of the part cures and bonds to provide a smooth conductive surface. In order to optimize the IMC process, it is essential to predict the time available for flow, that is the time before the thermosetting reaction starts (inhibition time) as well as the time when the coating has enough structural integrity so that the mold can be opened without damaging the part surface (cure time). To predict both the inhibition time and the cure time, it is critical to study the chemorheology of IMC. In this paper, we study the chemorheology for a typical commercial IMC system, and show its relevance to both the flow and cure time for the IMC stage during SMC compression molding.

  5. Mechanical behaviors of molded pulp material

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; Wang, Huaiwen; Chen, Jinlong

    2008-11-01

    Many mechanical phenomena of interest for web-like materials, such as molded pulp, take place at the micro-scale. A SEM (scanning electron microscope) with SHIMADZU electrohydraulic servo experimental system was employed to study the micro-scale mechanical behavior of molded pulp materials. Uniaxial tension tests of molded pulp specimens were carried out, resulting in the stress-strain curves. Experimental results indicated that the material is not only elasticplastic, but also emplastic. The surface morphology evolution of the tensile specimen was visually monitored during the process of loading, and some SEM micrographs were captured under different load levels. Full-field deformations over an area of 190x170 μm2 were obtained using the digital image correlation method. The higher strains occurred at the fibre fines zone or around voids whereas the lower strains were obviously found at long fibres, demonstrating that the strain distribution is obviously uneven. The reason may be due to the random orientation and the fraction of the fibres, and the presence of impurities and voids as well.

  6. Direct Hospital Cost of Outcome Pathways in Implant-Based Reconstruction with Acellular Dermal Matrices

    PubMed Central

    Qureshi, Ali A.; Broderick, Kristen; Funk, Susan; Reaven, Nancy; Tenenbaum, Marissa M.

    2016-01-01

    Background: Current cost data on tissue expansion followed by exchange for permanent implant (TE/I) reconstruction lack a necessary assessment of the experience of a heterogenous breast cancer patient population and their multiple outcome pathways. We extend our previous analysis to that of direct hospital cost as bundling of payments is likely to follow the changing centralization of cancer care at the hospital level. Methods: We performed a retrospective analysis (2003–2009) of TE/I reconstructions with or without an acellular dermal matrix (ADM), namely Alloderm RTM. Postreconstructive events were analyzed and organized into outcome pathways as previously described. Aggregated and normalized inpatient and outpatient hospital direct costs and physician reimbursement were generated for each outcome pathway with or without ADM. Results: Three hundred sixty-seven patients were analyzed. The average 2-year hospital direct cost per TE/I breast reconstruction patient was $11,862 in the +ADM and $12,319 in the −ADM groups (P > 0.05). Initial reconstructions were costlier in the +ADM ($6,868) than in the −ADM ($5,615) group, but the average cost of subsequent postreconstructive events within 2 years was significantly lower in +ADM ($5,176) than −ADM ($6,704) patients (P < 0.05). When a complication occurred, but reconstruction was still completed within 2 years, greater costs were incurred in the −ADM than in the +ADM group for most scenarios, leading to a net equalization of cost between study groups. Conclusion: Although direct hospital cost is an important factor for resource and fund allocation, it should not remain the sole factor when deciding to use ADM in TE/I reconstruction.

  7. On fragmenting, densely mineralised acellular protrusions into articular cartilage and their possible role in osteoarthritis.

    PubMed

    Boyde, A; Davis, G R; Mills, D; Zikmund, T; Cox, T M; Adams, V L; Niker, A; Wilson, P J; Dillon, J P; Ranganath, L R; Jeffery, N; Jarvis, J C; Gallagher, J A

    2014-10-01

    High density mineralised protrusions (HDMP) from the tidemark mineralising front into hyaline articular cartilage (HAC) were first described in Thoroughbred racehorse fetlock joints and later in Icelandic horse hock joints. We now report them in human material. Whole femoral heads removed at operation for joint replacement or from dissection room cadavers were imaged using magnetic resonance imaging (MRI) dual echo steady state at 0.23 mm resolution, then 26-μm resolution high contrast X-ray microtomography, sectioned and embedded in polymethylmethacrylate, blocks cut and polished and re-imaged with 6-μm resolution X-ray microtomography. Tissue mineralisation density was imaged using backscattered electron SEM (BSE SEM) at 20 kV with uncoated samples. HAC histology was studied by BSE SEM after staining block faces with ammonium triiodide solution. HDMP arise via the extrusion of an unknown mineralisable matrix into clefts in HAC, a process of acellular dystrophic calcification. Their formation may be an extension of a crack self-healing mechanism found in bone and articular calcified cartilage. Mineral concentration exceeds that of articular calcified cartilage and is not uniform. It is probable that they have not been reported previously because they are removed by decalcification with standard protocols. Mineral phase morphology frequently shows the agglomeration of many fine particles into larger concretions. HDMP are surrounded by HAC, are brittle, and show fault lines within them. Dense fragments found within damaged HAC could make a significant contribution to joint destruction. At least larger HDMP can be detected with the best MRI imaging ex vivo. PMID:25132002

  8. Schwann-like cells seeded in acellular nerve grafts improve nerve regeneration

    PubMed Central

    2014-01-01

    Background This study evaluated whether Schwann-like cells (SLCs) induced from bone marrow-derived mesenchymal stem cells (BM-MSCs) transplanted into acellular nerve grafts (ANGs) could repair nerve defects compared with nerve isografts and ANGs with BM-MSCs. Methods BM-MSCs extracted, separated and purified from the bone marrow of rats, and some of the BM-MSCs were cultured with mixed induction agents that could induce BM-MSCs into SLCs. Either SLCs or BM-MSCs were seeded onto 10-mm ANGs, and the isografts were chosen as the control. The walking-track test, tibialis anterior muscle weight measurement, electrophysiological examination, toluidine blue staining, transmission electron micrographs and immunostaining of S-100 and VEGF in these three groups were evaluated in a 10-mm rat sciatic injury-repair model. Results The walking-track test, tibialis anterior muscle weight measurement and electrophysiological examination of the sciatic nerve suggested the groups of ANGs with SLCs and isografts obtained better results than the BM-MSC group (P < 0.05). Meanwhile, the results of the SLCs and isograft groups were similar (P > 0.05). All the histomorphometric analyses (toluidine blue staining, transmission electron micrographs and immunostaining of S-100 and VEGF) showed that there were more regenerating nerve fibers in the group of ANGs with SLCs than the BM-MSCs (P < 0.05), but there was no significant difference between the SLC and isograft groups (P > 0.05). Conclusions SLCs seeded in ANGs and isografts show better functional regeneration compared with BM-MSCs seeded in ANGs. Additionally, SLCs combined with ANGs present almost the same outcome as the isografts. Therefore, SLCs with ANGs can be a good choice in nerve defect repairs. PMID:24885337

  9. A Complication Analysis of 2 Acellular Dermal Matrices in Prosthetic-based Breast Reconstruction

    PubMed Central

    Page, Eugenia K.; Hart, Alexandra; Rudderman, Randall; Carlson, Grant W.; Losken, Albert

    2016-01-01

    Background: Acellular dermal matrices (ADM) are now routine in postmastectomy prosthetic-based breast reconstruction. The goal of the current study was to compare the complications of 2 ADM products—AlloDerm and Cortiva. Methods: A retrospective analysis of prosthetic-based breast reconstruction in Atlanta, Ga., over 5 years. Inclusion criteria were the use of the ADM types (AlloDerm or Cortiva) and use of a tissue expander or implant. Statistical analysis compared group demographics, risk factors, and early complications. Results: Of the 298 breast reconstructions, 174 (58.4%) used AlloDerm and 124 (41.6%) used Cortiva. There was no difference in overall complication frequency (16 AlloDerm and 18 Cortiva; P = 0.195). Within specific categories, there was a difference in mastectomy skin flap necrosis, but, based on further regression analysis, this was attributable to differences in body mass index (P = 0.036). Furthermore, there were no differences in the rates of infection (6 AlloDerm and 5 Cortiva; P = 1.0), seroma/hematoma (9 AlloDerm and 7 Cortiva; P = 1.0), or drain duration (13.2 day AlloDerm and 14.2 day Cortiva, P = 0.2). By using a general estimating equation for binomial logistical regression, it was found that only current tobacco use (P = 0.033) was a significant predictor for a complication. Trending predictors were body mass index (P = 0.074) and age (P = 0.093). The type of matrix was not a significant predictor for any of the recorded complication (P = 0.160). Conclusions: Although AlloDerm is well established, we have shown that Cortiva has an equivalent complication frequency. Future work will focus on long-term outcome measures and histological evaluation of vascularization and integration. PMID:27536479

  10. Incidence of Seromas and Infections Using Fenestrated versus Nonfenestrated Acellular Dermal Matrix in Breast Reconstructions

    PubMed Central

    Palaia, David A.; Arthur, Karen S.; Cahan, Anthony C.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) provide clinical benefits in breast reconstruction but have been associated with increased postoperative complications, most frequently seromas. Fenestration of the ADM before insertion into the reconstructed breast may reduce the incidence of postoperative complications. In this retrospective analysis, postoperative complications were assessed after breast reconstruction with or without fenestrated ADMs. Methods: Patients who underwent immediate 2-staged implant breast reconstructions using ADM at a single center were assessed. The number of reconstructed breasts was stratified by ADM fenestration status and ADM type. The incidence of seroma, infection, extrusion, and explantation, and cosmetic score, was compared within the 2 stratified groups. A multivariable regression was performed to identify independent risk factors associated with these complications and aesthetic outcome. Results: In total, data from 450 patients who had 603 breast reconstructions using either AlloDerm or FlexHD demonstrated a significantly higher incidence of seroma with nonfenestrated ADMs (20%) versus fenestrated ADMs (11%; P = 0.0098). Rates of infection and explantation, and cosmetic score, were not influenced by fenestration status. In the multivariable analysis, ADM fenestration remained a significant protective factor for seroma formation. FlexHD also yielded a lower incidence of extrusion (P = 0.0031) and a higher cosmetic score (P = 0.0466) compared with AlloDerm after adjusting for other risk factors. Conclusions: The results of this study support ADM fenestration for reduction of seroma incidence in breast reconstruction, without affecting cosmetic results. Additionally, the choice of ADM may reduce extrusion incidence and improve aesthetic outcomes. PMID:26893994

  11. Plastic Surgery and Acellular Dermal Matrix: Highlighting Trends from 1999 to 2013

    PubMed Central

    Daar, David A; Gandy, Jessica R; Clark, Emily G; Mowlds, Donald S; Paydar, Keyianoosh Z; Wirth, Garrett A

    2016-01-01

    The last decade has ushered in a rapidly expanding global discussion regarding acellular dermal matrix (ADM) applications, economic analyses, technical considerations, benefits, and risks, with recent emphasis on ADM use in breast surgery. This study aims to evaluate global trends in ADM research using bibliometric analysis. The top nine Plastic Surgery journals were determined by impact factor (IF). Each issue of the nine journals between 1999 and 2013 was accessed to compile a database of articles discussing ADM. Publications were further classified by IF, authors’ geographic location, study design, and level of evidence (LOE, I-V). Productivity index and productivity share were calculated for each region. In total, 256 ADM articles were accessed. The annual global publication volume increased significantly by 4.2 (0.87) articles per year (p<0.001), with a mean productivity index of 36.3 (59.0). The mean impact factor of the nine journals increased significantly from 0.61 (0.11) to 2.47 (0.99) from 1993 to 2013 (p<0.001). Despite this increase in the global ADM literature, the majority of research was of weaker LOE (level I: 2.29% and level II: 9.17%). USA contributed the most research (87%), followed by Asia (4.76%) and Western Europe (4.71%). USA contributed the greatest volume of research. Regarding clinical application of ADM, the majority of publications focused on ADM use in breast surgery, specifically breast reconstruction (154 articles, 60.2%). The majority of research was of lower LOE; thus, efforts should be made to strengthen the body of literature, particularly with regard to cost analysis. PMID:27579264

  12. Histologic, Molecular, and Clinical Evaluation of Explanted Breast Prostheses, Capsules, and Acellular Dermal Matrices for Bacteria

    PubMed Central

    Poppler, Louis; Cohen, Justin; Dolen, Utku Can; Schriefer, Andrew E.; Tenenbaum, Marissa M.; Deeken, Corey; Chole, Richard A.; Myckatyn, Terence M.

    2015-01-01

    Background Subclinical infections, manifest as biofilms, are considered an important cause of capsular contracture. Acellular dermal matrices (ADMs) are frequently used in revision surgery to prevent recurrent capsular contractures. Objective We sought to identify an association between capsular contracture and biofilm formation on breast prostheses, capsules, and ADMs in a tissue expander/implant (TE/I) exchange clinical paradigm. Methods Biopsies of the prosthesis, capsule, and ADM from patients (N = 26) undergoing TE/I exchange for permanent breast implant were evaluated for subclinical infection. Capsular contracture was quantified with Baker Grade and intramammary pressure. Biofilm formation was evaluated with specialized cultures, rtPCR, bacterial taxonomy, live:dead staining, and scanning electron microscopy (SEM). Collagen distribution, capsular histology, and ADM remodeling were quantified following fluorescent and light microscopy. Results Prosthetic devices were implanted from 91 to 1115 days. Intramammary pressure increased with Baker Grade. Of 26 patients evaluated, one patient had a positive culture and one patient demonstrated convincing evidence of biofilm morphology on SEM. Following PCR amplification 5 samples randomly selected for 16S rRNA gene sequencing demonstrated an abundance of suborder Micrococcineae, consistent with contamination. Conclusions Our data suggest that bacterial biofilms likely contribute to a proportion, but not all diagnosed capsular contractures. Biofilm formation does not appear to differ significantly between ADMs or capsules. While capsular contracture remains an incompletely understood but common problem in breast implant surgery, advances in imaging, diagnostic, and molecular techniques can now provide more sophisticated insights into the pathophysiology of capsular contracture. Level of Evidence PMID:26229126

  13. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix

    PubMed Central

    Ye, Ken; Traianedes, Kathy; Choong, Peter F. M.; Myers, Damian E.

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell–matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair. PMID:26858950

  14. A New Approach to Minimize Acellular Dermal Matrix Use in Prosthesis-based Breast Reconstruction

    PubMed Central

    Hadad, Ivan; Liu, Allen S.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) are often used to improve lower-pole contour, as well as allow for single-stage reconstruction, but numerous studies have shown an increased complication rate using ADM. As such, our group has developed a minimal-ADM-use technique to lower complications while effectively recreating lower-pole contour. Methods: A total of 380 postmastectomy prosthesis-based breast reconstructions were performed in 265 patients by a single surgeon. One hundred eight reconstructions were performed using the traditional ADM technique, with a large piece of ADM along the entire inferior and lateral borders. Two hundred twenty-five reconstructions were performed with the minimal-use technique, patching only the lateral area of the reconstruction. Thirty-five reconstructions were performed without the use of any ADM for high-risk reconstructions, most often in morbidly obese patients. Results: Comparing the traditional technique with the minimal-use technique, the seroma rate dropped from 3% to 0%. The rate of infection and reconstruction loss fell from 9% to 1%. Upon greatly reducing or eliminating the use of ADM use in obese patients, the seroma rate decreased from 15.4% to 5.7%, and the reconstruction loss rate decreased from 38% to 9%. Conclusions: This article describes a new surgical approach to minimize the amount of ADM necessary to create an aesthetically pleasing breast reconstruction. We believe that this approach helps avoid the complications of seroma, infection, and loss of the reconstruction. In certain obese patients, total avoidance of ADM may be the better choice. PMID:26301161

  15. Neoinnervation and neovascularization of acellular pericardial-derived scaffolds in myocardial infarcts.

    PubMed

    Gálvez-Montón, Carolina; Fernandez-Figueras, M Teresa; Martí, Mercè; Soler-Botija, Carolina; Roura, Santiago; Perea-Gil, Isaac; Prat-Vidal, Cristina; Llucià-Valldeperas, Aida; Raya, Ángel; Bayes-Genis, Antoni

    2015-01-01

    Engineered bioimplants for cardiac repair require functional vascularization and innervation for proper integration with the surrounding myocardium. The aim of this work was to study nerve sprouting and neovascularization in an acellular pericardial-derived scaffold used as a myocardial bioimplant. To this end, 17 swine were submitted to a myocardial infarction followed by implantation of a decellularized human pericardial-derived scaffold. After 30 days, animals were sacrificed and hearts were analyzed with hematoxylin/eosin and Masson's and Gallego's modified trichrome staining. Immunohistochemistry was carried out to detect nerve fibers within the cardiac bioimplant by using βIII tubulin and S100 labeling. Isolectin B4, smooth muscle actin, CD31, von Willebrand factor, cardiac troponin I, and elastin antibodies were used to study scaffold vascularization. Transmission electron microscopy was performed to confirm the presence of vascular and nervous ultrastructures. Left ventricular ejection fraction (LVEF), cardiac output (CO), stroke volume, end-diastolic volume, end-systolic volume, end-diastolic wall mass, and infarct size were assessed by using magnetic resonance imaging (MRI). Newly formed nerve fibers composed of several amyelinated axons as the afferent nerve endings of the heart were identified by immunohistochemistry. Additionally, neovessel formation occurred spontaneously as small and large isolectin B4-positive blood vessels within the scaffold. In summary, this study demonstrates for the first time the neoformation of vessels and nerves in cell-free cardiac scaffolds applied over infarcted tissue. Moreover, MRI analysis showed a significant improvement in LVEF (P = 0.03) and CO (P = 0.01) and a 43 % decrease in infarct size (P = 0.007). PMID:26205795

  16. Light-Activated Sealing of Acellular Nerve Allografts following Nerve Gap Injury.

    PubMed

    Fairbairn, Neil G; Ng-Glazier, Joanna; Meppelink, Amanda M; Randolph, Mark A; Valerio, Ian L; Fleming, Mark E; Kochevar, Irene E; Winograd, Jonathan M; Redmond, Robert W

    2016-07-01

    Introduction Photochemical tissue bonding (PTB) uses visible light to create sutureless, watertight bonds between two apposed tissue surfaces stained with photoactive dye. In phase 1 of this two-phase study, nerve gaps repaired with bonded isografts were superior to sutured isografts. When autograft demand exceeds supply, acellular nerve allograft (ANA) is an alternative although outcomes are typically inferior. This study assesses the efficacy of PTB when used with ANA. Methods Overall 20 male Lewis rats had 15-mm left sciatic nerve gaps repaired using ANA. ANAs were secured using epineurial suture (group 1) or PTB (group 2). Outcomes were assessed using sciatic function index (SFI), gastrocnemius muscle mass retention, and nerve histomorphometry. Historical controls from phase 1 were used to compare the performance of ANA with isograft. Statistical analysis was performed using analysis of variance and Bonferroni all-pairs comparison. Results All ANAs had signs of successful regeneration. Mean values for SFI, muscle mass retention, nerve fiber diameter, axon diameter, and myelin thickness were not significantly different between ANA + suture and ANA + PTB. On comparative analysis, ANA + suture performed significantly worse than isograft + suture from phase 1. However, ANA + PTB was statistically comparable to isograft + suture, the current standard of care. Conclusion Previously reported advantages of PTB versus suture appear to be reduced when applied to ANA. The lack of Schwann cells and neurotrophic factors may be responsible. PTB may improve ANA performance to an extent, where they are equivalent to autograft. This may have important clinical implications when injuries preclude the use of autograft. PMID:26878685

  17. Improved Peripheral Nerve Regeneration Using Acellular Nerve Allografts Loaded with Platelet-Rich Plasma

    PubMed Central

    Zheng, Canbin; Huang, Xijun; He, Caifeng; Jiang, Li; Quan, Daping

    2014-01-01

    Acellular nerve allografts (ANAs) behave in a similar manner to autografts in supporting axonal regeneration in the repair of short peripheral nerve defects but fail in larger defects. The objective of this article is to evaluate the effect of ANA supplemented with platelet-rich plasma (PRP) to improve nerve regeneration after surgical repair and to discuss the mechanisms that underlie this approach. Autologous PRP was obtained from rats by double-step centrifugation and was characterized by determining platelet numbers and the release of growth factors. Forty-eight Sprague–Dawley rats were randomly divided into 4 groups (12/group), identified as autograft, ANA, ANA loaded with PRP (ANA+PRP), and ANA loaded with platelet-poor plasma (PPP, ANA+PPP). All grafts were implanted to bridge long-gap (15 mm) sciatic nerve defects. We found that PRP with a high platelet concentration exhibited a sustained release of growth factors. Twelve weeks after surgery, the autograft group displayed the highest level of reinnervation, followed by the ANA+PRP group. The ANA+PRP group showed a better electrophysiology response for amplitude and conduction velocity than the ANA and ANA+PPP groups. Based on histological evaluation, the ANA+PRP and autograft groups had higher numbers of regenerating nerve fibers. Quantitative real-time polymerase chain reaction (qRT-PCR) demonstrated that PRP boosted expression of neurotrophins in the regenerated nerves. Moreover, the ANA+PRP and autograft groups showed excellent physiological outcomes in terms of the prevention of muscle atrophy. In conclusion, ANAs loaded with PRP as tissue-engineered scaffolds can enhance nerve regeneration and functional recovery after the repair of large nerve gaps nearly as well as autografts. PMID:24901030

  18. Plastic Surgery and Acellular Dermal Matrix: Highlighting Trends from 1999 to 2013.

    PubMed

    Daar, David A; Gandy, Jessica R; Clark, Emily G; Mowlds, Donald S; Paydar, Keyianoosh Z; Wirth, Garrett A

    2016-05-01

    The last decade has ushered in a rapidly expanding global discussion regarding acellular dermal matrix (ADM) applications, economic analyses, technical considerations, benefits, and risks, with recent emphasis on ADM use in breast surgery. This study aims to evaluate global trends in ADM research using bibliometric analysis. The top nine Plastic Surgery journals were determined by impact factor (IF). Each issue of the nine journals between 1999 and 2013 was accessed to compile a database of articles discussing ADM. Publications were further classified by IF, authors' geographic location, study design, and level of evidence (LOE, I-V). Productivity index and productivity share were calculated for each region. In total, 256 ADM articles were accessed. The annual global publication volume increased significantly by 4.2 (0.87) articles per year (p<0.001), with a mean productivity index of 36.3 (59.0). The mean impact factor of the nine journals increased significantly from 0.61 (0.11) to 2.47 (0.99) from 1993 to 2013 (p<0.001). Despite this increase in the global ADM literature, the majority of research was of weaker LOE (level I: 2.29% and level II: 9.17%). USA contributed the most research (87%), followed by Asia (4.76%) and Western Europe (4.71%). USA contributed the greatest volume of research. Regarding clinical application of ADM, the majority of publications focused on ADM use in breast surgery, specifically breast reconstruction (154 articles, 60.2%). The majority of research was of lower LOE; thus, efforts should be made to strengthen the body of literature, particularly with regard to cost analysis. PMID:27579264

  19. Histologic Characterization of Acellular Dermal Matrices in a Porcine Model of Tissue Expander Breast Reconstruction

    PubMed Central

    Carruthers, Christopher A.; Dearth, Christopher L.; Reing, Janet E.; Kramer, Caroline R.; Gagne, Darcy H.; Crapo, Peter M.; Garcia, Onelio; Badhwar, Amit; Scott, Jeffrey R.

    2015-01-01

    Background: Acellular dermal matrices (ADMs) have been commonly used in expander-based breast reconstruction to provide inferolateral prosthesis coverage. Although the clinical performance of these biologic scaffold materials varies depending on a number of factors, an in-depth systematic characterization of the host response is yet to be performed. The present study evaluates the biochemical composition and structure of two ADMs, AlloDerm® Regenerative Tissue Matrix and AlloMax™ Surgical Graft, and provides a comprehensive spatiotemporal characterization in a porcine model of tissue expander breast reconstruction. Methods: Each ADM was characterized with regard to thickness, permeability, donor nucleic acid content, (residual double-stranded DNA [dsDNA]), and growth factors (basic fibroblast growth factor [bFGF], vascular endothelial growth factor [VEGF], and transforming growth factor-beta 1 [TGF-β1]). Cytocompatibility was evaluated by in vitro cell culture on the ADMs. The host response was evaluated at 4 and 12 weeks at various locations within the ADMs using established metrics of the inflammatory and tissue remodeling response: cell infiltration, multinucleate giant cell formation, extent of ADM remodeling, and neovascularization. Results: AlloMax incorporated more readily with surrounding host tissue as measured by earlier and greater cell infiltration, fewer foreign body giant cells, and faster remodeling of ADM. These findings correlated with the in vitro composition and cytocompatibility analysis, which showed AlloMax to more readily support in vitro cell growth. Conclusions: AlloMax and AlloDerm demonstrated distinct remodeling characteristics in a porcine model of tissue expander breast reconstruction. PMID:24941900

  20. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix.

    PubMed

    Ye, Ken; Traianedes, Kathy; Choong, Peter F M; Myers, Damian E

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair. PMID:26858950

  1. The use of an acellular collagen matrix in penile augmentation: A pilot study in Saudi Arabia

    PubMed Central

    Tealab, Alaa A.; Maarouf, Aref M.; Habous, Mohamed; Ralph, David J.; Abohashem, Safwat

    2013-01-01

    Objectives To assess the use of an acellular collagen matrix (Pelvicol, Bard Medical, Covington, GA, USA), a successful agent for reconstructive surgery, for enhancing penile girth. Patients and methods Between June and December 2011, 18 patients (mean age 24 years, range 19–38) had their penis augmented with Pelvicol; the mean (range) penile circumference was 9.2 (7–13) cm before treatment. They were divided into two groups; the first (10 patients) had a Pelvicol sheet of 8 × 12 cm inserted through a V–Y suprapubic incision and wrapped around the shaft in a bilayer under the dartos fascia, but not covering the urethra, with division of the suspensory ligament. The second group of eight patients had the Pelvicol inserted through a subcoronal degloving incision and placed in one layer. The penile circumference was measured at 6 and 12 months after surgery. Patient satisfaction at 1 year after surgery was assessed as ‘poor’, ‘unsatisfied’, ‘moderately satisfied’, ‘highly satisfied’, or ‘excellent’. Results The mean (range) increase in girth (circumference) was 2.8 (2–3.2) cm in group 1 and 1.7 (1.2–2) cm in group 2. In group 1, two patients were highly satisfied, four moderately satisfied and four unsatisfied; in group 2, three were moderately satisfied and five unsatisfied. Complications were common in both groups, with five patients in group 1 and three in group 2 developing severe penile oedema and ischaemic shaft ulcers. Removal of the graft was required in two patients in each group. Conclusion This pilot study shows that Pelvicol is not an ideal option for enhancing penile girth, and the method of placement did not apparently influence the result. PMID:26558077

  2. Ex vivo evaluation of acellular and cellular collagen-glycosaminoglycan flowable matrices.

    PubMed

    Hodgkinson, Tom; Bayat, Ardeshir

    2015-08-01

    Collagen-glycosaminoglycan flowable matrices (CGFM) are increasingly finding utility in a diversifying number of cutaneous surgical procedures. Cellular in-growth and vascularisation of CGFM remain rate-limiting steps, increasing cost and decreasing efficacy. Through in vitro and ex vivo culture methods, this study investigated the improvement of injectable CGFM by the incorporation of hyaluronan (HA) and viable human cells (primary human dermal fibroblasts (PHDFs) and bone marrow-derived mesenchymal stem cells (BM-MSCs)). Ex vivo investigations included the development and evaluation of a human cutaneous wound healing model for the comparison of dermal substitutes. Cells mixed into the Integra Flowable Wound Matrix (IFWM), a commercially available CGFM, were confirmed to be viable and proliferative through MTT assays (p  <  0.05). PHDFs proliferated with greater rapidity than BM-MSCs up to 1 week in culture (p  <  0.05), with PHDF proliferation further enhanced by HA supplementation (p  <  0.05). After scaffold mixing, gene expression was not significantly altered (qRT-PCR). PHDF and BM-MSC incorporation into ex vivo wound models significantly increased re-epithelialisation rate, with maximal effects observed for BM-MSC supplemented IFWM. HA supplementation to PHDF populated IFWM increased re-epithelialisation but had no significant effect on BM-MSC populated IFWM. In conclusion, when combined with PHDF, HA increased re-epithelialisation in IFWM. BM-MSC incorporation significantly improved re-epithelialisation in ex vivo models over acellular and PHDF populated scaffolds. Viable cell incorporation into IFWM has potential to significantly benefit wound healing in chronic and acute cutaneous injuries by allowing a point-of-care matrix to be formed from autologous or allogenic cells and bioactive molecules. PMID:26181360

  3. Morphological and Biochemical Properties of a Sphaerotilus sp. Isolated From Paper Mill Slimes

    PubMed Central

    Pellegrin, Véronique; Juretschko, Stefan; Wagner, Michael; Cottenceau, Gilles

    1999-01-01

    Four strains of filamentous bacteria were isolated from slimes collected in different paper mill factories. Morphological and physiological characterization of the isolates indicated an affiliation with the genus Sphaerotilus. However, while the physiological properties of the isolates were almost identical, pronounced physiological differences between the isolates and Sphaerotilus natans DSM 6575T, DSM 565, and DSM 566 with respect to their ability to metabolize complex polysaccharides, sugars, polyalcohols, or organic acids as carbon sources were detected. In contrast to the analyzed culture collection strains of S. natans, all paper mill isolates were able to grow at elevated temperatures of up to 40°C. Comparative sequence analysis of nearly complete 16S ribosomal DNA (rDNA) sequences from the four new isolates demonstrated that the retrieved sequences were highly similar to each other (99.6 to 99.8% similarity) and to previously published partial 16S rDNA sequences of S. natans DSM 6575T and ATCC 15291. Polyphasic characterization of the isolated Sphaerotilus strains revealed interesting adaptations of the strains to the environmental paper mill conditions with regard to temperature tolerance and utilization of cellulose and starch. PMID:9872774

  4. Two-Gene Phylogeny of Bright-Spored Myxomycetes (Slime Moulds, Superorder Lucisporidia)

    PubMed Central

    Fiore-Donno, Anna Maria; Clissmann, Fionn; Meyer, Marianne; Schnittler, Martin; Cavalier-Smith, Thomas

    2013-01-01

    Myxomycetes, or plasmodial slime-moulds, are one of the largest groups in phylum Amoebozoa. Nonetheless, only ∼10% are in the database for the small subunit (SSU) ribosomal RNA gene, the most widely used gene for phylogenetics and barcoding. Most sequences belong to dark-spored Myxomycetes (order Fuscisporida); the 318 species of superorder Lucisporidia (bright-spored) are represented by only eleven genuine sequences. To compensate for this, we provide 66 new sequences, 37 SSU rRNA and 29 elongation factor 1-alpha (EF-1α), for 82% of the genera of Lucisporidia. Phylogenetic analyses of single- and two-gene alignments produce congruent topologies and reveal both morphological characters that have been overemphasised and those that have been overlooked in past classifications. Both classical orders, Liceida and Trichiida, and several families and genera are para/polyphyletic; some previously unrecognised clades emerge. We discuss possible evolutionary pathways. Our study fills a gap in the phylogeny of Amoebozoa and provides an extensive SSU rRNA sequence reference database for environmental sampling and barcoding. We report a new group I intron insertion site for Myxomycetes in one Licea. PMID:23667494

  5. Persistence of DNA in Carcasses, Slime and Avian Feces May Affect Interpretation of Environmental DNA Data

    PubMed Central

    Merkes, Christopher M.; McCalla, S. Grace; Jensen, Nathan R.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    The prevention of non-indigenous aquatic invasive species spreading into new areas is a goal of many resource managers. New techniques have been developed to survey for species that are difficult to capture with conventional gears that involve the detection of their DNA in water samples (eDNA). This technique is currently used to track the invasion of bigheaded carps (silver carp and bighead carp; Hypophthalmichthys molitrix and H. nobilis) in the Chicago Area Waterway System and Upper Mississippi River. In both systems DNA has been detected from silver carp without the capture of a live fish, which has led to some uncertainty about the source of the DNA. The potential contribution to eDNA by vectors and fomites has not been explored. Because barges move from areas with a high abundance of bigheaded carps to areas monitored for the potential presence of silver carp, we used juvenile silver carp to simulate the barge transport of dead bigheaded carp carcasses, slime residue, and predator feces to determine the potential of these sources to supply DNA to uninhabited waters where it could be detected and misinterpreted as indicative of the presence of live bigheaded carp. Our results indicate that all three vectors are feasible sources of detectable eDNA for at least one month after their deposition. This suggests that current monitoring programs must consider alternative vectors of DNA in the environment and consider alternative strategies to minimize the detection of DNA not directly released from live bigheaded carps. PMID:25402206

  6. Development effort of sheet molding compound (SMC) parabolic trough panels

    SciTech Connect

    Kirsch, P.A.; Champion, R.L.

    1982-01-01

    The objectives of the development effort are to: investigate the problems of molding parabolic trough solar reflector panels of sheet molding compound (SMC); develop molding techniques and processes by which silvered glass reflector sheets can be integrally molded into SMC trough panels; provide representative prototype panels for evaluation; and provide information regarding the technical feasibility of molding SMC panels in high volume production. The approach taken to meet the objectives was to design the parabolic panel, fabricate a prototype die, choose an SMC formulation and mold the glass and SMC together into a vertex to rim mirrored panel. The main thrust of the program was to successfully co-mold a mirrored glass sheet with the SMC. Results indicate that mirrored glass sheets, if properly strengthened to withstand the temperature and pressure of the molding process, can be successfully molded with SMC in a single press stroke using standard compression molding techniques. The finalized design of the trough panel is given. The SMC formulation chosen is a low shrink, low profile SMC using 40% by weight one inch chopped glass fibers in a uv stabilized polyester resin matrix. A program to test for the adhesion between mirrored glass sheets and the SMC is discussed briefly. (LEW)

  7. Heat pipe cooling of an aerospace foam mold manufacturing process

    SciTech Connect

    Hahn, D.R.; Feldman, K.T.; Marjon, P.L.

    1980-01-01

    A passive heat pipe cooling system was developed to cool a Bendix foam mold used to manufacture aerospace foam parts. The cooling system consists of ten copper-water heat pipes with cooling fins implanted into the aluminum mold and cooled by a domestic size fan blowing ambient air. The number and location of the heat pipes was determined to provide the most effective cooling and mold isothermalization based on experimental measurements of mold temperatures during the exothermic foaming process and from practical considerations of the mold geometry and use. Performance tests were cnducted on an individual heat pipe and on the ten heat pipes implanted in the mold. Both exothermic foam heating and internal electrical heat input were used in the experiments. The experimental test results indicate that the heat pipe cooling system with a fan is four to six times faster than free convection cooling of the mold with no heat pipes or fan and nearly twice as fast as cooling by the fan only. Similarly fast increases in mold heating time in the cure furnace could be realized if the heat pipes are used during this part of the production process. The heat pipes also cool hot spots in the mold and help isothermalize the mold so that better quality foam parts should be produced.

  8. Root Coverage in Smokers with Acellular Dermal Matrix Graft and Enamel Matrix Derivative: A 12-Month Randomized Clinical Trial.

    PubMed

    Costa, Priscila Paganini; Alves, Luciana Bastos; Souza, Sérgio Luís; Grisi, Márcio Fernando; Palioto, Daniela Bazan; Taba, Mario; Novaes, Arthur Belém

    2016-01-01

    This study investigated whether enamel matrix derivative (EMD) contributes to root coverage of gingival recessions performed with acellular dermal matrix graft (ADMG) in smokers during a 12-month follow-up. A sample of 19 smokers presenting bilateral Miller Class I or II gingival recessions were included. Selected sites randomly received both ADMG and EMD (test) or ADMG alone (control). Probing depth, clinical attachment level, gingival recession height, keratinized tissue, and root coverage were evaluated. Mean gain in recession height (P < .05), sites with complete root coverage (P < .05), and percentage of root coverage (59.7% and 52.8%, respectively) favored the test group compared with the control group. PMID:27333010

  9. Synthesis and physicochemical characterization of a series of hemoglobin-based oxygen carriers: objective comparison between cellular and acellular types.

    PubMed

    Sakai, H; Yuasa, M; Onuma, H; Takeoka, S; Tsuchida, E

    2000-01-01

    A series of hemoglobin (Hb)-based O(2) carriers, acellular and cellular types, were synthesized and their physicochemical characteristics were compared. The acellular type includes intramolecularly cross-linked Hb (XLHb), polyoxyethylene (POE)-conjugated pyridoxalated Hb (POE-PLP-Hb), hydroxyethylstarch-conjugated Hb (HES-XLHb), and glutaraldehyde-polymerized XLHb (Poly-XLHb). The cellular type is Hb-vesicles (HbV) of which the surface is modified with POE (POE-HbV). Their particle diameters are 7 +/- 2, 22 +/- 2, 47 +/- 17, 68 +/- 24, and 224 +/- 76 nm, respectively, thus all the materials penetrate across membrane filters with 0.4 microm pore size, though only the POE-HbV cannot penetrate across the filter with 0.2 microm pore size. These characteristics of permeability are important to consider an optimal particle size in microcirculation in vivo. POE-PLP-Hb ([Hb] = 5 g/dL) showed viscosity of 6.1 cP at 332 s(-1) and colloid osmotic pressure (COP) of 70.2 Torr, which are beyond the physiological conditions (human blood, viscosity = 3-4 cP, COP = ca. 25 Torr). XLHb and Poly-XLHb showed viscosities of 1.0 and 1.5 cp, respectively, which are significantly lower than that of blood. COP of POE-HbV is regulated to 20 Torr in 5% human serum albumin (HSA). HES-XLHb and POE-HbV/HSA showed comparable viscosity with human blood. Microscopic observation of human red blood cells (RBC) after mixing blood with POE-PLP-Hb or HES-XLHb disclosed aggregates of RBC, a kind of sludge, indicating a strong interaction with RBC, which is anticipated to modify peripheral blood flow in vivo. On the other hand, XLHb and POE-HbV showed no rouleaux or aggregates of RBC. The acellular Hbs (P(50) = 14-32 Torr) have their specific O(2) affinities determined by their structures, while that of the cellular POE-HbV is regulated by coencapsulating an appropriate amount of an allosteric effector (e.g., P(50) = 18, 32 Torr). These differences in physicochemical characteristics between the acellular

  10. Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding

    NASA Astrophysics Data System (ADS)

    Giboz, Julien; Copponnex, Thierry; Mélé, Patrice

    2009-02-01

    The skin-core crystalline morphology of injection-molded semi-crystalline polymers is well documented in the scientific literature. The thermomechanical environment provokes temperature and shear gradients throughout the entire thickness of the part during molding, thus influencing the polymer crystallization. Crystalline morphologies of a high-density polyethylene (HDPE) micromolded part (μpart) and a classical part (macropart) are compared with optical, thermal and x-ray diffraction analyses. Results show that the crystalline morphologies with regard to thickness vary between the two parts. While a 'skin-core' morphology is present for the macropart, the μpart exhibits a specific 'core-free' morphology, i.e. no spherulite is present at the center of the thickness. This result seems to be generated under the specific conditions used in microinjection molding that lead to the formation of smaller and more oriented crystalline entities.

  11. Effect of mold treatment by solvent on PDMS molding into nanoholes

    NASA Astrophysics Data System (ADS)

    Con, Celal; Cui, Bo

    2013-09-01

    Polydimethylsiloxane (PDMS) is the most popular and versatile material for soft lithography due to its flexibility and easy fabrication by molding process. However, for nanoscale patterns, it is challenging to fill uncured PDMS into the holes or trenches on the master mold that is coated with a silane anti-adhesion layer needed for clean demolding. PDMS filling was previously found to be facilitated by diluting it with toluene or hexane, which was attributed to the great reduction of viscosity for diluted PDMS. Here, we suggest that the reason behind the improved filling for diluted PDMS is that the diluent solvent increases in situ the surface energy of the silane-treated mold and thus the wetting of PDMS to the mold surface. We treated the master mold surface (that was already coated with a silane anti-adhesion monolayer) with toluene or hexane, and found that the filling by undiluted PMDS into the nanoscale holes on the master mold was improved despite the high viscosity of the undiluted PDMS. A simple estimation based on capillary filing into a channel also gives a filling time on the millisecond scale, which implies that the viscosity of PMDS should not be the limiting factor. We achieved a hole filling down to sub-200-nm diameter that is smaller than those of the previous studies using regular Sylgard PDMS (not hard PDMS, Dow Corning Corporation, Midland, MI, USA). However, we are not able to explain using a simple argument based on wetting property why smaller, e.g., sub-100-nm holes, cannot be filled, for which we suggested a few possible factors for its explanation.

  12. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding

    NASA Astrophysics Data System (ADS)

    Berger, G. R.; Pacher, G. A.; Pichler, A.; Friesenbichler, W.; Gruber, D. P.

    2014-05-01

    Dynamic mold surface temperature control was examined for its influence on the warpage. A test mold, featuring two different rapid heat cycle molding (RHCM) technologies was used to manufacture complex plate-shaped parts having different ribs, varying thin-wall regions, and both, circular and rectangular cut-outs. The mold's nozzle side is equipped with the areal heating and cooling technology BFMOLD®, where the heating/cooling channels are replaced by a ball-filled slot near the cavity surface flooded through with hot and cold water sequentially. Two local electrical ceramic heating elements are installed into the mold's ejection side. Based on a 23 full-factorial design of experiments (DoE) plan, varying nozzle temperature (Tnozzle), rapid heat cycle molding temperature (TRHCM) and holding pressure (pn), specimens of POM were manufactured systematically. Five specimens were examined per DoE run. The resulting warpage was measured at 6 surface line scans per part using the non-contact confocal topography system FRT MicroProf®. Two warpage parameters were calculated, the curvature of a 2nd order approximation a, and the vertical deflection at the profile center d. Both, the influence strength and the acting direction of the process parameters and their interactions on a and d were calculated by statistical analysis. Linear mathematical process models were determined for a and d to predict the warpage as a function of the process parameter settings. Finally, an optimum process setting was predicted, based on the process models and Microsoft Excel GRG solver. Clear and significant influences of TRHCM, pn, Tnozzle, and the interaction of TRHCM and pn were determined. While TRHCM was dominant close to the gate, pn became more effective as the flow length increased.

  13. Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics

    NASA Astrophysics Data System (ADS)

    Mertus, Lou; Symmons, Alan

    2012-10-01

    In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.

  14. Metallic glass mold insert for hot embossing of polymers

    NASA Astrophysics Data System (ADS)

    Ma, J.; Zhang, X.; Wang, W. H.

    2012-07-01

    Molding of micro components from thermoplastic polymers (TPs) has become a routinely used industrial production process. To find hard, ductile and durable material for mold insert and to fabricate the mold insert are two big challenges for the thermoplastic polymers fabrication techniques. We report that a Pd-based metallic glass (MG) mold insert was readily fabricated in its supercooled liquid region, and the atomic force microscope measurement and time-temperature-transformation analysis show that the metallic glass mold insert has very fine surface quality and long service life. We show that the metallic glasses, which have remarkable mechanical properties and excellent thermoplastic forming ability, are new ideal materials for hot embossing mold insert of thermoplastic polymers.

  15. To develop a geometric matching method for precision mold alignment

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Jen; Chang, Chun-Li; Jywe, Wenyuh

    2014-09-01

    In order to develop a high accuracy optical alignment system for precision molding machine, a geometric matching method was developed in this paper. The alignment system includes 4 high magnification lenses, 4 CCD cameras and 4 LED light sources. In the precision molding machine, a bottom metal mold and a top glass mold are used to produce a micro lens. The two molds combination does not use any pin or alignment part. They only use the optical alignment system to alignment. In this optical alignment system, the off-axis alignment method was used. The alignment accuracy of the alignment system is about 0.5 μm. There are 2 cross marks on the top glass mold and 2 cross marks on the bottom metal mod. In this paper did not use edge detection to recognize the mask center because the mask easy wears when the combination times increased. Therefore, this paper develops a geometric matching method to recognize mask center.

  16. Evacuated, displacement compression mold. [of tubular bodies from thermosetting plastics

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A process of molding long thin-wall tubular bodies from thermosetting plastic molding compounds is described wherein the tubular body lengths may be several times the diameters. The process is accomplished by loading a predetermined quantity of molding compound into a female mold cavity closed at one end by a force mandrel. After closing the other end of the female mold with a balance mandrel, the loaded cavity is evacuated by applying a vacuum of from one-to-five mm pressure for a period of fifteen-to-thirty minutes. The mold temperature is raised to the minimum temperature at which the resin constituent of the compound will soften or plasticize and a pressure of 2500 psi is applied.

  17. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    NASA Astrophysics Data System (ADS)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-06-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  18. Preliminary concepts for high-temperature mold heating and cooling

    SciTech Connect

    Larson, J.P.

    1990-12-01

    The feasibility and limitations of various methods for mold heating and cooling were investigated. Two methods were chosen for evaluation: electrical heating and water cooling, and electrical heating and heat pipe conduction cooling. A model mold of each method was built. Test results indicated that the electrical heating and circulated water cooling was the better method. An injection mold utilizing this method was fabricated and temperature-cycled between 300 and 770{degree}F. 1 ref., 2 figs., 7 tabs.

  19. Effect of mold rotation on the bifilar electroslag remelting process

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-fang; Chang, Li-zhong; Wang, Jian-jun

    2015-10-01

    A novel electroslag furnace with a rotating mold was fabricated, and the effects of mold rotational speed on the electroslag remelting process were investigated. The results showed that the chemical element distribution in ingots became uniform and that their compact density increased when the mold rotational speed was increased from 0 to 28 r/min. These results were attributed to a reasonable mold speed, which resulted in a uniform temperature in the slag pool and scattered the metal droplets randomly in the metal pool. However, an excessive rotational speed caused deterioration of the solidification structure. When the mold rotational speeds was increased from 0 to 28 r/min, the size of Al2O3 inclusions in the electroslag ingot decreased from 4.4 to 1.9 μm. But the excessive mold rotational speed would decrease the ability of the electroslag remelting to remove the inclusions. The remelting speed gradually increased, which resulted in reduced power consumption with increasing mold rotational speed. This effect was attributed to accelerated heat exchange between the consumable electrode and the molten slag, which resulted from mold rotation. Nevertheless, when the rotational speed reached 28 r/min, the remelting speed did not change because of limitations of metal heat conduction. Mold rotation also improved the surface quality of the ingots by promoting a uniform temperature distribution in the slag pool.

  20. Injection molding of ceramics using a polyacetal based binder system

    SciTech Connect

    Ebenhoech, J.S.

    1996-06-01

    Among the production routes to small complex ceramic parts, powder injection molding is the most attractive alternative. It combines near net shape capability with good surface finish and is easy to automate. With the development of the catalytic debinding process for polyacetal binders, the main impediments for the acceptance of ceramic injection molding as a mass production method can be overcome. The use of this system ensures short molding cycle times, high green strength and fast debinding without deformation. Ready to mold compounds are commercially available for various oxide and non-oxide ceramic materials as well as the equipment needed for this process.

  1. Mold and human health: separating the wheat from the chaff.

    PubMed

    Pettigrew, H David; Selmi, Carlo F; Teuber, Suzanne S; Gershwin, M Eric

    2010-04-01

    The term "mold" is utilized to define the ubiquitous fungal species commonly found in household dust and observed as visible multicellular filaments. Several well-defined human diseases are known to be caused or exacerbated by mold or by exposure to their byproducts. Among these, a solid connection has been established with infections, allergic bronchopulmonary aspergillosis, allergic fungal rhinosinusitis, hypersensitivity pneumonitis, and asthma. In the past decades, other less-defined and generally false conditions have also been ascribed to mold. We will herein review and critically discuss the available evidence on the influence of mold on human health. PMID:19714500

  2. Thermal monitoring of the thermoplastic injection molding process with FBGs

    NASA Astrophysics Data System (ADS)

    Alberto, Nélia J.; Nogueira, Rogério N.; Neto, Victor F.

    2014-08-01

    Injection molding is an important polymer processing method for manufacturing plastic components. In this work, the thermal monitoring of the thermoplastic injection molding is presented, since temperature is a critical parameter that influences the process features. A set of fiber Bragg gratings were multiplexed, aiming a two dimensional monitoring of the mold. The results allowed to identify the different stages of the thermoplastic molding cycle. Additionally, the data provide information about the heat transfer phenomena, an important issue for the thermoplastic injection sector, and thus for an endless number of applications that employ this type of materials.

  3. Applying simulation to optimize plastic molded optical parts

    NASA Astrophysics Data System (ADS)

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  4. A reusable mold in directional solidification for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Saito, T.; Shimura, A.; Ichikawa, S.

    1983-12-01

    Directional solidification of silicon was achieved by using a SiC coated carbon mold together with Si3N4 powder mold releasing agent. Crack-free polycrystalline silicon ingots were able to be extracted easily out of the mold. The mold was easily able to withstand more than 12 utilizations. Silicon ingot impurity contents were less than 3 ppm and the average polycrystalline grain diameter was 0.8 mm. Solar cells made of this material gave an AM1 maximum conversion of 10.8 deg.

  5. Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix

    NASA Astrophysics Data System (ADS)

    Geng, Hongquan; Song, Hua; Qi, Jun; Cui, Daxiang

    2011-12-01

    We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic- co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.

  6. The initial attachment of cemental fibrils to the root dentin surface in acellular and cellular cementogenesis in rat molars.

    PubMed

    Yamamoto, T; Domon, T; Takahashi, S; Islam, M N; Suzuki, R

    2001-03-01

    To elucidate the initial attachment mechanism of cemental fibrils to the root dentin surface in acellular and cellular cementogenesis, developing rat molars were observed by light microscopy and scanning electron microscopy combined with NaOH maceration. The NaOH maceration was used to observe details of the positional association of cemental and dentinal fibrils during cementogenesis. An initial hematoxylin stained, cementum layer began to form on the root dentin surface with the first dentin mineralization in both acellular and cellular cementogenesis. The initial attachment of cemental fibrils to the dentin surface also began at this point. At the initial attachment the intermingling of cemental and dentinal fibrils occurred only in places. With advanced cementogenesis the initial cementum layer became the fibril-poor cemento-dentinal junction. This suggests that cemental fibrils attach on the initial cementum layer, and not directly on dentinal fibrils, so that the layer results in the fibril-poor cemento-dentinal junction. The present study suggests that an intervening adhesive is necessary for the cemento-dentinal attachment at any stage of cementogenesis in rat molars. PMID:11325058

  7. Pancreatic acellular matrix supports islet survival and function in a synthetic tubular device: in vitro and in vivo studies.

    PubMed

    De Carlo, E; Baiguera, S; Conconi, M T; Vigolo, S; Grandi, C; Lora, S; Martini, C; Maffei, P; Tamagno, G; Vettor, R; Sicolo, N; Parnigotto, P P

    2010-02-01

    Increasing pancreatic islet survival and function is a starting point for obtaining a valuable bioartificial pancreas for the treatment of type 1 diabetes. In this context, decellularized matrices, obtained after the removal of tissue cellular part, are known to support in vitro adhesion, growth, and function of several cell types. We demonstrate that a homologous acellular pancreatic matrix is a suitable scaffold for rat islet cultures maintaining their long-term viability and function. Islets adhered to the pancreatic matrix showed a constant glucose-induced insulin release during long-term in vitro incubation, while islets cultured without a matrix or on the liver matrix showed a progressive reduction. In order to obtain implantable devices, acellular matrix/islet cultures were entrapped into poly(vinyl alcohol) (PVA)/ poly(ethylene glycol) (PEG) tubes obtained by the freezing/thawing procedure. Under this condition, an in vitro constant insulin release was detected. The devices were then implanted into diabetic rats where reduced insulin requirement was noted suggesting insulin secretory activity of islets contained in the device. Indeed, immunofluorescence confirmed the presence of insulin- and glucagon-producing cells into the explanted devices. These data show that PVA/PEG semi-permeable membrane can obtain devices that restore, at least in part, insulin secretion. PMID:20043127

  8. Surgical Outcomes of Deep Superior Sulcus Augmentation Using Acellular Human Dermal Matrix in Anophthalmic or Phthisis Socket.

    PubMed

    Cho, Won-Kyung; Jung, Su-Kyung; Paik, Ji-Sun; Yang, Suk-Woo

    2016-07-01

    Patients with anophthalmic or phthisis socket suffer from cosmetic problems. To resolve those problems, the authors present the surgical outcomes of deep superior sulcus (DSS) augmentation using acellular dermal matrix in patients with anophthalmic or phthisis socket. The authors retrospectively reviewed anophthalmic or phthisis patients who underwent surgery for DSS augmentation using acellular dermal matrix. To evaluate surgical outcomes, the authors focused on 3 aspects: the possibility of wearing contact prosthesis, the degree of correction of the DSS, and any surgical complications. The degree of correction of DSS was classified as excellent: restoration of superior sulcus enough to remove sunken sulcus shadow; fair: gain of correction effect but sunken shadow remained; or fail: no effect of correction at all. Ten eyes of 10 patients were included. There was a mean 21.3 ± 37.1-month period from evisceration or enucleation to the operation for DSS augmentation. All patients could wear contact prosthesis after the operation (100%). The degree of correction was excellent in 8 patients (80%) and fair in 2. Three of 10 (30%) showed complications: eyelid entropion, upper eyelid multiple creases, and spontaneous wound dehiscence followed by inflammation after stitch removal. Uneven skin surface and paresthesia in the forehead area of the affected eye may be observed after surgery. The overall surgical outcomes were favorable, showing an excellent degree of correction of DSS and low surgical complication rates. This procedure is effective for patients who have DSS in the absence or atrophy of the eyeball. PMID:27258711

  9. In Vivo Confocal Microscopic Observation of Lamellar Corneal Transplantation in the Rabbit Using Xenogenic Acellular Corneal Scaffolds as a Substitute

    PubMed Central

    Feng, Yun; Wang, Wei

    2015-01-01

    Background: The limiting factor to corneal transplantation is the availability of donors. Research has suggested that xenogenic acellular corneal scaffolds (XACS) may be a possible alternative to transplantation. This study aimed to investigate the viability of performing lamellar corneal transplantation (LCT) in rabbits using canine XACS. Methods: Fresh dog corneas were decellularized by serial digestion, and LCT was performed on rabbit eyes using xenogeneic decellularized corneal matrix. Cellular and morphological changes were observed by slit-lamp, light, and scanning electron microscopy at 7, 30 and 90 days postoperatively. Immunocytochemical staining for specific markers such as keratin 3, vimentin and MUC5AC, was used to identify cells in the graft. Results: Decellularized xenogenic corneal matrix remained transparent for about 1-month after LCT. The recipient cells were able to survive and proliferate into the grafts. Three months after transplantation, grafts had merged with host tissue, and graft epithelialization and vascularization had occurred. Corneal nerve fibers were able to grow into the graft in rabbits transplanted with XACS. Conclusions: Xenogenic acellular corneal scaffolds can maintain the transparency of corneal grafts about 1-month and permit growth of cells and nerve fibers, and is, therefore, a potential substitute or carrier for a replacement cornea. PMID:25836615

  10. Comparison of Coagulase-Negative Staphylococci Isolated from Blood Cultures as a True Bacteremia Agent and Contaminant in Terms of Slime Production and Methicillin Resistance

    PubMed Central

    Uyanik, Muhammet Hamidullah; Yazgi, Halil; Ozden, Kemalettin; Erdil, Zeynep; Ayyildiz, Ahmet

    2014-01-01

    Objective: The aim of this study is to determine the species distribution, slime activity, and methicillin resistance of coagulase-negative staphylococci (CoNS) isolated from blood cultures as either contaminants or true bacteremia agents. Materials and Methods: In this study, 13.268 blood culture samples sent to our laboratory from various clinics during a two-year period were examined in terms of the presence of CoNS to clarify whether the isolates are true bacteremia agents, as defined by Centers for Disease Control and Prevention (CDC) criteria. The slime activities of true bacteremia agents (58 CoNS strains) and contaminants (50 randomly selected CoNS strains) were investigated by the Christensen method. The methicillin susceptibilities of the strains were determined by the disk diffusion method. Results: Although the frequency of slime production was 39.7% among the true bacteremia CoNS agents, it was 18% in CoNS that were judged to be contaminants (p<0.05). S. epidermidis was the most frequently isolated species for both the true bacteremia agent group (56.9%) and contaminant group (74%). Additionally, S. epidermidis was the bacterium most frequently characterized as slime producing in both groups. The methicillin resistance of slime-producing CoNS was determined to be 82.6% for the true bacteremia agent group and 77.8% for the contaminant group. Conclusion: The presence of slime activity in CoNS isolated from blood culture samples is supportive evidence that they are most likely the agents of true bacteremia cases. PMID:25610309

  11. Antibacterial activity of Mulinum spinosum extracts against slime-producing Staphylococcus aureus and methicillin-resistant Staphylococcus aureus isolated from nasal carriers.

    PubMed

    Daniela, Echenique; Alejandra, Chiaramello; Pedro, Rossomando; Claudia, Mattana; Lucía, Alcaráz; Carlos, Tonn; Analía, Laciar; Sara, Satorres

    2014-01-01

    Nasal carriers of Staphylococcus aureus are important reservoirs with risk of developing endogenous infections or transmitting infections to susceptible individuals. Methicillin-resistant S. aureus (MRSA) are associated with higher rates of treatment failure. Some strains of S. aureus produce slime which is believed to make the microorganisms more resistant to antibiotics and host defenses. The antibacterial activity of ethyl acetate:n-hexane (EtOAc:HEX) extracts of Mulinum spinosum (5:95% EtOAc:HEX, 50:50% EtOAc:HEX, 70:30% EtOAc:HEX and mix 20:80/30:70% EtOAc:HEX, 50:50/70:30/100:0% EtOAc:HEX) were assayed against 3 slime-producing S. aureus strains and 2 MRSA strains isolated from nasal carriers. S. aureus ATCC 35556 slime-producing strain and MRSA ATCC 43300 strain were used as controls. The extracts were prepared using flash chromatography. M. spinosum 5:95% AcOEt:HEX showed antibacterial effect against all slime-producing strains (MIC: 500 µg/mL) and the highest activity against MRSA strains (MIC: 500 to 1000 µg/mL). All M. spinosum extracts assayed were active against slime-producing S. aureus and MRSA at doses between 500 and 4000 µg/mL. Both, slime-producing S. aureus and MRSA are highly contagious and hardly eradicated by antibiotic therapies. So, there is an increasing need to find new substances with the ability to inhibit these strains. PMID:25530997

  12. Antibacterial Activity of Mulinum spinosum Extracts against Slime-Producing Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus Isolated from Nasal Carriers

    PubMed Central

    Daniela, Echenique; Alejandra, Chiaramello; Pedro, Rossomando; Claudia, Mattana; Lucía, Alcaráz; Carlos, Tonn; Analía, Laciar; Sara, Satorres

    2014-01-01

    Nasal carriers of Staphylococcus aureus are important reservoirs with risk of developing endogenous infections or transmitting infections to susceptible individuals. Methicillin-resistant S. aureus (MRSA) are associated with higher rates of treatment failure. Some strains of S. aureus produce slime which is believed to make the microorganisms more resistant to antibiotics and host defenses. The antibacterial activity of ethyl acetate : n-hexane (EtOAc : HEX) extracts of Mulinum spinosum (5 : 95% EtOAc : HEX, 50 : 50% EtOAc : HEX, 70 : 30% EtOAc : HEX and mix 20 : 80/30 : 70% EtOAc : HEX, 50 : 50/70 : 30/100 : 0% EtOAc : HEX) were assayed against 3 slime-producing S. aureus strains and 2 MRSA strains isolated from nasal carriers. S. aureus ATCC 35556 slime-producing strain and MRSA ATCC 43300 strain were used as controls. The extracts were prepared using flash chromatography. M. spinosum 5 : 95% AcOEt : HEX showed antibacterial effect against all slime-producing strains (MIC: 500 µg/mL) and the highest activity against MRSA strains (MIC: 500 to 1000 µg/mL). All M. spinosum extracts assayed were active against slime-producing S. aureus and MRSA at doses between 500 and 4000 µg/mL. Both, slime-producing S. aureus and MRSA are highly contagious and hardly eradicated by antibiotic therapies. So, there is an increasing need to find new substances with the ability to inhibit these strains. PMID:25530997

  13. Is the biofilm formation and slime producing ability of coagulase-negative staphylococci associated with the persistence and severity of intramammary infection?

    PubMed

    Simojoki, H; Hyvönen, P; Plumed Ferrer, C; Taponen, S; Pyörälä, S

    2012-08-17

    Biofilm and slime formation assists bacteria in avoiding the host immune defence and antimicrobial therapy. It is suspected to affect the severity or persistence of mastitis caused by coagulase-negative staphylococci (CNS), which are a common cause of bovine mastitis. The phenotypic biofilm formation ability of 244 CNS isolates (199 isolates from bovine mastitis and 52 type and reference strains) was investigated with a tissue culture plate (TCP) assay and fluorescent in situ hybridization (FISH). Slime production of the strains was assessed using Congo red agar (CRA) plates. Additionally, genes encoding the adhesion proteins MSCRAMM (microbial surface components recognizing adhesive matrix molecules) and biofilm-associated proteins (bap) were detected. The severity of intramammary infection (IMI) in mastitis from which the isolates originated was measured with milk N-acetyl-β-D-glucosaminidase (NAGase) activity. One-third of isolates from mastitis produced biofilm when analysed with TCP or FISH. The kappa test value, measuring the agreement between two tests, differed between CNS species. Slime production was less frequent for isolates of the common mastitis species Staphylococcus chromogenes (0.2% of isolates produced slime) and Staphylococcus simulans (3.5%) compared to Staphylococcus epidermidis (40%). No association was found between the phenotypic ability to form biofilm and the persistence of IMI or severity of mastitis. Slime production was rare in isolates originating from IMI. Only 12.7% of isolates from persistent IMI and 1.8% of isolates from spontaneously eliminated IMI produced slime. The eno gene encoding laminin-binding protein was most frequently detected among the isolates from mastitis, 75% of them having this gene. Only a few other MSCRAMM genes were detected. PMID:22424866

  14. Impact of a base metal slimes dam on water systems, Madziwa Mine, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Lupankwa, K.; Love, D.; Mapani, B. S.; Mseka, S.

    The Mazowe Valley contains several of Zimbabwe’s largest current mining operations, is densely populated and is also a major agricultural area. The urban areas of Bindura, Goromonzi, Shamva, Marondera, Murehwa and Mutoko all draw water from within the Mazowe Valley. Irrigation of commercial crops is also a major water user. Accordingly, managing the impact of mining operations on water quality in the Mazowe Valley must be a major priority for sustainable development in this area. Madziwa Mine, 150 km north-east of Harare, is a case in point. Mining took place between 1966 and 2001. The main sulphides were chalcopyrite, pyrrhotite, pentlandite and pyrite. Waste from the mine’s plant has been disposed of via a tailings dam, the focus of this study. Surface water samples were collected at 12 sites around the slimes dam and groundwater samples were collected from six boreholes. The samples were analysed for dissolved metals using atomic absorption spectrometry and for anions using gravimetry and titration. The surface water chemical analyses showed that acidic effluent with high concentrations of iron, nickel and sulphate emanates from the tailings dam. Concentrations of metals are lower after the water has passed through natural wetlands. Chemical analysis of groundwater showed similarly high levels of acidity, sulphate and metal. These findings show that acid mine drainage is seeping from the tailings dam. Efforts are being made to reduce the effects of the acid mine drainage. For surface seepage from the dumps these efforts include diverting acidic effluent from the dump into natural wetlands that neutralise the acidity. To reduce drainage into the groundwater efforts are being made to plant trees with high evaporation rates to minimise the amount of water that can cause acid mine drainage.

  15. Emission characteristics of granulated fuel produced from sewage sludge and coal slime.

    PubMed

    Wzorek, Małgorzata; Kozioł, Michał; Scierski, Waldemar

    2010-12-01

    The neutralization of wastewater treatment residues is an issue for many countries. The European Union (EU) legal regulations have limited the use of the residues in agriculture and implemented a ban for their disposal. Therefore, urgent action should be taken to find solutions for the safe disposal of sewage sludge. The problem refers in particular to the new EU member countries, including Poland, where one can now observe an intensive development of sewage system networks and new sewage treatment plants. At the same time, these countries have few installations for thermal sewage sludge utilization (e.g., there is only one installation of that type in Poland). Simultaneously, there are many coal-fired mechanical stoker-fired boilers in some of these countries. This paper presents suggestions for the production of granulated fuel from sewage sludge and coal slime. Additionally, among others, lime was added to the fuel to decrease the sulfur compounds emission. Results are presented of research on fuel with two average grain diameters (approximately 15 and 35 mm). The fuel with such diameters is adapted to the requirements of the combustion process taking place in a stoker-fired boiler. The research was aimed at identifying the behavior of the burning fuel, with special attention paid to its emission properties (e.g., to the emissions of oxides of nitrogen [NO(x)], sulfur dioxide [SO2], and carbon monoxide [CO], among others). The concentration and emission values were compared with similar results obtained while burning hard coal. The combustion process was carried out in a laboratory stand where realization of the large-scale tests is possible. The laboratory stand used made simulation possible for a wide range of burning processes in mechanical stoker-fired boilers. PMID:21243903

  16. The efficacy of various irrigation solutions in removing slime-producing Staphylococcus.

    PubMed

    Anglen, J O; Apostoles, S; Christensen, G; Gainor, B

    1994-10-01

    To determine which type of irrigation solution and which method of irrigation most effectively removes slime-producing Staphylococcus from implant surfaces, we performed experimental washings of bacteria-coated stainless steel screws with various solutions delivered by bulb syringe or by jet lavage. The quantity of bacteria remaining on the screw surface was determined after irrigation with 1 L of saline, 1 L of antibiotic solutions, or 1 L of saline containing a liquid soap. Antibiotic solutions tested included bacitracin, neomycin, and polymyxin/neomycin. We found that the use of power irrigation increased the removal of bacteria by a factor of at least 100 over bulb syringe irrigation of the same volume, no matter which solution was used. This effect ranged from a 100-fold improvement for neomycin, to a 285-fold effect for the polymyxin solution. The addition of antibiotic drugs to the irrigation solution had no significant effect on bacterial removal, and none of the antibiotic solutions were statistically different from saline alone in the amount of bacteria removed from the screws. The addition of a liquid soap solution dramatically increased the amount of bacteria removed by irrigation, reducing the residual bacteria per screw from a colony count of 3.5 x 10(4) for polymyxin (the best of the antibiotic solutions), to 4.38 x 10(3). This difference was statistically significant as judged by Student's t test, with p = 0.01. We have concluded that the use of power irrigation improves the ability to clean this pathogenic bacteria from metallic surfaces, and that the addition of antibiotic drugs to the irrigation solution does not.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7996321

  17. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data

    USGS Publications Warehouse

    Merkes, Christopher M.; McCalla, S. Grace; Jensen, Nathan R.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    The prevention of non-indigenous aquatic invasive species spreading into new areas is a goal of many resource managers. New techniques have been developed to survey for species that are difficult to capture with conventional gears that involve the detection of their DNA in water samples (eDNA). This technique is currently used to track the invasion of bigheaded carps (silver carp and bighead carp; Hypophthalmichthys molitrix and H. nobilis) in the Chicago Area Waterway System and Upper Mississippi River. In both systems DNA has been detected from silver carp without the capture of a live fish, which has led to some uncertainty about the source of the DNA. The potential contribution to eDNA by vectors and fomites has not been explored. Because barges move from areas with a high abundance of bigheaded carps to areas monitored for the potential presence of silver carp, we used juvenile silver carp to simulate the barge transport of dead bigheaded carp carcasses, slime residue, and predator feces to determine the potential of these sources to supply DNA to uninhabited waters where it could be detected and misinterpreted as indicative of the presence of live bigheaded carp. Our results indicate that all three vectors are feasible sources of detectable eDNA for at least one month after their deposition. This suggests that current monitoring programs must consider alternative vectors of DNA in the environment and consider alternative strategies to minimize the detection of DNA not directly released from live bigheaded carps.

  18. Investigations on injection molded, glass-fiber reinforced polyamide 6 integral foams using breathing mold technology

    NASA Astrophysics Data System (ADS)

    Roch, A.; Kehret, L.; Huber, T.; Henning, F.; Elsner, P.

    2015-05-01

    Investigations on PA6-GF50 integral foams have been carried out using different material systems: longfiber- and shortfiber-reinforced PA6 as well as unreinforced PA6 as a reference material. Both chemical and physical blowing agents were applied. Breathing mold technology (decompression of the mold) was selected for the foaming process. The integral foam design, which can be conceived as a sandwich structure, helps to save material in the neutral axis area and maintains a distance between load-bearing, unfoamed skin layers. For all test series an initial mold gap of 2.5 mm was chosen and the same amount of material was injected. In order to realize different density reductions, the mold opening stroke was varied. The experiments showed that, at a constant mass per unit area, integral polyamide 6 foams have a significantly higher bending stiffness than compact components, due to their higher area moment of inertia after foaming. At a constant surface weight the bending stiffness in these experiments could be increased by up to 600 %. Both shortfiber- and longfiber-reinforced polyamide 6 showed an increase in energy absorption during foaming.

  19. Comparison of injection molding and injection/compression molding for the replication of microstructure

    NASA Astrophysics Data System (ADS)

    Hong, Seokkwan; Hwang, Jeongho; Kang, Jeongjin; Yoon, Kyunghwan

    2015-11-01

    Because of increasing interest in the functional surfaces including micro- or nano-patterns, the mass production of such surfaces has been actively researched. Both conventional injection molding (CIM) and injection/compression molding (ICM) of micro-patterns were investigated in the present study. The molding subject is a multi-scale structure that consists of a macro-scale thin plate and micro-scale patterns formed regularly on its surface. The transcription ratios of micro pattern made by CIM and ICM for different flow length were experimentally measured, and the origin of the obtained results was identified through numerical analysis. It was found that the cavity pressure and polymer temperature are the most important factors for micro-pattern filling; in particular, the polymer temperature is the key factor determining the transcription ratio. It was also found that the difference in CIM and ICM micro-pattern transcription ratios originates from the differences in the cavity pressure history if other molding conditions are the same.

  20. Precision grinding of tungsten carbide mold insert for molding of sub-millimeter glass aspheric lenses

    NASA Astrophysics Data System (ADS)

    Chao, Choung-Lii; Chang, Chia-Jung; Chen, Chun-Chieh; Chou, Wen-Chen; Ma, Kung-Jeng

    2013-06-01

    As the demand for precision optical components with sub-millimeter feature size steadily increasing, numerous efforts have been made in developing new techniques and in improving the existing approaches to efficiently and economically produce those components. Glass molding process (GMP) is one of these methods to enable mass production of precision glass optical components in recent years. One of the key issues in GMP is precision mold insert fabrication. Since the mould are normally made of hard and brittle materials such as tungsten carbide (WC) and silicon carbide (SiC), precision diamond grinding is by far the principal choice used to machine the GMP mould. As the feature size of optical component gets smaller, the size of mould and grinding wheel used to fabricate the mould gets smaller too. This makes the grinding process a very time consuming and expensive task. This research aimed to improve the small mold fabrication processes by developing an effective way of producing small diamond wheels and in-process monitoring wheel profile. Diamond wheels of around 0.2mm to 0.5mm in diameter after truing and WC aspheric mold insert of form accuracy around 0.47μm were successfully produced in this research.